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Abstract

The assessment of behavioral rules with respect to a given dataset is key in

several research areas, including declarative process mining, association rule

mining, and specification mining. An assessment is required to check how well a

set of discovered rules describes the input data, and to determine to what extent

data complies with predefined rules. Particularly in declarative process mining,

Support and Confidence are used most often, yet they are reportedly unable

to provide a sufficiently rich feedback to users and cause rules representing

coincidental behavior to be deemed as representative for the event logs. In

addition, these measures are designed to work on a predefined set of rules, thus

lacking generality and extensibility. In this paper, we address this research gap

by developing a measurement framework for temporal rules based on Linear-

time Temporal Logic with Past on Finite Traces (LTLpf ). The framework is

suitable for any temporal rules expressed in a reactive form and for custom

measures based on the probabilistic interpretation of such rules. We show that

our framework can seamlessly adapt well-known measures of the association rule

mining field to declarative process mining. Also, we test our software prototype

implementing the framework on synthetic and real-world data, and investigate
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the properties characterizing those measures in the context of process analysis.

Keywords: Declarative Process Mining, Specification Mining, Association Rule

Mining, Interestingness Measures, Temporal Rules

1. Introduction

Measuring the degree to which process traces comply with behavioral rules

is key in process analysis branches such as conformance checking [1], compliance

assessment [2], and discovery of process constraints [3]. To date, several measures

have been defined to this end, yet there are two major problems with their

application.

First, measures adopted for process mining are defined inconsistently for

specific applications. For example, among the most frequently used measures

there are Support and Confidence. However, their definition has been customized

to the specification languages in use and even for the specific mining algorithms

under analysis. For instance, there is a significant difference in the definition

of Support used in [3] (percentage of traces fully compliant to a rule) and

[4] (percentage of activations that lead to a fulfillment), in a way that the

Support of rule “If a is executed, then b will be executed later” on a set of traces

like txa, b, c, dy, xa, b, c, ay, xa, cyu is equal to 0.33 for [3] and 0.5 according to [4].

Furthermore, the definition of those measures are defined ad hoc for specific sets

of rules, like Declare [5] templates. Such issues hinder the fair comparison and

eventually the advancement of rule-based process mining.

Second, the opportunity to adopt available measures from association rule

mining has been largely missed so far. A plethora of measures that are reportedly

superior in comparison to Support and Confidence [6] have been proposed in this

field. Support measures only the satisfaction frequency of a rule and Confidence

its validity. Although those are crucial aspects in the assessment of a rule,

they do not suffice to avoid spurious result [7]. Markedly, various directions

have been explored in prior research, among others by revising Support and

Confidence [8, 9, 10], and by defining complementary measures [11, 12, 13].
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However, all such measures do not account for the temporal perspective, which

is a first-class citizen dimension in process mining.

In this paper, we address the research challenge of defining a general and

comprehensive measurement system. More specifically, we propose a framework

based on formal semantics grounded in Linear-time Temporal Logic with Past on

Finite Traces (LTLpf ) to express Reactive Constraints (RCons) [14] in a way that

abstracts from specific rule-specification languages. Such constraints are rules in

the form of “if A then B”, thus binding the satisfaction of an antecedent A to

the occurrence of a consequent B, wherein both A and B are temporal formulas.

We show that a probabilistic interpretation of the fine-grained temporal logic

evaluation of any such formulas allows us to employ all available association rule

mining measures as-is for temporal rules. Markedly, the framework has linear

time and space complexity with respect to the input size.

Our contribution extends concepts from association rule mining to temporal

logic specifications. In this way, we define a foundation upon which the fitness

between measures and data analysis scenarios can be discussed in future research.

We conduct an extensive set of simulation experiments, the results of which

demonstrate that, driven by known properties, the measures respond differently

to changes in the behavior evidenced by event logs. This is an important finding

that highlights the need to select measures according to the application context,

confirming previous findings for association rules [15] in the realm of temporal

logic specifications.

This paper is an extension of our previous conference paper [16] presented at

the 2nd International Conference on Process Mining (ICPM 2020). We extend

the contribution in the following aspects:

• We extend the framework to provide measures at the level of the event log,

and not only descriptive statistics at the trace level (Section 4);

• We revise the experiments based on the new theoretical extension. In

particular, we score the proposed measures and rank them in order to

identify the best candidates to be used for rule discovery (Section 6);
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• We analyze the memory consumption of the framework along with the

time performance (Section 5);

• We extend the discussion about the interestingness measures used and

exploit their known properties for a better understanding of log behavior

(Sections 3, 6 and 6.3).

Additionally, we prove the linear-time performance of the RCons verification in

Appendix A.

The remainder of this paper is structured as follows. Section 2 discusses prior

research on measures for declarative process mining and specification mining.

Section 3 defines preliminaries upon which we define our framework. Section 4

defines the measurement framework. Section 5 presents a computational study

of the framework and Section 6 shows the results of an array of simulation

experiments and discusses them. Finally, Section 7 summarizes the contribution

of the paper and points to opportunities for future research.

2. Related work

Behavioral rules have been widely used to support application scenarios such as

association rule mining in machine learning, process discovery and conformance

checking in process mining, and specification mining in software engineering.

The assessment of rules with respect to the available data is a key component of

all these techniques.

In association rule mining, interestingness measures are used to discriminate

candidate pairs of relevant co-occurring events. A common technique is to

discover frequent rules above a certain Support threshold (frequency) and to prune

the results below a certain Confidence threshold (validity). For example, [17]

discovers associations between items through an Apriori algorithm based on the

downward-closure property of the Support measure. Nevertheless, the use of

Support and Confidence alone is reportedly not sufficient to avoid a large number

of spurious results [7], i.e., the discovery of rules which are frequently satisfied by
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the data although merely by chance, thus threatening their statistical validity. A

plethora of new measures have been proposed in the literature to overcome the

limits of using only Support and Confidence [11], yet the employment of Support

and Confidence as the main interestingness measures remains widespread. The

main goal driving the development of better measures is indeed the exclusion of

spurious rules, so as to let the more crucial ones stand out. Several measures

are directly improving on or refining the results of Support and Confidence (e.g.,

Lift [8] scales Confidence with the Support of the consequent of a rule), others

combine different measures (e.g., Added Value [12] subtracts the Prevalence to

the Confidence of a rule), and further ones show complementary information

(e.g., Specificity [11] measures to what extent the absence of the consequent is

related to the absence of the antecedent of a rule).

In declarative process discovery, interestingness measures are used to prune

candidate rules based on user-defined thresholds. This pruning approach is used

for Declare discovery in [3, 4] and for DCR graphs discovery in [18]. These

techniques are mainly based on Support and Confidence, which lead to the

aforementioned limits [7]. In addition, the definitions of these metrics also differ

depending on the techniques that use them. For instance, the Support measure

presented in [3] does not correspond to the Support measure of [4], although

both are expressly defined for the sole Declare constraints.

In the area of conformance checking, interestingness measures are used to

check the degree of conformance of a rule with respect to an execution trace.

In [19], Linear Temporal Logic (LTL) rules are checked against each trace in a

given event log. This is highly generic as it supports any custom LTL formula,

but it reports only binary results, i.e., whether a rule holds in a trace or not.

In [20], Burattin et al. use measures like fulfillment ratio and violation ratio,

based on the evaluation of the number of activations of a rule (intuitively, the

occurrences of its antecedent) that lead to a fulfillment and the number of

activations that lead to a violation in an event log. However, these metrics are

specifically bound to the set of Declare rules, thus not providing a general

measurement framework that can be applied to general type of rule.
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In specification mining, interestingness measures are also used to prune can-

didate temporal specifications based on user-defined thresholds. Interestingly,

specification mining and declarative process discovery are two largely overlapping

concepts from distinct fields. Yang et al. [21] discover 2-value temporal patterns

using a trace measure that quantifies partial satisfactions of a rule. Yet, the

technique lacks generality as it is limited only to alternation patterns (similar

to AlternateResponse and AlternatePrecedence in Table 1) and the

adopted computation heuristics are tailored to the software domain. Le et

al. [6] emphasize the limits of using only Support and Confidence measures and

investigate properties of other measures reviewed in [11]. Their results demon-

strate that there are several measures outperforming Support and Confidence,

and that the combination of different measures yields better results. However,

they limit their study to 2-value temporal patterns (specifically, Response and

Precedence in Table 1). Furthermore, their computation of the probability

for a temporal specification is based on a sliding window technique [22]: traces

are read in chunks of the size of a given window, then the probability of a rule

is the percentage of windows in which it is satisfied. They test the effect of

different window sizes, showing that their results depend not only on the input

rules and the data, but also on this parameter selection. Lemieux et al. [23]

extend specification mining to arbitrary LTL specifications (implicitly on finite

traces) beyond 2-value templates. However, they resort to the sole Support and

Confidence measures to prune uninteresting results, thus incurring in the already

mentioned statistical limits [7].

The aforementioned shortcomings of quality measures are also discussed

in the field of sequence mining [24] when dealing with discovering patterns

(specifically subsequences) to classify sequential data. Egho et al. [25] highlight

how measures like Confidence and Lift alone lead to unstable classification results

of subsequences, proposing a probabilistic Bayesian-based measure to overcome

such an instability and avoiding the requirement of setting thresholds for measures.

It falls under the family of techniques based on the minimum description length

principle, like [26], where an encoding scheme is used to discover a minimal set
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of subsequences which can reproduce the original data. Notably, subsequence

interleaving patterns are only a subset of patterns expressible with LTL formulae.

Works adopting behavioral rules for classification like [27], on the other hand,

fall back to the sole employment of Support.

In summary, despite the discussion in different fields on measures and the

problem of spurious relations, there is no technique that supports at the same

time a comprehensive and extensible multi-measurements assessment of rules

and its applicability on general temporal logic specifications.

3. Preliminaries

To develop our framework, we build on the sound foundations of LTLpf . In

this section, we introduce the fundamentals of LTLpf formulae (Section 3.1) and

interestingness measures for association rules (Section 3.2).

3.1. Linear-time Temporal Logic with Past on Finite Traces (LTLpf )

As the formal foundations of our framework, we consider the rules specified in

Linear Temporal Logic on Finite Traces (LTLf ) [28] as used in Declare [5, 29].

LTLf has the same syntax as LTL [30]. Its semantics is interpreted on finite

traces (here abstracted as finite sequences of symbols), and thus take into account

that business processes are assumed to eventually terminate [31]. Declare

focuses on a set of specific LTLf formulas. Table 1 illustrates some of the most

important rules for business process specifications in Declare.

LTLpf is an extension of LTLf supporting the expression of properties of

the past (hence the “p” suffix) [14]. Well-formed LTLpf formulae are built from

an alphabet Σ Ě tau of propositional symbols and are closed under the boolean

connectives, the unary temporal operators l (next) and a (previous), and the

binary temporal operators U (Until) and S (Since):

ϕ ::“ a|p ϕq|pϕ1 ^ ϕ2q|plϕq|pϕ1 U ϕ2q|paϕq|pϕ1 S ϕ2q.

From these basic operators, the following can be derived: Classical boolean

abbreviations True,False,_,Ñ; Constant tEnd ”  l True, denoting the last
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Table 1: Some Declare constraints expressed as RCons.

Constraint LTLf expression [28] RCon

Participationpaq ♦a tStart ♦a

Initpaq a tStart a

Endpaq l♦a tEnd a

AtMostOnepaq lpaÑ lp ♦aqq a l p ♦aq

RespondedExistencepa, bq ♦aÑ ♦b a p♦b_ ♦bq

Responsepa, bq lpaÑ ♦bq a ♦b

AlternateResponsepa, bq lpaÑ ♦bq ^lpaÑ lp a W bqq a l p a U bq

ChainResponsepa, bq lpaÑ ♦bq ^lpaÑ lbq a l b

Precedencepa, bq  b W a b ♦a

AlternatePrecedencepa, bq p b W aq ^lpbÑ lp b W aqq b a p b S aq

ChainPrecedencepa, bq p b W aq ^lplbÑ aq b a a

Successionpa, bq lpaÑ ♦bq ^ p b W aq pa_ bq pa^ ♦bq _ pb^ ♦aq

AlternateSuccessionpa, bq
lpaÑ ♦bq ^lpaÑ lp a W bqq

^p b W aq ^lpbÑ lp b W aqq

pa_ bq pa^lp a U bqq_

pb^ap b S aqq

ChainSuccessionpa, bq
lpaÑ ♦bq ^lpaÑ lbq

^p b W aq ^lplbÑ aq
pa_ bq pa^lbq _ pb^aaq

CoExistencepa, bq p♦a^ ♦bq _ p ♦a^ ♦bq
pa_ bq pa^ ♦bq _ pa^ ♦bq_

pb^ ♦aq _ pb^ ♦aq

NotCoExistencepa, bq lpaÑ  ♦bq ^lpbÑ  ♦aq
pa_ bq pa^ ♦b^ ♦bq_

pb^ ♦a^ ♦aq

instant of a trace; Constant tStart ”  a True, denoting the first instant of

a trace; ♦ϕ ” True U ϕ indicating that ϕ holds true eventually before tEnd;

ϕ1 W ϕ2 ” pϕ1 U ϕ2q _ lϕ1, which relaxes U as ϕ2 may never hold true;

♦ϕ ” True S ϕ indicating that ϕ holds true eventually in the past, after tStart;

lϕ ”  ♦ ϕ indicating that ϕ holds true from the current instant till tEnd;

aϕ ”  ♦ ϕ indicating that ϕ holds true from tStart to the current instant.

Given a finite trace t of length n P N, an LTLpf formula ϕ is satisfied in a

given instant i (1 ď i ď n) by induction of the following:

t, i |ù True; t, i * False;

t, i |ù a iff tpiq is assigned with a;

t, i |ù  ϕ iff t, i * ϕ;
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t, i |ù ϕ1 ^ ϕ2 iff t, i |ù ϕ1 and t, i |ù ϕ2;

t, i |ù lϕ iff i ă n and t, i` 1 |ù ϕ;

t, i |ù aϕ iff i ą 1 and t, i´ 1 |ù ϕ;

t, i |ù ϕ1 U ϕ2 iff t, j |ù ϕ2 with i ď j ď n, and t, k |ù ϕ1 for all k s.t. i ď k ă j;

t, i |ù ϕ1 S ϕ2 iff t, j |ù ϕ2 with 1 ď j ď i, and t, k |ù ϕ1 for all k s.t. j ă k ď i.

A formula ϕ is satisfied by a trace t, written t |ù ϕ iff t, 1 |ù ϕ. One of the central

properties of LTLpf and LTLf is that a deterministic finite state automaton

(DFS) Aϕ can be computed such that for every trace t we have t |ù ϕ iff t is in

the language recognized by Aϕ, as illustrated in [32, 14, 33].

Without loss of generality, in this paper we abstract traces as finite strings

of symbols representing events. We assume that every event reports on

the execution of exactly one task and LTLpf formulae use those tasks as

their propositional symbols – the so-called Declare assumption [32]. A

trace extracted from the real-world Sepsis event log [34] is, e.g., tSepsis “

xER Registration, ER Triage, ER Sepsis Triage, CRP, Lactic Acid, IV Liquid, IV Antibioticsy. No-

tice that this trace complies with the constraints that Mannhardt et al.

identified as normative for the Sepsis treatment process [35], including

the following ones: (i) InitpER Registrationq, i.e., every trace begins with

the registration at the emergency department,; (ii) AtMostOnepER Triageq,

i.e., the triage in the emergency room occurs at most once in a

process run; (iii) ResponsepER Triage, ER Sepsis Triageq, i.e., the ER Triage

procedure should be eventually followed by the Sepsis-specific triage,

(iv) PrecedencepER Sepsis Triage, IV Antibioticsq, i.e., the intravenous injection of

antibiotics must be preceded by the ER Sepsis Triage procedure.

Table 17 contains an extended set of Declare constraints that a correct exe-

cution of the Sepsis treatment process should fulfill. For the sake of succinctness,

we may use single-letter identifiers in place of full-length task names whenever

suitable in the following examples.

An event log is a multi-set of traces, i.e., traces can recur multiple times in

an event log. The cardinality of the event log is the sum of the multiplicities

of its traces. Considering the Sepsis event log, the multiplicity of tSepsis is
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Table 2: Contingency tables to which the “if A then B” rules and their variables (x P tA,Bu)

comply with. On the left-hand side, the contingency table is based on probabilities (P pxq); on

the right-hand side, the contingency table is based on frequencies (where |x| is the number of

occurrences of x and N is the total number of occurrences).

A  A

B P pABq P p ABq P pBq

 B P pA Bq P p A Bq P p Bq

P pAq P p Aq 1

A  A

B |AB| | AB| |B|

 B |A B| | A B| | B|

|A| | A| N

13 (i.e., tSepsis occurs 13 times in the event log). Other exemplary traces

of that log are t1Sepsis “ xER Registration, ER Triage, ER Sepsis Triagey (occurring 35

times) and t2Sepsis “ xER Registration, ER Triage, ER Sepsis Triage, Leucocytes, CRPy (with

a multiplicity of 24). The cardinality of the event sub-log consisting of the traces

above is thus 72. The cardinality of the whole Sepsis event log is 1050.

3.2. Interestingness measures for association rules

In this section, we revisit key findings of research on research on quality

measures in association rule mining. More specifically, we build on prior research

that surveys measures in the area of software engineering and association rule

mining, namely [36, 37, 11, 15]. These works are specifically suited as a foundation

due to the wide coverage of measures and their comparative study of both formal

and user-perceived measure properties. The rules under study are in the form

“if A then B”, where A is called the antecedent of the rule, and B its consequent.

We refer to A and B as variables of the rule.

Specifically, we consider only probability-based objective measures, i.e., mea-

sures depending only on the data as opposed to those requiring user-provided

parameters. Objective measures are based on the probabilities derived from the

contingency table of the occurrences of the variables, as depicted in Table 2.

Table 3 presents the list of measures covered in this study. In the following, we

provide a brief description of each measure.

Support [17] measures the frequency of the co-occurrence of the antecedent and
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Table 3: Probabilistic measures for association rules with respective range and properties.

Measure Formula Range P1 P2 P3 P4 P5 P6

Support P pABq r0, 1s – sym Œ var var Œ

Confidence/Precision P pB|Aq r0, 1s X asym Ñ var const Œ

Coverage P pAq r0, 1s – asym Œ var var Œ

Prevalence P pBq r0, 1s – asym Õ var var Œ

Recall P pA|Bq r0, 1s X asym Œ var var

Specificity P p B| Aq r0, 1s – asym Œ const var Œ

Accuracy P pABq ` P p A Bq r0, 1s – sym Œ var var Œ

Lift/Interest
P pB|Aq

P pBq
or

P pABq

P pAqP pBq
r0,`8q – sym Œ const var Œ

Leverage P pB|Aq ´ P pAqP pBq r´1, 1s – sym Õ var var Œ

Added Value/

Change of Support/

Centered Confidence

P pB|Aq ´ P pBq r´1, 1s – asym Œ const var Œ

Relative risk
P pB|Aq

P pB| Aq
r0,`8q – asym Œ const var Œ

Jaccard
P pABq

P pAq ` P pBq ´ P pABq
r0, 1s X sym Œ var var Œ

Certainty factor
P pB|Aq ´ P pBq

1´ P pBq
r´1, 1s – asym Œ const const Œ

Odds ratio/

Bayes Factor

P pABqP p A Bq

P pA BqP p BAq
r0,`8q – sym Œ const const

Yule’s Q
P pABqP p A Bq ´ P pA BqP p ABq

P pABqP p A Bq ` P pA BqP p ABq
r´1, 1s – sym Œ const const

Yule’s Y

a

P pABqP p A Bq ´
a

P pA BqP p ABq
a

P pABqP p A Bq `
a

P pA BqP p ABq
r´1, 1s – sym Œ const const

Klosgen
a

P pABq ˆmaxpP pB|Aq ´ P pBq, P pA|Bq ´ P pAqq r´1, 1s – asym Œ const var Œ

Conviction
P pAqP p Bq

P pA Bq
r0,`8q – asym Œ const const

Interestingness

Weighting Dependency

˜

ˆ

P pABq

P pAqP pBq

˙k

´ 1

¸

ˆ P pABqm r0,`8q – sym Œ const var

Collective Strength
P pABq ` P p B| Aq

P pAqP pBq ` P p AqP p Bq
ˆ

1´ P pAqP pBq ´ P p AqP p Bq

1´ P pABq ´ P p B| Aq
r0,`8q – asym ? var var

Laplace Correction
NpABq ` 1

NpAq ` 2
r0.5, 1s X asym Ñ var var Œ

Gini Index

P pAq ˆ pP pB|Aq2 ` P p B|Aq2q

`P p Aq ˆ pP pB| Aq2 ` P p B| Aq2q

´P pBq2 ´ P p Bq2

r0, 1s – asym Œ const var Œ

J-Measure P pABq log
P pB|Aq

P pBq
` P pA Bq log

P p B|Aq

P p Bq
p´8,`8q – asym Œ const const

One-Way Support P pB|Aq log2

P pABq

P pAqP pBq
p´8,`8q – asym Œ const var Œ

Two-Way Support P pABq log2

P pABq

P pAqP pBq
p´8,`8q – sym Œ const var Œ

Two-Way Support

Variation

P pABq log2

P pABq

P pAqP pBq
` P pA Bq log2

P pA Bq

P pAqP p Bq

`P p ABq log2

P p ABq

P p AqP pBq
` P p A Bq log2

P p A Bq

P p AqP p Bq

p´8,`8q – sym Œ const const Œ

Ø–Coefficient

(Pearson’s Linear

Correlation Coefficient)

P pABq ´ P pAqP pBq
a

P pAqP pBqP p AqP p Bq
p´8,`8q – sym Œ const var Œ

Piatetsky-Shapiro P pABq ´ P pAqP pBq r´1, 1s – sym Œ const var Œ

Cosine
P pABq

a

P pAqP pBq
r0,`8q X sym Œ var var Œ

Loevinger 1´
P pAqP p Bq

P pA Bq
p´8, 1s – asym Õ const const

Information Gain log
P pABq

P pAqP pBq
p´8,`8q – sym Œ const var

Sebag-Schoenauer
P pABq

P pA Bq
r0,`8q X asym Ñ var const

Least Contradiction
P pABq ´ P pA Bq

P pBq
p´8,`8q X asym Œ var var Œ

Odd Multiplier
P pABqP p Bq

P pBqP pA Bq
r0,`8q – asym Œ const const

Example and

Counterexample Rate
1´

P pA Bq

P pABq
p´8, 1s X asym Ñ var const

Zhang
P pABq ´ P pAqP pBq

maxpP pABqP p Bq, P pBqP pA Bqq
p´8,`8q – asym Œ const const
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the consequent. The Support of the sole antecedent of the rule is also called

Coverage, while the Support of the consequent is called Prevalence.

Confidence [17] measures the co-occurrences of the antecedent and the conse-

quent in the fraction of data containing the antecedent.

Recall [11] measures the co-occurrences of the antecedent and the consequent

in the fraction of data containing the consequent.

Specificity [11] measures the co-absences of the antecedent and the consequent

in the fraction of data not containing the antecedent.

Accuracy [11] measures the fraction of the data either containing both the

consequent and the antecedent or neither of the two.

Lift [8] scales the Confidence by the probability of the consequent, to check if

the co-occurrence of the antecedent and consequent is more likely than

their independence.

Leverage [9] measures the difference between the Confidence of the rule and

the independent occurrence of its variables.

Added Value [12] measures the difference between the Confidence of the rule

and the probability of the consequent alone, to check if the conditioned

occurrence of the consequent differ from its unconditioned occurrence.

Relative Risk [38] measures the ratio of the conditional probability of the

consequent given the antecedent to the conditional probability of the

consequent given the negation of the antecedent.

Jaccard’s Coefficient [39] measures the similarity between the variables using

the ratio of their co-occurrence to the union of all their independent

occurrences.

Certainty Factor [10] measures the ratio of the Added Value of the rule to

the Added Value of the consequent alone, in order to see the variation of

probability in the data containing the antecedent.

Odds Ratio [40] measures the ratio of the probability of having the consequent

when the antecedent is present to the probability of having the consequent

when the antecedent is not present.

Odds Multiplier [40] measures the ratio of the probability of having the an-
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tecedent when the consequent is present to the probability of having the

antecedent when the consequent is not present.

Yules’s Q and Yules’s Y [41, 42] are normalization of the Odds Ratio to have

it centered around 0 and ranging between -1 and 1.

Klosgen’s Measure [43] weights the Support of the rule using its Added Value.

Conviction [13] measures the occurrences of the antecedent without the conse-

quent in comparison to their independence.

Interestingness Weighting Dependency [44] combines Support and Lift of

a rule and explicitly gives weights to each of them to let the user decide

their relative importance.

Collective Strength [12] measures the ratio of the agreement ratio (number

of non-violations per expected number of non-violations) to the violation

ratio (number of violations per expected number of violations).

Laplace Correction [45] is a variation of Confidence to take into account small

data.

Gini index [46] measures if the entropy introduced by a rule brings a marked

difference.

J-measure [47] is an entropy based measure for the information content of a

rule.

One-way Support and Two-way Support [48] combine respectively Confi-

dence and Support of a rule with the degree of independence between the

variables.

Two-way Support Variation [48] measures the change in the Two-way-Support.

Linear Correlation Coefficient [49] measures the Pearson’s correlation be-

tween the variables.

Piatetsky-Shapiro [9] measures the difference between the co-occurrences of

antecedent and consequent and their independent frequency.

Cosine [37] measures the geometric mean between Lift and Support of a rule.

Loevinger [50] measures the homogeneity between antecedent and consequent.

Information Gain [51] is the logarithm of the Lift.

Sebag-Schoenauer [52] measures the proportion of positive and negative oc-
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currences of the antecedent.

Least Contradiction [53] measures the difference between positive and nega-

tive occurrences of the antecedent weighted by its frequency.

Example and Counterexample Rate [11] measures the proportion of the

antecedent occurrences with and without consequent.

Zhang [54] measures the positive or negative association between the antecedent

and the consequent.

Different studies have been dedicated to the analysis of general properties for

measures [11, 9, 37, 15]. Properties show the response of measures under certain

conditions. Therefore, properties can be used to group similar measures and

decide the proper ones to be employed depending on the context. For example,

we will analyze the sensitivity of measures to the increase of noise in the data as

an important selection criterion for rule monitoring or discovery. We will delve

deeper into this aspect in Section 6. In this paper, we focus specifically on a

subset of the properties proposed in [37] and [15], as their meaning and effects

are reportedly recognizable in a clear manner by the final user. The selected

properties are explained below and associated to each measure M in Table 3.

P1. Null invariance [37]. The measure is unaffected by traces not containing

neither A or B. Therefore, it assesses whether the traces not related to the

rule affect the measurement or not. To satisfy this property, the measure

should not vary when | A B| increases in the contingency table, while

the other values remain fixed. In Table 3, we use the ‘X’ or ‘–’ symbols to

indicate whether the property holds or not, respectively. For example, for

Confidence and Recall this property holds, whereas for Support, Leverage

and Collective Strength it does not.

P2. Asymmetric processing of variables [15]. The measure is asymmetric

under variable swap, i.e., the measure of if A then B differs from that of

if B then A. The measure enjoys this property if it does not vary upon

the swapping of the values of | AB| and |A B| in the contingency table.

In Table 3, every measure is marked with “asym” or “sym” to indicate
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whether the property is enjoyed or not, respectively. For instance, Support

and Leverage are symmetric under variable swap, whereas Confidence,

Recall and Collective Strength provide an asymmetric processing of the

variables.

P3. Variation with occurrences of B in the absence of A [15]. The

value of the measure varies when the occurrences of B in the absence of A

increase. In other words, this property focuses on whether the independent

occurrence of B influences the measure. Given an if A then B rule, if

B is very likely to occur regardless of A, the influence of A on B may be

questioned. To verify this, the value of the measure varies when | AB|

increases in the contingency values (and the other values remain fixed). In

Table 3, measures are marked with ‘Œ’ if the variation is a decrease (as

in the case of Support), ‘Õ’ if it is an increase (e.g., Leverage), ‘?’ if the

variation can be either a decrease or an increase depending on the values

of B (e.g., Collective Strength), ‘Ñ’ if the value does not vary at all (e.g.,

Confidence).

P4. Reference situations: independence [15]. If the variables are inde-

pendent, then the measure exhibits a known value. The variables are

considered independent when their joint probability is equal to the product

of their respective probabilities, i.e., P pABq “ P pAqP pBq. The measure

should have a constant and known value in that case. In Table 3, measures

are labeled as “const” (e.g., Lift) if this property holds, and “var” otherwise

(e.g., Support).

P5. Reference situations: logical rule [15]. If the rule is always satisfied,

then the measure exhibits a known value. An if A then B rule is always

satisfied if P pA Bq “ 0. In other words, if there are no counterexamples

in the data, the value of the measure that enjoys this property is a known

constant (let it be a number or tendency to infinite). In Table 3, measures

are labeled as “const” if this property holds (as in the case of Confidence),

and “var” otherwise (see, e.g., Lift).
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P6. Trend with P pA Bq [15]. If the number of counterexamples to the

rule rises, the value of the measure reacts exhibiting a decreasing trend

that denotes a higher or lower sensitivity. For an if A then B rule, a

higher number of counterexamples translates into an increase of P pA Bq.

Against that increase, the measure may show a fast (convex), linear, or

slow (concave) decrease. Measures in Table 3 are labeled either as ‘ ’

(convex, e.g., Conviction), ‘Œ’ (linear, e.g., Support), or ‘ ’ (concave, e.g.,

Recall) accordingly.

These properties, according to [15], can be divided into normative (i.e., always

desirable: P2, P3, P4, P5) and subjective (i.e., depending on the user needs:

P1, P6). We will resort to these properties to examine the quality measures in

the context of process mining.

In the following section, therefore, we extend the aforementioned measures

to temporal process rules.

4. Temporal-extended measurement framework

Our framework addresses the limits of Support and Confidence measurements

by building on LTLpf formal semantics and the spectrum of measures defined

in different areas of computer science. Furthermore, it is generic as it allows

for the usage of any probabilistic measure (including those of Table 3) on any

temporal-logic-based rules specification. To this end, Section 4.1 formalizes the

reactive temporal specification of rules, Section 4.2 discusses their probabilistic

interpretation, and Section 4.4 defines the overall framework.

4.1. Reactive temporal specification

Our first building block is the concept of Reactive Constraint (RCon), orig-

inally introduced in [14], the paper which we extend here. A rule typically

expresses that the occurrence of given preconditions (activator) implies certain

consequences (target). The reactive nature of this kind of rule lies in the fact

that the condition on the target is exerted only if the activator is verified. We

codify this intuition in RCons, whose semantics is based on LTLpf .
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Definition 4.1 (Reactive Constraint (RCon)). Given an alphabet of propo-

sitional symbols ΣY ttStart, tEnd,True,Falseu, let ϕα and ϕτ be LTLpf formulae

over Σ. A Reactive Constraint (RCon) Ψ is a pair pϕα, ϕτ q hereafter denoted as

Ψ fi ϕα ϕτ .

An RCon is interpreted as follows: Each time the activator is true, the target

should be true at that point of the trace. For example, a ♦c is an RCon

stating that every time a (the activator, ϕα) is True, then also ♦c (the target, ϕτ )

must evaluate to True. That RCon corresponds to Responsepa, cq in Declare

as it requires that if a occurs in a trace, it must be eventually followed by c.

c ♦d corresponds to Precedencepd, cq in Declare because it requires that

every time c (the activator) occurs in a trace, then it has to be preceded by d

(the target). Table 1 provides a list of standard Declare constraints expressed

in the form of RCons. An RCon that goes beyond the standard repertoire of

Declare is p♦b^ ♦eq p c_ ♦fq: Its activator is the formula ϕα “ ♦b^ ♦e,

satisfied between the occurrence of b and the occurrence of e in a trace; its target

is the formula ϕτ “  c _ ♦f, which evaluates to True if either c is False, or c

occurs and is eventually followed by f. Because at every event of the trace (i.e.,

any point in time) both the activator and target can be either True or False,

the possible evaluation of an RCon can result in either of the following four

combinations.

Definition 4.2 (RCon evaluation). Given an RCon Ψ fi ϕα ϕτ and a

trace t of length n P N, let i denote the i-th event in the trace (1 ď i ď n). For

each ti P t the possible evaluations of Ψ are:

ϕα “ False, ϕτ “ False if t, i * ϕα and t, i * ϕτ ;

ϕα “ False, ϕτ “ True if t, i * ϕα and t, i |ù ϕτ ;

ϕα “ True, ϕτ “ False if t, i |ù ϕα and t, i * ϕτ ;

ϕα “ True, ϕτ “ True if t, i |ù ϕα and t, i |ù ϕτ .
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Table 4: Evaluation (0 is False and 1 is True) and probabilistic interpretation of RCon a ♦c.

Trace t1 “ x a, b, c, d, f, c, e, c, h y

ϕα: a 1 0 0 0 0 0 0 0 0

ϕτ : ♦c 1 1 1 1 1 1 1 1 0

P pϕα, tq “ 1{9 P p ϕα X ϕτ , tq “ 7{9 P p ϕα X ϕτ , tq “ 1{9

P pϕτ , tq “ 8{9 P pϕα X ϕτ , tq “ 0{9 P pϕα X ϕτ , tq “ 1{9

P pϕτ |ϕα, tq “ 1{1 P pϕτ | ϕα, tq “ 7{8

P p ϕτ |ϕα, tq “ 0{1 P p ϕτ | ϕα, tq “ 1{8

For example, the second and third rows of Tables 4 to 6 show the evaluation of

RCons a ♦c (i.e., Responsepa, cq in Table 4), c ♦d (i.e, Precedencepd, cq

in Table 5) and p♦b ^ ♦eq p c _ ♦fq (Table 6) on trace xa, b, c, d, f, c, e, c, hy.

Notice that ϕα and ϕτ are evaluated separately at every event of a trace.

The RCon evaluation can be performed efficiently based on the automaton-

based techniques defined in [14], adapting it for offline verification. The full

discussion on this aspect can be found in Appendix A, but we briefly outline

the rationale here. Intuitively, we resort to [14, Theorem 4]: An RCon can be

separated in pure-past, pure-present and pure-future components. The respective

sub-formulae contain only past temporal operators, none, or only future ones,

respectively. As they are LTLpf formulae, all components correspond to finite

state automata (FSAs). The key point is that, by mirroring pure-past formulae

and reversing their automata, a single replay of the sub-trace from the beginning

to the activator event keeps track of the truth value of the pure-past formula till

that point. As we have knowledge of the whole trace, and thus of the suffix too

a fortiori, we can apply the same principle to pure-future formulae too: A single

replay from the end of the trace to the activator event keeps track of the truth

value of the pure-future formula from that point onwards.
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Table 5: Evaluation (0 is False and 1 is True) and probabilistic interpretation of RCon c ♦d.

Trace t1 “ x a, b, c, d, f, c, e, c, h y

ϕα: c 0 0 1 0 0 1 0 1 0

ϕτ : ♦d 0 0 0 1 1 1 1 1 1

P pϕα, tq “ 3{9 P p ϕα X ϕτ , tq “ 4{9 P p ϕα X ϕτ , tq “ 2{9

P pϕτ , tq “ 6{9 P pϕα X ϕτ , tq “ 1{9 P pϕα X ϕτ , tq “ 2{9

P pϕτ |ϕα, tq “ 2{3 P pϕτ | ϕα, tq “ 4{6

P p ϕτ |ϕα, tq “ 1{3 P p ϕτ | ϕα, tq “ 2{6

From this optimization, it follows that any LTLpf formula can be evaluated

at each event reading the trace only twice (as in [4, 55] though for any RCon

and not just Declare constraints): Once from tStart to tEnd (past components)

and once from tEnd to tStart (future components). This result implies that the

computational cost depends linearly on the number of events in the event log and

in the number of rules to verify. Specifically, given an event log L of cardinality

|L|, assuming that (i) every trace t P L has a length of up to n, and (ii) |R|

rules are under analysis, the cost to evaluate all rules on L is: Op|L| ˆ nˆ |R|q.

4.2. Probabilistic interpretation on a trace

The evaluation of RCons indicates whether a rule holds true or false within a

trace. In real life, traces often contain noise or partially deviate from desired pro-

cess specifications. In those occasions wherein the trace may contain also events

that do not satisfy the rule, we are interested in understanding to what degree a

rule is satisfied. As we have previously defined the notion of satisfaction for ϕα

and ϕτ on single events (Def. 4.2), we can devise a probabilistic interpretation

for RCons over traces.

Definition 4.3 (Probability of an LTLpf formula in a trace). Given an
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Table 6: Evaluation (0 is False and 1 is True) and probabilistic interpretation of RCon

p♦b^ ♦eq p c_ ♦fq.

Trace t1 “ x a, b, c, d, f, c, e, c, h y

ϕα: p♦b^ ♦eq 0 1 1 1 1 1 1 0 0

ϕτ : p c_ ♦fq 1 1 1 1 1 0 1 0 1

P pϕα, tq “ 6{9 P p ϕα X ϕτ , tq “ 2{9 P p ϕα ϕτ , tq “ 1{9

P pϕτ , tq “ 7{9 P pϕα X ϕτ , tq “ 1{9 P pϕα X ϕτ , tq “ 5{9

P pϕτ |ϕα, tq “ 5{6 P pϕτ | ϕα, tq “ 2{3

P p ϕτ |ϕα, tq “ 1{6 P p ϕτ | ϕα, tq “ 1{3

LTLpf formula ϕ and a trace t of length |t| “ n, we define the probability of ϕ

in t1 as the proportion of the events in t that satisfy ϕ:

P pϕ, tq “
|ti P r1, ns : t, i |ù ϕu|

n
.

Definition 4.4 (Joint probability of LTLpf formulae in a trace). Given

two LTLpf formulae ϕ1 and ϕ2 and a trace t of length n, we define the probability

of the intersection of ϕ1 and ϕ2 in t ( joint probability) as the proportion of the

events in t that satisfy both ϕ1 and ϕ2:

P pϕ1 X ϕ2, tq “
|ti P r1, ns : t, i |ù ϕ1 and t, i |ù ϕ2uu|

n
.

The probabilities of the evaluations of activator and target of an RCon follow

1Notice that we use the comma in P pϕ, tq and similar following expressions to separate

the parameters, namely the formula to be evaluated (here, ϕ) and the structure on which the

formula is analyzed (here, t).
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Table 7: Contingency table of the probabilities of an RCon ϕα ϕτ in a trace.

ϕα  ϕα

ϕτ P pϕα X ϕτ , tq P p ϕα X ϕτ , tq P pϕτ , tq

 ϕτ P pϕα X ϕτ , tq P p ϕα X ϕτ , tq P p ϕτ , tq

P pϕα, tq P p ϕα, tq 1

Table 8: Contingency table of the probabilities of RCon p♦b ^ ♦eq p c _ ♦fq in trace

xa, b, c, d, f, c, e, c, hy (based on the results illustrated in Table 6).

♦b^ ♦e  p♦b^ ♦eq

 c_ ♦f 5{9 2{9 7{9

 p c_ ♦fq 1{9 1{9 2{9

2{3 1{3 1

from the above definitions (Table 7 shows the resulting contingency table):

P p ϕα X ϕτ , tq “
|ti P r1, ns : t, i * ϕα and t, i * ϕτu|

n
;

P p ϕα X ϕτ , tq “
|ti P r1, ns : t, i * ϕα and t, i |ù ϕτu|

n
;

P pϕα X ϕτ , tq “
|ti P r1, ns : t, i |ù ϕα and t, i * ϕτu|

n
;

P pϕα X ϕτ , tq “
|ti P r1, ns : t, i |ù ϕα and t, i |ù ϕτu|

n
.

For example, Tables 4 to 6 show the probabilities resulting from the evaluation

of RCons a ♦c, c ♦d, and p♦b ^ ♦eq p c _ ♦fq, respectively, on trace

xa, b, c, d, f, c, e, c, hy. Table 8 summarizes the results of Table 6 in a contingency

table.

In association rule mining, rules are in the form “if A then B”, given an

antecedent A and a consequent B. Probabilities defined as above allow for the

application of measures defined for association rule mining [11] to the context

of temporal logic specifications over finite traces. To that extent, it suffices to

map ϕα to A and ϕτ to B, thus having P pAq as P pϕα, tq, P pBq as P pϕτ , tq,

and P pABq as P pϕα X ϕτ , tq. For example, Table 9 shows some measures com-
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Table 9: Trace measures computation and event log statistics of a sample of measures for

RCon p♦b^ ♦eq p c_ ♦fq. The statistics are computed skipping divisions of zero by zero

(marked with “NaN”), whenever they occur.

Event log Support Confidence Specificity Lift

P pϕα X ϕτ q P pϕτ |ϕαq P p ϕτ | ϕαq
P pϕα X ϕτ q

P pϕαqP pϕτ q

t1 “ xa, b, c, d, f, c, e, c, hy 0.56 0.83 0.33 1.07

t2 “ xb, d, a, f, g, d, e, dy 0.88 1.00 0.00 1.00

t3 “ xa, c, d, b, c, e, f, cy 0.38 1.00 0.20 1.14

t4 “ xb, c, c, e, ay 0.40 0.50 0.00 0.83

t5 “ xb, c, d, ay 0.00 NaN 0.25 NaN

Mean 0.44 0.83 0.16 1.01

Standard deviation 0.32 0.24 0.15 0.13

Variance 0.10 0.06 0.02 0.02

puted from the probabilities associated to the activator and the target of RCon

p♦b^ ♦eq p c_ ♦fq. These probabilities pertain to the events in the traces,

intuitively answering the question: “How likely is it that an event satisfies the

constraint?”. It follows that also the measures based on them pertain to events

with respect to traces, and that their statistics over the entire event logs will

preserve the focus on the singles events.

4.3. Probabilistic interpretation on an event log

Following the probability definition for LTLpf formulae over traces, it is of

interest to define similar probabilities over event logs. Intuitively, if the trace

probabilities assess the likelihood of the rule correctness in events within a trace,

event log probabilities should question the likelihood of the rule correctness in

the traces of an event log. As previously mentioned, the descriptive statistics of

trace measures across an event log are suitable for this purpose because they

preserve the focus on the events. In order to achieve this goal, we have to first

derive the conditional probability of the target given the activator in a trace,

i.e., P pϕτ |ϕα, tq. Intuitively, this is the probability for the target to hold true
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when the activator holds true. Notice that this viewpoint is conceptually closer

to the notion of Reactive Constraint than the joint probability of activator and

target. Furthermore, the conditional interpretation of rules is also more in line

with their human interpretation [56]. This makes the conditional probability a

suitable means for the probabilistic analysis of a constraint in a trace as a whole.

Definition 4.5 (Conditional probability of LTLpf formulae in a trace).

Given two LTLpf formulae ϕ1 and ϕ2 and a trace t of length n, we define the

conditional probability of ϕ2 given ϕ1 over t as the proportion of events satisfying

ϕ2 among those that satisfy ϕ1:

P pϕ2|ϕ1, tq “
|ti P r1, ns : t, i |ù ϕ1 and t, i |ù ϕ2uu|

|ti P r1, ns : t, i |ù ϕ1uu|
.

From the above definition, it follows that:

P pϕτ |ϕα, tq “
|ti P r1, ns : t, i ( ϕα and t, i ( ϕτu|

|ti P r1, ns : t, i ( ϕαu|
;

P p ϕτ |ϕα, tq “
|ti P r1, ns : t, i ( ϕα and t, i * ϕτu|

|ti P r1, ns : t, i ( ϕαu|
;

P pϕτ | ϕα, tq “
|ti P r1, ns : t, i * ϕα and t, i ( ϕτu|

|ti P r1, ns : t, i * ϕαu|
;

P p ϕτ | ϕα, tq “
|ti P r1, ns : t, i * ϕα and t, i * ϕτu|

|ti P r1, ns : t, i * ϕαu|
.

Tables 4 to 6 show the conditional probabilities of RCon p♦b^♦eq p c_♦fq on

trace xa, b, c, d, f, c, e, c, hy. Notably, the conditional probability is not influenced

by the total amount of events in the trace, but only by the events of interest.

To devise the probability of an RCon in an event log L (henceforth, event log

probability), we have to detect the portion of the event log satisfying an LTLpf

formula. To this end, we split the event log into a sub-log that has only the

traces in which the activator occurs at least once (i.e., every t P L such that

P pϕα, tq ą 0), and the complementary sub-log consisting of the traces in which

the activator does not occur (i.e., every t P L such that P pϕα, tq “ 0). Given the

above considerations and the definition of conditional probability for RCons in

single traces (Def. 4.5), we devise a probabilistic interpretation for RCons over

event logs as follows.
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Table 10: Contingency table of conditional event log probabilities.

P pϕα, tq ą 0 P pϕα, tq “ 0

ϕτ

ř

tPL

P pϕτ |ϕα, tq

|L|

ř

tPL

P pϕτ | ϕα, tq

|L|

ř

tPL:P pϕα,tqą0

P pϕτ |ϕα, tq `
ř

tPL:P pϕα,tq“0

P pϕτ | ϕα, tq

|L|

 ϕτ

ř

tPL

P p ϕτ |ϕα, tq

|L|

ř

tPL

P p ϕτ | ϕα, tq

|L|

ř

tPL:P pϕα,tqą0

P p ϕτ |ϕα, tq `
ř

tPL:P pϕα,tq“0

P p ϕτ | ϕα, tq

|L|

ř

tPL

P pϕα, tq

|L|

ř

tPL

P p ϕα, tq

|L|
1

Definition 4.6 (Conditional probability of LTLpf formulae in an event log).

Let ϕ1 and ϕ2 be two LTLpf formulae and L an event log of cardinality |L|.

We say that ϕ1 is non-null in a trace t P L if and only if P pϕ1, tq ą 0. If

P pϕ1, tq “ 0, we say that ϕ1 is null in t. The conditional probability of ϕ2 given

ϕ1 in L is the portion of the event log that consists of traces for which ϕ1 is

non-null and satisfies ϕ2, given the satisfaction of ϕ1:

P pϕ2|ϕ1, Lq “

ř

tPL:P pϕ1,tqą0

P pϕ2|ϕ1, tq

|L|
.

The conditional probability of ϕ2 given  ϕ1 in L is the portion of the event log

that consists of traces for which ϕ1 is null and satisfies ϕ2, given the satisfaction

of  ϕ1:

P pϕ2| ϕ1, Lq “

ř

tPL:P pϕ1,tq“0

P pϕ2| ϕ1, tq

|L|
.

Table 10 shows the resulting contingency table. In the following, we provide the

proof of the correctness of our approach.

Theorem 4.1 (Contingency of event log conditionals). Given two

LTLpf formulae ϕ1 and ϕ2 and an event log L of cardinality |L|,

let |L|P pϕ1qą0 be the number of traces in which ϕ1 is non-null and

|L|P pϕ1q“0 the number of traces in which ϕ1 is null. It follows that

P pϕ2|ϕ1, Lq ` P p ϕ2|ϕ1, Lq ` P pϕ2| ϕ1, Lq ` P p ϕ2| ϕ1, Lq “ 1.
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Proof 4.1. In light of the fact that there cannot be a trace where P pϕ1q is both

0 and not 0 at the same time, the proof of Theorem 4.1 proceeds as follows.

P pϕ2|ϕ1, Lq ` P p ϕ2|ϕ1, Lq ` P pϕ2| ϕ1, Lq ` P p ϕ2| ϕ1, Lq “ 1 (1)
ř

tPL:P pϕ1qą0 P pϕ2|ϕ1, tq

|L|
`

ř

tPL:P pϕ1qą0 P p ϕ2|ϕ1, tq

|L|

`

ř

tPL:P pϕ1q“0 P pϕ2| ϕ1, tq

|L|
`

ř

tPL:P pϕ1q“0 P p ϕ2| ϕ1, tq

|L|
“ 1 (2)

ÿ

tPL:P pϕ1qą0

P pϕ2|ϕ1, tq `
ÿ

tPL:P pϕ1qą0

P p ϕ2|ϕ1, tq

`
ÿ

tPL:P pϕ1q“0

P pϕ2| ϕ1, tq `
ÿ

tPL:P pϕ1q“0

P p ϕ2| ϕ1, tq “ |L| (3)

ÿ

tPL:P pϕ1qą0

pP pϕ2|ϕ1, tq ` P p ϕ2|ϕ1, tqq

`
ÿ

tPL:P pϕ1q“0

pP pϕ2| ϕ1, tq ` P p ϕ2| ϕ1, tqq “ |L| (4)

ÿ

tPL:P pϕ1qą0

ˆ

P pϕ1 X ϕ2, tq

P pϕ1, tq
`

P pϕ1 X ϕ2, tq

P pϕ1, tq

˙

`
ÿ

tPL:P pϕ1q“0

ˆ

P p ϕ1 X ϕ2, tq

P p ϕ1, tq
`

P p ϕ1 X ϕ2, tq

P p ϕ1, tq

˙

“ |L| (5)

ÿ

tPL:P pϕ1qą0

ˆ

P pϕ1 X ϕ2, tq ` P pϕ1 X ϕ2, tq

P pϕ1, tq

˙

`
ÿ

tPL:P pϕ1q“0

ˆ

P p ϕ1 X ϕ2, tq ` P p ϕ1 X ϕ2, tq

P p ϕ1, tq

˙

“ |L| (6)

ÿ

tPL:P pϕ1qą0

ˆ

P pϕ1, tq

P pϕ1, tq

˙

`
ÿ

tPL:P pϕ1q“0

ˆ

P p ϕ1, tq

P p ϕ1, tq

˙

“ |L| (7)

ÿ

tPL:P pϕ1qą0

1`
ÿ

tPL:P pϕ1q“0

1 “ |L| (8)

|L|P pϕ1qą0 ` |L|P pϕ1q“0 “ |L| (9)

|L| “ |L| � (10)

Probabilities defined as above permit the application of the association rule

mining measures presented in Section 3.2 over an entire event log. In the light
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Table 11: Event log probabilities and measures of a sample of measures for the RCon

p♦b^ ♦eq p c_ ♦fq.

Event log P pϕα, tq P pϕτ |ϕα, tq P p ϕτ |ϕα, tq P pϕτ | ϕα, tq P p ϕτ | ϕα, tq

t1 “ xa, b, c, d, f, c, e, c, hy ą0 0.83 0.17 0.67 0.33

t2 “ xb, d, a, f, g, d, e, dy ą0 1.00 0.00 1.00 0.00

t3 “ xa, c, d, b, c, e, f, cy ą0 1.00 0.00 0.80 0.20

t4 “ xb, c, c, e, ay ą0 0.50 0.50 1.00 0.00

t5 “ xb, c, d, ey “0 NaN NaN 0.75 0.25

P pϕα, Lq= 0.80 P pϕτ |ϕα, Lq= 0.67 P pϕτ | ϕα, Lq= 0.13

P pϕτ , Lq= 0.82 P p ϕτ |ϕα, Lq= 0.15 P p ϕτ | ϕα, Lq= 0.05

Support: 0.67 Confidence: 0.83 Specificity: 0.25 Lift: 1.02

of the contingency table in Table 10, it suffices to map

P pAq to P pϕα, Lq “

ř

tPL:P pϕα,tqą0

P pϕα, tq

|L|
,

P pBq to P pϕτ , Lq “

ř

tPL:P pϕα,tqą0

P pϕτ |ϕα, tq `
ř

tPL:P pϕα,tq“0

P pϕτ | ϕα, tq

|L|
, and

P pABq to P pϕτ |ϕα, Lq “

ř

tPL:P pϕα,tqą0

P pϕτ |ϕα, tq

|L|
.

We remark that the non-trivial mapping from P pABq to P pϕτ |ϕα, Lq is intuitively

rooted into the inherent nature of “if A then B” rules such as the RCons, as

evidenced in [56], and its soundness is evidenced by Theorem 4.1. For example,

Table 11 shows a few measures computed from the probabilities of the RCon

p♦b^ ♦eq p c_ ♦fq over a log composed of five traces. We remark that this

result is distinct from the mere aggregation of trace measures. For example,

comparing the average of the Support values in Table 9 (0.44) and the Support

value presented in Table 11 (0.67), we observe that the former is the average

proportion of events in a trace satisfying both the target and the activator, while

the latter represents the proportion of traces of the event log satisfying the

RCon.
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4.4. Measurement system

Given an event log L, a set of RCons R, and a set of probabilistic measures

M as input, our framework returns the measurement of every measure in M for

each constraint in R both over every single trace t P L and over the entire event

log L. More specifically, the output can be reported at three different levels of

detail:

Event level: distinct evaluation of ϕα and ϕτ of each constraint in R on every

event of every trace in L;

Trace level: measurement of each measure in M for each constraint in R for

every trace in L;

Aggregated view: descriptive statistics over the event log of all the

trace-level measures.

Event log level: measurement of every measure in M for every constraint in

R for the entire event log L.

For example, Table 9 shows some trace level measures together with their

descriptive statistics and Table 11 shows the corresponding event log level

measures for the RCon p♦b^ ♦eq p c_ ♦fq. Since being able to perceive the

overall status of a constraint is as important as the possibility to analyze its

details in single traces, we report the entire statistical distribution of a measure

across the event log to provide a complete information spectrum.

Figure 1 depicts the pipeline of the framework from the input to the output.

In the first stage, an RCon is evaluated on each trace of the event log. Then,

the evaluation result is used to compute the probabilities of the rule. On top

of them, the measures of the rule in each trace and in the entire event log are

computed. Also, descriptive statistics over the event log are reported for each

trace measure.

We remark that the design of the RCons is crucial for the evaluation and the

computation of the measures especially in terms of definition of their activator.

Let us take as an example the RespondedExistencepa, bq constraint from the
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Figure 1: Measurement framework architecture.

repertoire of Declare (see Table 1). The classical LTLf formula underlying

RespondedExistencepa, bq for whole-trace evaluations is  ♦a_ ♦b [28]. How-

ever, the formulation of the rule as an RCon can lead to different interpretations:

a p♦b_ ♦bq: If a occurs, b is expected to occur somewhere in the trace;

p♦a _ ♦aq p♦b _ ♦bq: For every event in the trace such that a occurs

either in the past or in the future, also b should occur somewhere in the

trace;

True  p♦a_ ♦aq _ p♦b_ ♦bq: For every event in the trace, if a occurs

in the trace, also b is expected to occur;

tStart p ♦a_♦bq: At the beginning of the trace, if a occurs in the trace,

also b should occur.

All the formulations above are legitimate as they entail that the occurrence of a

in the trace demands the occurrence of b. However, the difference in the way the

activator is represented turns out to be crucial. The activator, indeed, encodes

when the rule is of interest. For example: Are we interested in each occurrence of

task a or only in its eventual occurrence in the trace? Do we want the rule to be

satisfied in every point of the trace or just at the beginning of the trace? These

choices have a clear impact on the measures. Table 12 presents the evaluation of
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Table 12: Measurements of a constraint expressed with different formulations on trace

xd, a, b, c, ay.

RCon formulation Evaluation
Support

P pϕαϕτ , tq

Confidence

P pϕτ |ϕα, tq

a p♦b_ ♦bq
ϕα: x0, 1, 0, 0, 1y

ϕτ : x1, 1, 1, 1, 1y
2{5 “ 0.4 2{2 “ 1

p♦a_ ♦aq p♦b_ ♦bq
ϕα: x1, 1, 1, 1, 1y

ϕτ : x1, 1, 1, 1, 1y
5{5 “ 1 5{5 “ 1

True  p♦a_ ♦aq _ p♦b_ ♦bq
ϕα: x1, 1, 1, 1, 1y

ϕτ : x1, 1, 1, 1, 1y
5{5 “ 1 5{5 “ 1

tStart p ♦a_ ♦bq
ϕα: x1, 0, 0, 0, 0y

ϕτ : x1, 1, 1, 0, 0y
1{5 “ 0.2 1{1 “ 1

a trace with the different formulations seen above and their trace measurements

for Confidence and Support. Confidence is equal to 1 as each time the activator

holds true, also the target holds true. Support (i.e., the frequency of ϕα X ϕτ )

varies considerably instead. Notice that this phenomenon comes with neither a

good nor with a bad connotation, but stresses the idea that a full control over

the formula implies a mindful decision about its design and subsequently on

picking the right measures for it. In Table 1, we devised the RCon formulae

based on the activators of Declare templates described in [3, 20] – hence, e.g.,

the choice for RespondedExistence of the first option presented in Table 12.

While Declare templates are reasonably simple and well-known standard cases,

encoding the right activator is crucial for the design of custom RCons and their

measures. Lastly, we would like to remark that all the variants in Table 12 take

exactly the same amount of computational time to be checked as any formula

requires a trace to be read only twice, as described in Section 4.1.

In summary, we have described in this section a novel measurement framework

for reactive temporal specifications based on LTLpf , supporting probabilistic

interestingness measures at both trace and event log levels. The framework

is designed to be suitable for any custom formula in the form of a Reactive

Constraint, and any measure that is based on the probability of the activator
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and target of the constraints. Therefore, it supports template sets like Declare

and all the interestingness measures from association rule mining seen in Table 3,

though not being limited to them. Next, we evaluate our approach through tests

conducted with our implemented prototype.

5. Implementation and performance analysis

We have implemented our measurement framework as a proof-of-concept

software prototype built upon the existing declarative process specification

processor tool Janus [14, 16]. The Java source-code can be found at github.com/

Oneiroe/Janus. The core component of the software is the RCons verification

engine, upon which are build independently a declarative process discovery

module and the present declarative rules measurement module. All the process

specifications used in the following experiments are discovered with this discovery

module implementing the technique presented in [14]. In the remainder of this

section, we first report on the results of a time and space analysis with simulated

data. Then, we investigate the computational performance on real-world event

log data sets. The results demonstrate the practical feasibility and applicability

of our approach.

5.1. Time analysis

To assess the efficiency of our implemented technique, we measure its time

performance against an increase in the data size (i.e., the cardinality of the event

log and the length of its traces) and the model size (i.e., the number of rules)

with synthetic event logs.

We repeated every experiment 10 times to smooth random factors. The

reported results average over the ones of the single repetitions. The machine

used for the experiments was equipped with an Intel Core i5-7300U CPU at

2.60 GHz, quad-core, 16 Gb of RAM and an Ubuntu 18.04 LTS operating system.

To test the response of our implemented framework against the input data

size, we set up a controlled experiment in which we first generate logs of varying
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Table 13: The set of Declare rules used in the experiments.

Initpaq Responsepe, fq ChainResponsepo, pq

Endpbq Precedencepg, hq ChainPrecedencepq, rq

AtMostOnepcq AlternatePrecedencepi, lq RespondedExistenceps, tq

Participationpdq AlternateResponsepm, nq CoExistencepu, vq

Successionpw, xq AlternateSuccessionpy, zq ChainSuccessionpj, kq

NotCoExistencep0, 1q

sizes that are compliant with a fixed set of rules, resorting to the simulation

engine of MINERful [57]. Thereupon, we compute the measures listed in Table 3

against all the rules of a larger test specification (not fully compliant with the

event log). For every run, we recorded the wall-clock time of our prototype.

The starting set of rules stems from the Declare repertoire of templates [5]

and is provided in Table 13. Notice that the set contains all the rule templates

seen in Table 1 and is designed in a way that every constraint insists on different

tasks. The test model consists of 649 constraints extracted by the discovery

algorithm of Janus (setting the Support and Confidence threshold parameters

to 0.05 and 0.8) from a synthetic event log of 834 963 events, 500 traces and

tasks in ta, . . . , z, 0, 1u that is compliant with the initial model.2 Given the test

specification obtained as described above, we performed two tests of 65 iterations

each, based on synthetic event logs that comply with the rules of Table 13, by:

(1) increasing the length of the traces (with a step of 100 events per iteration,

keeping the number of traces per event log equal to 500), and (2) increasing the

number of traces in the event log (with a step of 50 new traces per iteration,

keeping the trace lengths between 900 and 1000 events). Figure 2 illustrates

the results of both experiments. We observe that the factor actually influencing

the wall-clock time is the total amount of events rather than the trace length:

2Available at https://oneiroe.github.io/DeclarativeMeasurements-static

31

https://oneiroe.github.io/DeclarativeMeasurements-static


0 500000 1000000 1500000 2000000 2500000 3000000 3500000
0

100

200

300

400

500

600

trace-number

trace-length

Events in Log

T
im

e 
(s

ec
.)

Figure 2: The computation time is linearly dependent on the total number of events in the

event log.

indeed, Fig. 2 shows that the recorded timings of both experiments tend to lie on

the same line. This experimental result confirms the linear relation between the

total number of events in the log and the computational performance illustrated

in Section 4.1.

Next, we investigate the response of the framework to an increase in the

model size. To do so, we first generate an event log containing 1000 traces with

a trace length between 100 and 500 events from the simulation of the rules in

Table 13. Thereupon, we use the discovery algorithm of Janus to automatically

retrieve different test models with varying levels of compliance. To that extent,

we make the Confidence threshold range from 1.0 (full model compliance), down

to 0.0 with a step of 0.05. The rationale is, the lower the Confidence threshold,

the higher the number of constraints in the test model. Then, we calculate all

the measures in Table 3 for every constraint of each test model. The time taken

for the measurements are shown in Fig. 3. Notice that the computation time

is linearly dependent on the number of rules to check, thus in line with the

32



0 500 1000 1500 2000 2500 3000 3500
0

50

100

150

200

250

Number of rules

T
im

e 
(s

ec
.)

Figure 3: The computation time is linearly dependent on the total number of rules to check.

theoretical computational cost exposed in Section 4.1.

5.2. Space analysis

The space consumption of our technique depends on the data structures

required to store the multi-level results. More specifically, four multidimensional

matrices are used, containing respectively (1) the evaluation at the event level,

(2) the measures at the trace level, (3) their descriptive statistics over the log,

and finally (4) the measures at the event log level. Considering |L| the number

of traces in the log, |E| the total number of events in a log, |R| the number of

constraints, |M | the number of measures, the sizes of the matrices are respectively

the following:

1) Events evaluation: |E| ˆ |R|, wherein each cell contains two boolean values

(i.e., the evaluation of the activator and target of the constraint);

2) Trace measures: |L| ˆ |R| ˆ |M |, having a real number in every cell;

3) Trace measures statistics: |R|ˆ |M |, containing seven real numbers per cell

(for the mean, geometric mean, variance, population variance, standard

deviation, maximum value, and minimum value, respectively);

4) Event log measures: |R| ˆ |M |, with a real number each.
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The events matrix is optimized as a bit matrix, where two bits are sufficient to

store the boolean results of the evaluation of both the activator and target for

one event. We implemented our framework in Java, so we employ 1-byte Byte

objects and 4-byte Float numbers (6 decimal digits are sufficiently accurate for

our purpose). Taking these indicators into account, we can estimate the space

consumption. For example, assuming that |L| “ 1000, the maximum number

of events in a trace n is 50, |R| “ 100, |M | “ 30, the expectation for the space

demands are distributed as follows:

1) Events evaluation: 1000ˆ 20ˆ 260ˆ 1 “ 5 200 000 bit “ 5.2 Mb;

2) Trace measures: 1000ˆ 260ˆ 37ˆ 4 “ 38 480 000 bit “ 38.48 Mb;

3) Trace measures statistics: 260ˆ 37ˆ 7ˆ 4 “ 269 360 bit “ 269.36 Kb;

4) Event log measures: 260ˆ 37ˆ 4 “ 38 480 bit “ 38.48 Kb.

Therefore, the most memory-demanding data structures are those that pertain

to the events evaluation and the trace measurements matrices. The former is

bigger than the latter only if the average number of events per trace is greater

than 4 times the number of measures used, i.e., |E|
|L| ą 4ˆ|M |. In our experiments,

even using all the 37 measures of Table 3, this has not occurred.

As with the experiments for the evaluation of time, we analyze empirically

the space consumption through simulations, controlling the number of events n

per trace, the number of traces |L|, and the number of constraints under analysis

|M |. To measure the memory consumed by the data structures, we perform a

Bit serialization of the matrix objects listed above. This allows us to have a

precise measure of the space consumed by every object, though it unavoidably

requires that the available memory is twice as much as the strictly necessary

amount.

Figure 4 illustrates the results of our experiments. As it can be seen, the

resulting linear trends are in line with the expectations, modulo the constant

factors introduced by the Java Virtual Machine objects. It can be noticed that

the number of constraints to check, being a common factor among all the objects,
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Figure 4: The space consumption is linearly dependent on the total number of events in the

log (left), number of traces in the log (center), and number of rules to check (right)

increases the overall required memory quicker than the other parameters. We

remark that depending on the desired outcome, not all the measures nor all

the matrices are necessary. For example, if the log measures are desired, the

trace measures and their statistics can be ignored and vice-versa. The events

evaluation is the only mandatory object upon which all other computations are

based.

At present, our implementation works in-memory, thus it is assumed that all

the objects fit in main memory (which proved to be sufficient for all the real life

log under analysis). However, we would remark that every measure calculation

(both at log and trace levels) is independent from the other one, thus it is possible

to either (i) compute one measure or constraint at the time in pipeline, in order

to reduce the memory load, or (ii) to distribute the workload, by making each

system compute independently one measure per constraint. Both are interesting

directions for the future upgrades of our implementation.

5.3. Application on real-world event logs

To test the performance also in real settings, we compute the rule measures

on 13 event logs, whose characteristics are exposed in Table 14. Twelve of

those event logs are openly available3 and belong to the Business Process

Intelligence Challange (BPIC) collection, a Road-Traffic Fines Management

Process (RTFMP) and the aforementioned Sepsis event log. In addition, we

3https://data.4tu.nl/
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analyze the performance of our prototype on an event log stemming from a

partner of a smart-city project in which the authors are involved (labeled as

“Smart city” in Table 14). We included the Smart city event log due to its

considerable size: as it can be noticed from the table, it is the one bearing the

largest amount of events in this experiment.

For each log, we ran the discovery algorithm of Janus [14] in order to extract

a test model to check the event log against. We tuned the parameters of the

discovery algorithm to obtain a set of rules to which the event log complies for

the most part (Confidence threshold of 0.8), even though the constrained tasks

are possibly infrequently co-occurring (Support threshold of 0.05). Table 14

illustrates the results. For each event log we report, along with the number of

traces, the occurring tasks, the events, the number of constraints in the test

model, the total time from the launch to the termination of the software (“Time”),

the time to evaluate the rules on events (“Checks”), the time to compute the

measures both at the trace and log levels (“Measures”), and the total space

consumed by the data structures of our tool (“Space”) against their expected

value (“Expectation”). We remark that the space consumption is consistent

with our theoretical expectation and that the wall-clock time remains within

acceptable ranges as the slowest run takes around 4.5 minutes to check about

600 constraints in a considerably big event log such as BPIC17 [58] handling

around 2.5 Gb of data.

5.4. Analysis of custom rules

In order to demonstrate that our framework can handle any Reactive Con-

straints, beyond the standard Declare repertoire, we applied our approach to

compute the discussed measures of a custom rule on the Sepsis event log. We name

the custom rule BidirectionalTimeConsequentpa, b, cq as its RCon formula-

tion is a ♦b^♦c. It states that if a occurs, it is expected that either c occurred

before it or b will occurs afterwards. Table 15 reports the measures at log and

trace level for BidirectionalTimeConsequentpAdmission NC, CRP, IV Liquidq cal-

culated on the Sepsis real-life log [34]. As it can be noticed, Confidence and
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Table 14: Performance records on real-life datasets.

Event log Traces Tasks Events Rules Time [sec] Checks [msec] Measures [msec] Space [Mb] Expectation [Mb]

BPIC12 [59] 13087 36 262200 519 106.7 19 237.1 83 160.6 1222.76 1141.93

BPIC13 cp [60] 1487 7 6660 20 1.2 221.2 338.3 5.10 4.56

BPIC13 i [60] 7554 13 65533 14 3.6 584.9 1064.3 18.09 16.59

BPIC14 f [61] 41353 9 369485 51 29 3977.1 21 277.4 357.10 331.04

BPIC15 1f [62] 902 70 21656 3856 42.2 13 686 25 974.4 670.45 602.83

BPIC15 2f [62] 681 82 24678 5889 57.8 19 790.6 35 029.5 832.38 745.84

BPIC15 3f [62] 1369 62 43786 4098 81.2 26 468 51 764.6 1105.65 1014.59

BPIC15 4f [62] 860 65 29403 4690 60.4 18 997.8 38 492.4 818.55 740.39

BPIC15 5f [62] 975 74 30030 5164 69.7 22 947.1 43 684.2 999.51 906.35

BPIC17 f [58] 21861 41 714198 611 275.9 58 909.8 207 182.2 2561.93 2413.94

RTFMP [63] 150370 11 561470 49 80.1 7887.5 65 214 1210.04 1118.05

Sepsis [34] 1050 16 15214 260 3.8 765.8 1842.6 49.80 44.67

Smart city [64] 4347 20 692333 292 61.5 23 261.8 32 301.8 398.74 390.37

Recall are relatively high (0.82 and 0.79, respectively) and the values of Coverage

and Prevalence (0.76 and 0.79, respectively) suggest a frequent occurrence of

activator and target. The value of Lift is greater than 1, which denotes depen-

dency between activator and target (especially at a trace level). The detailed

results of the evaluation on each trace can be found at oneiroe.github.io/

DeclarativeMeasurements-static.

The capability of our framework to handle non-standard rules opens up new

possibilities for the claimed extendibility of Declare as a declarative specifi-

cation language, claimed from its very inception to be open to customization

through the definition of new rules according to the process analyst needs [65].

6. Evaluation

In this section, we report on experiments that show interesting implications

of having a vast availability of measures with customization options. Specifically,

Section 6.1 investigates over which measures can be of interest in the scope of

declarative specification discovery, and Section 6.2 shows how the properties of

measures can be exploited to characterize the alterations of constraints when

the underlying process changes.
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Table 15: Measures resulting from the evaluation of constraint

BidirectionalTimeConsequentpAdmission NC, CRP, IV Liquidq on the Sepsis event log [34].

Measure Log Trace

Support 0.62 0.06

Confidence 0.82 0.82

Recall 0.79 0.09

Lovinger -0.16 0.05

Specificity 0.30 0.36

Accuracy 0.70 0.39

Lift 1.04 1.24

Leverage 0.22 0.76

Compliance 0.86 0.98

Odds Ratio 1.95 Infinity

Gini Index 0.01 0.03

Certainty factor 0.14 0.67

Coverage 0.76 0.07

Measure Log Trace

Prevalence 0.79 0.66

Added Value 0.03 0.18

Relative Risk 1.17 1.36

Jaccard 0.67 0.09

Ylue Q 0.32 0.63

Ylue Y 0.17 0.63

Klosgen 0.02 0.07

Conviction 1.16 Infinity

Interestingness

Weighting Dependency
0.03 0.01

Collective Strength 6.47 Infinity

Laplace Correction 0.82 0.60

J Measure 0.00 0.01

Measure Log Trace

One-way Support 0.04 0.51

Two-way Support 0.03 0.05

Two-Way Support

Variation
0.01 0.02

Linear Correlation Coefficient 0.13 0.13

Piatetsky-Shapiro 0.02 0.01

Cosine 0.80 0.30

Information Gain 0.04 0.30

Sebag-Schoenauer 4.56 Infinity

Least Contradiction 0.62 0.00

Odd Multiplier 1.20 Infinity

Example and

Counterexample Rate
0.78 0.81

Zhang 0.17 0.63

All the experimental data (code, input data, results) can be found at

https://oneiroe.github.io/DeclarativeMeasurements-static. In the fol-

lowing experiments, we resort to the following tools: (i) The Janus discovery

algorithm [14] for the discovery of declarative models from events logs; (ii) The

simulation engine of MINERful [57] for the generation of event logs complying

with given declarative specifications; (iii) The error injection engine of MINER-

ful [66] for the controlled insertion of noise into event logs; (iv) The declarative

model simplification technique of MINERful [33] for the removal of redundancies

from declarative specifications.

6.1. Ranking experiment

The objectives of this experiment are the following: (1) Empirically showing

that relying on more measures than the sole Support and Confidence measures is

effective to characterize process rules in an event log; (2) Highlighting insightful

measures in a declarative process mining context.

To achieve both objectives we rank the measures according to how many

correct and interesting rules they are able to recognize. We take inspiration from
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the correct rules at N experiment introduced by the seminal work of Le and Lo [6].

Given an event log L, a ground truth set of rules RG satisfied in L, a set of rules

RD Ą RG containing also loosely satisfied rules in L, the set of interestingness

measures M of Table 3, and a predefined threshold N , we compute the value

of each measure m PM for all the rules r P RD on L. Then, for every measure

m PM we create sets of rules that are associated to a common value and sort

those sets accordingly. This leads to a separate sorting of the rules for every

measure. If, for instance, rules r1 and r2 have a Confidence of 1.0, rule r3 has a

Confidence of 0.9, and rules r4, r5 and r6 have a Confidence of 0.8, the top-N

sets are: tr1, r2u in the top-1, tr1, r2, r3u in the top-2, and r1, r2, r3, r4, r5, r6 in

the top-3 for Confidence. Intuitively, a good measure should assign high scores

to correct rules. Therefore, we finally count how many of the rules in RG are

within the top-N sets. We repeated the experiment 10 times and considered

the average of the results to avoid fluctuations caused by the random factors of

simulation. We performed the experiment with N set to 1, 5, 10, 25, 50, 100, 200,

500, 1000, and 1500, i.e., ranging from considering only the best-scoring rules

to considering all the rules in RD. The final ranking of a measure is computed

as the average of its ranking for each N . Table 16(a) shows the final rankings

for this experiment. Together with the ranking, for each measure we report also

the number of correct rules (“Correct” column) and the average ratio of correct

rules over the total number (“Ratio” column) in the top-N sets, averaged over

the 10 repetitions of the experiment.

We run our experiments with three different event logs: (i) a simulation of a

synthetic process specification (Section 6.1.1); (ii) a simulation of a synthetic

process specification with random changes in the event log so as to mimic partial

non-compliance (Section 6.1.2); (iii) a real-life event log (Section 6.1.3). At the

end of this section, we draw some conclusions from the obtained results.

6.1.1. Process simulation

More specifically, we simulate the specification described in Table 13. Notice

that the rules are designed to not interfere with one another and each of them
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constrains different tasks. The simulation produces an event log that is fully

compliant with the rules in Table 13. From the simulated event log, we discover a

new process specification with loose bounds (Support and Confidence thresholds

set to 0.05 and 0.5, respectively) in order to discover also infrequent and seldom

violated rules. We simplify the resulting set of rules by removing those that

do not match yet strictly subsume or are entailed by the ground-truth rules, in

order to avoid misleading results – for example, if ChainResponsepo, pq and

Responsepo, pq both belong to the returned set of rules, the former is retained

and the latter is removed because ChainResponsepo, pq is part of the ground-

truth specification (see Table 13) and is subsumed by Responsepo, pq. The full

detail of the technique that deals with the removal of redundant rules is out of

scope for this paper. The interested reader can find a detailed description of

the problem and the approach in [33]. The simplified discovered model consists

of 1310 rules on average. Thereupon, we apply our measurement framework to

compute the measures in Table 3 at the event log level for all the discovered rules.

Finally, we sort the rules according to each measure, and rank the measures

according to how many of the original rules are among in top N sets.

Notice that Support ranks only sixteenth. Confidence, by contrast, is at

the top of the ranking. It should be observed, however, that the experiment

considers by design never violated rules (i.e., those with maximal Confidence),

hence the top position of this measure. Nevertheless, there are two measures

that match Confidence, namely (i) Example and Counterexample Rate and

(ii) the Sebag-Schoenauer measure. This is in accordance with P5, as the

absence of counterexamples for the rules makes measures with known maximal

values highly rank the original, correct rules. The “Ratio” column reported in

Table 16(a) helps to distinguish the accuracy of the results. For example, Odd

Multiplier and Odd Ratio have the same rank (i.e., the same amount of correct

rules identified), although the Odd Ratio returns 3 times more rules than the

Odd Multiplier within the top-N sets.
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Table 16: Ranking of measures according to the simulation experiment with a fully compliant

simulated event log (left), with an altered event log (center), and with a real-life event log

(right).

Rank Measure Correct Ratio

1 Confidence 11.00 24.79%

1
Example and

Counterexample Rate
11.00 24.79%

1 Sebag-Schoenauer 11.00 24.81%

4 Laplace Correction 8.65 17.70%

5 Accuracy 6.62 10.69%

6 Least Contradiction 6.35 10.55%

7 Cosine 6.24 10.51%

8 Jaccard 6.23 10.51%

8 Prevalence 6.15 10.17%

10 Conviction 7.00 24.90%

10 Odd Multiplier 7.00 22.24%

10 Odds Ratio 7.00 7.57%

10 Ylue Q 7.00 7.57%

10 Ylue Y 7.00 7.57%

15 Support 5.18 6.15%

16 Lift 4.94 9.55%

17 Certainty factor 4.48 3.66%

18 One-way Support 4.39 3.24%

18 Zhang 4.35 4.15%

20 Two-way Support 4.26 1.79%

21
Interestingness

Weighting Dependency
4.27 1.79%

22 Added Value 4.25 1.95%

22 Klosgen 4.24 2.25%

24 Piatetsky-Shapiro 4.19 1.65%

25 Recall 4.64 3.69%

26 Information Gain 4.33 3.91%

27
Linear Correlation

Coefficient
3.92 2.44%

28 Leverage 3.40 1.20%

29 Coverage 3.24 0.81%

30 Specificity 2.68 0.38%

31 Gini Index 3.01 0.84%

31 Lovinger 2.23 0.32%

33 Relative Risk 2.48 0.33%

34 Collective Strength 2.02 0.24%

35 J Measure 0.00 0.00%

35
Two-Way Support

Variation
0.00 0.00%

(a) Simulation

Rank Measure Correct Ratio

1 Confidence 5.58 6.21%

1
Example and

Counterexample Rate
5.58 6.21%

3 Laplace Correction 5.53 6.72%

4 Odd Multiplier 5.42 11.16%

5 Conviction 5.43 11.20%

6 Lift 4.58 11.38%

7 Prevalence 4.42 4.31%

8 Accuracy 4.61 4.06%

9 Least Contradiction 4.31 3.98%

10 Recall 4.20 0.51%

11 Jaccard 4.22 3.97%

12 Cosine 4.18 3.97%

13 One-way Support 4.09 3.12%

14 Certainty factor 4.50 2.95%

15 Added Value 4.01 2.21%

16 Information Gain 4.05 3.40%

17 Support 3.85 3.88%

18 Zhang 4.44 2.77%

19 Two-way Support 4.05 1.99%

20 Klosgen 4.02 2.02%

21
Interestingness

Weighting Dependency
4.04 1.80%

22 Piatetsky-Shapiro 3.94 1.73%

23 Sebag-Schoenauer 3.30 3.19%

24 Coverage 3.28 0.88%

25 Ylue Q 2.99 0.46%

25 Ylue Y 2.99 0.46%

27 Leverage 3.28 0.97%

28
Two-Way Support

Variation
3.96 2.70%

29 Lovinger 3.87 0.93%

30
Linear Correlation

Coefficient
3.58 1.38%

31 Gini Index 3.00 0.83%

32 J Measure 2.77 0.78%

33 Specificity 2.14 0.28%

34 Odds Ratio 1.94 0.24%

35 Collective Strength 1.98 0.23%

36 Relative Risk 2.06 0.25%

(b) Simulation with noise

Rank Measure Correct Ratio

1 Recall 77.67 14.64%

2 Confidence 76.67 51.00%

2
Example and

Counterexample Rate
76.67 51.00%

4 Sebag-Schoenauer 74.78 50.39%

5 Least Contradiction 70.56 56.43%

6 Cosine 70.44 56.40%

6 Jaccard 70.44 56.40%

8 Odds Ratio 72.33 19.88%

8 Ylue Q 72.33 19.88%

8 Ylue Y 72.33 19.88%

11 Accuracy 70.11 56.03%

12 Laplace Correction 42.89 31.07%

12 Relative Risk 71.33 20.46%

12 Specificity 71.33 20.46%

15 Conviction 65.33 54.59%

16 Odd Multiplier 65.00 54.50%

17 Certainty factor 52.56 36.07%

18
Linear Correlation

Coefficient
41.00 37.66%

19 Gini Index 34.78 39.72%

19 One-way Support 30.44 27.55%

21
Interestingness

Weighting Dependency
31.67 18.93%

22 Information Gain 29.78 25.97%

22 Piatetsky-Shapiro 30.78 19.64%

24 Zhang 38.33 27.05%

25 Added Value 29.67 17.07%

25 Leverage 29.78 19.62%

27 Prevalence 31.56 26.90%

28 Two-way Support 30.22 16.00%

29 Lift 29.44 25.21%

30 Klosgen 29.56 14.75%

31 Support 28.22 19.04%

32 Coverage 19.89 4.68%

33 Lovinger 27.00 7.44%

34 Collective Strength 20.78 5.81%

35 J Measure 7.22 4.10%

36
Two-Way Support

Variation
2.11 1.48%

(c) Real-world based

6.1.2. Process simulation with noise

The previous experiment tests a perfectly compliant setup where the reference

rules are never violated. For this reason, we conduct a modified version of the

experiment, this time injecting noise in the event log in order to check if the
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ranking is preserved in non-optimal situations. Specifically, we randomly delete

or duplicate 5% of the occurrences of every task. The results can be found in

Table 16(b). It can be seen that also in the presence of partial non-compliance,

the measures of Confidence and Example and Counterexample Rate continue

to be on top of the ranking, while Sebag-Schoenauer measure drops in the

second half of the list, together with Ylue Q, Ylue Y and Odds Ratio. This

sudden change due to noise is motivated by the fact that these measures are

convex, as we discussed in regard with P6, so they rapidly decrease in presence

of counterexamples. Support persists in the middle of the ranking, with 17

measures scoring better than it. Lift and Information Gain perform by far better

in presence of noise. Understanding how measures react to changes in the data

(noise in this case), is key for process drift analysis [67], where the evolution

of the process is the main objective. We study more in details the influence of

noise on the measurements in Section 6.2.

6.1.3. Real-life event log

We replicate our ranking experiment based on a real-life event log, specifically

the Sepsis data-set [34]. In [35], Mannhardt and Blinde illustrate a procedural

model discovered with the help of domain experts representing the sepsis treat-

ment process at a hospital. We manually translated the model into Declare

rules that we use as a ground-truth specification to replicate the ranking experi-

ment. The model consists of 100 rules, listed in Table 17. Because it is a real

life event log, we do not inject any noise. Table 16(c) illustrates the results. It

can be seen that the measures of Confidence and Example and Counterexample

Rate remain at the top of the ranking. Also, while Recall conquers the first

position for the amount of correct rules reported, it also returns a high number

of other incorrect rules as signaled by its low average ratio score. In this case,

Support drops at the bottom of the ranking.

These experiments suggest possible candidate measures to be used for declar-

ative process discovery. We tested different scenarios, thereby showing how the
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Table 17: Declare model of SEPSIS data-set based on [35].

InitpER Registrationq AtMostOnepER Registrationq AtMostOnepER Sepsis Triageq

AtMostOnepER Triageq SuccessionpER Registration, ER Triageq SuccessionpER Triage, ER Sepsis Triageq

PrecedencepER Registration, CRPq PrecedencepER Registration, Leucocytesq PrecedencepER Registration, LacticAcidq

AtMostOnepIV Liquidq AtMostOnepIV Antibioticsq PrecedencepER Sepsis Triage, IV Liquidq

PrecedencepER Sepsis Triage, IV Antibioticsq CoExistencepIV Liquid, IV Antibioticsq PrecedencepER Sepsis Triage, Admission NCq

PrecedencepER Sepsis Triage, Admission ICq NotSuccessionpAdmission IC, IV Antibioticsq NotSuccessionpAdmission IC, IV Liquidq

NotSuccessionpAdmission NC, IV Antibioticsq NotSuccessionpAdmission NC, IV Liquidq PrecedencepER Sepsis Triage, Return ERq

AtMostOnepReturn ERq NotSuccessionpReturn ER, Admission ICq NotSuccessionpReturn ER, Admission NCq

NotSuccessionpReturn ER, CRPq NotSuccessionpReturn ER, ER Sepsis Triageq NotSuccessionpReturn ER, IV Antibioticsq

NotSuccessionpReturn ER, IV Liquidq NotSuccessionpReturn ER, LacticAcidq NotSuccessionpReturn ER, Leucocytesq

NotSuccessionpReturn ER, Release Aq NotSuccessionpReturn ER, Release Bq NotSuccessionpReturn ER, Release Cq

NotSuccessionpReturn ER, Release Dq NotSuccessionpReturn ER, Release Eq AtMostOnepRelease Aq

AtMostOnepRelease Bq AtMostOnepRelease Cq AtMostOnepRelease Dq

AtMostOnepRelease Eq NotCoExistencepRelease A, Release Bq NotCoExistencepRelease A, Release Cq

NotCoExistencepRelease A, Release Dq NotCoExistencepRelease A, Release Eq NotCoExistencepRelease B, Release Aq

NotCoExistencepRelease B, Release Cq NotCoExistencepRelease B, Release Dq NotCoExistencepRelease B, Release Eq

NotCoExistencepRelease C, Release Bq NotCoExistencepRelease C, Release Aq NotCoExistencepRelease C, Release Dq

NotCoExistencepRelease C, Release Eq NotCoExistencepRelease D, Release Aq NotCoExistencepRelease D, Release Cq

NotCoExistencepRelease D, Release Bq NotCoExistencepRelease D, Release Eq NotCoExistencepRelease E, Release Bq

NotCoExistencepRelease E, Release Cq NotCoExistencepRelease E, Release Dq NotCoExistencepRelease E, Release Aq

NotSuccessionpRelease A, Admission ICq NotSuccessionpRelease A, Admission NCq NotSuccessionpRelease A, CRPq

NotSuccessionpRelease A, ER Sepsis Triageq NotSuccessionpRelease A, IV Antibioticsq NotSuccessionpRelease A, IV Liquidq

NotSuccessionpRelease A, LacticAcidq NotSuccessionpRelease A, Leucocytesq NotSuccessionpRelease B, Admission ICq

NotSuccessionpRelease B, Admission NCq NotSuccessionpRelease B, CRPq NotSuccessionpRelease B, ER Sepsis Triageq

NotSuccessionpRelease B, IV Antibioticsq NotSuccessionpRelease B, IV Liquidq NotSuccessionpRelease B, LacticAcidq

NotSuccessionpRelease B, Leucocytesq NotSuccessionpRelease C, Admission ICq NotSuccessionpRelease C, Admission NCq

NotSuccessionpRelease C, CRPq NotSuccessionpRelease C, ER Sepsis Triageq NotSuccessionpRelease C, IV Antibioticsq

NotSuccessionpRelease C, IV Liquidq NotSuccessionpRelease C, LacticAcidq NotSuccessionpRelease C, Leucocytesq

NotSuccessionpRelease D, Admission ICq NotSuccessionpRelease D, Admission NCq NotSuccessionpRelease D, CRPq

NotSuccessionpRelease D, ER Sepsis Triageq NotSuccessionpRelease D, IV Antibioticsq NotSuccessionpRelease D, IV Liquidq

NotSuccessionpRelease D, LacticAcidq NotSuccessionpRelease D, Leucocytesq NotSuccessionpRelease E, Admission ICq

NotSuccessionpRelease E, Admission NCq NotSuccessionpRelease E, CRPq NotSuccessionpRelease E, ER Sepsis Triageq

NotSuccessionpRelease E, IV Antibioticsq NotSuccessionpRelease E, IV Liquidq NotSuccessionpRelease E, LacticAcidq

NotSuccessionpRelease E, Leucocytesq

measures’ scores vary in each of them and how the evaluation of rules can benefit

from the perspectives of multiple measures that were not previously available
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for temporal specifications. However, we remark that some measures should be

handled in a specific manner. For example, Coverage is a descriptive measure

reporting on the portion of the event log in which the rule activator occurs:

this characteristic determines its low ranking in all the previous experiments.

A low score in these experiments does not imply that a measure is of scarce

use in general, though. Indeed, we can only highlight the average top ranking

measures of these experiments as excellent options, as we do in the next section

while depicting the current results. The informed proposal of best practices for

the selection of measures and combinations thereof depending on the analysis

purposes (e.g., discovery) constitutes a highly interesting outlook for research.

6.2. Sensitivity and resilience to noise

In this section, we study in details the effect of noise injection in the event log

on the constraints log measurements. We experimentally observed in Section 6.1.2

that measures exhibit different changes upon the presence of alterations from

the expected behavior in an event log. A measure may “sense” the alteration in

the data with respect to a rule or remain unaffected. Also, if the alteration is

perceived, the magnitude of the measures reaction may be different, in light of the

different properties that the measures enjoy, as discussed in Section 3.2. Markedly,

we will empirically demonstrate that the properties originally for association

rules hold also in the context of temporal rules. The possibility to characterize

a constraint evolution is crucial in continuous measurement settings such as

streaming analysis [68] or drift analysis [67]. Informed decisions on the measures

to monitor based on the characteristic they have and the properties they enjoy

is, therefore, key. Providing a set of guidelines to support such decisions is out of

scope for this paper and paves the path for future research avenues. Nevertheless,

with this experiment, we hope to provide useful preliminary indications in that

sense. We also remark that while we call uncommon or unexpected events

as “noise” or “error” (reflecting our experimental setting), the same measures

evolution would occur in the case of process improvements or changes in the

normative aspects the process is subject to.
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We conducted the experiment as follows. We took as a reference model

the set of rules in Table 13 and we simulated it to generate a clean event log

that is compliant wit it. We remark again how the rules are designed to not

interfere with one another. In this way, it is possible to observe the response of

measures at varying noise levels targeting one constraint at a time, thus limiting

the effect of cross-interference. Thereupon, we injected noise in the event log

and calculated all the measures in Table 3 for the reference model. In particular,

we made use of the following types of noise [66]:

Events insertion: Spurious events are included in the traces (mimicking, e.g.,

double records, alien events, etc.);

Events deletion: Events are expunged from the event log (mimicking, e.g.,

missing records, uncommitted transactions, etc.);

White noise: Events are randomly inserted and deleted.

Addressing one rule at a time, we studied (1) the direct effect of noise on that

constraint by altering the occurrences of its activator and target via insertions

and deletions, and (2) the indirect effect, by altering the occurrences of the other

tasks in the event log with white noise. We made the noise spread all over the

event log according to a controlled probability variable. For instance, setting

the noise injection as the deletion of occurrences of task a with a probability of

20 % results in the removal of 20 % of the occurrences of task a from the event

log, picked at random.

More specifically, for every rule in the set of Table 13, we ran a separate

experiment for (i) event insertion noise affecting the activator or (ii) the target,

(iii) event deletion noise affecting the activator or (iv) the target, (v) white noise

affecting neither the activator nor the target. For each of the combinations

above, we let the error-injection probability range from 0 to 100 % with a step

of 10 %. Because of the random factor, we repeated each experiment 10 times

and recorded the average results.

Figure 5 shows the results of our experiments on constraint Responsepe, fq.

The Response constraint imposes that the target occurs eventually after every

occurrence of the activator. Plotting all the measures together in a static image
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Figure 5: Effect of error injection on constraint Responsepe, fq for the best 10 scoring measures

from the ranking experiment in Section 6.1.
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within the boundaries of a page results in a complex intertwining of lines, ham-

pering the readability of results. Thus we report here only the top 10 measures

among the averaged results of the ranking experiment presented in Section 6.1,

namely: Confidence, Example and Counterexample Rate, Laplace Correction,

Least Contradiction, Accuracy, Cosine, Jaccard, Sebag-Schoenauer, Conviction,

and Odd Multiplier plus Support as a baseline reference. Furthermore, as the

measures have different ranges, we normalize them between 0 and 1 in order to

compare the different trends. The normalization formula used is

´

vm
1`|vm|

– minm
1`|minm|

¯

´

maxm
1`|maxm|

´ minm
1`|minm|

¯

where vm is the value of measure, |vm| its absolute value, maxm and minm the

maximum and minimum values of the range of a measure, respectively (in case of

infinite ranges, the maximum value supported by the software is considered). The

full set of plots with all the measures and constraints can be interactively explored

at https://github.com/Oneiroe/DeclarativeMeasurements-static.

For the Response constraint, the selected measures are overall particularly

sensitive to the deletions of the target and influenced by both the deletions

and insertions of the activator, while mostly insensitive to spurious insertions

of the target and white noise. More specifically, we can derive the following

observations.

• The deletion of events that satisfy the target leads to more violations of

the rule, i.e., lower P pϕτ |ϕα, Lq and higher P p ϕτ |ϕα, Lq. The negative

effect is thus reflected in the constant decrease of all measures. The

rapidity at which this phenomenon occurs is particularly interesting. In

accordance with property P6, the decrease of concave measures (e.g.,

Example and Counterexample Rate) is slower than that of linear ones (e.g.,

Confidence), and convex measures decrease faster than all the others (e.g.,

Sebag-Schoenauer).

• The deletion of events that satisfy the activator, instead, does not bring

further violations, but a higher P p ϕα, Lq. As a consequence, the mea-
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sures are mostly stable until the error rate is close to 100 %. As per P5,

measures with a decreasing trend (e.g., Laplace Correction or Accuracy)

are susceptible to the frequency of the rule activators in the event logs,

while measures depending only on rule satisfaction (e.g., Conviction and

Odd Multiplier) are constant at all the error rates except 100 % (in which

case, they are no longer defined due to a zero-by-zero division in their

formula).

• The insertion of more events that satisfy the target lead to a higher

P pϕτ , Lq but does not influence the constraint satisfactions, as P pϕτ |ϕα, Lq

remains constant. We remark that the target ϕτ of Responsepe, fq is ♦f,

thus injecting more occurrences of f does imply an increase of P pϕτ , Lq

proportional to the error rate. Following from this consideration and in

light of P3, all the selected measures remain constant.

• The insertion of more events that satisfy the activator is less definite,

as the new tasks may bring either to more rule satisfactions, i.e., higher

P pϕτ |ϕα, Lq, or violations, i.e., higher P p ϕτ |ϕα, Lq. As Responsepe, fq

requires the occurrence of f eventually after e at any distance in the trace,

in this experiment the injections mostly leads to satisfactions. That is

why most of the measures show only a slightly decreasing trend. Notably,

Conviction and Odd Multiplier measures sense this alteration in a marked

way with respect to all the other rules.

• Lastly, the insertion of events not related to both the target and the acti-

vation mostly do not alter the measures. The satisfactions and violations

remain constant, whilst the only increase is in P p ϕα, Lq. Nevertheless,

considering P1 and P5, we can distinguish the fluctuating measures due

to the frequencies change (e.g., Cosine and Jaccard) from the unaffected

ones (e.g., Confidence and Conviction).

Because of space limits, we cannot illustrate the outcome for the other rules of

Table 13. The interested reader can find the full set of experimental data and re-

sults at https://oneiroe.github.io/DeclarativeMeasurements-static in

a digital interactive format, which is more suitable for data exploration and
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browsing.

6.3. Discussion

The applications of our framework presented in Sections 6.1 and 6.2 allows for

some reflections on the employment and availability of the measures. First, the

measures evolution reflects whether the alteration in the data affects either the

target or the activator of the rule (or both). This gives more insights into the

analyzed phenomena than knowing whether a rule is satisfied or not at a given

moment.

Nevertheless, given a constraint, not all the data alterations are perceived by

all measures. This implies that depending on the requirements of the analysis

the choice of the measure is crucial. We reported, for example, an experiment to

identify measures suitable for discovery. Furthermore, given a certain alteration,

it is possible to identify groups of measures with similar trends that focus on the

same aspects of a rule, as it can be easily noticed in Fig. 5. Within such groups,

it is then possible to select one representative measure.

To this extent, the properties discussed in Section 3.2 are clearly a guiding

criterion for the selection of measures, markedly reflected in our experiments in

which measures with similar trends could be distinctly identified by the properties

they enjoy. Ultimately, this choice is strictly related to the requirements and

goals of the event log analysis.

For instance, P6 turned out to be particularly relevant. While measures may

have similar trends, the magnitude of such trends, reflected in the steepness

of the curves with which the measure evolves (i.e., concave, convex, or linear),

indicates how quickly the measure react to changes in the data. Furthermore,

it shows the range of tolerance before the alteration in the data becomes too

large to recognize the specific constraint behavior. A resilient measure with a

slower decrease is desirable to sense if the fundamental characteristics of a log

are still visible despite the deviations (e.g., to implement discovery algorithms

that are robust to noise). On the other hand, a sensitive measure with a faster

decrease is desirable when exceptions to the rules are only accepted in a very
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limited manner (e.g., to monitor normative processes).

An approach enabling such a vast number of measures for temporal spec-

ifications is presented in the seminal work of Le and Lo [6]. We extend their

investigation along two main lines: first, our approach can handle arbitrary

temporal formulae as activator and target, as opposed to single-task variables

only (which also restrict the analysis to the sole Response and Precedence

patterns). Second, our computation of the rule probabilities processes the whole

trace at once, while the calculation scheme in [6] relies on a sliding window,

whose size has to be manually set up thereby influencing the results.

7. Conclusion

In this paper, we presented a comprehensive measurement framework for declar-

ative specifications modeled as Reactive Constraints. Given an event log and a

set of custom probabilistic measures, the framework accepts in input any RCon

and returns as output the evaluation of the rule for each event of the log, the

computed measures for all the traces and their statistics over the entire event

log, and the computed measures over the entire log. The framework goes beyond

the current state of the art as it is not limited to a specific set of measures

or rules. The experiments conducted reveal the possibility to characterize the

behavior of a given constraint through the combination of different measures,

which sense differently the behavior recorded in the log. Also, while the choice

of the measures to employ is highly context-dependent, we showed how the

measures properties can be used to guide the selection, as their effects are clearly

visible in the results.

Future work. Different possibilities are now open upon the foundations of this

measurement framework. It is possible to exploit the possibility to characterize

a phenomenon by studying the evolution of different measures for, e.g., the

dynamic recognition of exceptions in process monitoring [69], the identification

of process drifts [67] or the analysis of process variants [70]. Also, it can be

employed as a post-processing tool for multi-measure filtering of the results of
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declarative process discovery techniques like [3, 4, 14].

As measures react differently to diverse stimuli for distinct types of rules,

a method to find the best combination of measures depending on the analysis

context turns out to be key. To this extent, future research could resort to

existing techniques like [71] or develop novel multi-measure heuristics. Also, the

measures can be integrated for the assessment of multi-constraint specifications

as a whole as in [1, 20].

While the analysis of multiple measures at once may be overwhelming for

a human, machine learning techniques could benefit from the availability of

the great amount of information returned by the proposed framework, as they

are designed to deal with large sets of multidimensional data. Therefore, it

seems to be also promisingly exploitable for feature selection tasks in sequence

classification [24].

Finally, we observe that the implementation of this framework can largely

benefit from run-time optimization for the verification of the rules’ automata,

particularly for as far as the recognition of permanent violations and satisfactions

is concerned [72]. The design and integration of such dedicated techniques serves

as an impulse for future research.
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A. Proof of linearity

The RCon evaluation can be performed efficiently based on the automaton-

based technique defined in [14]. The verification is there defined for online

settings (run-time analysis). In contrast, we can exploit the offline setting of

the present contribution (post-mortem analysis) to enhance furthermore the

performances.

Before proceeding, we need to extend the LTLpf notations presented in Sec-

tion 3. In the following, we will classifyl,l,♦, U as future operators, a,a, ♦, S

as past operators, and the following pairs of operators as mirror images: (i) l

and a, (ii) l and a, (iii) ♦ and ♦, (iv) U and S . A LTLpf formula ϕ

is named: pure past (ϕđ) if it contains only past operators; pure present

(ϕİ) if it contains no temporal operators at all; pure future (ϕ§) if it contains

only future operators [73]. For example, ϕđ “ ♦pa S gq, ϕİ “ a ^ b _ c, and

ϕ§ “ lple_ p♦bq W pq are pure past, pure present, and pure future formulae,

respectively. Finally, the mirror image ϕM of formula ϕ is the temporal formula

obtained by replacing all its operators with their mirror images [74].

In [14] it has been proven that

• any LTLpf formula ϕ can be decomposed in ϕ ”
Žm
j“1pϕ

đ ^ ϕİ ^ ϕ§qj ,

where ϕđ, ϕİ, and ϕ§ are respectively pure past, present, and future

formulae [14, Definition 2];

• each sub-formula of the decomposed formula can be valuated through

distinct automata [14, Theorem 3];

• The past-only automata can be reversed into future-only automata valuat-

ing the reverse of a trace [14, Theorem 4]

The advantage of the reversion is that it allows for the verification of past

components in only one read of the trace. This was not possible for future

components because the end of the trace is unknown in an online setting. In

an offline setting, as the entire trace is given, it is possible to apply the same
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reasoning to reverse future-only automata into past-only automata valuating a

trace in one backward read from the end to the start of the trace.

In the following, we provide proof sketches of the intuitions above. We

replicate the steps taken for past reversion [14] applying them for the future

reversion. To this extent, we rely on mirror images and reversed automata.

Lemma A.1. Let t P Σ˚ be a trace of length n and tR its reverse. Given a pure

future formula ϕ§, and its mirror image ϕ§
M, then t, 1 |ù ϕ§ iff tR, n |ù ϕ§

M.

The proof follows from the semantics of future and past operators of LTLpf

provided in Section 3. For instance, verifying ϕ§ “ ♦a on t “ xf, e, d, c, b, a, g, h, iy

at instant i “ 1 is equivalent to verifying ϕ§
M “ ♦a on tR “ xi, h, g, a, b, c, d, e, fy

at i “ 9. Notice that this holds for sub-traces too, thus verifying ϕ§ on t at

instant i “ 5 is equivalent to verifying ϕ§
M over tr5:9sR “ xi, h, g, a, b, fy at i “ 9.

It follows from Lemma A.1 that any pure future formula can be seen as a

pure past one on a reversed trace. Therefore the automaton verifying the mirror

image of ϕ§ can be used for verification on the reversed trace, as stated in the

following.

Corollary A.1. Let Aϕ§
M

be the automaton verifying ϕ§
M. Then t, n |ù ϕ§ iff

tR P L
`

Aϕ§
M

˘

.

Notice that ϕ§
M is a pure past formula, therefore Aϕ§

M
can be built by applying

the technique of [75]. Furthermore, it is possible to transform the obtained

automaton in order to read directly the original trace t thanks to the property

of closure under reversion of regular languages [76].

From Lemma A.1 and Corollary A.1 we derive the following.

Theorem A.1 (Valuation through
ÐÝ
Aϕ§

M
). Let ϕ§ be a pure future formula

and ϕ§
M its mirror image. Let Aϕ§

M
P A be the automaton verifying ϕ§

M. Given a

trace t P Σ˚ of length n, we have that: t, 1 |ù ϕ§ iff t P L
´

ÐÝ
Aϕ§

M

¯

.

Consider t “ xf, e, d, c, b, a, g, h, iy and the RCon Ψ “ a pab_ ♦cq and the pure

future formula of its separated automata set (sep.aut.set) ϕ§ “ ♦c. The RCon
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is activated by tp6q. Its mirror image is ϕ§
M “ ♦c. It is possible to verify ϕ§

M

over trace tr6:9sR “ xi, h, g, ay at i “ 9, thereby verifying ϕ§ over tr6:9s as per

Lemma A.1. Thanks to Theorem A.1, ϕ§
M can be verified on tr6:9s with the

reversed automaton
ÐÝ
Aϕ§

M
.

In conclusion, we proved that any pure future formula can be verified by parsing

sub-traces from the end of the trace back to the activator event. As the verification

of future formulae is the only potentially exponential time element [14], using

the reversed verification provided in this section guarantees the optimization to

linear time, as empirically evidenced in Section 5.
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