Measuring the Interestingness of Temporal Logic
Behavioral Specifications in Process Mining

Alessio Cecconi®*, Giuseppe De Giacomo®, Claudio Di CiccioP,
Fabrizio Maria Maggi®, Jan Mendling?®

CWU Vienna, Vienna, Austria
bSapienza University of Rome, Rome, Italy
¢Free University of Bozen-Bolzano, Bolzano, Italy

Abstract

The assessment of behavioral rules with respect to a given dataset is key in
several research areas, including declarative process mining, association rule
mining, and specification mining. An assessment is required to check how well a
set of discovered rules describes the input data, and to determine to what extent
data complies with predefined rules. Particularly in declarative process mining,
Support and Confidence are used most often, yet they are reportedly unable
to provide a sufficiently rich feedback to users and cause rules representing
coincidental behavior to be deemed as representative for the event logs. In
addition, these measures are designed to work on a predefined set of rules, thus
lacking generality and extensibility. In this paper, we address this research gap
by developing a measurement framework for temporal rules based on Linear-
time Temporal Logic with Past on Finite Traces (LTLp;). The framework is
suitable for any temporal rules expressed in a reactive form and for custom
measures based on the probabilistic interpretation of such rules. We show that
our framework can seamlessly adapt well-known measures of the association rule
mining field to declarative process mining. Also, we test our software prototype

implementing the framework on synthetic and real-world data, and investigate

*Corresponding author. Authors in alphabetical order.

Email addresses: alessio.cecconi@uu.ac.at (Alessio Cecconi),
giuseppe.degiacomo@uniromal.it (Giuseppe De Giacomo), claudio.diciccio@uniromal.it
(Claudio Di Ciccio), maggi@inf.unibz.it (Fabrizio Maria Maggi), jan.mendling@wu.ac.at
(Jan Mendling)

Preprint submitted to Information Systems November 22, 2021

the properties characterizing those measures in the context of process analysis.
Keywords: Declarative Process Mining, Specification Mining, Association Rule

Mining, Interestingness Measures, Temporal Rules

1. Introduction

Measuring the degree to which process traces comply with behavioral rules
is key in process analysis branches such as conformance checking [1], compliance
assessment [2], and discovery of process constraints [3]. To date, several measures
have been defined to this end, yet there are two major problems with their
application.

First, measures adopted for process mining are defined inconsistently for
specific applications. For example, among the most frequently used measures
there are Support and Confidence. However, their definition has been customized
to the specification languages in use and even for the specific mining algorithms
under analysis. For instance, there is a significant difference in the definition
of Support used in [3] (percentage of traces fully compliant to a rule) and
[4] (percentage of activations that lead to a fulfillment), in a way that the
Support of rule “If a is executed, then b will be executed later” on a set of traces
like {<a,b,c,d),{a,b,c,a),{a,c)} is equal to 0.33 for [3] and 0.5 according to [4].
Furthermore, the definition of those measures are defined ad hoc for specific sets
of rules, like DECLARE [5] templates. Such issues hinder the fair comparison and
eventually the advancement of rule-based process mining.

Second, the opportunity to adopt available measures from association rule
mining has been largely missed so far. A plethora of measures that are reportedly
superior in comparison to Support and Confidence [6] have been proposed in this
field. Support measures only the satisfaction frequency of a rule and Confidence
its validity. Although those are crucial aspects in the assessment of a rule,
they do not suffice to avoid spurious result [7]. Markedly, various directions
have been explored in prior research, among others by revising Support and

Confidence [8, 9, 10], and by defining complementary measures [11, 12, 13].

However, all such measures do not account for the temporal perspective, which
is a first-class citizen dimension in process mining.

In this paper, we address the research challenge of defining a general and
comprehensive measurement system. More specifically, we propose a framework
based on formal semantics grounded in Linear-time Temporal Logic with Past on
Finite Traces (LTLp,) to express Reactive Constraints (RCons) [14] in a way that
abstracts from specific rule-specification languages. Such constraints are rules in
the form of “IF A THEN B”, thus binding the satisfaction of an antecedent A to
the occurrence of a consequent B, wherein both A and B are temporal formulas.
We show that a probabilistic interpretation of the fine-grained temporal logic
evaluation of any such formulas allows us to employ all available association rule
mining measures as-is for temporal rules. Markedly, the framework has linear
time and space complexity with respect to the input size.

Our contribution extends concepts from association rule mining to temporal
logic specifications. In this way, we define a foundation upon which the fitness
between measures and data analysis scenarios can be discussed in future research.
We conduct an extensive set of simulation experiments, the results of which
demonstrate that, driven by known properties, the measures respond differently
to changes in the behavior evidenced by event logs. This is an important finding
that highlights the need to select measures according to the application context,
confirming previous findings for association rules [15] in the realm of temporal
logic specifications.

This paper is an extension of our previous conference paper [16] presented at
the 2nd International Conference on Process Mining (ICPM 2020). We extend

the contribution in the following aspects:

e We extend the framework to provide measures at the level of the event log,

and not only descriptive statistics at the trace level (Section 4);

e We revise the experiments based on the new theoretical extension. In
particular, we score the proposed measures and rank them in order to

identify the best candidates to be used for rule discovery (Section 6);

e We analyze the memory consumption of the framework along with the

time performance (Section 5);

e We extend the discussion about the interestingness measures used and
exploit their known properties for a better understanding of log behavior

(Sections 3, 6 and 6.3).

Additionally, we prove the linear-time performance of the RCons verification in
Appendix A.

The remainder of this paper is structured as follows. Section 2 discusses prior
research on measures for declarative process mining and specification mining.
Section 3 defines preliminaries upon which we define our framework. Section 4
defines the measurement framework. Section 5 presents a computational study
of the framework and Section 6 shows the results of an array of simulation
experiments and discusses them. Finally, Section 7 summarizes the contribution

of the paper and points to opportunities for future research.

2. Related work

Behavioral rules have been widely used to support application scenarios such as
association rule mining in machine learning, process discovery and conformance
checking in process mining, and specification mining in software engineering.
The assessment of rules with respect to the available data is a key component of
all these techniques.

In association rule mining, interestingness measures are used to discriminate
candidate pairs of relevant co-occurring events. A common technique is to
discover frequent rules above a certain Support threshold (frequency) and to prune
the results below a certain Confidence threshold (validity). For example, [17]
discovers associations between items through an Apriori algorithm based on the
downward-closure property of the Support measure. Nevertheless, the use of
Support and Confidence alone is reportedly not sufficient to avoid a large number

of spurious results [7], i.e., the discovery of rules which are frequently satisfied by

the data although merely by chance, thus threatening their statistical validity. A
plethora of new measures have been proposed in the literature to overcome the
limits of using only Support and Confidence [11], yet the employment of Support
and Confidence as the main interestingness measures remains widespread. The
main goal driving the development of better measures is indeed the exclusion of
spurious rules, so as to let the more crucial ones stand out. Several measures
are directly improving on or refining the results of Support and Confidence (e.g.,
Lift [8] scales Confidence with the Support of the consequent of a rule), others
combine different measures (e.g., Added Value [12] subtracts the Prevalence to
the Confidence of a rule), and further ones show complementary information
(e.g., Specificity [11] measures to what extent the absence of the consequent is
related to the absence of the antecedent of a rule).

In declarative process discovery, interestingness measures are used to prune
candidate rules based on user-defined thresholds. This pruning approach is used
for DECLARE discovery in [3, 4] and for DCR graphs discovery in [18]. These
techniques are mainly based on Support and Confidence, which lead to the
aforementioned limits [7]. In addition, the definitions of these metrics also differ
depending on the techniques that use them. For instance, the Support measure
presented in [3] does not correspond to the Support measure of [4], although
both are expressly defined for the sole DECLARE constraints.

In the area of conformance checking, interestingness measures are used to
check the degree of conformance of a rule with respect to an execution trace.
In [19], Linear Temporal Logic (LTL) rules are checked against each trace in a
given event log. This is highly generic as it supports any custom LTL formula,
but it reports only binary results, i.e., whether a rule holds in a trace or not.
In [20], Burattin et al. use measures like fulfillment ratio and violation ratio,
based on the evaluation of the number of activations of a rule (intuitively, the
occurrences of its antecedent) that lead to a fulfillment and the number of
activations that lead to a violation in an event log. However, these metrics are
specifically bound to the set of DECLARE rules, thus not providing a general

measurement framework that can be applied to general type of rule.

In specification mining, interestingness measures are also used to prune can-
didate temporal specifications based on user-defined thresholds. Interestingly,
specification mining and declarative process discovery are two largely overlapping
concepts from distinet fields. Yang et al. [21] discover 2-value temporal patterns
using a trace measure that quantifies partial satisfactions of a rule. Yet, the
technique lacks generality as it is limited only to alternation patterns (similar
to ALTERNATERESPONSE and ALTERNATEPRECEDENCE in Table 1) and the
adopted computation heuristics are tailored to the software domain. Le et
al. [6] emphasize the limits of using only Support and Confidence measures and
investigate properties of other measures reviewed in [11]. Their results demon-
strate that there are several measures outperforming Support and Confidence,
and that the combination of different measures yields better results. However,
they limit their study to 2-value temporal patterns (specifically, RESPONSE and
PRECEDENCE in Table 1). Furthermore, their computation of the probability
for a temporal specification is based on a sliding window technique [22]: traces
are read in chunks of the size of a given window, then the probability of a rule
is the percentage of windows in which it is satisfied. They test the effect of
different window sizes, showing that their results depend not only on the input
rules and the data, but also on this parameter selection. Lemieux et al. [23]
extend specification mining to arbitrary LTL specifications (implicitly on finite
traces) beyond 2-value templates. However, they resort to the sole Support and
Confidence measures to prune uninteresting results, thus incurring in the already
mentioned statistical limits [7].

The aforementioned shortcomings of quality measures are also discussed
in the field of sequence mining [24] when dealing with discovering patterns
(specifically subsequences) to classify sequential data. Egho et al. [25] highlight
how measures like Confidence and Lift alone lead to unstable classification results
of subsequences, proposing a probabilistic Bayesian-based measure to overcome
such an instability and avoiding the requirement of setting thresholds for measures.
It falls under the family of techniques based on the minimum description length

principle, like [26], where an encoding scheme is used to discover a minimal set

of subsequences which can reproduce the original data. Notably, subsequence
interleaving patterns are only a subset of patterns expressible with LTL formulae.
Works adopting behavioral rules for classification like [27], on the other hand,
fall back to the sole employment of Support.

In summary, despite the discussion in different fields on measures and the
problem of spurious relations, there is no technique that supports at the same
time a comprehensive and extensible multi-measurements assessment of rules

and its applicability on general temporal logic specifications.

3. Preliminaries

To develop our framework, we build on the sound foundations of LTLp;. In
this section, we introduce the fundamentals of LTLp; formulae (Section 3.1) and

interestingness measures for association rules (Section 3.2).

3.1. Linear-time Temporal Logic with Past on Finite Traces (LTLpf)

As the formal foundations of our framework, we consider the rules specified in
Linear Temporal Logic on Finite Traces (LTLy) [28] as used in DECLARE [5, 29)].
LTL; has the same syntax as LTL [30]. Its semantics is interpreted on finite
traces (here abstracted as finite sequences of symbols), and thus take into account
that business processes are assumed to eventually terminate [31]. DECLARE
focuses on a set of specific LTLy formulas. Table 1 illustrates some of the most
important rules for business process specifications in DECLARE.

LTLpy is an extension of LTL supporting the expression of properties of
the past (hence the “p” suffix) [14]. Well-formed LTLp, formulae are built from
an alphabet ¥ 2 {a} of propositional symbols and are closed under the boolean
connectives, the unary temporal operators O (next) and © (previous), and the

binary temporal operators U (Until) and S (Since):

= al(=9)l(P1 A P2)[(OP)|(p1 U 92)|(©¢)l(p1 S ¥a).

From these basic operators, the following can be derived: Classical boolean

abbreviations True, False, v, —; Constant tg,q = — O True, denoting the last

Table 1: Some DECLARE constraints expressed as RCons.

Constraint LTL; expression [28] RCon
PARTICIPATION (a) Oa tstart o> Oa
INIT(a) a tsStart 0> a
END(a) O0a tEng 0> a
ATMOSTONE(a) O(a — O(—0a)) ao> O (—0a)
RESPONDEDEXISTENCE (a, b) Qa — Ob ao> (Ob v ©b)
RESPONSE(a, b) O(a — Ob) ao> Ob

ALTERNATERESPONSE(a, b) O(a — Ob) A [d(a = O(—a W b)) ao> O (—a U b)
CHAINRESPONSE(a, b) O(a — Ob) A (a2 — Ob) aoc> Ob
PRECEDENCE(a, b) —b W a bo> a

ALTERNATEPRECEDENCE(a,b) (—b W a) A [J(b > O(—b W a)) bo> ©(—b S a)

CHAINPRECEDENCE(a, b) (—b W a) A[J(Ob — a) bo> Oa
SUCCESSION(a, b) (@ — Ob) A (—b W a) (avb)o>(anOb)v(bna ©a)
(a— Ob) A[(a > O(—a W b)) (avb)o>(anO(—a Ub)v

ALTERNATESUCCESSION((a, b)
A(=b W a) A[(b — O(—b W a)) (bAO(—b S a))

CHAINSUCCESSION(a, b) DEB = 9))A D‘(:‘a(g Or)) (avb)o>(anOb)v (baBa)
A(—b W a) A b— a
(avb)o>(aAndb)v(andb)v
(bAQa)v(bna da)
(avb)o>(a A —=&bAa —Ob)v

(b A —ba A —\Oa)

COEXISTENCE(a, b) (Qa A Ob) v (—0a A =Ob)

NOTCOEXISTENCE(a, b) O(a — —=Ob) A (b — —0a)

instant of a trace; Constant tsiay = — © True, denoting the first instant of

a trace; QO = True U ¢ indicating that ¢ holds true eventually before tgnq;

1 W pa2 = (1 U ¢2) v g1, which relaxes U as @2 may never hold true;

Q@ = True S ¢ indicating that ¢ holds true eventually in the past, after tgyart;

(e = —0—p indicating that ¢ holds true from the current instant till tgpq;

Elp = =9 — indicating that ¢ holds true from tgy,,¢ to the current instant.
Given a finite trace ¢ of length n € N, an LTLp, formula ¢ is satisfied in a

given instant ¢ (1 <4 < n) by induction of the following:

t,i = True; t,i ¥ False;

t,i |=a iff t(¢) is assigned with a;

t,i = —p iff £,4 ¥ @;

t,i k=1 Ao iff ti =@ and t,i = po;

t,i =EOpiff i <nand t,i+ 1 = ¢;

tiEOpiffi>1landt,i— 1 ¢;

i1 U ifft,j = e withi < j <n,and t,k = ¢ forall ks.t. i < k < j;
tikE=p1 S poiff t,j = o with 1 < j <4, and ¢,k |= ¢ for all k s.t. j < k <.
A formula ¢ is satisfied by a trace ¢, written ¢ = ¢ iff t,1 |= ¢. One of the central
properties of LTLp,; and LTLy is that a deterministic finite state automaton
(DFS) A, can be computed such that for every trace t we have t = ¢ iff ¢ is in
the language recognized by A, as illustrated in [32, 14, 33].

Without loss of generality, in this paper we abstract traces as finite strings
of symbols representing events. We assume that every event reports on
the execution of exactly one task and LTLp; formulae use those tasks as
their propositional symbols — the so-called DECLARE assumption [32]. A
trace extracted from the real-world Sepsis event log [34] is, e.g., tsepsis =
<ER Registration, ER Triage, ER Sepsis Triage, CRP, Lactic Acid, IV Liquid, IV Antibiotics>. No-
tice that this trace complies with the constraints that Mannhardt et al.
identified as normative for the Sepsis treatment process [35], including
the following ones: (i) INIT(ER Registration), i.e., every trace begins with
the registration at the emergency department,; (i) ATMOSTONE(ER Triage),
i.e., the triage in the emergency room occurs at most once in a
process run; (i) RESPONSE(ER Triage, ER Sepsis Triage), i.e., the ER Triage
procedure should be eventually followed by the Sepsis-specific triage,
(iv) PRECEDENCE (ER Sepsis Triage, IV Antibiotics), i.e., the intravenous injection of
antibiotics must be preceded by the ER Sepsis Triage procedure.

Table 17 contains an extended set of DECLARE constraints that a correct exe-
cution of the Sepsis treatment process should fulfill. For the sake of succinctness,
we may use single-letter identifiers in place of full-length task names whenever
suitable in the following examples.

An event log is a multi-set of traces, i.e., traces can recur multiple times in
an event log. The cardinality of the event log is the sum of the multiplicities

of its traces. Considering the Sepsis event log, the multiplicity of fgcpsis is

Table 2: Contingency tables to which the “IF A THEN B” rules and their variables (z € {A, B})
comply with. On the left-hand side, the contingency table is based on probabilities (P(x)); on
the right-hand side, the contingency table is based on frequencies (where |z| is the number of

occurrences of z and N is the total number of occurrences).

A —A A —A

B | P(AB) P(—AB) | P(B) B | |AB| |-AB| | |B|

~B | P(A-B) P(—A—-B) | P(=B) -B | |A=B| |-A-B| | |-B|
P(A) P(=4) 1 [A| [—A] N

13 (i.e., tgepsis occurs 13 times in the event log). Other exemplary traces

/
Sepsis

= <ER Registration, ER Triage, ER Sepsis Triage, Leucocytes, CRP> (With

of that log are ¢ = (ER Registration, ER Triage, ER Sepsis Triage) (occurring 35

3 "
times) and tg. .

a multiplicity of 24). The cardinality of the event sub-log consisting of the traces
above is thus 72. The cardinality of the whole Sepsis event log is 1050.

3.2. Interestingness measures for association rules

In this section, we revisit key findings of research on research on quality
measures in association rule mining. More specifically, we build on prior research
that surveys measures in the area of software engineering and association rule
mining, namely [36, 37, 11, 15]. These works are specifically suited as a foundation
due to the wide coverage of measures and their comparative study of both formal
and user-perceived measure properties. The rules under study are in the form
“IF A THEN B”, where A is called the antecedent of the rule, and B its consequent.
We refer to A and B as variables of the rule.

Specifically, we consider only probability-based objective measures, i.e., mea-
sures depending only on the data as opposed to those requiring user-provided
parameters. Objective measures are based on the probabilities derived from the
contingency table of the occurrences of the variables, as depicted in Table 2.
Table 3 presents the list of measures covered in this study. In the following, we
provide a brief description of each measure.

Support [17] measures the frequency of the co-occurrence of the antecedent and

10

Table 3: Probabilistic measures for association rules with respective range and properties.

Measure Formula Range P1 P2 P3 P4 P5 P6
Support P(AB) [0,1] ~ sym N\, var ovar N\
Confidence/Precision P(B|A) [0,1] v asym - var comst N\
Coverage P(A) [0,1] asym N\, var ovar O\
Prevalence P(B) [0,1] ~ asym 2 var ovar N\
Recall P(A|B) [0,1] Vooasym N\, var var)
Specificity P(~B|—~A) [0,1] ~ asym N\, comst var N\
Accuracy P(AB) + P(=A—B) [0,1] ~ sym N\, varovar N
P(B|A P(AB
Lift /Interest 1(’(1‘5)) or W [0, +00) sym . const var N
Leverage P(B|A) — P(A)P(B) [-1,1] ~ sym 2 var ovar N\
Added Value/
Change of Support/ P(B|A) — P(B) [-1,1] ~ asym N\, comst var N\,
Centered Confidence
Relative risk 014 [0, +o0) sym N\, st N
elative risk G L+ asym const var
Jaccard P(aB) 0,1 v ar N\
Jaceard o B PR [0,1] sym N\, var var
Certainty factor L (BI4) = P(B) =11 asym N\, const comst
ertainty factor 1 —PE) . asym const cons
Odds rati P(AB)P(~A-B
s ratio/ P(AB)P(~A~D) [0,40) - sym N\, const const _
Bayes Factor P(A=B)P(~BA)
. P(AB)P(—~A—B) — P(A=B)P(~AB)
Yule's —1,1 - sy’ const st
s QB P A~E) 1 PUASBIPAR) [-1,1] sym N\, comst const
/P(AB)P(—A—B) — /P(A—B)P(—AB
yules y YEABIP() = VI)P() [-1,1] sym N\, const const
\/P(AB)P(=A=B) + \/P(A=B)P(=AB)
Klosgen +/P(AB) x max(P(B|A) — P(B), P(A|B) — P(A)) [-1,1] asym N\, const var =\,
C t PA)P(5) 0, +0) st const
Jonviction P(A-B) [0, 20 asym Y, comst const \,
Interestingness (P(AB))”
) 1) x P(AB)™ 0, +0 sym N\, comst var
Weighting Dependency (P(A)P(B) (A () ~
P(AB) + P(—B|—-A 1 — P(A)P(B) — P(—A)P(-B
Collective Strength (AB) + P(oBI=4) (AP(B) = PCAP(-B) [0,4+0) - asym 7 var var
P(A)P(B) + P(-A)P(=B) 1 P(AB) — P(—B|=A)
Laplace Correction % [051] v asym - var var N\,
P(A) x (P(B|A)? + P(=B|A)?)
Gini Index +P(—A) x (P(B|-A)? + P(—=B|—A)?) [0,1] asym N\, comst var N\,
—P(B)* - P(-B)*
JMeasure P(AB) log LZIA) | pa gy 1oy LEBIA) 0, +90 const t
-Measure Vg 55y + PA-B)les s (~, +0) asym const const
P(AB
One-Way Support P(B|A) log, m (~0, +o0) asym const var
Two-Way Si t P(AB)I P(AB) (—o0, +0) S st r
‘wo-Way Suppor AB)logs 55 X sym const var
PAB)1 P(AB) A P(A=B)
Two-Way Support PAB) 1082 Bt + PASD) logy oo) .
. P(—AB) P(—~A-B) (—00, +00) -~ sym . cons cons N
Variation | p(=AB) log, 4 P(=A-B)log,
P(=A)P(B) P(=A)P(=B)
O-Coefficient
Pearsons L P(AB) — P(A)P(B) (o0, 40) N . N
= s Linear —m—me——t— 02 —m, sym const var
(Pearson’s Linear JFAPEPCAPE ¥
Correlation Coefficient)
Piatetsky-Shapiro P(AB) — P(A)P(B) [-1,1] ~ sym N\, comst var N\,
P(AB
Cosine ——AB)_ [0,+0) v sym N\, var var N\,
VP(A)P(B)
P(A)P(-B
Information Gain log —A2) 0, +0) ; . const -
nformation Gain log 55 (—, + sym const var
P(AB
Sebag-Schoenauer ﬁ [0,+®) v asym — var comst _
. P(AB) — P(A=B)
Least Contradiction (=, +0) v asym N\, var var N
P(B)
P(AB)P(-B
Odd Multiplier W [0, +20) — asym const const _
Example and P(A-B)
1- == (-=0,1] v asym — var comst
Counterexample Rate P(AB)
P(AB) — P(A)P(B)
Zhang (=0, +o0) - asym Y, const const)

max(P(AB)P(=B), P(B)P(A—B))

11

the consequent. The Support of the sole antecedent of the rule is also called
Coverage, while the Support of the consequent is called Prevalence.

Confidence [17] measures the co-occurrences of the antecedent and the conse-
quent in the fraction of data containing the antecedent.

Recall [11] measures the co-occurrences of the antecedent and the consequent
in the fraction of data containing the consequent.

Specificity [11] measures the co-absences of the antecedent and the consequent
in the fraction of data not containing the antecedent.

Accuracy [11] measures the fraction of the data either containing both the
consequent and the antecedent or neither of the two.

Lift [8] scales the Confidence by the probability of the consequent, to check if
the co-occurrence of the antecedent and consequent is more likely than
their independence.

Leverage [9] measures the difference between the Confidence of the rule and
the independent occurrence of its variables.

Added Value [12] measures the difference between the Confidence of the rule
and the probability of the consequent alone, to check if the conditioned
occurrence of the consequent differ from its unconditioned occurrence.

Relative Risk [38] measures the ratio of the conditional probability of the
consequent given the antecedent to the conditional probability of the
consequent given the negation of the antecedent.

Jaccard’s Coefficient [39] measures the similarity between the variables using
the ratio of their co-occurrence to the union of all their independent
occurrences.

Certainty Factor [10] measures the ratio of the Added Value of the rule to
the Added Value of the consequent alone, in order to see the variation of
probability in the data containing the antecedent.

Odds Ratio [40] measures the ratio of the probability of having the consequent
when the antecedent is present to the probability of having the consequent
when the antecedent is not present.

Odds Multiplier [40] measures the ratio of the probability of having the an-

12

tecedent when the consequent is present to the probability of having the
antecedent when the consequent is not present.

Yules’s Q and Yules’s Y [41, 42] are normalization of the Odds Ratio to have
it centered around 0 and ranging between -1 and 1.

Klosgen’s Measure [43] weights the Support of the rule using its Added Value.

Conviction [13] measures the occurrences of the antecedent without the conse-
quent in comparison to their independence.

Interestingness Weighting Dependency [44] combines Support and Lift of
a rule and explicitly gives weights to each of them to let the user decide
their relative importance.

Collective Strength [12] measures the ratio of the agreement ratio (number
of non-violations per expected number of non-violations) to the violation
ratio (number of violations per expected number of violations).

Laplace Correction [45] is a variation of Confidence to take into account small
data.

Gini index [46] measures if the entropy introduced by a rule brings a marked
difference.

J-measure [47] is an entropy based measure for the information content of a
rule.

One-way Support and Two-way Support [48] combine respectively Confi-
dence and Support of a rule with the degree of independence between the
variables.

Two-way Support Variation [48] measures the change in the Two-way-Support.

Linear Correlation Coefficient [49] measures the Pearson’s correlation be-
tween the variables.

Piatetsky-Shapiro [9] measures the difference between the co-occurrences of
antecedent and consequent and their independent frequency.

Cosine [37] measures the geometric mean between Lift and Support of a rule.

Loevinger [50] measures the homogeneity between antecedent and consequent.

Information Gain [51] is the logarithm of the Lift.

Sebag-Schoenauer [52] measures the proportion of positive and negative oc-

13

currences of the antecedent.

Least Contradiction [53] measures the difference between positive and nega-
tive occurrences of the antecedent weighted by its frequency.

Example and Counterexample Rate [11] measures the proportion of the
antecedent occurrences with and without consequent.

Zhang [54] measures the positive or negative association between the antecedent
and the consequent.

Different studies have been dedicated to the analysis of general properties for
measures [11, 9, 37, 15]. Properties show the response of measures under certain
conditions. Therefore, properties can be used to group similar measures and
decide the proper ones to be employed depending on the context. For example,
we will analyze the sensitivity of measures to the increase of noise in the data as
an important selection criterion for rule monitoring or discovery. We will delve
deeper into this aspect in Section 6. In this paper, we focus specifically on a
subset of the properties proposed in [37] and [15], as their meaning and effects
are reportedly recognizable in a clear manner by the final user. The selected

properties are explained below and associated to each measure M in Table 3.

P1. Null invariance [37]. The measure is unaffected by traces not containing
neither A or B. Therefore, it assesses whether the traces not related to the
rule affect the measurement or not. To satisfy this property, the measure
should not vary when |-A—B]| increases in the contingency table, while
the other values remain fixed. In Table 3, we use the ‘v’ or ‘~’ symbols to
indicate whether the property holds or not, respectively. For example, for
Confidence and Recall this property holds, whereas for Support, Leverage

and Collective Strength it does not.

P2. Asymmetric processing of variables [15]. The measure is asymmetric
under variable swap, i.e., the measure of IF A THEN B differs from that of
IF B THEN A. The measure enjoys this property if it does not vary upon
the swapping of the values of | =AB| and |A—B] in the contingency table.

In Table 3, every measure is marked with “asym” or “sym” to indicate

14

P3.

P4.

P5.

whether the property is enjoyed or not, respectively. For instance, Support
and Leverage are symmetric under variable swap, whereas Confidence,
Recall and Collective Strength provide an asymmetric processing of the

variables.

Variation with occurrences of B in the absence of A [15]. The
value of the measure varies when the occurrences of B in the absence of A
increase. In other words, this property focuses on whether the independent
occurrence of B influences the measure. Given an IF A THEN B rule, if
B is very likely to occur regardless of A, the influence of A on B may be
questioned. To verify this, the value of the measure varies when |—~AB)|
increases in the contingency values (and the other values remain fixed). In
Table 3, measures are marked with ©\” if the variation is a decrease (as
in the case of Support), ‘7 if it is an increase (e.g., Leverage), ‘7’ if the
variation can be either a decrease or an increase depending on the values
of B (e.g., Collective Strength), ‘—’ if the value does not vary at all (e.g.,
Confidence).

Reference situations: independence [15]. If the variables are inde-
pendent, then the measure exhibits a known value. The variables are
considered independent when their joint probability is equal to the product
of their respective probabilities, i.e., P(AB) = P(A)P(B). The measure
should have a constant and known value in that case. In Table 3, measures
are labeled as “const” (e.g., Lift) if this property holds, and “var” otherwise

(e.g., Support).

Reference situations: logical rule [15]. If the rule is always satisfied,
then the measure exhibits a known value. An IF A THEN B rule is always
satisfied if P(A—B) = 0. In other words, if there are no counterexamples
in the data, the value of the measure that enjoys this property is a known
constant (let it be a number or tendency to infinite). In Table 3, measures
are labeled as “const” if this property holds (as in the case of Confidence),

and “var” otherwise (see, e.g., Lift).

15

P6. Trend with P(A—DB) [15]. If the number of counterexamples to the
rule rises, the value of the measure reacts exhibiting a decreasing trend
that denotes a higher or lower sensitivity. For an 1F A THEN B rule, a
higher number of counterexamples translates into an increase of P(A—B).
Against that increase, the measure may show a fast (convex), linear, or
slow (concave) decrease. Measures in Table 3 are labeled either as ‘\’
(convex, e.g., Conviction), N\’ (linear, e.g., Support), or ‘™’ (concave, e.g.,

Recall) accordingly.

These properties, according to [15], can be divided into normative (i.e., always
desirable: P2, P3, P4, P5) and subjective (i.e., depending on the user needs:
P1, P6). We will resort to these properties to examine the quality measures in
the context of process mining.

In the following section, therefore, we extend the aforementioned measures

to temporal process rules.

4. Temporal-extended measurement framework

Our framework addresses the limits of Support and Confidence measurements
by building on LTLp, formal semantics and the spectrum of measures defined
in different areas of computer science. Furthermore, it is generic as it allows
for the usage of any probabilistic measure (including those of Table 3) on any
temporal-logic-based rules specification. To this end, Section 4.1 formalizes the
reactive temporal specification of rules, Section 4.2 discusses their probabilistic

interpretation, and Section 4.4 defines the overall framework.

4.1. Reactive temporal specification

Our first building block is the concept of Reactive Constraint (RCon), orig-
inally introduced in [14], the paper which we extend here. A rule typically
expresses that the occurrence of given preconditions (activator) implies certain
consequences (target). The reactive nature of this kind of rule lies in the fact
that the condition on the target is exerted only if the activator is verified. We

codify this intuition in RCons, whose semantics is based on LTLp.

16

Definition 4.1 (Reactive Constraint (RCon)). Given an alphabet of propo-
sitional symbols ¥ U {tstart, t End, True, False}, let v, and @, be LTLps formulae
over ¥. A Reactive Constraint (RCon) U is a pair (¢a, pr) hereafter denoted as
V£ p,0> ;.

An RCon is interpreted as follows: Each time the activator is true, the target
should be true at that point of the trace. For example, ao— {c is an RCon
stating that every time a (the activator, ¢,) is True, then also {c (the target,)
must evaluate to True. That RCon corresponds to RESPONSE(a, c¢) in DECLARE
as it requires that if a occurs in a trace, it must be eventually followed by c.
co— &d corresponds to PRECEDENCE(d, c¢) in DECLARE because it requires that
every time c (the activator) occurs in a trace, then it has to be preceded by d
(the target). Table 1 provides a list of standard DECLARE constraints expressed
in the form of RCons. An RCon that goes beyond the standard repertoire of
DECLARE is (©b A Qe)o— (—c v Of): Its activator is the formula ¢, = Ob A Qe,
satisfied between the occurrence of b and the occurrence of e in a trace; its target
is the formula ¢, = —c v Of, which evaluates to True if either ¢ is False, or ¢
occurs and is eventually followed by f. Because at every event of the trace (i.e.,
any point in time) both the activator and target can be either True or False,
the possible evaluation of an RCon can result in either of the following four

combinations.

Definition 4.2 (RCon evaluation). Given an RCon ¥ = ¢,o0—~ ¢, and a
trace t of length n € N, let i denote the i-th event in the trace (1 <i<n). For

each t; € t the possible evaluations of W are:

po = False, o, = False if t,i 5 @, and t,i ¥ or;
Yo = False, o, = True if t,it# o andt,i = @;;
Yo = True, ¢, = False if t,if= @ and t,i ¥ or;

0o = True, o, = True if t,if= o and t,i = @;.

17

Table 4: Evaluation (0 is False and 1 is True) and probabilistic interpretation of RCon ao> {c.

Tracet; = (a, b, ¢ d f, ¢ e ¢ h >
Pao: a 1 0 0 O O O O o0 o
wr: Oc 1 1 1 1 1 1 1 1 0

P(pa,t) =19 P(-pa ner,t) ="/ P(=pa N —pr,t) = 1o

P(pr,t) =89 P(pan—pr,t) =00 Plpa ner,t) =109

P(or|pa,t) =11 P(er|=¢pa,t) =78

P(—¢r|pa,t) =% P(—¢r|=pa,t) = 1/8

For example, the second and third rows of Tables 4 to 6 show the evaluation of
RCons ao— ¢c (i.e., RESPONSE(a, c) in Table 4), co— ¢d (i.e, PRECEDENCE(d, c)
in Table 5) and (&b A Qe)o— (—c v Of) (Table 6) on trace {a,b,c,d,f,c,e,c,h).
Notice that ¢, and ¢, are evaluated separately at every event of a trace.

The RCon evaluation can be performed efficiently based on the automaton-
based techniques defined in [14], adapting it for offline verification. The full
discussion on this aspect can be found in Appendix A, but we briefly outline
the rationale here. Intuitively, we resort to [14, Theorem 4]: An RCon can be
separated in pure-past, pure-present and pure-future components. The respective
sub-formulae contain only past temporal operators, none, or only future ones,
respectively. As they are LTLp, formulae, all components correspond to finite
state automata (FSAs). The key point is that, by mirroring pure-past formulae
and reversing their automata, a single replay of the sub-trace from the beginning
to the activator event keeps track of the truth value of the pure-past formula till
that point. As we have knowledge of the whole trace, and thus of the suffix too
a fortiori, we can apply the same principle to pure-future formulae too: A single
replay from the end of the trace to the activator event keeps track of the truth

value of the pure-future formula from that point onwards.

18

Table 5: Evaluation (0 is False and 1 is True) and probabilistic interpretation of RCon co> ¢d.

Tracet; = (a, b, ¢ d f, ¢ e ¢ h >
Pa: C 0 O 1 0 0 1 o0 1 o0
pr: ©d 0O 0 0 1 1 1 1 1 1

P(pa,t) =3/ P(-pa ner,t) =40 P(=pa N —pr,t) = 2o

P(pr,t) =6/ P(pan—pr,t) =19 Plpa ner,t) =2

P(or|pa,t) =2/3 P(pr|=¢pa,t) = 46

P(—¢r|pa,t) =1/3 P(—¢r|=pa,t) = s

From this optimization, it follows that any LTLp; formula can be evaluated
at each event reading the trace only twice (as in [4, 55] though for any RCon
and not just DECLARE constraints): Once from tgga,t t0 tgna (past components)
and once from tgng to tsiars (future components). This result implies that the
computational cost depends linearly on the number of events in the event log and
in the number of rules to verify. Specifically, given an event log L of cardinality
|L|, assuming that (i) every trace ¢ € L has a length of up to n, and (i) |R|

rules are under analysis, the cost to evaluate all rules on L is: O(|L| x n x |R|).

4.2. Probabilistic interpretation on a trace

The evaluation of RCons indicates whether a rule holds true or false within a
trace. In real life, traces often contain noise or partially deviate from desired pro-
cess specifications. In those occasions wherein the trace may contain also events
that do not satisfy the rule, we are interested in understanding to what degree a
rule is satisfied. As we have previously defined the notion of satisfaction for ¢,
and ¢, on single events (Def. 4.2), we can devise a probabilistic interpretation

for RCons over traces.

Definition 4.3 (Probability of an LTLp; formula in a trace). Given an

19

Table 6: Evaluation (0 is False and 1 is True) and probabilistic interpretation of RCon
(@b A Oe)D—> (ﬁc \Y <>f)

Tracet; = { a, b, ¢ d, f, ¢ e ¢ h >
Va: (Ob A Oe) 0o 1 1 1 1 1 1 0 0
0r: (e v Of) 1 1 1 1 1 0 1 0 1
P(pa,t) =6/ P(=pa npr,t) =2/ P(=pa—pr,t) =1/o
P(pr,t) =7/o P(pa N —pr,t) = 1o P(pa 0 @r,t) =5/
P(prlpa,t) =5/ P(or|=pa,t) =23
P(=pr|pa,t) =16 P(—pr|=pa,t) =1/3

LTLp; formula ¢ and a trace t of length |t| = n, we define the probability of ¢
in t' as the proportion of the events in t that satisfy @:

Py = WSl ik)

Definition 4.4 (Joint probability of LTLp; formulae in a trace). Given
two LTLpy formulae o1 and 2 and a trace t of length n, we define the probability
of the intersection of w1 and @y in t (joint probability) as the proportion of the
events in t that satisfy both o1 and ps:

ie|l,n]:t i and t,1
Plon) = WS) T o amd i o b

The probabilities of the evaluations of activator and target of an RCon follow

INotice that we use the comma in P(p,t) and similar following expressions to separate
the parameters, namely the formula to be evaluated (here,) and the structure on which the

formula is analyzed (here, t).

20

Table 7: Contingency table of the probabilities of an RCon ¢ o> ¢+ in a trace.

Pa “Pa

or | Plpa ner,t) P(—pa N @r,t) P(pr,t)

—@r | P(ea nopr,t) P(opa n—er,t) | P(oer,t)

P(past) P(=¢a,t) 1

Table 8: Contingency table of the probabilities of RCon (&b A Qe)o> (—c v Of) in trace
{a,b,c,d,f,c,e c, hy (based on the results illustrated in Table 6).

Ob A Qe —(&b A Qe)

—c v Of 5/9 2/9 /9
—(—c v Of) 1/9 /9 2/9
2/3 1/3 1

from the above definitions (Table 7 shows the resulting contingency table):

~ Hiell,n]:t,it oo and t,i b o }|
n b

ie|l,n]:t,i ¥ vy, and t,i = @
Pl oy = ME)i - el

i€ |l,n]:t « and t, 1 -
Pl oty = W8 L) i g and i)

[{ie[1,n] : t,i E @ and t,i = @}
: .

P(=pa N =7, 1)

P(Lpa N ¢T7t) =

For example, Tables 4 to 6 show the probabilities resulting from the evaluation
of RCons ao— Qc, co—> &d, and (&b A Qe)o—> (—c v Of), respectively, on trace
(a,b,c,d,f,c,e c,hy. Table 8 summarizes the results of Table 6 in a contingency
table.

In association rule mining, rules are in the form “IF A THEN B”, given an
antecedent A and a consequent B. Probabilities defined as above allow for the
application of measures defined for association rule mining [11] to the context
of temporal logic specifications over finite traces. To that extent, it suffices to
map . to A and ¢, to B, thus having P(A4) as P(¢a,t), P(B) as P(p;,t),

and P(AB) as P(¢a N ¢r,t). For example, Table 9 shows some measures com-

21

Table 9: Trace measures computation and event log statistics of a sample of measures for
RCon (&b A Qe) o> (—c v Of). The statistics are computed skipping divisions of zero by zero

(marked with “NaN”), whenever they occur.

Event log Support Confidence Specificity Lift

P(pa ner)

P(pa n@r) Plerlea) P(oer|=9a) Ploa)Plon)
t1 = <{a,b,c,d,f,c,e,c, hy 0.56 0.83 0.33 1.07
to = <(b,d,a,f,g,d, e dy 0.88 1.00 0.00 1.00
ts = <{a,c,d,b,c,ef,c) 0.38 1.00 0.20 1.14
ta = <(b,c,c,e ay 0.40 0.50 0.00 0.83
ts = <(b,c,d,a) 0.00 NaN 0.25 NaN
Mean 0.44 0.83 0.16 1.01
Standard deviation 0.32 0.24 0.15 0.13
Variance 0.10 0.06 0.02 0.02

puted from the probabilities associated to the activator and the target of RCon
(©b A Qe)o— (—c v Of). These probabilities pertain to the events in the traces,
intuitively answering the question: “How likely is it that an event satisfies the
constraint?”. It follows that also the measures based on them pertain to events
with respect to traces, and that their statistics over the entire event logs will

preserve the focus on the singles events.

4.83. Probabilistic interpretation on an event log

Following the probability definition for LTLp, formulae over traces, it is of
interest to define similar probabilities over event logs. Intuitively, if the trace
probabilities assess the likelihood of the rule correctness in events within a trace,
event log probabilities should question the likelihood of the rule correctness in
the traces of an event log. As previously mentioned, the descriptive statistics of
trace measures across an event log are suitable for this purpose because they
preserve the focus on the events. In order to achieve this goal, we have to first
derive the conditional probability of the target given the activator in a trace,

i.e., P(¢r|pa,t). Intuitively, this is the probability for the target to hold true

22

when the activator holds true. Notice that this viewpoint is conceptually closer
to the notion of Reactive Constraint than the joint probability of activator and
target. Furthermore, the conditional interpretation of rules is also more in line
with their human interpretation [56]. This makes the conditional probability a

suitable means for the probabilistic analysis of a constraint in a trace as a whole.

Definition 4.5 (Conditional probability of LTLp ¢ formulae in a trace).
Given two LTLp; formulae p1 and o2 and a trace t of length n, we define the
conditional probability of po given w1 over t as the proportion of events satisfying

2 among those that satisfy ¢1:

{ie[l,n]:til @1 andt,if= @o}}|
P(pa|pr,t) = Hie[l,n]:tfilzw}ﬂ -

From the above definition, it follows that:

~ ie[ln]:t it poand t,iE o}

P T avt - . . b
(prleart) {ie[l,n]:t,i E vall
i€|l,n]:t,iE po and t,i H @
P<_'(p‘r|90a7t) = |{ [] 1 }l,
{ie[Ln]:t,ik ¢a}
1e|l,n]:t,i ¥ v, and t,i = @
P(pr|~ga,t) = LT 4,

[{i e [1,n] : t,i ¥ o}l ;
_{iell,n]:tit @ and t,i i o}
P(ﬁ(p'l"_'@a,t) = |{Z c [l,n] "y |7é (Pa}| .

Tables 4 to 6 show the conditional probabilities of RCon (&b A Qe) o—(—cv Of) on

trace (a, b, c,d,f,c, e c, hy. Notably, the conditional probability is not influenced
by the total amount of events in the trace, but only by the events of interest.
To devise the probability of an RCon in an event log L (henceforth, event log
probability), we have to detect the portion of the event log satisfying an LTLp
formula. To this end, we split the event log into a sub-log that has only the
traces in which the activator occurs at least once (i.e., every t € L such that
P(pq,t) > 0), and the complementary sub-log consisting of the traces in which
the activator does not occur (i.e., every t € L such that P(p,,t) = 0). Given the
above considerations and the definition of conditional probability for RCons in
single traces (Def. 4.5), we devise a probabilistic interpretation for RCons over

event logs as follows.

23

Table 10: Contingency table of conditional event log probabilities.

P(pa,t) >0 P(pa,t) =0
P(pr|@a,t P(pr|—@a,t p P(prlpast) + > P(r|—Pa,t)
7 tgL (Lp ‘<P<x,) l,gL (WT‘ P) teL:P(pq,t)>0 e teL:P(pq,t)=0 T «
" IL| L] 7]
P(— ot P(=¢r|=@a,t > P(—¢r|pa,t) + > P(=¢r[=¢a,t)
v f,gL (erleast) f,;L) teL:P(pa,t)>0 e teL:P(pq . t)=0 T «
! L] L] L]
Y, P(¢a,t) Y P(—¢a,t)
telL teL 1
IL| IL|

Definition 4.6 (Conditional probability of LTLp s formulae in an event log).

Let ¢y and 3 be two LTLp; formulae and L an event log of cardinality |L|.
We say that p1 is non-null in a trace t € L if and only if P(e1,t) > 0. If
P(p1,t) =0, we say that vy is null in t. The conditional probability of o given
p1 in L is the portion of the event log that consists of traces for which @1 is

non-null and satisfies pa, given the satisfaction of ¢1:

> P(pa|p1,t)
teL:P(p1,t)>0

P(¢2|¢17L) = |L‘

The conditional probability of g given —yy in L is the portion of the event log

that consists of traces for which oy is null and satisfies 2, given the satisfaction

of —~p1:
P(p2|—e1,t)
teL:P(p1,t)=0

P(‘PQ‘_'SQML): |L|

Table 10 shows the resulting contingency table. In the following, we provide the

proof of the correctness of our approach.

Theorem 4.1 (Contingency of event log conditionals). Given two
LTLpy formulae o1 and @2 and an event log L of cardinality |L|,
let |L|p(p)=0 be the number of traces in which @1 is non-null and

|L|p(p1)=0 the number of traces in which o1 is null. It follows that

P(p2le1, L) + P(—=p2|e1, L) + P(p2|—¢1, L) + P(—p2|—¢1, L) = 1.

24

Proof 4.1. In light of the fact that there cannot be a trace where P(p1) is both

0 and not 0 at the same time, the proof of Theorem 4.1 proceeds as follows.

P(pa|p1, L) + P(—p2lp1, L) + P(p2|=p1, L) + P(—p2|—p1, L) = 1 (1)
Diter:p(on)=0 P(@2]01,t) Xier.p(py)=0 P(mw2le1,1)
|L| L
ZteL:P(gpl):O P(p2]—¢p1,1) ZteL:P(«pl):O P(—p2|—p1,t)
Z] : I @

Z P(@2|¢lvt) + Z P(_'302|9017t)
teL:P(p1)>0 teL:P(p1)>0

+ Z P(pa| =1, t) + Z P(—p2|=p1,1) = |L] (3)
teL:P(p1)=0 teL:P(p1)=0

Y, (Plealgrst) + P(=palr, 1)
teL:P(p1)>0

+ Y (Plpal=prt) + P(—pa|—p1, 1) = |L] (4)
teL:P(p1)=0
Z <P(Sﬁlﬁ§02,t) P(Sﬁlﬁ_‘@%t))
teL:P(1)>0 Pe1t) Pg1,t)
+ Z (P(_'Sol N 902775) P(_‘Qﬁl N _'302715)) _ |L| (5)
BRI S ey P 0)
Z P(@lﬁ@2at)+P(S@lm_‘9@27t)>
teL:P(p1)>0 P(wl’t)
Py P(—p1 0 92,t) + P(—@1 0 =92, 1) L) (6)
P(_‘Qplat)
teL:P(p1)=0
P(p1,t) P(—¢p1,t)
S ()t S (peeg)-m o
teL:P(p1)>0 P teL:P(p1)=0 #1
o1+ > 1= (8)
teL:P(p1)>0 teL:P(p1)=0
ILIp(o1)=0 + | Llp(pr)=0 = |L] (9)
|L| = [L| B (10)

Probabilities defined as above permit the application of the association rule

mining measures presented in Section 3.2 over an entire event log. In the light

25

Table 11: Event log probabilities and measures of a sample of measures for the RCon

(@b A ()e)D—> (ﬁc \Y <>f)

Event log P(pa,t) Plprleat) P(=erlpa,t) Pler|=¢a,t) P(oer|—¢a,t)

ti = (a,b,c,d,f,c e ¢ h) >0 0.83 0.17 0.67 0.33
to = (b,d,a,f,g,d,ed) >0 1.00 0.00 1.00 0.00
ts = <(a,c,d,b,cef,c) >0 1.00 0.00 0.80 0.20
ta = <(b,c,c,e,ay >0 0.50 0.50 1.00 0.00
ts = (b,c,d,e) =0 NaN NaN 0.75 0.25
P(pq,L)=0.80 P(pr|pa, L)= 0.67 P(pr|—pa,L)=0.13
P(pr,L)=0.82 P(=¢r|pa,L)=0.15 P(=¢r|=¢a, L)= 0.05

Support: 0.67 Confidence: 0.83 Specificity: 0.25 Lift: 1.02

of the contingency table in Table 10, it suffices to map

=, P(pa,t)
teL:P(pq,t)>0
P(A) to P(pa, L) = d i ,
Z P(‘PTW’avt) + Z P(‘P7|ﬁ@aat)
P(B) to P(@T,L) _ teL:P(pq,t)>0 |Lt‘€L:P(Lp,l,t)=0 7 and
5 Plerdend
teL:P(pq,t)>0
P(AB) to P(prlpa L) = ="

We remark that the non-trivial mapping from P(AB) to P(¢-|¢a, L) is intuitively
rooted into the inherent nature of “IF A THEN B” rules such as the RCons, as
evidenced in [56], and its soundness is evidenced by Theorem 4.1. For example,
Table 11 shows a few measures computed from the probabilities of the RCon
(&b A Qe)o— (—c v Of) over a log composed of five traces. We remark that this
result is distinct from the mere aggregation of trace measures. For example,
comparing the average of the Support values in Table 9 (0.44) and the Support
value presented in Table 11 (0.67), we observe that the former is the average
proportion of events in a trace satisfying both the target and the activator, while
the latter represents the proportion of traces of the event log satisfying the

RCon.

26

4.4. Measurement system

Given an event log L, a set of RCons R, and a set of probabilistic measures
M as input, our framework returns the measurement of every measure in M for
each constraint in R both over every single trace ¢t € L and over the entire event
log L. More specifically, the output can be reported at three different levels of
detail:

Event level: distinct evaluation of ¢, and ¢, of each constraint in R on every

event of every trace in L;

Trace level: measurement of each measure in M for each constraint in R for
every trace in L;
Aggregated view: descriptive statistics over the event log of all the

trace-level measures.

Event log level: measurement of every measure in M for every constraint in

R for the entire event log L.

For example, Table 9 shows some trace level measures together with their
descriptive statistics and Table 11 shows the corresponding event log level
measures for the RCon (&b A Qe)o— (—c v Of). Since being able to perceive the
overall status of a constraint is as important as the possibility to analyze its
details in single traces, we report the entire statistical distribution of a measure
across the event log to provide a complete information spectrum.

Figure 1 depicts the pipeline of the framework from the input to the output.
In the first stage, an RCon is evaluated on each trace of the event log. Then,
the evaluation result is used to compute the probabilities of the rule. On top
of them, the measures of the rule in each trace and in the entire event log are
computed. Also, descriptive statistics over the event log are reported for each
trace measure.

We remark that the design of the RCons is crucial for the evaluation and the
computation of the measures especially in terms of definition of their activator.

Let us take as an example the RESPONDEDEXISTENCE(a, b) constraint from the

27

Measures

Event log

Logical
evaluation

Probabilistic
interpretation

Reactive
constraint

ty: A <10001> B B
T <10101>
ty: A <00001111> Sup Conf Statistics Mean Std.Dev
T <11111011> tp: 0.5 0.9 . Sup 0.50 0.20
. 2t 0.3 0.7 . Conf 0.85 0.10
ty: A <0010111> tp: 1.0 1.0
T <0001011>
Event level Trace level Event log level

Figure 1: Measurement framework architecture.

repertoire of DECLARE (see Table 1). The classical LTL; formula underlying
RESPONDEDEXISTENCE(a, b) for whole-trace evaluations is —=¢a v Ob [28]. How-

ever, the formulation of the rule as an RCon can lead to different interpretations:
ao— (Ob v &b): If a occurs, b is expected to occur somewhere in the trace;

(0a v ©a)o— (Ob v &b): For every event in the trace such that a occurs
either in the past or in the future, also b should occur somewhere in the

trace;

Trueo— —(0a v ®a) v (Ob v &b): For every event in the trace, if a occurs

in the trace, also b is expected to occur;

tstart = (—Oa v Ob): At the beginning of the trace, if a occurs in the trace,

also b should occur.

All the formulations above are legitimate as they entail that the occurrence of a
in the trace demands the occurrence of b. However, the difference in the way the
activator is represented turns out to be crucial. The activator, indeed, encodes
when the rule is of interest. For example: Are we interested in each occurrence of
task a or only in its eventual occurrence in the trace? Do we want the rule to be
satisfied in every point of the trace or just at the beginning of the trace? These

choices have a clear impact on the measures. Table 12 presents the evaluation of

28

Table 12: Measurements of a constraint expressed with different formulations on trace

<d,a,b,c7 a>.
. Support Confidence
RCon formulation Evaluation
Ppapr,t) Plerlpa,t)
: (0,1,0,0,1
ao> (Ob v &b) Pai ? o =04 2y =1

pr: (1,1,1,1,1)
(Oa v ©a)o> (Ob v Ob) pot (LLLLL 55 = 1
pr (1,1,1,1,1)
pa: <1,1,1,1,1)
pr: (1,1,1,1,1)
va: <1,0,0,0,0)

tStart 0> (_‘03 v <>b) 1/5 = 0.2 1/1 =1
pr: <17 1,1,0, 0>

Trueo> —(Oa v ©a) v (Ob v &b) 55 =1 55 =1

a trace with the different formulations seen above and their trace measurements
for Confidence and Support. Confidence is equal to 1 as each time the activator
holds true, also the target holds true. Support (i.e., the frequency of ¢, N ;)
varies considerably instead. Notice that this phenomenon comes with neither a
good nor with a bad connotation, but stresses the idea that a full control over
the formula implies a mindful decision about its design and subsequently on
picking the right measures for it. In Table 1, we devised the RCon formulae
based on the activators of DECLARE templates described in [3, 20] — hence, e.g.,
the choice for RESPONDEDEXISTENCE of the first option presented in Table 12.
While DECLARE templates are reasonably simple and well-known standard cases,
encoding the right activator is crucial for the design of custom RCons and their
measures. Lastly, we would like to remark that all the variants in Table 12 take
exactly the same amount of computational time to be checked as any formula

requires a trace to be read only twice, as described in Section 4.1.

In summary, we have described in this section a novel measurement framework
for reactive temporal specifications based on LTLp, supporting probabilistic
interestingness measures at both trace and event log levels. The framework
is designed to be suitable for any custom formula in the form of a Reactive

Constraint, and any measure that is based on the probability of the activator

29

and target of the constraints. Therefore, it supports template sets like DECLARE
and all the interestingness measures from association rule mining seen in Table 3,
though not being limited to them. Next, we evaluate our approach through tests

conducted with our implemented prototype.

5. Implementation and performance analysis

We have implemented our measurement framework as a proof-of-concept
software prototype built upon the existing declarative process specification
processor tool Janus [14, 16]. The Java source-code can be found at github.com/
Oneiroe/Janus. The core component of the software is the RCons verification
engine, upon which are build independently a declarative process discovery
module and the present declarative rules measurement module. All the process
specifications used in the following experiments are discovered with this discovery
module implementing the technique presented in [14]. In the remainder of this
section, we first report on the results of a time and space analysis with simulated
data. Then, we investigate the computational performance on real-world event
log data sets. The results demonstrate the practical feasibility and applicability

of our approach.

5.1. Time analysis

To assess the efficiency of our implemented technique, we measure its time
performance against an increase in the data size (i.e., the cardinality of the event
log and the length of its traces) and the model size (i.e., the number of rules)
with synthetic event logs.

We repeated every experiment 10 times to smooth random factors. The
reported results average over the ones of the single repetitions. The machine
used for the experiments was equipped with an Intel Core i5-7300U CPU at
2.60 GHz, quad-core, 16 Gb of RAM and an Ubuntu 18.04 LTS operating system.

To test the response of our implemented framework against the input data

size, we set up a controlled experiment in which we first generate logs of varying

30

https://github.com/Oneiroe/Janus
github.com/Oneiroe/Janus
https://github.com/Oneiroe/Janus
github.com/Oneiroe/Janus

Table 13: The set of DECLARE rules used in the experiments.

INIT(a) RESPONSE(e, f) CHAINRESPONSE(o, p)
END(b) PRECEDENCE(g, h) CHAINPRECEDENCE(q, r)
ATMOSTONE(c) ALTERNATEPRECEDENCE(i,|) RESPONDEDEXISTENCE(s, t)
PARTICIPATION(d) ALTERNATERESPONSE (m, n) COEXISTENCE(u, v)
SUCCESSION(w, x) ALTERNATESUCCESSION(y,z) ~ CHAINSUCCESSION(j, k)

NoTCOEXISTENCE(0, 1)

sizes that are compliant with a fixed set of rules, resorting to the simulation
engine of MINERful [57]. Thereupon, we compute the measures listed in Table 3
against all the rules of a larger test specification (not fully compliant with the
event log). For every run, we recorded the wall-clock time of our prototype.
The starting set of rules stems from the DECLARE repertoire of templates [5]
and is provided in Table 13. Notice that the set contains all the rule templates
seen in Table 1 and is designed in a way that every constraint insists on different
tasks. The test model consists of 649 constraints extracted by the discovery
algorithm of Janus (setting the Support and Confidence threshold parameters
to 0.05 and 0.8) from a synthetic event log of 834963 events, 500 traces and
tasks in {a,...,z,0,1} that is compliant with the initial model.? Given the test
specification obtained as described above, we performed two tests of 65 iterations
each, based on synthetic event logs that comply with the rules of Table 13, by:
(1) increasing the length of the traces (with a step of 100 events per iteration,
keeping the number of traces per event log equal to 500), and (2) increasing the
number of traces in the event log (with a step of 50 new traces per iteration,
keeping the trace lengths between 900 and 1000 events). Figure 2 illustrates
the results of both experiments. We observe that the factor actually influencing

the wall-clock time is the total amount of events rather than the trace length:

2 Available at https://oneiroe.github.io/DeclarativeMeasurements-static

31

https://oneiroe.github.io/DeclarativeMeasurements-static

600

500 == trace-number
=4 trace-length

400

w
o
o

Time (sec.)

200

100

0 500000 1000000 1500000 2000000 2500000 3000000 3500000
Events in Log

Figure 2: The computation time is linearly dependent on the total number of events in the

event log.

indeed, Fig. 2 shows that the recorded timings of both experiments tend to lie on
the same line. This experimental result confirms the linear relation between the
total number of events in the log and the computational performance illustrated
in Section 4.1.

Next, we investigate the response of the framework to an increase in the
model size. To do so, we first generate an event log containing 1000 traces with
a trace length between 100 and 500 events from the simulation of the rules in
Table 13. Thereupon, we use the discovery algorithm of Janus to automatically
retrieve different test models with varying levels of compliance. To that extent,
we make the Confidence threshold range from 1.0 (full model compliance), down
to 0.0 with a step of 0.05. The rationale is, the lower the Confidence threshold,
the higher the number of constraints in the test model. Then, we calculate all
the measures in Table 3 for every constraint of each test model. The time taken
for the measurements are shown in Fig. 3. Notice that the computation time

is linearly dependent on the number of rules to check, thus in line with the

32

250

200

150

Time (sec.)

100

50

0 500 1000 1500 2000 2500 3000 3500

Number of rules

Figure 3: The computation time is linearly dependent on the total number of rules to check.

theoretical computational cost exposed in Section 4.1.

5.2. Space analysis

The space consumption of our technique depends on the data structures
required to store the multi-level results. More specifically, four multidimensional
matrices are used, containing respectively (1) the evaluation at the event level,
(2) the measures at the trace level, (3) their descriptive statistics over the log,
and finally (4) the measures at the event log level. Considering |L| the number
of traces in the log, |E| the total number of events in a log, |R| the number of
constraints, | M| the number of measures, the sizes of the matrices are respectively

the following;:

1) Events evaluation: |E| x |R|, wherein each cell contains two boolean values

(i.e., the evaluation of the activator and target of the constraint);
2) Trace measures: |L| x |R| x |M]|, having a real number in every cell;

3) Trace measures statistics: |R| x | M|, containing seven real numbers per cell
(for the mean, geometric mean, variance, population variance, standard

deviation, maximum value, and minimum value, respectively);

4) Event log measures: |R| x |M|, with a real number each.

33

The events matrix is optimized as a bit matrix, where two bits are sufficient to
store the boolean results of the evaluation of both the activator and target for
one event. We implemented our framework in Java, so we employ 1-byte Byte
objects and 4-byte Float numbers (6 decimal digits are sufficiently accurate for
our purpose). Taking these indicators into account, we can estimate the space
consumption. For example, assuming that |L| = 1000, the maximum number
of events in a trace n is 50, |R| = 100, |M| = 30, the expectation for the space

demands are distributed as follows:
1) Events evaluation: 1000 x 20 x 260 x 1 = 5200000 bit = 5.2 Mb;
2) Trace measures: 1000 x 260 x 37 x 4 = 38480000 bit = 38.48 Mby;
3) Trace measures statistics: 260 x 37 x 7 x 4 = 269 360 bit = 269.36 Kb;
4) Event log measures: 260 x 37 x 4 = 38480 bit = 38.48Kb.

Therefore, the most memory-demanding data structures are those that pertain
to the events evaluation and the trace measurements matrices. The former is
bigger than the latter only if the average number of events per trace is greater
than 4 times the number of measures used, i.e., % > 4 x |M|. In our experiments,
even using all the 37 measures of Table 3, this has not occurred.

As with the experiments for the evaluation of time, we analyze empirically
the space consumption through simulations, controlling the number of events n
per trace, the number of traces |L|, and the number of constraints under analysis
|M]. To measure the memory consumed by the data structures, we perform a
Bit serialization of the matrix objects listed above. This allows us to have a
precise measure of the space consumed by every object, though it unavoidably
requires that the available memory is twice as much as the strictly necessary
amount.

Figure 4 illustrates the results of our experiments. As it can be seen, the
resulting linear trends are in line with the expectations, modulo the constant

factors introduced by the Java Virtual Machine objects. It can be noticed that

the number of constraints to check, being a common factor among all the objects,

34

—8— expectation —é— real

H
15
=
8
"
5
8
8

Mb
P w s oo~ ®©
i
=
&

i

0 0 0

O O J J J O O P O L L » 0 1,000 2,000 3,000 4,000 5000 6,000 7,000
SELESSTLESFTELSTE S EESIISL TS LSS
R AL S B B R e AR AR Sl A A
Events Traces Constraints

Figure 4: The space consumption is linearly dependent on the total number of events in the

log (left), number of traces in the log (center), and number of rules to check (right)

increases the overall required memory quicker than the other parameters. We
remark that depending on the desired outcome, not all the measures nor all
the matrices are necessary. For example, if the log measures are desired, the
trace measures and their statistics can be ignored and vice-versa. The events
evaluation is the only mandatory object upon which all other computations are
based.

At present, our implementation works in-memory, thus it is assumed that all
the objects fit in main memory (which proved to be sufficient for all the real life
log under analysis). However, we would remark that every measure calculation
(both at log and trace levels) is independent from the other one, thus it is possible
to either (i) compute one measure or constraint at the time in pipeline, in order
to reduce the memory load, or (i) to distribute the workload, by making each
system compute independently one measure per constraint. Both are interesting

directions for the future upgrades of our implementation.

5.8. Application on real-world event logs

To test the performance also in real settings, we compute the rule measures
on 13 event logs, whose characteristics are exposed in Table 14. Twelve of
those event logs are openly available? and belong to the Business Process
Intelligence Challange (BPIC) collection, a Road-Traffic Fines Management
Process (RTFMP) and the aforementioned Sepsis event log. In addition, we

Shttps://data.4tu.nl/

35

https://data.4tu.nl/

analyze the performance of our prototype on an event log stemming from a
partner of a smart-city project in which the authors are involved (labeled as
“Smart city” in Table 14). We included the Smart city event log due to its
considerable size: as it can be noticed from the table, it is the one bearing the
largest amount of events in this experiment.

For each log, we ran the discovery algorithm of Janus [14] in order to extract
a test model to check the event log against. We tuned the parameters of the
discovery algorithm to obtain a set of rules to which the event log complies for
the most part (Confidence threshold of 0.8), even though the constrained tasks
are possibly infrequently co-occurring (Support threshold of 0.05). Table 14
illustrates the results. For each event log we report, along with the number of
traces, the occurring tasks, the events, the number of constraints in the test
model, the total time from the launch to the termination of the software (“Time”),
the time to evaluate the rules on events (“Checks”), the time to compute the
measures both at the trace and log levels (“Measures”), and the total space
consumed by the data structures of our tool (“Space”) against their expected
value (“Expectation”). We remark that the space consumption is consistent
with our theoretical expectation and that the wall-clock time remains within
acceptable ranges as the slowest run takes around 4.5 minutes to check about
600 constraints in a considerably big event log such as BPIC17 [58] handling
around 2.5 Gb of data.

5.4. Analysis of custom rules

In order to demonstrate that our framework can handle any Reactive Con-
straints, beyond the standard DECLARE repertoire, we applied our approach to
compute the discussed measures of a custom rule on the Sepsis event log. We name
the custom rule BIDIRECTIONALTIMECONSEQUENT(a, b, ¢) as its RCon formula-
tion is ao— Qb A §c. It states that if a occurs, it is expected that either ¢ occurred
before it or b will occurs afterwards. Table 15 reports the measures at log and
trace level for BIDIRECTIONALTIMECONSEQUENT (Admission NC, CRP, IV Liquid) cal-

culated on the Sepsis real-life log [34]. As it can be noticed, Confidence and

36

Table 14: Performance records on real-life datasets.

Event log Traces Tasks Events Rules | Time [sec] Checks [msec] Measures [msec] | Space [Mb] Expectation [Mb]
BPIC12 [59] 13087 36 262200 519 | 106.7 19237.1 83160.6 1222.76 1141.93
BPIC13cp [60] 1487 7 6660 20 1.2 221.2 338.3 5.10 4.56
BPIC13.i [60] 7554 13 65533 14 3.6 584.9 1064.3 18.09 16.59
BPIC14.f [61] 41353 9 369485 51 29 3977.1 21277.4 357.10 331.04
BPIC15_1f [62] 902 70 21656 3856 42.2 13686 25974.4 670.45 602.83
BPIC15.2f [62] 681 82 24678 5880 57.8 19790.6 35029.5 832.38 745.84
BPIC15.3f [62] 1369 62 43786 4098 81.2 26 468 51764.6 1105.65 1014.59
BPIC15.4f [62] 860 65 20403 4690 60.4 18997.8 38492.4 818.55 740.39
BPIC15.5f [62] 975 74 30030 5164 69.7 22947.1 43684.2 999.51 906.35
BPIC17.f (58] 21861 41 714198 611 | 275.9 58909.8 207182.2 2561.93 2413.94
RTFMP [63] 150370 11 561470 49 80.1 7887.5 65214 1210.04 1118.05
Sepsis [34] 1050 16 15214 260 3.8 765.8 1842.6 49.80 44.67
Smart city [64] 4347 20 692333 292 61.5 23261.8 32301.8 398.74 390.37

Recall are relatively high (0.82 and 0.79, respectively) and the values of Coverage
and Prevalence (0.76 and 0.79, respectively) suggest a frequent occurrence of
activator and target. The value of Lift is greater than 1, which denotes depen-
dency between activator and target (especially at a trace level). The detailed
results of the evaluation on each trace can be found at oneiroe.github.io/
DeclarativeMeasurements-static.

The capability of our framework to handle non-standard rules opens up new
possibilities for the claimed extendibility of DECLARE as a declarative specifi-
cation language, claimed from its very inception to be open to customization

through the definition of new rules according to the process analyst needs [65].

6. Evaluation

In this section, we report on experiments that show interesting implications
of having a vast availability of measures with customization options. Specifically,
Section 6.1 investigates over which measures can be of interest in the scope of
declarative specification discovery, and Section 6.2 shows how the properties of
measures can be exploited to characterize the alterations of constraints when

the underlying process changes.

37

https://oneiroe.github.io/DeclarativeMeasurements-static
oneiroe.github.io/DeclarativeMeasurements-static
https://oneiroe.github.io/DeclarativeMeasurements-static
oneiroe.github.io/DeclarativeMeasurements-static

Table 15: Measures resulting from the evaluation of constraint

BIDIRECTIONALTIMECONSEQUENT (Admission NC, CRP, IV Liquid) on the Sepsis event log [34].

Measure Log Trace Measure Log Trace Measure Log Trace
Support 0.62 0.06 Prevalence 0.79 0.66 One-way Support 0.04 0.51
Confidence 0.82 0.82 Added Value 0.03 0.18 Two-way Support 0.03 0.05
Recall 0.79 0.09 Relative Risk 117 1.36 Two-Way Support 0.0l 0.02
Variation
Lovinger -0.16 0.05 Jaccard 0.67 0.09
Linear Correlation Coefficient 0.13 0.13
Specificity 0.30 0.36 Ylue Q 0.32 0.63
Piatetsky-Shapiro 0.02 0.01
Accuracy 0.70 0.39 Ylue Y 0.17 0.63
Cosine 0.80 0.30
Lift 1.04 1.24 Klosgen 0.02 0.07
Information Gain 0.04 0.30
Leverage 022 0.76 Conviction 1.16 Infinity
Sebag-Schoenauer 4.56 Infinity
Compliance 0.86 0.98 Interestingness 0.03 0.01 .
Weighting Dependency Least Contradiction 0.62 0.00
0Odds Ratio 1.95 Infinity
Collective Strength 6.47 Infinity ~ Odd Multiplier 1.20 Infinity
Gini Index 0.01 0.03
Laplace Correction 0.82 0.60 Example and 0.78 0.81

Certainty factor 0.14 0.67 Counterexample Rate
J Measure 0.00 0.01
Zhang 0.17 0.63

Coverage 0.76 0.07

All the experimental data (code, input data, results) can be found at
https://oneiroe.github.io/DeclarativeMeasurements-static. In the fol-
lowing experiments, we resort to the following tools: (i) The Janus discovery
algorithm [14] for the discovery of declarative models from events logs; (ii) The
simulation engine of MINERful [57] for the generation of event logs complying
with given declarative specifications; () The error injection engine of MINER-
ful [66] for the controlled insertion of noise into event logs; (iv) The declarative
model simplification technique of MINERful [33] for the removal of redundancies

from declarative specifications.

6.1. Ranking experiment

The objectives of this experiment are the following: (1) Empirically showing
that relying on more measures than the sole Support and Confidence measures is
effective to characterize process rules in an event log; (2) Highlighting insightful
measures in a declarative process mining context.

To achieve both objectives we rank the measures according to how many

correct and interesting rules they are able to recognize. We take inspiration from

38

https://oneiroe.github.io/DeclarativeMeasurements-static

the correct rules at N experiment introduced by the seminal work of Le and Lo [6].
Given an event log L, a ground truth set of rules Rg satisfied in L, a set of rules
Rp D R containing also loosely satisfied rules in L, the set of interestingness
measures M of Table 3, and a predefined threshold N, we compute the value
of each measure m € M for all the rules r € Rp on L. Then, for every measure
m € M we create sets of rules that are associated to a common value and sort
those sets accordingly. This leads to a separate sorting of the rules for every
measure. If, for instance, rules r; and r, have a Confidence of 1.0, rule 3 has a
Confidence of 0.9, and rules r4, 75 and rg have a Confidence of 0.8, the top-IN
sets are: {ri,ro} in the top-1, {r1,r2,r3} in the top-2, and ry,re, 73,74, 75,76 in
the top-3 for Confidence. Intuitively, a good measure should assign high scores
to correct rules. Therefore, we finally count how many of the rules in Rg are
within the top-N sets. We repeated the experiment 10 times and considered
the average of the results to avoid fluctuations caused by the random factors of
simulation. We performed the experiment with IV set to 1, 5, 10, 25, 50, 100, 200,
500, 1000, and 1500, i.e., ranging from considering only the best-scoring rules
to considering all the rules in Rp. The final ranking of a measure is computed
as the average of its ranking for each N. Table 16(a) shows the final rankings
for this experiment. Together with the ranking, for each measure we report also
the number of correct rules (“Correct” column) and the average ratio of correct
rules over the total number (“Ratio” column) in the top-N sets, averaged over
the 10 repetitions of the experiment.

We run our experiments with three different event logs: (i) a simulation of a
synthetic process specification (Section 6.1.1); () a simulation of a synthetic
process specification with random changes in the event log so as to mimic partial
non-compliance (Section 6.1.2); (i) a real-life event log (Section 6.1.3). At the

end of this section, we draw some conclusions from the obtained results.

6.1.1. Process simulation
More specifically, we simulate the specification described in Table 13. Notice

that the rules are designed to not interfere with one another and each of them

39

constrains different tasks. The simulation produces an event log that is fully
compliant with the rules in Table 13. From the simulated event log, we discover a
new process specification with loose bounds (Support and Confidence thresholds
set to 0.05 and 0.5, respectively) in order to discover also infrequent and seldom
violated rules. We simplify the resulting set of rules by removing those that
do not match yet strictly subsume or are entailed by the ground-truth rules, in
order to avoid misleading results — for example, if CHAINRESPONSE(o, p) and
RESPONSE(o, p) both belong to the returned set of rules, the former is retained
and the latter is removed because CHAINRESPONSE(o, p) is part of the ground-
truth specification (see Table 13) and is subsumed by RESPONSE(o, p). The full
detail of the technique that deals with the removal of redundant rules is out of
scope for this paper. The interested reader can find a detailed description of
the problem and the approach in [33]. The simplified discovered model consists
of 1310 rules on average. Thereupon, we apply our measurement framework to
compute the measures in Table 3 at the event log level for all the discovered rules.
Finally, we sort the rules according to each measure, and rank the measures
according to how many of the original rules are among in top N sets.

Notice that Support ranks only sixteenth. Confidence, by contrast, is at
the top of the ranking. It should be observed, however, that the experiment
considers by design never violated rules (i.e., those with maximal Confidence),
hence the top position of this measure. Nevertheless, there are two measures
that match Confidence, namely (i) Example and Counterexample Rate and
(ii) the Sebag-Schoenauer measure. This is in accordance with P5, as the
absence of counterexamples for the rules makes measures with known maximal
values highly rank the original, correct rules. The “Ratio” column reported in
Table 16(a) helps to distinguish the accuracy of the results. For example, Odd
Multiplier and Odd Ratio have the same rank (i.e., the same amount of correct
rules identified), although the Odd Ratio returns 3 times more rules than the
Odd Multiplier within the top-IV sets.

40

Table 16: Ranking of measures according to the simulation experiment with a fully compliant
simulated event log (left), with an altered event log (center), and with a real-life event log

(right).

Rank Measure Correct Ratio Rank Measure Correct Ratio Rank Measure Correct Ratio
1 Confidence 1100 24.79% 1 Confidence 558 6.21% 1 Recall 7767 14.64%
| Bxample and 1100 24.79% , Example and 558 6.21% 2 Confidence 76.67 51.00%

Counterexample Rate Counterexample Rate
, Example and 607 51.00%
1 Sebag-Schoenauer 1100 24.81% 3 Laplace Correction 553 6.72% Counterexample Rate - 0%
4 Laplace Correction 865 17.70% 4 0dd Multiplier 542 11.16% 4 Sebag-Schoenauer 7478 50.39%
5 Accuracy 6.62 10.69% 5 Conviction 543 11.20% 5 Least Contradiction 70.56 56.43%
6 Least Contradiction 635 10.55% 6 Lift 458 11.38% 6 Cosine 7044 56.40%
7 Cosine 624 10.51% 7 Prevalence 142 431% 6 Jaccard 70.44 56.40%
8 Jaccard 623 10.51% 8 Accuracy 461 4.06% 8 0Odds Ratio 10.88%
8 Prevalence 615 10.17% 9 Least Contradiction 131 3.98% 8 YlueQ 72.33 19.88%
10 Conviction 700 24.90% 10 Recall 420 0.51% 8 YlueY 19.88%
10 Odd Multiplier 700 22.24% 11 Jaccard 122 3.97% 11 Accuracy 7011 56.03%
10 Odds Ratio 700 T.57% 12 Cosine 418 3.97% 12 Laplace Correction 42.80 31.07%
10 Yiue Q 700 T.5T% 13 One-way Support 100 3.12% 12 Relative Risk 7133 20.46%
10 YieY 700 T.5T% 14 Certainty factor 450 2.95% 12 Specificity 7133 20.46%
15 Support 518 6.15% 15 Added Value 101 2.21% 15 Conviction 65.33 54.59%
16 Lift 491 9.55% 16 Information Gain 405 3.40% 16 Odd Multiplier 65.00 54.50%
17 Certainty factor 148 3.66% 17 Support 3.85 3.88% 17 Certainty factor 52.56 36.07%
18 One-way Support 439 3.24% 18 Zhang 1444 2.77% 1g Linear Correlation 41.00 37.66%
Coefficient
18 Zhang 435 415% 19 Two-way Support 405 1.99%
19 Gini Index 3478 30.72%
20 Two-way Support 126 1.79% 20 Klosgen 4.02 2.02%
19 One-way Support 3044 27.55%
Interestingness Interestingness
21 427 1.79% 21 404 1.80% Interestingness
Weighting Dependency Weighting Dependency 21 e 3167 18.93%
Weighting Dependency
22 Added Value 425 1.95% 22 Piatetsky-Shapiro 391 L73%
22 Information Gain 20.78 25.97%
22 Klosgen 424 2.25% 23 Sebag-Schoenauer 330 3.19%
22 Piatetsky-Shapiro 30.78 19.64%
24 Piatetsky-Shapiro 419 1.65% 24 Coverage 328 0.88%
24 Zhang 38.33 27.05%
25 Recall 464 3.60% 25 Ylue Q 200 0.46%
25 Added Value 20.67 17.07%
26 Information Gain 433 3.91% 25 YlueY 290 0.46%
25 Leverage 2078 19.62%
Linear Correlation
44 27 Leverage 328 0.97%
2T Goefficient 302 244% N 27 Prevalence 3156 26.90%
jg Two-Way Support w06 2709
28 Leverage 340 1.20% Variation : ° 28 Two-way Support 30.22 16.00%
20 Coverage 324 0.81% 20 Lovinger 3.87 0.93% 20 Lift 2044 25.21%
30 Specificity 268 0.38% gg Linear Correlation 358 1.38% 30 Klosgen 2056 14.75%
Coefficient
31 Gini Index 301 0.84% 31 Support 2822 19.04%
31 Gini Index 3.00 0.83%
31 Lovinger 223 0.32% 32 Coverage 1980 4.68%
32 J Measure 277 0.78%
33 Relative Risk 248 0.33% 33 Lovinger 27.00 7.44%
33 Specificity 214 0.28%
34 Collective Strength 202 0.24%) 34 Collective Strength 2078 5.81%
34 Odds Ratio 194 0.24%
35 J Measure 000 0.00% 35 J Measure 722 4.10%
35 Collective Strength 198 0.23%
Two-Way Support Two-Way Support
g5 Worvay Suppor 0.00 0.00% N R 3 | OTvvay Suppor 211 1.48%
Variation 36 Relative Risk 206 0.25% Variation
(a) Simulation (b) Simulation with noise (c) R