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Abstract. Let Λ(n) be the von Mangoldt-function, let n ≥ 2 be an integer and let

RG (n; q, a, b) :=
∑

m1+m2=n
m1≡a mod q
m2≡b mod q

Λ(m1)Λ(m2)

be the counting function for the Goldbach numbers with summands in arithmetic progression
modulo a common integer q. We prove an asymptotic formula for the weighted average, with
Cesàro weight of order k > 1, with k ∈ R, of this function. Our result is uniform in a suitable
range for q.
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1. Introduction

In recent years a great deal of papers treated various questions related to the average number
of representations of an integer as a sum of prime numbers, or powers of primes. Early instances
of such problems can be traced back at least to the work of Walfisz [24], and Chandrasekharan
& Narasimhan [8]. A more detailed introduction to these topics can be found in Languasco’s
survey paper [11]. About a decade or so, Languasco & Zaccagnini used the above techniques in
the papers [13] and [14], in order to gain a deeper understanding of asymptotic formulae in two
important problems of additive number theory, namely the Hardy-Littlewood and the Goldbach
problem respectively. This brought about a large amount of work, culminating in Brüdern,
Kaczorowski & Perelli’s paper [3], where they improve on the results in [14] using a radically
new approach in the spirit of the classical proof of the Prime Number Theorem.

Among recent papers dealing with such averages we also mention the following: Unweighted
averages have been considered by Languasco & Zaccagnini [12], and by Bhowmik, Halupczok,
Matsumoto & Suzuki [2]. Weighted averages appear in a fairly large number of papers, as
Cantarini [4], [5], [6], [7]; Languasco & Zaccagnini [15], [16], [17]; Goldston & Yang [10].

Here we deal with averages with a Cesàro weight, with the constraint that the summands in
the Goldbach representations lie in fixed arithmetic progressions modulo a common integer q.
The main advantage in using weighted averages instead of the classical averages (see [2]) is
that the Cesàro weights makes functions of the type f (x) :=

∑
n≤x an (x − n)k , where k ∈ R+0 ,

“smoother” as k increases. Since the main formula is based on an inverse integral transform, the
regularity of the function f (x) is strictly connected to the “quality” of the asymptotic formula.
In our specific case, we are able to obtain an asymptotic formula that holds uniformly for a
suitable range of q which clearly highlights the role of the exceptional zero. Furthermore, some
heuristic argument suggests that our formula holds for all k > 0 and may be a reason for further
research in the future.
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Let q be a positive integer. For integers a and b coprime to q we define

RG (n; q, a, b) :=
∑

m1+m2=n
m1≡a mod q
m2≡b mod q

Λ(m1)Λ(m2),

where Λ is the usual von Mangoldt-function. We could consider a more general definition
with the summands lying in progressions with different q1 and q2, but then the conditions
m1 ≡ a mod q1 and m2 ≡ b mod q2 would become m1 mod q ∈ R1 and m2 mod q ∈ R2, where
q is the least common multiple of q1 and q2 and R1 and R2 are suitable sets of residue classes
mod q. Averages of RG (n; q, a, b) have been treated by many authors in the past years, see
the introduction of [2] and, e.g., Ruppel [21] and Suzuki [22], as it is known that almost all
even integers satisfying some congruence condition can be written as the sum of two primes in
congruence classes in analogy with the Goldbach problem.

For z = x + iy with x ∈ R+ and y ∈ R we also set

S̃a,q(z) :=
∑
m≥1

m≡a mod q

Λ(m) e−mz .

It is clear that RG is the generating function of S̃a,q(z) S̃b,q(z), that is

S̃a,q(z) S̃b,q(z) =
∑
m≥1

RG (m; q, a, b) e−mz .

Our goal is to study averages of the quantities RG, so we introduce a real parameter k ≥ 0 and
define

Σk (N ; q, a, b) :=
∑
n≤N

RG (n; q, a, b)
(N − n)k

Γ(k + 1)
=

1
2πi

∫
(x)

eN z S̃a,q(z) S̃b,q(z)
dz

zk+1 , (1)

where Γ is the Euler Gamma-function. We will express Σk as a sum of a main term, a secondary
term and other smaller terms, depending explicitly on the zeros of the relevant Dirichlet L-
functions. The inversion of infinite integral and series in (1) can be justified as in [14] for k > 0.
See §§5–6.

This method was used in most of the papers quoted above to deal with weights with k > 1,
while Brüdern, Kaczorowski & Perelli [3] used their new approach to deal with the range k > 0
in the case of the Goldbach problem. The latter approach carries over, with modifications,
for fixed q. Our goal in this paper, however, is to obtain a uniform version with an explicit
dependence on the possible exceptional zero. Therefore, we believe that using a simpler method
in a smaller range for k has independent interest.

For simplicity, we denote by Z( χ) the set of non-trivial zeros of the Dirichlet L-function
L(s, χ). We can now define the terms in our decomposition:

M (1)
k (N ; q) =

N k+2

φ(q)2Γ(k + 3)
, (2)

M (2)
k (N ; q, a) = −

1
φ(q)2

∑
χ mod q

χ(a)
∑

ρ∈Z( χ∗)

Γ(ρ)N k+1+ρ

Γ(k + 2 + ρ)
, (3)

M (3)
k (N ; q, a, b) =

1
φ(q)2

∑
χ1, χ2 mod q

χ1(a) χ2(b)
∑

ρ1∈Z( χ∗1)
ρ2∈Z( χ∗2)

Γ(ρ1)Γ(ρ2)N k+ρ1+ρ2

Γ(k + 1 + ρ1 + ρ2)
, (4)
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where here and throughout the paper χ∗ denotes the primitive character that induces χ. It is
also convenient to write

Mk (N ; q, a, b) = M (1)
k (N ; q) + M (2)

k (N ; q, a) + M (2)
k (N ; q, b) + M (3)

k (N ; q, a, b). (5)
Throughout the paper, implicit constants may depend only on k. Our main result is the following
theorem.

Theorem 1. For k > 1 and as N → +∞ we have

Σk (N ; q, a, b) = Mk (N ; q, a, b) + Ok ((g(q) + log N )N k+1),

uniformly for q ≤ (log N )A and every a, b with (a, q) = (b, q) = 1, for any fixed A > 0 and
where

g(q) =



log2(q) if there is no exceptional zero modulo q,
q1/2 log2(q) if there is an exceptional zero modulo q.

(6)

We notice that we essentially detect the second main term in Bhowmik et al. [2] for k = 0,
although we prove our Theorem 1 only for k > 1. The case q = 1 was treated in [14], and in
fact we closely follow its proof. The weak uniformity bound in our Theorem and the value of
g are both due to the possible exceptional (or Siegel) zero of a Dirichlet L-function attached
to a primitive real character modulo a “small” q. The turning point of the proof of Theorem 1
is Lemma 1, which we prove in §3. In fact, a weaker version would suffice in establishing the
bounds which are necessary for the exchange of single and double series with the line integral,
because in this case we may assume that q is fixed.

As usual in this kind of problems, it is technically convenient to work with the von Mangoldt-
function Λ (n) instead of functions that run only over primes, because we can use the important
tool of the explicit formula. This trick does not have an important impact in the study of
asymptotic formulae. Let

rG (n; q, a, b; α, β) :=
∑

pα1 +pβ2 =n
pα1 ≡a mod q

pβ2 ≡b mod q

log(p1) log(p2)

and

σk (N ; q, a, b; α, β) :=
∑
n≤N

rG (n; q, a, b; α, β)
(N − n)k

Γ(k + 1)
.

We easily see that the difference Σk (N ; q, a, b) − σk (N ; q, a, b; 1, 1) is essentially dominated
by σk (N ; q, a, b; 1, 2) + σk (N ; q, a, b; 2, 1). These terms can be evaluated using the technique
in [16] with `1 = 1, `2 = 2. Of course, if, say, a is a quadratic non-residue modulo q,
then σk (N ; q, a, b; 2, 1) = 0, and similarly for b. Anyway, the total contribution of prime
powers is of order Ok

(
N k+3/2

)
at most, with implicit constant which is uniform in q since

σk (N ; q, a, b; α, β) ≤ σk (N ; 1, 0, 0; α, β).
Acknowledgements. We thank the referee for several suggestions.

2. Outline of the proof

The four dominant terms in the statement, that is, in (5), arise multiplying formally the leading
terms for S̃a,q and S̃b,q provided by Lemma 1: see (9). We have to show that we may exchange
the summations with integration on the vertical line <(z) = x, and also that the error term is
small. We need the identity

1
2πi

∫
(a)

u−seu du =
1
Γ(s)

(7)
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for a > 0 and its variant
1
2π

∫
R

eiDu

(a + iu)s du =



Ds−1e−aD/Γ(s) if D > 0,
0 if D < 0,

in order to prove that (1) holds. Here<(a) > 0 and<(s) > 0. For the proof, see de Azevedo
Pribitkin [1]. For brevity, we write

S̃a,q(z) =
1

φ(q)
(
M (z; q, a) + E (z; q, a)

)
, (8)

where
M (z; q, a) =

1
z
−

∑
χ mod q

χ(a)
∑

ρ∈Z( χ∗)

z−ρΓ(ρ). (9)

The bound for E (z; q, a) is provided by Lemma 1. We now substitute into (1) and find that

Σk (N ; q, a, b) =
1

2πiφ2(q)

( ∫
(x)

eN zM (z; q, a)M (z; q, b)
dz

zk+1 (10)

+

∫
(x)

eN z (M (z; q, a)E (z; q, b) + E (z; q, a)M (z; q, b)
) dz

zk+1 (11)

+

∫
(x)

eN zE (z; q, a)E (z; q, b)
dz

zk+1

)
. (12)

Expanding the first term in (10), exchanging summation with integration and using identity (7),
we recover the terms in (2), (3) and (4), that is, the main term Mk (N ; q, a, b) defined in (5). The
proofs that the exchanges are legitimate are in §§5–6, while the proofs that single and double
sums over zeros in (3) and (4) respectively converge follow closely the argument in [14] and
[16], with minor modifications in the choices of the regions. We do not include details.

Now we deal with the error terms. We remark that

|z |−1 �



x−1 if |y | ≤ x,
|y |−1 if |y | > x.

(13)

We will eventually choose x = N−1. Hence, by Lemma 1 or simply by the Brun-Titchmarsh
inequality we have

S̃a,q(z) �
1

φ(q)x
,

provided that q ≤ (log N )A for any fixed A > 0. Hence

|M (z; q, a) | ≤ φ(q) S̃(x; q, a) + |E (z; q, a) | � x−1 + |E (z; q, a) |.

Therefore we have
���

∫
(x)

eN zM (z; q, a)E (z; q, b)
dz

zk+1
��� � eN x

∫
(x)
|M (z; q, a)E (z; q, b) |

dy
|z |k+1

� eN x
∫

(x)

(
x−1 + |E (z; q, a) |

)
|E (z; q, b) |

dy
|z |k+1

.

For brevity we set

L(x; q, a) :=
∫

(x)
|E (z; q, a) |2

dy
|z |k+1

. (14)

By the Cauchy-Schwarz inequality, the total contribution of the terms in (11) and (12) is

� eN x x−1
∫

(x)

(
|E (z; q, a) | + |E (z; q, b) |

) dy
|z |k+1

+ eN x
∫

(x)
|E (z; q, a) | · |E (z; q, b) |

dy
|z |k+1
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� eN x x−1
∑

h∈{a,b}

(∫
(x)

dy
|z |k+1

L(x; q, h)
)1/2
+ eN x

(
L(x; q, a)L(x; q, b)

)1/2
� eN x max

(h,q)=1

(
x−1−k/2L(x; q, h)1/2 + L(x; q, h)

)
,

by (13). We choose x = 1/N and use Lemma 2 to bound (14). We will complete the proof of
Theorem 1 in §4.

3. Lemmas

For a Dirichlet character χ mod q let

S̃(z; χ) :=
∑
m≥1

χ(m)Λ(m)e−mz,

so that, by orthogonality,

S̃a,q(z) =
1

φ(q)

∑
χ mod q

χ(a) S̃(z; χ). (15)

We now express S̃( χ) by means of S̃( χ∗), where χ∗ mod q∗ is the primitive character that
induces χ. We have

���S̃(z; χ) − S̃(z; χ∗)��� ≤
∑
m≥1

(m,q)>1

Λ(m)e−mx =
∑
p|q

log(p)
∑
ν≥1

e−pν x ≤ e−x log(q). (16)

We recall some properties of the Dirichlet L-functions that we need in the proof of Lemma 1.
First, let χ be a primitive odd character modulo q > 1 and let

b( χ) =
L′

L
(0, χ) = −

1
2
log

q
π
−
1
2
Γ ′

Γ

(1
2
)
+ B( χ),

where b( χ) is defined in §19 of Davenport [9] and B( χ) appears in the Weierstrass product for
L(s, χ). If χ is even, we let

b( χ) = lim
s→0

( L′

L
(s, χ) −

1
s

)
= −

1
2
log

q
π
+ B( χ) − lim

s→0

(1
2
Γ ′

Γ

( s
2
)
+
1
s

)
.

By the argument on pages 118–119 of Davenport [9] we have

b( χ) = O
(
log(q)

)
−

∑
|γ |<1

1
ρ
.

The Riemann-von Mangoldt formula for the number of zeros implies that the number of
summands on the right is � log(q). Each of the summands is � log(q), unless χ is a real
character such that the relative L-function has an exceptional zero β̃ ∈ [1− c/ log(q), 1]. Hence

b( χ) = O
(
log2(q)

)
−

1
β̃
−

1
1 − β̃

= O
(
log2(q)

)
−

1
1 − β̃

.

The terms containing the exceptional zero are to be omitted if it does not exist. We now recall
the upper bound (1 − β̃)−1 � q1/2 log2(q) which is (12) on page 96 of Davenport. Hence we
have b( χ) = O

(
g(q)

)
. Furthermore, for σ = <(w) ∈ [−1, 2], by (4) in §16 of [9] we have
L′

L
(w, χ) =

∑
ρ

|t−γ |<1

1
w − ρ

+ O
(
log(q(|t | + 2))

)
.
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For w on the line <(s) = −1
2 the summands are uniformly bounded, and their number is

� log(q( |t | + 2)) by the Riemann-von Mangoldt formula for the L-functions. Hence
L′

L

(
−
1
2
+ it, χ

)
� log

(
q( |t | + 2)

)
. (17)

Lemma 1. LetM (z; q, a) and E (z; q, a) be defined by (8) and (9). Then

E (z; q, a) � g(q) + 1 + log(|z |) + |z |1/2
(
log(q) + 1

)
·




1 if |y | ≤ x,
1 + log2

(
|y |/x

)
if |y | > x.

(18)

The implicit constant is absolute.

Proof. Assume for the time being that χ is a primitive character, and let δ( χ) = 1 if χ is
principal and δ( χ) = 0 otherwise. Following the proof in §4 of Linnik [18], or Lemma 4.1 of
[14], we have

S̃(z; χ) = −
1
2πi

∫ 2+i∞

2−i∞
z−wΓ(w)

L′

L
(w, χ) dw =

δ( χ)
z
−

∑
ρ∈Z( χ)

z−ρΓ(ρ) +Q(z; χ) + R(z; χ),

say, where

R(z; χ) := −
1
2πi

∫ −1/2+i∞

−1/2−i∞
z−wΓ(w)

L′

L
(w, χ) dw

and

Q(z; χ) :=



−(L′/L)(0, χ) if χ is an odd character
−γ + b( χ) + log(z) if χ is an even character,

(19)

taking into account the double pole of the integrand at s = 0. Hence, recalling (15) and (16),
we have

S̃a,q(z) =
1

φ(q)

∑
χ mod q

χ(a) S̃(z; χ∗) + O *.
,

1
φ(q)

∑
χ mod q

���S̃(z; χ) − S̃(z; χ∗)���
+/
-

=
1

φ(q)z
−

1
φ(q)

∑
χ mod q

χ(a)
∑

ρ∈Z( χ∗)

z−ρΓ(ρ)

+ O
*.
,

1
φ(q)

∑
χ mod q

(
|R(z; χ∗) | + |Q(z; χ∗) |

)
+ e−x log(q)+/

-

=
1

φ(q)
M (z; q, a) + O *.

,

1
φ(q)

∑
χ mod q

(
|R(z; χ∗) | + |Q(z; χ∗) |

)
+ e−x log(q)+/

-
.

In order to treat R(z; χ) we need the bound (17) and Γ(w) � |t |−1e−π |t |/2, (see Titchmarsh
[23] §4.42) which is valid for |t | → +∞. We split the line σ = −1/2 into the set Lc = {w =
−1/2 + it : |t | > c}, where c > 0 is a suitable large absolute constant, and its complement.
Arguing as in the proof of Lemma 4.1 of [14], and examining various cases we find∫

Lc

z−wΓ(w)
L′

L
(w, χ) dw � |z |1/2 ·




log(q) + 1 if |y | ≤ x,
log2(|y |/x) + 1 + log(q)(log( |y |/x) + 1) if |y | > x.

Finally, the integration over the complement of Lc yields a contribution O
(
1 + log(q)

)
.

We now turn to the estimation of |Q(z; χ) |. If χ is an odd character, then we have
L′

L
(0, χ) � log(q),
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by formula 10.35 of §10 of Montgomery & Vaughan [19]. If χ is even, we argue as above in
(6), and by (19) we have

Q(z; χ) � g(q) + | log(z) |.
This implies that E satisfies the bound in (18). �

Lemma 2. For k > 1 we have

L(N−1; q, a) :=
∫

(1/N )
|E (z; q, a) |2

dy
|z |k+1

�k N k (
g

(
q
)
+ log (N )

)2 .
Proof. We have

L(N−1; q, a) � N k+1
∫ 1/N

−1/N

��E
(
z; q, a

) ��2 dy +
∫ +∞

1/N

��E
(
z; q, a

) ��2

yk+1 dy

:= N k+1I1 + I2,

say. By Lemma 1 we easily get

I1 �
∫ 1/N

−1/N

(
g

(
q
)
+ log (N ) + N−1/2

(
log

(
q
)
+ 1

))2
dy

� N−1
(
g

(
q
)
+ log (N )

)2 .
Now we analyse I2. Using again Lemma 1 we obtain

I2 �
∫ +∞

1/N

(
g

(
q
)
+ 1 + ��log

(
y
) �� + y1/2

(
log

(
q
)
+ 1

) (
1 + log2

(
N y

)))2
yk+1 dy

�

∫ +∞

1/N

(
g

(
q
)
+ 1 + ��log

(
y
) ��
)2

yk+1 dy +
(
log

(
q
)
+ 1

)2 ∫ +∞

1/N

(
1 + log2

(
N y

))2
yk dy.

The first summand can be easily estimated:∫ +∞

1/N

(
g

(
q
)
+ 1 + ��log

(
y
) ��
)2

yk+1 dy �k N k (
g

(
q
)
+ 1

)2
+

∫ +∞

1/N

log2
(
y
)

yk+1 dy

�k N k
((
g

(
q
)
+ 1

)2
+ log2 (N )

)
.

We use the change of variables v = N y for the integral of the last summand and we get∫ +∞

1/N

(
1 + log2

(
N y

))2
yk dy �k

(
N k−1 +

∫ +∞

1/N

log4
(
N y

)
yk dy

)
�k N k−1

(
1 +

∫ +∞

1

log4 (v)
vk dv

)
�k N k−1

since k > 1, and Lemma 2 follows. �

4. Completion of the proof of Theorem 1

In order to complete the proof it is enough to see that by Lemma 2 we have

max
(h,q)=1

(
N1+k/2L(N−1; q, h)1/2 + L(N−1; q, h)

)
� N k+1(g(q) + log(N )) + N k (g(q) + log(N ))2

� N k+1(g(q) + log(N )),

where the last estimation follows from the bound for q.
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5. Interchange of the series over zeros with the line integral

It remains to prove that all the interchanges of the series and the integrals are legitimate.
We now state without proof two technical lemmas that can be proved by means of small

variations on the arguments in Lemmas 2 and 3 in [14]. In both cases, we assume that χ mod q
is a primitive character and we let ρχ = βχ+ iγχ run over the non-trivial zeros of the associated
Dirichlet L-function. Furthermore, we let α > 1 be a parameter.

Lemma 3. We have∑
γχ>0

γ
βχ−1/2
χ

∫ +∞

1
logc(u) exp

(
−γχ arctan

(1
u

)) du
uα+βχ

�α,c

∑
γχ>0

γ1/2−αχ

for all c ≥ 0. The series on the left converges for α > 3/2 and diverges otherwise.

Lemma 4. Let z = x + iy with x ∈ (0, 1) and y ∈ R. We have∑
ρχ

|γχ |
βχ−1/2

∫
Y
logc

( |y |
x

)
exp

(
γχ arctan

( y
x

)
−
π

2
|γχ |

) dy
|z |α+βχ

�α,c x−α
∑
γχ>0

γ
βχ−1/2
χ exp

(
−
π

4
γχ

)
,

for all c ≥ 0, where Y = Y1 ∪ Y2, Y1 = {y ∈ R : yγχ ≤ 0} and Y2 = {y ∈ [−x, x] : yγχ > 0}.

Let z = x + iy and w = u + iv, where u ≥ 0. We recall that

|zw | = |z |u exp
(
v arctan

( y
x

))
(20)

and
|Γ(w) | ≤ (2π)1/2 |w |u−1/2e−π |v |/2 exp

( 1
6|w |

)
. (21)

The latter form of the Stirling formula can be found in Olver et al. [20], Lemma 5.6(ii) equation
5.6.9. We want to establish the absolute convergence of∑

χ mod q

∑
ρ∈Z( χ∗)

|Γ(ρ) |
∫

(1/N )
|eN z | · |z−k−2−ρ | · |dz |.

Using (20) and (21) we find

|Γ(ρ) |
∫

(1/N )
|z−k−2−ρ | · |dz | � |γ | β−1/2 exp

( 1
6|γ |

) ∫
R
exp

(
γ arctan(N y) −

π

2
|γ |

) dy
|z |k+2+β

.

We sum over ρ ∈ Z( χ∗) and we can assume by symmetry that γ > 0. Recalling Lemma 4, we
have ∑

γ>0
|Γ(ρ) |

∫
Y
|eN z | · |z−k−2−ρ | · |dz | �k N k+2

∑
γ>0

γ β−1/2 exp
(
−
π

4
γ
)
.

We still have to deal with the case γ > 0 and y > 1/N . Using the identity arctan(y) +
arctan(1/y) = π/2, we have∑

γ>0
|Γ(ρ) |

∫ +∞

1/N
|eN z | · |z−k−2−ρ | · |dz |

�
∑
γ>0

γ β−1/2
∫ +∞

1/N
exp

(
γ arctan(N y) −

π

2
γ
) dy
yk+2+β

�
∑
γ>0

γ β−1/2
∫ +∞

1/N
exp

(
−γ arctan(1/(N y))

) dy
yk+2+β
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=
∑
γ>0

γ β−1/2N k+1+β
∫ +∞

1
exp

(
−γ arctan(1/u)

) du
uk+2+β .

Using Lemma 3 we see that this is

�k N k+2
∑
γ>0

γ−k−3/2,

which converges for k > −1/2, by standard zero-density estimates.

6. Interchange of the double series over zeros with the line integral

We start examining∑
χ1 mod q

∑
ρ1∈Z( χ∗1)

|Γ(ρ1) |
∫

(1/N )
|eN z | · |z−k−1−ρ1 | ·

���
∑

χ2 mod q

χ2(b)
∑

ρ2∈Z( χ∗2)

Γ(ρ2)z−ρ2 ��� · |dz |.

Lemma 1 implies that

���
∑

χ2 mod q

χ2(b)
∑

ρ2∈Z( χ∗2)

Γ(ρ2)z−ρ2 ��� ≤ φ(q) | S̃a,q(z) | +
1
|z |
+

∑
χ2 mod q

(
|R(z; χ∗2) | + |Q(z; χ∗2) |

)
�q

1
|z |
+ N + log (|z |) + |z |1/2 ·




1 |y | ≤ 1/N
1 + log2

(
N |y |

)
|y | > 1/N,

hence we have to study ∑
χ1 mod q

∑
ρ1∈Z( χ∗1)

|Γ(ρ1) |(A1 + A2 + A3)

where

A1 =

∫ 1/N

−1/N
N k+1+β1 exp(γ1 arctan

(
N y

)
)
(
N + log(N ) + N−1/2

)
dy,

A2 =

∫ +∞

1/N
y−k−1−β1 exp(γ1 arctan

(
N y

)
)
(1
y
+ N + | log(y) | + y1/2(1 + log2(N y))

)
dy,

A3 =

∫ −1/N

−∞

|y |−k−1−β1 exp(γ1 arctan
(
N y

)
)
( 1
|y |
+ N + | log(|y |) | + |y |1/2(1 + log2(N |y |))

)
dy.

By symmetry, we can assume that γ1 > 0. Clearly, by (21), we have∑
χ1 mod q

∑
ρ1∈Z( χ∗1)

|Γ(ρ1) |A1 �q N k+2
∑

χ1 mod q

∑
γ1>0

γ
β1−1/2
1 exp

(
−π γ1
4

)
and the series is obviously convergent, by standard density estimates.

Now, we consider A2: we have, again by (21), that∑
χ1 mod q

∑
ρ1∈Z( χ∗1)

|Γ(ρ1) |A2 �q

∑
χ1 mod q

∑
γ1>0

γ
β1−1/2
1

×

∫ +∞

1/N
y−k−1−β1 exp

(
γ1

(
arctan

(
N y

)
−
π

2

)) (
1
y
+ N + ��log

(
y
) �� + y1/2

(
1 + log2

(
N y

)))
dy.

Then, taking v = N y, we obtain∑
χ1 mod q

∑
ρ1∈Z( χ∗1)

|Γ(ρ1) |A2 �q N k
∑

χ1 mod q

∑
γ1>0

N β1γ
β1−1/2
1
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×

∫ +∞

1
v−k−1−β1 exp

(
−γ1 arctan

(
1
v

)) (
N
v
+ N + log (vN ) + v1/2N−1/2

(
1 + log2 (v)

))
dv

and now, by Lemma 3, it is easy to see that the integral and the series are convergent for k > 1.
If y ∈ (−∞,−1/N ) the result is trivial since exp

(
γ1

(
arctan

(
N y

)
− π

2

))
≤ exp

(
−γ1

π
2

)
and the

condition k > 1 suffices to ensure the convergence of the integral.
Finally, if we consider∑

χ1 mod q

∑
χ2 mod q

∑
ρ1∈Z

(
χ?1

) ��Γ
(
ρ1

) ��
∑

ρ2∈Z
(
χ?2

) ��Γ
(
ρ2

) ��
∫

(1/N )

���e
N z ���

���z
−k−1−ρ1−ρ2 ��� |dz | ,

we can simply argue as in [14], equation (21), getting the convergence for k > 1.
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