ANDERSON-STARK UNITS FOR $\mathbb{F}_q[\theta]$

BRUNO ANGLES, FEDERICO PELLARIN, AND FLORIC TAVARES RIBEIRO `

Abstract. We investigate the arithmetic of special values of a new class of L-functions recently introduced by the second author. We prove that these special values are encoded in some particular polynomials which we call Anderson-Stark units. We then use these Anderson-Stark units to prove that L-functions can be expressed as sums of polylogarithms.

CONTENTS

1. INTRODUCTION

A major theme in the arithmetic theory of global function fields is the study of the arithmetic properties of special values of D. Goss L-functions. A typical example of such a function is given by the Carlitz-Goss zeta function $\zeta_A(.)$, where $A = \mathbb{F}_q[\theta]$ is the polynomial ring in the variable θ with coefficients in a finite field \mathbb{F}_q . Its special values are given by the following formula:

$$
\forall n \ge 1, \ \zeta_A(n) = \sum_{a \in A_+} \frac{1}{a^n} \ \in K_\infty,
$$

where A_+ is the set of monic elements in A and $K_{\infty} = \mathbb{F}_q((\frac{1}{\theta}))$. In 1990, G. Anderson and D. Thakur proved the following fundamental result ([\[AT90,](#page-24-0) Theorem 3.8.3]): for $n \geq 1$, there exists $z_n \in \text{Lie}(C^{\otimes n})(K_\infty)$ such that $\exp_n(z_n) \in C^{\otimes n}(A)$, and

$$
\Gamma_n \zeta_A(n) = e_n(z_n),
$$

where \exp_n is the exponential map associated to the *n*th tensor power of the Carlitz module $C^{\otimes n}$, $e_n(z_n)$ is the last coordinate of $z_n \in K^n_{\infty}$, and $\Gamma_n \in A$ is the Carlitz factorial (we refer the reader to [\[BP\]](#page-24-1) for the basic properties of $C^{\otimes n}$). This result has recently been generalized by M. A. Papanikolas in [\[Pap\]](#page-24-2) who proved a logalgebraicity theorem for $C^{\otimes n}$ in the spirit of the work of G. Anderson in [\[And96\]](#page-23-2).

Received by the editors January 27, 2015 and, in revised form, May 20, 2016.

²⁰¹⁰ Mathematics Subject Classification. Primary 11R58, 11M38; Secondary 11G09.

The second author was supported by the ANR HAMOT.

⁻c 2017 American Mathematical Society

M. A. Papanikolas applies this log-algebraicity theorem to obtain remarkable explicit formulas for a large class of special values of D. Goss Dirichlet L-functions. Observe that the t-motive associated to the t-module $C^{\otimes n}$ can be understood as the following object: $(A[t], \tau)$, where t is an indeterminate over $K = \mathbb{F}_q(\theta)$, and $\tau : A[t] \to A[t]$ is the $\mathbb{F}_q[t]$ -linear map defined as follows:

$$
\tau\left(\sum_{k\geq 0} a_k t^k\right) = (t-\theta)^n \left(\sum_{k\geq 0} a_k^q t^k\right),
$$

where $a_k \in A$.

Let $s \geq 1$ be an integer and let t_1, \ldots, t_s be s indeterminates over K. Consider the following object: $(A[t_1,\ldots,t_s],\tau)$ where $\tau : A[t_1,\ldots,t_s] \rightarrow A[t_1,\ldots,t_s]$ is the morphism of $\mathbb{F}_q[t_1,\ldots,t_s]$ $\mathbb{F}_q[t_1,\ldots,t_s]$ $\mathbb{F}_q[t_1,\ldots,t_s]$ -modules, semi-linear¹ with respect to $\tau_0: A \to A, x \mapsto$ x^q , given by:

$$
\tau\left(\sum_{i_1,\ldots,i_s\in\mathbb{N}}a_{i_1,\ldots,i_s}t_1^{i_1}\cdots t_s^{i_s}\right)=(t_1-\theta)\cdots(t_s-\theta)\left(\sum_{i_1,\ldots,i_s\in\mathbb{N}}a_{i_1,\ldots,i_s}^qt_1^{i_1}\cdots t_s^{i_s}\right),
$$

where $a_{i_1,\ldots,i_s} \in A$. Note that we have a natural morphism of $\mathbb{F}_q[t_1,\ldots,t_s]$ -algebras

$$
\phi: A[t_1,\ldots,t_s] \to \text{End}_{\mathbb{F}_q[t_1,\ldots,t_s]} A[t_1,\ldots,t_s]
$$

given by $\phi_{\theta} = \theta + \tau$. Let $\mathbb{T}_{s}(K_{\infty})$ be the Tate algebra in the variables t_1, \ldots, t_s , with coefficients in K_{∞} . Then τ extends naturally to a continuous morphism of $\mathbb{F}_q[t_1,\ldots,t_s]$ -modules on $\mathbb{T}_s(K_\infty)$. The second author introduced (see [\[Pel12\]](#page-24-3), [\[Per14b\]](#page-24-4), [\[Per14a\]](#page-24-5), [\[AP15\]](#page-24-6)) for integers $N \in \mathbb{Z}$ and $s \geq 0$ the L-series

$$
L(N,s) = \sum_{a \in A_+} \frac{a(t_1) \cdots a(t_s)}{a^N},
$$

which converges in $\mathbb{T}_s(K_\infty)$. If z is another indeterminate, we also set

$$
L(N,s,z) = \sum_{d \geq 0} z^d \sum_{\substack{a \in A_+ \\ \deg_{\theta} a = d}} \frac{a(t_1) \dots a(t_s)}{a^N} \in K[t_1, \dots, t_s][[z]].
$$

These series converge at $z = 1$ in $\mathbb{T}_s(K_\infty)$ and we have the equality

$$
L(N, s) = L(N, s, z) |_{z=1} .
$$

Our main goal in this article is the study of the arithmetic properties of the $L(N, s, z), N \in \mathbb{Z}$. Let us give a brief description of our principal results.

We let τ act on $K[t_1,\ldots,t_s][[z]]$ by

$$
\tau(\sum_{k\geq 0} f_k z^k) = \sum_{k\geq 0} \tau(f_k) z^k,
$$

where $f_k \in K[t_1,\ldots,t_s]$. The exponential function associated to ϕ is defined by

$$
\exp_{\phi} = \sum_{i \ge 0} \frac{1}{D_i} \tau^i,
$$

¹We signal here to avoid confusion that in the rest of the article τ will denote more generally a morphism semi-linear with respect to τ_0 .

where $D_0 = 1$, and for $i \geq 1$, $D_i = (\theta^{q^i} - \theta)D_{i-1}^q$. We also set

$$
\exp_{\phi,z} = \sum_{i\geq 0} \frac{z^i}{D_i} \tau^i.
$$

A formulation of the s-variable version of Anderson's log-algebraicity theorem is (see Theorem [4.6](#page-12-0) and Proposition [5.4\)](#page-21-0)

$$
\exp_{\phi,z}(L(1,s,z)) \in A[t_1,\ldots,t_s,z]
$$

from which we also deduce that, in $\mathbb{T}_{s}(K_{\infty}),$

$$
\exp_{\phi}(L(1,s)) \in A[t_1,\ldots,t_s].
$$

This s-variable version has been proved in [\[APTR16\]](#page-24-7) as a consequence of a class formula. We give here a more direct proof, close to Anderson's original proof in [\[And96\]](#page-23-2).

The special elements $\exp_{\phi,z}(L(1,s,z))$ and $\exp_{\phi}(L(1,s))$ play the role of Stark units in our context. Let us give an example, for $1 \leq s \leq q-1$, by Proposition [5.4](#page-21-0) we have the following equality in \mathbb{T}_s :

$$
L(1,s) = \log_{\phi}(1),
$$

where $log_{\phi} = \sum_{i \geq 0} \frac{1}{l_i} \tau^i$ is the Carlitz logarithm, $l_0 = 1$ and for $i \geq 1$, $l_i =$ $(\theta - \theta^{q^i}) l_{i-1}$. We define for $N > 0$, the Nth "polylogarithm"

$$
\log_{\phi, N, z} = \sum_{i \geq 0} \frac{z^i}{l_i^N} \tau^i.
$$

Set $b_0(t) = 1$, and for $r \ge 1$, $b_r(t) = \prod_{k=0}^{r-1} (t - \theta^{q^k})$. Let $N \ge 1$ be an integer and let $r \geq 1$ be the unique integer such that $q^r \geq N > q^{r-1}$. We can then prove (see Theorem [6.2](#page-23-3) for the precise statement) that there exists a finite set of completely explicit elements $h_j \in A[t_1,\ldots,t_s,z], 0 \leq j \leq d$, that are built from the "unit" $\exp_{\phi,z}(L(1,n+q^r-N,z))$, such that

$$
l_{r-1}^{q^r - N} b_r(t_1) \cdots b_r(t_n) L(N, n, z) = \sum_{j=0}^d \theta^j \log_{\phi, N, z}(h_j).
$$

The paper is organized as follows: we first $(\S 3)$ introduce a Banach space \mathbb{B}_s which is a completion of an *s*-variable polynomial ring for a norm similar to the one considered by Anderson in [\[And96\]](#page-23-2). The study of different natural Carlitz actions on \mathbb{B}_s allows us to endow \mathbb{B}_s with an action of the Tate algebra \mathbb{T}_s and to translate some statements on \mathbb{B}_s into statements on \mathbb{T}_s . We then (§4) prove the s-variable log-algebraicity theorem, following the lines of Anderson's proof in [\[And96\]](#page-23-2), and establish some properties of the special polynomials. We also state two "converses" to the log-algebraicity theorem (Propositions [4.16](#page-16-0) and [4.17\)](#page-16-1). In the next section (§5) we translate the preceding results in \mathbb{T}_s , so that the *L*-functions $L(1, s, z)$ and $L(1, s)$ appear naturally. The last section (§6) is devoted to the proof that $L(N, n, z)$ can be expressed as a sum of polylogarithms.

2. NOTATION

Let \mathbb{F}_q be a finite field with q elements, where q is a power of a prime p, θ an indeterminate over \mathbb{F}_q , $A = \mathbb{F}_q[\theta]$, $A^* = A \setminus \{0\}$ and $K = \mathbb{F}_q(\theta)$. The set of monic elements (respectively of degree $j \ge 0$) of A is denoted by A_+ (respectively $A_{+,j}$). Let v_{∞} be the valuation on K given by $v_{\infty}(\frac{a}{b}) = \deg_{\theta} b - \deg_{\theta} a$. We identify with $\mathbb{F}_q((\frac{1}{\theta}))$ the completion K_{∞} of K with respect to v_{∞} . Let \mathbb{C}_{∞} be the completion of an algebraic closure of K_{∞} . Then v_{∞} extends uniquely to a valuation on \mathbb{C}_{∞} , still denoted by v_{∞} , and we set for all $\alpha \in \mathbb{C}_{\infty}$, $|\alpha|_{\infty} = q^{-v_{\infty}(\alpha)}$. The algebraic closures of K and \mathbb{F}_q in \mathbb{C}_{∞} will be denoted by \overline{K} and $\overline{\mathbb{F}_q}$.

Let τ denote an operator which we let act as the Frobenius on \mathbb{C}_{∞} : for all $\alpha \in \mathbb{C}_{\infty}$, $\tau(\alpha) = \alpha^{q}$. If R is a ring endowed with an action of τ (for instance, R a subring of \mathbb{C}_{∞} stable under τ), then we denote by $R[[\tau]]$ the ring of formal series in τ with coefficients in R subject to the commutation rule: for all $r \in R$, $\tau \cdot r = \tau(r) \cdot \tau$. We also denote by $R[\tau]$ the subring of $R[[\tau]]$ of polynomials in τ .

The *Carlitz module* is the unique morphism $C_{\text{A}}: A \rightarrow A[\tau]$ of \mathbb{F}_{q} -algebras determined by $C_{\theta} = \theta + \tau$. If M is an A-module endowed with a semi-linear endomorphism τ_M ($\forall m \in M$, $\forall a \in A$, $\tau_M(am) = \tau(a)\tau_M(m)$), then C, induces a new action of A on M; endowed with this action, the A-module M is denoted by $C(M)$.

The *Carlitz exponential* is the formal series

$$
\exp_C = \sum_{i\geq 0} \frac{1}{D_i} \tau^i \in K[[\tau]],
$$

where $D_0 = 1$ and for $i \geq 1, D_i = (\theta^{q^i} - \theta)D_{i-1}^q$. The evaluation $\exp_C : \mathbb{C}_{\infty} \to$ \mathbb{C}_{∞} ; $x \mapsto \exp_C(x) = \sum_{i \geq 0} \frac{1}{D_i} \tau^i(x)$ defines an entire \mathbb{F}_q -linear function on \mathbb{C}_{∞} and ker(exp_C : $\mathbb{C}_{\infty} \to \mathbb{C}_{\infty}$) = $\tilde{\pi}A$ where $\tilde{\pi}$ is the Carlitz period defined by (see [\[Gos96,](#page-24-8) Chapter 3])

$$
\tilde{\pi} = \sqrt[q-1]{\theta - \theta^q} \prod_{i \geq 1} \left(1 - \frac{\theta^{q^i} - \theta}{\theta^{q^{i+1}} - \theta} \right) \in \sqrt[q-1]{-\theta}(\theta + \mathbb{F}_q[[\frac{1}{\theta}]]).
$$

The *Carlitz logarithm* is the formal series

$$
\log_C = \sum_{i \geq 0} \frac{1}{l_i} \tau^i \in K[[\tau]],
$$

where $l_0 = 1$ and for $i \geq 1, l_i = (\theta - \theta^{q^i})l_{i-1}$. It satisfies in $K[[\tau]]$ the equality $\log_C \cdot \exp_C = 1$. It defines a function $x \mapsto \log_C(x)$ on \mathbb{C}_{∞} converging for $v_{\infty}(x) >$ $-\frac{q}{q-1}$. Moreover, if $v_{\infty}(x) > -\frac{q}{q-1}$, then $v_{\infty}(x) = v_{\infty}(\exp_C(x)) = v_{\infty}(\log_C(x))$ and $\exp_C \circ \log_C(x) = x = \log_C \circ \exp_C(x)$. We have the formal identities in $K[[\tau]]$ for all $a \in A$:

 $\exp_C a = C_a \exp_C$ and $\log_C C_a = a \log_C$.

The identity $\exp_C (ax) = C_a (\exp_C (x))$ holds for all $x \in \mathbb{C}_{\infty}, a \in A$.

The set of A-torsion points of $C(\mathbb{C}_{\infty})$ is denoted by $\Lambda_C \subset C(K)$. Let $a \in A$ with $\deg_{\theta} a > 0$, the a-torsion points are precisely the elements $\exp_{C}(\frac{b\tilde{\pi}}{a}) \in \overline{K}$ with $b \in A$ and $\deg_{\theta} b < \deg_{\theta} a$. Therefore, $\Lambda_C = \exp_C(K\tilde{\pi})$. Since \exp_C is continuous for the topology defined by v_{∞} , the closure of Λ_C in \mathbb{C}_{∞} is the compact set

$$
\mathfrak{K} = \overline{\Lambda_C} = \exp_C(K_{\infty}\tilde{\pi}) = \exp_C\left(\frac{1}{\theta}\mathbb{F}_q[[\frac{1}{\theta}]]\tilde{\pi}\right) = \sqrt[q-1]{-\theta}\mathbb{F}_q[[\frac{1}{\theta}]],
$$

where the last equality comes from the facts that $\tilde{\pi} \in \sqrt[q-1]{-\theta}(\theta + \mathbb{F}_q[[\frac{1}{\theta}]])$, and that for $\lambda \in \mathbb{F}_q^*$ and $n \geq 1$, $\exp_C\left(\frac{\lambda \tilde{\pi}}{\theta^n}\right) \equiv \frac{\lambda \tilde{\pi}}{\theta^n} \mod \frac{\tilde{\pi}}{\theta^{n+1}} \mathbb{F}_q[[\frac{1}{\theta}]]$. It is customary to consider $K_{\infty}\tilde{\pi}$ as an analogue of the imaginary line; the compact \mathfrak{K} is then an analogue of the unit circle. We remark that \exp_C and \log_C define reciprocal automorphisms of K.

3. Some functional analysis

3.1. **General settings.** Let $s \geq 1$ be a fixed integer and let $\mathbf{X} = (X_1, \ldots, X_s)$ be a set of indeterminates over \mathbb{C}_{∞} . We want to consider polynomials $F \in \mathbb{C}_{\infty}[\mathbf{X}]$ as polynomial functions on \mathbb{R}^s . Thus we introduce the following norm on $\mathbb{C}_{\infty}[\mathbf{X}]$:

$$
||F|| = \max \left\{ |F(x_1,\ldots,x_s)|_\infty \mid x_1,\ldots,x_s \in \mathfrak{K} \right\}.
$$

Since R is compact and infinite, this is a well-defined, ultrametric norm of \mathbb{C}_{∞} algebra. (In particular, for all $F, G \in \mathbb{C}_{\infty}[\mathbf{X}], ||FG|| \leq ||F|| ||G||$. Moreover, $||F|| =$ $0 \Rightarrow F = 0$ is a consequence of the fact that \mathfrak{K} is infinite.)

If $\mathbf{i} = (i_1, \ldots, i_s)$ where the $i_j \geq 0$ are integers, then we write $\mathbf{X}^{\mathbf{i}}$ for $X_1^{i_1} \ldots X_s^{i_s}$ and $|\mathbf{i}| = i_1 + \cdots + i_s$.

Lemma 3.1.

- (1) If $\mathbf{i} \in \mathbb{N}^s$, then $\|\mathbf{X}^{\mathbf{i}}\| = q^{\frac{|\mathbf{i}|}{q-1}}$.
- (2) Write for $n \geq 1$, $\lambda_{\theta^n} = \exp_C(\frac{\pi}{\theta^n}) \in \Lambda_C$ and let $W \subset \Lambda_C$ be the \mathbb{F}_q -vector space spanned by the λ_{θ^n} , $n \geq 1$. Then W is dense in \Re . In particular, for all $F \in \mathbb{C}_{\infty}[\mathbf{X}],$

$$
||F|| = \sup\left\{|F(\mathbf{x})|_{\infty} \mid \mathbf{x} \in \Lambda_C^s\right\} = \sup\left\{|F(\mathbf{x})|_{\infty} \mid \mathbf{x} \in W^s\right\}.
$$

Proof.

(1) This is a consequence of the fact that if $a, b \in A^*$ with $\deg_{\theta} a < \deg_{\theta} b$, then

$$
v_{\infty}\left(\exp_C\left(\frac{a\tilde{\pi}}{b}\right)\right) = v_{\infty}\left(\frac{a\tilde{\pi}}{b}\right) = \deg_{\theta} b - \deg_{\theta} a - \frac{q}{q-1} \ge \frac{-1}{q-1}.
$$

(2) This follows from the fact that the \mathbb{F}_q -vector space spanned by the $\frac{1}{\theta^n}$ for $n \geq 1$ is $\frac{1}{\theta} \mathbb{F}_q\left[\frac{1}{\theta}\right]$ which is dense in $\frac{1}{\theta} \mathbb{F}_q\left[\left[\frac{1}{\theta}\right]$ $\frac{1}{\theta}$].

Remark 3.2. Note that the norm $\|\cdot\|$ is not multiplicative. We shall give an example in the one variable case. We have

$$
||C_{\theta}(X)|| = ||X|| = q^{\frac{1}{q-1}}
$$

but $C_{\theta}(X) = \prod_{\lambda \in \mathbb{F}_q} (X - \lambda \exp_C(\frac{\tilde{\pi}}{\theta}))$, where for all $\lambda \in \mathbb{F}_q$, $||X - \lambda \exp_C(\frac{\tilde{\pi}}{\theta})|| =$ $q^{\frac{1}{q-1}}.$

Since Λ_C is the torsion set of $C(\mathbb{C}_{\infty})$, it is naturally endowed with the Carlitz action of A: if $x \in \Lambda_C$, $a \in A$, then $C_a(x) \in \Lambda_C$, which extends by continuity to \mathfrak{K} . Thus, we get a natural action of the multiplicative monoid of A on the polynomial functions on \mathfrak{K}^s :

(3.1)
$$
\forall F(\mathbf{X}) \in \mathbb{C}_{\infty}[\mathbf{X}], \forall a \in A \quad a * F(\mathbf{X}) = F(C_a(X_1), \dots, C_a(X_s)).
$$

This action is a generalisation of Anderson's construction ([\[And96,](#page-23-2) §3.2]) to our settings. Observe that since for all $a \in A^*, C_a : \Lambda_C \to \Lambda_C$ is surjective, this action is isometric with respect to the norm $\|\cdot\|.$

3.2. **The one variable case.** Set $L = K_{\infty}(\tilde{\pi})$ and $\pi = \frac{\theta}{\tilde{\pi}}$. Since $v_{\infty}(\pi) = \frac{1}{q-1}$, the valuation ring of L is

$$
O_L = \mathbb{F}_q[[\pi]] = \sum_{k=0}^{q-2} \pi^k \mathbb{F}_q[[\frac{1}{\theta}]],
$$

and its maximal ideal is

$$
\mathfrak{P}_L = \pi O_L.
$$

Recall that since $K_{\infty} = A \oplus \frac{1}{\theta} \mathbb{F}_q[[\frac{1}{\theta}]]$, we have

$$
\exp_C(\tilde{\pi}K_{\infty}) = \frac{1}{\pi} \mathbb{F}_q[[\frac{1}{\theta}]] \subset \mathfrak{P}_L^{-1}.
$$

Let $N \in \mathbb{N} = \{0, 1, \dots\}$ and let $N = \sum_{i=0}^{r} N_i q^i$, with for all $i, 0 \leq N_i \leq q-1$, be its base-q decomposition. Set $l_q(N) = \sum_{i=0}^{n} N_i$. We define the polynomial $G_N(X)$ by

$$
G_N(X) = \pi^{l_q(N)} \left(\prod_{i=0}^r (\theta^i * X)^{N_i} \right) = \pi^{l_q(N)} \left(\prod_{i=0}^r C_{\theta^i}(X)^{N_i} \right) \in L[X].
$$

Lemma 3.3.

- (1) The set $\{G_N(X), N \geq 0\}$ generates $L[X]$ as an L-vector space.
- (2) For $N \in \mathbb{N}$, we have:

$$
||G_N(X)|| = 1.
$$

Proof.

- (1) It follows from the fact that for all $N \geq 0$, $\deg_X(G_N(X)) = N$.
- (2) We remark that for all $\lambda \in \Lambda_C$, $v_{\infty}(G_N(\lambda)) \geq 0$ and that if $\alpha \in \mathbb{F}_q^*$ and $\lambda_{\theta+\alpha} = \exp_C\left(\frac{\tilde{\pi}}{\theta+\alpha}\right)$, then $v_{\infty}(G_N(\lambda_{\theta+\alpha})) = 0$.

If $\beta = (\beta_i)_{i>1}$ is a sequence of elements in \mathbb{F}_q , we set

$$
\lambda(\beta) = \sum_{i \ge 1} \beta_i \exp_C\left(\frac{\tilde{\pi}}{\theta^i}\right) \in \mathfrak{P}_L^{-1}.
$$

Note that if we set $\mu(\beta) = \sum_{i \geq 1} \frac{\beta_i}{\theta^i} \in K_\infty$, then we have $\lambda(\beta) = \exp_C(\tilde{\pi}\mu(\beta)).$

 $\sum_{i=0}^{r} N_i q^i$ be a nonnegative integer written in base q. Then **Lemma 3.4.** Let $\beta = (\beta_i)_{i\geq 1}$ be a sequence of elements in \mathbb{F}_q , and let $N =$

$$
G_N(\lambda(\beta)) \equiv \prod_{i=0}^r \beta_{i+1}^{N_i} \mod \mathfrak{P}_L.
$$

Proof. Observe that

$$
\exp_C\left(\frac{\tilde{\pi}}{\theta}\right) \equiv \frac{1}{\pi} \mod O_L.
$$

Thus, for $j \geq 0$,

$$
\pi C_{\theta_j}(\lambda(\beta)) \equiv \beta_{j+1} \mod \mathfrak{P}_L,
$$

whence the result. \Box

Lemma 3.5. Let k, r be two integers such that $r \geq 1$ and $1 \leq k \leq q^r$, let $\alpha_1, \ldots, \alpha_k \in \mathbb{F}_q^*$ and let N_1, \ldots, N_k be k distinct integers in $\{0, \ldots, q^r - 1\}$. Write $N_i = \sum_{j=0}^{r-1} n_{i,j} q^i$ in base q. Then, there exists $\beta_1, \ldots, \beta_r \in \mathbb{F}_q$ such that

$$
\sum_{i=1}^{k} \alpha_i \prod_{j=0}^{r-1} \beta_{j+1}^{n_{i,j}} \neq 0
$$

with the convention that $0^0 = 1$.

Proof. We proceed by induction on r.

If $r = 1$, then $k \le q$ and for $1 \le j \le k$, $N_i = n_{i,1} \in \{0, ..., q - 1\}$. Since the N_i 's are distinct, the polynomial $\sum_{i=1}^k \alpha_i X^{N_i}$ is not divisible by $X^q - X$, and this implies the assertion of the lemma in this case.

We assume now that the lemma is proved for all integers less than $r-1 \geq 1$, and we also assume that at least one N_i is $\geq q^{r-1}$. We define an equivalence relation over the set $\{1,\ldots,k\}$: for all $1 \leq i, i' \leq k, i \sim i'$ if and only if $n_{i,j} = n_{i',j}$ for all $1 \leq j \leq r-2$ (that is, if $N_i \equiv N_{i'} \mod q^{r-1}$). We denote by I_1, \ldots, I_t the equivalence classes and if $i \in I_m$ we define for $1 \leq j \leq r-2$, $n_j^{(m)} = n_{i,j}$ the common value. Let $\beta_1, \ldots, \beta_r \in \mathbb{F}_q^*$; then

$$
\sum_{i=1}^k \alpha_i \prod_{j=0}^{r-1} \beta_{j+1}^{n_{i,j}} = \sum_{m=1}^t \left(\sum_{i \in I_m} \alpha_i \beta_r^{n_{i,r-1}} \right) \prod_{j=0}^{r-2} \beta_{j+1}^{n_j^{(m)}}.
$$

Now, by the case $r = 1$, we can find β_r such that the sum $\sum_{i \in I_1} \alpha_i \beta_r^{n_{i,r-1}}$ is not zero and we can apply the induction hypothesis to conclude the proof. \Box

Let $K_{\infty} \subseteq E \subseteq \mathbb{C}_{\infty}$ be a field complete with respect to $|\cdot|_{\infty}$, and $\mathbb{B}(E)$ denote the completion of $E[X]$ with respect to $\|\cdot\|$.

Theorem 3.6. The family $\{G_N(X), N \geq 0\}$ forms an orthonormal basis of the E -Banach space $\mathbb{B}(E)$, that is:

- (i) any $F \in \mathbb{B}(E)$ can be written in a unique way as a convergent series $F =$ $\sum_{N\geq 0} f_N G_N(X)$ with $f_N \in E, N \geq 0$, and $\lim_{N\to\infty} f_N = 0$; (ii) if F is written as above, then $||F|| = \max_{N>0} |f_N|_{\infty}$.
-

Proof. It is enough to prove the above properties (i) and (ii) for $F \in E[X]$. Note that property (i) is a consequence of the fact that $\deg_X G_N(X) = N$ for all $N \geq 0$. Let us prove property (ii). It is enough to consider $F = \sum_{i=0}^{r} x_r G_{N_i}$ with for all $0 \leq i \leq r$, $v_{\infty}(x_i) = 0$. We are reduced to proving that $||F|| = 1$, that is, $||F|| \geq 1$ since we already know the converse inequality; and the existence of $\lambda \in \Lambda_C$ such that $v_{\infty}(F(\lambda)) = 0$ is a consequence of Lemmas [3.4](#page-5-0) and [3.5.](#page-6-0) \Box

3.3. **The multivariable case.** Let $s \geq 1$ be an integer, we define for a field $K_{\infty} \subseteq E \subseteq \mathbb{C}_{\infty}$ complete with respect to $|\cdot|_{\infty}$, $\mathbb{B}_{s}(E)$ to be the completion of $E[\mathbf{X}]$ with respect to $\|\cdot\|$. We write also for short $\mathbb{B}_s = \mathbb{B}_s(\mathbb{C}_{\infty})$. Observe that for $N_1,\ldots,N_s\in\mathbb{N}$, we have

$$
||G_{N_1}(X_1)\cdots G_{N_s}(X_s)||=1.
$$

Theorem 3.7. Let $L \subseteq E \subseteq \mathbb{C}_{\infty}$ be complete with respect to $|\cdot|_{\infty}$. Then the family

$$
\{G_{N_1}(X_1)\cdots G_{N_s}(X_s), N_1,\ldots,N_s\in\mathbb{N}\}
$$

forms an orthonormal basis of the E-Banach space $\mathbb{B}_s(E)$, that is:

(i) any $F \in \mathbb{B}_s(E)$ can be written in a unique way as the sum of a summable family

$$
F = \sum_{(N_1,...,N_s) \in \mathbb{N}^s} f_{N_1,...,N_s} G_{N_1}(X_1) \cdots G_{N_s}(X_s)
$$

with $f_{N_1,...,N_s} \in E$ for all $N_1,...,N_s \in \mathbb{N}$, and $f_{N_1,...,N_s}$ goes to 0 with respect to the Fréchet filter; 2 2

(ii) if F is written as above, then $||F|| = \max\{|f_{N_1,...,N_s}|_{\infty}, N_1,...,N_s \in \mathbb{N}\}.$

Proof. We proceed by induction on $s \geq 1$. The case $s = 1$ is the statement of Theorem [3.6.](#page-6-1) Assume now that $s \geq 2$ and that the theorem is true for $s-1$. It will be enough to prove (i) and (ii) for polynomials, and (i) is still an easy consequence of deg_X $G_N(X) = N$ for all $N \geq 0$. Write a polynomial

$$
F = \sum_{i=0}^{r} \alpha_r G_{N_i}(X_s) \in E[\mathbf{X}], \text{ where } \forall 1 \leq i \leq r, \alpha_i \in E[X_1, \dots, X_{s-1}].
$$

Write for $1 \leq i \leq r$, the polynomial

$$
\alpha_i = \sum_{i_1, \dots, i_{s-1}} \alpha_{i_1, \dots, i_{s-1}}^{(i)} G_{i_1}(X_1) \cdots G_{i_{s-1}}(X_s)
$$

with $\alpha_{i_1,\ldots,i_{s-1}}^{(i)} \in E$. Then the induction hypothesis shows that for all *i*:

$$
||\alpha_i|| = \max \left\{ \left| \alpha_{i_1, ..., i_{s-1}}^{(i)} \right|_{\infty}, i_1, ..., i_{s-1} \in \mathbb{N} \right\}.
$$

Thus

$$
||F|| \le \max_{1 \le i \le r} ||\alpha_i|| = \max \left\{ \left| \alpha_{i_1, ..., i_{s-1}}^{(i)} \right|_{\infty}, i_1, ..., i_{s-1}, i \in \mathbb{N} \right\}.
$$

Let $1 \leq i_0 \leq r$ be such that $\|\alpha_{i_0}\| = \max_{1 \leq i \leq r} \|\alpha_i\|$, to prove the converse inequality, we will find $\lambda_1, \ldots, \lambda_s \in \mathfrak{K}^s$ such that $|F(\lambda_1, \ldots, \lambda_s)|_{\infty} = ||\alpha_{i_0}||$. Let $\lambda_1, \ldots, \lambda_{s-1} \in \mathfrak{K}^{s-1}$ such that

$$
|\alpha_{i_0}(\lambda_1,\ldots,\lambda_{s-1})|_{\infty}=\|\alpha_{i_0}\|.
$$

Then, by the case $s = 1$,

$$
||F(\lambda_1,\ldots,\lambda_{s-1},X_s)||=\max |\alpha_{i_0}(\lambda_1,\ldots,\lambda_{s-1})|_{\infty}=||\alpha_{i_0}||.
$$

Therefore, we can find $\lambda \in \mathfrak{K}$ such that $|F(\lambda_1,\ldots,\lambda_{s-1},\lambda)|_{\infty} = ||\alpha_{i_0}||$, proving that $||F|| = ||\alpha_{i_0}||$ and the theorem.

For all $N = \sum_{i=0}^{r} N_i q^i \geq 0$, define

$$
H_N(X) = \left(\prod_{i=0}^r (\theta^i * X)^{N_i}\right) = \pi^{-l_q(N)} G_N(X) \in K_\infty[X].
$$

²We recall that, here, this just means that $\lim_{N_1+\cdots+N_s\to\infty} f_{N_1,\ldots,N_s} = 0$.

Then the H_N 's generate $K_{\infty}[X]$ and $||H_N(X)|| = q^{\frac{l_q(N)}{q-1}}$. If E does not contain L, in particular if $E = K_{\infty}$, then G_N has no longer coefficients in E and there might not exist an orthonormal basis of $\mathbb{B}(E)$. However, Theorem [3.7](#page-7-1) still implies the following corollary.

Corollary 3.8. Let $K_\infty \subseteq E \subseteq \mathbb{C}_\infty$ be complete with respect to $|\cdot|_\infty$. Then the family

$$
\{H_{N_1}(X_1)\cdots H_{N_s}(X_s), N_1,\ldots,N_s\in\mathbb{N}\}
$$

forms an orthogonal basis of the E-Banach space $\mathbb{B}_s(E)$, that is:

(i) any $F \in \mathbb{B}_{s}(E)$ can be written in a unique way as the sum of a summable family

$$
F = \sum_{(N_1, ..., N_s) \in \mathbb{N}^s} f_{N_1, ..., N_s} H_{N_1}(X_1) \cdots H_{N_s}(X_s)
$$

with $f_{N_1,...,N_s} \in E$ for all $N_1,...,N_s \in \mathbb{N}$, and $|f_{N_1,...,N_s}| \propto q^{\frac{l_q(N_1)+...+l_q(N_s)}{q-1}}$ $goes to 0 with respect to the Fréchet filter;$

(ii) if F is written as above, then

$$
||F|| = \max\{|f_{N_1,...,N_s}H_{N_1}(X_1)\cdots H_{N_s}(X_s)|_{\infty}, N_1,...,N_s \in \mathbb{N}\}
$$

=
$$
\max\{|f_{N_1,...,N_s}|_{\infty}q^{\frac{l_q(N_1)+\cdots+l_q(N_s)}{q-1}}, N_1,...,N_s \in \mathbb{N}\}.
$$

3.4. **The Carlitz action.** In this section, $K_{\infty} \subseteq E \subseteq \mathbb{C}_{\infty}$ is a field complete with respect to $|\cdot|_{\infty}$. Note that the action $*$ of A on $E[\mathbf{X}]$ defined in [\(3.1\)](#page-4-1) satisfies that for all $a \in A^*$, the map $F \mapsto a * F$ is an isometry on $E[X]$. Thus, the action $*$ extends to an action, still denoted \ast , of A on $\mathbb{B}_{s}(E)$, such that for all $a \in A^*$, the map $F \mapsto a * F$ is an isometry on $\mathbb{B}_s(E)$.

Now, instead of considering the simultaneous action of A on each of the X_i , we will separate this action into actions on a single variable X_j , namely, for $1 \leq j \leq s$, $F \in \mathbb{B}_s(E)$ and $a \in A$, we set:

(3.2)
$$
a *_{j} F(\mathbf{X}) = F(X_{1},..., X_{j-1}, C_{a}(X_{j}), X_{j+1},..., X_{s}).
$$

This is still an action of monoid, but if we restrict this action to the set of polynomials in $E[X]$ which are \mathbb{F}_q -linear in the variable X_i , the action $*_i$ induces a structure of A-module. Thus we define:

 $E[\mathbf{X}]^{\text{lin}} = \{F \in E[\mathbf{X}] ; F \text{ is linear with respect to each of the variables } X_1, \ldots, X_s\}$

which is the sub-E-vector space of $E[\mathbf{X}]$ spanned by the monomials $X_1^{q^{i_1}} \cdots X_s^{q^{i_s}}$, $i_1,\ldots,i_s \in \mathbb{N}$. Since the actions $*_j$ and $*_i$ commute and commute with the linear action of E, $E[\mathbf{X}]^{\text{lin}}$ has a structure of module over $E \otimes_{\mathbb{F}_q} A^{\otimes s}$, that is, if t_1, \ldots, t_s are new indeterminates, we identify $E \otimes_{\mathbb{F}_q} A^{\otimes s}$ with $E[t_1,\ldots,t_s]$ and $E[\mathbf{X}]^{\text{lin}}$ has a structure of $E[t_1,\ldots,t_s]$ -module given by

$$
(3.3) \quad \forall 1 \leq j \leq s, \quad t_j.F(X_1,\ldots,X_s) = F(X_1,\ldots,X_{j-1},C_{\theta}(X_j),X_{j+1},\ldots,X_s).
$$

We write **t** for the set of variable t_1, \ldots, t_s and if $\mathbf{i} = (i_1, \ldots, i_s) \in \mathbb{N}^s$, $\mathbf{t}^{\mathbf{i}} = t_1^{i_1} \cdots t_s^{i_s}$.

The action defined by formula [\(3.3\)](#page-8-0) extends to an action on $E[\mathbf{X}]$, turning $E[\mathbf{X}]$ into an $E[\mathbf{t}]$ -algebra. We define the subordinate norm $\|.\|_{\infty}$ on $E[\mathbf{t}]$ by

$$
||f||_{\infty} = \sup_{F \in E[\mathbf{X}] \setminus \{0\}} \frac{||f.F||}{||F||}.
$$

Lemma 3.9. Let $f \in E[\mathbf{t}]$, $f = \sum_{\mathbf{i}} f_{\mathbf{i}} \mathbf{t}^{\mathbf{i}}$. Then for all $F \in E[\mathbf{X}] \setminus \{0\}$,

$$
||f||_{\infty} = \max_{\mathbf{i}} |f_{\mathbf{i}}|_{\infty} = \frac{||f.F||}{||F||}.
$$

Remark 3.10. The lemma says in particular that the norm $\|\cdot\|_{\infty}$ coincides with the Gauss norm on $E[\mathbf{t}]$, which is known to be multiplicative. This property also follows easily from the lemma.

Proof of the lemma. Write $F = \sum_{N_1,...,N_s} F_{N_1,...,N_s} H_{N_1}(X_1) \cdots H_{N_s}(X_s)$ and $M =$ max_i $|f_i|_{\infty}$. Note that for all $N \geq 1$ and for all $1 \leq i \leq s$, $t_i.H_N(X_i) = H_{qN}(X_i)$. Since $l_q(N) = l_q(qN)$, we deduce from Corollary [3.8](#page-8-1) that $||f.F|| \le M||F||$.

Conversely, consider $(N_{1,0},...,N_{s,0})$ the index, minimal for the lexicographic ordering on \mathbb{N}^s , such that

$$
|F_{N_{1,0},...,N_{s,0}}|_{\infty}q^{\frac{l_q(N_{1,0})+\cdots+l_q(N_{s,0})}{q-1}}=\|F\|
$$

and $\mathbf{i}_0 = (i_{1,0}, \ldots, i_{s,0})$ the index, minimal for the lexicographic ordering on \mathbb{N}^s , such that $M = |f_{i_0}|_{\infty}$. Then, the coefficient of

$$
H_{q^{i_{1,0}}N_{1,0}}(X_1)\cdots H_{q^{i_{s,0}}N_{s,0}}(X_s)
$$

in the expansion of $f.F$ in the basis of Corollary [3.8](#page-8-1) is equal to

$$
f_{\mathbf{i}_0} F_{N_{1,0},...,N_{s,0}} + \text{terms of lower norm},
$$

whence the result. \Box

We define

- $\mathbb{B}_s^{\text{lin}}(E)$ the adherence of $E[\mathbf{X}]^{\text{lin}}$ in $\mathbb{B}_s(E)$,
- $\mathbb{T}_s(E)$ the completion of E[**t**] for the Gauss norm $\|.\|_{\infty}$.

Recall that $T_s(E)$ is the standard Tate algebra in s variables over E (see [\[FvdP04,](#page-24-9) §II.1.]), that is, the algebra of formal series $\sum_{i\in\mathbb{N}^s} f_i \mathbf{t}^i$ with $f_i \in E$ going to zero with respect to the Fréchet filter. The action of $E[\mathbf{t}]$ extends naturally to an action of $\mathbb{T}_{s}(E)$ on $\mathbb{B}_{s}(E)$ and on $\mathbb{B}^{\text{lin}}_{s}(E)$.

Lemma 3.11.

(1) The family $\{H_{q^{n_1}}(X_1)\cdots H_{q^{n_s}}(X_s), n_1,\ldots,n_s \in \mathbb{N}\}\$ forms an orthogonal basis of elements of the same norm $q^{\frac{s}{q-1}}$ of the E-Banach space $\mathbb{B}_s^{\text{lin}}(E)$.

(2) The map
$$
\begin{cases} \mathbb{T}_s(E) \to \mathbb{B}_s(E) \\ f \mapsto f.(X_1 \cdots X_s) \end{cases}
$$
 is injective with, for all $f \in \mathbb{T}_s(E)$,

$$
||f.(X_1 \cdots X_s)|| = q^{\frac{s}{q-1}} ||f||_{\infty}.
$$

(3)
$$
E[\mathbf{X}]^{\text{lin}} = E[\mathbf{t}].X_1 \cdots X_s.
$$

(4)
$$
\mathbb{B}_s^{\text{lin}}(E) = \mathbb{T}_s(E).X_1 \cdots X_s.
$$

Proof. Since for all $1 \leq i \leq s$ and all $n \geq 0$, $H_{q^n}(X_i)$ is an \mathbb{F}_{q} -linear polynomial of degree q^n , the family $\{H_{q^{n_1}}(X_1)\cdots H_{q^{n_s}}(X_s), n_1,\ldots,n_s\in\mathbb{N}\}\)$ forms a basis of $E[\mathbf{X}]^{\text{lin}}$ and the first assertion follows from Corollary [3.8.](#page-8-1) The relation t_i^n . $X_i =$ $H_{q^n}(X_i)$ then implies the other assertions.

As a consequence, the map $f \mapsto f.X_1 \cdots X_s$ defines, up to the normalisation constant $q^{\frac{s}{q-1}}$, an isometric immersion of $\mathbb{T}_s(E)$ into $\mathbb{B}_s(E)$. Writing $A[\mathbf{X}]^{\text{lin}} =$ $A[\mathbf{X}] \cap E[\mathbf{X}]^{\text{lin}}$, we have the following lemma.

Lemma 3.12. Let $f \in E[\mathbf{t}]$. Then $f \colon (X_1 \cdots X_s) \in A[\mathbf{X}]^{\text{lin}}$ if, and only if, $f \in A[\mathbf{t}]$. In particular, $A[\mathbf{X}]^{\text{lin}} = A[\mathbf{t}].X_1 \cdots X_s$.

Proof. It is clear that if $f \in A[\mathbf{t}]$, then $f \colon (X_1 \cdots X_s) \in A[\mathbf{X}]$. Note that, since

$$
t_1^{i_1} \cdots t_s^{i_s} . H_{N_1}(X_1) \cdots H_{N_s}(X_s) = H_{q^{i_1} N_1}(X_1) \cdots H_{q^{i_s} N_s}(X_s),
$$

a consequence of Corollary [3.8](#page-8-1) is that $\mathbb{B}_s(E)$ is a torsion-free $\mathbb{T}_s(E)$ -module. Then, the converse is an easy consequence of the fact that $t_i \cdot X_i$ is a monic polynomial in $A[X_i]$.

4. Multivariable log-algebraicity

4.1. **The** log-algebraicity theorem. Let Z be another indeterminate over \mathbb{C}_{∞} . We let τ act on $\mathbb{C}_{\infty}[\mathbf{X}][[Z]]$ (or in the one variable case on $\mathbb{C}_{\infty}[X][[Z]]$) via $\tau(F)$ F^q .

Let $F \in A[X]$; we form the series

$$
\sum_{d\geq 0} Z^{q^d} \sum_{a\in A_{+,d}} \frac{a*F}{a} \in K[X][[Z]]
$$

and take \exp_C of this series which makes sense in $K[X][[Z]]$. Anderson's logalgebraicity theorem [\[And96,](#page-23-2) Theorem 3] for A then states the following.

Theorem 4.1 (Anderson). For all $F \in A[X]$,

$$
\exp_C\left(\sum_{d\geq 0}Z^{q^d}\sum_{a\in A_{+,d}}\frac{a*F}{a}\right)\in A[X,Z].
$$

The aim of this section is to give a multivariable generalisation of this result. But first, let us give a simple proof of Theorem [4.1](#page-10-1) in the case of $F = X$ and $Z = 1$.

Example 4.2. Write $X = \exp_C Y$, where $Y = \log_C X \in K[[X]]$. Then $a * X =$ $\exp_C(aY) = \sum_{j\geq 0} \frac{a^{q^j} Y^{q^j}}{D_j}$. Thus,

$$
\sum_{d\geq 0} Z^{q^d} \sum_{a\in A_{+,d}} \frac{a*X}{a} = \sum_{d\geq 0} Z^{q^d} \sum_{a\in A_{+,d}} \sum_{j\geq 0} \frac{a^{q^j - 1}Y^{q^j}}{D_j}
$$

$$
= \sum_{j\geq 0} \frac{Y^{q^j}}{D_j} \sum_{d\geq 0} Z^{q^d} \sum_{a\in A_{+,d}} a^{q^j - 1}.
$$

But one can evaluate at $Z = 1$ since (see [\[Gos96,](#page-24-8) Example 8.13.9]) $\sum_{a \in A_{+,d}} a^{q^j-1} =$ 0 for $d \gg j$, and moreover $\sum_{d\geq 0} \sum_{a\in A_{+,d}} a^{q^j-1} = 0$ for all $j > 0$ while this sum equals 1 when $j = 0$. Therefore, we get

$$
\sum_{d\geq 0} \sum_{a\in A_{+,d}} \frac{a*X}{a} = Y = \log_C X.
$$

Lemma 4.3. If $F \in A[X]$ satisfies $||F|| \leq 1$, then $F \in \mathbb{F}_q$.

Proof. If $\lambda_1,\ldots,\lambda_s \in \Lambda_C$, then $F(\lambda_1,\ldots,\lambda_s)$ is integral over A, and the condition $||F|| \leq 1$ implies that for all $\lambda_1, \ldots, \lambda_s \in \Lambda_C$, $F(\lambda_1, \ldots, \lambda_s) \in \overline{\mathbb{F}}_q$. But \mathbb{F}_q is algebraically closed in $K(\lambda_1,\ldots,\lambda_s)$ (see [\[Ros02,](#page-24-10) Corollary to Theorem 12.14]), so that $F(\lambda_1,\ldots,\lambda_s) \in \mathbb{F}_q$. Now, for any $\lambda_1,\ldots,\lambda_{s-1} \in \Lambda_C$, the polynomial $F(\lambda_1,\ldots,\lambda_{s-1},X_s)$ takes at least one value infinitely many times. An easy induction on s then implies that F is constant, that is $F \in \mathbb{F}_q$.

We define an action of the multiplicative monoid A^* over $\mathbb{C}_{\infty}[\mathbf{X}][[Z]]$ by letting for $F(\mathbf{X}, Z) \in \mathbb{C}_{\infty}[\mathbf{X}][[Z]]$ and $a \in A^*$:

$$
a * F = F\left(C_a(X_1), \dots, C_a(X_s), Z^{q^{\deg_{\theta} a}}\right)
$$

.

Observe that \exp_C gives rise to a well-defined endomorphism of $\mathbb{C}_{\infty}[\mathbf{X}][[Z]]$ and that

$$
\exp_C(K[\mathbf{X}][[Z]]) \subset K[\mathbf{X}][[Z]].
$$

Let $F \in \mathbb{C}_{\infty}[\mathbf{X}]$; following Anderson, we set for $k < 0$:

$$
L_k(F) = Z_k(F) = 0
$$

and for $k \geq 0$,

$$
L_{k}(F) = \sum_{a \in A_{+,k}} \frac{a * F}{a} \in \mathbb{C}_{\infty}[\mathbf{X}],
$$

$$
Z_{k}(F) = \sum_{j \geq 0} \frac{L_{k-j}(F)^{q^{j}}}{D_{j}} \in \mathbb{C}_{\infty}[\mathbf{X}].
$$

Define, moreover,

$$
l(F, Z) = \sum_{a \in A_+} \frac{a * (FZ)}{a} = \sum_{k \ge 0} Z^{q^k} L_k(F) \in \mathbb{C}_{\infty}[\mathbf{X}][[Z]],
$$

$$
\mathfrak{L}(F, Z) = \exp_C(l(F, Z)) = \sum_{k \ge 0} Z_k(F) Z^{q^k} \in \mathbb{C}_{\infty}[\mathbf{X}][[Z]].
$$

Lemma 4.4. Let $F \in \mathbb{C}_{\infty}[\mathbf{X}]$ and $k \geq 0$.

(1) $||L_k(F)|| \leq ||F||q^{-k},$ (2) $||Z_k(F)|| \leq \max_{0 \leq j \leq k} ||F||^{q^j} q^{-kq^j}$.

Proof. This comes from the definitions and the fact that for all $a \in A^*$, $\|a * F\|$ = $||F||.$

We call a monic irreducible polynomial of A a *prime* of A . Let P be a prime of A . Let $F \in K[\mathbf{X}]$ and let I be a finite subset of \mathbb{N}^s such that $F = \sum_{\mathbf{i} \in I} \alpha_{\mathbf{i}} \mathbf{X}^{\mathbf{i}} \in K[\mathbf{X}]$, Let v_P be the P-adic valuation on K normalized by $v_P(P) = 1$, we set

$$
v_P(F) = \inf \{ v_P(\alpha_i), i \in I \}.
$$

Recall that we have for $F, G \in K[\mathbf{X}]$, and $\lambda \in K$:

- $v_P(F+G) \ge \inf(v_P(F), v_P(G)), v_P(FG) = v_P(F) + v_P(G),$
- $v_p(\lambda F) = v_P(\lambda) + v_P(F)$,
- $v_P(F) = +\infty$ if and only if $F = 0$.

Lemma 4.5. Let P be a prime of A. Let $F \in K[X]$ be such that $v_P(F) \geq 0$. Then for all $k \geq 0$, $v_P(Z_k(F)) \geq 0$.

Proof. The proof is essentially the same as [\[And96,](#page-23-2) Proposition 6]. We recall it because some details will be needed in the proof of Proposition [4.18.](#page-17-0)

Set $A_{(P)} = \{x \in K, v_P(x) \geq 0\}$. Let d be the degree of P, we have in $A[\tau]$: $C_P \equiv \tau^d \mod{PA[\tau]}$. We prove that if $G = \sum_{k \geq 0} G_k Z^{q^k} \in K[\mathbf{X}][[Z]]$ satisfies

$$
(C_P - P*) (G) \in PA_{(P)}[\mathbf{X}][[Z]],
$$

then for all $k \geq 0, G_k \in A_{(P)}[\mathbf{X}]$. Set $G_k = 0$ if $k < 0$ and write $C_P = \sum_{i=0}^d [P]_i \tau^i$, where $[P]_0 = P$, $[P]_i \in PA$ if $i < d$ and $[P]_d = 1$. We have $(C_P - P*) (G) =$ $\sum_{k\geq 0} H_k Z^{q^k}$ with for all $k \geq 0$,

$$
H_k = \sum_{i=0}^d [P]_i \tau^i (G_{k-i}) - P * G_{k-d}
$$

=
$$
PG_k + \sum_{i=1}^{d-1} [P]_i \tau^i (G_{k-i}) + \tau^d (G_{k-d}) - P * G_{k-d} \in PA_{(P)}[\mathbf{X}].
$$

In particular, $H_0 = PG_0 \in PA_{(P)}[\mathbf{X}]$ so that $G_0 \in A_{(P)}[\mathbf{X}]$. Now, by induction on k, if we know that $G_{k-i} \in A_{(P)}[\mathbf{X}]$ for $i = 1, \ldots, d$, then $\tau^d(G_{k-d}) - P * G_{k-d} \in$ $PA_{(P)}[\mathbf{X}]$ and we deduce that $G_k \in PA_{(P)}[\mathbf{X}].$

Defining $l^*(F, Z) = \sum_{a \in A_+, P \nmid a} \frac{a*(FZ)}{a} \in A_{(P)}[\mathbf{X}][[Z]],$ we have

$$
l(F, Z) = \sum_{a \in A_+, P|a} \frac{a * (FZ)}{a} + \sum_{a \in A_+, P\nmid a} \frac{a * (FZ)}{a}
$$

=
$$
\sum_{a \in A_+} \frac{(aP) * (FZ)}{aP} + l^*(F, Z) = \frac{1}{P} (P * l(F, Z)) + l^*(F, Z)
$$

which yields the relation

$$
Pl(F,Z)-P\ast l(F,Z)=Pl^*(F,Z).
$$

Note that the action $*$ commutes with τ , and thus with exp_C, thus if we apply \exp_{C} , we get

$$
(C_P - P*)\left(\mathfrak{L}(F, Z)\right) = \exp_C(Pl^*(F, Z)) = \sum_{j \ge 0} \frac{P^{q^j}}{D_j} l^*(F, Z)^{q^j}
$$

and since for all $j \geq 0$, $v_P(\frac{P^{q^j}}{D_j}) \geq 1$, we get $(C_P - P*)\left(\mathfrak{L}(F, Z)\right) \in PA_{(P)}[\mathbf{X}][[Z]]$ whence $\mathfrak{L}(F, Z) \in A_{(P)}[\mathbf{X}][[Z]].$

We can now state and prove the multivariable log-algebraicity theorem.

Theorem 4.6. Let $F \in A[X]$. Then

$$
\mathfrak{L}(F,Z) = \exp_C\left(\sum_{a \in A_+} \frac{a * (FZ)}{a}\right) \in A[\mathbf{X}, Z].
$$

Proof. By Lemma [4.5,](#page-11-0) for all $k \geq 0$, $Z_k(F) \in A[\mathbf{X}]$. If $k_0 \geq 0$ is the smallest integer such that $||F|| \leq q^{k_0}$, then by Lemma [4.4,](#page-11-1) for all $k > k_0$, $||Z_k(F)|| < 1$. Therefore, Lemma [4.3](#page-10-2) shows that $Z_{k_0}(F) \in \mathbb{F}_q$ and for all $k > k_0$, $Z_k(F) = 0$. \Box

The previous theorem can also be obtained as a consequence of a class formula for a Drinfeld module on a Tate algebra (see [\[APTR16\]](#page-24-7)).

4.2. **The special polynomials.** If $s \geq 1$ is an integer, we define the special polynomial:

$$
\mathbb{S}_s = \mathbb{S}_s(\mathbf{X}, Z) = \mathfrak{L}(X_1 \cdots X_s, Z) \in A[\mathbf{X}, Z].
$$

Let us recall that Anderson's special polynomials are the one variable polynomials $S_m(X, Z) = \mathfrak{L}(X^m, Z)$. We recover $S_m(X, Z)$ from \mathfrak{S}_m by specializing each of the $X_j, 1 \leq j \leq m$, to X. We establish in this section some properties of the polynomials \mathbb{S}_s .

The following proposition is used to compute explicitly the polynomial $\mathfrak{L}(F, Z)$.

Proposition 4.7.

- (1) The polynomial $\mathcal{S}_s(\mathbf{X}, Z)$ is \mathbb{F}_q -linear with respect to each of the variables $X_1, \ldots, X_s, Z;$ in particular, $\mathbb{S}_s(\mathbf{X}, Z)$ is divisible by $X_1 \cdots X_s Z$.
- (2) If $r \in \{1,\ldots,q-1\}$ satisfies $s \equiv r \mod q-1$, then

$$
\deg_Z \mathbb{S}_s \le q^{\frac{s-r}{q-1}}.
$$

In particular, if $1 \leq s \leq q-1$, we have

$$
\mathbb{S}_s = X_1 \cdots X_s Z.
$$

Proof. The first assertion is obvious. By Lemmas [4.3,](#page-10-2) [4.4](#page-11-1) and [4.5,](#page-11-0) $Z_k(X_1 \cdots X_s)$ \mathbb{F}_q if $k \geq \frac{s}{q-1}$. But since $X_1 \cdots X_s$ divides $Z_k(X_1 \cdots X_s)$, we get $Z_k(X_1 \cdots X_s) = 0$ for $k \geq \frac{s^2}{q-1}$. The last part comes from the congruence

$$
\mathbb{S}_s \equiv X_1 \cdots X_s Z \mod Z^q.
$$

Corollary 4.8. Let $s, k_1, \ldots, k_s \geq 1$ be integers such that $\sum_{j=1}^s k_j \leq q-1$ and let $a_{1,1},\ldots,a_{1,k_1},\ldots,a_{s,1},\ldots,a_{s,k_s} \in A.$ Set

$$
G = (a_{1,1} * X_1) \cdots (a_{1,k_1} * X_1) \cdots (a_{s,1} * X_s) \cdots (a_{s,k_s} * X_s) \in A[\mathbf{X}].
$$

Then

$$
\mathfrak{L}(G,Z)=GZ.
$$

Proof. It is sufficient to consider the case where $k_j = 1$ for all $1 \leq j \leq s$ since we obtain the general case by specializing variables. The action $*_j$ of A (defined in (3.2)) satisfies for all $a \in A, F \in A[\mathbf{X}],$

$$
a *_{j} (\mathfrak{L}(F, Z)) = \mathfrak{L}(a *_{j} F, Z).
$$

The corollary follows then from the relation $\mathfrak{L}(X_1 \cdots X_s, Z) = X_1 \cdots X_s Z$ since $s \leq q-1$.

Any \mathbb{F}_q -linear combination F of polynomials of the above form still satisfies the equality $\mathfrak{L}(F, Z) = FZ$. We can ask whether there are other polynomials satisfying this relation. In fact, Proposition [4.19](#page-17-1) below assures that if $\mathfrak{L}(F, Z) = FZ$, then $F \in A[\mathbf{X}]$, so we can ask more generally the following question.

Question 4.9. Describe the set of the $F \in A[X]$ such that $\mathfrak{L}(F, Z) = FZ$.

Lemma 4.10. Let $s \geq 1$. Then $\mathbb{S}_s(\mathbf{X}, 1) = 0$ if, and only if, $s \geq 2$ and $s \equiv 1$ mod $q-1$.

Proof. First, suppose $s \geq 2$ and $s \equiv 1 \mod q - 1$.

Let $a \in A$. Recall (see [\[AT90,](#page-24-0) Section 3.4]) that from the relation $C_a(X) =$ $\exp_C(a \log_C(X))$, we deduce that we can write

$$
C_a(X) = \sum_{k=0}^{\deg_{\theta} a} \psi_k(a) X^{q^k},
$$

where $\psi_k(x) \in A[x]$ is an \mathbb{F}_q -linear polynomial of degree q^k , which vanishes exactly at the polynomials $x \in A$ of degree less than k. Thus

$$
a * (X_1 \cdots X_s) = \sum_{k_1, ..., k_s \ge 0} \psi_{k_1}(a) \cdots \psi_{k_s}(a) X_1^{q^{k_1}} \cdots X_s^{q^{k_s}},
$$

where the right-hand side is a finite sum.

We deduce that $\mathcal{S}_s(\mathbf{X}, Z)$ is equal to

$$
\sum_{n\geq 0} Z^{q^n} \sum_{d=0}^n D_{n-d}^{-1} \sum_{k_1,\dots,k_s\geq 0} \sum_{a\in A_{+,d}} \left(\frac{\psi_{k_1}(a)\cdots\psi_{k_s}(a)}{a}\right)^{q^{n-d}} X_1^{q^{k_1+n-d}} \cdots X_s^{q^{k_s+n-d}}
$$

and by Theorem [4.6,](#page-12-0) this is a polynomial. Now, note that $\sum_{a \in A_{+,d}} \frac{\psi_{k_1}(a) \cdots \psi_{k_s}(a)}{a}$ is a linear combination (with coefficients depending only on $k_1, \ldots, k_s, r_1, \ldots, r_s$ and independent on d) of sums of the form $\sum_{a \in A_{+,d}} a^{q^{r_1}+\cdots+q^{r_s}-1}$ with, for all $1 \leq j \leq s, 0 \leq r_j \leq k_j$. According to [\[Gos96,](#page-24-8) Lemma 8.8.1], this sum vanishes for $d > \frac{q^{r_1} + \dots + q^{r_s}-1}{q-1}$. Thus the coefficient of $X_1^{q^{m_1}} \cdots X_s^{q^{m_s}}$ in $\mathbb{S}_s(\mathbf{X},1)$ is a linear combination of (finite) sums of the form $\sum_{a \in A_+} a^{q^d (q^{r_1} + \cdots + q^{r_s}-1)}$. But since $s \equiv 1$ mod $q-1$, $q^d(q^{r_1}+\cdots+q^{r_s}-1) \equiv 0 \mod q-1$, and since $s \geq 2$, $q^d(q^{r_1}+\cdots+q^{r_s}-1)$ \neq 0. Thus, by [\[Gos96,](#page-24-8) Example 8.13.9], all the sums $\sum_{a \in A_+} a^{q^d (q^{r_1} + \dots + q^{r_s}-1)}$ vanish, that is, $\mathcal{S}_s(\mathbf{X}, 1) = 0$.

Conversely, the coefficient of $X_1 \cdots X_s$ in $\mathbb{S}_s(\mathbf{X}, 1)$ is $\sum_{a \in A_+} a^{s-1}$ which is congruent to 1 modulo $\theta^q - \theta$ if $s = 1$ or $s \neq 1$ mod $q - 1$, so $\mathbb{S}_s(\mathbf{X}, 1)$ does not vanish. \Box \Box

Remark 4.11. Thakur used similar arguments in [\[Tha04,](#page-24-11) §8.10] to obtain explicit log-algebraicity formulas.

Example 4.12. We already know that $\mathbb{S}_s(\mathbf{X}, Z) = X_1 \cdots X_s Z$ if $1 \leq s \leq q - 1$. Using Proposition [4.7](#page-13-0) and Lemma [4.10,](#page-13-1) we easily see that

$$
\mathbb{S}_q(\mathbf{X}, Z) = X_1 \cdots X_q Z - X_1 \cdots X_q Z^q.
$$

For $q \geq 3$, a computation leads to

$$
S_{q+1}(\mathbf{X},Z) = X_1 \cdots X_{q+1} Z - X_1 \cdots X_{q+1} (X_1^{q-1} + \cdots + X_{q+1}^{q-1}) Z^q.
$$

Lemma 4.13. Let $s > 1$,

(1) for all integer $k \geq \frac{s}{q-1}$, the sum $\sum_{a \in A_{+,k}} a(t_1) \cdots a(t_{s-1})$ vanishes, so that $L(0, s-1) = \sum_{k>0} \sum_{a \in A_{+,k}} a(t_1) \cdots a(t_{s-1}) \in \mathbb{F}_q[\mathbf{t}],$ (2) $\mathbb{S}_s(\mathbf{X}, 1) \equiv (L(0, s-1) \cdot (X_1 \cdots X_{s-1})) X_s \mod X_s^q.$

Proof. For all $k \geq 0$, $L_k(X_1 \cdots X_s) = \sum_{a \in A_{+,k}} \frac{a*(X_1 \cdots X_s)}{a}$ can be viewed as a polynomial in X_s , with no constant term, and since $C_a(X_s) \equiv aX_s \mod X_s^q$, we have

$$
Z_k(X_1 \cdots X_s) \equiv L_k(X_1 \cdots X_s) \equiv \sum_{a \in A_{+,k}} \frac{a * (X_1 \cdots X_s)}{a} \mod X_s^q
$$

$$
\equiv \sum_{a \in A_{+,k}} a * (X_1 \cdots X_{s-1}) \frac{aX_s}{a} \mod X_s^q
$$

$$
\equiv X_s \sum_{a \in A_{+,k}} a * (X_1 \cdots X_{s-1}) \mod X_s^q.
$$

But Proposition [4.7](#page-13-0) tells that $Z_k(X_1 \cdots X_s) = 0$ if $k \geq \frac{s}{q-1}$. Now note that

$$
\sum_{a \in A_{+,k}} a * (X_1 \cdots X_{s-1}) = \sum_{a \in A_{+,k}} a(t_1) \cdots a(t_{s-1}).(X_1 \cdots X_{s-1}).
$$

We deduce then the first point from Lemma [3.11](#page-9-0) and the evaluation at $Z = 1$,

$$
L(0, s-1)\cdot (X_1\cdots X_{s-1})X_s \equiv \sum_{k\geq 0} Z_k(X_1\cdots X_s) \equiv \mathbb{S}_s(X, 1) \mod X_s^q
$$

gives the second point. \Box

Note that the first point of the above lemma is also a consequence of [\[Gos96,](#page-24-8) Lemma 8.8.1] (see also [\[AP15,](#page-24-6) Lemma 30] and [\[AP14,](#page-23-4) Lemma 4]).

Lemma 4.14. Let $s \geq 1$. If there exists $b, c \in A$ and $r \in X_s \mathbb{C}_{\infty}[\mathbf{X}]$ such that

$$
C_b(r) = C_c(\mathbb{S}_s(\mathbf{X}, 1)),
$$

then b divides c in A and $r = C_{\frac{c}{b}}(\mathbb{S}_s(\mathbf{X}, 1)).$

Proof. We first prove that r has coefficients in A. We will use the fact that \exp_C and \log_C define reciprocal bijections of $X_s K[X_1,\ldots,X_{s-1}][[X_s]]$ satisfying for all $F \in X_s K[X_1,\ldots,X_{s-1}][[X_s]]$ and $a \in A$, $\log_C(C_a(F)) = a \log_C(F)$ and $\exp_C(aF) = C_a(\exp_C(F))$. Thus $C_b(r) = \exp_C(b \log_C(r))$ and $C_c(\mathbb{S}_s(\mathbf{X},1)) =$ $\exp_C(c \log_C(\mathbb{S}_s(\mathbf{X}, 1)))$. We deduce that $r = \exp_C(\frac{c}{b} \mathbb{S}_s(\mathbf{X}, 1)) \in X_s K[\mathbf{X}]$. But $C_b(X)$ is monic up to a unit in \mathbb{F}_q^* , and $A[X]$ is integrally closed. Thus the fact that $C_b(r) \in A[\mathbf{X}]$ implies that $r \in A[\mathbf{X}]$.

Write now $r \equiv X_s r_1 \mod X_s^2$ with $r_1 \in A[X_1, \ldots, X_{s-1}]$. Then $C_b(r) \equiv X_s br_1$ mod X_s^2 and by Lemma [4.13,](#page-14-0)

$$
C_c(S_s(\mathbf{X},1)) \equiv cX_s(L(0,s-1).(X_1\cdots X_{s-1})) \mod X_s^2,
$$

thus $r_1 = \frac{c}{b}L(0, s-1) \cdot (X_1 \cdots X_{s-1})$. Since $r_1 \in A[X_1, \ldots, X_{s-1}]$, Lemma [3.12](#page-10-3) assures that $\frac{c}{b}L(0, s - 1) \in A[t_1, \ldots, t_{s-1}].$ But $L(0, s - 1) \in \mathbb{F}_q[t_1, \ldots, t_{s-1}].$ We obtain that b divides c in A and that $r = \exp_C(\frac{c}{b} \mathbb{S}_s(\mathbf{X}, 1)) = C_{\frac{c}{b}}(\mathbb{S}_s(\mathbf{X}, 1)).$ Ц

Set $\mathfrak{R} = \bigcup_{s \geq 1} \mathbb{C}_{\infty}[X_1,\ldots,X_s]$ and let \mathfrak{F} be the sub-A-module of $C(\mathfrak{R})$ generated by the polynomials $\mathbb{S}_s(X_1,\ldots,X_s,1), s \geq 1$. Set

$$
\sqrt{\mathfrak{F}} = \{r \in \mathfrak{R}, \exists a \in A^*, C_a(r) \in \mathfrak{F}\}.
$$

Theorem 4.15.

$$
\sqrt{\mathfrak{F}} = \mathfrak{F} + C(\Lambda_C).
$$

Proof. The inclusion $\mathfrak{F} + C(\Lambda_C) \subset \sqrt{\mathfrak{F}}$ is clear.

Let $r \in \sqrt{3}$. Then there exists $n \geq 1$ such that $r \in \mathbb{C}_{\infty}[X_1,\ldots,X_n]$ and there exist $a \in A^*$, $a_1, \ldots, a_n \in A$ such that

(4.1)
$$
C_a(r) = \sum_{m=1}^n C_{a_m}(\mathbb{S}_m(X_1, \dots, X_m, 1)).
$$

We now prove by induction on $n \geq 1$ that $r \in \mathfrak{F} + C(\Lambda_C)$.

In the case $n = 1$, equation [\(4.1\)](#page-16-2) reduces to

$$
C_a(r) = C_c(\mathbb{S}_1(X_1, 1))
$$

with $c \in A$ and $r \in \mathbb{C}_{\infty}[X_1]$. The constant term of r is then in $C(\Lambda_C)$ and we can therefore assume $r \in X_1 \mathbb{C}_\infty[X_1]$. The result in this case is then just the one of Lemma [4.14.](#page-15-0)

We suppose now $n > 1$ and that the result is proved for all $k \leq n - 1$. We can assume that $a_n \neq 0$ and $\mathbb{S}_n(X_1,\ldots,X_n,1) \neq 0$, that is, $n \neq 1 \mod q-1$. Write $r = \sum_{i=0}^{d} r_i(X_1,\ldots,X_{n-1})X_n^i$, with $d > 0$. Then equation [\(4.1\)](#page-16-2) evaluated at $X_n = 0$ yields

$$
C_a(r_0(X_1,\ldots,X_{n-1}))=\sum_{m=1}^{n-1}C_{a_m}\mathbb{S}_m(X_1,\ldots,X_m,1)
$$

and the induction hypothesis assures that $r_0(X_1,\ldots,X_{n-1}) \in \mathfrak{F} + C(\Lambda_C)$. Thus we can assume $r_0 = 0$ and, for some $c \in A$,

$$
C_a(r) = C_c(\mathbb{S}_n(X_1,\ldots,X_n,1)).
$$

Again, we are reduced to the result proved in Lemma [4.14.](#page-15-0)

4.3. **Converses of the log-algebraicity theorem.** Let \overline{A} be the integral closure of A in \overline{K} . The log-algebraicity theorem asserts that if $F \in A[\mathbf{X}]$, then $\mathfrak{L}(F, Z) \in$ $A[\mathbf{X}, Z]$. We will prove in this section conversely that, if $F \in \mathbb{C}_{\infty}[\mathbf{X}]$ and $\mathfrak{L}(F, Z)$ belongs to $\mathbb{C}_{\infty}[\mathbf{X}, Z]$ or to $\overline{A}[\mathbf{X}][[Z]] \otimes_A K$, then necessarily, $F \in A[\mathbf{X}]$.

If P is a prime of A, $\overline{A}_{(P)}$ denotes the ring of elements of \overline{K} that are P-integral.

Lemma 4.16. Let $x \in A$ such that for infinitely many primes P ,

$$
x^{q^d} \equiv x \pmod{P^p},
$$

where d is the degree of P. Then $x \in A^p$.

Proof. Let $F \in A \setminus A^p$, then $F' \neq 0$, where F' denotes the derivative of F with respect to the variable θ . Then $F^{q^d} - F \equiv (\theta^{q^d} - \theta)F'$ mod P^2 , so that for all primes P not dividing $F', v_P(F^{q^d} - F) = 1.$

Lemma 4.17.

(1) Let $\alpha \in \overline{A}$ such that for all but finitely many primes P of A,

$$
\alpha^{q^d} \equiv \alpha \pmod{P\overline{A}},
$$

where d is the degree of P. Then $\alpha \in A$.

(2) Let $\alpha \in \overline{K}$ such that for all but finitely many primes P of A,

 $\alpha^{q^d} \equiv \alpha \pmod{P\overline{A}_{(P)}}$

where d is the degree of P. Then $\alpha \in K$.

$$
\Box
$$

Proof.

(1) First we assume that α is separable over K. Set $F = K(\alpha)$ and let O_F be the integral closure of A in F . For a prime P not dividing the discriminant of $A[\alpha]$, we have:

$$
O_F\otimes_A A_P=A[\alpha]\otimes_A A_P,
$$

where A_P is the P-adic completion of A. Therefore, for all but finitely many primes P , we have:

$$
\forall x \in O_F, x^{q^d} \equiv x \pmod{P O_F}.
$$

This implies that all but finitely many primes P of A are totally split in F . By the Cebotarev density theorem (see for example [\[Neu99,](#page-24-12) Chapter VII, Section 13]), this implies that $F = K$ and thus $\alpha \in A$.

In general there exists a minimal integer $m \geq 0$ such that α^{p^m} is separable over K. If $m \geq 1$, then $x = \alpha^{p^m} \in A$ and for all but finitely many primes P of A:

$$
x^{q^d} \equiv x \pmod{P^{p^m}A}.
$$

Therefore $\alpha^{p^{m-1}} \in A$ by Lemma [4.16.](#page-16-0) We deduce that $\alpha \in A$.

(2) Let $b \in A \setminus \{0\}$ such that $x = b\alpha \in \overline{A}$. Then by the first assertion of the lemma, $x \in A$. Therefore $\alpha \in K$.

Proposition 4.18. For all $s \geq 1$, if $\mathbf{X} = (X_1, \ldots, X_s)$, then

$$
\{F \in \mathbb{C}_{\infty}[\mathbf{X}]; \mathfrak{L}(F, Z) \in \overline{A}[\mathbf{X}][[Z]] \otimes_A K\} = A[\mathbf{X}].
$$

Proof. Let $F \in \mathbb{C}_{\infty}[\mathbf{X}]$ such that $\mathfrak{L}(F, Z) \in \overline{A}[\mathbf{X}][[Z]] \otimes_A K$, *i.e.*, there exists $b \in A \setminus \{0\}$ such that $b\mathfrak{L}(F, Z) \in \overline{A}[\mathbf{X}][[Z]]$. Since $\mathfrak{L}(F, Z) \equiv FZ \pmod{Z^q}$, we get $F \in \overline{K}[\mathbf{X}]$. Let P be a prime of A of degree d not dividing b. Then by the proof of Lemma [4.5,](#page-11-0)

$$
\mathfrak{L}(F,Z) \in \overline{A}_{(P)}[\mathbf{X}][[Z]]
$$
 and $(C_P - P*)\left(\mathfrak{L}(F,Z)\right) \in P\overline{A}_{(P)}[\mathbf{X}][[Z]]$

and since $C_P \equiv \tau^d \mod PA[\tau]$, the coefficient of Z^{q^d} in $(C_P - P*) (\mathfrak{L}(F, Z))$ is congruent to $F^{q^d} - P * F \mod P\overline{A}_{(P)}[\mathbf{X}][[Z]]$. Therefore

$$
F(X_1^{q^d}, \ldots, X_s^{q^d}) \equiv F^{q^d} \mod P\overline{A}_{(P)}[\mathbf{X}].
$$

Thus, by Lemma [4.17,](#page-16-1) we get $F \in K[\mathbf{X}]$. Now select $c \in A \setminus \{0\}$ such that $cF \in$ $A[\mathbf{X}]$. Then by Theorem [4.6:](#page-12-0)

$$
C_c(\mathfrak{L}(F,Z))\in A[X_1,\ldots,X_s,Z].
$$

Therefore $\mathfrak{L}(F, Z) \in A[\mathbf{X}][[Z]] \otimes_A K$ is integral over $A[\mathbf{X}][[Z]]$. But $A[\mathbf{X}][[Z]]$ is integrally closed (see[\[Bou64,](#page-24-13) Chapitre 5, Proposition 14]) thus $\mathfrak{L}(F, Z) \in A[\mathbf{X}][[Z]]$ and this implies that $F \in A[\mathbf{X}]$ since $\mathfrak{L}(F, Z) \equiv FZ \mod Z^q$. We then have the direct inclusion, the equality follows by Theorem [4.6.](#page-12-0) \Box

We remark that if we only suppose that $\mathfrak{L}(F, Z) \in \overline{K}[\mathbf{X}][[Z]]$, then the result no longer holds, for instance $F = \frac{X}{\theta} \in K[X] \backslash A[X]$ and $\mathfrak{L}(F, Z) \in K[X][[Z]]$. Note that the above proposition implies that $\mathfrak{L}^{-1}(\overline{K}[\mathbf{X}, Z]) = A[\mathbf{X}]$. In fact we have:

Proposition 4.19.

$$
\{F \in \mathbb{C}_{\infty}[\mathbf{X}]; \mathfrak{L}(F, Z) \in \mathbb{C}_{\infty}[\mathbf{X}, Z]\} = A[\mathbf{X}].
$$

Proof. Recall that if $\mathbf{i} = (i_1, \ldots, i_s) \in \mathbb{N}^s$, then $\mathbf{X}^{\mathbf{i}} = X_1^{i_1} \cdots X_s^{i_s}$. If $F \in \mathbb{C}_{\infty}[\mathbf{X}]$, write $F = \sum_i \alpha_i \mathbf{X}^i$ and define $\deg(F) \in \mathbb{N}^s_+ \cup \{\pm \infty\}$ to be the maximum for $\sum_{k\geq 1} F_k Z^k \in Z\mathbb{C}_{\infty}[\mathbf{X}][[Z]],$ where for all k, $F_k \in \mathbb{C}_{\infty}[\mathbf{X}],$ then we define the the lexicographic ordering of the exponents **i** such that $\alpha_i \neq 0$. Now, if $F =$ relative degree of F, $\text{rdeg}(F) \in \mathbb{R}^s_+ \cup \{\pm \infty\}$, to be

$$
\operatorname{rdeg}(F) = \begin{cases} -\infty & \text{if } F = 0, \\ \sup_{k \ge 1} \left(\frac{\deg(F_k)}{k} \right) \in \mathbb{R}_+^s \cup \{ +\infty \} & \text{otherwise,} \end{cases}
$$

where the supremum is still relative to the lexicographic ordering on \mathbb{R}^s_+ and is well defined in $\mathbb{R}_+^s \cup \{+\infty\}$. Note the following properties of rdeg: if $F, G \in Z\mathbb{C}_{\infty}[\mathbf{X}][[Z]]$ and ψ is an \mathbb{F}_q -linear power series in $\mathbb{C}_{\infty}[[T]]$, then

- $rdeg(F+G) \leq max(rdeg(F), rdeg(G))$ with equality if $rdeg(F) \neq rdeg(G)$,
- $rdeg(F^q) = rdeg(F)$,
- $rdeg(\psi(F)) \leq rdeg(F)$,
- if $\psi \neq 0$, for $k \geq 1$ and $\mathbf{i} \in \mathbb{N}^s$, $\text{rdeg}(\psi(\mathbf{X}^{\mathbf{i}} Z^k)) = \frac{\mathbf{i}}{k}$,
- if $F = \sum_{k \geq 1} F_k Z^k$ is such that there exists infinitely many indices k_j such that $\deg(\overline{F}_{k_j}) = k_j \deg(F)$ (in particular $F \notin A[\mathbf{X}, Z]$) and $\deg(F) >$ $rdeg(G)$, then $F + G \notin A[\mathbf{X}, Z]$.

For the last property, if we write $G = \sum_{k \geq 1} G_k Z^k$, then $F + G = \sum_{k \geq 1} (F_k + G_k) Z^k$ with for all j, $\deg(F_{k_i} + G_{k_i}) = k_j \deg(F)$ so that $F_{k_i} + G_{k_i} \neq 0$ and $F + G \notin$ A[**X**, Z].

Now let $\mathbf{i} \in \mathbb{N}^s$. For $k \geq 0$, we have

$$
L_k(\mathbf{X}^{\mathbf{i}}) = \frac{\mathbf{X}^{q^k \mathbf{i}}}{l_k} + G_{k, \mathbf{i}},
$$

where $G_{k,i} \in K[\mathbf{X}]$ satisfies $\mathbf{deg}(G_{k,i}) < q^k$ **i**. Thus

(4.2)
$$
\mathfrak{L}(\mathbf{X}^{\mathbf{i}}, Z) = \mathbf{X}^{\mathbf{i}} Z + F_{\mathbf{i}},
$$

where $F_i \in Z^q \mathbb{C}_{\infty}[\mathbf{X}, Z]$ has relative degree $\text{rdeg}(F_i) < \mathbf{i}$. Fix $\alpha \in \mathbb{C}_{\infty}$; then

$$
C_{\alpha}(T)=\exp_C(\alpha \log_C(T)) \in \mathbb{C}_\infty[[T]]
$$

is an \mathbb{F}_q -linear power series, and $\mathbb{C}_{\alpha}(T) \in \mathbb{C}_{\infty}[T]$ if and only if $\alpha \in A$ (see [\[Gos96,](#page-24-8) Chapter 3]).

Now let $F \in \mathbb{C}_{\infty}[\mathbf{X}]\backslash A[\mathbf{X}]$; we want to prove that $\mathfrak{L}(F, Z) \notin \mathbb{C}_{\infty}[\mathbf{X}, Z]$. By Theorem [4.6,](#page-12-0) we can suppose $F = \sum_i \alpha_i \mathbf{X}^i$ with for all **i** such that $\alpha_i \neq 0$, $\alpha_i \notin A$. Then equation [\(4.2\)](#page-18-0) gives

$$
\mathfrak{L}(F,Z) = \sum_{\mathbf{i}} C_{\alpha_{\mathbf{i}}} (\mathfrak{L}(\mathbf{X}^{\mathbf{i}}, Z)) = \sum_{\mathbf{i}} C_{\alpha_{\mathbf{i}}} (\mathbf{X}^{\mathbf{i}} Z) + C_{\alpha_{\mathbf{i}}} (F_{\mathbf{i}}).
$$

If $\mathbf{i}_0 = \mathbf{deg}(F)$, then we deduce that

$$
\mathfrak{L}(F,Z) = C_{\alpha_{\mathbf{i}_0}} \left(\mathbf{X}^{\mathbf{i}_0} Z \right) + G
$$

with rdeg(G) < **i**₀. Since $C_{\alpha_{i_0}}(\mathbf{X}^{i_0}Z) \notin \mathbb{C}_{\infty}[\mathbf{X}, Z]$ has infinitely many terms of relative degree i₀, we have $\mathfrak{L}(F, Z) \notin \mathbb{C}_{\infty}[\mathbf{X}, Z]$. relative degree \mathbf{i}_0 , we have $\mathfrak{L}(F, Z) \notin \mathbb{C}_{\infty}[\mathbf{X}, Z]$.

5. Multivariable L-functions

5.1. **Frobenius actions.** Let $K_{\infty} \subseteq E \subseteq \mathbb{C}_{\infty}$ be a field complete with respect to $|\cdot|_{\infty}$. Observe that if $n \geq 0$ and $1 \leq i \leq s$, then

$$
H_{q^n}(X_i)^q = C_{\theta^n}(X_i)^q = C_{\theta^{n+1}}(X_i) - \theta C_{\theta^n}(X_i) = (t_i - \theta) \cdot H_{q^n}(X_i).
$$

Thus we define the following action of τ on $\mathbb{T}_{s}(E)$:

$$
\forall f = \sum_{\mathbf{i}} f_{\mathbf{i}} \mathbf{t}^{\mathbf{i}} \in \mathbb{T}_s(E), \quad \tau(f) = (t_1 - \theta) \cdots (t_s - \theta) \sum_{\mathbf{i}} f_{\mathbf{i}}^q \mathbf{t}^{\mathbf{i}}
$$

and we get for all $f \in \mathbb{T}_s(E)$ the equality in $\mathbb{B}_s^{\text{lin}}(E)$:

$$
\tau(f.(X_1\cdots X_s))=\tau(f).(X_1\cdots X_s).
$$

We then define on $\mathbb{T}_{s}(E)$ the operator φ which will be a Frobenius acting only on coefficients, namely:

$$
\forall f = \sum_{\mathbf{i}} f_{\mathbf{i}} \mathbf{t}^{\mathbf{i}} \in \mathbb{T}_s(E), \ \ \varphi(f) = \sum_{\mathbf{i}} f_{\mathbf{i}}^q \mathbf{t}^{\mathbf{i}},
$$

so that on $\mathbb{T}_s(E)$, we have $\tau = (t_1 - \theta) \cdots (t_s - \theta) \varphi$. Moreover, for $d \geq 1$, if we define, $b_d(t) = (t - \theta)(t - \theta^q) \cdots (t - {\theta^q}^{d-1})$, then for all $f \in \mathbb{T}_s(E)$,

$$
\tau^d(f) = b_d(t_1) \cdots b_d(t_s) \varphi^d(f).
$$

We also set $b_0(t) = 1$ so that the above relation still holds for $d = 0$. Note that for all $f,g \in \mathbb{T}_{s}(E)$, and $d \geq 0$,

$$
\tau^d(fg) = \tau^d(f)\varphi^d(g).
$$

Observe moreover that

$$
\forall f \in \mathbb{T}_s(E), \ \forall d \ge 0, \quad \|\varphi^d(f)\|_{\infty} = \|f\|_{\infty}^{q^d} \text{ and } \|\tau^d(f)\|_{\infty} = q^{s\frac{q^d-1}{q-1}} \|f\|_{\infty}^{q^d}.
$$

We deduce that $\exp_C = \sum_{j\geq 0} \frac{1}{D_j} \tau^j$ is defined on $\mathbb{T}_s(E)$ and that for all $f \in \mathbb{T}_s(E)$, we have in $\mathbb{B}_s^{\text{lin}}(E)$:

(5.1)
$$
\exp_C(f.(X_1\cdots X_s)) = \exp_C(f).(X_1\cdots X_s).
$$

We now extend the action of $E[\mathbf{t}]$ on $E[\mathbf{X}]$ to an action of $E[\mathbf{t}][[z]]$ on $E[\mathbf{X}][[Z]]$ via

$$
\left(\sum_{k\geq 0} f_k(\mathbf{t}) z^k\right) \cdot \left(\sum_{n\geq 0} F_n(\mathbf{X}) Z^n\right) = \sum_{k\geq 0} \sum_{n\geq 0} \left(f_k(\mathbf{t}) \cdot F_n(\mathbf{X})\right) Z^{nq^k}
$$

and we let τ act on Z via $\tau(Z) = Z^q$. Since $\tau(Z) = z.Z$, we define on E[**t**][[z]] the operator τ_z by, for all $f = \sum_{k \geq 0} \sum_{\mathbf{i}} f_{\mathbf{i}} \mathbf{t}^{\mathbf{i}} z^k \in E[\mathbf{t}][[z]],$

$$
\tau_z(f) = z(t_1 - \theta) \cdots (t_s - \theta) \sum_{k \geq 0} \sum_{i} f_i^q \mathbf{t}^i z^k = \sum_{k \geq 0} z^{k+1} \tau \left(\sum_{i} f_i^q \mathbf{t}^i \right).
$$

Thus if we extend φ by

$$
\forall f = \sum_{k \ge 0} \sum_{\mathbf{i}} f_{\mathbf{i}} \mathbf{t}^{\mathbf{i}} z^k \in E[\mathbf{t}][[z]], \ \ \varphi(f) = \sum_{k \ge 0} \sum_{\mathbf{i}} f_{\mathbf{i}}^q \mathbf{t}^{\mathbf{i}} z^k,
$$

we get for all $f = \sum_{k \geq 0} f_k z^k \in E[\mathbf{t}][[z]]$ and $d \geq 0$, $\tau_z^d(f) = z^d b_d(t_1) \cdots b_d(t_s) \varphi^d(f)$. By construction, if $f = E[\mathbf{t}][[z]]$, then $f \cdot (X_1 \cdots X_s Z) \in E[\mathbf{X}][[Z]]$ and for all $d \geq 0$, $\tau^d(f.(X_1 \cdots X_s Z)) = \tau_z^d(f).(X_1 \cdots X_s Z).$

We then have an operator $\exp_C = \sum_{j\geq 0} \frac{1}{D_j} \tau^j$ on $ZE[X][[Z]]$ and an operator $\exp_z = \sum_{j\geq 0} \frac{1}{D_j} \tau_z^j$ on $E[\mathbf{t}][[z]]$ such that for all $f \in E[\mathbf{t}][[z]]$,

(5.2)
$$
\exp_C(f.(X_1\cdots X_sZ)) = \exp_z(f).(X_1\cdots X_sZ).
$$

A similar property holds for $\log_C = \sum_{j\geq 0} \frac{1}{l_j} \tau^j$ and $\log_z = \sum_{j\geq 0} \frac{1}{l_j} \tau^j_z$.

(5.3)
$$
\log_C(f \cdot (X_1 \cdots X_s Z)) = \log_z(f) \cdot (X_1 \cdots X_s Z),
$$

where \log_z and \exp_z define the reciprocal bijection of $E[\mathbf{t}][[z]]$.

We now state compatibility results for evaluations at $Z = 1$ and $z = 1$.

Lemma 5.1. Let $F(\mathbf{X}, Z) = \sum_{n \geq 0} F_n(\mathbf{X}) Z^n \in E[\mathbf{X}][[Z]]$ with $F_n(\mathbf{X}) \in E[\mathbf{X}]$ and $\lim_{n\to\infty} ||F_n|| = 0$ for all $n \geq 0$, and let $f = \sum_{k\geq 0} f_k z^k \in E[\mathbf{t}][[z]]$ with $f_k \in E[\mathbf{t}]$ and $\lim_{k\to\infty} ||f_k||_{\infty} = 0$ for all $k \geq 0$. Then F and f.F converge in $\mathbb{B}_s(E)$ at $Z = 1$, f converges in $\mathbb{T}_s(E)$ at $z = 1$, and we have the following equality in $\mathbb{B}_s(E)$:

$$
(f.F(\mathbf{X}, Z))_{|Z=1} = f(\mathbf{t}, 1).F(\mathbf{X}, 1).
$$

Proof. The convergence of F at $Z = 1$ and of f at $z = 1$ are obvious, the convergence of f.F follows from the equality $||f_k.F_n|| = ||f_k||_{\infty} ||F_n||$ from Lemma [3.9.](#page-9-1) Finally, both sides of the equality are equal to $\sum_{k\geq 0} \sum_{n\geq 0} f_k F_n$.

Lemma 5.2. Let $\eta = \sum_{n\geq 0} \eta_n \tau_z^n \in E[[\tau_z]]$ and $\eta^1 = \sum_{n\geq 0} \eta_n \tau^n \in E[[\tau]]$, let $f =$ $\sum_{k\geq 0} f_k z^k \in E[\mathbf{t}][[z]]$ with $\lim_{k\to\infty} ||f_k||_{\infty} = 0$, write $M = \sup_{k\geq 0} ||f_k||_{\infty}$ and sup- $\overline{pose} \ \lim_{n \to \infty} |\eta_n| (q^{\frac{s}{q-1}} M)^{q^n} = 0$; finally write $g(\mathbf{t}, z) = \eta(f(\mathbf{t}, z)) = \sum_{n \geq 0} \eta_n \tau_z^n(f) \in$ $E[\mathbf{t}][[z]]$. Then f and g converge in $\mathbb{T}_s(E)$ at $z = 1$ and we have the following equality in $\mathbb{T}_s(E)$:

$$
\eta^1(f(\mathbf{t},1)) = g(\mathbf{t},1).
$$

Proof. The convergence of f is obvious. Both sides of the above equality are easily seen to be equal to

$$
\sum_{n\geq 0, k\geq 0} \eta_n \tau^n(f_k(\mathbf{t}))
$$

which is the sum of a summable family in $\mathbb{T}_{s}(E)$. This gives at once the convergence of both sides of the equality and the desired identity. \Box

Now define

$$
E[\mathbf{X}][[Z]]^{\text{lin}} = \{F \in E[\mathbf{X}][[Z]]; F \text{ is linear with respect to each of } X_1, \ldots, X_s, Z\}.
$$

Lemma 5.3.

(1) The map

$$
\begin{cases}\nE[\mathbf{t}][[z]] & \to & E[\mathbf{X}][[Z]], \\
f & \mapsto & f.(X_1 \cdots X_s Z)\n\end{cases}
$$

is injective with image $E[\mathbf{X}][[Z]]^{\text{lin}}$, (2) $f \in E[\mathbf{t}][[z]]$ satisfies $f \cdot (X_1 \cdots X_s Z) \in A[\mathbf{X}][Z]$ if, and only if, $f \in A[\mathbf{t}][z]$.

Proof. The first point is an immediate consequence of Lemma [3.11](#page-9-0) and the second one a consequence of Lemma [3.12.](#page-10-3) □ 5.2. **Anderson-Stark units.** We define for all integers $N \in \mathbb{Z}$, $s \geq 1$:

$$
L(N, s, z) = \sum_{d \ge 0} z^d \sum_{a \in A_{+,d}} \frac{a(t_1) \dots a(t_s)}{a^N} \in K[\mathbf{t}][[z]]
$$

and

$$
L(N,s) = \sum_{d \ge 0} \sum_{a \in A_{+,d}} \frac{a(t_1) \dots a(t_s)}{a^N} \in \mathbb{T}_s(K_\infty),
$$

where $L(N, s, z) \in A[\mathbf{t}, z]$ if $N \leq 0$ because of Lemma [4.13.](#page-14-0) We also define the operator Γ:

$$
\forall F \in \mathbb{B}_s(\mathbb{C}_{\infty}), \ \Gamma(F) = L(1, s).F \in \mathbb{B}_s(\mathbb{C}_{\infty}).
$$

We will refer to Γ as to Anderson's operator. Note that $L(1, s)$ has norm 1, so that Γ is an isometry of $\mathbb{B}_s(\mathbb{C}_{\infty})$, in particular, $\|\Gamma(X_1 \cdots X_s)\| = q^{\frac{s}{q-1}}$. We now define

$$
\sigma_s(\mathbf{t},z) = \exp_z(L(1,s,z)).
$$

We then have the following.

Proposition 5.4.

(1) $L(1, s, z) = \log_z(\sigma_s(t, z))$, (2) $L(1, s, z) \, . X_1 \cdots X_s Z = \mathfrak{L}(X_1 \cdots X_s, Z) = \log_{C}(\mathbb{S}_s(\mathbf{X}, Z)),$ (3) $\sigma_s(\mathbf{t}, z) \cdot X_1 \cdot \cdot \cdot X_s Z = \mathbb{S}_s(\mathbf{X}, Z)$ and $\sigma_s(\mathbf{t}, z) \in A[\mathbf{t}, z]$.

Proof. The first point and equality $L(1, s, z) \, . X_1 \cdots X_s Z = \mathfrak{L}(X_1 \cdots X_s, Z)$ are clear. The equality $L(1, s, z) \, . X_1 \cdots X_s Z = \log_C(S_s(\mathbf{X}, Z))$ comes from equation [\(5.3\)](#page-20-0). Equation [\(5.2\)](#page-20-1) shows that $\sigma_s(\mathbf{t}, z)$. $X_1 \cdots X_s Z = \mathbb{S}_s(\mathbf{X}, Z)$ and the fact that $\sigma_s(\mathbf{t}, z) \in A[\mathbf{t}, z]$ is a consequence of Lemma [5.3](#page-20-2) and Theorem [4.6.](#page-12-0) \Box

We call the special polynomial $\sigma_s(\mathbf{t}, z)$ the Anderson-Stark unit of level s. The evaluation at $Z = 1$ leads to the following.

Proposition 5.5.

- (1) $\exp_C(\Gamma(X_1 \cdots X_s)) = \mathbb{S}_s(\mathbf{X}, 1),$
- (2) if $s < q$, then $\Gamma(X_1 \cdots X_s) = \log_{C}(X_1 \cdots X_s)$.

Proof. Lemma [5.2](#page-20-3) shows that $\sigma_s(\mathbf{t},1) = \exp_C(L(1,s))$, and equation [\(5.1\)](#page-19-1) yields to the first point. For the second point, we remark that if $s < q$, then $\mathbb{S}_s(\mathbf{X}, Z) =$ $X_1 \cdots X_s Z$ so that

$$
\mathfrak{L}(X_1 \cdots X_s, Z) = \log_C(\mathbb{S}_s(\mathbf{X}, Z)) = \sum_{n \geq 0} \frac{(X_1 \cdots X_s Z)^{q^n}}{l_n}
$$

but $||X_1 \cdots X_s|| = q^{\frac{s}{q-1}} < q^{\frac{q}{q-1}}$ so that

$$
\Gamma(X_1 \cdots X_s) = \sum_{n \geq 0} \frac{(X_1 \cdots X_s)^{q^n}}{l_n} = \log_C(X_1 \cdots X_s)
$$

converges in $\mathbb{B}_s(K_\infty)$.

We can recover properties of σ_s from the ones of \mathbb{S}_s .

Proposition 5.6.

(1) deg_z($\sigma_s(t, z)$) ≤ $\frac{s-1}{q-1}$, (2) $z - 1$ divides $\sigma_s(\mathbf{t}, z)$ if, and only if, $s \equiv 1 \mod q - 1$ and $s > 1$.

Proof. The first point comes from Proposition [4.7](#page-13-0) and the second one from Lemma $4.10.$

Note that in practice, formulas for σ_s are more manageable and easier to compute than the formulas for \mathcal{S}_s . Compare the following example with Example [4.12.](#page-14-1)

Example 5.7. If $1 \leq s \leq q-1$, then $\sigma_s = 1$. The next two polynomials are: $\sigma_q = 1 - z$ and $\sigma_{q+1} = 1 - (t_1 - \theta) \cdots (t_{q+1} - \theta) z$.

In the spirit of Lemma [4.13,](#page-14-0) we can recover the values $L(N, s, z)$ for $N \leq 0$ from the polynomials $\mathcal{S}_s(\mathbf{X}, Z)$:

Theorem 5.8. For all $N \geq 0$ and $s \geq 1$,

$$
L(-N, s, z) \cdot (X_1 \cdots X_s) = \frac{d}{dX_{s+1}} \cdots \frac{d}{dX_{s+N+1}} \mathbb{S}_{s+N+1}(X_1, \ldots, X_{s+N+1}, Z).
$$

Proof. Since $\frac{d}{dX}(a*X) = a$, we have

$$
\frac{d}{dX_{s+1}} \cdots \frac{d}{dX_{s+N+1}} Z_k(X_1 \cdots X_{s+N+1}) = \sum_{a \in A_{+,k}} a * (X_1 \cdots X_s) a^N
$$

which gives the result.

6. Special L-values

The purpose of this section is to express the series $L(N, s, z)$ as sums of polylogarithms. The idea here is to use the fact that if we evaluate t_{n+1},\ldots,t_s at θ in $\varphi^r(L(1,s,z)) = L(q^r,s,z)$, we just obtain $L(q^r + n - s, n, z)$.

If P is a polynomial in a variable among t, t_1, \ldots , or t_s , we will write P^{φ} for $\varphi(P)$.

Lemma 6.1. For all integers $k > 0$ and $r > 0$, we have:

(1) $b_{k+r}(t) = \varphi^k(b_r(t))b_k(t) = \varphi^r(b_k(t))b_r(t),$ (2) if $r \ge 1$, $\varphi^r(b_k(t)) = \varphi^k(b_r(t)) \frac{b_k(t)}{b_r(t)} = \varphi^k(b_{r-1}^{\varphi}(t)) \frac{b_k^{\varphi}(t)}{b_{r-1}^{\varphi}(t)},$ (3) $b_k^{\varphi}(\theta) = l_k$.

Proof. The verification of these identities is left to the reader. \Box

We start from the identity of the first point of Proposition [5.4,](#page-21-0) and we write $\sigma_s(\mathbf{t},z) = \sum_{i=0}^m \sigma_{s,i}(\mathbf{t})z^i$:

$$
L(1, s, z) = \log_z(\sigma_s(\mathbf{t}, z))
$$

\n
$$
= \sum_{k \geq 0} \frac{1}{l_k} \tau_z^k(\sigma_s(\mathbf{t}, z)) = \sum_{k \geq 0} \sum_{i=0}^m \frac{z^{k+i}}{l_k} \tau^k(\sigma_{s,i}(\mathbf{t}))
$$

\n
$$
= \sum_{k \geq 0} \sum_{i=0}^m \frac{z^{k+i}}{l_k} b_k(t_1) \cdots b_k(t_s) \varphi^k(\sigma_{s,i}(\mathbf{t})).
$$

Licensed to University Claude Bernard Lyon. Prepared on Thu Feb 15 10:47:47 EST 2018 for download from IP 161.3.48.216. License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

 \Box

If we apply φ^r on both sides, we get by Lemma [6.1:](#page-22-1)

$$
L(q^r, s, z) = \sum_{k \geq 0} \sum_{i=0}^m \frac{z^{k+i}}{l_k^{q^r}} \varphi^r(b_k(t_1) \cdots b_k(t_s)) \varphi^{k+r}(\sigma_{s,i}(\mathbf{t}))
$$

=
$$
\sum_{i=0}^m \sum_{k \geq 0} \frac{z^{k+i}}{l_k^{q^r}} \frac{b_k(t_1) \cdots b_k(t_n) b_k^{\varphi}(t_{n+1}) \cdots b_k^{\varphi}(t_s)}{b_r(t_1) \cdots b_r(t_n) b_{r-1}^{\varphi}(t_{n+1}) \cdots b_{r-1}^{\varphi}(t_s)} \varphi^k(U_{s,i}),
$$

where $U_{s,i} = b_r(t_1) \cdots b_r(t_n) b_{r-1}^{\varphi}(t_{n+1}) \cdots b_{r-1}^{\varphi}(t_s) \varphi^r(\sigma_{s,i}(\mathbf{t}))$.

Write $U_{s,i} = \sum_{i_{n+1},...,i_s} f_{i_{n+1},...,i_s} t_{n+1}^{i_{n+1}} \cdots t_s^{i_s}$ with $f_{i_{n+1},...,i_s} \in A[t_1,...,t_n]$ and for $j \geq 0$, $g_{i,j} = \sum_{i_{n+1}+\cdots+i_s=j} f_{i_{n+1},...,i_s}$ so that $U_{s,i}$ evaluated at $t_{n+1} = \cdots = t_s =$ θ is the polynomial $\sum_{j\geq 0} \theta^j g_{i,j}$. We now evaluate $L(q^r, s, z)$ at $t_{n+1} = \cdots = t_s = \theta$ and we write $N = q^r - s + n$:

$$
L(N, n, z) = \sum_{j \geq 0} \theta^j \sum_{i=0}^m \sum_{k \geq 0} \frac{z^{k+i}}{l_k^N l_{r-1}^{s-n}} \frac{b_k(t_1) \cdots b_k(t_n)}{b_r(t_1) \cdots b_r(t_n)} \varphi^k(g_{i,j}).
$$

Now write $\log_{N,z} = \sum_{k\geq 0} z^k \frac{b_k(t_1)\cdots b_k(t_n)}{l_k^N} \varphi^k = \sum_{k\geq 0} \frac{1}{l_k^N} \tau_z^k$. Then

$$
L(N, n, z) = \frac{1}{l_{r-1}^{s-n} b_r(t_1) \cdots b_r(t_n)} \sum_{j \geq 0} \theta^j \log_{N, z} \left(\sum_{i=0}^m z^i g_{i,j} \right).
$$

We have proved the next theorem.

Theorem 6.2. For all integers $N \in \mathbb{Z}$, $n \geq 1$ and $r \geq 1$ such that $q^r \geq N$, there exist an integer $d \geq 0$, and for $0 \leq j \leq d$, polynomials $h_j \in A[t_1,\ldots,t_s,z]$ such that

$$
L(N, n, z) = \frac{1}{l_{r-1}^{q^r - N} b_r(t_1) \cdots b_r(t_n)} \sum_{j=0}^d \theta^j \log_{N, z}(h_j).
$$

Now denote for $N \in \mathbb{Z}$, $\log_N = \sum_{k \geq 0} \frac{1}{l_k^N} \tau^k$ the *Nth Carlitz polylogarithm*.

Corollary 6.3. For all integers $N \in \mathbb{Z}$, $n \geq 1$ and $r \geq 1$ such that $q^r \geq N$, there exist an integer $d \geq 0$, and for $0 \leq j \leq d$, polynomials $H_j \in A[X_1, \ldots, X_n, Z]^{\text{lin}}$ such that

$$
L(N, n, z) \cdot \left(X_1^{q^r} \cdots X_n^{q^r} Z \right) = \frac{1}{l_{r-1}^{q^r - N}} \sum_{j=0}^d \theta^j \log_N(H_j).
$$

ACKNOWLEDGMENT

The authors refer the reader to Demeslay's thesis [\[Dem15,](#page-24-14) §3.3] for deeper considerations on these sums of polylogarithms. The authors also want to thank Florent Demeslay who pointed out an error in a previous version of the above computations.

REFERENCES

- [And96] Greg W. Anderson, Log-algebraicity of twisted A-harmonic series and special values of L-series in characteristic p, J. Number Theory **60** (1996), no. 1, 165–209, DOI 10.1006/jnth.1996.0119. M[R1405732](http://www.ams.org/mathscinet-getitem?mr=1405732)
- [AP14] Bruno Anglès and Federico Pellarin, Functional identities for L-series values in positive characteristic, J. Number Theory **142** (2014), 223–251, DOI 10.1016/j.jnt.2014.03.004. M[R3208400](http://www.ams.org/mathscinet-getitem?mr=3208400)

- [AP15] Bruno Anglès and Federico Pellarin, Universal Gauss-Thakur sums and L-series, Invent. Math. **200** (2015), no. 2, 653–669, DOI 10.1007/s00222-014-0546-8. M[R3338012](http://www.ams.org/mathscinet-getitem?mr=3338012)
- [APTR16] B. Anglès, F. Pellarin, and F. Tavares Ribeiro, Arithmetic of positive characteristic L-series values in Tate algebras, Compos. Math. **152** (2016), no. 1, 1–61, DOI 10.1112/S0010437X15007563. With an appendix by F. Demeslay. M[R3453387](http://www.ams.org/mathscinet-getitem?mr=3453387)
- [AT90] Greg W. Anderson and Dinesh S. Thakur, Tensor powers of the Carlitz module and zeta values, Ann. of Math. (2) **132** (1990), no. 1, 159–191, DOI 10.2307/1971503. M[R1059938](http://www.ams.org/mathscinet-getitem?mr=1059938)
- $[Bou64]$ N. Bourbaki, Éléments de mathématique. Fasc. XXX. Algèbre commutative. Chapitre 5: Entiers. Chapitre 6: Valuations (French), Actualités Scientifiques et Industrielles, No. 1308, Hermann, Paris, 1964. M[R0194450](http://www.ams.org/mathscinet-getitem?mr=0194450)
- [BP] W. Dale Brownawell and Matthew A. Papanikolas, A rapid introduction to Drinfeld modules, t-modules, and t-motives, Preprint.
- [Dem15] Demeslay, Formules de classes en caractéristique positive, Ph.D. Thesis, 2015.
- [FvdP04] Jean Fresnel and Marius van der Put, Rigid analytic geometry and its applications, Progress in Mathematics, vol. 218, Birkhäuser Boston, Inc., Boston, MA, 2004. M[R2014891](http://www.ams.org/mathscinet-getitem?mr=2014891)
- [Gos96] David Goss, Basic structures of function field arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 35, Springer-Verlag, Berlin, 1996. M[R1423131](http://www.ams.org/mathscinet-getitem?mr=1423131)
- [Neu99] Jürgen Neukirch, Algebraic number theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 322, Springer-Verlag, Berlin, 1999. Translated from the 1992 German original and with a note by Norbert Schappacher; With a foreword by G. Harder. M[R1697859](http://www.ams.org/mathscinet-getitem?mr=1697859)
- [Pap] Matthew A. Papanikolas, Log-algebraicity on tensor powers of the Carlitz module and special values of Goss L-functions, In preparation.
- [Pel12] Federico Pellarin, Values of certain L-series in positive characteristic, Ann. of Math. (2) **176** (2012), no. 3, 2055–2093, DOI 10.4007/annals.2012.176.3.13. M[R2979866](http://www.ams.org/mathscinet-getitem?mr=2979866)
- [Per14a] Rudolph Bronson Perkins, Explicit formulae for L-values in positive characteristic, Math. Z. **278** (2014), no. 1-2, 279–299, DOI 10.1007/s00209-014-1315-5. M[R3267579](http://www.ams.org/mathscinet-getitem?mr=3267579)
- [Per14b] Rudolph Bronson Perkins, On Pellarin's L-series, Proc. Amer. Math. Soc. **142** (2014), no. 10, 3355–3368, DOI 10.1090/S0002-9939-2014-12080-6. M[R3238413](http://www.ams.org/mathscinet-getitem?mr=3238413)
- [Ros02] Michael Rosen, Number theory in function fields, Graduate Texts in Mathematics, vol. 210, Springer-Verlag, New York, 2002. M[R1876657](http://www.ams.org/mathscinet-getitem?mr=1876657)
- [Tha04] Dinesh S. Thakur, Function field arithmetic, World Scientific Publishing Co., Inc., River Edge, NJ, 2004. M[R2091265](http://www.ams.org/mathscinet-getitem?mr=2091265)

NORMANDIE UNIVERSITÉ, UNIVERSITÉ DE CAEN NORMANDIE, CNRS UMR 6139, CAMPUS II. BOULEVARD MARÉCHAL JUIN, B.P. 5186, 14032 CAEN CEDEX, FRANCE

 $E-mail$ $address:$ $bruno.$ angles@unicaen.fr

Institut Camille Jordan, UMR 5208, Site de Saint-Etienne, 23 rue du Dr. P. Michelon, 42023 Saint-Etienne, France

 $E\text{-}mail\;address: \texttt{federico.pellarin@univ-st-etienne.fr}$

NORMANDIE UNIVERSITÉ, UNIVERSITÉ DE CAEN NORMANDIE, CNRS UMR 6139, CAMPUS II. BOULEVARD MARÉCHAL JUIN, B.P. 5186, 14032 CAEN CEDEX, FRANCE

 E -mail address: floric.tavares-ribeiro@unicaen.fr