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ANDERSON-STARK UNITS FOR F,[6]

BRUNO ANGLES, FEDERICO PELLARIN, AND FLORIC TAVARES RIBEIRO

ABSTRACT. We investigate the arithmetic of special values of a new class of
L-functions recently introduced by the second author. We prove that these spe-
cial values are encoded in some particular polynomials which we call Anderson-
Stark units. We then use these Anderson-Stark units to prove that L-functions
can be expressed as sums of polylogarithms.
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1. INTRODUCTION

A major theme in the arithmetic theory of global function fields is the study
of the arithmetic properties of special values of D. Goss L-functions. A typical
example of such a function is given by the Carlitz-Goss zeta function (4(.), where
A =T,[f] is the polynomial ring in the variable 6 with coefficients in a finite field
IF,. Its special values are given by the following formula:

1
Yn > 1, Ca(n) = Z P € Koo,

n
a€Ay

where A is the set of monic elements in A and Koo = F(($)). In 1990, G. Anderson
and D. Thakur proved the following fundamental result (JAT90, Theorem 3.8.3]):
for n > 1, there exists z, € Lie(C®™)(K) such that exp,,(z,) € C®"(A), and

LnCa(n) = en(zn),
where exp,, is the exponential map associated to the nth tensor power of the Carlitz
module C®" e,,(z,) is the last coordinate of z, € K2, and T',, € A is the Carlitz
factorial (we refer the reader to [BP] for the basic properties of C®™). This result
has recently been generalized by M. A. Papanikolas in [Pap] who proved a log-

algebraicity theorem for C®™ in the spirit of the work of G. Anderson in [And96].
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M. A. Papanikolas applies this log-algebraicity theorem to obtain remarkable ex-
plicit formulas for a large class of special values of D. Goss Dirichlet L-functions.
Observe that the t-motive associated to the t-module C®™ can be understood as
the following object: (A[t],7), where ¢ is an indeterminate over K = F (), and
T : Alt] — A[t] is the F,[t]-linear map defined as follows:

T at® | =t—0)" [ D altt |,

k>0 k>0
where a;, € A.
Let s > 1 be an integer and let ¢1,...,ts be s indeterminates over K. Consider
the following object: (A[ty,...,ts],7) where 7 : A[ty,...,ts] = Alt1,...,ts] is the
morphism of F,[t1,...,ts]-modules, semi-linearl]] with respect to 79 : A = A, x —

x4, given by:

T D ettt | =00 -0 | Y el et ],

1,0yis EN 1,0 EN
where a;, . ;, € A. Note that we have a natural morphism of Fg[tq,. .., ts]-algebras
61 Altr, ...t = Bnde,, o jAlt, ]

given by ¢g = 0 4+ 7. Let Ts(K~) be the Tate algebra in the variables tq,...,ts,
with coefficients in K,,. Then 7 extends naturally to a continuous morphism
of Fylt1,...,ts]-modules on Ts(Ko). The second author introduced (see [Pell2],
[Per14b), [Perl4al, [AP15]) for integers N € Z and s > 0 the L-series

L(N, 5) _ Z a(tl)aN a(ts),
acAy

which converges in Ts(K,). If z is another indeterminate, we also set

L(N,s,2)=Y 20 LN“(” € Klt1, ..., t][[2]).

a
d>0 a€Ay
degy a=d

These series converge at z = 1 in Ts(K ) and we have the equality
L(N,s) = L(N,s,2) |,=1 .

Our main goal in this article is the study of the arithmetic properties of the
L(N,s,z), N € Z. Let us give a brief description of our principal results.
We let 7 act on K|[tq,...,ts][[2]] by

O fe®) =D T2,
k>0 k>0
where fi, € K[t1,...,ts]. The exponential function associated to ¢ is defined by

1 .
v =Y 5
i>0

I'We signal here to avoid confusion that in the rest of the article 7 will denote more generally
a morphism semi-linear with respect to 7.
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ANDERSON-STARK UNITS FOR F,[6] 1605

where Dy =1, and for i > 1, D; = (9‘7 —6)D]_,. We also set
> 5
exp, , = =T
i>0 D;

A formulation of the s-variable version of Anderson’s log-algebraicity theorem is
(see Theorem [L6] and Proposition [54))

equﬁ,z(l’(lv 5, Z)) € A[tlu oo ts, Z]
from which we also deduce that, in Ts(Ko),
expy(L(1,8)) € Alty, ..., ts].

This s-variable version has been proved in [APTRI6] as a consequence of a class
formula. We give here a more direct proof, close to Anderson’s original proof in
[And96].

The special elements exp, . (L(1,s,2)) and expy(L(1,s)) play the role of Stark
units in our context. Let us give an example, for 1 < s < ¢ — 1, by Proposition [5.4]
we have the following equality in Ts:

L(1,5) = log,(L),

where log, = Zizo %TZ is the Carlitz logarithm, l[p = 1 and for i« > 1, [; =
(6 — qu)li,l. We define for N > 0, the Nth “polylogarithm”

logqb,N,z Z N

>0 'L

Set bo(t) = 1, and for r > 1, b.(t) = Z;é(t - qu). Let N > 1 be an integer and
let 7 > 1 be the unique integer such that ¢" > N > ¢"~!. We can then prove (see
Theorem for the precise statement) that there exists a finite set of completely
explicit elements h; € Alt1,...,ts,2], 0 < j < d, that are built from the “unit”
expy ,(L(1,n+¢" — N, z)), such that

19 7Nb (1) - - bp(tn) L(N, m, 2) 29J10g¢NZ i)

The paper is organized as follows: we first (§3) introduce a Banach space B,
which is a completion of an s-variable polynomial ring for a norm similar to the one
considered by Anderson in [And96]. The study of different natural Carlitz actions
on B, allows us to endow B with an action of the Tate algebra T, and to translate
some statements on B, into statements on Ts. We then (§4) prove the s-variable
log-algebraicity theorem, following the lines of Anderson’s proof in [And96], and
establish some properties of the special polynomials. We also state two “converses”
to the log-algebraicity theorem (Propositions and [LI7). In the next section
(85) we translate the preceding results in Ty, so that the L-functions L(1,s, z)
and L(1,s) appear naturally. The last section (§6) is devoted to the proof that
L(N,n,z) can be expressed as a sum of polylogarithms.
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2. NOTATION

Let F, be a finite field with ¢ elements, where ¢ is a power of a prime p, 6 an
indeterminate over F,, A = F,[d], A* = A\{0} and K = F,(#). The set of monic
elements (respectively of degree j > 0) of A is denoted by Ay (respectively AL ;).
Let voo be the valuation on K given by v (§) = degy b — degy a. We identify with
Fy((3)) the completion Ko of K with respect to vs,. Let Co be the completion of
an algebraic closure of K,. Then v, extends uniquely to a valuation on C, still
denoted by veo, and we set for all @ € C, |00 = g~ =) The algebraic closures
of K and F, in Co will be denoted by K and F,,.

Let 7 denote an operator which we let act as the Frobenius on C.,: for all
a € Cy, 7(a) = a?. If R is a ring endowed with an action of 7 (for instance, R a
subring of C, stable under 7), then we denote by R[[7]] the ring of formal series in
T with coefficients in R subject to the commutation rule: for all r € R, 7.r = 7(r).T.
We also denote by R[r] the subring of R[[r]] of polynomials in 7.

The Carlitz module is the unique morphism C'. : A — A[r] of F,-algebras deter-
mined by Cy = 6 + 7. If M is an A-module endowed with a semi-linear endomor-
phism 7ps (Vm € M,Va € A, tpr(am) = 7(a)Tar(m)), then C. induces a new action
of A on M; endowed with this action, the A-module M is denoted by C(M).

The Carlitz exponential is the formal series

1 .
expe = Y0 ' < KL
>0
where Dy = 1 and for i > 1,D; = (qu —0)D!_,. The evaluation exps : Coo —
Coos @ > expe(T) = D50 A-7%(x) defines an entire F,-linear function on Cs

and ker(expe : Coo — Co) = TA where 7 is the Carlitz period defined by (see
[Gos96l, Chapter 3])

= I <1 - %) e V0 +F([7).
i>1

The Carlitz logarithm is the formal series

toge: = > 77 € K[r],

i>0 "

where o = 1 and for i > 1,1; = (6 — 09)l;_;. It satisfies in K[[7]] the equality
log .expe = 1. It defines a function z — log(x) on Cy converging for veo(z) >
—L7- Moreover, if ve(z) > — 13, then v (2) = voo(expe(2)) = voo(loga(w))
and expg ologa(z) = x = logo oexpe(x). We have the formal identities in K[[7]]
for all @ € A:

expga = Cyexpe and logo C, = alogo .

The identity exp(az) = Cy(expeo(z)) holds for all z € Coo,a € A.

The set of A-torsion points of C(C,) is denoted by Ac € C(K). Let a € A
with degy a > 0, the a-torsion points are precisely the elements expc(bf) € K with
b e A and degyb < degy a. Therefore, Ac = exp(K7). Since exp. is continuous
for the topology defined by v, the closure of A¢ in C4 is the compact set

f=Ac = expo(Koof) = expo (%Fq[[%]]fr) = Q*\l/—_awq[[%n,
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ANDERSON-STARK UNITS FOR F,[6] 1607

where the last equality comes from the facts that @ € “v/—6(6 + F,[[3]]), and
that for A € F} and n > 1, exp (55) = 95 mod 5 Fy[[5]]. It is customary

9" 97L
to consider Ko, as an analogue of the imaginary line; the compact £ is then

an analogue of the unit circle. We remark that exp. and log, define reciprocal
automorphisms of {.

3. SOME FUNCTIONAL ANALYSIS

3.1. General settings. Let s > 1 be a fixed integer and let X = (Xy,..., Xs) be
a set of indeterminates over Co,. We want to consider polynomials F' € C[X] as
polynomial functions on K*. Thus we introduce the following norm on C.,[X]:

|IF|| = max {|F(21,...,Zs)|c Z1,...,%s € R}.

Since R is compact and infinite, this is a well-defined, ultrametric norm of C.-
algebra. (In particular, for all F,G € Co[X], |[FG| < ||F|IIIG]|- Moreover, | F|| =
0 = F =0 is a consequence of the fact that £ is infinite.)

If i = (iy,...,4s) where the i; > 0 are integers, then we write X! for X|'... X!
and |i| =41 + - + 5.

Lemma 3.1.
|

(1) Ifi e N*, then ||XI|| = qi-.

(2) Write forn > 1, Agn = expe(ge) € Ac and let W C A be the Fy-vector
space spanned by the Agn, n > 1. Then W is dense in K. In particular, for
all F € Coo[X],

1]l = sup {[F(x)[cc x € Ag} = sup {[F(x)[ec x € W"}.
Proof.
(1) This is a consequence of the fact that if a,b € A* with degya < degy b, then

; ; 1
Voo <expc <%>) = Vo (%) = degeb—degea— q% Z q——l

(2) This follows from the fact that the F,-vector space spanned by the 9% for
n > 1is ;F,[#] which is dense in $F[[+]]. O

Remark 3.2. Note that the norm ||.|| is not multiplicative. We shall give an example
in the one variable case. We have

1
1Co(X)]| = [1X]| = ¢
but Cy(X) = [])er, (X — Xexpe(%)), where for all A € Fy, | X — Nexpe (%) =
o
Since A¢ is the torsion set of C'(Cy ), it is naturally endowed with the Carlitz
action of A: if x € A¢,a € A, then C,(x) € A¢, which extends by continuity to .

Thus, we get a natural action of the multiplicative monoid of A on the polynomial
functions on K*:

(31)  VF(X)€Cu[X],Vac A ax F(X) = F(Co(X1),....Ca(Xs)).

This action is a generalisation of Anderson’s construction ([And96, §3.2]) to our
settings. Observe that since for all a € A*,C, : Ac — A¢ is surjective, this action
is isometric with respect to the norm || - ||.
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3.2. The one variable case. Set L = K.(7) and 7 = £. Since v (7) = -1;

q—1’
the valuation ring of L is

q—2
1
O =F[[r]] = 3_ 7*F, (5]l
k=0
and its maximal ideal is
(BL = 7TOL.

Recall that since Ko, = A ® $F,[[3]], we have

expe(iFo) = ~F[[5]) < B;"

Let Ne N={0,1,...} and let N = >""_  N;¢*, with for all i, 0 < N; < ¢ —1, be
its base-g decomposition. Set l;(N) = "7_ N;. We define the polynomial G y(X)
by

r

Gn(X) = 7la) (H(ai * X)Ni> = gla(N) (H Cy: (X)N'i> € LIX].

i=0
Lemma 3.3.

(1) The set {Gn(X), N > 0} generates L[ X] as an L-vector space.
(2) For N € N, we have:

1Gn (X)) = 1.
Proof.

(1) Tt follows from the fact that for all N > 0, degy(Gn(X)) = N.
(2) We remark that for all A € Ag, veo(Gn(A)) > 0 and that if a € F} and

Ao+a = €XpPe (GJFLQ), then voo (GN(MNgta)) = 0. O

If 5= (fi)i>1 is a sequence of elements in Fy, we set
T _
A(B) = Biexpe (9—> €Pt
i>1
Note that if we set p(8) = 3,5, g— € K, then we have \(8) = expa(7u(B)).

Lemma 3.4. Let 3 = (B;)i>1 be a sequence of elements in Fy, and let N =
>i_o Nig" be a nonnegative integer written in base q. Then

Proof. Observe that
7 1
exXpe (5) = mod Op,.

Thus, for j > 0,
7Cy,(A(B)) = Bj4+1 mod P,

whence the result. O
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ANDERSON-STARK UNITS FOR F,[6] 1609

Lemma 3.5. Let k,r be two integers such that r > 1 and 1 < k < ¢, let
ai,...,ap € Fy and let N, ..., Ny be k distinct integers in {0,...,q" — 1}. Write
N; = Z;;é ni;q" in base q. Then, there exists 1, ..., B, € F, such that

[

r—

k
dai [ B #0
=1

i
j=0
with the convention that 0° = 1.

Proof. We proceed by induction on r.

Ifr=1,thenk <gandforl<j<k N;,=n;1€{0,...,¢g—1}. Since the
N,;’s are distinct, the polynomial Zle a; XNi is not divisible by X9 — X, and this
implies the assertion of the lemma in this case.

We assume now that the lemma is proved for all integers less than r—1 > 1, and
we also assume that at least one IN; is > ¢"~!. We define an equivalence relation
over the set {1,...,k}: for all 1 <4,4" <k, i ~ ¢ if and only if n; ; = ny ; for
all 1 < j <r—2 (that is, if N; = Ny mod ¢"~!). We denote by I,...,I; the
equivalence classes and if ¢ € I, we define for 1 < 57 < r — 2, ngm) = n;; the

common value. Let f1,..., 5, € Fy; then
k r—1 t =2 ()
ni; P n;
IS ICEED o ORI EN
i=1  j=0 m=1 \i€l,, §j=0
Now, by the case 7 = 1, we can find 3, such that the sum } ., a;Brm" is not
zero and we can apply the induction hypothesis to conclude the proof. O

Let Koo € E C Cy be a field complete with respect to | - |oo, and B(E) denote
the completion of F[X] with respect to || - ||.

Theorem 3.6. The family {Gy(X),N > 0} forms an orthonormal basis of the
E-Banach space B(E), that is:

(i) any F € B(E) can be written in a unique way as a convergent series F =
ZNZO fNGN(X) with fN S E,N >0, and lim oo fN =0;
(i) of F is written as above, then || F|| = maxn>o | fn]oco-

Proof. Tt is enough to prove the above properties (i) and (ii) for F' € E[X]. Note
that property (i) is a consequence of the fact that degxy Gn(X) = N for all N > 0.
Let us prove property (ii). It is enough to consider F' = Z::o G, with for all
0 <i<r, veo(z;) =0. We are reduced to proving that ||F|| = 1, that is, |[F|| > 1
since we already know the converse inequality; and the existence of A € A¢ such
that v (F'(A\)) = 0 is a consequence of Lemmas [34] and O

3.3. The multivariable case. Let s > 1 be an integer, we define for a field
K. C E C Cy complete with respect to | - |s, Bs(E) to be the completion of
E[X] with respect to || - ||. We write also for short By, = Bs(Cs). Observe that for
Ny,...,Ns; € N, we have

Gy (X1) - G (XS = 1.
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1610 B. ANGLES, F. PELLARIN, AND F. TAVARES RIBEIRO

Theorem 3.7. Let L C E C Cy, be complete with respect to |- |oo. Then the family
{GNl(Xl) .- 'GNS(XS)’Nla ..., Ng € N}
forms an orthonormal basis of the E-Banach space Bs(E), that is:

(i) any F € Bs(F) can be written in a unique way as the sum of a summable
family

F= Y funGa (X)) Gy (X)
(Ny,...,Ng)€ENs

with fn,,...n, € E for all Ny,...,Ns € N, and fn,,.. N
respect to the Fréchet ﬁlterEI
(ii) if F is written as above, then | F|| = max{|fn, .. n~,|oo, N1,...,Ns € N}.

goes to 0 with

s

Proof. We proceed by induction on s > 1. The case s = 1 is the statement of
Theorem Assume now that s > 2 and that the theorem is true for s — 1. It will
be enough to prove (i) and (ii) for polynomials, and (i) is still an easy consequence
of degy Gn(X) = N for all N > 0. Write a polynomial

F =Y 0,Gy,(X,) € E[X], where V1 <i < r,a; € E[X1,..., X, 1]
=0

Write for 1 < ¢ < r, the polynomial
Qi = Z agi):"wisflGil (Xl) "'Gis—l(XS)

1)-rbs—1
with ax‘)’_“’isil € E. Then the induction hypothesis shows that for all i:
||05’L'H = max{‘az(z),...,is,l oo ) i17 DR 7;s—l € N} .
Thus
1Pl < max o]l = max {|al) | il € N}
Let 1 < ip < r be such that ||a;, || = maxi<;<, |||, to prove the converse in-

equality, we will find A1,...,As € R® such that |[F(Ai,..., )| = [Joi,|]. Let
A, Ae—1 € 8571 such that

|atig (A1, s As—1)| o = [l |-
Then, by the case s =1,
HF(Al, ey As—l;Xs)H = Imax |0¢i0()\1, ey As_l)|oo = ||ozi0H.

Therefore, we can find A € & such that |[F(Ai,...,As—1,A)|, = |||, proving that
IF|| = |levi, || and the theorem. O

For all N = 37 N;q* > 0, define

Hy(X) = (ﬁ(@i *X)Ni> =7 MGy (X) € Kuo[X].
i=0

2We recall that, here, this just means that limpy, 4.4 Ny oo fNy,..., N, = 0.
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ANDERSON-STARK UNITS FOR F,[6] 1611
1g(N)
Then the Hy’s generate Koo[X] and ||Hy(X)|| = ¢ o= . If E does not contain L,
in particular if £ = K, then G has no longer coefficients in E and there might
not exist an orthonormal basis of B(E). However, Theorem B.7 still implies the
following corollary.

Corollary 3.8. Let Koo C E C Cy be complete with respect to | - |o. Then the
family

{HNl(Xl) .- 'HNS(Xs)aNla- ..,NS (S N}
forms an orthogonal basis of the E-Banach space Bs(E), that is:

(i) any F € Bs(E) can be written in a unique way as the sum of a summable
family

F = Z e, o Hy (Xq) - - Hy, (Xs)
(N1,....,N,)EN®

lg(Ny)+--+1g(Ns)
ocoq a1

with fx,.. .~, € E for all Ny,...,Ng €N, and |fn, .. N,
goes to 0 with respect to the Fréchet filter;

(ii) if F' is written as above, then

|Fl = max{|fn,,.. .~ Hn (X1) - Hy, (Xs)oo, N1, ..., Ns € N}

Lg(N1)+-+ig(Ns)

0oq q—1 ,Nl,...,NSEN}.

= max{[fn,,..n,

3.4. The Carlitz action. In this section, K., C E C C, is a field complete with
respect to |- |o. Note that the action * of A on E[X] defined in (B satisfies that
for all @ € A*, the map F +— a x F is an isometry on E[X]. Thus, the action *
extends to an action, still denoted *, of A on B,(F), such that for all a € A*, the
map F' +— ax F is an isometry on B (FE).

Now, instead of considering the simultaneous action of A on each of the X, we
will separate this action into actions on a single variable X;, namely, for 1 < j <'s,
F € B4(FE) and a € A, we set:

(32) a *j F(X) = F(Xl, e 7‘Xjfl, Ca(Xj)7_Xj+17 e ,XS).

This is still an action of monoid, but if we restrict this action to the set of poly-
nomials in E[X] which are Fg-linear in the variable X;, the action x; induces a
structure of A-module. Thus we define:

E[X]'" = {F € E[X]; F is linear with respect to each of the variables X7,..., X}

which is the sub-FE-vector space of E[X] spanned by the monomials qull . -quls,
i1,...,is € N. Since the actions *; and *; commute and commute with the linear
action of F, E[X]" has a structure of module over E ®r, A®%, that is, if ¢1,.. .,
are new indeterminates, we identify F ®p, A®® with E[t, ... t,] and E[X]%" has

a structure of Ety,...,ts]-module given by
(33) V1 S ] S S, tj.F(Xl,...,XS) = F(Xl,...7Xj717ce(Xj)7Xj+1,...,XS).

We write t for the set of variable t1,...,t, and ifi = (iy,...,is) € N*, ti = t? N
The action defined by formula (33) extends to an action on E[X], turning E[X]
into an E/[t]-algebra. We define the subordinate norm ||.| . on E[t] by
If-F

fllo = sup ===
7 repxpngoy IF|l
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1612 B. ANGLES, F. PELLARIN, AND F. TAVARES RIBEIRO

Lemma 3.9. Let f € E[t], f =, fit'. Then for all F € E[X]\{0},

I/-F
1flloc = max|filoo = :
i 1]
Remark 3.10. The lemma says in particular that the norm || - || coincides with

the Gauss norm on E[t], which is known to be multiplicative. This property also
follows easily from the lemma.

Proof of the lemma. Write F' = ZN17~--7N5 Fy,. .. ~.Hy, (X1) - Hy (Xs) and M =
max; | filoo- Note that for all N > 1 and for all 1 <i < s, ¢;.Hy(X;) = Hen(X5).
Since I4(N) = l4(gN), we deduce from Corollary B8 that || f.F|| < M| F||.

Conversely, consider (Ny,...,Nso) the index, minimal for the lexicographic
ordering on N*, such that

lqg(N1,0)+-+1g(Ns,0)
|FN1,07~-~,N5,0|OOq a1 = HFH

and igp = (41,0,...,%s,0) the index, minimal for the lexicographic ordering on N?,
such that M = |fi,|co. Then, the coefficient of

Hivon, , (X1)--- HqiS)ONSYO(Xs)
in the expansion of f.F in the basis of Corollary B.8 is equal to
fioFny o,....N,, + terms of lower norm,

whence the result. O

We define
e B!"(E) the adherence of E[X]"" in B,(E),
e T (E) the completion of E[t] for the Gauss norm ||.||o-
Recall that Ts(E) is the standard Tate algebra in s variables over E (see [EvdP04)
§I1.1.]), that is, the algebra of formal series ) ;. fit' with f; € E going to zero

with respect to the Fréchet filter. The action of E[t] extends naturally to an action
of T4(E) on B,(E) and on Bin(E).
Lemma 3.11.

(1) The family {Hgm (X1)--- Hgns (Xs),n1,...,ns € N} forms an orthogonal

basis of elements of the same norm g7 of the E-Banach space Bin(E).
T,(E) — B.(E)

(2) The map { ! o (XX is ingective with, for all f € T4(E),
(X X,
If- (X1 X0 = g7

(3) E[X]" = E[t].X; - - X,.
(4) Bi(E) = T,(E).X; - X,.

[ flloo-

Proof. Since for all 1 < ¢ < s and all n > 0, Hyn(X;) is an Fy-linear polynomial
of degree ¢, the family {Hyni (X1) -+ Hyna (X5),n1,...,ns € N} forms a basis of
E[X]%" and the first assertion follows from Corollary B8 The relation ¢7.X; =
H,»(X;) then implies the other assertions. O

As a consequence, the map f — f.X;- - X, defines, up to the normalisation
constant ¢7-1, an isometric immersion of T,(E) into Bs(E). Writing A[X]'" =
A[X] N E[X]'", we have the following lemma.
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ANDERSON-STARK UNITS FOR F, 6] 1613
Lemma 3.12. Let f € E[t]. Then f.(X;--- Xs) € A[X]"" if, and only if, f € A[t].
In particular, A[X]" = A[t].X; --- X,.
Proof. Tt is clear that if f € A[t], then f.(X;---X;) € A[X]. Note that, since
8ty Hyy (X0) -+ Hy, (Xs) = Hyinw, (X1) - o, (X5),

a consequence of Corollary B.8is that B,(E) is a torsion-free T, (E)-module. Then,
the converse is an easy consequence of the fact that ¢;.X; is a monic polynomial in
A[X;]. |

4. MULTIVARIABLE log-ALGEBRAICITY

4.1. The log-algebraicity theorem. Let Z be another indeterminate over C...
We let 7 act on Coo[X][[Z]] (or in the one variable case on Coo[X][[Z]]) via 7(F) =
Fa.

Let F € A[X]; we form the series

Yty e KX

d>0 €A, 4

and take exp. of this series which makes sense in K[X][[Z]]. Anderson’s log-
algebraicity theorem [And96l Theorem 3] for A then states the following.

Theorem 4.1 (Anderson). For all F' € A[X],

oo (Y27 3 C“;F e AlX, 7).

d>0 a€AL g

The aim of this section is to give a multivariable generalisation of this result.
But first, let us give a simple proof of Theorem [ Tlin the case of F' = X and Z = 1.

Example 4.2. Write X = expc Y, where Y = log X € K[[X]]. Then ax X =
expe(aY) =3 5 a”Y" Phys,

D,
d axX d o’ -y e
zZ1 = 74
Sy X Ly vy
d=0 a€Ay a d=0 a€A4 4 7>0
Yqj d ]‘_1
DI, nD SEAND DI
§>0 77 d>0 a€Ay 4
But one can evaluate at Z = 1 since (see [Gos96, Example 8.13.9]) - ¢4, i

i1

0 for d > j, and moreover 3,503 4ea, , 07~ =0 for all j > 0 while this sum

equals 1 when j = 0. Therefore, we get
X
3y R oy —loge X
>0acA,, ¢
Lemma 4.3. If F € A[X] satisfies |[F|| <1, then F € F,.
Proof. It A1,...,As € A¢, then F(Aq,...,)s) is integral over A, and the condi-
tion ||F'|| < 1 implies that for all Aq,...,As € Ac, F(A1,..., ;) € F,. But Fy

is algebraically closed in K(Aq,...,As)(see [Ros02, Corollary to Theorem 12.14]),
so that F(A1,...,As) € Fy. Now, for any A1,...,As—1 € Ac, the polynomial
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1614 B. ANGLES, F. PELLARIN, AND F. TAVARES RIBEIRO

F(Aq, ..., A1, Xs) takes at least one value infinitely many times. An easy induc-
tion on s then implies that I’ is constant, that is F' € F,. O

We define an action of the multiplicative monoid A* over Co[X][[Z]] by letting
for F(X,Z) € Coo[X][[Z]] and a € A*:

axF=F (Ca(Xl), . .,ca(XS),Zq"CE“) .

Observe that exps gives rise to a well-defined endomorphism of Co,[X][[Z]] and
that

expe (K [X][[Z]]) € K[X][[Z]]-
Let F' € C[X]; following Anderson, we set for k& < 0:

Lu(F) = Zy(F) =0

and for £ > 0,
ax*xF
Ly(F) = > — € Cu[X],
a€A+,k
Li_;(F)Y
Zp(F) = Z%G%[X}-
7>0 J

Define, moreover,

rz) = Y A S e e ez,
a€AL k>0

&(F.2) = expo((F2) =Y Zu(F)Z7 € Co[X][[Z]].
k>0

Lemma 4.4. Let F € C[X] and k > 0.
(1) L (F) < |Fllg™F, -
(2) [|1Zk(F)| < maxoc;j<i [F|9 ¢ .

Proof. This comes from the definitions and the fact that for all a € A*, |la* F| =
£l O

We call a monic irreducible polynomial of A a prime of A. Let P be a prime of A.
Let F € K[X] and let I be a finite subset of N* such that F' =", ; ;X' € K[X],
Let vp be the P-adic valuation on K normalized by vp(P) = 1, we set

vp(F) = inf{vp(w),i € I}.
Recall that we have for F,G € K[X], and X € K:
e vp(F + G) > inf(vp(F),vp(G)), vp(FG) = vp(F) + vp(G),
o 0y(\F) = op (M) + vp(F),
e vp(F) =400 if and only if F' = 0.

Lemma 4.5. Let P be a prime of A. Let F € K[X] be such that vp(F) > 0. Then
for all k>0, vp(Z,(F)) > 0.

Proof. The proof is essentially the same as [And96l Proposition 6]. We recall it
because some details will be needed in the proof of Proposition .18
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ANDERSON-STARK UNITS FOR F,[6] 1615

Set A(py = {z € K,vp(x) > 0}. Let d be the degree of P, we have in A[r]:
Cp =7% mod PA[r]. We prove that if G = > k>0 VAT K[X][[Z]] satisfies
(Cp = Px)(G) € PAp)[X][[2]],
then for all k > 0,G}, € A(p)[X]. Set Gy = 0 if k < 0 and write Cp = Z?:O[P]ﬂi,
where [Plgp = P, [P]; € PAif i < d and [P]g = 1. We have (Cp — Px)(G) =
Skso HuZ? with for all k > 0,

d
Hk = Z[P]iTi(Gk_i)—P*Gk_d

1=0
= PG+ Z ﬂ' Gk Td(Gk_d) —PxGp_q€ PA(p)[X].

In particular, Hy = PGy € PA(py[X] so that Gy € A(py[X]. Now, by induction on
k, if we know that Gp_; € A(p)[X] for i = 1,...,d, then T(Gr_q) — P+ Gh_q €
PA(p)[X] and we deduce that G, € PAp)[X].

Defining I*(F, Z) = X" c 4, pra a*(fz) € Apy[X][[Z]], we have

(F,Z) = Z a*(FZ)+ Z a*(aFZ)

a€A4,Pla a a€A4,Pta
(aP)x (FZ) 1
= ————— 4+ I"F,Z2)= = (PxIl(F,Z *(F,Z
T D) = (PR D) D
+

which yields the relation
PUF,Z)— PxI(F,Z)= PI*(F,Z2).

Note that the action * commutes with 7, and thus with exp., thus if we apply
eXpeo, we get

p? i
(Cp = Px) (8(F. Z)) = exp (PU(F, Z)) = ) | 51" (F. 2)"
j>0 7
and since for all j > 0, vp(D—) > 1, we get (Cp — Px) (£(F,2)) € PAp)[X][[Z]]
whence £(F, Z) € Apy[X ][[Z]] O
We can now state and prove the multivariable log-algebraicity theorem.

Theorem 4.6. Let F € A[X]. Then

FZ
SR =ewe | Y %) € A[X, 7).
a€Ay

Proof. By Lemma[Lh] for all k > 0, Z,(F) € A[X]. If kg > 0 is the smallest integer
such that ||F|| < ¢*o, then by Lemma {4 for all k > ko, || Zx(F)|| < 1. Therefore,
Lemma (43| shows that Zy, (F') € F, and for all k > ko, Zy(F) = 0. O

The previous theorem can also be obtained as a consequence of a class formula
for a Drinfeld module on a Tate algebra (see [APTRI6]).
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1616 B. ANGLES, F. PELLARIN, AND F. TAVARES RIBEIRO

4.2. The special polynomials. If s > 1 is an integer, we define the special poly-
nomial:

S, = S4(X, Z) = &(X; -+ X,, Z) € A[X, Z].

Let us recall that Anderson’s special polynomials are the one variable polyno-
mials S, (X, Z) = £(X™,Z). We recover Sy, (X, Z) from S,, by specializing each
of the X;,1 < j < m, to X. We establish in this section some properties of the
polynomials S;.

The following proposition is used to compute explicitly the polynomial £(F, Z).

Proposition 4.7.

(1) The polynomial S4(X, Z) is Fy-linear with respect to each of the variables
X1,...,Xs, Z; in particular, Ss(X, Z) is divisible by X1 --- X Z.
(2) If r € {1,...,q— 1} satisfies s=r mod q — 1, then

deg, S¢ < qit.
In particular, if 1 < s < q—1, we have
Ss=X1--- X Z.
Proof. The first assertion is obvious. By Lemmas 3] A4l and @B Z5 (X, - - X,) €
F, if k > 2. But since X7 - -- X divides Zy(X; - - - X), we get Z(X1--- X,) =0

g—1"

for k > qfl. The last part comes from the congruence

Ss=X1---X,Z mod Z9. O
Corollary 4.8. Let s,k1,...,ks > 1 be integers such that Z;Zl ki <qg—1 and let
115 3Ol kg -y Qs 1, -, 05k, €A Set
G =(a1n*X1) - (a1,p, * X1) - (as,1 % Xs) -+ (ask, * Xs) € A[X].
Then
L£(G,2)=GZ.

Proof. 1t is sufficient to consider the case where k; = 1 for all 1 < j < s since we
obtain the general case by specializing variables. The action *; of A (defined in
[B2)) satisfies for all a € A, F € A[X],

ax; (L(F,2))=L(ax; F,Z).
The corollary follows then from the relation £(X;---X;,7Z) = X;--- X;Z since
s<qg—1. (Il

Any Fg-linear combination F' of polynomials of the above form still satisfies the
equality £(F, Z) = FZ. We can ask whether there are other polynomials satisfying
this relation. In fact, Proposition 19| below assures that if £(F,Z) = FZ, then
F € A[X], so we can ask more generally the following question.

Question 4.9. Describe the set of the F' € A[X] such that £(F,Z) = FZ.

Lemma 4.10. Let s > 1. Then S4(X,1) = 0 if, and only if, s > 2 and s = 1
mod ¢q — 1.
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Proof. First, suppose s > 2 and s =1 mod ¢ — 1.
Let a € A. Recall (see [AT90, Section 3.4]) that from the relation Co(X) =
expg(alog (X)), we deduce that we can write

degy a

=Y d(@x,
k=0

where ¢ (x) € Alz] is an F,-linear polynomial of degree ¢"*, which vanishes exactly
at the polynomials z € A of degree less than k. Thus

k vs
ax (X1 X) = 3 (@) (XX
1,k >0
where the right-hand side is a finite sum.
We deduce that S;(X, Z) is equal to
nfd
Z Zq ZDn d Z Z (¢k1 ,(/)k ( )) kal+7‘7d . .ngs+n*d

n>0 Lks>0a€Ay 4

and by Theorem [£.6] this is a polynomial. Now, note that EaeA+ , M

is a linear combination (with coefficients depending only on ki, ..., ks, 71,...,75
and independent on d) of sums of the form }7, ., . a9ttt =1 with, for all
1<j<s,0<7r; <kj. According to [Gos96, Lemma 8.8.1], this sum vanishes
for d > ‘ﬂ# Thus the coefficient of Xq S ¢
combination of (finite) sums of the form 3~ ., a? (¢ 444" =1 Byt since s = 1
mod g—1, ¢(¢" +---+¢"—1)=0 mod g—1, and since s >2, ¢%(¢" + - -+ +¢"* — 1)
# 0. Thus, by [Gos96, Example 8.13.9], all the sums }°, ., qa (@ g™ =)
vanish, that is, S¢(X,1) = 0.

Conversely, the coefficient of X7 -+ X, in S,(X, 1) s 30 e 4, a®~! which is con-
gruent to 1 modulo 89 — 0 if s = 1 or s # 1 mod g — 1, so S4(X, 1) does not
vanish. (]

277 in S¢(X, 1) is a linear

Remark 4.11. Thakur used similar arguments in [Tha04, §8.10] to obtain explicit
log-algebraicity formulas.

Example 4.12. We already know that S;(X,Z2) = X;--- X Z if 1 <s<g¢qg-—1.
Using Proposition 7] and Lemma ELT0] we easily see that

Sg(X,2) =Xy XgZ — Xy -+~ X, 27

For ¢ > 3, a computation leads to

Sq1(X,Z) = X1+ X1 Z — X1+ X (X{ 4+ + X011 29
Lemma 4.13. Let s > 1,
(1) for all integer k > ===, the sum Za6A+ L a(ti) - a(ts—1) vanishes, so that

L(0,s—1) = Zkzo ZGEAM a(t) -~ a(ts—1) € Fylt],
2) SS(X, 1) = (L(0,5 — 1).(X1 - X,_1)) X, mod X9
Proof. For all k > 0, Li(X;---Xs) = EaeA+ i (X1 Xs) can be viewed as a

R a
polynomial in X, with no constant term, and since C,(X;) = aX; mod X?, w
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1618 B. ANGLES, F. PELLARIN, AND F. TAVARES RIBEIRO

have
X .- X
Zn(Xy-- X)) = Lp(Xy---X,)= Z M mod X?
a€A+,k a
X
= Y ax(X-- X )™ mod XY
a€A L i a
= X, Y ax(X;--X.1) mod XL
a€A L i
But Proposition 7] tells that Zx (X --- Xs) =0if k > qfl. Now note that
Z ax (X1 Xsoq) = Z a(ty) --alts—1). (X1 Xs—1).
a€A+,k a€A+,k

We deduce then the first point from Lemma [3.11] and the evaluation at Z = 1,

L(0,s — 1).(Xy - X)) Xo = Y Z(X1 -+ X,) =S4(X,1) mod X{
k>0

gives the second point. O

Note that the first point of the above lemma is also a consequence of [Gos906,
Lemma 8.8.1] (see also [AP15] Lemma 30] and [AP14]l Lemma 4]).

Lemma 4.14. Let s > 1. If there exists b,c € A and r € X;Coo[X] such that
Cy(r) = Ce(Ss(X, 1)),
then b divides ¢ in A and r = C<(Ss(X, 1)).

b

Proof. We first prove that r has coefficients in A. We will use the fact that
expo and log~ define reciprocal bijections of X K[X7,..., Xs_1][[X;]] satisfying
for all F € X, K[Xy,...,Xs-1][[Xs]] and a € A, log(Co(F)) = aloga(F) and
expo(aF) = Cy(expea(F)). Thus Cp(r) = exppo(bloga(r)) and C.(Ss(X,1)) =
expe(clogo(S4(X,1))). We deduce that r = expq(§Ss(X, 1)) € X K[X]. But
Cp(X) is monic up to a unit in Fy, and A[X] is integrally closed. Thus the fact
that Cy(r) € A[X] implies that r € A[X].

Write now r» = X,r; mod X2 with 71 € A[Xy,..., X, 1]. Then Cy(r) = X bry
mod X2 and by Lemma T3]

Co(Ss(X,1)) = X, (L(0,5 — 1).(X; --- X,_1)) mod X2,

thus ry = 7L(0,s — 1).(X1--- X, 1). Since 1y € A[Xy,..., X 1], Lemma

assures that $L(0,s —1) € Afty,...,ts—1]. But L(0,s — 1) € Fy[t1,...,ts_1]. We
obtain that b divides ¢ in A and that r = expo(§Ss(X, 1)) = C¢(Ss(X, 1)). O

Set R =, 51 Coo[X1, ..., Xs] and let § be the sub-A-module of C(R) generated
by the polynomials S,(X1,...,Xs,1),s > 1. Set

VT ={reR Jac A", C,(r) € F}.
Theorem 4.15.
VE=5+C(Ac).
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Proof. The inclusion § + C(A¢) C /3 is clear.
Let r € v/F. Then there exists n > 1 such that r € Coo[Xy, ..., X,,] and there

exist a € A*, a1,...,a, € A such that
(4.1) Ca(r) =Y Cap (Sm(X1,. .., Xin, 1)),
m=1

We now prove by induction on n > 1 that r € §F+ C(A¢).
In the case n = 1, equation ([@II) reduces to
Ca(r) = Ce(S1(X1, 1))

with ¢ € A and r € C[X1]. The constant term of r is then in C'(A¢) and we can
therefore assume r € X1Co[X1]. The result in this case is then just the one of

Lemma [£14]
We suppose now n > 1 and that the result is proved for all £ < n — 1. We

can assume that a, # 0 and S,(X1,...,Xn,1) # 0, that is, n £ 1 mod ¢ — 1.
Write r = Z?:o ri(X1,..., X,—1)X}, with d > 0. Then equation ([I]) evaluated
at X, = 0 yields

n—1
Ca(T‘()(Xl, ey anl)) = Z CamSm(Xh . ,Xm, 1)
m=1

and the induction hypothesis assures that rq(X1,...,Xp—1) € § + C(A¢). Thus
we can assume 79 = 0 and, for some ¢ € A,

Ca(’f') = CC(SH(XD s aXn, 1))
Again, we are reduced to the result proved in Lemma .14l O

4.3. Converses of the log-algebraicity theorem. Let A be the integral closure
of A in K. The log-algebraicity theorem asserts that if F' € A[X], then £(F,Z) €
A[X, Z]. We will prove in this section conversely that, if F' € C[X] and £(F, Z)
belongs to Coo[X, Z] or to A[X][[Z]] ®a4 K, then necessarily, F' € A[X].

If P is a prime of A, Z(p) denotes the ring of elements of K that are P-integral.

Lemma 4.16. Let x € A such that for infinitely many primes P,
P (mod P?),
where d is the degree of P. Then x € AP.

Proof. Let F € A\ AP, then F’ # 0, where F’ denotes the derivative of F' with
respect to the variable §. Then F4' — F = (H‘Jd — 0)F" mod P?, so that for all
primes P not dividing F”, ’Up(qu —F)=1. O

Lemma 4.17.
(1) Let a € A such that for all but finitely many primes P of A,
o’ = a (mod PA),

where d is the degree of P. Then o € A.
(2) Let a € K such that for all but finitely many primes P of A,

o’ = a (mod PApy),
where d is the degree of P. Then o € K.
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Proof.

(1) First we assume that « is separable over K. Set F = K(«) and let Op be
the integral closure of A in F. For a prime P not dividing the discriminant
of Ala], we have:

OrF ®4 Ap = Ala] ®4 Ap,

where Ap is the P-adic completion of A. Therefore, for all but finitely many
primes P, we have:

Vr € O, P (mod POp).

This implies that all but finitely many primes P of A are totally split in F.
By the Cebotarev density theorem (see for example [Neu99, Chapter VII,
Section 13]), this implies that FF = K and thus a € A.

In general there exists a minimal integer m > 0 such that o?” is sepa-
rable over K. If m > 1, then = o?” € A and for all but finitely many
primes P of A:

21 =2 (mod PP A).

Therefore o™ ' € A by Lemma [£16l We deduce that a € A.
(2) Let b € A\ {0} such that x = b € A. Then by the first assertion of the
lemma, x € A. Therefore o € K. ([l

Proposition 4.18. For all s > 1, if X = (X1,..., X;), then

{F e Co[X]; £(F, Z2) € AX][[Z]] @4 K} = A[X].
Proof. Let F € C4[X] such that £(F,Z) € A[X][[Z]] ®4 K, i.e., there exists
b e A\ {0} such that b&(F, Z) € A[X][[Z]]. Since £&(F, Z) = FZ (mod Z7), we get
F € K[X]. Let P be a prime of A of degree d not dividing b. Then by the proof of
Lemma [£.5]

L(F, Z) € Ap[X][[Z]] and (Cp — Px)(L(F, Z)) € PAp)[X][[Z]]
and since Cp = 7% mod PA[r], the coefficient of Z¢" in (Cp — Px) (£(F, Z)) is
congruent to F4° — P« F' mod PAp)[X][[Z]]. Therefore
F(x8.. X%y =F" mod PAp[X].
Thus, by Lemma 17, we get F € K[X]. Now select ¢ € A\ {0} such that cF €
A[X]. Then by Theorem
CC(£(F? Z)) € A[Xla s 7XSa Z}

Therefore £(F,Z) € A[X][[Z]] ®4 K is integral over A[X][[Z]]. But A[X][[Z]] is
integrally closed (see[Bou64, Chapitre 5, Proposition 14]) thus £(F, Z) € A[X][[Z]]
and this implies that F' € A[X] since £(F,Z) = FZ mod Z9. We then have the
direct inclusion, the equality follows by Theorem ]

We remark that if we only suppose that £(F, Z) € K[X][[Z]], then the result no
longer holds, for instance F = & € K[X]\A[X] and £(F,Z) € K[X][[Z]]. Note
that the above proposition implies that £-(K[X, Z]) = A[X]. In fact we have:
Proposition 4.19.

{F € Coo[X]; £(F, Z) € Cou[X, Z]} = A[X].
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Proof. Recall that if i = (iy,...,4s) € N°, then X! = X{'... X, If F € Co[X],
write F = Y ; ;X' and define deg(F) € N3 U {£oc} to be the maximum for
the lexicographic ordering of the exponents i such that a; # 0. Now, if ' =
Yopo1 FuZF € ZCo[X][[Z]], where for all k, Fy € Co[X], then we define the
relative degree of F', rdeg(F) € RS U {+o00}, to be

—00 if F =0,
= deg(F]
rdeg(F) sup (M) € RS U{+oo} otherwise,
E>1 k
where the supremum is still relative to the lexicographic ordering on R% and is well
defined in R% U{+oo}. Note the following properties of rdeg: if ', G € ZC[X][[Z]]
and ¢ is an Fy-linear power series in Coo[[T]], then

rdeg(F' + G) < max(rdeg(F), rdeg(G)) with equality if rdeg(F') # rdeg(G),
rdeg(F'?) = rdeg(F),

rdeg(1(F)) < rdeg(F),

if 9 # 0, for k> 1 and i € N*, rdeg((X'2%)) = 1
ifF =52 * is such that there exists infinitely many indices k; such
that deg(}_?kj) = kjrdeg(F) (in particular F ¢ A[X, Z]) and rdeg(F) >
rdeg(G), then F' + G ¢ A[X, Z].

For the last property, if we write G = 21@1 GrZ*, then F+G = Zk21(Fk+Gk)Zk
with for all j, deg(Fy, + Gy,) = kjrdeg(F) so that Fj, + Gy, # 0 and F +G ¢
AlX, Z].

Now let i € N°. For k > 0, we have

qki

; X
Lk(Xl): I +Gk,i7

where G}.; € K[X] satisfies deg(Gy.;) < ¢*i. Thus

(4.2) &(X4 72)=XZ + F,

where F; € Z9C[X, Z] has relative degree rdeg(Fj) < i.
Fix o € C; then

Ca(T) = expo(aloge(T)) € Coo[[T]]

is an F,-linear power series, and C, (1) € Coo[T] if and only if a € A (see [Gos96,
Chapter 3]).

Now let F € Coo[X\A[X]; we want to prove that £(F,Z) ¢ C«[X, Z]. By
Theorem 6] we can suppose F = >, ;X! with for all i such that a; # 0, o; ¢ A.
Then equation [@2) gives

(F,Z2) =) Co (&X', 2)) =Y Cu, (XI2) + Co, (F).

If ip = deg(F'), then we deduce that
L(F,Z)=Ca, (X°2)+ G

with rdeg(G) < ip. Since Gy, (X1 Z) ¢ Cu[X,Z] has infinitely many terms of
relative degree iy, we have £(F, Z) ¢ C[X, Z]. O
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5. MULTIVARIABLE L-FUNCTIONS

5.1. Frobenius actions. Let K, C E C C, be a field complete with respect to
|+ |oo- Observe that if n >0 and 1 <4 <'s, then

an(Xi)q = an( ) C@n+l( ) Hcen( ) (tz _H)an(XZ)
Thus we define the following action of 7 on Ts(E):

V=Y At €Ty (E), 7(f)=(t1—0)---(t;—0) Y fit!

and we get for all f € T,(E) the equality in B*(E):
T(f'(Xl s Xs)) = T(f)(Xl T 'Xs)‘
We then define on Ts(FE) the operator ¢ which will be a Frobenius acting only on

coeflicients, namely:
Vf = Zflt‘ e Ty qut‘

so that on Ts(F), we have 7 = (t; — 0)---(ts — 0)¢. Moreover, for d > 1, if we
define, by(t) = (t — 6)(t — 69) - (t — 09" "), then for all f € T,(E),
T4(f) = ba(t) -+~ balts) o (f)-

We also set bo(t) = 1 so that the above relation still holds for d = 0. Note that for
all f,g € Ts(E), and d > 0,

74(fg) = T(f)¢(9)-
Observe moreover that
d
Vf € T(E), YA 20, [¢*(f)lloe = IIf1% and [79(f)]cc = ¢
We deduce that expe = >, D%_Tj is defined on T, (E) and that for all f € TS (E),
we have in Bi*(E):

(5.1) expe(f-(X1 -+ X,)) = expel(f). (X -+ X,).
We now extend the action of Eft] on E[X] to an action of E[t][[z]] on E[X][[Z]]

STHR®F ARz | =303 (). Fa(X) 27

k>0 n>0 k>0n>0
and we let 7 act on Z via 7(Z) = Z%. Since 7(Z) = z.Z, we define on E[t][[z]] the
operator 7, by, for all f=37,-,>; fitizk € E[t][[2]],

T (f) =2t = 0) (8 = 0) 30 D S ZZ’““T(fo“).

k>0 i k>0
Thus if we extend ¢ by

VE=> > ftiz" e Blt][l => > fitit

k>0 i k>0 i

we get for all f =", o, fxz" € E[t][[2]] and d > 0, 72(f) = 2%q(t1) - - - ba(ts) e (f)-
By construction, if f = E[t][[2]], then f.(X1--- X,Z) € E[X][[Z]] and for all d > 0

T f( X1 X 2)) =74f) (X1 X Z).

)
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We then have an operator expe = .5 D%Tj on ZE[X][[Z]] and an operator
exp, =50 D%Tg on E[t][[z]] such that for all f € E[t][[2]],

(5.2) expo(f (X1 X Z)) = exp,(f) (X1 X Z).
A similar property holds for loge = 37,5 %Tj and log, =} ., %Tg:
(5.3) logo (f(X1 -+ XsZ)) = log, (f).(X1--- X, Z),

where log, and exp, define the reciprocal bijection of E[t][[z]].
We now state compatibility results for evaluations at Z =1 and z = 1.

Lemma 5.1. Let F(X,Z) =}, 5, Fa(X)Z" € E[X][[Z]] with F,,(X) € E[X] and
limy, o0 [[Fl| = 0 for alln >0, and let f =35, fr2F € Elt][[2]] with fr € E[t]
and limg o0 || filloo = 0 for allk > 0. Then F and f.F converge in B4(E) at Z =1,
f converges in T4(E) at z =1, and we have the following equality in Bs(E):

Proof. The convergence of F' at Z = 1 and of f at z = 1 are obvious, the convergence
of f.F follows from the equality || fi-Fnll = ||fx|lool|Fr || from Lemma B9l Finally,
both sides of the equality are equal to >, 50>, 50 fi-Fan- O

Lemma 5.2. Letn =3 .70 € E[[7.]] and n' =3 S gn.7" € E[[7]], let f =
Zkzo frzk e E[t][[z]] with limg—eo || fi]lco = 0, write M = SUPg>0 I felloo and sup-

pose lim,_,o0 |7 |(q7=T M)9" = 0; finally write g(t, z) =n(f(t, 2)) = > onso T (f) €
E[t][[z]]. Then f and g converge in Ts(E) at z =1 and we have the following equal-
ity in Ts(E):

nt(f(t,1)) = g(t,1).

Proof. The convergence of f is obvious. Both sides of the above equality are easily
seen to be equal to

Z nnTn(fk (t))

n>0,k>0
which is the sum of a summable family in T4(E). This gives at once the convergence
of both sides of the equality and the desired identity. ]

Now define
E[X][[Z]]"" = {F € E[X][[Z]]; F is linear with respect to each of X1,..., X,, Z}.
Lemma 5.3.
(1) The map
Elt]llz]] —  EX][[Z]],
f = f'(Xl"'XsZ)
is injective with image E[X][[Z]]4",
(2) f € E[t][[2]] satisfies f.(X1---X:Z) € AX][Z] if, and only if, f € A[t][z].
Proof. The first point is an immediate consequence of Lemma [B.11] and the second
one a consequence of Lemma O
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5.2. Anderson-Stark units. We define for all integers N € Z, s > 1:

IR Sl - L IEE O NETE)

d>0 a€Ayq4

and
a(ty) ... a(ts
L(Na 3) = Z Z % € TS(KOO)v
d>0a€A} q
where L(N,s,z) € Aft,z] if N < 0 because of Lemma [L13l We also define the
operator I':

VF € By(Cs), T(F)=L(1,5).F € By(Cs).

We will refer to I' as to Anderson’s operator. Note that L(1,s) has norm 1, so that
[ is an isometry of B,(Cs), in particular, |[T(X - - X,)| = g7 1. We now define

os(t,z) = exp,(L(1, s, 2)).
We then have the following.

Proposition 5.4.
(1) L(1,s,2) =log,(os(t, 2)),
(2) L(1,s8,2). X1 - X Z = (X1 X5, Z) =1og(Ss(X, Z)),
(3) 05(t,2).X1 - XsZ =S4(X,Z) and o4(t, z) € Alt, z].

Proof. The first point and equality L(1l,s,2). X1 - XsZ = £(X;--- X, Z) are
clear. The equality L(1,s,2). X1 - XsZ = log~(Ss(X, Z)) comes from equation
(E3). Equation (B2) shows that o4(t,2). X7 - - XsZ = S4(X, Z) and the fact that
os(t,z) € Alt, 2] is a consequence of Lemma [5.3] and Theorem O

We call the special polynomial o4(t, z) the Anderson-Stark unit of level s.
The evaluation at Z = 1 leads to the following.

Proposition 5.5.

(1) expe(I'(X1--- Xs)) = Ss(X, 1),
(2) if s<gq, then (X1 X;) =log (X1 -+ Xs).

Proof. Lemma shows that o4(t,1) = exps(L(1,s)), and equation (BI)) yields
to the first point. For the second point, we remark that if s < ¢, then S4(X,Z) =
X1+ XsZ so that

(X1~~~XSZ)‘1"

S(X, - X, Z) =loga(Ss(X, 2) = 3 z

n>0

but || X; -+ X,|| = ¢7-T < ¢71 so that

converges in By (K). O
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We can recover properties of o, from the ones of S;.

Proposition 5.6.

(1) deg.(0.(t,2)) < =2,

(2) z—1 divides o5(t,2) if, and only if, s=1 mod g —1 and s > 1.

Proof. The first point comes from Proposition [£.7 and the second one from Lemma

410 O

Note that in practice, formulas for o; are more manageable and easier to compute
than the formulas for S;. Compare the following example with Example .12

Example 5.7. If 1 < s < g — 1, then o, = 1. The next two polynomials are:
og=1—zand og4y1 =1—(t1 —0) - (tg41 — 0)z.

In the spirit of Lemma LT3 we can recover the values L(N, s, z) for N < 0 from
the polynomials S¢(X, Z):
Theorem 5.8. For all N >0 and s > 1,

d d

L(—N,S,Z).(X1~-~Xs): dxX +1”'dX N1

Ss4n4+1(X1,. .o, Xogng1, Z).

Proof. Since 4% (a x X) = a, we have
d d
dXer1  dXeing1

Zi(Xy - Xegne) = Y ax(Xp--X)aV
a€AL

which gives the result. |

6. SPECIAL L-VALUES

The purpose of this section is to express the series L(N, s, z) as sums of poly-

logarithms. The idea here is to use the fact that if we evaluate ¢,,41,...,ts at 6 in
©"(L(1,s,2)) = L(¢", s, z), we just obtain L(¢" +n — s,n, z).

If P is a polynomial in a variable among ¢,tq,..., or ts, we will write P¥ for
o(P).

Lemma 6.1. For all integers k > 0 and r > 0, we have:
(1) brgr(t) = " (0r(1))bi(t) = @ (0r(1))br (1),
(2) if r > 1, " (b(1) = " (b (1) U = G (BF () 5oy
(3) by (6) = L.
Proof. The verification of these identities is left to the reader. O

We start from the identity of the first point of Proposition [5.4] and we write
m i
0s(t,2) = 220 0s.i(t)2":

L(1,s,2) = log,(os(t,2))
1 m ki
= X rhet2) = 303 S ()
k>0 'k k>0i=0 F
m_ ki
= 3N T bilth) bt (0si(t)).
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If we apply " on both sides, we get by Lemma 6.1k

m ki
L(q",s,2) = ZZ lq—r@r(bk(tl) ()" (0,0 (t))
k>0i=0 'k
R 2R be(t ) by (tn )b (tns1) - bp(ts)  hpr
72‘2:; >0 lir br( ) ( ) (n-i-l) bf—l(tS)SO (USVZ)’

k
where Us ; = by(t1) - bp (£ 05—y (tng1) -+ - b7 1 ()" (05,i(t)).

Write Us; = Zin+1,. i i ;jll et with fy L g, € Aftr, ... ty] and
forj >0,g;; = ZZ—HHNJWS:J Jinii,osis 50 that Uy ; evaluated at t,, 41 = -+ = t5 =
¢ is the polynomial } .- ¢7g; j. We now evaluate L(q",s,2) at tpy1 =+ =1t; =10
and we write N = ¢" — s +n:

bt
LN, n,2) ZQJZZZNZS ”b i b]:((tn))spk(gi’j)'

7>0 =0 k>0

Now write logy . = > x5 kM Zk>0 N 72, Then
) k
1 : i
L(N,’I’L,Z) = s—n ¢’ logNz zzgi" .
l,rflbr(tl)"'br(tn) ; ’ ; ’

We have proved the next theorem.

Theorem 6.2. For all integers N € Z, n > 1 and r > 1 such that ¢~ > N, there
exist an integer d > 0, and for 0 < j < d, polynomials hj € Altq,...,ts, 2] such

that
d

> 67 logy . (hy).

=0

1

LN, 2) = 19 Vb () - by (t)

Now denote for N € Z, logy = Ek>0 lNT the Nth Carlitz polylogarithm.

Corollary 6.3. For all integers N € Z, n > 1 and r > 1 such that ¢" > N, there
exist an integer d > 0, and for 0 < j < d, polynomials H; € A[X1,...,X,, Z]i"
such that

d
L(N,n, 2). (X;f' : --X;{'Z) = WL—N Y 0 logy (H
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