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On the existence of L2-valued thermodynamic entropy
solutions for a hyperbolic system with boundary conditions

Stefano Marchesania and Stefano Ollab

aGSSI, L’Aquila, Italy; bCEREMADE, UMR-CNRS, Universit�e de Paris Dauphine, PSL Research University,
Paris, France

ABSTRACT
We prove existence of L2-weak solutions of a quasilinear wave equa-
tion with boundary conditions. This describes the isothermal evolu-
tion of a one dimensional non-linear elastic material, attached to a
fixed point on one side and subject to a force (tension) applied to
the other side. The L2-valued solutions appear naturally when study-
ing the hydrodynamic limit from a microscopic dynamics of a chain
of anharmonic springs connected to a thermal bath. The proof of
the existence is done using a vanishing viscosity approximation with
extra Neumann boundary conditions added. In this setting we obtain
a uniform a priori estimate in L2, allowing us to use L2 Young meas-
ures, together with the classical tools of compensated compactness.
We then prove that the viscous solutions converge to weak solutions
of the quasilinear wave equation strongly in Lp, for any p 2 ½1, 2Þ,
that satisfy, in a weak sense, the boundary conditions. Furthermore,
these solutions satisfy, beside the local Lax entropy condition, the
Clausius inequality: the change of the free energy is bounded by the
work done by the boundary tension. In this sense they are the cor-
rect thermodynamic solutions, and we conjecture their uniqueness.
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1. Introduction

The problem of existence of weak solutions for hyperbolic systems of conservation law
in a bounded domain has been studied for solutions that are of bounded variation or in
L1 [1]. In the scalar case some works extend to L1 solutions, obtained from viscous
approximations [2]. But viscous approximations require extra boundary conditions that
are usually taken of Dirichlet type.
We present here an approach based on viscosity approximations, where the extra

boundary conditions are of Neumann type, to reflect the conservative nature of the vis-
cous approximation. We consider here the quasilinear wave equation

rt � px ¼ 0

pt � sðrÞx ¼ 0
, ðt, xÞ 2 Rþ � 0, 1½ �

(
(1.1)

where sðrÞ is a strictly increasing regular function of r such that 0 < c1 � s0ðrÞ � c2,
for some constant c1, c2. In Section 2, we will require some more technical assumption
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for s. We add to the system the following boundary conditions:

pðt, 0Þ ¼ 0, sðrðt, 1ÞÞ ¼ �sðtÞ (1.2)

and initial data

rð0, xÞ ¼ r0ðxÞ, pð0, xÞ ¼ p0ðxÞ: (1.3)

The boundary tension �s : Rþ ! R is smooth and bounded with bounded derivative.
Eq. (1.1) describes the isothermal evolution of an elastic material in Lagrangian coordinates.

The material point x 2 ½0, 1� has a volume strain r(t, x) at time t (that can also have negative
values), and momentum (velocity) p(t, x). The Eulerian position of the material point x, with
respect to the position of the particle 0, is given by qðt, xÞ ¼ Ð x0 rðt, yÞdy, so that we can iden-
tify the position of the material point x¼ 1 as the total extension of the material:

LðtÞ ¼ qðt, 1Þ ¼
ð1
0
rðt, yÞdy: (1.4)

Let T < 1 be given and arbitrary, and define QT :¼ ½0,T� � ½0, 1�: We shall construct
weak solutions �uðt, yÞ ¼ ð�rðt, yÞ, �pðt, yÞÞ, ðt, yÞ 2 QT , to the quasilinear wave equation
such that �uðt, �Þ 2 L2ð0, 1Þ for all t � T and satisfy the initial and boundary conditions
in the following weak sense:ð1

0
uðt, xÞ�rðt, xÞdx �

ð1
0
uð0, xÞr0ðxÞdx ¼

ðt
0

ð1
0
us�r � ux�pð Þdxds (1.5)

ð1
0
wðt, xÞ�pðt, xÞdx �

ð1
0
wð0, xÞp0ðxÞdx ¼

ðt
0

ð1
0

ws�p � wxsð�rÞ
� �

dxdsþ
ðt
0
wðs, 1Þ�sðsÞds

(1.6)

for all functions u,w 2 C1ðQTÞ such that uðt, 1Þ ¼ wðt, 0Þ ¼ 0 for all t � 0:
Define the free energy of the system, associated to a profile uðxÞ ¼ ðrðxÞ, pðxÞÞ 2

L2ð0, 1Þ, as

FðuÞ :¼
ð1
0

p2ðxÞ
2

þ FðrðxÞÞ
� �

dx (1.7)

where F(r) is a primitive of sðrÞ (F0ðrÞ ¼ sðrÞ), such that c1
2 r

2 � FðrÞ � c2
2 r

2 for any r 2
R: This is possible thanks to the bounds we required on s0:
The solution �u of (1.5) and (1.6) that we obtain has the following properties:

� �u 2 L1ð0,T; L2ð0, 1ÞÞ
� �uð0, xÞ ¼ u0ðxÞ for a.e. x;
� For any / 2 C1ð½0, 1�Þ, the application

t 7!
ð1
0
/ðxÞ�uðt, xÞdx (1.8)

is Lipschitz continuous over ½0,T�;
� �u satisfies Clausius inequality:

Fð�uðtÞÞ � Fðu0Þ � WðtÞ, 8t 2 0,T½ � (1.9)
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where u0 ¼ ðr0, p0Þ and

WðtÞ :¼ �
ðt
0
�s0ðsÞ

ð1
0
�rðs, xÞdxdsþ �sðtÞ

ð1
0
�rðt, xÞdx� �sð0Þ

ð1
0
r0ðxÞdx (1.10)

is the work done by the external tension up to time t. In this sense, we call our solu-
tion a thermodynamic entropy solution. For general discussion of the connection of
such thermodynamic solutions to the usual definition of entropic solutions, see [3,4].

Remark. If �rðt, xÞ is differentiable with respect to time, we may perform an integration
by parts and obtain

WðtÞ ¼
ðt
0
�sðsÞdLðsÞ: (1.11)

This recovers the usual mechanical definition of the work.
The construction of the solution is obtained from the following viscosity approximation

rdt � pdx ¼ drdxx
pdt � sðrdÞx ¼ dpdxx

, ðt, xÞ 2 Rþ � 0, 1½ �
(

(1.12)

with boundary conditions

pdðt, 0Þ ¼ 0, sðrdðt, 1ÞÞ ¼ �sðtÞ, pdxðt, 1Þ ¼ 0, rdxðt, 0Þ ¼ 0 (1.13)

and initial data

rdð0, xÞ ¼ rd0ðxÞ, pdð0, xÞ ¼ pd0ðxÞ (1.14)

such that rd0 and pd0 are compatible with the boundary conditions, regular enough (see
(3.4) and (3.5)) and converge to r0 and p0, respectively, as d ! 0:
Note that in the viscous approximation we have added two Neumann boundary con-

ditions that reflect the conservative nature of the viscous perturbation. Under these con-
ditions we have ð1

0
judðt, xÞj2dxþ d

ðt
0

ð1
0
judxðs, xÞj2dxds � C, 8t � 0 (1.15)

where C is independent of t and d. It is thus clear that fudgd>0 and f ffiffiffi
d

p
udxgd>0 are uni-

formly bounded in L2ðQTÞ: Then we rely on the existence of a family of bounded Lax
entropy-entropy fluxes as in [5–7], that allows us to apply the compensated compact-
ness in the L2 version. The conditions assumed on sðrÞ are in fact those required to
apply [7] results. Under a slight different set of conditions, another Lp extension of the
compensated compactness argument can be found in [8].

1.1. Physical motivations

The problem arises naturally considering hydrodynamic limit for a non-linear chain of
anharmonic oscillators in contact with a heat bath at a given temperature [9,10]. This
microscopic dynamics models an isothermal transformation with two locally conserved
quantities that evolve, on the macroscopic scale, following (1.1).
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Consider Nþ 1 particles on the real line and, for i ¼ 0, :::N, call qi and pi the posi-
tions and the momenta of the ith particle, respectively. Particles i and i� 1 interact via
a nonlinear potential Vðqi � qi�1Þ: Particle i¼ 0 is at position q0 ¼ 0 and does not
move, i.e. p0ðtÞ ¼ 0: There is a time dependent force (tension) �sðtÞ acting on the last
particle. Then, defining ri :¼ qi � qi�1 we have a system with Hamiltonian

HNðtÞ ¼
XN
i¼1

p2i
2
þ VðriÞ

� �
� �sðtÞ

XN
i¼1

ri: (1.16)

The interaction with a heat bath at temperature b�1 is modeled by a stochastic per-
turbation of the dynamics that acts as a microscopic stochastic viscosity. Defining the dis-
crete gradient and laplacian as

rai ¼ aiþ1 � ai, Dai ¼ aiþ1 þ ai�1 � 2ai,

the evolution equations are then given by the following system of stochastic differential
equations:

dr1 ¼ p1dt þ drV 0ðr1Þdt �
ffiffiffiffiffiffiffiffiffiffiffiffi
2b�1d

p
d~w1

dri ¼ rpi�1dt þ dDV 0ðriÞdt �
ffiffiffiffiffiffiffiffiffiffiffiffi
2b�1d

p
rd~wi�1, 2 � i � N � 1

drN ¼ rpN�1dt þ d �sðtÞ þ V 0ðrN�1Þ � 2V 0ðrNÞ
� �� ffiffiffiffiffiffiffiffiffiffiffiffi

2b�1d
p

rd~wN�1,

dp1 ¼ rV 0ðr1Þdt þ d p2 � 2p1ð Þdt �
ffiffiffiffiffiffiffiffiffiffiffiffi
2b�1d

p
rdw1,

dpj ¼ rV 0ðrjÞdt þ dDpjdt �
ffiffiffiffiffiffiffiffiffiffiffiffi
2b�1d

p
rdwj�1, 2 � j � N � 1

dpN ¼ ð�sðtÞ � V 0ðrNÞÞdt � drpN�1dt þ
ffiffiffiffiffiffiffiffiffiffiffiffi
2b�1d

p
dwN�1

8>>>>>>>>>>><
>>>>>>>>>>>:

(1.17)

Here b�1 > 0 is the temperature of the heat bath, and fwigN�1
i¼1 , f~wigN�1

i¼1 are families
of independent Brownian motions. The parameter d is the intensity of the action of
the heat bath, and is chosen depending on N such that d 	 oðNÞ: When d¼ 0, Eq.
(1.17) is just the Newton deterministic equations for the Hamiltonian (1.16). Notice
the correspondence of the boundary conditions in (1.17) with the one chosen
in (1.12).
One of the effects of the action of the stochastic heat bath is to fix, in a large time

scale, the variance of the velocities (i.e. the temperature) at b�1, and establish a local
equilibrium, where space-time averages of V 0ðriÞ around a macroscopic particle number
½Nx� at a macroscopic time Nt converges to the equilibrium tension sðrðt, xÞ, bÞ at tem-

perature b�1 and volume stretch r(t, x). Since b is fixed by the heat bath and do not
evolve in time, we drop it from the notation in the sequel.
The hydrodynamic limit consists in proving that, for any continuous function G(x)

on ½0, 1�,
1
N

XN
i¼1

G
i
N

� �
riðNtÞ
piðNtÞ

� � ���!
N!1

ð1
0
GðxÞ rðt, xÞ

pðt, xÞ
� �

dx, (1.18)

in probability, with ðrðt, xÞ, pðt, xÞÞ satisfying (1.5), (1.6). Of course a complete proof would
require the uniqueness of such L2 valued solutions that satisfy (1.9): this remains an open
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problem. The results contained in [10] states that the limit distribution of the empirical dis-
tribution defined on the RHS of (1.18), concentrates on the possible solutions of (1.5) and
(1.6) that satisfy (1.9). Since we have no uniqueness result, we cannot assure that the solu-
tions constructed in the present paper coincide with those obtained with the hydrodynamic
limit from (1.17). One can however conjecture that this is the case.
This stochastic model was already considered by Fritz [11] in the infinite volume

without boundary conditions, and in [9], but without the characterization of the bound-
ary conditions.
In the hydrodynamic limit only L2 bounds are available and we are constrained to

consider L2 valued solutions. Since these solutions do not have definite values on the
boundary, boundary conditions have only a dynamical meaning in the sense of an evo-
lution in L2 given by (1.5), (1.6).

2. Hyperbolic system and the existence of weak solutions

For r, p : Rþ � ½0, 1� ! R, consider the hyperbolic system

rt � px ¼ 0

pt � sðrÞx ¼ 0
,

pðt, 0Þ ¼ 0 rðt, 1Þ ¼ s�1ð�sðtÞÞ
pð0, xÞ ¼ p0ðxÞ rð0, xÞ ¼ r0ðxÞ

(
(2.1)

The nonlinearity s 2 C3ðRÞ is chosen to have the following properties.

ðs-iÞ c1 � s0ðrÞ � c2 for some c1, c2 > 0 and all r 2 R;
ðs-iiÞ s00ðrÞ 6¼ 0 for all r 2 R;

ðs-iiiÞ s00ðrÞ, s000ðrÞ 2 L2ðRÞ \ L1ðRÞ:
We also assume that �s : Rþ ! R is smooth. Moreover, there is a time T? such that
�s0ðtÞ ¼ 0 for all t � T?: The initial data r0, p0 2 L2ð0, 1Þ are compatible with the bound-
ary conditions.

Remark. Conditions (s-i) and (s-ii) ensure that the system is strictly hyperbolic and
genuinely nonlinear, respectively. Condition (s-iii) is used later on to ensure some
boundedness properties of the Lax entropies.

Theorem 2.1. System (2.1) admits a weak solution �u ¼ ð�r , �pÞ in the sense of (1.5) and
(1.6), such that �u 2 L1ð0,T; L2ð0, 1ÞÞ, �uð0, xÞ ¼ u0ðxÞ for a.e. x; and it satisfies the
Clausius inequality:

Fð�uðtÞÞ � Fðu0Þ � WðtÞ, 8t 2 0,T½ � (2.2)

with W(t) as in (1.10). Furthermore �u satisfies the local Lax entropy condition in the
sense specified in Section 6.

3. Viscous approximation and energy estimates

We consider the following parabolic approximation of the hyperbolic system (2.1)

rdt � pdx ¼ drdxx
pdt � sðrdÞx ¼ dpdxx

, ðt, xÞ 2 Rþ � 0, 1½ �
(

(3.1)

for d > 0, with the boundary conditions:
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pdðt, 0Þ ¼ 0, rdðt, 1Þ ¼ s�1ð�sðtÞÞ, pdxðt, 1Þ ¼ 0, rdxðt, 0Þ ¼ 0, (3.2)

and initial data:

pdð0, xÞ ¼ pd0ðxÞ, rdð0, xÞ ¼ rd0ðxÞ: (3.3)

The initial data rd0 , p
d
0 2 C1ð½0, 1�Þ are mollifications of r0 and p0 compatible with the

boundary conditions:

pd0ð0Þ ¼ 0 rd0ð1Þ ¼ s�1ð�sð0ÞÞ, @xp
d
0ð1Þ ¼ 0 @xr

d
0ð0Þ ¼ 0: (3.4)

Moreover, there is C independent of d such that��rd0��L2 þ ��pd0��L2 þ �� ffiffiffi
d

p
@xr

d
0

��
L2 :þ

�� ffiffiffi
d

p
@xp

d
0

��
L2 � C (3.5)

and ðrd0 , pd0Þ ! ðr0, p0Þ strongly in L2ð0, 1Þ:
As shown in [12] in a more general setting, this system admits a global classical solu-

tion ðrd, pdÞ, with
rd, pd 2 C1ðRþ;C0ð 0, 1½ �ÞÞ \ C0ðRþ;C2ð 0, 1½ �ÞÞ:

Remark. (i) We added two extra Neumann conditions, namely pdxðt, 1Þ ¼ rdxðt, 0Þ ¼ 0:
These conditions reflect the conservative nature of the viscous perturbation, and are
required in order to obtain the correct production of free energy.
(ii) One could introduce a nonlinear viscosity term: dsðrdÞxx in place of drdxx: This is a

term which comes naturally from a microscopic derivation of system (3.1), as described
in the introduction (see also [13]). Nevertheless, this does not drastically change the
problem, thus we shall consider only the linear viscosity drdxx:

Theorem 3.1 (Energy estimate). There there is a constant C> 0 independent of t and d
such that ð1

0
judðt, xÞj2dxþ d

ðt
0

ð1
0
judxðs, xÞj2dxds � C (3.6)

for all t � 0 and d > 0:

Proof. Let F be a primitive of s such that c1
2 r

2 � FðrÞ � c2
2 r

2: By a direct calculation we
haveð1

0

ðpdÞ2
2

þ FðrdÞ
� �

dx

					
t¼T

t¼0

þ
ðT
0

ð1
0

dðrdxÞ2 þ dðpdxÞ2

 �

dxdt ¼
ðT
0
�sðtÞ

ð1
0
rdt dxdt (3.7)

¼ �sðtÞ
ð1
0
rddx

 !					
t¼T

t¼0

�
ðT
0
�s0ðtÞ

ð1
0
rddxdt: (3.8)

Write, for some e > 0 to be chosen later,

�sðTÞ
ð1
0
rdðT, xÞdx � j�sðTÞj 1

2e
þ e
2

ð1
0
ðrdÞ2ðT, xÞdx

 !
� C�s

2e
þ C�se

2

ð1
0
ðrdÞ2ðT, xÞdx (3.9)

where C�s ¼ supt�0ðj�sðtÞj þ j�s0ðtÞjÞ depends on �s only.
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Using FðrÞ � c1
2 r

2 we obtain

c1
2
� C�se

2

� �ð1
0
ðrdÞ2ðT, xÞdxþ 1

2

ð1
0
ðpdÞ2ðT, xÞdx þ

ðT
0

ð1
0

dðrdxÞ2 þ dðpdxÞ2

 �

dxdt

� C�s

2e
þ C0 �

ðT
0
�s0ðtÞ

ð1
0
rdðt, xÞdxdt:

(3.10)

Recall that there is T? > 0 such that �s0ðtÞ ¼ 0 for t � T?: Then, for T < T?, we write

c1
2
� C�se

2

� �ð1
0
ðrdÞ2ðT, xÞdx þ 1

2

ð1
0
ðpdÞ2ðT, xÞdx þ

ðT
0

ð1
0

dðrdxÞ2 þ dðpdxÞ2

 �

dxdt

� C�s

2e
þ C0 þ C2

�s

2
T þ 1

2

ðT
0

ð1
0
ðrdÞ2ðt, xÞdx

(3.11)

� C�s

2e
þ C0 þ C2

�s

2
T þ 1

2

ðT
0

ð1
0

ðrdÞ2ðt, xÞ þ ðpdÞ2ðt, xÞ
� �

dxdt

þ 1
2

ðT
0

ðt
0

ð1
0

dðrdxÞ2 þ dðpdxÞ2

 �

dxdsdt

(3.12)

where C0 depends on the initial data only. Choosing e ¼ c1=ð2C�sÞ gives
c1
4
JðTÞ � C0 þ C2

�s

c1
þ C2

�s

2
T þ 1

2

ðT
0
JðtÞdt, (3.13)

where

JðtÞ ¼
ð1
0

ðrdÞ2ðt, xÞ þ ðpdÞ2ðt, xÞ
� �

dx þ
ðt
0

ð1
0

dðrdxÞ2 þ dðpdxÞ2

 �

dxds: (3.14)

We apply Gronwall’s inequality. This, together with T < T?, gives

JðTÞ � 4c1C0 þ 2C2
�sð2þ c1TÞ

c21
exp

2T
c1

� �

� 4c1C0 þ 2C2
�sð2þ c1T?Þ
c21

exp
2T?

c1

� �
:¼ C0ðc1,�sÞ,

(3.15)

for all T 2 ½0,T?Þ, where C0ðc1,�sÞ is independent of T and d
On the other hand, if T � T?, we have

c1
2
� C�se

2

� �ð1
0
ðrdÞ2ðT, xÞdx þ 1

2

ð1
0
ðpdÞ2ðT, xÞdx þ

ðT
0

ð1
0

dðrdxÞ2 þ dðpdxÞ2

 �

dxdt

� C�s

2e
þ C0 �

ðT?

0
�s0ðtÞ

ð1
0
rdðt, xÞdxdt

(3.16)

and the integral at the right-hand side is uniformly bounded in T, d and d, since
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�
ðT?

0
�s0ðtÞ

ð1
0
rdðt, xÞdxdt � C�s

ðT?

0

ð1
0
jrdðt, xÞjdxdt

� C�sT?
1
T?

ðT?

0

ð1
0
ðrdÞ2ðt, xÞdxdt

 !1=2

� C�s

ffiffiffiffiffi
T?

p ðT?

0
JðtÞdt

 !1=2

� C�sT?

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C0ðc1,�sÞ

p

(3.17)

w

From (3.7) we also immediately obtain the following

Corollary 3.2 (Viscous Clausius inequality).

FðudðtÞÞ � Fðud0Þ � �
ðt
0
�s0ðsÞ

ð1
0
rdðs, xÞdxþ �sðtÞ

ð1
0
rdðt, xÞdx � �sð0Þ

ð1
0
rd0ðxÞdx: (3.18)

4. L2 young measures and compensated compactness

Throughout this section, for any fixed T> 0 let udðt, xÞ :¼ ðrdðt, xÞ, pdðt, xÞÞ be a strong
solution of (3.1) on QT. By Theorem 3.1 and after a time integration over ½0,T� we obtain

kudkL2ðQTÞ � C (4.1)

for some C independent of d. Thus we can extract from fudgd>0 a subsequence that is
weakly convergent in L2ðQTÞ: Namely, up to a subsequence, there exists �u ¼ ð�r , �pÞ 2
L2ðQTÞ such that

lim
d!0

ð
QT

udu ¼
ð
QT

�uu, 8u 2 L2ðQTÞ: (4.2)

All the limits d ! 0 taken below are intended along a chosen subsequence.
In this section, we want to show that for any / 2 L2ðQTÞ we have

lim
d!0

ð
QT

/ðt, xÞsðrdðt, xÞÞdxdt ¼
ð
QT

/ðt, xÞsð�rðt, xÞÞdxdt: (4.3)

This is done using a L2 version of the compensated compactness, which is usually per-
formed in L1:

From the solution udðt, xÞ, we define the following Young measure on QT � R
2:

�dt, x :¼ dudðt, xÞ, (4.4)

which is a Dirac mass centered at ud, i.e.ð
QT

Jðt, xÞf ðudðt, xÞÞdxdt ¼
ð
QT

ð
R

2
Jðt, xÞf ðnÞd�dt, xðnÞdxdt

for all measurable J : QT ! R and f : R2 ! R:
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Since we have L2 bounds on ud, we refer at �dt, x as a L2-Young measure [14]. In par-
ticular we have, from (4.1) ð

QT

ð
R

2
jnj2d�dt, xðnÞdxdt � C: (4.5)

We call Y the set of Young measures on QT � R
2 and we make it a metric space by

endowing it with the Prohorov’s metric. By proposition 4.1 of [15], the set

KC :¼ � 2 Y :

ð
QT

ð
R

2
jnj2d�t, xðnÞdxdt � C

� 
(4.6)

is compact in Y: Then, by the fundamental theorem for Young measures ([14], section
2), there exists �� t, x 2 Y so that, up to a subsequence,

lim
d!0

ð
QT

ð
R

2
Jðt, xÞf ðnÞd�dt, xðnÞdxdt ¼

ð
QT

ð
R

2
Jðt, xÞf ðnÞd�� t, xðnÞdxdt (4.7)

for all continuous and bounded J : QT ! R and f : R2 ! R: We shall simply write
�d ! �� in place of (4.7). By a simple adaptation of proposition 4.2 of [15], (4.7) can be

extended to a function f : R2 ! R such that f ðnÞ=jnj2 ! 0 as jnj ! þ1:

In order to obtain (4.3), we need to prove that the limit Young measure �� is a Dirac
mass: �� t, x ¼ d�uðt, xÞ, for some �u 2 L2ðQTÞ and for almost every ðt, xÞ 2 QT : This is done
using the classical argument by Tartar and Murat.

Definition 4.1. A Lax entropy-entropy flux pair for system (2.1) is a couple of differenti-
able functions ðg, qÞ : R2 ! R

2 such that

gr þ qp ¼ 0

s0ðrÞgp þ qr ¼ 0
:

(
(4.8)

We show that Tartar’s equation holds for any two suitable entropy pairs ðg, qÞ and
ðg0, q0Þ to be specified below and almost all ðt, xÞ 2 QT :

hgq0 � g0q, �� t, xi ¼ hg, �� t, xihq0, �� t, xi � hg0, �� t, xihq, �� t, xi, (4.9)

where

hf , �� t, xi :¼
ð
R

2
f ðnÞd�� t, xðnÞ (4.10)

for any measurable f. We employ the following argument due to Shearer [7].
Accordingly to Lemma 2 in [7], there exists a family of half-plain supported entropy-

entropy fluxes ðg, qÞ such that g and q are bounded together with their first and second

derivatives. These are explicitly given as follows. We define zðrÞ :¼ Ð r0 ffiffiffiffiffiffiffiffiffiffi
s0ðqÞp

dq and we
define the Riemann coordinates w1 ¼ pþ z,w2 ¼ p� z: We also pass from the depend-
ent variables g, q to H,Q as follows:

g ¼ 1
2
ðs0Þ�1=4 H þ Qð Þ (4.11)

q ¼ 1
2
ðs0Þþ1=4 H � Qð Þ (4.12)
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so that (4.8) becomes

Hw1 ¼ aQ
Hw2 ¼ �aQ

,

�
(4.13)

where

aðw1 � w2Þ ¼
s00 r w1�w2

2

� �� �
8 s0 r w1�w2

2

� �� �� �3=2 : (4.14)

Then we fix �w1, �w2 2 R and we solve (4.13) with Goursat data given on the lines w1 ¼
�w1 and w2 ¼ �w2:

Hð�w1,w2Þ ¼ gðw2Þ
Qðw1, �w2Þ ¼ 0,

(4.15)

where g is continuous and compactly supported. Then one can explicitly solve (4.13)
and get

Hðw1,w2Þ ¼ gðw2Þ þ
X1
n¼1

ðAngÞðw1,w2Þ

Qðw1,w2Þ ¼ �
ðw2

�w2

aðw1 � vÞHðw1, vÞdv,
(4.16)

where the operator A acts on functions f 2 L1locðR2Þ as follows:

ðAf Þðw1,w2Þ ¼ �
ðw1

�w1

ðw2

�w2

aðv� w2Þaðv� uÞf ðv, uÞdudv: (4.17)

Finally, going back to g and q and using our assumptions on s it is possible to show
([7], Lemma 2) that g and q are bounded, together with their first and second
derivatives.
Now we have a suitable family of entropy-entropy flux pair, we use Tartar-Murat

Lemma in order to derive Tartar’s equation (4.9). We evaluate ðg, qÞ along the approxi-
mate solutions ud and compute the entropy production:

gðudÞt þ qðudÞx ¼ d grr
d
x þ gpp

d
x


 �
x
� d grrðrdxÞ2 þ gppðpdxÞ2 þ 2grpr

d
xp

d
x


 �
(4.18)

Since gr and gp are bounded and
ffiffiffi
d

p
rdx ,

ffiffiffi
d

p
pdx are bounded in L2ðQTÞ, we have

lim
d!0

d grr
d
x þ gpp

d
x


 �
x
¼ 0 in H�1ðQTÞ, (4.19)

while ����d grrðrdxÞ2 þ gppðpdxÞ2 þ 2grpr
d
xp

d
x


 �����
L1ðQTÞ

� C (4.20)

uniformly with respect to d. Thus we have obtained an equality of the form

gðudÞt þ qðudÞx ¼ vd þ wd,
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where fvdgd>0 lies in a compact set of H�1ðQTÞ and fwdgd>0 is bounded in L1ðQTÞ:
Moreover, since g and q are bounded, fgðudÞt þ qðudÞxgd>0 is bounded in W�1, pðQTÞ
for some p> 2.
Therefore, we can apply Tartar-Murat and the div-curl lemma (cf [16], Theorem

16.2.1 and Lemma 16.2.2) and obtain Tartar’s equation (4.9).
The final step is to use Tartar’s equation to prove that the support of the limit Young

measure �� t, x is a point. This is done in lemmas 4 to 7 of [7] and leads to the following

Proposition 4.2. There exists a �u 2 L2ðQTÞ such that �� t, x ¼ d�uðt, xÞ for almost all
ðt, xÞ 2 QT. Moreover, ud ! �u strongly in LpðQTÞ for any p 2 ½1, 2Þ:

4.1. Regularity

Proposition 4.3. For the function �u obtained in section 4,

�u 2 L1ð0,T; L2ð0, 1ÞÞ:

Proof. Since ud ! �u in Lp strong for p< 2, we can extract a subsequence fudkgk2N that
converges pointwise to �u for almost all t and x. In particular, for almost all t, the
sequence udkðt, xÞ converges for almost all x. Therefore, by Fatou lemma and Theorem
3.1, ð1

0
j�uðt, xÞj2dx � lim inf

k!1

ð1
0
judkðt, xÞj2dx � C (4.21)

for almost all t 2 ½0,T�: w

The proof is of next lemma is standard and therefore omitted.

Lemma 4.4. Let aðtÞ :¼ s�1ð�sðtÞÞ. Then, the solutions ðrd, pdÞ of the viscous system (3.1)
can be written as follows:

rdðt, xÞ ¼ aðtÞ þ
ð1
0
Gd
r ðx, x0, tÞðrd0ðx0Þ � að0ÞÞdx0

þ
ðt
0

ð1
0
Gd
r ðx, x0, t � t0Þð@x0pdðt0, x0Þ � aðt0ÞÞdx0dt0

(4.22)

pdðt, xÞ ¼
ð1
0
Gd
pðx, x0, tÞpd0ðx0Þdx0 þ

ðt
0

ð1
0
Gd
pðx, x0, t � t0Þ@x0sðrdðt0, x0ÞÞdx0dt0 (4.23)

where the Gd
r and Gd

p are Green functions of the heat operator @t � d@xx with homoge-

neous boundary conditions:

Gd
r ð1, x0, tÞ ¼ @xG

d
r ð0, x0, tÞ ¼ 0 (4.24)

Gd
pð0, x0, tÞ ¼ @xG

d
pð1, x0, tÞ ¼ 0 (4.25)

for all x0 2 ½0, 1�, t � 0 and d > 0:
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The Green’s functions Gd
r ðx, x0, tÞ and Gd

pðx, x0, tÞ are symmetric under the exchange

of x and x0: Moreover we have the following identities

@xG
d
pðx, x0, tÞ ¼ �@x0G

d
r ðx, x0, tÞ, (4.26)

@xG
d
r ðx, x0, tÞ ¼ �@x0G

d
pðx, x0, tÞ: (4.27)

Remark. The functions Gd
r and Gd

p have the following explicit forms:

Gd
pðx, x0, tÞ ¼

1
2

X
n odd

e�tdkn sin
ffiffiffiffiffi
kn

p
x


 �
sin

ffiffiffiffiffi
kn

p
x0


 �
(4.28)

Gd
r ðx, x0, tÞ ¼

1
2

X
n odd

e�tdkn cos
ffiffiffiffiffi
kn

p
x


 �
cos

ffiffiffiffiffi
kn

p
x0


 �
, (4.29)

with kn ¼ n2p2
4 :

Proposition 4.5. For any / 2 C1ð½0, 1�Þ, the application

t 7! I/ðtÞ :¼
ð1
0
/ðxÞ�uðt, xÞdx (4.30)

is Lipschitz continuous. Consequently �uðt, �Þ 2 L2ð0, 1Þ for all t � 0:

Proof. We prove the statement for �p, as the proof for �r is similar. Furthermore, we
prove the proposition only between 0 and t, as in the general case, say between t1 and t,
it is enough to replace the initial term pd0ðxÞ with pdðt1, xÞ: We let

Id/ðtÞ :¼
ð1
0
/ðxÞpdðt, xÞdx (4.31)

and evaluate

I/ðtÞ � I/ð0Þ ¼
ð1
0

ð1
0
/ðxÞGd

pðx, x0, tÞpd0ðx0Þdx0dx�
ð1
0
/ðxÞpd0ðxÞdx

þ
ðt
0

ð1
0

ð1
0
/ðxÞGd

pðx, x0, t � t0Þ@x0sðrdðt0, x0ÞÞdxdx0dt0
(4.32)

¼
ð1
0

ð1
0
/ðxÞ Gd

pðx, x0, tÞ � dðx, x0Þ
h i

pd0ðx0Þdx0dx

þ
ðt
0

ð1
0

ð1
0
/ðxÞ@xGd

r ðx, x0, t � t0Þsðrdðt0, x0ÞÞdxdx0dt0 þ
ðt
0

ð1
0
/ðxÞGd

pðx, 1, t � t0Þ�sðt0Þdxdt0,
(4.33)

where we have used the symmetry of Gd
p as well as the property @x0Gd

p ¼ �@xGd
r : The

boundary term is estimated asðt
0

ð1
0
/ðxÞGd

pðx, 1, t � t0Þ�sðt0Þdxdt0
				

				 � k�sk1
ðt
0

ð1
0
/ðxÞGd

pðx, 1, t � t0Þdx
				

				dt0
� tk�sk1k/kL2 : (4.34)
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We estimate the term involving s asðt
0

ð1
0

ð1
0
/ðxÞ@xGd

r ðx, x0, t � t0Þsðrdðt0, x0ÞÞdxdx0dt0
				

				
¼ 1

2

X
nodd

ð1
0

ffiffiffiffiffi
kn

p
sin

ffiffiffiffiffi
kn

p
x


 �
/ðxÞdx

ðt
0
dt0e�ðt�t0Þknd

ð1
0
cos

ffiffiffiffiffi
kn

p
x0


 �
sðrdðt0, x0ÞÞdx0

					
					

� k/0kL2
1
2

X
nodd

�ðt
0
dt0e�ðt�t0Þknd

ð1
0
cos

ffiffiffiffiffi
kn

p
x0


 �
sðrdðt0 , x0ÞÞdx0

�2
" #1=2

� k/0kL2
1
2

X
nodd

1� e�2tknd

2knd

 !ðt
0
dt0

ð1
0
cos

ffiffiffiffiffi
kn

p
x0


 �
sðrdðt0 , x0ÞÞdx0

 !2
2
4

3
51=2

� k/0kL2
t
2

ðt
0
dt0
X
nodd

ð1
0
cos

ffiffiffiffiffi
kn

p
x0


 �
sðrdðt0 , x0ÞÞdx0

 !2
2
4

3
51=2

¼ k/0kL2 t
ðt
0
dt0
ð1
0
sðrdðt0 , x0ÞÞ2dx0

" #1=2
(4.35)

� tk/0kL2
ð1
0
sðrdð�, x0ÞÞ2dx0

				
				

				
				1=2
L1ð0,TÞ

� Ctk/0kL2 (4.36)

where C is independent of t and d.
In order to estimate the first term of (4.33) we writeð1

0

ð1
0
/ðxÞ Gd

pðx, x0, tÞ � dðx, x0Þ
h i

pd0ðx0Þdx0dx

¼ 1
2

X
nodd

ð1
0
sin

ffiffiffiffiffi
kn

p
x


 �
/ðxÞdx e�tknd � 1ð Þ

ð1
0
sin

ffiffiffiffiffi
kn

p
x0


 �
pd0ðx0Þdx0

� td
1
2

X
nodd

kn

ð1
0
sin

ffiffiffiffiffi
kn

p
x


 �
/ðxÞdx

				
				
ð1
0
sin

ffiffiffiffiffi
kn

p
x0


 �
pd0ðx0Þdx0

				
				

� tk/0kL2kd@xpd0kL2 � tk/0kL2C

(4.37)

where we have used the assumption that f ffiffiffi
d

p
@xpd0gd>0 is bounded in L2ð0, 1Þ: We have

also assumed, without loss of generality, d � 1:
Putting everything together, we have obtained

Id/ðtÞ � Id/ð0Þ
			 			 � tC k/0kL2 þ k/kL2

� �
(4.38)

for some constant C independent of t and d. This leads to the conclusion after passing
to the limit d ! 0: w
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5. Proof of Theorem 2.1 and Clausius inequality

All is left to prove is that the function �u obtained in the previous section is to a weak
solution of the hyperbolic system (2.1), in the sense of Section 2. Let w 2 C1ðQTÞ with
wðt, 0Þ ¼ 0 for all t 2 ½0,T�: Then, for any t 2 ½0,T� we have

0 ¼
ðt
0

ð1
0

wpds � wsðrdÞx � dwpdxx


 �
dxds

¼
ð1
0
wðt, xÞpdðt, xÞdx�

ð1
0
wð0, xÞpd0ðxÞdxþ

�
ðt
0

ð1
0

wsp
d � wxsðrdÞ � dwxp

d
x


 �
dxds�

ð1
0
wðt, 1Þ�sðtÞdt:

(5.1)

where we have used the initial-boundary conditions sðrdðt, 1ÞÞ ¼ �sðtÞ and pdxðt, 1Þ ¼
0, pdð0, xÞ ¼ pd0ðxÞ as well as wðt, 0Þ ¼ 0: Since pd0 converges to p0 in L2ð0, 1Þ, we have

lim
d!0

ð1
0
wð0, xÞpd0ðxÞdx ¼

ð1
0
wð0, xÞp0ðxÞdx: (5.2)

Furthermore, Theorem 3.1 implies
ffiffiffi
d

p
pdx 2 L2ðQTÞ, consequently

Ð t
0

Ð 1
0 dwxp

d
xdxds van-

ishes as d ! 0: Moreover, (4.2) implies, along the subsequence that defines �u ¼ ð�r , �pÞ,

lim
d!0

ðt
0

ð1
0
wtp

ddxds ¼
ðt
0

ð1
0
ws�pdxdt, (5.3)

while by (4.3) we have that

lim
d!0

ðt
0

ð1
0
wxsðrdÞdxds ¼

ðt
0

ð1
0
wxsð�rÞdxds,

so that (1.6) is satisfied. The (1.5) is linear and it follows similarly.

Proposition 5.1. The solution �u satisfies Clausius inequality

Fð�uðtÞÞ � Fðu0Þ � WðtÞ (5.4)

for all t 2 ½0,T�, where

WðtÞ ¼ �
ðt
0
�s0ðsÞ

ð1
0
�rðs, xÞdx þ �sðtÞ

ð1
0
�rðt, xÞdx � �sð0Þ

ð1
0
r0ðxÞdx: (5.5)

Proof. By Proposition 4.3, Corollary 3.1, and Lemma 4.5, we have, for all t 2 ½0,T�,ð1
0

�p2ðt, xÞ
2

þ Fð�rðt, xÞÞ
� �

dx � lim inf
k!1

ð1
0

ðpdkÞ2ðt, xÞ
2

þ Fðrdkðt, xÞÞ
� �

dx (5.6)

� lim
k!1

Fðudk0 Þ �
ðt
0
�s0ðsÞ

ð1
0
rdkðs, xÞdxdsþ �sðtÞ

ð1
0
rdkðt, xÞdx� �sð0Þ

ð1
0
rdk0 ðxÞdx

 !
(5.7)

¼ Fðu0Þ �
ðt
0
�s0ðsÞ

ð1
0
�rðs, xÞdxdsþ �sðtÞ

ð1
0
�rðt, xÞdx � �sð0Þ

ð1
0
r0ðxÞdx, (5.8)

COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 1085



where we have used the fact that ud0 converges to u0 in L2 strongly in order to conclude

that Fðud0Þ ! Fðu0Þ: Moreover, all the integrals are well defined, since the application

t 7!
ð1
0
�rðt, xÞdx

is continuous. w

Thanks to the Clausius inequality, the solutions we have constructed are natural can-
didates for being the thermodynamic entropy solution of Eq. (3.1) and one can conjec-
ture that such limit is unique.

6. Lax entropy condition

From (4.18), if g is a convex Lax entropy, we have that

g udð Þt þ q udð Þx � d grr
d
x þ gpp

d
x


 �
x
: (6.1)

If g grows at most quadratically, the right hand side of (6.1) vanished in H�1 QTð Þ, and by
(4.19), for the limit we have that g uð Þt þ q uð Þx � 0 as a distribution in H�1 QTð Þ: This is
the usual local characterization of weak entropy solutions, that is independent of the
boundary conditions and does not give informations of the behavior at the boundary. Our
solutions obtained from viscosity approximation satisfy such local entropy condition.
Our point is that this local characterization should be implemented by the global

entropy production for the entropy given by the free energy g uð Þ ¼ F uð Þ, i.e. the
Clausius inequality.
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