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Abstract
We consider a three-layer restricted Boltzmannmachine, where the two visible layers (encod-
ing for input and output, respectively) are made of binary neurons while the hidden layer is
made of Gaussian neurons, and we show a formal equivalence with a Hopfield model. The
machine architecture allows for different learning and operational modes: when all neurons
are free to evolve we recover a standard Hopfieldmodel whose size corresponds to the overall
size of visible neurons; when input neurons are clamped we recover a Hopfield model, whose
size corresponds to the size of the output layer, endowed with an external field as well as
additional slow noise. The former stems from the signal provided by the input layer and tends
to favour retrieval, the latter can be related to the statistical properties of the training set and
tends to impair the retrieval performance of the network. We address this model by rigor-
ous techniques, finding an explicit expression for its free-energy, whence a phase-diagram
showing the performance of the system as parameters are tuned.

Keywords Disordered systems · Boltzmann Machine · Hopfield model

1 Introduction

In the last decade the availability of new technologies (e.g., GPUs) and huge volumes
of data (the so-called “big data”) have allowed the development of analytical meth-
ods and algorithms to effectively transform information into knowledge, which, in turn,
can support decision-making processes. Among these, machine learning and deep net-
works are often used in a pseudo-empirical way, as a full rationale is not available yet.
Indeed, technological and computational advances have been faster than theoretical ones
and filling this gap is now an attractive and stimulating challenge for mathematicians and
physicists. Of course, theoretical results may have practical outcomes: a deep understand-
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ing of the mechanisms underlying the operation of these machines would allow optimal
use, for example by choosing a minimal number of free parameters and by identify-
ing appropriate initializations, with consequent savings in terms of calculation time and
energy.

The most widespread neural networks used for machine learning are made up of multi-
layer structures where each layer is made up of a certain number of neurons, which interact
with each other through suitable activation functions. Generally, the first layer receives the
input, the last one provides the output and the intermediate layers, called hidden, provide
the degrees of freedom to be estimated during training through operations of extremiza-
tion of appropriate cost functions. The purpose of the network is to learn to represent the
reality that is presented to it through a series of examples; this is accomplished by suit-
ably tuning a set of parameters that is, the interaction strengths among neurons and the
external fields acting on neurons. In applications, the architecture of the network (how
many hidden layers and what sizes) is often chosen through empirical methods, as there
is no standard theory or accepted method [1,2]. In this paper we focus on multilayer struc-
tures with only one hidden layer (namely, the networks are shallow), where connections
between neurons are symmetric (namely, the networks are recurrent), and where connec-
tions only occur between neurons belonging to different layers (namely, the networks are
restricted). For this kind of neural networks, also referred to as restrictedBoltzmannmachines
(RBMs), a few rigorous results are available (see e.g., [3–7]). Most of these results were
obtained by leveraging a formal equivalence between two-layer RBMs and Hopfield net-
works (HN) [8]. More precisely, when looking at these systems as spin-like models, one
can show that the Boltzmann-Gibbs equilibrium measure of the two systems are equiva-
lent.

Here, we extend such an equivalence in order to include more general RBMs. In fact,
we consider three-layer RBMs with one hidden layer and two visible layers, the input one
is made of N neurons and the output one is made of K neurons. For such an architecture
the accomplishment of the training stage corresponds to a parameter setting such that the
expected state 〈·〉−, under the equilibrium measure where neurons are all freely evolving,
is the same as the expected state 〈·〉+, obtained when (a subset of) the visible neurons are
fixed in suitable configurations (namely, they are clamped). In particular, in the unsupervised
learning, the neurons in the input layer are iteratively fixed according to the examples making
up the training set and the trained network is expected to serve as a generative model or for
pattern reconstruction (see e.g., [1,9]). Now, as we will show, 〈·〉− can be recast as the
expectation for an Hopfield model made of N + K neurons, while 〈·〉+ can be recast as the
expectation for an Hopfield model made of N neurons and subjected to an external field
which depends on the input. Further, we can prove that the performance of the network,
in a retrieval mode, strongly depends on the quality of the input: if this is too noisy with
respect to the original pattern then the system will be no longer able to accomplish the
task.

The plan of this article is as follows: in Sect. 2 we review the paradigmatic models for
associative memory and machine learning, namely, the Hopfield model and the two-layer
RBM, respectively, recalling a formal equivalence between them; in Sect. 3 we consider
three-layer RBMs alongwith their training algorithm andwe explore its retrieval counterpart,
that is, a HN with a field which is also investigated; in Sect. 3.2 we discuss in details some
possible scenario; finally, Sect. 4 is left for conclusions and discussions. Technical details
are collected in Appendices A–E.
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2 A Formal Equivalence Between the Hopfield Network and the
Restricted BoltzmannMachine

From an equilibrium statistical-mechanics perspective, the formal “duality” between HNs
and RBMs is observed through an equivalence of the relative partition functions. This result
was originally obtained considering the minimal version of a RBM, where one single visible
layer couples with the hidden one building a two-layer restricted machine [8,10,11]. Before
proceeding in this direction, let us introduce some notation and give a brief review of the
Hopfield model (see also e.g., [12] for an extensive treatment).

For each integer N ∈ N we indicate withIN the usual configuration space for a spin sys-
temof size N , namely the product space {−1,+1}N . Given a family of numbers {ξμ

i }μ=1,...,P
i=1,...,N ,

with ξ
μ
i = ±1 and P = P(N ) ∈ N, the Hamiltonian (or cost function) of the Hopfield model

is defined for each σ ∈ IN as

HH
N (σ ) = − 1

2N

P∑

μ=1

N∑

i, j=1

ξ
μ
i ξ

μ
j σiσ j (1)

= − N

2

P∑

μ=1

(
1

N

N∑

i=1

ξ
μ
i σi

)2

. (2)

The vector σ = (σi )
N
i=1 describes the state of the system as a whole, while its i-th

component, the binary (spin) variable σi = ±1, represents the state of the i-th neuron. The
pair-wise interaction constants Ji j , consistently with the definition (1), result in the so-called
Hebb’s rule: Ji j = N−1∑

μ ξ
μ
i ξ

μ
j . In the following, as standard in the Hopfield model, we

take the numbers ξ
μ
i as independent Bernoulli random variables, such that P(ξ

μ
i = ±1) =

1/2. The Hamiltonian of the system defines a mean-field disordered model which is able to
store patterns of information, represented by the P vectors {ξμ}P

μ=1, ξμ = (ξ
μ
i )N

i=1. This
memory is allocated in the coupling matrix J through Hebb’s rule which favors the local
attractiveness of the patterns for the neuronal dynamics.

Wecan consider, for example, a standardGlauber’s dynamics for Ising-type systems, that is
a discrete-time Markov chain whose equilibrium distribution coincides with the Boltzmann-
Gibbs distribution associated to the Hamiltonian (1), namely the random probability measure
on the hypercube given for each σ ∈ IN as

GN (σ ) = e−βHH
N (σ )

ZH
N

, (3)

where β ∈ R
+ gives the inverse temperature and the normalization factor ZH

N =
∑

σ∈IN

e−βHH
N (σ ) is also referred to as partition function.

We define the Mattis magnetizations as the overlaps between a generic configuration and
each stored pattern ξμ, that is

mμ = mμ, N (σ ) = N−1
N∑

i=1

ξ
μ
i σi ∈ [−1, 1], ∀μ ∈ {1, . . . , P}. (4)

These magnetizations play the role of order parameters for the model as they measure the
resemblance of a given network configuration σ with each of the P patterns. For low temper-
atures, each term Nm2

μ/2 in (1) tends to align the system configuration σ with the sequence
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{ξμ
i }N

i=1 or the sequence {−ξ
μ
i }N

i=1. If this happens, that is for someμ at equilibriummμ ∼ ±1,
we say that the network has retrieved the pattern ξμ. The possibility and the quality of this
retrieving behavior strongly depend both on the noise level, regulated by β, and on the load

λ
def= lim

N→∞ N−1P(N ), quantifying the number of stored patterns with respect to the number

of neurons in the thermodynamic limit [26]. For example, in the noiseless case β → ∞ with
λ > 0 it can be shown that – in the thermodynamic limit, replica symmetric regime and uncor-
related patterns – if λ < λc ∼ 0.051 the system acts with almost no errors as an associative
neural network, meaning that the attractors associated to stored patterns are very stable being
global minima of the quenched free energy. If, instead, 0.051 ∼ λc < λ < λ′

c ∼ 0.138,
the network could still work as an associative memory but spin-glass states start to dominate
the landscape (the stored patterns are just local minima). When λ > λ′

c the patterns are too
many and a glass transition happens: the minima related to them are destroyed and solely the
spin-glass panorama remains stable.

So far we presented the Hopfield model as the simplest paradigm for machine retrieval,
but for an object to work as a cognitive system a learning phase must preceed the retrieval
one. As anticipated, RBMs are relatively simple learning machines: in its minimal, two-
layer realization, a Boltzmann machine can be introduced as a network composed of N + P
neurons that has been partitioned into an input-output visible layer (of N neurons) and a
hidden layer (of P neurons), with P = P(N ). The above-mentioned equivalence with the
Hopfield model can be easily highlighted considering a hybrid restricted machine (HBM), in
which the visible layer is digital while the hidden one is analog [8]. We describe the states of
the neurons in the two layers with the vectors σ ∈ IN = {−1, 1}N and z ∈ R

P , respectively.
The connectivity of the network is symmetric and couplings only regard neurons in different
layers, while self-interactions are excluded. Specifically, we consider here a trained machine
that has learnt some weights {ξμ

i }μ=1,...,P
i=1,...,N , where ξ

μ
i represents the coupling between the

visible unit σi and the hidden unit zμ. The energy associated to each state (σ, z) is given
through the Hamiltonian (or cost) function HB

N : {−1, 1}N × R
P → R with

HB
N (σ, z) = 1√

N

N∑

i=1

P∑

μ=1

ξ
μ
i σi zμ. (5)

The dynamics on the network can be given in such a way that the hidden layer z is Gaussian
distributed at equilibrium, with variance regulated by the temperature.1 The machine can be
thus referred, from the point of view of statistical mechanics, as a (multipartite) mean-field
spin-glass model whose partition function results in ZB

N = ∑
σ∈IN

∫
RP dGβ(z)e−βHB

N (σ,z),

where dGβ(z) indicates the Gaussian measure on R
P with zero mean and variance β−1,

dGβ(z) =
(

β
2π

) P
2

e− β
2 z· zdz. The integral in the definition of ZB

N can be trivially evaluated

through the Gaussian integral formula giving ZB
N = ∑

σ∈IN

e
− β

2N

∑
μ

(∑
i

ξ
μ
i σi

)2

.

A glance at the last expression is enough to realize that it equals the partition function of
a Hopfield model with N neurons and patterns {ξμ}P

μ=1, see (1). We can therefore state that

ZB
N = ZH

N . This result connects the two Hamiltonians of the HN and the HBM and ensures
that thermodynamics obtained by the first cost function (1) is the same as the one obtained by

1 The details are given in Appendix A, where we explain how to define a dynamics that makes the hidden
layer Gaussian distributed using the notation that will be introduced in Sect. 3 for the three-layer machine.
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the second one (5): observable quantities stemmed from the HN are equivalent in distribution
to the corresponding ones in theHBM. Simulating the dynamics of aHN, requiring the update
of N neurons and the storage of N (N −1)/2 synapses, can be thus accomplished by a HBM,
requiring the update of N + P neurons but the storage of only N P synapses. In addition,
the glass transition of the HN has a counterpart in the Boltzmann Machine: it corresponds to
an optimum criterion for selecting the relative size of the hidden and visible layer [13,14].
We refer to [4,11,15–19] and references therein for a more extensive and general treatment,
also including the case where the nature of visible and hidden neurons can span from binary
to continuous, where networks are multi-layer, and where pattern entries are correlated.2

Further, it is worth mentioning that the binary nature of the connection weights in (5) is not a
strict requirement; this issue was addressed from several perspectives, both analytically and
numerically, in [13,14,17].

3 The Three-Layer BoltzmannMachine and Its Training Algorithm

In this section we enrich the architecture of the Boltzmannmachine by inserting an additional
visible layer composed of K binary neurons, meant as the output layer (see Fig. 1). The
visible layer made of N binary neurons and the hidden layer made of P Gaussian neurons
are retained and the former is now meant as input, while the latter is now an intermediate
layer. More precisely, we consider a three-layer HBM and, given N , K , P ∈ N, K =
K (N ), P = P(N ), we indicate with σ = (σi )

N
i=1 ∈ {−1,+1}N the state of the digital N -

dimensional input, τ = (τν)
K
ν=1 ∈ {−1,+1}K the state of the digital K -dimensional output

and z = (zμ)P
μ=1 ∈ R

P the state of the hidden P-dimensional analog layer. The machine is
endowed with dichotomous, fixed and symmetric connections which only concern the two
visible layers with respect to the hidden one, specifically:

• ξ = {ξμ
i }μ=1,...,P

i=1,...,N is the (P × N )-dimensional interaction matrix between the hidden and
the input layers (i.e., ξ

μ
i indicates the interaction between each input unit σi and each

hidden unit zμ);

• η = {ημ
ν }μ=1,...,P

ν=1,...,K is the (P × K )-dimensional interaction matrix between the hidden
and output layers (i.e., ημ

ν indicates the interaction between each output unit τν and each
hidden unit zμ).

The Hamiltonian associated to this system is HB : IN × R
P × IK → R with

HB
N (σ, z, τ )

def= − 1√
N

⎡

⎣
∑

μ,i

zμξ
μ
i σi +

∑

μ,ν

zμημ
ν τν

⎤

⎦ = −
∑

μ

zμ Iμ(σ, τ ), (6)

where we posed

Iμ(σ, τ )
def= 1√

N

(
∑

i

ξ
μ
i σi +

∑

ν

ημ
ν τν

)
, ∀μ ∈ {1, . . . , P}. (7)

2 Despite its popularity,Hebb’s rule iswell-known to be suboptimal in the case of correlated patterns.Revisions
of this rule, for instance the pseudo-inverse rule, can yield to enhanced performances; the related HN can still
be mapped into a two-layer Boltzmann machine, yet intra-layer couplings need to be allowed for [14].
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Fig. 1 A schematic picture of the
three-layer RBM studied in this
work. The left-most layer is the
input side made of N = 4 binary
neurons σ ∈ {−1,+1}N , while
the right-most layer it the output
side made of K = 5 binary
neurons τ ∈ {−1,+1}K ; the
intermediate layer is made of
P = 3 hidden neurons z ∈ R

P .
The weights associated to links
connecting the i-th input (output)
neuron and the μ-th hidden
neuron is denoted as ξ

μ
i (ημ

i ) and
only a few are shown explicitly
seeking for clarity

Remarkably, this is just the Hamiltonian for a bipartite3 spin-glass and, as explained in
Appendix A, the definition (6) can also be derived by studying the system from a dynamic
perspective and showing that its equilibrium joint probability distribution is

G(σ, z, τ ) ∝ e
−β
(
1
2 ‖z‖2− 1√

N
z· ξ · σ− 1√

N
z· η· τ

)

, (8)

where the symbol ” · ” is used for the standard inner product in the multidimensional
Euclidean space, while “ ‖·‖ ” will indicate the correspondent standard norm. The weight
setting in (8) can be thought of as the result of a training procedure, where patterns learnt are
allocated in the machine weights [13,17,19].

We recall that, for unsupervised learning, the network is trained over a sample of examples
{(σ (k))}M

k=1 drawn from a certain, unknown target distribution q(σ ) which we want G(σ ) =∑
τ

∫
dGβ(z)G(σ, z, τ ) tomimic. Training can be carried out by iteratively tuning couplings4

between neurons in such a way as to minimize the Kullback-Leibler divergence

D(q||G) :=
∑

σ

q(σ ) log2

[
q(σ )

G(σ )

]
. (9)

It can be proved that training is accomplished when the difference between the expecta-
tions 〈·〉− and 〈·〉+ of neuron states and neuron correlations are vanishing (see e.g., [1]). As
anticipated, these expectations correspond to, respectively, the following partition functions

Free mode : Z f ree
N

def=
∑

σ∈IN

∑

τ∈IK

∫

RP

P∏

μ=1

dGβ(zμ)e−βHB
N (σ,z,τ ) (10)

Clamped mode : Z clamp
N

def=
∑

τ∈IK

∫

RP

P∏

μ=1

dGβ(zμ)e−βHB
N (σ,z,τ ) (11)

where, again, dGβ(zμ) indicates the Gaussian measure with zero mean and variance β−1,

namely dGβ(zμ) =
(

β
2π

) 1
2

e− βz2μ
2 dzμ.

3 The three-layer architecture allows us to distinguish an input and an output layer, but it can be recast into a
two-layer struture where, possibly, only a subset of size N out of the N + K neurons making up the visible
layers can be clamped.
4 In the current scenario the set of tuneable parameters include couplings between neurons, while external
fields can be neglected as we are considering centered patterns.
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We stress that both (10) and (11) are random partition functions as they depend on a
specific realization of the vectors in ξ and η; moreoverZ clamp

N explicitly depends also on the
chosen fixed input described by variables σ . Through Fubini’s theorem the integral in (10)
and (11) can be rewritten as

P∏

μ=1

∫

R

dGβ(zμ)eβ Iμzμ

and trivially evaluated through the Gaussian integral formula. We therefore get

∫

RP

P∏

μ=1

dGβ(zμ)eβ Iμzμ =
P∏

μ=1

(
β

2π

) 1
2
∫

R

e− β
2 z2μ+β Iμzμ

=
P∏

μ=1

e
β
2 I 2μ = e

β
2

∑
μ

I 2μ = e
β
2 ‖I‖2 .

Marginalizing over the analog layer each couple (σ, τ ) contributes to the partition func-
tions (10) and (11)with a quantity only depending on theEuclidean normof the correspondent
I (σ, τ ), the vector containing the fields acting on the hidden layer

Z f ree
N =

∑

σ

∑

τ

e
β
2 ‖I (σ,τ )‖2 , Z clamp

N =
∑

τ

e
β
2 ‖I (σ,τ )‖2 . (12)

Writing explicitly the expression for ‖I (σ, τ )‖ we obtain

Z f ree
N =

∑

σ

∑

τ

e
− β

N

∑
μ

(
− 1

2 (ξμ· σ)2− 1
2 (ημ· τ)2−(ξμ· σ)(ημ· τ)

)

, (13)

Z clamp
N = e

β
2N

∑
μ

(ξμ· σ)2 ∑

τ

e
− β

N

∑
μ

(
− 1

2 (ημ· τ)2−(ξμ· σ)(ημ· τ)
)

. (14)

Up to multiplying factors these expressions equal those for the partition functions of two
HNs, as we are going to explain with more details in the next subsections. These equivalences
allow us to extend techniques developed for Hopfield models to the thermodynamic study of
the Boltzmann machine. Our goal now consists in investigating the thermodynamics of the
Hopfield models corresponding to (13) and (14) and in inspecting possible effects arising
from a poor clamping. We shall especially focus on the latter model as the peculiar external
field appearing in the Hamiltonian makes it of interest per se. We recall that this investi-
gation implies averaging observable quantities both on the statistical ensemble (i.e., over
configurations) and noise (i.e., over the synaptic weights). In order to assess these averaged
quantities we need to analyze the statistical quenched pressure (equal to the free energy up
to a multiplying factor −β) which will be expressed as a function of the order parameters of
the model. We thus need to define the Mattis magnetizations relative to the two visible layers
for each μ ∈ {1, . . . , P}

nμ(σ )
def=
∑N

i=1 ξ
μ
i σi

N
∈ [−1, 1], mμ(τ)

def=
∑K

ν=1 η
μ
ν τν

K
∈ [−1, 1]. (15)

Besides the Mattis magnetizations, that quantify the retrieval of the patterns, we need
other parameters to measure glassy behaviors; as standard within the mean-field theory for

123



10 Page 8 of 28 E. Agliari, G. Sebastiani

spin-glasses we define the following so-called 2-replica overlaps (see e.g., [20])

qσσ ′ =
∑N

i=1 σiσ
′
i

N
∈ [−1, 1], qττ ′ =

∑K
ν=1 τντ

′
ν

K
∈ [−1, 1], pzz′ =

∑P
μ=2 zμz′

μ

P − 1
∈ R,

(16)
where (σ, z, τ ) and (σ ′, z′, τ ′) are two independent realizations of the machine’s global state.

Clearly, since for clamped mode the input variables σ are fixed a-priori, the correspondent
overlap qσσ ′ will be needed as an order parameter only for free mode.

3.1 A Formal Equivalence with a Hopfield Network with Field

In this subsection we focus on the clamped mode and present the correspondent self-
consistency equations for the equilibrium states when a single pattern is candidate for
retrieval. For the sake of simplicity we consider here the special case in which the num-
ber of units in the visible layers is the same, namely N = K ; the generalization where
N/K → const as N → ∞ does not imply qualitative changes. Then, we define a parameter
λ ∈ (0, 1) expressing the relative size of the hidden layer with respect to the common size
of the visible ones, that is

λ
def= lim

N→∞
P(N )

N
. (17)

If we look at the expression for Z clamp
N in (14) we see that the term involved in the sum

over τ ∈ IK equals the Boltzmann factor that would appear in an HN built with K neurons
(the visible output ones) and pattern set composed by the K -dimensional vectors {ημ}P

μ=1,
whose cardinality is the number of hidden units P . The net is then subjected to an external
field reproducing the effect generated by the clamped input. Thus, if we define

HH
N ,h(τ )

def= − 1

2N

∑

ν,γ,μ

ημ
ν ημ

γ τντγ −
∑

ν

hντν

= −
∑

μ

(
N

2
mμ(τ)2 + nμ(σ )mμ(τ)

)
= − N

2

∑

μ

mμ(τ)2 −
∑

ν

hντν, (18)

where hν = hν(ξ, η, σ ) is the external field

hν(ξ, η, σ )
def= 1

N

∑

i,μ

ξ
μ
i ημ

ν σi =
∑

μ

ημ
ν nμ(σ ); (19)

Equation (14) results translated into the following equivalence

Z clamp
N = e

βN
2

∑
μ

n2μ(σ )

ZH
N ,h (20)

where we defined the partition function of the involved HN as

ZH
N ,h

def=
∑

τ

e−βHH
N ,h(τ )

. (21)

When considering σ fixed, the contribution provided by the interaction between σ and τ

emerging from the marginalization results in a linear contribution to the Hamiltonian of the
correspondent HN. Clearly, if the input is clamped in a σ “close” to a specific ξμ (nμ(σ ) ∼ 1)
then h has a strong component parallel to the pattern ημ: in this case the energy contribution
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provided by the external field is smaller if mμ(τ) ∼ 1, namely the correspondent pattern ημ

is favored for retrieval.
As previously mentioned, in order to proceed with investigations we need the statistical

quenched pressure which, for each N ∈ N, is defined as

A clamp
N = 1

N
E lnZ clamp

N

where E ≡ Eη indicates the average over the synaptic weights {ημ
ν }μ=1,...,P

ν=1,...,N .

Remark 1 Exploiting a universality hypotesis for slow noise [21–23], we can replace an
extensive number of binary patterns with an extensive number of standard Gaussian patterns
(those that are not retrieved, also referred to as unmarked) and a finite number of binary
patterns (those candidate for retrieval, also referred to as marked). The underlying idea is
that the contribution to slow noise provided by non-retrieved Gaussian patterns is the same
as that of digital patterns.

Here we study the retrieval of a single pattern η1 when the input is prescribed considering
the following mixed setting:

• Each coupling η
μ
ν between output units τν and hidden units zμ is sampled indepen-

dently from a standard Gaussian distribution for μ = 2, . . . , P and from a Rademacher
distribution for μ = 1.

• The variables σ are clamped in a specific configuration σ ∈ IN and each coupling ξ
μ
i

between an input unit σi and a hidden unit zμ is fixed on +1 or −1.

The Mattis magnetizations n1, m1, defined as in (15), measure, respectively, the resem-
blance between ξ1 and the input σ , and between η1 and the output τ . Therefore, since the
given setting is designed to study the retrieval of the first pattern, it is necessary to highlight
the difference between n1, m1 and nμ, mμ for μ = 2, . . . , P , the latter corresponding to
unmarked patterns. In order to do so we change the notation for n1, m1 and set

n(σ ) =
∑N

i=1 ξ1i σi

N
, m(τ ) =

∑K
ν=1 η1ντν

K
. (22)

Each deterministic sequence n(σ ), {nμ(σ )}P
μ=2 prescribes a specific input while possible

interference between the patterns η ≡ {ημ}P
μ=1 contributes to the slow noise. As antici-

pated, we indicate with EF(η) the expectation with respect to variables η of any quantity F
depending on them:

EF(η) =
∫

R(P−1)N

P∏

μ=2

dG1(η
μ)

∑

η1∈{−1,1}N

1

2N
F(η). (23)

We also need the average � with respect to the Boltzmann distribution of any observable
quantity O : RP × {−1, 1}N → R defined as

�(O) =
(
Z clamp

N

)−1 ∑

τ∈{−1,1}N

∫ P∏

μ=1

dGβ(zμ)O(z, τ )e−βHB(σ,z,τ ). (24)

Remark 2 Thismixed setting affects the external field (19) splitting its components as follows

hν = η1νn(σ ) +
P∑

μ=2

ημ
ν nμ(σ ). (25)
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The whole Hamiltonian HH
N ,h(τ ) expressed in (18), when referred to our hybrid model,

results in

HH
N ,h(τ |σ) = − 1

2N

N∑

i j=1

η1i η
1
jτiτ j − n(σ )

N∑

i=1

η1i τi

+ − 1

2N

P∑

μ=2

N∑

i j=1

η
μ
i η

μ
j τiτ j −

P∑

μ=2

nμ(σ )

N∑

i=1

η
μ
i τi

= − N

2
m(τ )2 − Nn(σ )m(τ ) − N

2

P∑

μ=2

mμ(τ)2 − N
P∑

μ=2

nμ(σ )mμ(τ). (26)

Performing a Mattis gauge η1i τi → τi on the Boolean part, the resulting Hamiltonian is
written as the sum of a Curie–Weiss and an analog Hopfield term (namely an HN provided
with all Gaussian patterns), both with a specific external field. Such structure is convenient
since it allows us to combine theGuerra interpolation techniques available for both themodels
and suggests the choice of an interpolation function that combines the ones used in these
cases.

Given these hypotesis and considerations we can easily establish a standard interpolation
scheme [24] in order to find a sum rule for the quenched statistical pressure of the Boltzmann
machine in clamped mode and under the RS approximation. The strategy is to introduce
some fictitious external fields in order to“imitate” the internal, recurrently generated field,
reproducing its average statistics. Then, in order to recover the second order statistics, the
free energy is interpolated smoothly between the case in which all fields are external and
all high-order statistics is missing, and the original case, in which fields are all internal. The
fictitious fields, acting on each unit involved in the dynamics, are introduced as two classes
{η̃i }N

i=1 and {η̃μ}P
μ=2 of i.i.d. N (0, 1) variables, which now participate in the noise average

E. Then, with the use of an interpolating parameter t ∈ [0, 1], the following interpolating
function is defined:

Zclamp
t

def= e
βN
2 n(σ )2

∑

τ

e
βN
2

(
m(τ )2+2m(τ )n(σ )

)
t+�Nm(τ )(1−t)·

e
A
∑
i

η̃i τi
√
1−t

·
∫ P∏

μ=2

dGβ(zμ) e

P∑
μ=2

β
{

d
2 (1−t)z2μ+√

N
[
mμ(τ)

√
t+nμ(σ )

]
zμ+Bη̃μ

√
1−t zμ

}

. (27)

In addition to the fictitious terms η̃, we have introduced the auxiliary parameters �, A, B
(which serve to weight the fields) and a leakage (second-order) term, parametrized by d . As
explained in Appendix C, these parameters are chosen so as to separate the contribution of
mean and fluctuations of the order parameters in the final expression of the free energy. It is
simple to check that Zclamp

1 = Z clamp and that Z0 is made of a series of one-body systems.
Furthermore, thanks to the definition (27), we can extend the product Gibbs meausure �

(24) to its interpolating counterpart �t . It is indeed easy to find an expressionHt (σ, z, τ ) by
which Zclamp

t ≡∑τ

∫ ∏
μ dGβ(zμ)e−βHt (σ,z,τ ) and

�t (O) =
(
Zclamp

t

)−1 ∑

τ∈{−1,1}N

∫ P∏

μ=1

dGβ(zμ)O(z, τ )e−βHt (σ,z,τ ), (28)
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for any observable O : RP ×{−1, 1}N → R. The overlaps (16), which play the role of order
parameters, involve two realizations of the system, the Boltzmann averages should be thus
performed over both configurations. In particular, with some abuse of notation, we use the
symbols �,�t to also represent the Boltzmann averages over two-system configurations,
namely

�t (O) =
(
Zclamp

t

)−2 ∑

τ∈{−1,1}N

∑

τ ′∈{−1,1}N

∫ P∏

μ=1

dGβ(zμ)dGβ(z′
μ)O(z, τ, z′, τ ′)e−βHt (σ,z,τ )e−βHt (σ,z′,τ ′),

with � ≡ �t=1, for observables O : RP × {−1, 1}N × R
P × {−1, 1}N → R.

Now, assuming that Zclamp
t is sufficiently regular, a sum rule for the quenched intensive

pressure can be given through the Fundamental Theorem of Calculus:

1

N
lnZclamp

1 = A clamp
N = 1

N
E lnZclamp

0 +
∫ 1

0

(
∂

∂t

1

N
lnZclamp

t

)

t=s
ds. (29)

The first step consists in evaluating the one-body term 1
N E lnZclamp

0 and this is feasible
with standard calculations as reported in Appendix B. In particular, we find

1

N
E lnZclamp

0 = β

2
n(σ )2 + ln 2 − λ

2
ln[1 − β(1 − q̄)] + β

2[1 − β(1 − q̄)]
P∑

μ=2

nμ(σ )2

+ E ln cosh
{
β
[
η1(n + m̄) +√λ p̄η̃

]}
+ λβq̄

2(1 − β(1 − q̄))
(30)

where η1, η̃ are respectively aRademacher variable and a standardGaussian one.We consider
the RS approximation, under which order parameters are supposed to be self-averaging in
the thermodynamic limit. Variables m̄, q̄ ∈ [−1, 1], p̄ ∈ R are therefore used in (30) to
represent the average thermodynamic values of m, q, p.

The calculations concerning the second term in the right hand side of (29) are long but
straightforward, they are handled in Appendix C and yield to

1

N

∂

∂t
lnZt = −β

2
m̄2 − β2λ

2
p̄(1 − q̄) + β

2
〈 (m − m̄)2 〉t − β2λ

2
〈 (pzz′ − p̄)(qττ ′ − q̄) 〉t

(31)
where we used the symbol 〈·〉t for E�t (·). The self-average assumption of the order parame-
ters corresponds to ignoring fluctuations, namely we neglect the last two terms in (31). Then,
using the definition (33) in (30) and plugging it together with (31) into (29), we obtain the
final expression for the statistical pressure of the three-layer HBM in clamped mode. We call
itA clamp

RS , since it does not include fluctuations of the order parameters, and this corresponds
to the RS solution

A clamp
RS = β

2
n(σ )2 + ln 2 − λ

2
ln(1 − β(1 − q̄)) + β

2(1 − β(1 − q̄))

P∑

μ=2

nμ(σ )2

+ E ln cosh
[
β
(
η1(n + m̄) +√λ p̄η̃

)]
+ λβq̄

2(1 − β(1 − q̄))

− β

2
m̄2 − β2λ

2
p̄(1 − q̄). (32)
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Thanks to this explicit expression for A clamp
RS we can detect a single quantity whose

physical meaning concerns the overall effect on the statistical quenched pressure of the
components of h parallel to unmarked patterns. That is the fourth term in (32) which involves
all the Mattis magnetizations nμ,N (σ ) for μ = 2, . . . , P . Considering its thermodynamic
limit, we define

C
def= lim

N→∞ λ−1
P(N )∑

μ=2

nμ,N (σ )2 = lim
N→∞

∑P(N )
μ=2 (ξμ · σ)2

P(N )N
, (33)

and consequently write

A clamp
RS = β

2
n(σ )2 + ln 2 − λ

2
ln(1 − β(1 − q̄)) + βλC

2(1 − β(1 − q̄))

+ E ln cosh
[
β
(
η1(n + m̄) +√λ p̄η̃

)]
+ λβq̄

2(1 − β(1 − q̄))

− β

2
m̄2 − β2λ

2
p̄(1 − q̄). (34)

In the high-storage regime λ > 0, on which we are focusing, the sum
∑P(N )

μ=2 nμ,N (σ )2

becomes an infinite sum, we thus need to consider the analytical assumption C < ∞. An
analysis of various ways in which it is possible to prescribe the input consistently with this
assumption can be found in Sect. 3.2.

To find the value of the free energy of the system, according to the minimum energy prin-
ciple and the maximum entropy principle, we have to look for values of the order parameters
in which A clamp

RS is maximized (and the free energy minimized).
To achieve this we derive Eq. (34) with respect to p, q, m (dropping the bar over p̄, q̄

and m̄ to lighten notation) and consider the stationarity condition given by ∂p A clamp
RS = 0,

∂q A clamp
RS = 0, ∂m A clamp

RS = 0. Explicit calculations are performed in Appendix D and
bring to the following self-consistency equations:

q = Eη1

∫

R

dG1(η̃) tanh2
[
β(
√

λpη̃ + η1(n + m))
]

(35a)

m = Eη1η
1
∫

dG1(η̃) tanh
[
β(
√

λpη̃ + η1(n + m))
]

(35b)

p = q + C

(1 − β(1 − q))2
. (35c)

The whole phase space is described by the four parameters (β, λ, n, C) ∈ R
+ × R

+ ×
[−1, 1]×R

+, where the additional ones n and C reflect the clamped input and, respectively,
can help and disturb the retrieval of the marked pattern η1.

Remark 3 Turning off the external field h (25) acting on the output layer and reflecting the
presence of a clamped input is equival to setting n, C = 0. As expected this makes equations
(35a) (35b) (35c) the ones for a mixed HN with one marked pattern [22].

Remark 4 It is worth comparing Eqs. (35) to the analogous ones pertaining to the standard
Hopfield model with external field components h′

μ, with μ = 1, . . . , P: they are equivalent
as long as we identify n with h′

1 andwe setC = 0, (see e.g., [26]). In fact, according to Eq. 33,
C provides a measure of the correlation between the marked pattern and the unmarked ones
and, in the standard HN accounting for Rademacher patterns, this is vanishing in the average.

123



Learning and Retrieval Operational Modes… Page 13 of 28 10

Fig. 2 Left panel: critical lines in the plane (n, λ) between the spin-glass and ferromagnetic phases when
T → 0 and under the RS assumption. Lines from top to bottom correspond to different increasing values of
the noise parameter C . Setting C = 0 (namely looking at the first line from top) the standard Hopfield model
with one marked pattern is recovered. Right panel: RS critical lines at zero temperature in the plane (C, λ).
Lines from top to bottom correspond to different decreasing values of the signal parameter n. Setting n = 0
the case of a standard HN with one marked pattern and load λ(1 + C) is recovered, namely the relative line
follows the law λ(C) = 0.138(1 + C)−1

Also, noticing that C appears explicitly in the numerator of the expression (35c) for p, that
is known to quantify the noise due to unmarked patterns, we see that the parameter C tends
to impair retrieval.

We can easily handle Eqs. (35a), (35b), (35c) when approaching the zero temperature
case. Specifically, in the Appendix E we see how in the limit T −1 = β → ∞ they can be
re-written as a single equation in the variable y = (2λp)−1(n + m) given by

y = erf(y) + n
2√
π

e−y2 + √
2λ(1 + C)

. (36)

Equation (36) is the one for a standard HN at zero temperature with one marked pattern
[25] and load λ(1+ C) when an external field parallel to the marked pattern is considered in
the Hamiltonian and has intensity n. In particular the effect caused by the components of h
parallel to unmarked patterns and reflecting the information coming from the correspondent
input pattern is encoded in C > 0 and is equivalent to an increase of the intrinsic noise as if
the load was bigger and equal to λ(1 + C) ≥ λ.

A first analysis is thus immediate when thinking to the term λ(1 + C) as a unique noise
term (see e.g., [1,25]).

When n �= 0 a nonzero Mattis magnetization m with the marked pattern η1 develops
continously from zero, linearly with n. Moreover, for each n ∈ [−1, 1] there exists a critical
value for λ(1 + C) above which only the spin-glass state exists, while for λ(1 + C) lower
than this critical value a retrieval state, with a high m, appears. This critical value increases
with increasing n (as visible in the first panel of Fig. 2): this means that for n �= 0 the retrieval
is possible even for values λ(1 + C) > λ′

c, where λ′
c is the critical value for the load in a

standard HN when no external field is present.
The first panel in Fig. 2 shows the critical lines increasing as functions of n for different

values of C . For each C their values at n = 0 follow the law λ(1+C) = λ′
c. As C grows, the

retrieval region is reduced from the one valid for C = 0. For small values of n, as λ exceeds
the relative critical value, the Mattis magnetization m with the marked pattern is abruptly
reduced to zero. The reduction is less intense as n grows and visible in Fig. 3 where the trade
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Fig. 3 Intensity plots of the magnetization m in the limit T → 0 in the (C, n) plane; each panel corresponds
to a different value of the load λ. Data depicted are obtained as numerical solutions of the zero temperature
equation (36) setting m = erf(y) through a fixed point method

off between parameters (n, C) is observed looking at the transition of m for fixed values of
λ.

The second panel in Fig. 2, analogous to the first, shows critical lines as functions of
C for different values of n and tells that even for very small values of n the retrieval is
strongly improved. For example setting n = 0.05 the critical load approaches the value
0.156 as C → 0. When λ(1 + C) further decreases the retrieval state becomes globally
stable; eventually the spin glass state disappears and only the retrieval one persists.

3.2 Examples

In this subsection we resume the self-consistency equations (35) at temperature T > 0 and
briefly discuss some interesting settings as for the input layer.
(1) Orthogonal input patterns

We can consider, for instance, the case in which the machine has learnt with no errors
some input informations encoded by orthogonal patterns. This is the simplest setting that can
be investigated giving the clamped input patterns ξ as uniformly orthogonal deterministic
vectors, ξμ · ξν = 0 ∀ N ∈ N. If then σ = ξ1 we immediately see from their definitions
(22), (33) that in this case n = 1, C = 0: the field component related η1 is the strongest
possible, corresponding to an Hopfield network with external field of intensity 1 parallel to
η1. Clearly, clamping σ not exactly on ξ1, but allowing for a certain percentage of errors,
changes the values of (n, C) for each realization. Figure 4 exhibits intensity plots in the plane
(C, n) of the Mattis magnetization relative to the output layer for different fixed values of the
temperature and load. We observe that the transition seems to occur less sharply as T and λ

increase but still very small values of the fixed magnetization of the input layer n strongly
favors the retrieval despite the presence of positive values for C .
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Fig. 4 Intensity plots in the (C, n) plane of themagnetizationm are shown in these panels for fixed temperature
and load. Different values of n and C correspond to different deterministic realizations of the clamped input
layer

(2) A finite number of correlated input patterns
Another setting compatible with our analysis is the one in which the informations encoded

by the patterns ξ results in non orthogonal vectors. Specifically we could assume that σ = ξ

and that there exists a finite number Pcorr < +∞ such that

ξμ · ξ = aμN if μ = 1, . . . , Pcorr

ξμ · ξ = 0 if μ > Pcorr

for some values aμ ∈ [−1, 1], μ = 1, . . . , P(N ), uniformly in N . We would get

n = a1, C = λ−1
P(N )∑

μ=2

n2
μ(σ ) = λ−1

Pcorr∑

μ=1

a2
μ.

(3) Orthogonal-in-the-average inputs
Typically, the training of a machine is performed on a non-exhaustive or imperfect dataset

[27,28]. Therefore, it is reasonable to face this problem from a probabilistic perspective.
To this aim we can introduce the input patterns ξ

μ
i , μ > 1 as quenched variables and

make them participate in the avaraging procedure considering AB = 1
N E lnZ clamp with

E = EξEη. For example, we can assume that the clamped layer is given as σ = ξ1 and
that each ξ

μ
i for μ > 1 is independently extracted from a Rademacher distribution. Each

term of the form ξμ · σ = ξμ · ξ1 =∑N
i=1 ξ

μ
i ξ1i will be thus equal to the net displacement

after N steps of a random, simple and symmetric path (since in this case the products ξ
μ
i ξi

are extracted as independent Rademacher variables). For a large number of steps we can
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Fig. 5 The averageMattismagnetization n of the output layer obtained by numerically solving (35) is plotted as
a function of the temperature for different fixed values of the load when (C, n) = (1, 1). This case corresponds
to the one of uncorrelated stochastic input patterns, when the input layer σ is clamped on one of them

thus approximate the distribution of ξμ · σ with a Guassian centered random variable whose
standard deviation is equal to the square root of the number of steps (see [26] and references
therein), namely ξμ · σ = O(

√
N ), therefore

P(N )∑

μ=2

(
ξμ · σ

)2 = O (P(N )N ) .

Looking at the definition of the C parameter (33) we see that this case, correspondent
to the one of binary uncorrelated patterns, can be inserted in our analysis taking n = 1 and
C = 1. Figure 5 shows how the magnetization of the output layers remains in this case very
high for high loads.

3.3 A Formal Equivalence with a Hopfield Network

We now consider what we called a free mode, correspondent to the case in which all the
units (σ, z, τ ) ∈ IN ×R

P × IK of the three-layer HBM are free to evolve. In this case the
partition function is the one in (13) and equals

Z f ree
N =

∑

σ

∑

τ

e
−β
∑
μ

(
− 1

2N (ξμ· σ)2− 1
2N (ημ· τ)2− 1

N (ξμ· σ)(ημ· τ)
)

. (37)

Since the case N �= K can be here easily included we give the relative size of the input layer
with respect to the total number of visible units as

γ = lim
N→∞

N

N + K (N )
> 0 (38)
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stressing that this density is fixed as N and K = K (N ) grows so that we can write γ instead
of N (N + K )−1. Now, through the definitions of the Mattis magnetizations (15) and using
that K (N + K )−1 = 1 − γ we can rewrite (37) as

Z f ree
N =

∑

σ

∑

τ

e
1
γ

β(N+K )
2

∑
μ
(γ nμ(σ )+(1−γ )mμ(τ))

2

. (39)

If we now define

HH
N (σ, τ )

def= − 1

2(N + K )

⎛

⎝
∑

i, j,μ

ξ
μ
i ξ

μ
j σiσ j +

∑

ν,γ,μ

ημ
ν ημ

γ τντγ +
∑

i,ν,μ

ξ
μ
i ημ

ν σiτν

⎞

⎠ (40)

and the correspondent partition function

ZH
N =

∑

σ

∑

τ

e−βHH(σ,τ ), (41)

we see that Eq. (39) is equivalent to (41) upon a temperature rescaling β → βγ .
In this case the notational distinction between the input and output variables σ, τ and

their respective connections clearly makes the way the Hopfield Hamiltonian appears in (40)
redundant, the distinction between units of type σi and τν is actually just conceptual since
we are considering the case in which input and output layers are not directly connected.
The HN correspondent to the three-layer HBM evolving in free mode is built with all the
N + K visible units and the pattern set, whose cardinality P is the number of hidden units,
is composed by the (N + K )-dimensional vectors {(ξμ, ημ)}P

μ=1.
The replica symmetric solution, that is a sum-rule for the quenched statistical pressure

A f ree
N = (N + K )−1

E lnZ f ree
N under a self averaging hypothesis for the order parameters,

can be found with tools and calculations strictly similar to those presented for the clamped
case.

As pointed out before, the distinction between input and output variables is in this case
redundant so that if we define for each (σ, τ ), (σ ′, τ ′) ∈ [IN × IK ] 2 a total 2-replicas
overlap and a total Mattis magnetization for (σ, τ ) ∈ IN × IK as

qtot(σ, τ, σ ′, τ ′) def=
∑N

i=1 σiσ
′
i +∑K

ν=1 τντ
′
ν

N + K
∈ [−1, 1],

mtot
def=
∑N

i=1 ξ1i σi +∑K
ν=1 η1ντν

N + K
∈ [−1, 1]

the RS solution when only a single pattern is candidate for retrieval, analogous to (34), would
appear as

A f ree
RS = ln 2 + E ln cosh

(
βmtotξ +√βλpη̃

)

− λβ

2

qtot
(1 − β(1 − qtot))

− λ

2
ln(1 − β(1 − qtot))

− βλ

2
p(1 − qtot) − β

2
m2

tot, (42)

where ξ is a Rademacher variable independent from η̃ ∼ N (0, 1) and E = EξEη̃. As
expected, this expression is nothing but the RS free energy of a Hopfield network with a
single marked pattern [22]. It is easly checked that forcing ∂mtotA

f ree
RS = 0 ∂qtotA

f ree
RS = 0
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∂pA f ree
RS = 0 yield to the following self-consistency equations

mtot = E tanh

(
βmtotξ + βη̃

√
λqtot

1 − β(1 − qtot)

)
; (43)

qtot = E tanh2
(

βmtotξ + βη̃

√
λqtot

1 − β(1 − qtot)

)
; (44)

p = βqtot
(1 − β(1 − qtot))2

. (45)

As expected, the self-consistent equations for the Hopfield model are recovered [26].
In particular, the transition line between the spin glass and the paramagnetic phase is given

by equation β2λ

(1−β)2
= 1.

4 Conclusions

In this work we considered a three-layer HBM, whose constituting neurons are of different
nature: the visible ones (σ, τ ) are binary, while the hidden ones z are Gaussian. Such a system
can be trained bymeans of a sample drawn from an unknown target distribution. The network
architecture allows for different trainingmodes according towhetherwewant the final system
to be able to generate new couples {σ̂ (k), τ̂ (k)}k or to be able to reply with a certain output
τ̂ (k) to a certain input σ̂ (k), mimicking what we would obtain from the target distribution.
These training modes imply to make the system evolve under a suitable dynamics possibly
displaying constraints on the class of neurons that are free to evolve. In particular, we focused
on the case where all neurons are free to evolve and on the case where only output and hidden
neurons are free to evolve while input neurons are clamped. We proved that the three-layer
RBM subject to such constraints is equivalent, respectively, to a HN with size given by the
overall number of visible neurons and to aHNwith size given by the number of output neurons
and in the presence of an external field and an additional slow noise. The former recovers the
well-known theory developed by Amit, Gutfreund and Sompolinsky, while for the latter we
accomplished a statistical-mechanics investigation obtaining an explicit expression for the
free energy in the thermodynamic limit, that is exact under the replica symmetry assumption.
Remarkably, the external field and the additional noise are related to the statistical properties
of the data used for training. Let us assume that data are encoded in terms of P binary vectors
{ξμ}P

μ=1: then, if the data set is not broad then the input σ can be set fairly aligned with a

certain vector, say ξ1, and if the data vectors display a poor correlation (i.e., ξμ · ξν ≈ δμ,ν),
then the additional noise is vanishing and viceversa.

This result is consistent with the fact that shallow structures proves to be suitably only for
structureless data as it is able to capture only first-order and second-order moments hidden
in the training data.

Further, we notice that the three-layer HBM considered here, for a special choice of
parameters, can be looked at as an autoencoder with one hidden layer in such a way that
the above mentioned results can be read also from that perspective [13]. In particular, such
a shallow autoencoder can reconstruct information correctly as long as information can be
encoded in a relatively small (compared to the outer layer size) number binary vectors and
as long as such information displays a vanishing structure.

123



Learning and Retrieval Operational Modes… Page 19 of 28 10

Acknowledgements EA is grateful to Adriano Barra, Alberto Fachechi and Francesco Alemanno for useful
discussions, and toUniversità SapienzadiRoma forfinancial support (ProgettoAteneoRM120172B8066CB0).
GS is grateful to Massimiliano Viale for enlightening discussions.

Appendix A

In this appendix we give a dynamical route for the machine in such a way that the related
equilibrium distribution coincide with the Gibbs measure (8). Through this approach, which
reproduces the one proposed in [8], the activity in the layers follows different dynamics,
including the fact that digital units change in discrete steps while analog ones change con-
tinuously in time.

For the digital visible units is imposed a standard parallel Glauber dynamics for Ising-
type systems [1]. We consider a specific time-step and update each visible unit, when it is
involved in the dynamics, instantaneously. At every step the probabilities of finding digital
units in a specific state are dependent on the state assumed in that instant by z and determined
by the total fields acting on them: 1√

N

∑
μ ξ

μ
i zμ on σi and 1√

N

∑
μ η

μ
ν zμ on τν , where the

normalization factor
√

N is considered in order to obtain non-trivial thermodynamic limits.
These probabilities are

G(σi |z) = e
β√
N

σi
∑
μ

ξ
μ
i zμ

e
β√
N

∑
μ

ξ
μ
i zμ + e

− β√
N

∑
μ

ξ
μ
i zμ

, G(τν |z) = e
β√
N

τν

∑
μ

η
μ
ν zμ

e
β√
N

∑
μ

η
μ
ν zμ + e

− β√
N

∑
μ

η
μ
ν zμ

. (A1)

The joint probability mass functions G(σ |z), G(τ |z) are now completely determined by
products of individual probabilities (see e.g. [26])

G(σ |z) =
∏

i

G(σi |z) = e

β√
N

∑
iμ

σi ξ
μ
i zμ

∏
i

(
e

β√
N

∑
μ

ξ
μ
i zμ + e

− β√
N

∑
μ

ξ
μ
i zμ

) , (A2)

G(τ |z) =
∏

ν

G(τν |z) = e
β√
N

∑
νμ

τνη
μ
ν zμ

∏
ν

(
e

β√
N

∑
μ

η
μ
ν zμ + e

− β√
N

∑
μ

η
μ
ν zμ

) , (A3)

G(σ, τ |z) = G(σ |z)G(τ |z) = e
β√
N

∑
μ

zμ

(∑
i

σi ξ
μ
i +∑

ν
τνη

μ
ν

)

Z(β, z, ξ, η)
= eβz· I (σ,τ )

Z(z)
(A4)

where

Z(z)
def=
∏

i,ν

(
e

β√
N

∑
μ

ξ
μ
i zμ + e

− β√
N

∑
μ

ξ
μ
i zμ

)(
e

β√
N

∑
μ

η
μ
ν zμ + e

− β√
N

∑
μ

η
μ
ν zμ

)

is the normalization factor and I is the vector defined in (7) whose P entries quantify the
field felt by the hidden units {zμ}P

μ=1, namely I (σ, τ ) = {Iμ(σ, τ )}P
μ=1 with

Iμ(σ, τ ) = 1√
N

(
∑

i

ξ
μ
i σi +

∑

ν

ημ
ν τν

)
, ∀μ ∈ {1, . . . , P}. (A5)
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For what concerns the activity in the hidden analog layer we consider an Ornstein-
Uhlenbeck diffusion process correspondent to the following stochastic differential equation

T dzμ = −zμ(t)dt + Iμ(σ, τ )dt +
√
2T
β

dWμ(t) (A6)

where {Wμ(t)}P
μ=1 are independent Weiner processes providing a white Gaussian noise with

zero mean and covariance Cov(dWμ(t), dWμ′(t ′)) = δμμ′δ(t − t ′). The three terms in the
right hand side of (A6) are respectively a leakage term, the input signal and a noise source.
While β tunes the strength of the fluctuations, the parameter T ∈ R

+ gives the timescale of
the dynamics and is assumed to be much smaller than the time-step used to update digital
units. For fixed values of σ, τ , the equilibrium distribution of zμ is a Gaussian distribution
centered in the input signal which is equal to

G(zμ|σ, τ) =
√

β

2π
e− β

2 (zμ−Iμ)
2
. (A7)

In order for this equilibrium distribution to hold, the activity of digital units σ, τ must
be constant, while in fact it depends on time. However, we assumed that the timescale
of diffusion is much faster than the steps at which the digital units are updated. Hence,
a different equilibrium distribution for z, characterized by different values of σ, τ , holds
between each subsequent update of σ, τ . Since noise is uncorrelated between different hidden
units and given the mean-field nature of the model, they evolve independently and their joint
equilibrium distribution is the product of individual distributions

G(z|σ, τ) =
∏

μ

G(zμ|σ, τ) =
(

β

2π

) P
2

e− β
2 ‖z−I (σ,τ )‖2

=
(

β

2π

) P
2

e− β
2 ‖z‖2− β

2 ‖I (σ,τ )‖2+βz· I (σ,τ ). (A8)

Through the conditional distributions (A4), (A8) we can calculate the probability for the
visible layers thanks to Bayes rule:

G(σ, τ ) = G(σ, τ |z)
G(z|σ, τ)

G(z) = eβz· I

Z(z)

(
β

2π

)− P
2

e
β
2 ‖z‖2+ β

2 ‖I‖2−βz· IG(z) = c(z)e
β
2 ‖I‖2 (A9)

where c(z) = (
2πβ−1

) P
2 Z(z)−1G(z)e

β
2 ‖z‖2 does not depend on (σ, τ ). Since the marginal

distribution G(σ, τ ) can not depend on z, the factor c(z) must be constant and we can write

G(σ, τ ) ∝ e
β
2 ‖I (σ,τ )‖2 . (A10)

We notice that considering the clamped mode consists in fixing the variables σ , in this
case strictly analogous calculations would give

G(τ |σ) ∝ e
β
2N ‖η· τ‖2+ β

N (ξ · σ)· (η· τ), (A11)

which reflects (20).
Using (A8) and (A10) we now get

G(σ, z, τ ) = G(z|σ, τ)G(σ, τ ) ∝ e− β
2 ‖z‖2+βz· I (σ,τ ),
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namely

G(σ, z, τ ) ∝ e
−β
(
1
2 ‖z‖2− 1√

N
z· ξ · σ− 1√

N
z· η· τ

)

, (A12)

which is our claim (8).

Appendix B

In this appendix we calculate the interpolating free energy for t = 0 when the HBM evolves
in clamped mode. We have

Zclamp
0 = e

βN
2 n(σ )2

∑

τ

e
�Nm(τ )+A

∑
i

η̃i τi ·

·
∫ P∏

μ=2

dGβ(zμ)e

P∑
μ=2

β
[

d
2 z2μ+(Bη̃μ+√

Nnμ(σ ))zμ

]

= e
βN
2 n(σ )2

∑

τ

e

∑
i

(Aη̃i +�η1i )τi · 1

(1 − d)
P−1
2

P−1∏

μ=1

e
β

2(1−d)
(Bη̃μ+√

Nnμ(σ ))2

= e
βN
2 n(σ )2 2N

N∏

i=1

cosh (�η̄i + Aη̃i ) · 1

(1 − d)
P−1
2

e

β
2(1−d)

P∑
μ=2

(Bη̃μ+√
Nnμ(σ ))2

.

(B1)

Consequently, the associated intensive pressure is

1

N
E lnZclamp

0 = β

2
n(σ )2 + ln 2 + E ln cosh(�η1 + Aη̃) − λ

2
ln(1 − d)

+ β

2N (1 − d)

P∑

μ=2

(
B2

Eη̃2μ + 2B
√

Nnμ(σ )Eη̃μ + Nnμ(σ )2
)

= β

2
n(σ )2 + ln 2 − λ

2
ln(1 − d) + β

2(1 − d)

P∑

μ=2

nμ(σ )2

+ λβ B2

2(1 − d)
+ E ln cosh(�η1 + Aη̃) (B2)

where we used Eη̃2μ = 1 and Eη̃μ = 0 defining η1 as a Rademacher random variable
and η̃ as a standard Gaussian. We show in Appendix C that the following choices for the
free parameters substantially simplifies the expression of the statistical pressure, making the
second order fluctuations of the order parameters explicit

φ = β(n(σ ) + m̄), d = β(1 − q̄), B = √q̄, A = β
√

λ p̄. (B3)

Plugging these values in (B2) we find

1

N
E lnZclamp

0 = β

2
n(σ )2 + ln 2 − λ

2
ln(1 − β(1 − q̄)) + β

2(1 − β(1 − q̄))

P∑

μ=2

nμ(σ )2

+ E ln cosh
[
β
(
η1(n + m̄) +√λ p̄η̃

)]
+ λβq̄

2(1 − β(1 − q̄))
. (B4)
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Appendix C

In this appendix we focus on the t−derivative of the interpolating statistical pressure for the
three-layer HBM in clamped mode N−1 lnEZclamp

t . In order to see how it goes, it is useful
to notice that the exponent in the interpolating expression (27) can be seen as the sum of six
terms of the form

f (t)A(X , s) (C1)

where f ∈ C1((0, 1)) is a function of the interpolating parameter t , s stands for a generic
configuration vector, X is the (2N P + P + N )-dimensional vector containing all the inde-
pendent random variables involved (namely the synaptic weights {ημ}P

μ=1 and the external

fictitious fields {η̃i }N
i=1, {η̃μ}P

μ=2) and A(X , s) is an observable quantity.
It is easily checked that, performing the derivative of the logarithm function, the contri-

bution provided by each term in the form (C1) to the t−derivative ∂t
(

N−1
E lnZclamp

t

)

appears as
1

N
f ′(t)E�t A(X , s). (C2)

We proceed to the evaluation of these contributions indicating them with the symbols
I, II, III, IV, V, VI, where the enumeration follows the order in which they appear as
exponents in (27). Some of them (those for which f (t) is a linear function of t) come from
the Boolean part of the Hamiltonian, or from terms which do not involve random variables,
and their calculation is completely trivial. Others (those for which f (t) is a square root)
involve Gaussian random variables and their calculation requires a Gaussian integration by
parts. Specifically, we have:

(I) f1(t) ≡ t , A1 ≡ βN
2 m(τ )2 + βNn(σ )m(τ ).

This first term corresponds to a Curie–Weiss model with a particular external field, the
relative contribution to the t−derivative of the interpolating pressure in the form (C2)
is

I = β

2
E�t (m

2) + βn(σ )E�t (m).

(II) f2(t) ≡ �N (1 − t), A2 ≡ m(τ ).
This second term, “imitating” the first, contributes with

II = −�E�t (m).

(IV) f4(t) ≡ (1 − t) βd
2 , A4 ≡

P∑
μ=2

z2μ.

We thus get

IV = − βd

2N

P∑

μ=2

E�t (z
2
μ).

Terms III, V and VI are the ones involving Gaussian random variables, they appear as

(III) f3(t) ≡ A
√
1 − t , A3 ≡∑

i
η̃iτi ;

(V) f5(t) ≡ β√
N

√
t , A5 ≡ N

P∑
μ=2

mμ(τ)zμ =
P∑

μ=2
zμ

∑
i η

μ
i τi ;
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(VI) f6(t) ≡ β B
√
1 − t , A6 ≡

P∑
μ=2

η̃μzμ;

where the same symbol η̃ in A3 and A6 refers to two different independent families of
i.i.d standard Gaussians. Focusing on V

V = β

2
√

t N
√

N
E�t

⎛

⎝
P∑

μ=2

zμ

∑

i

η
μ
i τi

⎞

⎠ ,

and defining F(X , σ, z, τ )
def= Bt (X ,σ,z,τ )

Zt (X ,σ )
with Bt being the interpolating Boltzmann

factor, we can write

V = β

2
√

t N
√

N
Eη1

∑

τ

∫ P∏

μ=2

dzμ

P∑

μ=2

∑

i

Eη̃,η(η
μ
i F(X))zμτi . (C3)

The integration by parts of the averageEη̃,η(η
μ
i F(X)) is now straightforward and gives

Eη̃,η(ξ
μ
i F(X)) =

∑

l

Eη̃,η(η
μ
i Xl)Eη̃,η

(
∂

∂ Xl
F(X)

)
(C4)

where the sum runs over all the indices defining the entries of X correspondent to
Gaussian variables. Since all the noise variables Xl are completely independent, the
only non-zero term in the right hand side of (C4) is the one provided by Xl ≡ η

μ
i , for

which E(η
μ
i )2 = 1:

Eη̃,ηη
μ
i F(X) = Eη̃,η

∂

∂η
μ
i

F .

The computation of the derivative of F with respect to the synaptic weight ημ
i is trivial

and gives

∂

∂η
μ
i

F = β
√

t√
N

[
τi zμ Bt

Zt
− Bt

∑
τ ′
∫ ∏P

ν=2 dz′
ντ

′
i z′

μ B ′
t

Z2
t

]
;

where B ′
t is the Boltzmann factor correspondent to the “second replica configuration”

(τ ′, z′). Plugging the latter equation into (C3), using τ 2i = 1 and the definition of the
overlaps (16) we get

V = β2

2N
E

P∑

μ=2

�t (z
2
μ) − β2λ

2
E�t (pzz′qττ ′).

Analogously, it results

III = − A

2N
√
1 − t

E�t

⎛

⎝
∑

i

η̃i τi

⎞

⎠ = − A

2N
√
1 − t

∑

i

∑

τ

∫ ∏

μ

dzμE

(
∂

∂η̃i
F(X)

)
τi

= − A2

2
+ A2

2
E�t (qττ ′ );
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VI = − β B

2N
√
1 − t

E�t

⎛

⎝
∑

μ

η̃μzμ

⎞

⎠ = − β B

2N
√
1 − t

∑

μ

∑

τ

∫ ∏

μ

dzμE

(
∂

∂η̃μ
F(X)

)
zμ

= −β2B2

2N

P∑

μ=2

E�t (z
2
μ) + β2B2λ

2
E�t (pzz′).

Finally, defining the thermodynamic values of the order parameters as

〈m〉t = m̄, 〈qττ ′ 〉t = q̄, 〈pzz′ 〉t = p̄,

where 〈·〉t ≡ E�t (·), we can fix the free parameters φ, d, B, A as

φ = β(n(σ ) + m̄), d = β(1 − q̄), B = √q̄, A = β
√

λ p̄, (C5)

and find expressionswere second order fluctuations are explicit. Specifically, the choice
for � makes

I + II = β

2
〈m2 + 2mn(σ ) − 2

β
�m〉t = β

2
〈(m − m̄)2〉t − β

2
m̄2.

Similarly, since d = β − β B2, the terms in IV + V + VI involving z2μ vanish and we
get

III + IV + V + VI = −β2λ

2
〈pzz′qττ ′ + p̄qττ ′ + q̄ pzz′ 〉t − β2λ

2
p̄

= −β2λ

2
〈(pzz′ − p̄)(qττ ′ − q̄)〉t − β2λ

2
p̄(1 − q̄)

Since ∂
∂t

(
N−1 lnEZclamp

t

)
= I + II + III + IV + V + VI, it results

∂

∂t

1

N
lnEZclamp

t = −β

2
m̄2 − β2λ

2
p̄(1 − q̄) + β

2
〈 (m − m̄)2 〉t − β2λ

2
×〈 (pzz′ − p̄)(qττ ′ − q̄) 〉t . (C6)

Appendix D

In this appendix we focus on the final expression for the statistical pressure of the three-layer
HBM in clampedmode (34) and perform the derivatives ∂qA clamp

RS , ∂pA clamp
RS and ∂mA clamp

RS .
The correspondent stationarity condition will let us write self-consistency equations for the
order parameters m, p, q , dependent on the model’s parameters (β, λ, n, C) ∈ R

+ × R
+ ×

[−1, 1] × R
+. We get

∂AB

∂m
= Eη1

∂

∂m

∫
dG1(η̃) ln cosh

[
β(η1(n + m) +√λpη̃)

]
− βm

= βEη1η
1
∫

dG1(η̃) tanh
[
β(η1(n + m) +√λpη̃)

]
− βm. (D1)
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The stationarity condition is thus translated into

m = Eη1η
1
∫

dG1(η̃) tanh
[
β(η1(n + m) +√λpη̃)

]

= 1

2

{∫
dG1(η̃) tanh

[
β(
√

λpη̃ + n + m)
]

−
∫

dG1(η̃) tanh
[
β(
√

λpη̃ − n − m)
]}

(D2)

∂AB

∂ p
= Eη1

∂

∂ p
Eη̃ ln cosh

[
β
(
η1(n + m) +√λpη̃

)]
− β2λ

2
(1 − q). (D3)

We can now evaluate the Gaussian expectation through a standard integration by parts as
follows

∂

∂ p
Eη̃ ln cosh

[
β
(
η1(n + m) +√λpη̃

)]
=
∫

R

dG1(η̃)
∂

∂ p
ln cosh

×
[
βη1(n + m) + β

√
λpη̃

]

= β
√

λ

2
√

p

∫

R

dG1(η̃)η̃ tanh
[
βη1(n + m) + β

√
λpη̃

]

= β2λ

2
− β2λ

2

∫

R

dG1(η̃) tanh2
[
βη1(n + m) + β

√
λpη̃

]
.

Plugging the latter into (D3) and forcing ∂p AB = 0 we get

∂AB

∂ p
= β2λ

2
− β2λ

2
Eη1

∫

R

dG1(η̃) tanh2
[
βη1(n + m) + β

√
λpη̃

]
− β2λ

2
(1 − q) = 0

which corresponds to

q = Eη1

∫

R

dG1(η̃) tanh2
[
βη1(n + m) + β

√
λpη̃

]

= 1

2

{∫

R

dG1(η̃) tanh2
[
β(
√

λpη̃ + n + m)
]

+
∫

R

dG1(η̃) tanh2
[
β(
√

λpη̃ − n − m)
]}

.

(D4)

The stationarity condition given by the statistical pressure’s derivative with respect to q
brings, introducing the C parameter (33), to the following

β2λ

2
p = λβ(1 − β(1 − q)) + β2λC − λβ(1 − β)

2(1 − β(1 − q))2

p = q + C

(1 − β(1 − q))2
. (D5)

Finally, we obtain the replica symmetric self-consistency equations for the HBM in
clamped mode as

q = Eη1

∫

R

dG1(η̃) tanh2
[
β(
√

λpη̃ + η1(n + m))
]
, (D6a)

m = Eη1η
1
∫

dG1(η̃) tanh
[
β(
√

λpη̃ + η1(n + m))
]
, (D6b)

p = q + C

(1 − β(1 − q))2
. (D6c)
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Appendix E

In this appendix we find an expression for the zero temperature limit β → ∞ of the self-
consistency equations (35a), (35b), (35c), correspondent to the equilibrium conditions for
the three-layer HBM in clamped mode. From the properties of the hyperbolic tangent (which
is bounded by 1 and converges a.e. to the sign function as its argument grows to infinity)
the limit β → ∞ of the right hand side in equation (35b) can be easily performed through
dominated convergence and yields to

m = erf

(
n + m√
2pλ

)
, (E1)

where the error function erf(x) is erf(x) = 2√
π

∫ x
0 e−t2dt , and where we supposed p �= 0.

This is achieved through the following

m = Eη1η
1
∫

dG1(η̃) sign
[√

λpη̃ + η1(n + m)
]

= Eη1η
1

√
2

π

∫ η1(n+m)√
λp

0
e

−η̃2

2 dη̃ = Eη1η
1 erf

(
η1(n + m)√

2pλ

)
= erf

(
n + m√
2pλ

)
.

Obviously sign2(x) = 1 ∀x ∈ R so, since the hyperbolic tangent there appears squared,
equation (35a) suggests that q tends to 1 for β → ∞. We thus need to evaluate the zero
temperature limit of the term β(1−q), which appears in the denominator of (35c) . Through
the equation for q we get

β(1 − q) = β(1 − Eη1

∫

R

dG1(η̃) tanh2
[
β(
√

λpη̃ + η1(n + m))
]

= 1√
λp

∫
dG1(η̃)

∂

∂η̃
tanh

[
β(
√

λpη̃ + η1(n + m))
]
. (E2)

Integrating by parts we get

= 1√
λp

∫
dG1(η̃) η̃ tanh

[
β(
√

λpη̃ + η1(n + m))
]
,

which in the limit β → ∞ gives

1√
λp

∫
dG1(η̃) η̃ sign(

√
λpη̃ + η1(n + m))

= 1√
λp

⎛

⎝
∫ +∞

− η1(n+m)√
λp

η̃dG1(η̃) −
∫ − η1(n+m)√

λp

−∞
η̃dG1(η̃)

⎞

⎠

= 2√
λp

∫ +∞
η1(n+m)√

λp

η̃dG1(η̃) =
√

2

λpπ
e− (η1(n+m))2

2λp =
√

2

λpπ
e− (n+m)2

2λp ,

where we used (η1)2 = 1 and the fact that f (x) = xe− x2
2 is odd. In the limit β → ∞

Eq. (35c) thus corresponds to
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p = (1 + C)
(
1 −

√
2

λpπ
e− (n+m)2

2λp

)2 = λpπ

2

(1 + C)
(√

λpπ
2 − e− (n+m)2

2λp

)2 ;

p

(√
λpπ

2
− e− (n+m)2

2λp

)2

= λpπ

2
(1 + C).

Excluding the zero solution for p we can multiply for 4
π p and obtain that

(√
2λp − 2√

π
e− (n+m)2

2λp

)2

= 2λ(1 + C).

Taking the square root we obtain an expression for
√
2λp as

√
2λp = 2√

π
e− (n+m)2

2λp +√2λ(1 + C). (E3)

Equations (E1), (E3) can be reduced to one equation in the variable y = n+m√
2λp

, they indeed
appear as {

y = erf(y)+n√
2λp√

2λp = 2√
π

e−y2 + √
2λ(1 + C)

(E4)

which directly corresponds to

y = erf(y) + n
2√
π

e−y2 + √
2λ(1 + C)

. (E5)
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