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Abstract In many systems of interest, most of the
structure is well approximated as linear but some parts
must be treated as nonlinear to get accurate response
predictions: significant nonlinear effects are due to the
connections between coupled subsystems, such as in
automotive or aerospace structures. The present work
aims at predicting the nonlinear behavior of coupled
systems using a substructuring technique in the modal
domain. This study focuses on the effects of nonlinear
connections on the dynamics of an assembly in which
the coupled subsystems can be considered as linear.
Each connection is instead considered as a quasi-linear
substructure with stiffness that is function of ampli-
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tude or energy. The iterative procedure used here is
enhanced with respect to previous works by enforc-
ing a better control of the total energy at each itera-
tion allowing to obtain the solution for a prescribed set
of energy levels. Also, the initial guess and the con-
vergence criterion have been modified to speed up the
procedure. This technique is applied to a system made
of two continuous linear subsystems coupled by non-
linear connections. The numerical results of the cou-
pling are first compared to the ones obtained by using
the Harmonic Balance technique on the model of the
complete assembly to evaluate its effectiveness and
understand the effects of modal truncation. Besides,
a nonlinear connecting element, specifically designed
in order to have a nearly cubic hardening behavior, is
used in an experimental setup. Substructuring results
are compared to experimental results measured on the
assembled system, in order to evaluate the correlation
betweenmode shapes and the accuracy in the resonance
frequency at several excitation levels.

Keywords Substructuring coupling · Nonlinear
connection · Nonlinear normal modes · Continuous
systems · Experimental comparison

1 Introduction

During the last decades, the use of Finite Element
Methods spread inmany engineering fields, allowing to
achieve very accurate results. However, the main draw-
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back of these methods is that both the computational
time and the reliability of the results are directly related
to the spatial discretization chosen for the system [1].
Moreover, if transient phenomena are under evaluation
and time integration of the equations is required, the
correct time step needs to be carefully chosen in order
to achieve the needed information [2]. This is true, for
instance, for vibrating mechanical systems that must
satisfy many types of requirements. In the early phases
of the design process, quick results are needed to eval-
uate the performances of the considered system, thus
FE methods might not be the proper choice to make.

Dynamic Substructuring techniques represent a
valid alternative to analyze large engineering systems,
such as aircrafts or cars, providing accurate data in a
short time. They were introduced during the 1960s by
Hurty [3], Craig and Bampton [4] and Rubin [5] and
have becomewidely used because they allow to analyze
large numerical linear systems. On the other hand, also
experimental approaches to the substructuring prob-
lem using frequency response functions were devel-
oped [6,7]. In 2008 De Klerk et al. gave an extensive
review of the substructuring techniques developed so
far [8], and proposed a general framework to formulate
substructuring problems either in physical, modal and
frequency domains. These methods have become very
popular since their range of application is very broad:
it is possible to obtain the dynamic behavior of com-
plex systems starting from the known dynamic behav-
ior of its component substructures (coupling) [9,10];
on the other hand the behavior of one substructure can
be achieved from the known behavior of the complete
structure and that of the residual substructures (decou-
pling) [11–13]. It is the case, for example, of the decou-
pling technique developed by Saeed et al. [14] used to
identify the linear characteristics of a joint in an assem-
bled structure. Besides, coupling and decoupling can
be performed by combining experimental models of
some substructures and numerical models of the other
substructures [15–17], as done when using the Trans-
mission Simulator approach [18].

Although these techniques have been constantly
improved to solve increasingly challenging problems,
they are all based on the assumption that the underlying
systems are linear. This is a strong limitation, especially
if it is known that the considered components do not
behave linearly in the working range in which their
behavior is analyzed. For this reason, the presence of

nonlinearities has to be accounted for if more accurate
results are needed.

Some attempts have been made during the last
years to allow dynamic substructuring techniques to
deal also with nonlinear problems. Mahdiabadi et al.
[19] and Kuether et al. [20] propose a non intrusive
method to deal with geometrical nonlinearities of non-
linear systems to obtain a Nonlinear Reduced Order
Model (NLROM), using the Implicit Condensation
and Expansion (ICE) technique proposed by Hollkamp
[21]. Thismethod allows to express the nonlinear terms
as polynomials whose coefficients are estimated using
lest squares on force-displacement data obtained from
a full finite element model. Two different approaches,
named “construction” and “extraction” are instead sug-
gested by Chong and Imregun [22] to model the behav-
ior of nonlinear substructures. Both of them are used to
obtain the modal parameters describing the system to
be used for the coupling in the modal domain. The con-
struction technique is used to obtain nonlinear modal
parameter variations fromaphysical nonlinear stiffness
or damping laws while the extraction technique allows
to obtain the nonlinear modal parameters via a nonlin-
ear modal analysis ofmeasured response data [23]. The
whole procedure using the extraction technique is then
applied to deal with an experimental setup composed
of a beamwith cubic nonlinearity [24]. Another way to
account for the presence of nonlinearities in substruc-
turing analyses is by using Describing Functions (DFs)
[25]. Tanrikulu et al. [26] first used DFs developing an
approach to account for the effects of different types of
nonlinearities on the dynamics of a nonlinear system.
Wei and Zheng [27] used an approach based on DFs
to reduce the nonlinear problem into a set of complex
algebraic equations to be iteratively solved such that it
is possible to tackle those cases in which the nonlin-
earity is localized [28]. The use of the DFs is funda-
mental in the works of Kalaycioğlu and Özgüven, who
developed a frequency-based approach to account for
the presence of nonlinearities in coupling and decou-
pling procedures. In particular, in [29,30] the coupling
problem between multiple substructures with localized
nonlinearities is addressed, while in [31] the decou-
pling one is investigated. In the former case the struc-
tural modification technique developed by Özgüven
[32] is modified and the presence of the nonlinear-
ity is accounted for in a nonlinear matrix using DFs
that is updated at each iteration. In the latter case dif-
ferent formulations are used depending on where the
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nonlinear element is placed: if in the known subsys-
tem, a modal identification technique [33] is used; if
it is in the unknown subsystem the nonlinearity matrix
[26] is used; if it is at the connection between them, it
can be reduced to one of the previous cases, depending
on whether the properties of the nonlinear element are
known or not.

Wang et al. [34] focused the attention on the decou-
pling between components in which the nonlinearity
could be addressed as a nonlinear element between two
coordinates. In particular, they managed to obtain the
Frequency Response Function (FRF) of the nonlinear
substructure assuming to know the system-level FRFs
of the coupled nonlinear system. It can be very helpful
to perform the identification of nonlinear components
in a complex nonlinear system.

Inspired by the nonlinear couplingmethod in the fre-
quency domain, Kuether and Allen [35] developed an
iterative modal substructuring technique to account for
the presence of nonlinearities, modeling each subsys-
tem using a set of Nonlinear Normal Modes (NNMs).
Nonlinear Normal Modes were first introduced by
Rosenberg during 1960s [36–38], studied by Vakakis
[39] and later by Kerschen et al. [40], who defined
a nonlinear normal mode as the non-necessarily syn-
chronous periodic motion of a conservative nonlinear
systemwhich is characterized by energy dependent fre-
quency and amplitudes. Over the years, NNMs have
been widely used to better describe the dynamic behav-
ior of systems whenever the linear approximation was
not sufficient [41,42]. As a result, many methods have
been established to calculate the NNMs of a structure:
the shooting and pseudo-arclength continuation [43],
the Harmonic Balance (HB) [44,45] and the Modal
Derivatives (MDs) [46,47]. Peeters et al. in [48] pro-
pose some ways to experimentally measure NNMs of
nonlinear structures.

The present work aims at predicting the nonlinear
behavior of coupled systems using substructuring tech-
niques. In particular, the focus of this study is to ana-
lyze the effects that nonlinear connections have on the
dynamics of an assembly in which the coupled subsys-
tems can be considered as linear. This assumption is
valid in many engineering situations in which the con-
necting element introduces a nonlinearity much more
relevant than those of the substructures to be coupled,
as it happens with bolted joints [49], wire rope isola-
tors [50] or for the connections of turbine blades to a
rotor [51]. In this context it is then possible to isolate

the nonlinearity and consider it as a substructure itself
to be included in the coupling process. The method
proposed here is inspired by the work of Kuether and
Allen [35] who define an energetic approach to per-
form the nonlinear coupling in the modal domain to
obtain the NNMs of the complete assembly. Due to
the assumption of considering only the connecting ele-
ments as nonlinear, in the present case the NNMs have
to be evaluated only for the nonlinear connecting ele-
ments, whereas the linear substructures are described
through a possibly truncated set of Linear Normal
Modes (LNMs). Note that modal reduction can be also
performed to reduce the number of DoFs included in
LNMs. These assumptions lead to a reduction of the
computational burden, especially if large systems are
involved. The NNMs obtained from the coupling are
then compared to the ones calculated applying the HB
method on the whole system. This method was already
used to couple lumped parameter models connected by
single or multiple nonlinear springs, presenting hard-
ening and softening connections [52,53].

In the present work the method has been signifi-
cantly enhanced with respect to the previous work by
enforcing a better control of the total energy at each
step of the procedure through an adjustment of the
energy distribution among substructures. Also, the ini-
tial guess and the convergence criterion have beenmod-
ified in order to speed up the procedure. Furthermore,
the method is here applied to a more realistic system
made up of two continuous linear subsystems coupled
by nonlinear connections. The numerical results of the
coupling are first compared to the ones obtained by
using the HB on the model of the complete assembly
to evaluate its effectiveness and understand the effects
of modal truncation. Besides, a nonlinear connecting
element has been designed and manufactured in order
to have a nearly cubic hardening behavior. An experi-
mental setup, composed by two beams joined by two
of the aforementioned connecting elements, was used.
Tests have been performed on both the beams and the
nonlinear connecting elements to identify the param-
eters of the corresponding numerical models, to be
used in the coupling procedure. Substructuring results
are compared to experimental results measured on the
assembled system, in order to evaluate the correlation
betweenmode shapes and the accuracy in the resonance
frequency at several excitation levels.

The present method is based on the same theoret-
ical assumption made by Kalaycioğlu and Özgüven
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in [30,31] of considering only the fundamental fre-
quency of the response of each mode. This assump-
tion does not allow to account for higher harmonics
effects and internal resonances. However, it allows to
investigate the dynamics of many engineering systems
at the transition between linear and nonlinear behav-
ior. The proposed method is developed using a modal
approach whereas the method in [30] is set in the fre-
quency domain. Using the frequency-based approach,
experimental data can be easily used to perform the
analysis and retrieve the variation of the resonance fre-
quency at different excitation levels. However, a dense
discretization in frequency is necessary to correctly
estimate the resonance frequency, thus possibly lead-
ing to an increase in the computational time, especially
if a system with many DoFs is considered. Using the
modal approach, instead, experimental data might not
be straightforward to obtain [54], but the method itself
does not require heavy computation and the conver-
gence is reached with reduced computational burden.

The advantages of using nonlinear substructuring
techniques, such as the one presented in this paper, with
respect to other methods that require the model of the
entire system, such as the HB method, shooting and
pseudo-arclength continuation, FEM, are implicit in
the substructuring approach: combining experimental
and numericalmodels, considering simpler subsystems
instead of a unique complex one, performing indirect
analyses and allowing a reduction of the computational
burden.

The work is organized as follows: Section 2 high-
lights the main characteristic of substructuring and the
steps of the enhanced nonlinear coupling procedure
are presented. Section 3 introduces the models used
in the two case studies: the fully-clamped system and
the free-free system, the latter being inspired to the
experimental setup. Section 4 presents the results of
the simulation on the fully-clamped system, highlight-
ing the effects of modal truncation. Section 5 shows the
comparison between the numerical results and the pre-
liminary experimental results on the free-free system.

2 Theoretical background

The present approach extends the classical linear sub-
structuring techniques to include the effects of nonlin-
ear phenomena according to NNMs theory. The linear
substructuring technique in the modal domain and the

nonlinear coupling procedure are introduced in the fol-
lowing section.

2.1 Linear coupling procedure in the modal domain

Substructuring methods are used to analyze complex
structures composed of multiple parts either to eval-
uate the behavior of an unknown subsystem from the
one of the complete assembly (decoupling) [12] or to
obtain the behavior of the assembly knowing the single
subcomponent ones (coupling) [8], as it is done here.
The dynamic equation for an undamped substructure
is:

M(s) ẍ(s) + K(s)x(s) = f (s) + g(s) (1)

where Ms) is the mass matrix, K(s) is the stiffness
matrix, f (s) is the vector of external forces and g(s) is
the vector of connecting forces with the adjacent sub-
structures. The equations of motion of each subsystem
can be collected in a block diagonal form as:

Mẍ + Kx = f + g (2)

where x = {x(1)T · · · x(s)T · · · }T , so that M and K
are, respectively, the mass and stiffness block diagonal
matrices, f collects the external forces and g collects
the connecting forces. The coupling between the sub-
structures is performed by imposing the compatibility
and equilibrium conditions. The first one implies that
any pair of matching DoFs, e.g. DoF a on subsystem
s and DoF b on subsystem t must have the same dis-
placement, that is x (s)

a − x (t)
b = 0. This condition is in

general expressed as:

Bx = 0 (3)

where B is a signed boolean matrix. The equilibrium
condition is referred to internal constraint forces and
implies that the sum of connecting forces at a pair of
matching DoFs must be zero, e.g. g(s)

a + g(t)
b = 0: this

holds for any pair of matching DoFs. Furthermore, if
DoF l on subsystem r is not a connecting DoF, it must
be g(r)

l = 0: this is valid for any non-connecting DoF.
Overall, the above conditions can be expressed as:

LT g = 0 (4)
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The compatibility condition is implicitly satisfied if
a unique set of interface DoFs q is defined as:

x = Lq (5)

where L is the same matrix introduced earlier. Com-
bining Eqs. (3) and (5):

BLq = 0 (6)

then BL = 0, i.e. L = null(B).
Considering a large number of degrees of freedom

can result in an increase of the computational cost for
the method. Thus, modal reduction is in general per-
formed by considering only a truncated set of the free
interface modes of each substructure. However, if no
truncation takes place, the number of degrees of free-
dom does not change and it becomes a simple transfor-
mation intomodal coordinates thatmight be convenient
to solve some cases. Modal reduction is performed by
building the block diagonalmatrixR, where each block
contains the set of modes of the corresponding sub-
structure. Thus, it is possible to write:

x = R y (7)

then, by substituting Eqs. (7) and premultiplying by
RT , Eq. (2) becomes:

Mm ÿ + Km y = f m + gm (8)

where

Mm = RTMR, Km = RTKR,

f m = RT f , gm = RT g.
(9)

The compatibility condition can be expressed in
modal coordinates as:

B̃ y = 0 (10)

where

B̃ = BR (11)

According to Eq. (10) the compatibility is enforced
between the modes of the various substructures and it
is imposed exactly if nomodal truncation is performed,
otherwise there is some constraint relaxation.

A unique set of generalizedmodal coordinates z sat-
isfying the compatibility condition can be defined using
the same approach followed for the physical coordi-
nates:

y = L̃z (12)

Satisfying the compatibility condition implies in
both cases that:

B̃L̃z = 0 (13)

and so:

L̃ = null(B̃) = null(BR). (14)

Hence, the equilibrium condition can be written as:

L̃
T
gm = 0. (15)

By substituting Eq. (12) and premultiplying by LT
m

Eq. (8) becomes:

M̃ z̈ + K̃z = L̃
T
f m (16)

with:

M̃ = L̃
T
MmL̃, K̃ = L̃

T
KmL̃ (17)

As it will be outlined in 2.2, Eq. (16) will be used to
couple nonlinear substructures too.

2.2 Nonlinear coupling procedure in the modal
domain

Nonlinear coupling [30,31] and nonlinear modal sub-
structuring [35,55] account for the effects of the nonlin-
ear internal forces considering them as harmonic at the
same frequency of the excitation, thus higher harmon-
ics effects are not captured. The same assumption is
valid for the procedure discussed in this section, that is
meant to couple linear substructures connected through
nonlinear connecting elements.

The procedure is applied to analyze the dynamics
of systems like the one shown in Fig. 1, where each
linear substructure Li has ni DoFs and each nonlinear
substructure has 2 connecting DoFs. It follows that the
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Fig. 1 Example of two substructures connected through two
nonlinear connection, where LA and LB have n and m DoFs,
respectively

number of DoFs of the assembled structure is equal to∑p
i=1 ni .
The coupling in the modal domain, as seen in

Sect. 2.1, requires the modal bases for the considered
substructures. In this case, LNMs are used for the lin-
ear subsystems and NNMs for the nonlinear ones. The
advantage of the Nonlinear Coupling Procedure relies
on the fact that instead of computing the NNMs of the
whole nonlinear structure, thus requiring a lot of time, it
suffices to compute theNNMsonly for the simpler non-
linear substructure, for example using the HB method.
The coupling procedure is then used to propagate the
local nonlinear behavior on the dynamics of the com-
plete assembly, thus allowing to obtain its NNMs. Sig-
nificant improvements have been made with respect
to the method used in [52,53] in order to control the
energy levels at which the NNM is evaluated. These
lead also to a relevant enhancement in the convergence
speed of the numerical procedure. Since the NNMs are
energy dependent [40], the coupling is performed by
considering increasing energy levels collected in the
array

e = {e1 · · · ek · · · }T (18)

where ek indicates the k-th energy level at which the
coupling is performed. The idea is to reconstruct the
NNM curve for each mode of the coupled system by
using an iterative continuation technique, in which the
solutions at the two previous energy levels are used to
derive the initial guess for the following one, as shown
in Fig. 2 and detailed in Sect. 2.2.3.

In order to start the procedure, two initial points
of the NNM of the complete structure are needed, as
shown in Fig. 3. These points can be obtained by choos-
ing the first two energy levels of the array e to be very
low. In this way the first two points on the NNM are

Fig. 2 Continuation Procedure: the blue solid line is the NNM
to be identified, the red arrow indicates the prediction step, the
black one refers to the correction step and the blue dots are the
identified points of the NNM. (Color figure online)

k=1 k=2 k=3
k=4

k=5

k=6

i=1
i=1

i=1

i=1

Fig. 3 Complete Procedure: the blue curve refers to the real
NNM, the green piece-wise line to the computed NNM, the two
green dots are the points obtained with the linear initial guess,
the red and black segments are referred to the prediction and
correction steps, respectively. (Color figure online)

computed by using a linear approximation for the initial
guess (detailed in Sect. 2.2.2).

Since all the subsystems are considered as undamped,
the energy associatedwith each substructure is constant
during the free oscillation and equal to the sum of the
elastic and kinetic energy. The energy at each iteration
is computed by considering that the eigenvector coordi-
nates represent the amplitude of the displacement oscil-
lation of each degree of freedom and that the velocity
can be derived since an harmonic oscillation is being
considered.

The complete iterative algorithm of the Nonlinear
Coupling Procedure is shown schematically in Fig. 4,
where: the blue area indicates the operations of the
nonlinear coupling procedure (Sect. 2.2.1); the yellow
area indicates how the initial guess is obtained for the
first two energy levels based on the linear approxima-
tion (Sect. 2.2.2); the green area indicates the predic-
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Fig. 4 Schematic of the Nonlinear Coupling Procedure

tion operation for the k-th energy level, with k > 2
(Sect. 2.2.3).

2.2.1 Nonlinear coupling in modal domain

The coupling in the modal domain requires the defini-
tion of the matrix R introduced in Eq. (7). Since non-
linear substructures are involved, the reduction matrix
includes both LNMs and NNMs. This part of the algo-
rithm aims at iteratively obtaining the energy distri-
bution of the substructures in the coupled configura-
tion, i.e. the correct energy associated with the NNMs
included in the matrix R, and at comparing it to the
distribution found at the previous iteration, until con-
vergence is achieved.

Once the distribution of the energy ek among the
substructures is estimated, it is possible to perform the
coupling in themodal domain. The equations ofmotion

describing the nonlinear system are

⎧
⎪⎨

⎪⎩

Mẍ + Kx + f nl(x) = g

Bx = 0

LT g = 0

(19)

where

M = diag
(
MA,MCE ,MB

)
,

K = diag(KA,KCE ,KB)
(20)

and f nl(x) is the vector representing the nonlinear
term. It is now possible to perform the coupling proce-
dure according to the following steps:

Step 1: normalization of the nonlinear modes
according to the energy associated with the cor-
respondent substructure;
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Step 2: coupling of the linear and nonlinear sub-
structures;
Step 3: convergence check based on an energy cri-
terion that will be discussed in the sequel of this
Section.

The reduction matrix introduced in Eq. (7) becomes
energy dependent and can bewritten for the k-th energy
level for the assembly and iteration i using the matri-
ces of linear eigenvectors�A and�B andmode shapes
�CE of the nonlinear modes computed at energy ECE

k,i
obtained from Eq. (42) for the case where all the non-
linearity is in the connection:

Rk,i = diag(�A,�CE (ECE
k,i ),�B) (21)

The eigenvectors � of linear substructures are mass
normalized and the t-th nonlinear mode ψ t in �CE is
normalized accordingly (Step 1):

ψ t (E
CE
k,i ) = χ t (E

CE
k,i )

√
χT
t (ECE

k,i )MCEχ t (E
CE
k,i )

(22)

being χ t (E
CE
k,i ) the mode shape taken as the initial dis-

placement of the substructure for the periodic solution
at a given energy level ECE

k,i . Note that in the present
approach the nonlinear connection is considered as a
substructure, thus the mass matrix must be necessarily
defined and the NNMs can be always computed. This
is not a limitation since if the connecting element is a
mass-less nonlinear spring, end masses can be added
by subtracting them from the linear substructures [52].
The denominator in Eq. (22) is a normalization coeffi-
cient and it will be addressed as cst since it is computed
for the t-th mode of the s-th substructure, and all can
be gathered to form ck :

cr =
⎧
⎨

⎩

cA

cCE

cB

⎫
⎬

⎭
k

(23)

that is computed only at the first iteration of the k-
th energy level and it will be used during the whole
iterative procedure to perform the transformation from
modal to physical domain.
Similarly the matrix of the corresponding “eigenval-
ues” � becomes:

�k,i = diag(�A,�CE (ECE
k,i ),�B) (24)

where �A and �B are the eigenvalues of the linear
substructures, whereas �CE (ECE

k,i ) is the matrix of the
squared angular frequencies for the NNMs of the non-
linear substructure at a given energy level ECE

k,i , com-
puted using the HB method.

The matrixRk,i in Eq. (21) can be used to define the
nonlinear modal transformation:

x ≈ Rk,i y (25)

that holds approximately in case of modal truncation.
By forcing the assumption of orthogonality of the
NNMs with respect to the mass and stiffness matri-
ces [35], the equation of motion in Eq. (19) becomes:

I ÿ + �k,i y = RT
k,i g (26)

where Rk,i accounts for the nonlinear force present in
Eq. (19). Hence Eq. (12) becomes:

y = L̃k,i z (27)

where L̃k,i depends on the energy level. It is possible
to perform the coupling (Step 2) following the same
approach outlined in Sect. 2.1 from Eq. (8) to Eq. (16):

M̃k,i z̈ + K̃k,i z = 0 (28)

where the matrices M̃k,i and K̃k,i are updated at each
iteration according to Eq. (17). The system in (28) is
a linear approximation of the nonlinear system at the
energy ek , so it is possible to compute its eigenvalues
and eigenvectors. A given eigenvalue-eigenvector pair
represents the natural angular frequency ωr and the
eigenvector ξ r expressed in generalized modal coordi-
nates z of the r-th mode for the coupled system. This
result can be brought back in the physical domain by
performing a coordinate transformation according to
Eq. (25) and (27):

χk,i =
⎧
⎨

⎩

χ A

χCE

χ B

⎫
⎬

⎭
k,i

= Rk,i L̃k,iξ r c̄k,i (29)

where c̄ is the participation factor obtained as
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c̄k,i = [L̃k,iξu]+ck (30)

being ()+ the pseudo-inverse.
Since the system is nonlinear, the predicted vector

χk,i is associated with an energy level that may be
different from ek . Thus, it is necessary to scale the pre-
dicted vector χk,i by introducing a scaling coefficient
α, obtaining

χ̂k,i = αχk,i (31)

such that, by defining xk,i (t) = χk,i e
jωk,i t , the energy

level associated with χ̂k,i is forced to be equal to ek
introduced in Eq. (18), i.e.

α ẋTk,i M α ẋk,i
2

+ αxTk,i K αxk,i
2

+

+
∫ αxk,i

0
fnl(αxk,i ) d(αxk,i ) = ek

(32)

Although Eq. (32) holds at any instant, it is useful to
evaluate it when the amplitude of oscillation is maxi-
mum, i.e. for t = 0:

−ω2
k,iα

2
χT
k,i Mχk,i

2
+ α2

χT
k,i K χk,i

2
+

+
∫ αχk,i

0
fnl(αχk,i ) d(αχk,i ) = ek

(33)

For a cubic spring, fnl(αχk,i ) = knl α3δ3k,i , where
δ represents the deformation of the nonlinear spring.
Therefore, Eq. (32) becomes:

−ω2
k,iα

2
χT
k,iMχk,i

2
+α2

χT
k,iKχk,i

2
+α4

knlδ4k,i
4

= ek

(34)

This represents one of the main differences with the
approach outlined in [35,52], because in that case the
result from Eq. (29) would be directly used to compute
the energy of the substructures in the coupled configu-
ration. This new approach, instead, guarantees that the
total energy of the assembly is kept constant throughout
the iterative procedure.

At this point it is possible to evaluate the energy Êk,i

at iteration i of the substructures in the coupled con-
figuration. The iterative algorithm stops when a stop-
ping criterion is satisfied. While the convergence crite-

rion in [35,52] is based on the comparison between the
energy distribution of the substructures in the coupled
and uncoupled configuration, here it is defined as:

∣
∣
∣Êk,i − Êk,i−1

∣
∣
∣
2∣

∣
∣Êk,i−1

∣
∣
∣
2

< ε (35)

where the norm of the energy increment at iteration i
is related to the norm of the energy at iteration i − 1.
In this way, when the difference between the energy
distribution obtained at two consecutive iterations is
below a certain tolerance, the algorithm stops. Note
that if i = 1, Êk,0 is assumed to be initial guess vector
for the energy distribution Ek,1.

If Eq. (35) is not satisfied, the initial energy for
Eqs. (21)–(30) is updated as:

⎧
⎨

⎩

E A
k,i+1

ECE
k,i+1

EB
k,i+1

⎫
⎬

⎭
= λ

⎧
⎪⎨

⎪⎩

Ê A
k,i

ÊCE
k,i

Ê B
k,i

⎫
⎪⎬

⎪⎭
+ (1 − λ)

⎧
⎨

⎩

E A
k,i

ECE
k,i

E B
k,i

⎫
⎬

⎭
(36)

where λ is a weighting factor ranging from 0 to 0.5 to
improve the numerical stability of the iterative proce-
dure. This updating expression is different from the one
outlined in [35,52], where the convergence criterion
is developed as a combination of the energy distribu-
tions of the substructures in the uncoupled and coupled
configuration. In Eq. (36), instead, the energy distribu-
tions are always referred to the coupled configuration.
In fact, since the initial guess is specifically chosen to
be close to the real solution, in this correction the initial
estimate of the energy distribution Ek,i is given more
importance with a weighting factor greater than 0.5,
and the other term Êk,i is used to perturb it for the next
iteration.

If Eq. (35) is satisfied, the iterative procedure is
stopped, the solution for the energy level k is stored
and the next energy level k + 1 can be discussed. Also,
in order to enforce that the energy is always equal to
ek , the following normalization is performed to obtain
the input energy distribution Ẽk for iteration i + 1:

Ẽk,i+1 = Ek,i+1

√
ek

E A
k,i+1 + ECE

k,i+1 + EB
k,i+1

(37)

This represents also an improvement with respect
to the method in [35,52] because it enforces a better
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control of the energy at each iteration. It is important
remarking that the passages from Eq.(31) to Eq.(37)
have beenmodifiedwith respect to [35,52] such that the
energy at each iteration is kept constant and equal to the
desired value ek . Also, the convergence is verified by
comparing the energy distribution of the substructures
between two consecutive iterations.

2.2.2 Estimation of the initial guess, k ≤ 2

This procedure is used to initialize the computation for
the r-th mode and it is performed at the first iteration,
only for the first two energy levels. It is convenient to set
their correspondent energy value to be sufficiently low
such that the LNM and NNM of the complete system
almost coincide in frequency and mode shape. In this
way the coupled system can be considered as linear
and its eigenvectors are easily computed. Referring to
Fig. 1,

(Ktot − �2
linMtot )Vlin = 0,

Vlin = {
v1, v2, · · · vn+m

} (38)

whereKtot andMtot are the stiffness andmassmatrices
of the linear assembled system defined on the unique
set of DoFs q, and Vlin and �lin are the eigenvectors
and eigenvalues matrices. The considered r-th mode is
associated with an energy Er equal to

Er = vTr [Ktot ]vr
2

(39)

Since the linear eigenvector vr needs to approximate
the nonlinear NNM at a given low energy level, it is
necessary to normalize it such that its energy is equal
to ek

v̄r =
√

ek
Er

vr , for k ≤ 2 (40)

The index r is now dropped since the solution is found
for one mode of the coupled system by varying the
energy in all of the component modes [35]. Instead, the
index referring to the iteration is introduced, which for
the first one is i = 1.

Using Eq. (5) it is possible to expand the eigenvector
v̄ in the primal formulation to the eigenvector ū in the
dual domain, thus obtaining in the case of two linear

subsystems connected through one nonlinear connec-
tion:

Lv̄ = ū =
⎧
⎨

⎩

ūA

ūCE

ūB

⎫
⎬

⎭
(41)

where ūA, ūB and ūCE represent the portions of the
eigenvector ū corresponding to the substructures A, B
and CE, respectively. With this partition it is possible
to compute how the energy ek is distributed among the
substructures:

Ek,1 =
⎧
⎨

⎩

E A
k,1

ECE
k,1

EB
k,1

⎫
⎬

⎭
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ūATKA ūA

2

ūCE T
KCE ūCE

2

ūBT
KB ūB

2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

, for k ≤ 2

(42)

where the energy ek is the sum of the components E j
k,1

of the vector and the matrices KA, KB represent the
linear stiffness of each substructure and KCE repre-
sents the tangent stiffness matrix evaluated at the static
equilibrium position.

In doing so, the initial guess describing how the
energy ek for the energy levels k = 1, 2 is distributed
among the substructures is obtained. This approach can
easily be extended to the case with multiple nonlinear
connecting substructures.

2.2.3 Estimation of the initial guess, k > 2

One of the novelties introduced in the procedure with
respect to the one proposed by Kuether and Allen [35]
is in the initial guess of the energy distribution for the
iterative algorithm. In fact, it is estimated by using the
energy distribution found at the two previous energy
levels instead of considering the energy as equally dis-
tributed among the substructures. The initial energy
distribution associated with the first two energy levels
is found using the linear eigenvectors for all the sub-
structures. For higher energy levels (k > 2) the initial
energy distribution Êk and themode shape of theNNM
of the complete structure χ̂k can be extrapolated using
a linear projection of the two previous energy levels.
They are used as the predictions for the first iteration
because it is reasonable to suppose that the solutions
between two consecutive energy levels do not differ
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much from each other if considering that the increase
of energy is low. This approach allows to account for
the trend of variation of each component of either the
initial energy distribution and the mode shape of the
NNM. Thus, considering for example the h-th element
of χ̂k,1 and �-th element of Ek,1:

χ̂h
k,1 = (χ̂h

k−1 − χ̂h
k−2)

(ek−1 − ek−2)
(ek − ek−1) + χ̂h

k−1 (43)

E�
k,1 = (Ê�

k−1 − Ê�
k−2)

(ek−1 − ek−2)
(ek − ek−1) + Ê�

k−1 (44)

In doing so, it is not necessary to perform the coupling
for the first iteration, thus it is possible to directly go to
Eq. (35). This projection is performed only for the first
iteration when k > 2, while for the following iterations
the procedure shown in Sect. 2.2.1 holds.

3 Models

In a previous work the Nonlinear Coupling Procedure
(NLCP) was applied to lumped parameter models [52].
Here, instead, it is used to couple two continuous sys-
tems through nonlinear connecting elements. Two dif-
ferent cases are considered, the first considering a fully
clamped system and the second being a free-free sys-
tem. In particular, the second model reproduces an
experimental system that was built in the laboratory of
the Department of Engineering Physics at University
of Wisconsin-Madison.

3.1 Fully clamped system

The beams aremodeled using 20 Euler–Bernoulli finite
elements of equal length, as shown in Fig. 5, consider-
ing a 2D problem. The axial DoF of the beams can be
neglected, therefore each node has two degrees of free-
dom, the one related to the vertical displacement and
the one accounting for the rotation. The beams are con-
nected together through two cubic springs, as shown in
Fig. 5, and their dimensions and material properties are
summarized in Table 1.

In order to have two different displacement fields for
the two beams at a given frequency, the lower beam’s
thickness is twice the upper one’s. In this way there
is no occurrence in which the nonlinear springs are
not subjected to deformation. Besides, the nonlinear
elements are not symmetric with respect to the center

Fig. 5 Structure of the fully clamped system. The horizontal
lines represent the linear beams, the vertical lines represent the
nonlinear springs and the four blocks at the beam ends represent
the clamps

of the beam to avoid double modes. Both the springs
behave following the same cubic law:

k(x) = knl x
2 + kl (45)

where kl = 1000 N/m and knl = 5 × 106 N/m3 that
are chosen such that the stiffness of the springs has the
same order of magnitude of the static stiffness of the
beams.

3.2 Free-free experimental system

It is composed of two beams of 910mmx 30mmx 6,35
mm made up of steel, connected together through two
Nonlinear Connecting Elements (NLCEs), as shown in
Fig. 6.

Since is hung from the frame through elastic cords,
the system can be considered as free-free. The crucial
element in this setup is the NLCE, shown in Fig. 7a.
The beams’ thicknesses are such that they would yield
before exhibiting nonlinearity whilst the NLCE has
been designed such that it exhibits significant nonlin-
earity before yielding. TheNLCE is composed of a thin
plate of spring steel connected at its ends to a C-shaped
element and, at the middle, to a T-shaped element, as
shown in Fig. 7.

The NLCE dimensions are listed in Table 2.
The configurationof thenonlinear element is inspired

to the cubic behavior of a beam clamped at both ends
and subjected to large displacement at mid-span. In
this case, the plate plays the role of the clamped beam.
Every component of the assembled structure is tested
to obtain the necessary information to build a numer-
ical model that fit the experimental data. Each one of
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Table 1 Dimensions and material properties of the fully clamped system

Length [m] Width [m] Thickness [m] Young Modulus [Gpa] Density [kg/m3] Nodes

Upper beam 1 0.01 0.002 205 7800 21

Lower beam 1 0.01 0.004 205 7800 21

Fig. 6 Experimental setup, composed of two beams connected
through two NLCEs

those is discussed in detail in Sects. 5.1 and 5.2. Once
the properties of either the beams and the NLCEs are
identified, the entire system can be modeled in Matlab.

The beams are modeled using 65 Euler–Bernoulli
finite elements of equal length, as shown in Fig. 8.
Every node has two degrees of freedom, the one related
to the vertical displacement and the one accounting for
the rotation. The NLCEs are modeled as a nonlinear
cubic springs (orange lines) and are located in accor-
dance with their position in the real system.

Table 2 Dimensions of the NLCE

b d hup hdown l w tb tp

12 57 20 15 150 30 5 0.2 [mm]

4 Numerical validation of the nonlinear coupling
procedure on a continuous system

TheNonlinearCouplingProcedure presented inSect. 2.2
is here used to compute the NNMs of the fully clamped
system introduced in Sect. 3.1.

4.1 Nonlinear coupling using complete modal basis

The NLCP and the HB method with one harmonic
are performed to compute the first five NNMs of the
coupled system. The results can be compared in a
Frequency-Energy Plot (FEP), as shown in Fig. 9.

The modal basis used to reduce each beam con-
tains all the modes derived from the discretization (i.e.
38 modes per beam, considering that both beams are
clamped at both ends). The NLCP curves manage to
retrace the HB main backbone in a wide energy range,

tb

hdown

hup

l w

d
b

(a) Nonlinear Connecting Element. (b) 3D model of the NLCE.

Fig. 7 Nonlinear connecting element
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Fig. 8 Structure of the free-free system. The horizontal lines
represent the linear beams, the twopairs of vertical lines represent
the two NLCEs
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Fig. 9 FEP of the first 5 modes of the coupled system
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Fig. 10 Deviation in frequency between the HB and the Non-
linear Coupling Procedure

even in the areas where there is a significant increase
in the frequency, as it is for mode 5. As it is shown in
Fig. 10, the deviation in frequency associated with the
results is below 0.2% and its average is about 0.05%.
Note that the NLCP results well retrace the main back-
bone of theNNMs computed using theHBmethodwith
3 harmonics, as shown in Fig. 11.
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Fig. 11 NNMs of the fully-clamped system obtained through
the HB method with 3 harmonics (solid lines) and the NLCP
(dashed lines)

4.2 Enhancements of the NLCP

TheNLCP technique outlined in Sect. 2.2 has been sig-
nificantly enhanced with respect to the one described
in [52]. It is possible to evaluate the effects of these
improvements by applying the two methods to the
fully-clamped system and compare the results. They
share the same theoretical approach, thus the NNMs
obtained using either one of them are the same. How-
ever, as already explained, major improvements have
been made to have a better control on the total energy
of the coupled system and to increase the rate of con-
vergence. For both the procedures it is necessary to
define the array of energy levels at which the coupling
is performed. The chosen array is composed of 400
logarithmically spaced points between 10−4 and 104

(roughly 50 points per order of magnitude).
Figure 12 shows the energy of the five NNMs of the

coupled structure computed using the coupling proce-
dure with both the methods.

The results of the old coupling procedure show that
the energy of the obtained NNMs is always different
from the energy levels given as input. Furthermore, the
set of energy levels at which each NNM is defined is
different from the others. Figure 13 shows, for exam-
ple, the FEP for the fifth mode obtained using both the
methods.

Even if the first energy level given as input is equal
to 10−4 J , the old NLCP converges at ≈ 10−1 J , thus
the solution for lower energy levels cannot be achieved.
Also, there are wide energy intervals in which the solu-
tion is not available. In engineering applications both
circumstances are a limit, especially if the lack of infor-
mation affects those energy levels at which the system

123



1056 F. Latini et al.

10−4 10−2 100 102 104
10−4

10−3

10−2

10−1

100

101

102

103

104

105

106

107

108

Input energy for computation [J]

N
N
M

en
er
gy

[J
]

Modes 1 to 5 - Enhanced NLCP
Mode 1 - Old NLCP
Mode 2 - Old NLCP
Mode 3 - Old NLCP
Mode 4 - Old NLCP
Mode 5 - Old NLCP

Fig. 12 Energy at which the fiveNNMs are computed. The solid
line is referred to the results of the enhanced NLCP, while the
dashed lines to the results of the old NLCP
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Fig. 13 FEP of the 5th mode obtained with the two methods

works. Using the enhancedNLCP, instead, it is possible
to get the solution at the required energy levels by just
inserting them in the energy array e defined in Eq. (18).
Conversely, the enhanced NLCP provides the NNMs at
the same energy levels used as input. Figure 14 shows
for the second mode, as an example, the cumulative

10−4 10−3 10−2 10−1 100 101 102 103 104 105
0

0.5

1

·104

Energy [J]

Ite
ra
tio

ns

Mode 2 - Enhanced NLCP
Mode 2 - Old NLCP

Fig. 14 Cumulative number of iterations for the 2nd Mode
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Fig. 15 Computational time of both methods for each mode

number of iterations required by the two methods to
converge at each energy level.

The overall number of iterations performedusing the
enhanced NLCP (solid line) is much lower than those
required for the old coupling procedure (dashed line)
using the same number of energy levels. Consequently,
the computational time employed for the analysis of
each mode decreases if using the enhanced NLCP, as
summarized in Fig. 15. The enhanced NLCP performs
the analysis in less than 3 minutes, while the other
requires about 30 minutes to compute the five NNMs.
This comparison between the two methods highlights
the importance of the performed improvements: on one
hand, the computational time decreases with respect to
the previous case, and on the other hand, it is possi-
ble to obtain the results at the desired energy levels.
The latter statement might even be considered of major
importance, because the two consecutive solutions are
at pre-set energy levels, thus there is the possibility to
obtain the NNM for each required energy value. Using
the enhanced NLCP, the NNM can be obtained at any
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given energy level, whereas the use of the previous pro-
cedure would most likely require the interpolation of
the results to get the NNM at a specific energy value.

4.3 Modal truncation effects on nonlinear coupling
accuracy

It is interesting to evaluate howmodal truncation affects
the accuracy of the substructuring procedure. Six trun-
cation frequencies are chosen and the coupling is per-
formed considering the proper number of modes for
each beam with respect to each truncation frequency,
as summarized in Table 3. The curves describing how
the error in frequency varies for eachmode at each trun-
cation frequency are shown in Fig. 16. As it can be seen
from the figures, the error depends either on the trun-
cation frequency and also on the energy level at which
the curve is computed. The error decreases as the trun-
cation frequency increases, and the opposite happens
as the energy grows. Considering for example the first
mode, whose linear frequency is 12 Hz, it is possible to
see that using a truncation frequency of 100 Hz (yellow
line) the error is about 0.5% at 0.001 J, but it reaches
almost 5% above 1000 J. In this case, the truncation fre-
quency is almost ten times the linear frequency, and yet
the error grows of one order of magnitude. This holds
also for the second mode, when a truncation frequency
of 50 Hz is considered (orange curve), resulting in a
error that starts below 0.5% and overcomes 100%. The
curves in Fig. 16 highlight that this is a general trend
for all the modes, especially if the used truncation fre-
quency is lowwith respect to the frequency of the linear
mode under evaluation. However, it is not possible to
simply relate the characteristic error for amodewith the
choice of the truncation frequency because it is impor-
tant to take also into account the energy at which the
dynamics of the system needs to be evaluated. These
curves show how the modal truncation affects the error
in frequency, but they do not provide any information
regarding the effects on the nonlinear mode shapes of
the system.

The correlation between the mode shapes can be
estimated by selecting an energy level and a truncation

frequency and computing the Modal Assurance Crite-
rion (MAC) [56] of the modes obtained with the NLCP
(shortened as CP in the following formula) considering
the modes computed with HB as reference:

MAC(χHB,χCP ) = |χH
HB χCP |2

(χH
HB χHB)(χH

CP χCP )
(46)

TheMAC is evaluated at low and high energy levels for
the first five modes. Referring to Fig. 9, the low energy
level for each mode corresponds to a point on the curve
at which the hardening effect is low (left end of the
curve). The high energy level for each mode, instead,
corresponds to a point at which there is a significant
hardening effect (right end of the curve). The selected
energy values for each mode are listed in Table 4.

Figure 17 shows different evaluations of the Modal
Assurance Criterion for the five modes, computed for
each truncation frequency at low and high energy.

In particular, blue bars in the graphs refer to the
MACof the assembly and show how the decrease in the
truncation frequency leads to a reduction of the MAC
number, especially for modes 1 and 2 at both low and
high energy. For the considered five nonlinear modes,
200 Hz (i.e. ten retained modes) seems to be the lowest
possible value for the truncation frequency such that
the corresponding mode shapes are not affected much
by themodal truncation in the considered energy range.

Also, the partialModalAssuranceCriterion (pMAC),
defined in [57], is computed for the upper and lower
beams and for the nonlinear connections in order to
correlate parts of themodal vectors (orange, yellow and
purple bars, respectively, in the histograms of Fig. 17).
A lowvalue of the pMAC indicates the portion ofmodal
vector (substructure) in which there is poor correlation
between the mode shapes. As it happens for the MAC,
also the pMACs are affected by the number of modes
retained during the reduction process. It is interesting to
highlight that the MAC can be lower than the pMACs:
for instance, in the present case it happens for mode
1 at high energy, when it is computed using a modal
basis corresponding to a truncation frequency of 25 and
50 Hz. This means that the poor correlation indicated

Table 3 Number of modes
included for each modal
truncation case

Truncation Frequency [Hz] 25 50 100 200 500 1000 No Truncation

N ◦ of modes used 2 3 6 10 15 23 76
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(a) Deviation in frequency for the 1 (b) Deviation in frequency for the 2

(c) Deviation in frequency for the 3 (d) Deviation in frequency for the 4

(e) Deviation in frequency for the 5th Mode
with linear frequency equal to 61 Hz.

Truncation Frequency = 25 Hz
Truncation Frequency = 50 Hz
Truncation Frequency = 100 Hz
Truncation Frequency = 200 Hz
Truncation Frequency = 500 Hz
Truncation Frequency = 1000 Hz

Fig. 16 Deviation in frequency of the 5 modes for each truncation frequency

Table 4 Energy levels for
each mode

1st Mode 2nd Mode 3rd Mode 4th Mode 5th Mode

Low energy [J] 0.0012 0.0037 0.0008 0.0026 0.0029

High energy [J] 2390 3600 2390 2170 10000
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Fig. 17 MAC number for the 5 modes for each truncation frequency at low and high energy: � MAC, � pMAC for the upper beam,
� pMAC for the lower beam, � pMAC for the nonlinear connections. (Color figure online)

by the MAC does not depend only on the partial cor-
relation (i.e. local mode shapes) between the involved
parts, but also on the energy distribution among the sub-
structures (i.e. the local amplitudes of the mode shape).
Figures 18a and b show the mode shapes for the second
and fifth NNMs of the whole structure evaluated at the
corresponding high energy values for the considered
truncation frequencies. It is possible to relate the graph-
ical representation of the mode shapes with the results
of the pMACs. For example, considering the shape of
the fifth mode computed for the truncation frequency

at 100 Hz (green curve in Fig. 18b), the local shape of
the upper beam is similar to the shape computed with
the HB but with a different amplitude, while the local
shape of the lower beam is not. This agrees with the
corresponding results of the pMACs shown in Fig. 17.
Besides, for the second mode shown in Fig. 18a, at
low values of the truncation frequency, (25 and 50 Hz)
there is a significant difference in the local shape of
the upper beam, highlighted also by the corresponding
pMAC. On the other hand, for the lower beam there is
a good correlation in shape but a significant difference
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Fig. 18 Variation of the mode shape and energy distribution among substructures for modes 2 and 5 at high energy. (Color figure
online)

in amplitude that is not detected by the corresponding
pMAC but only by the MAC. The energy distribution
defined in Eq. (42) provides a useful insight about the
error in the amplitude of the local shapes for each por-
tion of the assembly. Figure 18c and d shows that as
the truncation frequency decreases, the energy associ-
ated with each substructure differs from that computed
using the HB (dashed lines), thus explaining the differ-
ence in amplitude for the local mode shapes.

These results indicate that, in case of modal trunca-
tion, the number of modes in the modal basis affects
the dynamics of oscillation (frequency and amplitude)
depending on the considered energy level. Also, the
results show a substantial convergence of the results for
an increasing number of modes included in the modal
basis. Thus, the CP can be considered as reliable to
obtain meaningful information regarding the dynamic
behavior of the system.

5 Nonlinear coupling procedure using
experimental data

In this Section, the Coupling Procedure is used to pre-
dict the behavior of the experimental system introduced
in Sect. 3.2. The nonlinear coupling procedure, and
more in general the experimental substructuring tech-
niques, requires data that can be difficult to measure.
For instance, rotational coupled DoFs are very tricky to
obtain experimentally, both in terms of displacements
(rotation) and forces (momentum). Thus, it might be
useful to deal with numerical models of the substruc-
tures, properly adjusted by using the experimental data
of the real subsystems. In the present case, the assem-
bly is composed of two beams and two NLCEs and in
the two following sections, the identification process is
outlined for each of these components. The last section,
instead, provides a comparison between the nonlinear
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Fig. 19 Comparison between the numerical and experimental
FRF at the driving point of one beam

experimental response of the free-free system and the
results of the nonlinear coupling procedure performed
between the updated beams and the identified NLCEs.

5.1 Experimental tuning of beam models

A linearmodal analysis test is performedonboth beams
separately to estimate their resonance frequencies. The
comparison between the numerical and experimental
FRF of one beam is shown in Fig. 19.

Four different frequencies are distinguishable in the
range from 0 to 500 Hz. These results are used to iden-
tify the correct value for the Young Modulus such that
the Euler–Bernoulli beam model fits the experimental
data.

5.2 Experimental identification of the nonlinear
connecting element

Since each NLCE is regarded as a substructure during
the substructuring procedure, it is necessary to deter-
mine their NNMs. Since the NLCEs are realized in lab-
oratory, their NNMs can be obtained experimentally.

After having measured the NNMs of interest, they
are used to fit the coefficients of the cubic law that bet-
ter approximates the NLCEs’ behavior. Here the whole
procedure is briefly explained for the NLCE addressed
as “left spring” (referring to the coupled configuration
in Fig. 6); the same procedure is valid also for the right
element. A burst random analysis is performed using
a laser scanner vibrometer to obtain a frequency spec-
trum used to estimate the linearized frequency corre-
sponding to the mode of interest. The set of measure-
ment nodes is shown in Fig. 20, where nodes 1–20 are
referred to the T-shaped element, nodes 21–30 to the
thin plate and nodes 31–40 to the C-shaped element.

Since the NNMs are frequency-energy dependent,
the measurement of the NNM is performed by setting

Fig. 20 Grid of points for the NLCE

Fig. 21 Points number of the NLCE

the amplitude and by adjusting the frequency of the
sinusoidal excitation such that the resonance condition
is attained: this occurs when the velocity measured by
the scanner is in-phase with respect to the input signal.
This procedure is performed for each energy level by
step-wise increasing the amplitude of the excitation, for
a total of seven energy levels for each NLCE. For each
amplitude-frequency pair of the NNM the velocity of
oscillation at the resonance condition of each measure-
ment DoF is recorded. The velocity signal is integrated
to obtain the displacement time series related to the
nodes of the C and T shaped element, after removing
the low frequency contents due to rigid body oscilla-
tion in the free-free configuration. The measured NNM
is that of a translational spring, thus, in order to rep-
resent it, the amplitude of the relative displacement
between the C and T shaped elements needs to be asso-
ciatedwith the corresponding resonance frequency. For
each node belonging to the C-shaped element, there are
two nodes on the T-shaped one sharing the same value
of abscissa: referring to Fig. 21 the set of nodes is,
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(a) NNM of the left NLCE. (b) NNM of the right NLCE.

Fig. 22 NNMs of the two NLCEs

{(n31, n1 − n11), (n32, n2 − n12) . . . (n40, n10 − n20)},
for a total of ten group of nodes. The measurement of
the NNM then follows these steps:

Step 1: Compute the average instantaneous dis-
placement of the nodes belonging to the T-shaped
element that share the same abscissa (for example,
(u1 + u11)/2);
Step2:Compute the absolute valueof thedifference
between the displacement of the node belonging to
the C-shaped element and the result obtained from
Step 1;
Step 3: Compute the amplitude of oscillation of
the result obtained from Step 2 averaged over the
recorded periods.

Each of these steps is performed for every group of 3
nodes and for each of the seven levels of excitation.
As a result there are ten curves, each one containing
seven points corresponding to the measured data. The
NNM is obtained as a the average of this curves, as
shown in Figs. 22a and b for the left and right NLCE,
respectively.

As it is evident from the two curves, both theNLCEs
experience an hardening behavior. These sets of data
are used as reference to identify the parameters kl and
knl for the two cubic springs performing a minimiza-
tion through a least-square errormethod. EachNLCE is
considered as a 2 DoFs oscillator, as shown in Fig. 23,
with masses mc = 0.297 kg and mt = 0.232 kg. Thus,
it is possible to use the numerical law describing the
frequency of oscillation as a function of the deforma-
tion of the spring [54,58] in the minimization. In this
way the NNM computed through the HB described by
that law is the same as the one measured. The coeffi-

mtmc

kl

knl

mc mt

Fig. 23 Physical model of each NLCE

Table 5 Coefficients of the cubic law for the two NLCEs

kl [N/m] knl [N/m3]

Left NLCE 7180 1.73 × 109

Right NLCE 6978 2.04 × 109

cients resulting from the minimization are gathered in
Table 5 and in Fig. 24a and b the comparison between
the experimental NNM and the numerical one is shown
for both the left and right NLCE.

5.3 Experimental nonlinear response of the free-free
system

Thedynamic responseof the free-free system, described
in Sect. 3.2, is measured in order to find its experimen-
tal NNMs. The comparison with the experimental data
is performed with the results obtained using the numer-
ical models defined in the previous sections. Finally, a
new set of parameters for the numerical models of the
NLCEs is introduced to better retrace the experimental
results of the assembly.
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Fig. 24 Comparison of the numerical and experimental NNMs

Fig. 25 Grid of
measurements points on the
bottom beam and on the
NLCEs of the assembly

The scanning laser vibrometer is used to obtain the
experimental response of the system on a finite set of
points of both the beams and the NLCEs with respect
to an excitation provided by the shaker acting on a
fixed point (Fig. 6). The measurement point locations
on the bottom beam and on the NLCEs of the assem-
bled structure are shown in Fig. 25. As for the NLCE,
the measurement of the NNMs for the free-free system
is performed by setting the amplitude and by adjust-
ing the frequency of the sinusoidal excitation to iden-
tify the resonance conditions. After removing the low
frequency contents due to rigid body oscillation in the
free-free configuration, the velocity signal is integrated
to achieve the output in terms of displacement for each
node.

The NNMs of the system are also obtained numer-
ically by using the coupling procedure on the updated
substructures.The experimental identificationofNNMs
provides the resonance frequency and the amplitude
of oscillation of measurement points, for each exci-
tation level. Thus, the comparison between numerical
and experimentalNNMs cannot be performed using the
FEP diagram since it is not possible to express themea-
sured data as function of the energy. In the present case,
since the right NLCE is significantly more deformed
than the left NLCE, it is themain source of nonlinearity

for the consideredmode in the assembled system. Thus,
it is possible to express the resonance frequency of the
NNMas function of the deformation of the right NLCE
providing a meaningful representation of the nonlinear
behavior of the assembly. Figure 26a shows the exper-
imental results (x-marked blue line) compared to the
numerical results (solid green line) obtained perform-
ing the Coupling Procedure. The full modal basis of the
numerical model of the beams (Sect. 5.1) is used, and
the NNMs of the NLCEs are obtained using the coef-
ficients reported in Table 5. The use of experimentally
identified parameters leads to a general overestimation
of the resonance frequency expressed as function of the
deformation of the right nonlinear connection, with an
average error of ≈ 9%.

However, as shown in Fig. 26b, the MAC between
the experimental mode shapes and the numerical ones
(green bars) is almost 1, indicating a perfect correlation,
up to a deformation of the right spring of 2.51 mm and
it decreases to 0.91 at 4.35 mm. It should be noted
that the numerical and experimental mode shapes are
consistent for values of deformation of the right spring
inside the range for which its parameters (kl and knl )
are experimentally evaluated (Fig. 24b).

In order to investigate the causes of the error in fre-
quency highlighted in Fig. 26a, an optimization of the
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Fig. 26 Comparison
between experimental
results and two sets of
numerical results
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parameters for both the NLCEs is carried out. In fact,
although the substructures to be coupled (i.e. beams and
NLCEs) are singularly well identified, some difference
between the numerical coupled model and the real one
can arise. It could be due either to the fact that the real
connections between the beams and the NLCEs cannot
be assumed as perfectly rigid or to the clamping that
could introduce some pre-stress on the NLCEs, chang-
ing their effective linear/nonlinear stiffness. Hence the
optimization aims at modifying the linear and non-
linear terms of the NLCEs’ law to account for the
loosening effects of the real interface. The differences
between the numerical frequencies and the experimen-
tal ones have been simultaneously minimized through
a multi-objective optimization technique. In Fig. 26a
the red line represents the Frequency-Deformation Plot
obtained using the optimized coefficients for the cubic
law, as reported in Table 6.

For both the NLCEs the optimized coefficients are
lower than the ones experimentally identified, espe-
cially for the right one. Thismaybe ascribed to the addi-
tional flexibility of the connection between the beams

Table 6 Coefficients of the cubic law for the two NLCEs after
optimization with percentage difference with respect to the ones
in Table 5

kl [N/m] Δl [%] knl [N/m3] Δnl [%]

Left NLCE 4000 − 44.28 1.6 × 109 − 7.51

Right NLCE 2000 − 71.34 1.2 × 109 − 41.18

and the NLCE: the unsymmetrical behavior can be
either incidental or explained by considering the large
vibration amplitude of the right NLCE which might
determine additional loosening of the connection. As
expected, the optimized values lead to a frequency-
deformation plot that is almost overlapped to the exper-
imental results reaching an average error in frequency
of ≈ 0.41%. Besides, as seen from Fig. 26b, the
MACbetween the experimental mode shapes and those
obtained using the optimized parameters (red bars) is
still acceptable but it worsens at deformations below
3.22 mm and it improves at 3.85 and 4.35 mm. The
mode shapes corresponding to a deformation of the
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Fig. 27 Comparison of the mode shapes between experimental
results and two sets of numerical results. – NLCP results with
experimental identified NLCEs parameters; –NLCP results with

optimized NLCEs parameters; −· experimental results. (Color
figure online)

right NLCE of 0.69 and 4.35 mm are shown in Fig. 27.
In order to highlight the differences between the mode
shapes, the scale along the y axis is magnified. The
similarity in the mode shapes shown in Fig. 27 agrees
with the MAC values shown in Fig. 26b.
Note that the NLCP manages to retrace the experimen-
tal mode shapes with high confidence (MAC is always
≥ 0.9). The experimental results agreewith the hypoth-
esis of considering only the response due to one har-
monic in the NLCP.

6 Concluding remarks

The substructuring technique in the modal domain was
successfully employed to study the dynamics of lin-
ear subsystems connected through nonlinear connect-
ing elements. The adopted method has been signifi-
cantly enhanced by enforcing a better control of the
total energy at each step of procedure through an adjust-
ment of the energy distribution among substructures.
Also, the choice of the initial guess based on the results
obtained at the two previous energy levels and the def-
inition of a stopping criterion that compares the energy
distribution between two consecutive iterations lead
to a more rapid convergence of the procedure. The
dynamic behavior of the coupled system is evaluated
by computing its Nonlinear Normal Modes.

The coupling procedure is validated by comparing
its results with those of the HB using a single har-
monic, thus it can be used to evaluate themain dynamic
behavior of the system already in the early phases of
the design. The effects of modal truncation have been
studied by comparing the resonance frequencies and
by analyzing the correlation between the mode shapes,
using several indicators. The results show that the error

in frequency depends both on the choice of the trun-
cated modal basis and on the energy level at which the
NNM is computed: generally, the errors increase for an
increment of the energy level and for a decrease in the
number of modes retained in the reduction matrix.

The specifically designed nonlinear connecting ele-
ments have been employed in the experimental setup
to connect two linear beams. The hardening behavior
of the connecting elements have been evaluated experi-
mentally bymeasuring itsNNM.Substructuring results
compared to the experimental results show that there
is a good correlation with the mode shapes measured
on the assembled system. Furthermore, a good accu-
racy in the resonance frequency at different excitation
levels requires a careful modeling of the NLCEs tak-
ing into account the effects of the connecting inter-
faces. In fact, there seems to be some uncertainty in the
properties of the NLCEs, leading to some errors in the
resonance frequency. The optimized parameters of the
physicalmodels of theNLCEs highlight an overestima-
tion of the linear and nonlinear stiffness properties that
could be due to loosening of the connecting interfaces
or to the pre-stress effects introduced by the clamp-
ing. Note that, although the NLCP does not include the
effects of higher harmonics, in the present case there is
a good correlation between the numerical and experi-
mental mode shapes. In fact, no significant effects of
internal resonances and higher harmonics have been
experimentally observed although the nonlinear ele-
ments were subjected to quite large deformations.

The results show that the substructuring procedure
is altogether suitable to predict the dynamic behavior
of linear systems coupled through nonlinear connec-
tions. Further studies could be addressed to take into
account both material damping and damping localized
at interfaces. The present approach seems to be suitable
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to be applied also to those cases in which the connec-
tions between the substructures need a more complex
description, for example by considering multi-DoFs
connection or hard to model interactions.
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