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ANDERSON-STARK UNITS FOR Fq[θ]

BRUNO ANGLÈS, FEDERICO PELLARIN, AND FLORIC TAVARES RIBEIRO

Abstract. We investigate the arithmetic of special values of a new class of
L-functions recently introduced by the second author. We prove that these spe-

cial values are encoded in some particular polynomials which we call Anderson-
Stark units. We then use these Anderson-Stark units to prove that L-functions
can be expressed as sums of polylogarithms.
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1. Introduction

A major theme in the arithmetic theory of global function fields is the study
of the arithmetic properties of special values of D. Goss L-functions. A typical
example of such a function is given by the Carlitz-Goss zeta function ζA(.), where
A = Fq[θ] is the polynomial ring in the variable θ with coefficients in a finite field
Fq. Its special values are given by the following formula:

∀n ≥ 1, ζA(n) =
∑
a∈A+

1

an
∈ K∞,

whereA+ is the set of monic elements in A andK∞ = Fq((
1
θ )). In 1990,G. Anderson

and D. Thakur proved the following fundamental result ([AT90, Theorem 3.8.3]):
for n ≥ 1, there exists zn ∈ Lie(C⊗n)(K∞) such that expn(zn) ∈ C⊗n(A), and

ΓnζA(n) = en(zn),

where expn is the exponential map associated to the nth tensor power of the Carlitz
module C⊗n, en(zn) is the last coordinate of zn ∈ Kn

∞, and Γn ∈ A is the Carlitz
factorial (we refer the reader to [BP] for the basic properties of C⊗n). This result
has recently been generalized by M. A. Papanikolas in [Pap] who proved a log-
algebraicity theorem for C⊗n in the spirit of the work of G. Anderson in [And96].
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1604 B. ANGLÈS, F. PELLARIN, AND F. TAVARES RIBEIRO

M. A. Papanikolas applies this log-algebraicity theorem to obtain remarkable ex-
plicit formulas for a large class of special values of D. Goss Dirichlet L-functions.
Observe that the t-motive associated to the t-module C⊗n can be understood as
the following object: (A[t], τ ), where t is an indeterminate over K = Fq(θ), and
τ : A[t] → A[t] is the Fq[t]-linear map defined as follows:

τ

⎛
⎝∑

k≥0

akt
k

⎞
⎠ = (t− θ)n

⎛
⎝∑

k≥0

aqkt
k

⎞
⎠ ,

where ak ∈ A.
Let s ≥ 1 be an integer and let t1, . . . , ts be s indeterminates over K. Consider

the following object: (A[t1, . . . , ts], τ ) where τ : A[t1, . . . , ts] → A[t1, . . . , ts] is the
morphism of Fq[t1, . . . , ts]-modules, semi-linear1 with respect to τ0 : A → A, x �→
xq, given by:

τ

⎛
⎝ ∑

i1,...,is∈N

ai1,...,ist
i1
1 · · · tiss

⎞
⎠ = (t1 − θ) · · · (ts − θ)

⎛
⎝ ∑

i1,...,is∈N

aqi1,...,ist
i1
1 · · · tiss

⎞
⎠ ,

where ai1,...,is ∈ A. Note that we have a natural morphism of Fq[t1, . . . , ts]-algebras

φ : A[t1, . . . , ts] → EndFq [t1,...,ts]A[t1, . . . , ts]

given by φθ = θ + τ. Let Ts(K∞) be the Tate algebra in the variables t1, . . . , ts,
with coefficients in K∞. Then τ extends naturally to a continuous morphism
of Fq[t1, . . . , ts]-modules on Ts(K∞). The second author introduced (see [Pel12],
[Per14b], [Per14a], [AP15]) for integers N ∈ Z and s ≥ 0 the L-series

L(N, s) =
∑
a∈A+

a(t1) · · · a(ts)
aN

,

which converges in Ts(K∞). If z is another indeterminate, we also set

L(N, s, z) =
∑
d≥0

zd
∑
a∈A+

degθ a=d

a(t1) . . . a(ts)

aN
∈ K[t1, . . . , ts][[z]].

These series converge at z = 1 in Ts(K∞) and we have the equality

L(N, s) = L(N, s, z) |z=1 .

Our main goal in this article is the study of the arithmetic properties of the
L(N, s, z), N ∈ Z. Let us give a brief description of our principal results.

We let τ act on K[t1, . . . , ts][[z]] by

τ (
∑
k≥0

fkz
k) =

∑
k≥0

τ (fk)z
k,

where fk ∈ K[t1, . . . , ts]. The exponential function associated to φ is defined by

expφ =
∑
i≥0

1

Di
τ i,

1We signal here to avoid confusion that in the rest of the article τ will denote more generally
a morphism semi-linear with respect to τ0.
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ANDERSON-STARK UNITS FOR Fq [θ] 1605

where D0 = 1, and for i ≥ 1, Di = (θq
i − θ)Dq

i−1. We also set

expφ,z =
∑
i≥0

zi

Di
τ i.

A formulation of the s-variable version of Anderson’s log-algebraicity theorem is
(see Theorem 4.6 and Proposition 5.4)

expφ,z(L(1, s, z)) ∈ A[t1, . . . , ts, z]

from which we also deduce that, in Ts(K∞),

expφ(L(1, s)) ∈ A[t1, . . . , ts].

This s-variable version has been proved in [APTR16] as a consequence of a class
formula. We give here a more direct proof, close to Anderson’s original proof in
[And96].

The special elements expφ,z(L(1, s, z)) and expφ(L(1, s)) play the role of Stark
units in our context. Let us give an example, for 1 ≤ s ≤ q − 1, by Proposition 5.4
we have the following equality in Ts:

L(1, s) = logφ(1),

where logφ =
∑

i≥0
1
li
τ i is the Carlitz logarithm, l0 = 1 and for i ≥ 1, li =

(θ − θq
i

)li−1. We define for N > 0, the Nth “polylogarithm”

logφ,N,z =
∑
i≥0

zi

lNi
τ i.

Set b0(t) = 1, and for r ≥ 1, br(t) =
∏r−1

k=0(t − θq
k

). Let N ≥ 1 be an integer and
let r ≥ 1 be the unique integer such that qr ≥ N > qr−1. We can then prove (see
Theorem 6.2 for the precise statement) that there exists a finite set of completely
explicit elements hj ∈ A[t1, . . . , ts, z], 0 ≤ j ≤ d, that are built from the “unit”
expφ,z(L(1, n+ qr −N, z)), such that

lq
r−N

r−1 br(t1) · · · br(tn)L(N,n, z) =

d∑
j=0

θj logφ,N,z(hj).

The paper is organized as follows: we first (§3) introduce a Banach space Bs

which is a completion of an s-variable polynomial ring for a norm similar to the one
considered by Anderson in [And96]. The study of different natural Carlitz actions
on Bs allows us to endow Bs with an action of the Tate algebra Ts and to translate
some statements on Bs into statements on Ts. We then (§4) prove the s-variable
log-algebraicity theorem, following the lines of Anderson’s proof in [And96], and
establish some properties of the special polynomials. We also state two “converses”
to the log-algebraicity theorem (Propositions 4.16 and 4.17). In the next section
(§5) we translate the preceding results in Ts, so that the L-functions L(1, s, z)
and L(1, s) appear naturally. The last section (§6) is devoted to the proof that
L(N,n, z) can be expressed as a sum of polylogarithms.
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1606 B. ANGLÈS, F. PELLARIN, AND F. TAVARES RIBEIRO

2. Notation

Let Fq be a finite field with q elements, where q is a power of a prime p, θ an
indeterminate over Fq, A = Fq[θ], A

∗ = A\{0} and K = Fq(θ). The set of monic
elements (respectively of degree j ≥ 0) of A is denoted by A+ (respectively A+,j).
Let v∞ be the valuation on K given by v∞(ab ) = degθ b− degθ a. We identify with

Fq((
1
θ )) the completion K∞ of K with respect to v∞. Let C∞ be the completion of

an algebraic closure of K∞. Then v∞ extends uniquely to a valuation on C∞, still
denoted by v∞, and we set for all α ∈ C∞, |α|∞ = q−v∞(α). The algebraic closures
of K and Fq in C∞ will be denoted by K and Fq.

Let τ denote an operator which we let act as the Frobenius on C∞: for all
α ∈ C∞, τ (α) = αq. If R is a ring endowed with an action of τ (for instance, R a
subring of C∞ stable under τ ), then we denote by R[[τ ]] the ring of formal series in
τ with coefficients in R subject to the commutation rule: for all r ∈ R, τ.r = τ (r).τ .
We also denote by R[τ ] the subring of R[[τ ]] of polynomials in τ .

The Carlitz module is the unique morphism C· : A → A[τ ] of Fq-algebras deter-
mined by Cθ = θ + τ . If M is an A-module endowed with a semi-linear endomor-
phism τM (∀m ∈ M, ∀a ∈ A, τM (am) = τ (a)τM(m)), then C· induces a new action
of A on M ; endowed with this action, the A-module M is denoted by C(M).

The Carlitz exponential is the formal series

expC =
∑
i≥0

1

Di
τ i ∈ K[[τ ]],

where D0 = 1 and for i ≥ 1, Di = (θq
i − θ)Dq

i−1. The evaluation expC : C∞ →
C∞; x �→ expC(x) =

∑
i≥0

1
Di

τ i(x) defines an entire Fq-linear function on C∞
and ker(expC : C∞ → C∞) = π̃A where π̃ is the Carlitz period defined by (see
[Gos96, Chapter 3])

π̃ = q−1
√
θ − θq

∏
i≥1

(
1− θq

i − θ

θqi+1 − θ

)
∈ q−1

√
−θ(θ + Fq[[

1

θ
]]).

The Carlitz logarithm is the formal series

logC =
∑
i≥0

1

li
τ i ∈ K[[τ ]],

where l0 = 1 and for i ≥ 1, li = (θ − θq
i

)li−1. It satisfies in K[[τ ]] the equality
logC . expC = 1. It defines a function x �→ logC(x) on C∞ converging for v∞(x) >
− q

q−1 . Moreover, if v∞(x) > − q
q−1 , then v∞(x) = v∞(expC(x)) = v∞(logC(x))

and expC ◦ logC(x) = x = logC ◦ expC(x). We have the formal identities in K[[τ ]]
for all a ∈ A:

expC a = Ca expC and logC Ca = a logC .

The identity expC(ax) = Ca(expC(x)) holds for all x ∈ C∞, a ∈ A.
The set of A-torsion points of C(C∞) is denoted by ΛC ⊂ C(K). Let a ∈ A

with degθ a > 0, the a-torsion points are precisely the elements expC(
bπ̃
a ) ∈ K with

b ∈ A and degθ b < degθ a. Therefore, ΛC = expC(Kπ̃). Since expC is continuous
for the topology defined by v∞, the closure of ΛC in C∞ is the compact set

K = ΛC = expC(K∞π̃) = expC

(
1

θ
Fq[[

1

θ
]]π̃

)
=

q−1
√
−θFq[[

1

θ
]],
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ANDERSON-STARK UNITS FOR Fq [θ] 1607

where the last equality comes from the facts that π̃ ∈ q−1
√
−θ(θ + Fq[[

1
θ ]]), and

that for λ ∈ F∗
q and n ≥ 1, expC

(
λπ̃
θn

)
≡ λπ̃

θn mod π̃
θn+1Fq[[

1
θ ]]. It is customary

to consider K∞π̃ as an analogue of the imaginary line; the compact K is then
an analogue of the unit circle. We remark that expC and logC define reciprocal
automorphisms of K.

3. Some functional analysis

3.1. General settings. Let s ≥ 1 be a fixed integer and let X = (X1, . . . , Xs) be
a set of indeterminates over C∞. We want to consider polynomials F ∈ C∞[X] as
polynomial functions on Ks. Thus we introduce the following norm on C∞[X]:

‖F‖ = max {|F (x1, . . . , xs)|∞ x1, . . . , xs ∈ K} .
Since K is compact and infinite, this is a well-defined, ultrametric norm of C∞-
algebra. (In particular, for all F,G ∈ C∞[X], ‖FG‖ ≤ ‖F‖‖G‖. Moreover, ‖F‖ =
0 ⇒ F = 0 is a consequence of the fact that K is infinite.)

If i = (i1, . . . , is) where the ij ≥ 0 are integers, then we write Xi for Xi1
1 . . .Xis

s

and |i| = i1 + · · ·+ is.

Lemma 3.1.

(1) If i ∈ N
s, then ‖Xi‖ = q

|i|
q−1 .

(2) Write for n ≥ 1, λθn = expC(
π̃
θn ) ∈ ΛC and let W ⊂ ΛC be the Fq-vector

space spanned by the λθn , n ≥ 1. Then W is dense in K. In particular, for
all F ∈ C∞[X],

‖F‖ = sup {|F (x)|∞ x ∈ Λs
C} = sup {|F (x)|∞ x ∈ W s} .

Proof.

(1) This is a consequence of the fact that if a, b ∈ A∗ with degθ a < degθ b, then

v∞

(
expC

(
aπ̃

b

))
= v∞

(
aπ̃

b

)
= degθ b− degθ a− q

q − 1
≥ −1

q − 1
.

(2) This follows from the fact that the Fq-vector space spanned by the 1
θn for

n ≥ 1 is 1
θFq[

1
θ ] which is dense in 1

θFq[[
1
θ ]]. �

Remark 3.2. Note that the norm ‖.‖ is not multiplicative. We shall give an example
in the one variable case. We have

‖Cθ(X)‖ = ‖X‖ = q
1

q−1

but Cθ(X) =
∏

λ∈Fq

(
X − λ expC(

π̃
θ )
)
, where for all λ ∈ Fq, ‖X − λ expC(

π̃
θ )‖ =

q
1

q−1 .

Since ΛC is the torsion set of C(C∞), it is naturally endowed with the Carlitz
action of A: if x ∈ ΛC , a ∈ A, then Ca(x) ∈ ΛC , which extends by continuity to K.
Thus, we get a natural action of the multiplicative monoid of A on the polynomial
functions on Ks:

(3.1) ∀F (X) ∈ C∞[X], ∀a ∈ A a ∗ F (X) = F (Ca(X1), . . . , Ca(Xs)).

This action is a generalisation of Anderson’s construction ([And96, §3.2]) to our
settings. Observe that since for all a ∈ A∗, Ca : ΛC → ΛC is surjective, this action
is isometric with respect to the norm ‖ · ‖.
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1608 B. ANGLÈS, F. PELLARIN, AND F. TAVARES RIBEIRO

3.2. The one variable case. Set L = K∞(π̃) and π = θ
π̃ . Since v∞(π) = 1

q−1 ,

the valuation ring of L is

OL = Fq[[π]] =

q−2∑
k=0

πk
Fq[[

1

θ
]],

and its maximal ideal is

PL = πOL.

Recall that since K∞ = A⊕ 1
θFq[[

1
θ ]], we have

expC(π̃K∞) =
1

π
Fq[[

1

θ
]] ⊂ P

−1
L .

Let N ∈ N = {0, 1, . . . } and let N =
∑r

i=0 Niq
i, with for all i, 0 ≤ Ni ≤ q − 1, be

its base-q decomposition. Set lq(N) =
∑r

i=0 Ni. We define the polynomial GN (X)
by

GN (X) = πlq(N)

(
r∏

i=0

(θi ∗X)Ni

)
= πlq(N)

(
r∏

i=0

Cθi(X)Ni

)
∈ L[X].

Lemma 3.3.

(1) The set {GN (X), N ≥ 0} generates L[X] as an L-vector space.
(2) For N ∈ N, we have:

‖GN (X)‖ = 1.

Proof.

(1) It follows from the fact that for all N ≥ 0, degX(GN (X)) = N .
(2) We remark that for all λ ∈ ΛC , v∞(GN (λ)) ≥ 0 and that if α ∈ F

∗
q and

λθ+α = expC

(
π̃

θ+α

)
, then v∞(GN (λθ+α)) = 0. �

If β = (βi)i≥1 is a sequence of elements in Fq, we set

λ(β) =
∑
i≥1

βi expC

(
π̃

θi

)
∈ P

−1
L .

Note that if we set μ(β) =
∑

i≥1
βi

θi ∈ K∞, then we have λ(β) = expC(π̃μ(β)).

Lemma 3.4. Let β = (βi)i≥1 be a sequence of elements in Fq, and let N =∑r
i=0 Niq

i be a nonnegative integer written in base q. Then

GN (λ(β)) ≡
r∏

i=0

βNi
i+1 mod PL.

Proof. Observe that

expC

(
π̃

θ

)
≡ 1

π
mod OL.

Thus, for j ≥ 0,

πCθj (λ(β)) ≡ βj+1 mod PL,

whence the result. �
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ANDERSON-STARK UNITS FOR Fq [θ] 1609

Lemma 3.5. Let k, r be two integers such that r ≥ 1 and 1 ≤ k ≤ qr, let
α1, . . . , αk ∈ F∗

q and let N1, . . . , Nk be k distinct integers in {0, . . . , qr − 1}. Write

Ni =
∑r−1

j=0 ni,jq
i in base q. Then, there exists β1, . . . , βr ∈ Fq such that

k∑
i=1

αi

r−1∏
j=0

β
ni,j

j+1 �= 0

with the convention that 00 = 1.

Proof. We proceed by induction on r.
If r = 1, then k ≤ q and for 1 ≤ j ≤ k, Ni = ni,1 ∈ {0, . . . , q − 1}. Since the

Ni’s are distinct, the polynomial
∑k

i=1 αiX
Ni is not divisible by Xq −X, and this

implies the assertion of the lemma in this case.
We assume now that the lemma is proved for all integers less than r−1 ≥ 1, and

we also assume that at least one Ni is ≥ qr−1. We define an equivalence relation
over the set {1, . . . , k}: for all 1 ≤ i, i′ ≤ k, i ∼ i′ if and only if ni,j = ni′,j for
all 1 ≤ j ≤ r − 2 (that is, if Ni ≡ Ni′ mod qr−1). We denote by I1, . . . , It the

equivalence classes and if i ∈ Im we define for 1 ≤ j ≤ r − 2, n
(m)
j = ni,j the

common value. Let β1, . . . , βr ∈ F∗
q ; then

k∑
i=1

αi

r−1∏
j=0

β
ni,j

j+1 =

t∑
m=1

(∑
i∈Im

αiβ
ni,r−1
r

)
r−2∏
j=0

β
n
(m)
j

j+1 .

Now, by the case r = 1, we can find βr such that the sum
∑

i∈I1
αiβ

ni,r−1
r is not

zero and we can apply the induction hypothesis to conclude the proof. �

Let K∞ ⊆ E ⊆ C∞ be a field complete with respect to | · |∞, and B(E) denote
the completion of E[X] with respect to ‖ · ‖.

Theorem 3.6. The family {GN (X), N ≥ 0} forms an orthonormal basis of the
E-Banach space B(E), that is:

(i) any F ∈ B(E) can be written in a unique way as a convergent series F =∑
N≥0 fNGN (X) with fN ∈ E,N ≥ 0, and limN→∞ fN = 0;

(ii) if F is written as above, then ‖F‖ = maxN≥0 |fN |∞.

Proof. It is enough to prove the above properties (i) and (ii) for F ∈ E[X]. Note
that property (i) is a consequence of the fact that degX GN (X) = N for all N ≥ 0.
Let us prove property (ii). It is enough to consider F =

∑r
i=0 xrGNi

with for all
0 ≤ i ≤ r, v∞(xi) = 0. We are reduced to proving that ‖F‖ = 1, that is, ‖F‖ ≥ 1
since we already know the converse inequality; and the existence of λ ∈ ΛC such
that v∞(F (λ)) = 0 is a consequence of Lemmas 3.4 and 3.5. �

3.3. The multivariable case. Let s ≥ 1 be an integer, we define for a field
K∞ ⊆ E ⊆ C∞ complete with respect to | · |∞, Bs(E) to be the completion of
E[X] with respect to ‖ · ‖. We write also for short Bs = Bs(C∞). Observe that for
N1, . . . , Ns ∈ N, we have

‖GN1
(X1) · · ·GNs

(Xs)‖ = 1.
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1610 B. ANGLÈS, F. PELLARIN, AND F. TAVARES RIBEIRO

Theorem 3.7. Let L ⊆ E ⊆ C∞ be complete with respect to | · |∞. Then the family

{GN1
(X1) · · ·GNs

(Xs), N1, . . . , Ns ∈ N}

forms an orthonormal basis of the E-Banach space Bs(E), that is:

(i) any F ∈ Bs(E) can be written in a unique way as the sum of a summable
family

F =
∑

(N1,...,Ns)∈Ns

fN1,...,Ns
GN1

(X1) · · ·GNs
(Xs)

with fN1,...,Ns
∈ E for all N1, . . . , Ns ∈ N, and fN1,...,Ns

goes to 0 with
respect to the Fréchet filter;2

(ii) if F is written as above, then ‖F‖ = max{|fN1,...,Ns
|∞, N1, . . . , Ns ∈ N}.

Proof. We proceed by induction on s ≥ 1. The case s = 1 is the statement of
Theorem 3.6. Assume now that s ≥ 2 and that the theorem is true for s−1. It will
be enough to prove (i) and (ii) for polynomials, and (i) is still an easy consequence
of degX GN (X) = N for all N ≥ 0. Write a polynomial

F =
r∑

i=0

αrGNi
(Xs) ∈ E[X], where ∀1 ≤ i ≤ r, αi ∈ E[X1, . . . , Xs−1].

Write for 1 ≤ i ≤ r, the polynomial

αi =
∑

i1,...,is−1

α
(i)
i1,...,is−1

Gi1(X1) · · ·Gis−1
(Xs)

with α
(i)
i1,...,is−1

∈ E. Then the induction hypothesis shows that for all i:

‖αi‖ = max
{∣∣∣α(i)

i1,...,is−1

∣∣∣
∞

, i1, . . . , is−1 ∈ N

}
.

Thus

‖F‖ ≤ max
1≤i≤r

‖αi‖ = max
{∣∣∣α(i)

i1,...,is−1

∣∣∣
∞

, i1, . . . , is−1, i ∈ N

}
.

Let 1 ≤ i0 ≤ r be such that ‖αi0‖ = max1≤i≤r ‖αi‖, to prove the converse in-
equality, we will find λ1, . . . , λs ∈ Ks such that |F (λ1, . . . , λs)|∞ = ‖αi0‖. Let
λ1, . . . , λs−1 ∈ Ks−1 such that

|αi0(λ1, . . . , λs−1)|∞ = ‖αi0‖.

Then, by the case s = 1,

‖F (λ1, . . . , λs−1, Xs)‖ = max |αi0(λ1, . . . , λs−1)|∞ = ‖αi0‖.

Therefore, we can find λ ∈ K such that |F (λ1, . . . , λs−1, λ)|∞ = ‖αi0‖, proving that
‖F‖ = ‖αi0‖ and the theorem. �

For all N =
∑r

i=0 Niq
i ≥ 0, define

HN (X) =

(
r∏

i=0

(θi ∗X)Ni

)
= π−lq(N)GN (X) ∈ K∞[X].

2We recall that, here, this just means that limN1+···+Ns→∞ fN1,...,Ns = 0.
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Then the HN ’s generate K∞[X] and ‖HN (X)‖ = q
lq(N)

q−1 . If E does not contain L,
in particular if E = K∞, then GN has no longer coefficients in E and there might
not exist an orthonormal basis of B(E). However, Theorem 3.7 still implies the
following corollary.

Corollary 3.8. Let K∞ ⊆ E ⊆ C∞ be complete with respect to | · |∞. Then the
family

{HN1
(X1) · · ·HNs

(Xs), N1, . . . , Ns ∈ N}
forms an orthogonal basis of the E-Banach space Bs(E), that is:

(i) any F ∈ Bs(E) can be written in a unique way as the sum of a summable
family

F =
∑

(N1,...,Ns)∈Ns

fN1,...,Ns
HN1

(X1) · · ·HNs
(Xs)

with fN1,...,Ns
∈ E for all N1, . . . , Ns ∈ N, and |fN1,...,Ns

|∞q
lq(N1)+···+lq(Ns)

q−1

goes to 0 with respect to the Fréchet filter;
(ii) if F is written as above, then

‖F‖ = max{|fN1,...,Ns
HN1

(X1) · · ·HNs
(Xs)|∞, N1, . . . , Ns ∈ N}

= max{|fN1,...,Ns
|∞q

lq(N1)+···+lq(Ns)

q−1 , N1, . . . , Ns ∈ N}.

3.4. The Carlitz action. In this section, K∞ ⊆ E ⊆ C∞ is a field complete with
respect to | · |∞. Note that the action ∗ of A on E[X] defined in (3.1) satisfies that
for all a ∈ A∗, the map F �→ a ∗ F is an isometry on E[X]. Thus, the action ∗
extends to an action, still denoted ∗, of A on Bs(E), such that for all a ∈ A∗, the
map F �→ a ∗ F is an isometry on Bs(E).

Now, instead of considering the simultaneous action of A on each of the Xj , we
will separate this action into actions on a single variable Xj , namely, for 1 ≤ j ≤ s,
F ∈ Bs(E) and a ∈ A, we set:

(3.2) a ∗j F (X) = F (X1, . . . , Xj−1, Ca(Xj), Xj+1, . . . , Xs).

This is still an action of monoid, but if we restrict this action to the set of poly-
nomials in E[X] which are Fq-linear in the variable Xj , the action ∗j induces a
structure of A-module. Thus we define:

E[X]lin = {F ∈ E[X];F is linear with respect to each of the variables X1, . . . , Xs}

which is the sub-E-vector space of E[X] spanned by the monomials Xqi1

1 · · ·Xqis
s ,

i1, . . . , is ∈ N. Since the actions ∗j and ∗i commute and commute with the linear
action of E, E[X]lin has a structure of module over E ⊗Fq

A⊗s, that is, if t1, . . . , ts
are new indeterminates, we identify E ⊗Fq

A⊗s with E[t1, . . . , ts] and E[X]lin has
a structure of E[t1, . . . , ts]-module given by

(3.3) ∀1 ≤ j ≤ s, tj .F (X1, . . . , Xs) = F (X1, . . . , Xj−1, Cθ(Xj), Xj+1, . . . , Xs).

We write t for the set of variable t1, . . . , ts and if i = (i1, . . . , is) ∈ Ns, ti = ti11 · · · tiss .
The action defined by formula (3.3) extends to an action on E[X], turning E[X]

into an E[t]-algebra. We define the subordinate norm ‖.‖∞ on E[t] by

‖f‖∞ = sup
F∈E[X]\{0}

‖f.F‖
‖F‖ .
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1612 B. ANGLÈS, F. PELLARIN, AND F. TAVARES RIBEIRO

Lemma 3.9. Let f ∈ E[t], f =
∑

i fit
i. Then for all F ∈ E[X]\{0},

‖f‖∞ = max
i

|fi|∞ =
‖f.F‖
‖F‖ .

Remark 3.10. The lemma says in particular that the norm ‖ · ‖∞ coincides with
the Gauss norm on E[t], which is known to be multiplicative. This property also
follows easily from the lemma.

Proof of the lemma. Write F =
∑

N1,...,Ns
FN1,...,Ns

HN1
(X1) · · ·HNs

(Xs) andM =

maxi |fi|∞. Note that for all N ≥ 1 and for all 1 ≤ i ≤ s, ti.HN (Xi) = HqN (Xi).
Since lq(N) = lq(qN), we deduce from Corollary 3.8 that ‖f.F‖ ≤ M‖F‖.

Conversely, consider (N1,0, . . . , Ns,0) the index, minimal for the lexicographic
ordering on Ns, such that

|FN1,0,...,Ns,0
|∞q

lq(N1,0)+···+lq(Ns,0)

q−1 = ‖F‖
and i0 = (i1,0, . . . , is,0) the index, minimal for the lexicographic ordering on Ns,
such that M = |fi0 |∞. Then, the coefficient of

Hqi1,0N1,0
(X1) · · ·Hqis,0Ns,0

(Xs)

in the expansion of f.F in the basis of Corollary 3.8 is equal to

fi0FN1,0,...,Ns,0
+ terms of lower norm,

whence the result. �

We define

• Blin
s (E) the adherence of E[X]lin in Bs(E),

• Ts(E) the completion of E[t] for the Gauss norm ‖.‖∞.

Recall that Ts(E) is the standard Tate algebra in s variables over E (see [FvdP04,
§II.1.]), that is, the algebra of formal series

∑
i∈Ns fit

i with fi ∈ E going to zero
with respect to the Fréchet filter. The action of E[t] extends naturally to an action
of Ts(E) on Bs(E) and on Blin

s (E).

Lemma 3.11.

(1) The family {Hqn1 (X1) · · ·Hqns (Xs), n1, . . . , ns ∈ N} forms an orthogonal

basis of elements of the same norm q
s

q−1 of the E-Banach space Blin
s (E).

(2) The map

{
Ts(E) → Bs(E)

f �→ f.(X1 · · ·Xs)
is injective with, for all f ∈ Ts(E),

‖f.(X1 · · ·Xs)‖ = q
s

q−1 ‖f‖∞.

(3) E[X]lin = E[t].X1 · · ·Xs.
(4) Blin

s (E) = Ts(E).X1 · · ·Xs.

Proof. Since for all 1 ≤ i ≤ s and all n ≥ 0, Hqn(Xi) is an Fq-linear polynomial
of degree qn, the family {Hqn1 (X1) · · ·Hqns (Xs), n1, . . . , ns ∈ N} forms a basis of
E[X]lin and the first assertion follows from Corollary 3.8. The relation tni .Xi =
Hqn(Xi) then implies the other assertions. �

As a consequence, the map f �→ f.X1 · · ·Xs defines, up to the normalisation
constant q

s
q−1 , an isometric immersion of Ts(E) into Bs(E). Writing A[X]lin =

A[X] ∩E[X]lin, we have the following lemma.
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Lemma 3.12. Let f ∈ E[t]. Then f.(X1 · · ·Xs) ∈ A[X]lin if, and only if, f ∈ A[t].
In particular, A[X]lin = A[t].X1 · · ·Xs.

Proof. It is clear that if f ∈ A[t], then f.(X1 · · ·Xs) ∈ A[X]. Note that, since

ti11 · · · tiss .HN1
(X1) · · ·HNs

(Xs) = Hqi1N1
(X1) · · ·HqisNs

(Xs),

a consequence of Corollary 3.8 is that Bs(E) is a torsion-free Ts(E)-module. Then,
the converse is an easy consequence of the fact that ti.Xi is a monic polynomial in
A[Xi]. �

4. Multivariable log-algebraicity

4.1. The log-algebraicity theorem. Let Z be another indeterminate over C∞.
We let τ act on C∞[X][[Z]] (or in the one variable case on C∞[X][[Z]]) via τ (F ) =
F q.

Let F ∈ A[X]; we form the series∑
d≥0

Zqd
∑

a∈A+,d

a ∗ F
a

∈ K[X][[Z]]

and take expC of this series which makes sense in K[X][[Z]]. Anderson’s log-
algebraicity theorem [And96, Theorem 3] for A then states the following.

Theorem 4.1 (Anderson). For all F ∈ A[X],

expC

⎛
⎝∑

d≥0

Zqd
∑

a∈A+,d

a ∗ F
a

⎞
⎠ ∈ A[X,Z].

The aim of this section is to give a multivariable generalisation of this result.
But first, let us give a simple proof of Theorem 4.1 in the case of F = X and Z = 1.

Example 4.2. Write X = expC Y , where Y = logC X ∈ K[[X]]. Then a ∗ X =

expC(aY ) =
∑

j≥0
aqjY qj

Dj
. Thus,

∑
d≥0

Zqd
∑

a∈A+,d

a ∗X
a

=
∑
d≥0

Zqd
∑

a∈A+,d

∑
j≥0

aq
j−1Y qj

Dj

=
∑
j≥0

Y qj

Dj

∑
d≥0

Zqd
∑

a∈A+,d

aq
j−1.

But one can evaluate at Z = 1 since (see [Gos96, Example 8.13.9])
∑

a∈A+,d
aq

j−1 =

0 for d � j, and moreover
∑

d≥0

∑
a∈A+,d

aq
j−1 = 0 for all j > 0 while this sum

equals 1 when j = 0. Therefore, we get∑
d≥0

∑
a∈A+,d

a ∗X
a

= Y = logC X.

Lemma 4.3. If F ∈ A[X] satisfies ‖F‖ ≤ 1, then F ∈ Fq.

Proof. If λ1, . . . , λs ∈ ΛC , then F (λ1, . . . , λs) is integral over A, and the condi-
tion ‖F‖ ≤ 1 implies that for all λ1, . . . , λs ∈ ΛC , F (λ1, . . . , λs) ∈ Fq. But Fq

is algebraically closed in K(λ1, . . . , λs)(see [Ros02, Corollary to Theorem 12.14]),
so that F (λ1, . . . , λs) ∈ Fq. Now, for any λ1, . . . , λs−1 ∈ ΛC , the polynomial
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1614 B. ANGLÈS, F. PELLARIN, AND F. TAVARES RIBEIRO

F (λ1, . . . , λs−1, Xs) takes at least one value infinitely many times. An easy induc-
tion on s then implies that F is constant, that is F ∈ Fq. �

We define an action of the multiplicative monoid A∗ over C∞[X][[Z]] by letting
for F (X, Z) ∈ C∞[X][[Z]] and a ∈ A∗:

a ∗ F = F
(
Ca(X1), . . . , Ca(Xs), Z

qdegθ a
)
.

Observe that expC gives rise to a well-defined endomorphism of C∞[X][[Z]] and
that

expC(K[X][[Z]]) ⊂ K[X][[Z]].

Let F ∈ C∞[X]; following Anderson, we set for k < 0:

Lk(F ) = Zk(F ) = 0

and for k ≥ 0,

Lk(F ) =
∑

a∈A+,k

a ∗ F
a

∈ C∞[X],

Zk(F ) =
∑
j≥0

Lk−j(F )q
j

Dj
∈ C∞[X].

Define, moreover,

l(F,Z) =
∑
a∈A+

a ∗ (FZ)

a
=

∑
k≥0

ZqkLk(F ) ∈ C∞[X][[Z]],

L(F,Z) = expC (l(F,Z)) =
∑
k≥0

Zk(F )Zqk ∈ C∞[X][[Z]].

Lemma 4.4. Let F ∈ C∞[X] and k ≥ 0.

(1) ‖Lk(F )‖ ≤ ‖F‖q−k,

(2) ‖Zk(F )‖ ≤ max0≤j≤k ‖F‖qjq−kqj .

Proof. This comes from the definitions and the fact that for all a ∈ A∗, ‖a ∗ F‖ =
‖F‖. �

We call a monic irreducible polynomial of A a prime of A. Let P be a prime of A.
Let F ∈ K[X] and let I be a finite subset of Ns such that F =

∑
i∈I αiX

i ∈ K[X],
Let vP be the P -adic valuation on K normalized by vP (P ) = 1, we set

vP (F ) = inf{vP (αi), i ∈ I}.
Recall that we have for F,G ∈ K[X], and λ ∈ K:

• vP (F +G) ≥ inf(vP (F ), vP (G)), vP (FG) = vP (F ) + vP (G),
• vp(λF ) = vP (λ) + vP (F ),
• vP (F ) = +∞ if and only if F = 0.

Lemma 4.5. Let P be a prime of A. Let F ∈ K[X] be such that vP (F ) ≥ 0. Then
for all k ≥ 0, vP (Zk(F )) ≥ 0.

Proof. The proof is essentially the same as [And96, Proposition 6]. We recall it
because some details will be needed in the proof of Proposition 4.18.
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Set A(P ) = {x ∈ K, vP (x) ≥ 0}. Let d be the degree of P , we have in A[τ ]:

CP ≡ τd mod PA[τ ]. We prove that if G =
∑

k≥0 GkZ
qk ∈ K[X][[Z]] satisfies

(CP − P∗)(G) ∈ PA(P )[X][[Z]],

then for all k ≥ 0, Gk ∈ A(P )[X]. Set Gk = 0 if k < 0 and write CP =
∑d

i=0[P ]iτ
i,

where [P ]0 = P , [P ]i ∈ PA if i < d and [P ]d = 1. We have (CP − P∗)(G) =∑
k≥0HkZ

qk with for all k ≥ 0,

Hk =
d∑

i=0

[P ]iτ
i(Gk−i)− P ∗Gk−d

= PGk +
d−1∑
i=1

[P ]iτ
i(Gk−i) + τd(Gk−d)− P ∗Gk−d ∈ PA(P )[X].

In particular, H0 = PG0 ∈ PA(P )[X] so that G0 ∈ A(P )[X]. Now, by induction on

k, if we know that Gk−i ∈ A(P )[X] for i = 1, . . . , d, then τd(Gk−d) − P ∗ Gk−d ∈
PA(P )[X] and we deduce that Gk ∈ PA(P )[X].

Defining l∗(F,Z) =
∑

a∈A+,P �a
a∗(FZ)

a ∈ A(P )[X][[Z]], we have

l(F,Z) =
∑

a∈A+,P |a

a ∗ (FZ)

a
+

∑
a∈A+,P �a

a ∗ (FZ)

a

=
∑
a∈A+

(aP ) ∗ (FZ)

aP
+ l∗(F,Z) =

1

P
(P ∗ l(F,Z)) + l∗(F,Z)

which yields the relation

Pl(F,Z)− P ∗ l(F,Z) = Pl∗(F,Z).

Note that the action ∗ commutes with τ , and thus with expC , thus if we apply
expC , we get

(CP − P∗) (L(F,Z)) = expC(Pl∗(F,Z)) =
∑
j≥0

P qj

Dj
l∗(F,Z)q

j

and since for all j ≥ 0, vP (
P qj

Dj
) ≥ 1, we get (CP − P∗) (L(F,Z)) ∈ PA(P )[X][[Z]]

whence L(F,Z) ∈ A(P )[X][[Z]]. �

We can now state and prove the multivariable log-algebraicity theorem.

Theorem 4.6. Let F ∈ A[X]. Then

L(F,Z) = expC

⎛
⎝ ∑

a∈A+

a ∗ (FZ)

a

⎞
⎠ ∈ A[X, Z].

Proof. By Lemma 4.5, for all k ≥ 0, Zk(F ) ∈ A[X]. If k0 ≥ 0 is the smallest integer
such that ‖F‖ ≤ qk0 , then by Lemma 4.4, for all k > k0, ‖Zk(F )‖ < 1. Therefore,
Lemma 4.3 shows that Zk0

(F ) ∈ Fq and for all k > k0, Zk(F ) = 0. �

The previous theorem can also be obtained as a consequence of a class formula
for a Drinfeld module on a Tate algebra (see [APTR16]).
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4.2. The special polynomials. If s ≥ 1 is an integer, we define the special poly-
nomial:

Ss = Ss(X, Z) = L(X1 · · ·Xs, Z) ∈ A[X, Z].

Let us recall that Anderson’s special polynomials are the one variable polyno-
mials Sm(X,Z) = L(Xm, Z). We recover Sm(X,Z) from Sm by specializing each
of the Xj , 1 ≤ j ≤ m, to X. We establish in this section some properties of the
polynomials Ss.

The following proposition is used to compute explicitly the polynomial L(F,Z).

Proposition 4.7.

(1) The polynomial Ss(X, Z) is Fq-linear with respect to each of the variables
X1, . . . , Xs, Z; in particular, Ss(X, Z) is divisible by X1 · · ·XsZ.

(2) If r ∈ {1, . . . , q − 1} satisfies s ≡ r mod q − 1, then

degZ Ss ≤ q
s−r
q−1 .

In particular, if 1 ≤ s ≤ q − 1, we have

Ss = X1 · · ·XsZ.

Proof. The first assertion is obvious. By Lemmas 4.3, 4.4 and 4.5, Zk(X1 · · ·Xs) ∈
Fq if k ≥ s

q−1 . But since X1 · · ·Xs divides Zk(X1 · · ·Xs), we get Zk(X1 · · ·Xs) = 0

for k ≥ s
q−1 . The last part comes from the congruence

Ss ≡ X1 · · ·XsZ mod Zq. �

Corollary 4.8. Let s, k1, . . . , ks ≥ 1 be integers such that
∑s

j=1 kj ≤ q − 1 and let
a1,1, . . . , a1,k1

, . . . , as,1, . . . , as,ks
∈ A. Set

G = (a1,1 ∗X1) · · · (a1,k1
∗X1) · · · (as,1 ∗Xs) · · · (as,ks

∗Xs) ∈ A[X].

Then

L(G,Z) = GZ.

Proof. It is sufficient to consider the case where kj = 1 for all 1 ≤ j ≤ s since we
obtain the general case by specializing variables. The action ∗j of A (defined in
(3.2)) satisfies for all a ∈ A, F ∈ A[X],

a ∗j (L(F,Z)) = L(a ∗j F,Z).

The corollary follows then from the relation L(X1 · · ·Xs, Z) = X1 · · ·XsZ since
s ≤ q − 1. �

Any Fq-linear combination F of polynomials of the above form still satisfies the
equality L(F,Z) = FZ. We can ask whether there are other polynomials satisfying
this relation. In fact, Proposition 4.19 below assures that if L(F,Z) = FZ, then
F ∈ A[X], so we can ask more generally the following question.

Question 4.9. Describe the set of the F ∈ A[X] such that L(F,Z) = FZ.

Lemma 4.10. Let s ≥ 1. Then Ss(X, 1) = 0 if, and only if, s ≥ 2 and s ≡ 1
mod q − 1.
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Proof. First, suppose s ≥ 2 and s ≡ 1 mod q − 1.
Let a ∈ A. Recall (see [AT90, Section 3.4]) that from the relation Ca(X) =

expC(a logC(X)), we deduce that we can write

Ca(X) =

degθ a∑
k=0

ψk(a)X
qk ,

where ψk(x) ∈ A[x] is an Fq-linear polynomial of degree qk, which vanishes exactly
at the polynomials x ∈ A of degree less than k. Thus

a ∗ (X1 · · ·Xs) =
∑

k1,...,ks≥0

ψk1
(a) · · ·ψks

(a)Xqk1

1 · · ·Xqks

s ,

where the right-hand side is a finite sum.
We deduce that Ss(X, Z) is equal to

∑
n≥0

Zqn
n∑

d=0

D−1
n−d

∑
k1,...,ks≥0

∑
a∈A+,d

(
ψk1

(a) · · ·ψks
(a)

a

)qn−d

Xqk1+n−d

1 · · ·Xqks+n−d

s

and by Theorem 4.6, this is a polynomial. Now, note that
∑

a∈A+,d

ψk1
(a)···ψks (a)

a

is a linear combination (with coefficients depending only on k1, . . . , ks, r1, . . . , rs
and independent on d) of sums of the form

∑
a∈A+,d

aq
r1+···+qrs−1 with, for all

1 ≤ j ≤ s, 0 ≤ rj ≤ kj . According to [Gos96, Lemma 8.8.1], this sum vanishes

for d > qr1+···+qrs−1
q−1 . Thus the coefficient of Xqm1

1 · · ·Xqms

s in Ss(X, 1) is a linear

combination of (finite) sums of the form
∑

a∈A+
aq

d(qr1+···+qrs−1). But since s ≡ 1

mod q−1, qd(qr1+· · ·+qrs−1)≡0 mod q−1, and since s≥2, qd(qr1 + · · ·+ qrs − 1)

�= 0. Thus, by [Gos96, Example 8.13.9], all the sums
∑

a∈A+
aq

d(qr1+···+qrs−1)

vanish, that is, Ss(X, 1) = 0.
Conversely, the coefficient of X1 · · ·Xs in Ss(X, 1) is

∑
a∈A+

as−1 which is con-

gruent to 1 modulo θq − θ if s = 1 or s �≡ 1 mod q − 1, so Ss(X, 1) does not
vanish. �

Remark 4.11. Thakur used similar arguments in [Tha04, §8.10] to obtain explicit
log-algebraicity formulas.

Example 4.12. We already know that Ss(X, Z) = X1 · · ·XsZ if 1 ≤ s ≤ q − 1.
Using Proposition 4.7 and Lemma 4.10, we easily see that

Sq(X, Z) = X1 · · ·XqZ −X1 · · ·XqZ
q.

For q ≥ 3, a computation leads to

Sq+1(X, Z) = X1 · · ·Xq+1Z −X1 · · ·Xq+1(X
q−1
1 + · · ·+Xq−1

q+1 )Z
q.

Lemma 4.13. Let s ≥ 1,

(1) for all integer k ≥ s
q−1 , the sum

∑
a∈A+,k

a(t1) · · · a(ts−1) vanishes, so that

L(0, s− 1) =
∑

k≥0

∑
a∈A+,k

a(t1) · · · a(ts−1) ∈ Fq[t],

(2) Ss(X, 1) ≡ (L(0, s− 1).(X1 · · ·Xs−1))Xs mod Xq
s .

Proof. For all k ≥ 0, Lk(X1 · · ·Xs) =
∑

a∈A+,k

a∗(X1···Xs)
a can be viewed as a

polynomial in Xs, with no constant term, and since Ca(Xs) ≡ aXs mod Xq
s , we
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have

Zk(X1 · · ·Xs) ≡ Lk(X1 · · ·Xs) ≡
∑

a∈A+,k

a ∗ (X1 · · ·Xs)

a
mod Xq

s

≡
∑

a∈A+,k

a ∗ (X1 · · ·Xs−1)
aXs

a
mod Xq

s

≡ Xs

∑
a∈A+,k

a ∗ (X1 · · ·Xs−1) mod Xq
s .

But Proposition 4.7 tells that Zk(X1 · · ·Xs) = 0 if k ≥ s
q−1 . Now note that∑

a∈A+,k

a ∗ (X1 · · ·Xs−1) =
∑

a∈A+,k

a(t1) · · · a(ts−1).(X1 · · ·Xs−1).

We deduce then the first point from Lemma 3.11 and the evaluation at Z = 1,

L(0, s− 1).(X1 · · ·Xs−1)Xs ≡
∑
k≥0

Zk(X1 · · ·Xs) ≡ Ss(X, 1) mod Xq
s

gives the second point. �

Note that the first point of the above lemma is also a consequence of [Gos96,
Lemma 8.8.1] (see also [AP15, Lemma 30] and [AP14, Lemma 4]).

Lemma 4.14. Let s ≥ 1. If there exists b, c ∈ A and r ∈ XsC∞[X] such that

Cb(r) = Cc(Ss(X, 1)),

then b divides c in A and r = C c
b
(Ss(X, 1)).

Proof. We first prove that r has coefficients in A. We will use the fact that
expC and logC define reciprocal bijections of XsK[X1, . . . , Xs−1][[Xs]] satisfying
for all F ∈ XsK[X1, . . . , Xs−1][[Xs]] and a ∈ A, logC(Ca(F )) = a logC(F ) and
expC(aF ) = Ca(expC(F )). Thus Cb(r) = expC(b logC(r)) and Cc(Ss(X, 1)) =
expC(c logC(Ss(X, 1))). We deduce that r = expC(

c
bSs(X, 1)) ∈ XsK[X]. But

Cb(X) is monic up to a unit in F
∗
q , and A[X] is integrally closed. Thus the fact

that Cb(r) ∈ A[X] implies that r ∈ A[X].
Write now r ≡ Xsr1 mod X2

s with r1 ∈ A[X1, . . . , Xs−1]. Then Cb(r) ≡ Xsbr1
mod X2

s and by Lemma 4.13,

Cc(Ss(X, 1)) ≡ cXs (L(0, s− 1).(X1 · · ·Xs−1)) mod X2
s ,

thus r1 = c
bL(0, s − 1).(X1 · · ·Xs−1). Since r1 ∈ A[X1, . . . , Xs−1], Lemma 3.12

assures that c
bL(0, s − 1) ∈ A[t1, . . . , ts−1]. But L(0, s − 1) ∈ Fq[t1, . . . , ts−1]. We

obtain that b divides c in A and that r = expC(
c
bSs(X, 1)) = C c

b
(Ss(X, 1)). �

Set R =
⋃

s≥1 C∞[X1, . . . , Xs] and let F be the sub-A-module of C(R) generated

by the polynomials Ss(X1, . . . , Xs, 1), s ≥ 1. Set√
F = {r ∈ R, ∃a ∈ A∗, Ca(r) ∈ F} .

Theorem 4.15. √
F = F+ C(ΛC).
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Proof. The inclusion F+ C(ΛC) ⊂
√
F is clear.

Let r ∈
√
F. Then there exists n ≥ 1 such that r ∈ C∞[X1, . . . , Xn] and there

exist a ∈ A∗, a1, . . . , an ∈ A such that

(4.1) Ca(r) =
n∑

m=1

Cam
(Sm(X1, . . . , Xm, 1)).

We now prove by induction on n ≥ 1 that r ∈ F+ C(ΛC).
In the case n = 1, equation (4.1) reduces to

Ca(r) = Cc(S1(X1, 1))

with c ∈ A and r ∈ C∞[X1]. The constant term of r is then in C(ΛC) and we can
therefore assume r ∈ X1C∞[X1]. The result in this case is then just the one of
Lemma 4.14.

We suppose now n > 1 and that the result is proved for all k ≤ n − 1. We
can assume that an �= 0 and Sn(X1, . . . , Xn, 1) �= 0, that is, n �≡ 1 mod q − 1.

Write r =
∑d

i=0 ri(X1, . . . , Xn−1)X
i
n, with d > 0. Then equation (4.1) evaluated

at Xn = 0 yields

Ca(r0(X1, . . . , Xn−1)) =

n−1∑
m=1

Cam
Sm(X1, . . . , Xm, 1)

and the induction hypothesis assures that r0(X1, . . . , Xn−1) ∈ F + C(ΛC). Thus
we can assume r0 = 0 and, for some c ∈ A,

Ca(r) = Cc(Sn(X1, . . . , Xn, 1)).

Again, we are reduced to the result proved in Lemma 4.14. �

4.3. Converses of the log-algebraicity theorem. Let A be the integral closure
of A in K. The log-algebraicity theorem asserts that if F ∈ A[X], then L(F,Z) ∈
A[X, Z]. We will prove in this section conversely that, if F ∈ C∞[X] and L(F,Z)
belongs to C∞[X, Z] or to A[X][[Z]]⊗A K, then necessarily, F ∈ A[X].

If P is a prime of A, A(P ) denotes the ring of elements of K that are P -integral.

Lemma 4.16. Let x ∈ A such that for infinitely many primes P ,

xqd ≡ x (mod P p),

where d is the degree of P. Then x ∈ Ap.

Proof. Let F ∈ A \ Ap, then F ′ �= 0, where F ′ denotes the derivative of F with

respect to the variable θ. Then F qd − F ≡ (θq
d − θ)F ′ mod P 2, so that for all

primes P not dividing F ′, vP (F
qd − F ) = 1. �

Lemma 4.17.

(1) Let α ∈ A such that for all but finitely many primes P of A,

αqd ≡ α (mod PA),

where d is the degree of P. Then α ∈ A.
(2) Let α ∈ K such that for all but finitely many primes P of A,

αqd ≡ α (mod PA(P )),

where d is the degree of P. Then α ∈ K.
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Proof.

(1) First we assume that α is separable over K. Set F = K(α) and let OF be
the integral closure of A in F. For a prime P not dividing the discriminant
of A[α], we have:

OF ⊗A AP = A[α]⊗A AP ,

where AP is the P -adic completion of A. Therefore, for all but finitely many
primes P, we have:

∀x ∈ OF , x
qd ≡ x (mod POF ).

This implies that all but finitely many primes P of A are totally split in F.
By the Čebotarev density theorem (see for example [Neu99, Chapter VII,
Section 13]), this implies that F = K and thus α ∈ A.

In general there exists a minimal integer m ≥ 0 such that αpm

is sepa-
rable over K. If m ≥ 1, then x = αpm ∈ A and for all but finitely many
primes P of A:

xqd ≡ x (mod P pm

A).

Therefore αpm−1 ∈ A by Lemma 4.16. We deduce that α ∈ A.
(2) Let b ∈ A \ {0} such that x = bα ∈ A. Then by the first assertion of the

lemma, x ∈ A. Therefore α ∈ K. �

Proposition 4.18. For all s ≥ 1, if X = (X1, . . . , Xs), then{
F ∈ C∞[X];L(F,Z) ∈ A[X][[Z]]⊗A K

}
= A[X].

Proof. Let F ∈ C∞[X] such that L(F,Z) ∈ A[X][[Z]] ⊗A K, i.e., there exists
b ∈ A \ {0} such that bL(F,Z) ∈ A[X][[Z]]. Since L(F,Z) ≡ FZ (mod Zq), we get
F ∈ K[X]. Let P be a prime of A of degree d not dividing b. Then by the proof of
Lemma 4.5,

L(F,Z) ∈ A(P )[X][[Z]] and (CP − P∗) (L(F,Z)) ∈ PA(P )[X][[Z]]

and since CP ≡ τd mod PA[τ ], the coefficient of Zqd in (CP − P∗) (L(F,Z)) is

congruent to F qd − P ∗ F mod PA(P )[X][[Z]]. Therefore

F (Xqd

1 , . . . , Xqd

s ) ≡ F qd mod PA(P )[X].

Thus, by Lemma 4.17, we get F ∈ K[X]. Now select c ∈ A \ {0} such that cF ∈
A[X]. Then by Theorem 4.6:

Cc(L(F,Z)) ∈ A[X1, . . . , Xs, Z].

Therefore L(F,Z) ∈ A[X][[Z]] ⊗A K is integral over A[X][[Z]]. But A[X][[Z]] is
integrally closed (see[Bou64, Chapitre 5, Proposition 14]) thus L(F,Z) ∈ A[X][[Z]]
and this implies that F ∈ A[X] since L(F,Z) ≡ FZ mod Zq. We then have the
direct inclusion, the equality follows by Theorem 4.6. �

We remark that if we only suppose that L(F,Z) ∈ K[X][[Z]], then the result no
longer holds, for instance F = X

θ ∈ K[X]\A[X] and L(F,Z) ∈ K[X][[Z]]. Note

that the above proposition implies that L−1(K[X, Z]) = A[X]. In fact we have:

Proposition 4.19.

{F ∈ C∞[X];L(F,Z) ∈ C∞[X, Z]} = A[X].
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Proof. Recall that if i = (i1, . . . , is) ∈ Ns, then Xi = Xi1
1 · · ·Xis

s . If F ∈ C∞[X],
write F =

∑
i αiX

i and define deg(F ) ∈ Ns
+ ∪ {±∞} to be the maximum for

the lexicographic ordering of the exponents i such that αi �= 0. Now, if F =∑
k≥1 FkZ

k ∈ ZC∞[X][[Z]], where for all k, Fk ∈ C∞[X], then we define the

relative degree of F , rdeg(F ) ∈ Rs
+ ∪ {±∞}, to be

rdeg(F ) =

⎧⎨
⎩

−∞ if F = 0,

sup
k≥1

(
deg(Fk)

k

)
∈ R

s
+ ∪ {+∞} otherwise,

where the supremum is still relative to the lexicographic ordering on R
s
+ and is well

defined in Rs
+∪{+∞}. Note the following properties of rdeg: if F,G ∈ ZC∞[X][[Z]]

and ψ is an Fq-linear power series in C∞[[T ]], then

• rdeg(F +G) ≤ max(rdeg(F ), rdeg(G)) with equality if rdeg(F ) �= rdeg(G),
• rdeg(F q) = rdeg(F ),
• rdeg(ψ(F )) ≤ rdeg(F ),
• if ψ �= 0, for k ≥ 1 and i ∈ Ns, rdeg(ψ(XiZk)) = i

k ,

• if F =
∑

k≥1 FkZ
k is such that there exists infinitely many indices kj such

that deg(Fkj
) = kj rdeg(F ) (in particular F /∈ A[X, Z]) and rdeg(F ) >

rdeg(G), then F +G /∈ A[X, Z].

For the last property, if we write G =
∑

k≥1GkZ
k, then F+G =

∑
k≥1(Fk+Gk)Z

k

with for all j, deg(Fkj
+ Gkj

) = kj rdeg(F ) so that Fkj
+ Gkj

�= 0 and F + G /∈
A[X, Z].

Now let i ∈ N
s. For k ≥ 0, we have

Lk(X
i) =

Xqki

lk
+Gk,i,

where Gk,i ∈ K[X] satisfies deg(Gk,i) < qki. Thus

(4.2) L(Xi, Z) = XiZ + Fi,

where Fi ∈ Zq
C∞[X, Z] has relative degree rdeg(Fi) < i.

Fix α ∈ C∞; then

Cα(T ) = expC(α logC(T )) ∈ C∞[[T ]]

is an Fq-linear power series, and Cα(T ) ∈ C∞[T ] if and only if α ∈ A (see [Gos96,
Chapter 3]).

Now let F ∈ C∞[X]\A[X]; we want to prove that L(F,Z) /∈ C∞[X, Z]. By
Theorem 4.6, we can suppose F =

∑
i αiX

i with for all i such that αi �= 0, αi /∈ A.
Then equation (4.2) gives

L(F,Z) =
∑
i

Cαi

(
L(Xi, Z)

)
=

∑
i

Cαi

(
XiZ

)
+ Cαi

(Fi) .

If i0 = deg(F ), then we deduce that

L(F,Z) = Cαi0

(
Xi0Z

)
+G

with rdeg(G) < i0. Since Cαi0
(Xi0Z) /∈ C∞[X, Z] has infinitely many terms of

relative degree i0, we have L(F,Z) /∈ C∞[X, Z]. �
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5. Multivariable L-functions

5.1. Frobenius actions. Let K∞ ⊆ E ⊆ C∞ be a field complete with respect to
| · |∞. Observe that if n ≥ 0 and 1 ≤ i ≤ s, then

Hqn(Xi)
q = Cθn(Xi)

q = Cθn+1(Xi)− θCθn(Xi) = (ti − θ).Hqn(Xi).

Thus we define the following action of τ on Ts(E):

∀f =
∑
i

fit
i ∈ Ts(E), τ (f) = (t1 − θ) · · · (ts − θ)

∑
i

fq
i t

i

and we get for all f ∈ Ts(E) the equality in Blin
s (E):

τ (f.(X1 · · ·Xs)) = τ (f).(X1 · · ·Xs).

We then define on Ts(E) the operator ϕ which will be a Frobenius acting only on
coefficients, namely:

∀f =
∑
i

fit
i ∈ Ts(E), ϕ(f) =

∑
i

fq
i t

i,

so that on Ts(E), we have τ = (t1 − θ) · · · (ts − θ)ϕ. Moreover, for d ≥ 1, if we

define, bd(t) = (t− θ)(t− θq) · · · (t− θq
d−1

), then for all f ∈ Ts(E),

τd(f) = bd(t1) · · · bd(ts)ϕd(f).

We also set b0(t) = 1 so that the above relation still holds for d = 0. Note that for
all f, g ∈ Ts(E), and d ≥ 0,

τd(fg) = τd(f)ϕd(g).

Observe moreover that

∀f ∈ Ts(E), ∀d ≥ 0, ‖ϕd(f)‖∞ = ‖f‖qd∞ and ‖τd(f)‖∞ = qs
qd−1
q−1 ‖f‖qd∞.

We deduce that expC =
∑

j≥0
1
Dj

τ j is defined on Ts(E) and that for all f ∈ Ts(E),

we have in B
lin
s (E):

(5.1) expC(f.(X1 · · ·Xs)) = expC(f).(X1 · · ·Xs).

We now extend the action of E[t] on E[X] to an action of E[t][[z]] on E[X][[Z]]
via ⎛

⎝∑
k≥0

fk(t)z
k

⎞
⎠ .

⎛
⎝∑

n≥0

Fn(X)Zn

⎞
⎠ =

∑
k≥0

∑
n≥0

(fk(t).Fn(X))Znqk

and we let τ act on Z via τ (Z) = Zq. Since τ (Z) = z.Z, we define on E[t][[z]] the
operator τz by, for all f =

∑
k≥0

∑
i fit

izk ∈ E[t][[z]],

τz(f) = z(t1 − θ) · · · (ts − θ)
∑
k≥0

∑
i

fq
i t

izk =
∑
k≥0

zk+1τ

(∑
i

fq
i t

i

)
.

Thus if we extend ϕ by

∀f =
∑
k≥0

∑
i

fit
izk ∈ E[t][[z]], ϕ(f) =

∑
k≥0

∑
i

fq
i t

izk,

we get for all f =
∑

k≥0 fkz
k ∈ E[t][[z]] and d ≥ 0, τdz (f) = zdbd(t1) · · · bd(ts)ϕd(f).

By construction, if f = E[t][[z]], then f.(X1 · · ·XsZ) ∈ E[X][[Z]] and for all d ≥ 0,

τd(f.(X1 · · ·XsZ)) = τdz (f).(X1 · · ·XsZ).
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We then have an operator expC =
∑

j≥0
1
Dj

τ j on ZE[X][[Z]] and an operator

expz =
∑

j≥0
1
Dj

τ jz on E[t][[z]] such that for all f ∈ E[t][[z]],

(5.2) expC(f.(X1 · · ·XsZ)) = expz(f).(X1 · · ·XsZ).

A similar property holds for logC =
∑

j≥0
1
lj
τ j and logz =

∑
j≥0

1
lj
τ jz :

(5.3) logC(f.(X1 · · ·XsZ)) = logz(f).(X1 · · ·XsZ),

where logz and expz define the reciprocal bijection of E[t][[z]].
We now state compatibility results for evaluations at Z = 1 and z = 1.

Lemma 5.1. Let F (X, Z) =
∑

n≥0 Fn(X)Zn ∈ E[X][[Z]] with Fn(X) ∈ E[X] and

limn→∞ ‖Fn‖ = 0 for all n ≥ 0, and let f =
∑

k≥0 fkz
k ∈ E[t][[z]] with fk ∈ E[t]

and limk→∞ ‖fk‖∞ = 0 for all k ≥ 0. Then F and f.F converge in Bs(E) at Z = 1,
f converges in Ts(E) at z = 1, and we have the following equality in Bs(E):

(f.F (X, Z))|Z=1 = f(t, 1).F (X, 1).

Proof. The convergence of F at Z = 1 and of f at z = 1 are obvious, the convergence
of f.F follows from the equality ‖fk.Fn‖ = ‖fk‖∞‖Fn‖ from Lemma 3.9. Finally,
both sides of the equality are equal to

∑
k≥0

∑
n≥0 fk.Fn. �

Lemma 5.2. Let η =
∑

n≥0 ηnτ
n
z ∈ E[[τz]] and η1 =

∑
n≥0 ηnτ

n ∈ E[[τ ]], let f =∑
k≥0 fkz

k ∈ E[t][[z]] with limk→∞ ‖fk‖∞ = 0, write M = supk≥0 ‖fk‖∞ and sup-

pose limn→∞ |ηn|(q
s

q−1M)q
n

= 0; finally write g(t, z)=η(f(t, z))=
∑

n≥0 ηnτ
n
z (f) ∈

E[t][[z]]. Then f and g converge in Ts(E) at z = 1 and we have the following equal-
ity in Ts(E):

η1(f(t, 1)) = g(t, 1).

Proof. The convergence of f is obvious. Both sides of the above equality are easily
seen to be equal to ∑

n≥0,k≥0

ηnτ
n(fk(t))

which is the sum of a summable family in Ts(E). This gives at once the convergence
of both sides of the equality and the desired identity. �

Now define

E[X][[Z]]lin = {F ∈ E[X][[Z]];F is linear with respect to each of X1, . . . , Xs, Z} .

Lemma 5.3.

(1) The map {
E[t][[z]] → E[X][[Z]],

f �→ f.(X1 · · ·XsZ)

is injective with image E[X][[Z]]lin,
(2) f ∈ E[t][[z]] satisfies f.(X1 · · ·XsZ) ∈ A[X][Z] if, and only if, f ∈ A[t][z].

Proof. The first point is an immediate consequence of Lemma 3.11 and the second
one a consequence of Lemma 3.12. �
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5.2. Anderson-Stark units. We define for all integers N ∈ Z, s ≥ 1:

L(N, s, z) =
∑
d≥0

zd
∑

a∈A+,d

a(t1) . . . a(ts)

aN
∈ K[t][[z]]

and

L(N, s) =
∑
d≥0

∑
a∈A+,d

a(t1) . . . a(ts)

aN
∈ Ts(K∞),

where L(N, s, z) ∈ A[t, z] if N ≤ 0 because of Lemma 4.13. We also define the
operator Γ:

∀F ∈ Bs(C∞), Γ(F ) = L(1, s).F ∈ Bs(C∞).

We will refer to Γ as to Anderson’s operator. Note that L(1, s) has norm 1, so that

Γ is an isometry of Bs(C∞), in particular, ‖Γ(X1 · · ·Xs)‖ = q
s

q−1 . We now define

σs(t, z) = expz(L(1, s, z)).

We then have the following.

Proposition 5.4.

(1) L(1, s, z) = logz(σs(t, z)),
(2) L(1, s, z).X1 · · ·XsZ = L(X1 · · ·Xs, Z) = logC(Ss(X, Z)),
(3) σs(t, z).X1 · · ·XsZ = Ss(X, Z) and σs(t, z) ∈ A[t, z].

Proof. The first point and equality L(1, s, z).X1 · · ·XsZ = L(X1 · · ·Xs, Z) are
clear. The equality L(1, s, z).X1 · · ·XsZ = logC(Ss(X, Z)) comes from equation
(5.3). Equation (5.2) shows that σs(t, z).X1 · · ·XsZ = Ss(X, Z) and the fact that
σs(t, z) ∈ A[t, z] is a consequence of Lemma 5.3 and Theorem 4.6. �

We call the special polynomial σs(t, z) the Anderson-Stark unit of level s.
The evaluation at Z = 1 leads to the following.

Proposition 5.5.

(1) expC(Γ(X1 · · ·Xs)) = Ss(X, 1),
(2) if s < q, then Γ(X1 · · ·Xs) = logC(X1 · · ·Xs).

Proof. Lemma 5.2 shows that σs(t, 1) = expC(L(1, s)), and equation (5.1) yields
to the first point. For the second point, we remark that if s < q, then Ss(X, Z) =
X1 · · ·XsZ so that

L(X1 · · ·Xs, Z) = logC(Ss(X, Z)) =
∑
n≥0

(X1 · · ·XsZ)q
n

ln

but ‖X1 · · ·Xs‖ = q
s

q−1 < q
q

q−1 so that

Γ(X1 · · ·Xs) =
∑
n≥0

(X1 · · ·Xs)
qn

ln
= logC(X1 · · ·Xs)

converges in Bs(K∞). �
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We can recover properties of σs from the ones of Ss.

Proposition 5.6.

(1) degz(σs(t, z)) ≤ s−1
q−1 ,

(2) z − 1 divides σs(t, z) if, and only if, s ≡ 1 mod q − 1 and s > 1.

Proof. The first point comes from Proposition 4.7 and the second one from Lemma
4.10. �

Note that in practice, formulas for σs are more manageable and easier to compute
than the formulas for Ss. Compare the following example with Example 4.12.

Example 5.7. If 1 ≤ s ≤ q − 1, then σs = 1. The next two polynomials are:
σq = 1− z and σq+1 = 1− (t1 − θ) · · · (tq+1 − θ)z.

In the spirit of Lemma 4.13, we can recover the values L(N, s, z) for N ≤ 0 from
the polynomials Ss(X, Z):

Theorem 5.8. For all N ≥ 0 and s ≥ 1,

L(−N, s, z).(X1 · · ·Xs) =
d

dXs+1
· · · d

dXs+N+1
Ss+N+1(X1, . . . , Xs+N+1, Z).

Proof. Since d
dX (a ∗X) = a, we have

d

dXs+1
· · · d

dXs+N+1
Zk(X1 · · ·Xs+N+1) =

∑
a∈A+,k

a ∗ (X1 · · ·Xs)a
N

which gives the result. �

6. Special L-values

The purpose of this section is to express the series L(N, s, z) as sums of poly-
logarithms. The idea here is to use the fact that if we evaluate tn+1, . . . , ts at θ in
ϕr(L(1, s, z)) = L(qr, s, z), we just obtain L(qr + n− s, n, z).

If P is a polynomial in a variable among t, t1, . . . , or ts, we will write Pϕ for
ϕ(P ).

Lemma 6.1. For all integers k ≥ 0 and r ≥ 0, we have:

(1) bk+r(t) = ϕk(br(t))bk(t) = ϕr(bk(t))br(t),

(2) if r ≥ 1, ϕr(bk(t)) = ϕk(br(t))
bk(t)
br(t)

= ϕk(bϕr−1(t))
bϕk (t)

bϕr−1(t)
,

(3) bϕk (θ) = lk.

Proof. The verification of these identities is left to the reader. �

We start from the identity of the first point of Proposition 5.4, and we write
σs(t, z) =

∑m
i=0 σs,i(t)z

i:

L(1, s, z) = logz(σs(t, z))

=
∑
k≥0

1

lk
τkz (σs(t, z)) =

∑
k≥0

m∑
i=0

zk+i

lk
τk(σs,i(t))

=
∑
k≥0

m∑
i=0

zk+i

lk
bk(t1) · · · bk(ts)ϕk(σs,i(t)).
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If we apply ϕr on both sides, we get by Lemma 6.1:

L(qr, s, z) =
∑
k≥0

m∑
i=0

zk+i

lq
r

k

ϕr(bk(t1) · · · bk(ts))ϕk+r(σs,i(t))

=
m∑
i=0

∑
k≥0

zk+i

lq
r

k

bk(t1) · · · bk(tn)bϕk (tn+1) · · · bϕk (ts)
br(t1) · · · br(tn).bϕr−1(tn+1) · · · bϕr−1(ts)

ϕk(Us,i),

where Us,i = br(t1) · · · br(tn)bϕr−1(tn+1) · · · bϕr−1(ts)ϕ
r(σs,i(t)).

Write Us,i =
∑

in+1,...,is
fin+1,...,ist

in+1

n+1 · · · tiss with fin+1,...,is ∈ A[t1, . . . , tn] and

for j ≥ 0, gi,j =
∑

in+1+···+is=j fin+1,...,is so that Us,i evaluated at tn+1 = · · · = ts =

θ is the polynomial
∑

j≥0 θ
jgi,j . We now evaluate L(qr, s, z) at tn+1 = · · · = ts = θ

and we write N = qr − s+ n:

L(N,n, z) =
∑
j≥0

θj
m∑
i=0

∑
k≥0

zk+i

lNk ls−n
r−1

bk(t1) · · · bk(tn)
br(t1) · · · br(tn)

ϕk(gi,j).

Now write logN,z =
∑

k≥0 z
k bk(t1)···bk(tn)

lNk
ϕk =

∑
k≥0

1
lNk

τkz . Then

L(N,n, z) =
1

ls−n
r−1 br(t1) · · · br(tn)

∑
j≥0

θj logN,z

(
m∑
i=0

zigi,j

)
.

We have proved the next theorem.

Theorem 6.2. For all integers N ∈ Z, n ≥ 1 and r ≥ 1 such that qr ≥ N , there
exist an integer d ≥ 0, and for 0 ≤ j ≤ d, polynomials hj ∈ A[t1, . . . , ts, z] such
that

L(N,n, z) =
1

lq
r−N

r−1 br(t1) · · · br(tn)

d∑
j=0

θj logN,z(hj).

Now denote for N ∈ Z, logN =
∑

k≥0
1
lNk

τk the N th Carlitz polylogarithm.

Corollary 6.3. For all integers N ∈ Z, n ≥ 1 and r ≥ 1 such that qr ≥ N , there
exist an integer d ≥ 0, and for 0 ≤ j ≤ d, polynomials Hj ∈ A[X1, . . . , Xn, Z]lin

such that

L(N,n, z).
(
Xqr

1 · · ·Xqr

n Z
)
=

1

lq
r−N

r−1

d∑
j=0

θj logN (Hj).
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Boulevard Maréchal Juin, B.P. 5186, 14032 Caen Cedex, France

E-mail address: floric.tavares-ribeiro@unicaen.fr

Licensed to University Claude Bernard Lyon. Prepared on Thu Feb 15 10:47:47 EST 2018 for download from IP 161.3.48.216.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=3338012
http://www.ams.org/mathscinet-getitem?mr=3453387
http://www.ams.org/mathscinet-getitem?mr=1059938
http://www.ams.org/mathscinet-getitem?mr=0194450
http://www.ams.org/mathscinet-getitem?mr=2014891
http://www.ams.org/mathscinet-getitem?mr=1423131
http://www.ams.org/mathscinet-getitem?mr=1697859
http://www.ams.org/mathscinet-getitem?mr=2979866
http://www.ams.org/mathscinet-getitem?mr=3267579
http://www.ams.org/mathscinet-getitem?mr=3238413
http://www.ams.org/mathscinet-getitem?mr=1876657
http://www.ams.org/mathscinet-getitem?mr=2091265

	1. Introduction
	2. Notation
	3. Some functional analysis
	4. Multivariable log-algebraicity
	5. Multivariable 𝐿-functions
	6. Special 𝐿-values
	Acknowledgment
	References

