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ABSTRACT
The centre of our Galaxy is known to host a massive compact object, Sgr A∗, which is commonly considered as a supermassive
black hole of ∼4 × 106 M� . It is surrounded by a dense and massive nuclear star cluster, with a half-mass radius of about 5 pc
and a mass larger than 107 M� . In this paper, we studied the evolutionary fate of a very dense cluster of intermediate-mass
black holes, possible remnants of the dissipative orbital evolution of massive globular cluster hosts. We performed a set of
high-precision N-body simulations taking into account deviations from pure Newtonian gravitational interaction via a post-
Newtonian development up to 2.5 order, which is the one accounting for energy released by gravitational wave emission. The
violent dynamics of the system leads to various successive merger events to grow a single object containing ∼25 per cent of the
total cluster mass before partial dispersal of the cluster, and to generate, in different bursts, a significant quantity of gravitational
wave emission. If generalized, the present results suggest a mechanism of mass growth up to the scale of a supermassive black
hole.
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1 IN T RO D U C T I O N

Many galaxies, including our Milky Way, show evidence of the
presence of a compact massive object (CMO) in their centres.
These CMOs might be massive or even supermassive black holes
(SMBHs) or be in the form of very massive and dense star clusters,
commonly referred to as nuclear star clusters (NSCs). The actual
‘direct’ evidence of the presence of an SMBH has been recently given
by the Event Horizon Telescope (EHT) that gave the first ‘image’ of
the shadow produced by the event horizon of a BH of estimated mass
of 6.5 × 109 M� in the centre of the giant elliptical galaxy M87 in
the Virgo cluster (Event Horizon Telescope Collaboration 2019).

Unfortunately, so far, the EHT was not able to provide same
evidence for the SMBH of about 4.3 × 106 M� (Gillessen et al.
2009) allegedly present in the centre of our Galaxy. This presence
has been clearly suggested by the intense X-ray and radio emission
and by the striking observation of the very rapid motion of a certain
number of stars very close (within the central arcsec) to the Sgr
A∗ radio source, as ascertained by two international groups, one
at MPE in Garching (Gillessen et al. 2009; Schartmann, Burkert
& Ballone 2018) and another one at UCLA (Ghez et al. 2005;
Boehle et al. 2016). These stars, referred to as S-stars, have been
studied over a period of time of about 18 yr. One of them, S2 in
the denomination given by the MPE group, travelling on its highly
eccentric orbit, reached its pericentre distance of about 120 au at a
speed of ∼7650 km s−1 (2.55 per cent of the speed of light). Although
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120 au is a very close approach (∼4 times the average Neptune’s
distance to the Sun and twice the Pluto orbit semimajor axis), it
is still well apart from the hypothetical SMBH singularity (∼1400
Schwarzschild’s radii of the hypothetical Sgr A∗ BH). According to
GRAVITY Collaboration (2018), the observed gravitational redshift
z ∼ 6.7 × 10−4 confirms the motion in a regime of strong field. Later,
GRAVITY Collaboration (2020) was able to pick another relativistic
effect, namely the prograde precession of the S2 orbit pericentre
angle. Anyway, it cannot in principle be excluded that this strong
gravitational field at 120 au from the globular cluster (GC) is due to
a superdense cluster of stars or, more likely, of compact objects.

The evolution of a very dense stellar system is a quite intriguing
and non-trivial issue. Pioneering work in such field was done
by Spitzer & Saslaw (1966) and Spitzer & Stone (1967) although in a
necessarily approximate scheme due to the poor computer resources
at that time. They found that, unless the stellar system has enough
angular momentum to inhibit its contraction at a relatively low stellar
density, the process of accelerating contraction of its core must lead
inevitably to an increasing number of collisions between the stars
in the cluster. Consequently, all stellar aggregations with sufficiently
low angular momentum would reach a stage in which direct stellar
collisions play a dominant role in the further evolution of the system
itself. However, the situation of a cluster of compact objects (white
dwarves, neutron stars, and BHs) would be different because no sig-
nificant physical collisions would occur to release gas that cools down
in the environment possibly giving rise to new stars. So, while the
initial phase of core contraction and halo expansion should be similar,
the following evolutionary phases of a dense system of normal stars
and one composed of compact remnants are likely very different.
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Such a scheme was later deepened by Lightman & Fall (1978), who
gave an approximate theory of evolution towards core collapse of
a cluster composed of stars of two different masses. At this latter
regard, it is worth also citing Begelman & Rees (1978). Their quali-
tative conclusion is that a system composed solely of compact stellar
mass bodies would evolve at constant binding energy until a small
fraction of the original mass developed into a relativistic bound core,
where the physics is of course different and phenomena like energy
release by gravitational waves (GWs) and subsequent merger phe-
nomena cannot be neglected and require a sophisticated treatment.

The classical computation of the two-body collision relaxation
time-scale (Spitzer & Hart 1971) gives for the hypothetical cluster
of 400 intermediate-mass black holes (IMBHs) initially packed in a
0.6 mpc sphere a value of the fraction of 1 yr. Although this very
short time-scale suggests that the superviolent evolution of the system
would lead through a sudden instability to a probable disgregation of
the system, much care is due to that the deduction of the relaxation
time-scale bases on the evaluation of diffusion coefficients in the
weak scattering regime and, of course, neglecting any relativistic
effects. Both these hypotheses are not realized in the real evolution
of a dense system of IMBHs, which seems, so, an interesting theme
to investigate.

Kroupa et al. (2020) provide a modern vision of the fate of a
compact cluster of stellar-size BHs left over by the evolution of
the stellar population originated in starburst clusters residing in the
central region of a galaxy shortly after its formation. Their main
finding, based on a modelization that privileges a global view of
various evolutionary ingredients with respect to accurate N-body
modelling in both Newtonian and post-Newtonian (PN) phases, is
that the BH cluster compresses down to a relativistic state (velocity
dispersion of ∼3000 km s−1) due to insufficient heating by forming
BH–BH binaries. The onset of GW emission implies a loss of
mechanical energy, which eventually leads to a runaway formation
of an SMBH seed, with a 5 per cent of mass converted into the seed.

A somewhat similar result was obtained, still in a scheme that
does not include direct N-body simulations, by Antonini, Gieles
& Gualandris (2019), who investigate the BH repeated mergers in
a dense star cluster (ρ � 105 M� , vesc � 300 km s−1, conditions
fulfilled by ∼10 per cent of present-day NSCs) eventually leading to a
very massive ‘remnant’ BH. Although upon different approximations
and with different methods of study, both Antonini et al. (2019)
and Kroupa et al. (2020) agree on that binary heating is insufficient,
at least in a wide range of conditions, to support a cluster of stellar-
size BHs against collapse.

In the above context, the well-known dry-merger scenario for the
building up of NSCs (Tremaine, Ostriker & Spitzer 1975; Capuzzo-
Dolcetta 1993; Antonini et al. 2012) suggests that orbitally decayed
massive GCs have carried to the Galactic Centre a quantity of mass
to grow the NSC of the Milky Way and also a certain number of
IMBHs. So, the aim of this paper is the study of the evolutionary
fate of a possible superdense cluster, composed of 400 IMBHs of
individual mass 104 M� , initially packed in a sphere well within the
S2 pericentre distance. Our work represents a significant step forward
after the Kupi, Amaro-Seoane & Spurzem (2006) paper that studied
the dynamics of a dense cluster of compact objects by means of a
modified version of the NBODY6++ code (Aarseth 1999; Spurzem
1999) to allow for PN effects up to order 2.5.

The paper is organized as follows: In Section 2, the astrophysical
frame and the motivations are explained. In Section 3, we describe
our methodological approach and the kind of numerical simulations
we performed, while in Section 4 we discuss the results. Finally, in
Section 5 we draw the conclusions.

2 TH E A S T RO P H Y S I C A L F R A M E WO R K

Massive and sufficiently compact objects can decay orbitally in
a stellar environment due to the drag caused by the ‘wake’ they
form behind them during their motion. This is the well-known
‘dynamical friction’ (df) phenomenon, whose study was pioneered
by Chandrasekhar (1943). In particular, it has been convincingly
shown that massive GCs orbiting a galaxy like the Milky Way might
decay in the inner region of the host galaxy whenever their orbits
are eccentric enough to pass, during their travel across the galaxy,
through regions where the environmental phase-space density, whose
proxy is ρ/σ 3 (with ρ and σ the local mass density and velocity
dispersion, respectively), is high enough to induce a significant
deceleration.

Actually, the dynamical friction orbital decay has been considered
by various authors as a viable explanation for the formation of the
NSCs present in our and other galaxies. The so-called migratory
scenario consists in the orbital decay of a certain number of massive
star clusters, followed by their merger in the central region of
the galactic potential well. This scenario has been quantitatively
validated by many papers (Tremaine et al. 1975; Ostriker, Binney
& Saha 1989; Pesce, Capuzzo-Dolcetta & Vietri 1992; Capuzzo-
Dolcetta 1993; Capuzzo-Dolcetta & Vicari 2005; Arca-Sedda &
Capuzzo-Dolcetta 2014a, b). Here, we assume this scenario, which
is alternative and/or complementary to the ‘in situ’ model (see
e.g. Agarwal & Milosavljević 2011), to motivate our choice of
initial conditions for our evolutionary model. We do not go here
into further details, pointing the attention to the recent review on
NSCs by Neumayer, Seth & Böker (2020).

The hypothesis behind our work is that a certain number of massive
star clusters (hereafter referred to as GCs) containing one or few
IMBHs whose mass ranges between few 103 M� and few 104 M�
have had the time to decay orbitally in an internal region of the host
galaxy, carrying with them the hosted IMBHs. The actual presence
of such IMBHs, although not clearly confirmed so far by present
observations of GCs in the MW halo, would result as a natural
interpolation of the host mass versus hosted BH mass correlation
over the wide range of scales from open star clusters up to giant
elliptical galaxies (see Fig. 1).

For the BH mass versus host mass, Schutte, Reines & Greene
(2019) provide (their equation 11; see also Fig. 1) the following
fitting formula:

Log(MBH/M� ) = α + βLog(Mbulge,∗/(1011 M� )), (1)

with α = 8.80 ± 0.085 and β = 1.24 ± 0.081.
As we said, an enormous quantity of papers has been dedicated to

the topic of the dynamical friction decay time for massive objects,
which surely we do not review here, limiting to cite that dynamical
friction is, of course, more efficient on massive objects moving on
centrophilic orbits, which are numerous in non-symmetric galactic
potentials whose typical example is the triaxial case. Pesce et al.
(1992) showed how efficient dynamical friction can be to brake
massive clusters in triaxial galaxies, even of moderate axial ratios
(1:1.25:2). That work was extended and deepened by Capuzzo-
Dolcetta (1993), who gave two useful interpolation formulas for
the df decay time of a compact cluster moving on both box or
loop orbits in a triaxial potential. Using formulas A1, A2, and A3
of Capuzzo-Dolcetta (1993), we computed dynamical friction decay
time as functions of orbital energy (0 ≤ E ≤ 1, E = 1 is the threshold
to unbound orbits) and angular momentum scaled to that of circular
obit of energy E, J/Jc(E). Upon this, we draw Fig. 2, which shows the
dynamical friction times as a function of the cluster orbital energy and
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Superdense cluster of black holes 3911

Figure 1. BH mass versus host bulge mass (from Schutte et al. 2019, Fig. 4).

Figure 2. Dynamical friction decay times at varying the object mass M for
three values of J/Jc(E) (0, 0.5, and 1; solid, dashed and dot-dashed line,
respectively) as a function of the orbital energy E. Horizontal lines give the
107, 108, 109, and 1010 yr thresholds.

angular momentum. Almost all GCs with masses larger than 107 M�
would have decayed to the central region of the host galaxy within
1 Gyr. Additionally, an extrapolation of the fitting formula given
by equation (1) gives, for a hypothetical 104 M� BH, a host mass
of 1.35 × 107 M� . This means that, if these massive GCs hosted
IMBHs at their centre, in less than 1 Gyr they should have carried
them to the galactic central region.

In this frame, we took 104 M� as individual IMBH mass and
decided to study the dynamical evolution of a system of NBH = 400
BHs, whose summed mass is almost equal, indeed, to the estimated
Sgr A∗ mass, considering them as all initially packed within the
innermost pericentre distance of the S stars moving around it, that is

�0.6 mpc. This initial configuration is the simplest to adopt, although
not the most likely one. Actually, a more reasonable frame would
be that where the various GC hosts of the IMBHs shrink their orbit
within an assumed galactocentric distance at different times. This
frame is more difficult to implement numerically and so its study is
postponed to a following paper.

3 MO D E L A N D M E T H O D

The above-mentioned very dense cluster of IMBHs is expected to
be extremely prone to instability to collapse, because its two-body
classical relaxation time-scale is of the order of (or less than) 10 yr,
which is of course a very short time with respect to all other relevant
time scales. Anyway, considerations on the instability of a very dense
cluster based on the classical evaluation of the two-body relaxation
time-scale have to be taken with care because, other than that the usual
expression of the time-scale bases on the unlikely hypothesis that
two-body interactions are weak, they do not account for the possible
support against collapse given by binarity. In this regard, Kroupa
et al. (2020) suggest that BH–BH binary heating can be overcome
by the huge compression of the BH population inhabiting a massive
starburst cluster due to the gas accretion from the environment. So,
although the likely fate of our hypothetical superdense cluster is
that of a gravitational collapse, its actual modes are not trivial to
understand, including the number of mergers and of expelled IMBHs,
binary fraction and its evolution along the way as well as the possible
runaway formation of an SMBH. Recently, Antonini et al. (2019)
deduced a theoretical correlation between the maximum BH mass
formed by repeated merger in a dense stellar system and the system
characteristics. Dense clusters (density �105 M� pc−3 and escape
velocity �300 km s−1) lead to BH merger mass of up to 105 M� ,
filling the pair instability strip. This should have relevant counterpart
in GW emission and detection.

Due to the intrinsic non-linearity of the violent dynamical evolu-
tion of the cluster, analytical or semi-analytical treatments fail to give
precise answers to the many questions that arise, and so we decided
to study the evolution of the above-mentioned very dense cluster of
IMBHs by a direct, high-precision, N-body approach. The mutual
accelerations induced by point-like mass objects packed in a small
region of space are so strong that any ‘classic’ integration algorithm
fails due to the UV divergence of the Newtonian potential. To
overcome this problem, we resorted to a high-accuracy, regularized
code that is our modified version of the algorithmic regularization
chain code by Mikkola (Mikkola & Merritt 2008; Hellström &
Mikkola 2010). The code, called ARWV, and a user manual for
it (Chassonnery, Capuzzo-Dolcetta & Mikkola 2019) are freely
available to download at https://sites.google.com/uniroma1.it/astro
group/hpc-html (the code can be used for scientific publications
upon the proper citation condition).

The equations of motions of our set of N objects are (for i = 1, 2,
..., N)

r̈i = G

N∑
j=1
j �=i

mj

rj − ri

|rj − ri |3 + fPN + ∇Uext + fdf . (2)

In the formula above, G is the Newton’s gravitational constant, ri

is the position vector of the generic ith object of mass mi, fPN(ri , vi)
is the PN force per unit mass, ∇Uext(ri) is the gradient of the external
potential, and fdf(ri , vi) is the dynamical friction force per unit mass.

The Newtonian self-interaction is evaluated via a direct sum-
mation of all pair contributions in equation (2), which implies a
computational cost O(N2), that limits the use of such kind of high-
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precision codes to a limited number of objects. Another limitation
is given, also, by the UV divergence of the Newtonian potential,
which makes extremely delicate, on the computational side, dealing
with close encounters of massive objects, whose relative acceleration
grows enormously at smaller separations. An accurate and elegant,
but still computationally expensive way to deal with those close
encounters is via regularization of the interaction, which is done
by means of a combination of different techniques [i.e. using (i)
logarithmic Hamiltonian (Mikkola & Tanikawa 1999a, b), (ii) time-
transformed leapfrog (Mikkola & Aarseth 2002), and (iii) auxiliary
velocity algorithm (Hellström & Mikkola 2010)].

The PN force in equation (2) is an actual approximation, as
expansion in terms of the ratio (v/c)2, to account for general
relativistic correction to classic Newton’s law of gravitation. The
PN approximation was introduced by Einstein, Droste, and De
Sitter just after the publication (in 1916) of the general theory of
relativity. The reference paper is de Sitter (1916) and a proper
summary of PN treatment is found in Merritt (2013). Of course,
in the limit (v/c)2 < <1 the pure Newtonian interaction is recovered.
In fPN we consider PN terms up to the 2.5 orders, i.e. including
O[(v/c)2]5/2 terms, which are the ones needed to account for
energy losses via gravitational radiation (Merritt 2013). We refer
to Memmesheimer, Gopakumar & Schäfer (2004) for the detailed
expressions and to Mikkola & Merritt (2008) for a description of the
actual implementation in the code used here.

Taking into account that GR does not produce 0.5PN or 1.5PN
contributions to the metric or the equations of motion, the PN force
per unit mass acting on the ith particle is expressed by

fPN(ri , vi) = c−2f1PN + c−4f2PN + c−5f2.5PN + O(c−6). (3)

Note that 1PN and 2PN terms (f1PN and f2PN) are responsible for
pericentre angular shift and are not dissipative (they are symmetric
under time reflection t → −t), while the first dissipative term
(radiation-reaction) is the 2.5PN term (f2.5PN), which is indeed
antisymmetric under time reflection.

The 2.5PN terms (radiation-reaction terms) are responsible for the
GW emission that extracts mechanical energy from the systems at
every merger occurrence. This corresponds to some variation of the
mass after merger. We a posteriori saw that the quantity of energy
lost via GW corresponds to a loss of mass <0.05 per cent of the
total mass in all our simulation sets (see Section 4.3), a quantity
small enough to justify keeping the mass of individual objects in our
simulations unchanged.

Our updated version of ARWV also includes a treatment of an
external gravity field in spherical symmetry, due to the presence
of a regular distribution of matter in the form of a Dehnen (1993)
profile and/or a Plummer (1911) profile. A Dehnen (or γ ) density
profile is univoquely defined by its total mass MD, scale radius
rD, and slope parameter 0 ≤ γ < 3, while a Plummer profile is
characterized by its total mass MP and scale radius rP only. The
role played by the overall, regular, density distribution is that of
giving both an additional gravitational acceleration to the point-
like objects and a frictional braking, mimicking the cumulative,
fluctuating, role of the encounters, via the dynamical friction term,
fdf , in the equations of motion (equation 2), which is generally
accounted for by means of the usual Chandrasekhar’s expression
in local approximation (Chandrasekhar 1943):

fdf(r, v) = −4πG2 ln 	 m ρ(r)F (v/σ )
v
v3

, (4)

where ln 	 is the Coulomb logarithm (here assumed =6.5), m is the
mass of the ‘test’ particle, ρ(r) is the local mass density of the field

whose 3D velocity dispersion is σ , and v is the velocity of the ‘test’
particle. The function F(v/σ ) is given by

F (v/σ ) = erf

(
v/σ√

2

)
−

√
2

π

v

σ
e− 1

2 (v/σ )2
, (5)

where erf(x) is the usual error function, defined as

erf(x) = 2√
π

∫ x

0
e−t2

dt ≤ 1. (6)

The central environment of the Milky Way can be emulated
by a superposition of a Dehnen profile and a Plummer profile,
characterized, respectively, by the sets of values MD = 1011 M� , rD

= 2000 pc, γ D = 0.1 (Arca-Sedda & Capuzzo-Dolcetta 2017) and
MP = 2.5 × 107 M� , rP = 3.2 pc (to give the NSC mass and half-
light radius as given by Schödel et al. 2014). As it will be shown in
Section 3.3, for the peculiar initial conditions in study for this article,
the actual effects of the external regular distributions of matter (both
gravitational acceleration and dynamical friction) are negligible.

Let us now give some information about the ARWV code. Usually,
after assuming an arbitrary indexing of the N bodies from 1 to N,
the position and velocity of each body with respect to the centre
of mass (CoM) of the system are stored in an array of size 6N. In
ARWV, the first body, arbitrarily chosen, is considered as a temporary
‘reference’ point and the other bodies are renumbered so as to
minimize the distance between the ith and (i + 1)th objects (i =
1, 2, ..., N − 1). With this new numbering, the bodies can be seen
as forming a ‘chain’ connecting closest to closest body and can
be described by their position and velocity, not with respect to the
CoM of the system, but with respect to the previous (in terms of the
chain numbering) body. These ‘chain’ data are stored in an array of
size 6(N − 1) (the first body, being the origin of the chain, is not
referenced).

In practice, while creating the chain, the algorithm also tries to
minimize the sum of the distance between two successive bodies so
as to not inconveniently ‘forget’ any object, which would then have
to be added at the end of the chain with an enormous distance to the
penultimate object.

The main advantage of this chain scheme resides in that it
reduces substantially the round-off errors, making the regularization
algorithm more efficient, especially for close interactions between
the system bodies. Without this formulation, the step size would
reduce to almost zero in critical (very close) encounters. Its downfall
is that the interactions are formally much more complicated.

3.1 Mergers and merger consequences

During the evolution of an N-body system, repeated interactions may
lead to the formation of binaries (two bodies orbiting one around
the other), which may be either temporary or long-living. If long-
living, a binary composed of massive objects can eventually merge,
losing, first, orbital energy by means of the interaction with the other
bodies and, once the binary is tight enough, by means of gravitational
radiation that, in our simulations, is accounted for by the 2.5PN terms.
When speaking of massive BHs, this frame is surely important and
likely, and needs to be properly accounted for when aiming at a
correct simulation of their dynamics. In our ARWV code, there is
indeed a merger routine that enables the code to deal with collisions.
The procedure triggers when the distance rij between two objects of
masses mi and mj is less than 4 times the sum of their Schwarzschild’s
radii, that is rij ≤ 8G(mi + mj)/c2.

To the result of the merger (the remnant) is given the location of
the CoM of the progenitor pair, though the code halts the integration
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of the two separate trajectories immediately before that time. For
the correct velocity to assign to the remnant (the recoil velocity),
there is no consensus. Some authors choose the simplest (but clearly
incorrect) choice to give to the remnant a null velocity, while others
assume the velocity of the CoM of the two progenitors. In our
new version of the ARWV code, we introduced a relativistic, spin-
dependent, recoil velocity, following the prescription given by Healy
& Lousto (2018). We shortly describe here the way we did it.

Let m1 and m2 be the masses of two merging bodies, with the
convention m1 ≤ m2. Each body is assumed to be spinning; the spin
is characterized by a dimensionless spin vector parameter αi , such
that αi ≤ 1.

Following Healy, Lousto & Zlochower (2014) and Healy & Lousto
(2018), we model the recoil velocity by

vrec = vm e1 + v⊥ (cos ξ e1 + sin ξ e2) , (7)

where e1 is the unit vector pointing from m1 to m2 and e2 a unit
vector in the orbital plane and orthogonal to e1, such that the basis
formed by e1, e2, and the angular momentum of the binary (that is,
the mass-weighted sum of the angular momentum vectors of the two
progenitor objects) is direct. The quantity ξ is the angle between the
‘unequal’ mass contribution to recoil velocity, whose magnitude is
vm, and the spin contribution, of magnitude v⊥. While both ξ and
v⊥ depend on the values of the spins and of the mass ratio 0 < q =
m1/m2 ≤ 1 (see Healy & Lousto (2018)), vm depends only on q, in
the following form:

vm = q2(q − 1)

(q + 1)5

[
A + B

(
q − 1

q + 1

)2

+ C

(
q − 1

q + 1

)4
]

, (8)

where A = −8712, B = −6516, and C = 3907, all in km s−1 (Healy,
Lousto & Zlochower 2017; Healy & Lousto 2018).

Fig. 3 displays the dependence of vm, v⊥, and vrec on the mass
ratio q. Since v⊥ and ξ (and so vrec) depend on the dimensionless
spins α1 and α2, we chose to compute their average values with
respect to these parameters. We made a regular sampling of the
magnitudes α1 and α2 over [0, 1] with a step 0.01, and we took
each dimensionless spin as being either ‘up’ (i.e. aligned with the
angular momentum of the binary) or ‘down’ (i.e. antialigned). Then,
we averaged the values of v⊥ and vrec obtained for each quadruple
[α1, up/down(α1), α2, up/down(α2)].

By its definition, the angle ξ depends on both the mass ratio and
the spins. However, averaging over the uniform spin distribution the
dependence on q is lost, leading to 〈ξ〉α = 142.6◦.

We observe that vm is maximal for q � 0.35, with a nearly linear
decrease for q ≥ 0.5, while v⊥ is roughly constant for high mass ratios
and so becomes the preponderant part of vrec, which maximizes at
q � 0.41. The maximal recoil velocity over all the cases computed
was obtained for maximally anti-aligned spins, and it is of the order
of 500 km s−1 (see bottom panel of Fig. 3).

3.2 Energy variation at merger

Let us consider a merger between two bodies out of N (arbitrarily
numbered 1 and 2) happening at time tm, with t−

m and t+
m referring to

a time just before and after merger, respectively. For all the bodies
save the two undergoing a merger, we have⎧⎪⎨
⎪⎩

mi(t−
m ) = mi(t+

m ),

ri(t−
m ) = ri(t+

m ),
vi(t−

m ) = vi(t+
m ),

(9)

while for the two merging bodies, the situation is resumed in Table 1.
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Figure 3. Top panel: variation with respect to the mass ratio (q) of vm,
v⊥, and vrec, the latter two averaged over spin (see the text). Bottom panel:
distribution of the recoil velocity magnitude vrec (grey crosses) versus mass
ratio, along with its average value (black line).

Table 1. Parameters characterizing the two (generic) merging objects m1 and
m2.

Before merger (t−m ) After merger (t+m )

Mass m1 and m2 mrem = m1 + m2

Position r1 and r2 rrem = rCoM

Velocity v1 and v2 vrem = vCoM + vrec

Spin α1 and α2 αrem = m1α1+m2α1
m1+m2

Throughout the merger routine, the variation of the kinetic energy,
T, of the system is

�T (tm) = T (t+
m ) − T (t−

m )

= 1

2

(
mrmv2

rm − m1v2
1 − m2v2

2

)
= mrm

2

(
v2

rec + 2vrec · vCoM

) − m1

2
ṽ2

1 − m2

2
ṽ2

2,

where the dot · indicates the scalar product, ṽ1 = v1 − vCoM, and ṽ2 =
v2 − vCoM. On the other side, the variation of the internal potential
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3914 P. Chassonnery and R. Capuzzo-Dolcetta

energy (that of the pair) is

��int(tm) = �int(t
+
m ) − �int(t

−
m ),

= −
N∑

j=3

Gmrmmj

|rrm − rj | + Gm1m2

|r1 − r2| +
∑
i=1,2

N∑
j=3

Gmimj

|ri − rj | ,

� −
N∑

j=3

Gmrmmj

|rrm − rj | + Gm1m2

|r1 − r2| +
∑
i=1,2

N∑
j=3

Gmimj

|rrm − rj | ,

� Gm1m2

|r1 − r2| ,

considering that, for any pair (i, j) with i = 1, 2 and j ∈ {3, ..., N},
we have r̃i ≡ |ri − rCoM| � |rCoM − rj |, and so |ri − rj | � |rCoM −
rj | = |rrm − rj |. Finally, the variation of the external potential energy
is

��ext(tm) = �ext(t
+
m ) − �ext(t

−
m ),

= −mrmUext(rrm) + m1Uext(r1) + m2Uext(r2),

= O
(
(r̃2

1 + r̃2
2 ) sup(U ′′

ext)
)
.

Given the above considerations, the total variation of the mechan-
ical energy of the N-body system during the merging process is

�E(tm) � mrm

2
v2

rec + mrmvrec · vCoM − Eb, (10)

with Eb = m1
2 ṽ2

1 + m2
2 ṽ2

2 − Gm1m2
|r1−r2| the internal energy of the progeni-

tor pair, which is negative in the case of a bound binary. So, neglecting
the term vrec · vCoM that, on average over numerous merger events,
should be null, we found that

∑
i≥1

�E(t i
m) > 0.

3.3 Initial conditions

As we said above, our aim is that of simulating an extremely dense
stellar cluster that could be a precursor of the Milky Way central
SMBH. As total mass of our system we assumed MS = 4 × 106 M� ,
composed of N = 400 IMBHs of same individual mass m = 104 M� .

The initial homogeneous and virialized very packed configuration
was motivated by willing to verify how unstable such distribution
was. Actually, a possible question could have been: Is it possible that
a superdense system of gravitating objects distributed around the
Galactic Centre lives long enough to make the surrounding S-stars
moving as they are presently seen without invoking the presence of
a BH singularity? Answering to this question with a full N-body
simulation requires, indeed, ‘packing’ the 400 IMBHs in a sphere of
initial radius, R0, sufficiently smaller than the smallest pericentre of
the S-stars (note that the innermost pericentres of the S-stars, those
of S2 and S14, are about 5 mpc, where 1 mpc = 1 milliparsec =
10−3 pc).

A first set of simulations (hereafter referred to as set 1) was
conducted with R0 = 0.6 mpc, that is ∼10 times less than the smallest
S-star pericentre distance. Under these quite extreme conditions
(ρ0 ∼ 4.4 × 1015 M� pc−3!), the cluster is expected to undergo a
fast dynamical instability, so that, also for the sake of comparison,
we run a second set of simulations (called set 2) with a 10 times larger
initial radial size, R0 = 6 mpc (same size of closest S-star pericentre
distance). In the hypothesis of uniform spatial distribution, the central
escape velocity in set 1 and set 2 is, respectively, ve,1 � 7.11 × 103

and 2.25 × 103 km s−1.

Table 2. Main parameters of the various sets of simulations. tmax is the
maximum time extension of the simulation.

Set R0 (mpc) tmax (yr) Spin

1A 0.6 426 Zero
1B 0.6 426 Uniform
2A 6 13 462 Zero
2B 6 13 462 Uniform

As we said, the distribution of the initial positions (ri , for i = 1, 2,
..., N) of the N = 400 IMBHs has been assumed uniform within R0,
practically obtained by a standard pick-and-reject method.

The initial velocity distribution (vi , for i = 1, 2, ..., N) was
assumed, also, randomly generated according to a uniform isotropic
distribution scaled such as to give a chosen initial virial ratio Q0

≡ 2T0/|�0| = 1 (where T and � are the total kinetic and potential
energy, respectively).

To give some statistical reliability to our dynamical experiments,
we have performed a total of 40 simulations with different sampling
of the same initial conditions. Practically, for both set 1 and set 2
we generated 10 input files using the same global parameters (N =
400, MS = 4 × 106 M� , R0 = 0.6 mpc for set 1, and R0 = 6 mpc
for set 2) but choosing different random seeds to sample the same
(homogeneous) spatial density and velocity distributions. Moreover,
we randomly generated one set,s1, of dimensionless spin vectors for
the IMBHs (αi , for i = 1, 2, . . . , N) following a uniform distribution
in a sphere of unitary radius. For both set 1 and set 2, we then
performed a first subset of 10 simulations, called set 1A and 2A,
with all spins equal to zero, and a second subset, named 1B and 2B,
of 10 simulations each, where the spins are selected according to
the procedure above. A sketch of the main parameters of the various
simulations is given in Table 2.

To enhance accuracy in the computations, in the code we use R0

as length unit and Mtot = MS + Mg as mass unit, with Mg the galactic
mass inside the sphere of radius R0. The time unit Ut is chosen so as
to ensure G = 1:

Ut = R
3/2
0√

GMtot
=

{
0.107 yr, for set 1,

3.365 yr, for set 2.
(11)

The above time is, actually, the typical crossing time of the system.
Due to the huge space density of the IMBH cluster under study, the
dynamics is very violent and computationally demanding. Moreover,
the computational cost of the planned simulations clearly varies as
O(tmax/Ut), so that, to integrate up to the same physical time tmax, a
simulation of set 1 would require, a priori, an ∼30 times longer (in
terms of CPU time) simulation than one of set 2. Of course, many
other issues have an impact on the computational speed, and indeed
different simulations pertaining to the same set (1 or 2) proceeded
at different speeds. Therefore, we decided to simulate the evolution
of the system over 4000 Ut in each case, which means that for the
denser configurations of set 1 we have tmax = 426 yr while for set 2
we have tmax = 13 462 yr (that is a factor 31.6 in terms of physical
time).

3.4 The actual role of the recoil velocity

For set 1, corresponding to the densest cluster, the rescaled initial
velocities range from a few hundred km s−1 to ∼5400 km s−1,
with an average value 〈v〉 = 4012 km s−1. On the other hand, the
recoil velocity after merger is at most 500 km s−1 (200 km s−1 on
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Superdense cluster of black holes 3915

average), generally small with respect to the velocity of the CoM of
the precursor binary and not large enough to overcome the escape
velocity (�7110 km s−1). The two top panels of Fig. 4 (which refer
to set 1) suggest that the recoil velocity alters the course of some of
the individual trajectories, but it does not have, on average, a very
significant impact on the overall evolution of the cluster.

In set 2, where the IMBHs are initially less densely packed, the
initial velocities range from 100 to ∼1700 km s−1, with average
value 〈v〉 = 1270 km s−1. Due to the lower escape velocity, the recoil
velocity is expected to have a more relevant impact on the course of
the simulation than in set 1. Anyway, as shown in the two bottom
panels of Fig. 4, the recoil velocity is still one order of magnitude
smaller than both the progenitor binary CoM velocity and escape
velocity this latter being �2250 km s−1. Therefore, it can rarely
cause the ejection of a merger remnant from the main cluster by
overcoming the local escape velocity. Note the decrease with time of
both CoM and recoil velocity in both set 1 and set 2, explained by
decreasing with time of q.

Because the effect of the recoil velocity is mostly negligible, there
is no statistical difference, neither between the results of the subset 1A
and 1B nor between the results of the subset 2A and 2B.

For this reason, in the rest of this work we will, as a rule, only
present results averaged over the whole set 1 and the whole set 2,
and not detailed subset’s results.

3.5 The actual role of the external potential

As we said in Section 3, for our simulations, we emulate the
central environment of the Milky Way by an external density
profile that is the superposition of a Dehnen profile characterized
by MD = 1011 M� , rD = 2000 pc, and γ D = 0.1 and a Plummer
profile characterized by MP = 2.5 × 107 M� and rP = 3.2 pc.

The galactic mass inside the sphere of radius R0, Mg(R0), is in both
the sets of simulations very small with respect to the total mass in
IMBHs (Mg/MS = 4.1 × 10−11 for set 1 and 4.1 × 10−8 for set 2), so
that the external field is altogether negligible in terms of gravitational
acceleration with respect to the pairwise IMBH–IMBH gravitational
acceleration. Moreover, for small distances r to the centre (r ∼
1 mpc), the background density is dominated by the Plummer
profile, which is flat for r � rP = 3.2 pc. Hence, for both sets of
our simulations, the background density averaged within the sphere
of radius R0 has the same value 〈ρ(< R0)〉 � 1.8 × 105 M� pc−3.

We can estimate

〈 ∑
1≤i<j≤N

|ri − rj |−2

〉
� 3N/(4R2

0), so that the

initial effect of dynamical friction fdf with respect to the Newtonian
interactions fN can be quantified as

|fdf |
|fN | � 16 πG ln 	〈ρ(< R0)〉

〈
F (v/σ )

v2

〉
R2

0

3N
, (12)

�
{

7.8 × 10−12, for set 1,

7.8 × 10−9, for set 2,

which is totally negligible. Anyway, the role of external potential
is relevant to determine the fate of objects that, during the various
interactions and also after mergers, acquire a speed sufficient to
move far from the centre. Most of them do not overcome the escape
velocity and so make a fast return to the internal region due to the
combined action (gravitational acceleration and dynamical friction)
of the external field. This slows down the cluster dissolution.
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Figure 4. Contribution of the recoil velocity (in red) and progenitor binary
CoM velocity (in blue) to the total velocity of the remnant (in purple) at
each merger, over one simulation of each subset. From top to bottom: set 1A,
set 1B, set 2A, and set 2B.
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Figure 5. Initial evolution of the Lagrangian radii (from 5 per cent to 50 per
cent) of the system, centred on the CoM of its bound core. Top: average over
the 20 simulations of set 1. Bottom: average over the 20 simulations of set 2.

4 R ESULTS

Here, we present results for our sets of simulations, whose char-
acteristics have been described in Section 3.3 and summarized in
Table 2. Results are indicative of the overall fate of the superdense
cluster of IMBHs and show the clear growth of an SMBH seed via
subsequent merger events, each of them characterized by a burst of
GW emission.

4.1 Overall evolution of the cluster

Fig. 5 displays the average (over all the simulations of set 1 and
set 2, respectively) evolution of some of the Lagrangian radii of the
system. In Fig. 5, we see that after a period of contraction lasting, in
both cases, about 100 crossing times, the system expands steadily.
The evolution leads to the substantial internal change characteristic
of self-gravitating systems: An initial homogeneous distribution is
remodelled into a dense core surrounded by a low-density halo. The
snapshots of the system configurations on one of the coordinate
planes in Fig. 6 give a qualitative sketch of this change in the layout
of the system.

Note that, due to the non-isotropic expulsion of some IMBHs, the
CoM of the actual cluster (that is the gravitationally bound part or
‘core’ of the system) deviates from the position of the CoM of the
whole system (see Fig. 7). For a better display we, thus, decided to

Figure 6 Snapshots of the stellar system at t = 0 and t = tmax for arbitrarily
chosen simulations of set 1A and set 2A, centred on the CoM of the bound
core of the system.
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Figure 7. Drift along time of the CoM of the bound core with respect to the
CoM of the whole system, for one of the simulations of set 1A.

evaluate the Lagrangian radii with respect to the CoM of the bound
core of the system. We defined this bound core of the cluster by
excluding those objects that reach with positive energy a distance
from the system such as to make very unlikely that they can undergo
interactions able to lead them back to negative energy.

The Lagrangian radii are evaluated in percentage of the total mass
of the cluster and so all the bodies, including possibly escaping
IMBHs and growing (in mass) objects, are taken into account. Of
course, the escaping IMBHs lead to a natural increase of the high-

MNRAS 504, 3909–3921 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/504/3/3909/6228893 by U
N

IVER
SITA' D

EG
LI STU

D
I D

I R
O

M
A LA SAPIEN

ZA user on 29 D
ecem

ber 2021



Superdense cluster of black holes 3917

 0

 1

 2

 3

 4

 5

 6

 7

 0  50  100  150  200  250  300  350  400
 0

 2

 4

 6

 8

 10

 0  500  1000  1500  2000  2500  3000  3500  4000

r s
m

o 
(m

pc
)

r s
m

o 
(U

l)

time (yr)

time (Ut)

Figure 8. Black line gives the distance (rsmo) of the growing supermassive
object to the CoM of the bound ‘core’ of the system, for one arbitrarily
chosen simulation of set 1A, taken as example. For comparison, we also give
in purple the half-mass radius of the system. The curves are plotted starting
from the time when the SMBH ‘seed’ is already grown by 42 IMBH mergers.

percentage Lagrangian radii so that in Fig. 5 we display only up to
the 50 percent Lagrangian radius (R1/2).

Note that growing massive objects, although they remain inside
the bound core of the system and close to its CoM, do not a priori
coincide with this CoM (see Fig. 8 that shows, also, how the growing
BH movement is since the beginning well within the half-mass
radius) and could, consequently, induce sharp variations in the latter
evolution of the low-percentage Lagrangian radii.

The late time evolution of the average half-mass radius R1/2

(50 percent Lagrangian radius), which is a good definition of the
system radial scale, is well fitted by a linear relation:

R1/2(t) � a1/2t + b1/2. (13)

For set 1 and t > 15 yr, the values of the parameters are{
a1/2 = 5.613 × 10−2 ± 3.10−5 mpc yr−1,

b1/2 = −0.012 ± 0.009 mpc,
(14)

leading to a root mean square error of the fit equal to 0.8 mpc for
R1/2. For set 2 and t > 500 yr, the values are{

a1/2 = 1.8070 × 10−2 ± 6.10−6 mpc yr−1,

b1/2 = −8.09 ± 5.10−2 mpc,
(15)

giving a root mean square error equal to 5 mpc.
The average half-mass radius at the final simulation time for set 1

is equal to 24 mpc (37 mpc for set 2), that is 50 times (8 times for
set 2) the initial half-mass radius, R1/2(0) = 2−1/3R0.

Even with our original safety margin of one order of magnitude
for the initial cluster radial size, at the end of the simulation the core
of the cluster extends much farther out than the area allowed for our
purpose of mimicking the presence of an SMBH by a dense cluster
of IMBHs. This is true for every simulation of set 1 and not only on
average. This is even more the case for set 2, where no safety margin
was taken. This result is not surprising: We actually expected that the
extreme conditions required (a stable system of IMBHs of total mass
MS = 4 × 106 M� and maximal size ≤5 mpc) were very unlikely to
be reached.

As we see in the next section, in both set 1 and set 2 the
IMBH cluster undergoes various merger episodes. This has relevant
consequences, whose main result is the formation of a very massive

BH as coming out from the dominant object growing up after
successive merger events.

Hence, we conclude that, as expected on basic theoretical under-
standing, the answer to the first of the issues we raised in introduction
is negative: A cluster of IMBHs dense enough to mimic the dynamical
role of an SMBH would not be stable for a significant time. On the
other hand, thanks to our simulations we saw how this instability of
the system results in a quick aggregation of mass, efficient enough
to beget an SMBH from successive mergers of less massive seeds.

4.2 The formation of an SMBH by subsequent mergers

Along the time evolution of the IMBH cluster under study, many
merger events occur. Besides the relevance they have in both growing
a supermassive object from the dominant aggregation seed and their
repeated bursts of GWs, the merger events have an effect on the
overall cluster structure

Actually, in our simulations the mechanical energy of the system
varies due to two phenomena: one is the energy loss via gravitational
radiation (accounted for by the 2.5-order PN terms in ARWV) during
the binary inspiral, while the other is a consequence of collisions, in
the way we explained in Section 3.2.

As we saw in Section 3.2, every merger corresponds to a small
injection of positive energy in the system (equation 10) so that the
total energy of the N-body system increases whenever a merger
event takes place. As a matter of fact, the total mechanical energy we
compute all along our simulations shows a stepwise increase after
every merger event (see Fig. 9). After numerous successive merger
events, the total energy can eventually become positive, so that the
system becomes gravitationally unbound.

In extremely dense systems such as the ones studied here, close
three-body encounters are found to happen often, causing binary
pairs to form and tighten, ultimately leading to merger through
relativistic final orbital decay. As we mentioned in Section 3.1, ARWV

is specifically designed to account for these situations, at least until
PN approximation maintains its validity.

As Fig. 10 shows, the merger rate comes to a peak at about 100 Ut

after the beginning of the simulation for both set 1 and set 2 (in
physical time, it is t � 10 yr for set 1 and t � 500 yr for set 2). This
peak time corresponds to the time of maximum compression of the
IMBH cluster, as seen in Fig. 5. The merger remnants, if not ejected
from the core of the cluster due to high recoil velocity (which, as we
have already shown, is a very rare case), constitute an aggregation
seed apt to induce further mergers. At this time, the number of merger
remnants is maximal (see Table 3 for more details).

These remnants merge among themselves rather quickly, leading
to a dominant very massive object sitting almost at the centre of
the potential well and ‘absorbing’ other bodies. Later, due to the
contemporary effects of the expansion of the cluster as a whole
and the progressive depletion of IMBHs (many of them having
been already captured), the merger rate drops and, so, the mass-
aggregation process nearly comes to an end (see Fig. 11).

For set 1, the average number of merger events occurring in 426 yr
is 93.05. On average, only three actual merger remnants survived in
the cluster at the end of the simulation, one of which contains almost
all the mass aggregated. The mass of this supermassive remnant
amounts on average to 23 per cent of the total initial mass of the
system, that is, indeed, 23 per cent of the mass of the SMBH at
the centre of the Milky Way. A rough and not completely reliable
extrapolation of this result says that an initial number of IMBHs 4.35
larger (i.e. 1740 IMBHs of 104 M� each) would be needed to grow
an SMBH of 4 × 106 M� .
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Figure 9. Evolution of the total mechanical energy E of the system along
time, in fraction of its absolute initial value |E0|. Top: a simulation of set 1A.
Bottom: a simulation of set 2A.

For set 2, the dynamics is less violent, as shown by that the maximal
number of contemporary merger remnants is much smaller. During
13 455 yr, an average of 33.9 merger events happened, leading to
the survival of only 2 remnants, one of which accumulated the mass
of 33.95 initial bodies (that is, 8.5 per cent of the total mass of the
system).

These are interesting results, because they state the possibility to
grow a very massive BH by the violent interactive dynamics of a set
of densely packed IMBHs.

We already said that the initial conditions of our system are not
the most realistic and that a better modelization (with less extreme
hypotheses) should be considered in a further investigation. This
new model would likely lead to a smaller rate of mass accretion, as
hinted by the fact that set 2, whose initial spatial distribution was
extended in radial size for a factor 10 with respect to set 1, shows
an approximately 10 times lesser rate of accretion. However, what is
really interesting in our present results is that, even if this rate were
to decrease by two or even three order of magnitude, a comparable
fraction of the BH mass would be aggregated in less than one million
years.

4.3 GWs from IMBH mergers

Let ĖGW ≥ 0 denote the energy radiated away by GW per unit of
time (emitted power), so that EGW(t) = ∫ t

0 ĖGW dt is the energy lost
by the system from the beginning of the simulation up to time t.
Proper unit of measure for the energy loss is the absolute value of
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Figure 10. Top panel: average rate of merger over the 20 simulations of set 1.
Bottom panel: average rate of merger over the 20 simulations of set 2.

Table 3. Minimal, maximal, and average (over all simulations of the
indicated set) fraction of the total mass MS gone into merger remnants at
the time when the merging rate is maximum.

Peak time Min. Max. Average

Set 1A 11.45 yr 0.005 0.045 0.0235
Set 1B 11.04 yr 0.005 0.05 0.0205
Set 2A 494.46 yr 0.01 0.025 0.0175
Set 2B 493.95 yr 0.005 0.0338 0.0139

the initial gravitational (binding) energy |�0| of the system, so that
we express ĖGW either in units of |�0| yr−1 or in units of |�0| U−1

t .
In set 1, the magnitude of the peak in power emission preced-

ing each merger ranges from ĖGW ∼ 10−13 |�0| yr−1 to ĖGW =
0.6 |�0| yr−1, for all 20 simulations. In set 2, it ranges from ĖGW ∼
10−13 |�0| yr−1 to ĖGW = 8.3 |�0| yr−1, for all 20 simulations.

Most of the merger events occur relatively soon after the beginning
of the simulation, when the system is still very dense. Prior to
the merger, the two progenitor bodies form a loose binary that is
subjected to repeated successive interactions with other IMBHs. At
a later stage of its orbital shrinking, the binary starts emitting GWs
until it, eventually, merges.

It is notable that while the evolution of binaries formed along
the way shows a quite erratic semimajor axis versus eccentricity
behaviour due to significant external perturbations, when the semi-
major axis has shrunk enough (and the eccentricity reached a high
value) the final evolution down to the merger resembles, at least for
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Figure 11. Percentage, fa, of the stellar mass accumulated into one single
body along the simulation. Top: Average over the 20 simulations of set 1.
Bottom: Average over the 20 simulations of set 2.

what can be seen by the limited output time resolution of our N-body
simulations, to that expected in isolation. This is clearly shown in
Fig. 12, where the top panel plots a versus e for three sample cases
of binaries in set 2A that undergo a merger. The characteristics of
the three binary systems undergoing merger are given in Table 4,
where the ‘initial’ semimajor axis and eccentricity (a0 and e0) are
corresponding to those labelled with a ‘+’ symbol in panel (a) of
Fig. 12. The oscillations in the a versus e relation are caused by
passing-by object perturbations, until (‘+’ symbols in Fig. 12a) the
binaries are tight and eccentric enough to evolve independently of the
external field. This phase, which leads to the final merger due to GW
energy loss, is followed in the ARWV output until the ‘x’ symbols.
The whole evolution until merging reported in Fig. 12(b) is obtained,
instead, by integration of equations 5.6 and 5.7 in Peters (1964).
Notably, the times to merger as obtained by ARWV and by the Peters-
like integrations differ by less than 6 per cent. For the sake of clarity
and comparison, the bottom panel of Fig. 12 gives the a versus e
evolution computed by integrating the above-mentioned evolutive
differential equations from Peters (1964), with initial conditions
taken as the ones corresponding to the three ‘+’ symbols marked
in Fig. 12(a).

In the first case of Table 4, the two progenitors are basic 104 M�
BHs. In the second, the two progenitors are small merger remnants
of mass 2 × 104 M� . Thus, in both cases the mass ratio is equal to
1. These two mergers occur relatively soon after the beginning of the

(a)

(b)

Figure 12. Top panel (a): semimajor axis (in units of Ul) versus eccentricity
evolution for three binaries pertaining to the same simulation of set 2A.
The ‘+’ symbols mark the beginning of the GW-dominated phase. The ‘x’
symbols mark the last ARWV output before the merger (see the text). Bottom
panel (b): a versus e final evolution according to Peters (1964) equations,
with initial conditions corresponding to the three ‘+’ markers in the top
panel. Solid line: case 1; dotted line: case 2; dashed line: case 3.

Table 4. For the three cases (as labelled in column 1): masses in 104 M�
(columns 2 and 3), mass ratio (column 4), initial semimajor axis (in au) and
eccentricity (columns 5 and 6), merger time in Ut (column 7), and fraction of
GW energy released with respect to the rest energy (m = m1 + m2) (column
8).

Case m1 m2 q a0 e0 tm EGW/(mc2)

1 1 1 1 0.72 0.97 74.21 0.36
2 2 2 1 0.58 0.94 132.60 0.049
3 2 29 0.069 14.5 0.99 2252.98 0.021
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Figure 13. Energy emitted by the system throughout its evolution, for one
of the simulations of set 1A (top) and one of set 2A (bottom).

simulation (tm = 74.21 and 132.6 Ut), when the system is still very
dense.

In the third case, one of the objects in the binary is the growing
SMBH and the other a small remnant of a previous merger, giving
a mass ratio of 29:2. This merger occurs later in the simulation (tm

= 2252.98 Ut), when the system has largely expanded. The bodies
involved in this merger are inside a region where the density is three
orders of magnitude less than that in the two other considered merger
cases. Thus, the encounters with passing-by objects are much less
frequent and some phases of the process (loose binary → tight binary
emitting GW → merger) last longer. In this case, the GW emission
phase extends over 16.8 yr, which is 5 times longer than the GW
emission of the two other merger events displayed in Fig. 12 (mainly
because of the significantly larger a0 in spite of larger masses and
slightly larger e0) with a peak intensity at 2.2 |�0| yr−1 and a half-
power decay time of 7.8 d.

Fig. 13 displays an example of the evolution over time of
the amount of energy lost by GW, EGW, in one arbitrary chosen
simulation of set 1A (upper panel) and of set 2A (lower panel). The
total energy lost by the system at the end of this simulation is equal
to 2.56 |�0| for the set 1 case and 9.66 |�0| for the set 2 case. Due
to the different initial compactness of the two simulated systems, the
dynamics of set 1 case is faster, explaining why at the same physical
time of 426 yr (end of set 1’s simulations) the GW energy released
for set 1 overwhelms that of set 2 case. On the other side, the set 2
case shows a progressive significant GW emission at later times, so

that the average time rate of GW emission is not so different in the
two cases. If we analyse the output in terms of the characteristic time
unit, then in 4000 Ut the set 2 simulation emits on average 4 times
more energy in terms of �0, but 2 times less in absolute value.

For set 1, the average (over the 20 simulations) quantity of energy
lost by the system after 426 yr is equal to 2.32 |�0|. This corresponds
to the conversion of 0.082 per cent of the initial total mass into energy,
a little less than 1/3 of the initial individual IMBH mass.

For set 2, the average (over the 20 simulations) quantity of energy
lost by the system after 13 455 yr is equal to 6.09 |�0|. This
corresponds to the conversion of 0.012 per cent of the initial total
mass into energy, a little less than 1/20 of the initial individual IMBH
mass.

5 C O N C L U S I O N S

In this paper, we studied the possible fate of a set of IMBHs that
have allegedly been transported to the Galactic Centre by their
hosting massive star clusters. The possible mechanism of transport
and confinement to the central Galactic region has been identified
as due to dynamical friction braking of the star background on the
motion of massive GCs hosting IMBHs.

We followed the violent dynamics of this superdense cluster of
IMBHs (400 IMBHs of mass 104 M� each, to give a total mass ∼
equal to the one estimated for the Sgr A∗ putative BH) with a high-
precision N-body integrator (ARWV; see Chassonnery et al. 2019)
containing an accurate treatment of close encounters and of general
relativistic effects in the PN approximation scheme. We chose two
different initial concentrations for the IMBH cluster and included an
accurate treatment of recoil velocity after merger following modern
GR prescriptions.

Our findings are as follows:

(i) the superdense cluster evolves very fast, without reaching
an equilibrium because of the contemporary effect of interactions
leading to the expulsion of members and the onset of merger events;

(ii) the relativistic recoil velocity is rarely high enough to over-
come the escape speed, mainly due to that the initial mass ratio, q,
of the IMBH is q = 1;

(iii) with different efficiency in dependence on the initial number
density of the simulated clusters of IMBHs, merger events lead to a
dominant ‘aggregation’ seed that can grow up in mass to more than
20 per cent of the initial mass of the cluster;

(iv) after this quick growth of what is, actually, an SMBH, the
accretion phenomenon slows down due to the dispersal of the residual
cluster that makes the further merger cross-section exceedingly
small;

(v) a simple scaling of our numerical results for the more compact
initial cluster considered indicates that a cluster of 1800 IMBHs with
a radius <1 mpc could lead to the formation of an SMBH of the mass
of Sgr A∗;

(vi) the various mergers, both before and after the onset of a domi-
nant aggregation SMBH seed, generate GWs, whose radiated energy
is accounted for by the 2.5 order terms in the PN approximation.
The mergers start as equal-mass merger and proceed towards the
regime of IMRIs (intermediate-mass ratio inspirals, m2/m1 ∼ 100),
and the merging masses are so large that the GW output is peaked
at very low frequencies (<1 Hz). The frequency of the emission
peak decreases with growing merger mass, such that to make them
undetectable from ground but still a very appealing source for future
space antennas like the joint ESA–NASA satellite interferometer
LISA (https://sci.esa.int/web/lisa and http://lisa.jpl.nasa.gov/).
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(vii) the overall evolution of the studied systems, as well the rate
of growth of the SMBH, is negligibly influenced by the individual
IMBH spin because of the low value of the recoil velocity after
merger with respect to the local escape velocity.

This work will be generalized to a more likely framework of
IMBHs that are not considered as ab initio packed in a narrow region
around the Galactic Centre but that fall progressively there, where
they start interacting among themselves.
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