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Introduction

In the present thesis, we are going to collect results belonging to two lines of research:

the �rst part of the work is devoted to the spectral theory for non-self-adjoint operators,

whereas in the second part we consider nonlinear hyperbolic equations with time depending

coe�cients, and in particular their blow-up phenomena. The �rst argument is in some sense

the lion’s share of the thesis, being the main interest of research during my doctoral studies.

Nevertheless, both of them have been deeply explored for decades and are still highly

topical nowadays, being fascinating both for the mathematical and physical community.

The bulk of the thesis is constituted by �ve chapters, all almost completely self-

contained, mirroring the �ve independent papers listed at the end of this Introduction. In

the following two sections, we are going to present our problems and aims, outlining the

results we proved.

Cages for eigenvalues

Since around the dawn of the millennium, there has been a �ood of interest in the study of

non-self-adjoint operators in Quantum Mechanics. This is due in part for their physical

relevance, which relies, inter alia, on the new concept of representing quantomechanic

observables by operators which are merely similar to self-adjoint ones. On the other side,

the mathematical community is thrilled by the absence of tools such as the spectral theorem

and the variational methods, which makes this topic challenging. The di�culty of the

non-self-adjoint theory is nicely caught in the following quotation from [Dav07] by E. B.

Davies:

Studying non-self-adjoint operators is like being a vet rather than a doctor: one

has to acquire a much wider range of knowledge, and to accept that one cannot

expect to have as high a rate of success when confronted with particular cases.

As good sources for the non-self-adjoint operators theory and its developments, we may

cite the monographs [GK69,Kat95,Tre08] or the more recent books [Dav02,BGSZ15], where

physical applications may also be found.
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Cages for eigenvalues

In particular, a huge attention is paid to the spectral properties of non-self-adjoint

operators and to the so-called Keller-type inequalities, id est bounds on the eigenvalues in

terms of norms of the potential. Especially in the case of the Schrödinger operator, they can

be referred to as well as Lieb-Thirring-type inequalities. Indeed, they constitute somewhat

the counterpart of the celebrated inequalities for the self-adjoint Schrödinger operator

−∆ + V , exploited by E. H. Lieb and W. E. Thirring in the ‘70 of the last century to prove

the stability of matter (an exciting argument, but here we just cite the monograph [LS10]

for an academic treatment of the subject).

The �rst appearance of a Keller-type inequality for the non-self-adjoint Schrödinger

operator −∆ + V , where the potential V is a complex-valued function, is due to A. A.

Abramov, A. Aslanyan and E. B. Davies in [AAD01], where they observed that the bound

|z|1/2 ≤ 1

2
‖V ‖L1

holds, in dimension n = 1, for any eigenvalue z ∈ σp(−∆ + V ), and the constant is sharp.

In view of this result, A. Laptev and O. Safronov in [LS09] conjectured that the eigen-

values localization bound

|z|γ ≤ Dγ,n ‖V ‖γ+n/2

Lγ+n/2

should be true for any 0 < γ ≤ n/2 and a positive constant Dγ,n. In the seminal work

[Fra11], R. Frank proved the conjecture to be true for 0 < γ ≤ 1/2, and later in [FS17b],

together with B. Simon, extended the range up to the one suggested by Laptev and Safronov

under radial symmetry assumptions. The above relation holds also in the case γ = 0, in the

sense that if D0,n ‖V ‖n/2Ln/2
< 1 for some positive constant D0,n, then the point spectrum

of −∆ + V is empty.

The Laptev-Safronov conjecture certainly can not be true for γ > n/2, as observed

originally by Laptev and Safronov themselves (see also S. Bögli [Bög17] for the construction

of bounded potentials in Lγ+n/2
, γ > n/2, with in�nitely many eigenvalues accumulating

to the real non-negative semi-axis). The situation in the range 1/2 < γ ≤ n/2 remained

unclear for more than a decade. An argument in [FS17b] suggested that, for these values of

γ, the Laptev-Safronov conjecture should fail in general, but it was not until very recently

that S. Bögli and J.-C. Cuenin completely disproved the conjecture for this range of γ in

their new preprint [BC21].

The Lieb-Thirring-type bound in [Fra11] are obtained by Frank exploiting two main

tools: the Birman-Schwinger principle and the Kenig-Ruiz-Sogge estimates in [KRS87] on

the conjugate line, viz.∥∥(−∆− z)−1
∥∥
Lp→Lp′ ≤ C|z|

−n/2+n/p−1,
2

n+ 1
≤ 1

p
− 1

p′
≤ 2

n
,

where 1/p + 1/p′ = 1 and C is some positive constant. In fact, the combination of the

Birman-Schwinger principle with resolvent estimates for free operators is one of the way to

approach the localization problem for eigenvalues: it has been widely employed in the later

times (see e.g. [Fra11,CLT14,Enb16,FS17b,Cue17,FKV18b,FK19,CIKŠ20,CPV20] to cite just

few recent papers) and it will be the approach we are going to follow in this work too, as we

will see. Despite the robustness of the Birman-Schwinger principle, it is not the only tool

one could use to obtain spectral enclosures for non-self-adjoint operators: another powerful

technique is the method of multipliers, see e.g. [FKV18a, FKV18b, Cos17, CFK20, CK20].
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Cages for eigenvalues

Roughly speaking, the principle states that z ∈ C is an eigenvalue of an operator

H := H0 + B∗A if and only if −1 is an eigenvalue of the Birman-Schwinger operator

Kz := A(H0 − z)−1B∗. In typical quantum mechanical examples, H0 is a di�erential

operator representing the kinetic energy of the system, while B∗A is a factorization of

a multiplication operator representing an electromagnetic interaction. In this way, the

spectral problem for an unbounded di�erential operator is reduced to a bounded integral

operator. In particular, the eigenvalues of the perturbed operator H are con�ned in the

complex region de�ned by 1 ≤ ‖Kz‖ and the point spectrum is empty if ‖Kz‖ < 1
uniformly with respect to z.

It is clear from the de�nition of the Birman-Schwinger operator that this approach

reduces to establishing suitable resolvent estimates for the unperturbed operatorH0. Indeed,

once we know how to bound (H0 − z)−1
, it is usually an easy matter setting A and B in a

suitable normed space, and then obtain an estimate for Kz . Of course, this naïf reasoning

is well-known, and can be synthesized claiming that each resolvent estimate corresponds,

via the Birman-Schwinger principle, to a localization estimate for the eigenvalues of the

perturbed operator.

The aim of the �rst part of the thesis is to apply this strategy to the non-self-adjoint

Dirac operator formally de�ned by

Dm,V := Dm + V = −ic~
n∑
k=1

αk∂k +mc2αn+1 + V

where n ≥ 1 is the dimension, m ≥ 0 is the mass, c is the speed of light, ~ is the reduced

Planck constant and αk ∈ CN×N , for k ∈ {1, . . . , n+ 1} and N := 2dn/2e, are the Dirac

matrices. The potential V : Rn → CN×N is a possibly non-Hermitian matrix-valued

function. The Dirac operator plays a huge role in Quantum Physics, with widespread

applications: just to cite the classic ones, it describes the relativistic quantum mechanics

of spin-1/2 particles both compatibly with the theory of relativity and naturally taking

in account the spin of the particle and its magnetic moment. Moreover, it successfully

describes the hydrogen atom. An essential reference for the theory of the Dirac operator

(in the self-adjoint setting) is the B. Thaller’s monography [Tha92].

The spectral studies for Dm,V were started by J.-C. Cuenin, A. Laptev and C. Tretter

in their celebrated work [CLT14], for the 1-dimensional case. There they proved that if

V ∈ C2×2
is a potential such that

‖V ‖L1(R) =

∫
R
|V (x)|dx < 1,

where |V (·)| is the operator norm of V (·) in C2
with the Euclidean norm, then every

non-embedded eigenvalue z ∈ C \ {(−∞,−m] ∪ [m,+∞)} of Dm,V lies in the union

z ∈ BR0(x−0 ) ∪BR0(x+
0 )

of two disjoint closed disks in the complex plane, with centers and radius respectively

x±0 = ±m

√
‖V ‖41 − 2 ‖V ‖21 + 2

4(1− ‖V ‖21)
+

1

2
, R0 = m

√
‖V ‖41 − 2 ‖V ‖21 + 2

4(1− ‖V ‖21)
− 1

2
.
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Cages for eigenvalues

In particular, in the massless case the spectrum is σ(D0,V ) = R. Moreover, this inclusion is

shown to be optimal. Again, the proof relies on the combination of the Birman-Schwinger

principle with a resolvent estimate for the free Dirac operator, namely

∥∥(Dm − z)−1
∥∥
L1(R)→L∞(R)

≤

√
1

2
+

1

4

∣∣∣∣z +m

z −m

∣∣∣∣+
1

4

∣∣∣∣z −mz +m

∣∣∣∣.
In some sense, this is the counterpart for the Dirac operator of the above-cited Abramov-

Aslanyan-Davies inequality for the Schrödinger operator in 1-dimension.

One could ask if, in the same fashion of the Frank’s argument in [Fra11], one can

combine the Birman-Schwinger principle withLp−Lp′ resolvent estimates for the free Dirac

operator, to derive Keller-type inequalities for the perturbed Dirac operator. Unfortunately,

these reasoning can not be straightforwardly applied, since such Kenig-Ruiz-Sogge-type

estimates does not exists in the case of Dirac for dimension n ≥ 2, as observed by Cuenin

in [Cue14]. Indeed, due to the Stein-Thomas restriction theorem and standard estimates for

Bessel potentials, the resolvent (Dm − z)−1 : Lp(Rn) → Lp
′
(Rn) is bounded uniformly

for |z| > 1 if and only if

2

n+ 1
≤ 1

p
+

1

p′
≤ 1

n
,

hence the only possible choice is (n, p, p′) = (1, 1,∞). For the Schrödinger operator the

situation is much better since the right-hand side of the above range is replaced by 2/n, as

per the Kenig-Ruiz-Sogge estimates.

For the high dimensional case n ≥ 2, we may refer among others to the works [Dub14,

CT16,Cue17,FK19] where the eigenvalues are localized in terms ofLp-norm of the potential,

but the con�nement region is unbounded around σ(Dm) = (−∞,−m] ∪ [m,+∞), i.e.

the spectrum of the free Dirac operatorDm. Instead, we are mainly devoted to the research

of a compact region in which to localize the point spectrum.

In Chapter 1, corresponding to the paper [S1], we achieve this objective, generalizing

in higher dimensions the above result by Cuenin, Laptev and Tretter [CLT14]. Indeed,

assuming V small enough respect to a suitable mixed Lebesgue norm, namely

‖V ‖Y := max
j∈{1,...,n}

‖V ‖L1
xj
L∞
x̂j

= max
j∈{1,...,n}

∫
R
‖V (xj , ·)‖L∞(Rn−1) dxj ≤ C0

for a positive constant C0 independent of V , we prove in the massive case m > 0 that

the eigenvalues of Dm,V are contained in the union of two closed disks in the complex

plane with centers and radius depending on ‖V ‖Y . Instead, in the massless case m = 0,

the spectrum is the same of the one for the unperturbed operator, viz. σ(D0,V) = R,

and there are no eigenvalues, under the same smallness assumption for the potential.

This results are proved combining the Birman-Schwinger principle together with new

Agmond-Hörmander-type estimates for the resolvent of the Schrödinger operator and its

�rst derivatives.

In Chapter 2, whose results are proved in [S2], again we take advantage of the main

engine of the Birman-Schwinger operator fueled this time with resolvent estimates already

published in the literature, but which imply spectral results for the Dirac operator (and

for the Klein-Gordon one) worthy of consideration. In particular, in dimension n ≥ 3 we

show again results similar to the previous ones, hence con�nement of the eigenvalues in

ix



A trigger to blow-up

two disks in the massive case and their absence in the massless case, assuming now for the

potential the smallness assumption

‖|x|V ‖`1L∞ :=
∑
j∈Z
‖|x|V ‖L∞(2j−1≤|x|<2j) < C1.

The constant C1 can be explicitly showed as a number depending only on the dimension n
and, even if far to be optimal, is still valuable in the applications. Moreover, in this chapter

the results for the spectrum stability are proved not only in the massless case, but also in

the massive one, assuming smallness pointwise assumptions on the weighted potential,

namely

∥∥|x|ρ−2V
∥∥
L∞

< C2. The constant C2 is made explicit in terms of the dimension n

and the mass m, and ρ is a positive weight satisfying

∑
j∈Z ‖ρ‖

2
L∞(2j−1≤|x|<2j) <∞ and

additionally, in the massive case, such that |x|1/2ρ ∈ L∞(Rn) (prototypes of such kind of

weights already appeared e.g. in [BRV97]).

Finally, in Chapter 3, which corresponds to the work [S3], we consider some families

of potentials with a peculiar matricial structure satisfying some rigidity assumptions. Em-

ploying resolvent estimates for the Schrödinger operator well-established in the literature,

we can obtain, among others, the counterpart of the above-mentioned results by Abramov,

Aslanyan and Davies [AAD01] and by Frank [Fra11] for the Dirac operator, viz. we prove

that, for some positive constant Dγ,n,m,

|z2 −m2|γ ≤ Dγ,n,m ‖V ‖γ+n/2

Lγ+n/2

holds, where γ = 1/2 if n = 1, and 0 < γ ≤ 1/2 if n ∈ N \ {2, 4} (the exclusion of

dimensions n = 2 and n = 4 are due to the conditions required on the potential). The

case γ = 0 is again included, in the sense that if D0,n,m ‖V ‖n/2Ln/2
< 1, then there is no

eigenvalue. In the massless case, we obtain the spectrum stability of the perturbed Dirac

operator for any of our special potentials. What is remarkable in these results (for γ 6= 0)

is the absence of any restriction on the norm size of the potential, contrary to the known

results regarding the Dirac operator; however, we dearly pay on the rigidity structure of

the potential. Here we underline these results in order to appreciate the parallelism with

the Schrödinger case, but many others are presented in this chapter, concerning both the

eigenvalues enclosure in (un)bounded regions and the spectrum stability, depending on

the rigidity assumptions for the potential and involving di�erent kinds of norms. In one

case, no rigidity assumptions at all are required, but a eigenvalues con�nement in two

complex closed disks is obtained supposing the Ln,1ρ L∞θ -norm of V small enough, in the

same fashion of the result in Chapter 1. As already said, the Birman-Schwinger machine

is here powered by many well-known Schrödinger resolvent estimates, of which we will

depict a complete picture.

A trigger to blow-up

In order to start presenting the topic of Part II of this thesis, we will borrow the words from

the Introduction of the monograph [Str89] by W. Strauss:

Any hyperbolic equation is a wave equation, but there are other wave equa-

tion as well, such as the Schrödinger and Korteweg-de Vries equations. The

x



A trigger to blow-up

solutions of such equations tend to be oscillations which spread out spatially.

A nonlinear term such as up will tend to magnify the size of u where u is large,

and to be negligible when u is small. It can make a solution blow-up in a �nite

time, it can produce a solitary wave, or (if it involves derivatives of u) it can

produce a shock wave.

The Cauchy problem associated to a general nonlinear wave equation with time-

depending speed of propagation, damping and mass terms, viz.

utt − a(t)∆u+ d(t)ut +m(t)u = F (x, t, u, ut,∇u)

with initial data u(0, x) = u0(x), ut(0, x) = u1(x) in suitable initial spaces, have been

widely studied during the last half a century, collecting a great interest and a enormous

numbers of results. Despite this, a complete theory classifying the results of the above

equation according to the properties of its coe�cients is still not developed. However, for

suitable choices of the coe�cients and of the nonlinearity, many progresses have been

achieved.

Generally speaking, when addressing the Cauchy problem above, the research focuses

on the understanding of the structural properties of the solution (after all, the properties

are what de�ne what is a solution, see the nice Section 3.2 in [Tao06]). One is interested in

exhibiting a representation formula, derivingLp−Lq decay estimates, getting an asymptotic

descriptions of the solutions, and classifying their behavior according to the behavior of

the coe�cients. Some of the �rst questions one can ask are about the wellposedness or

illposedness of the problem: there exist (in some sense) solutions of the equation? Are they

global with respect to time? Or something dramatic occurs, and we face blow-up, with

norms exploding in �nite time?

Our investigation will be indeed focused on the blow-up phenomena. When considering

a nonlinearity of the type e.g. |u|p or |ut|p, typically there exists a critical exponent pcrit

such that, if p > pcrit, there exists a unique global-in-time solution to the problem, whereas

if 1 < p ≤ pcrit, the solutions blow-up in �nite time, that is there exists a time T ≥ 0 such

that beyond it no reasonable kind of solution exists anymore. In this case, one is interested

in estimating this lifespan T .

In Chapter 4, we consider the above problem with constant speed of propagation

a(t) ≡ 1, scale-invariant damping and mass terms, nonlinearity of the type |u|p and small

initial data. We proceed recollecting, at the best of our knowledge, the many results achieved

during the decades on the widely studied damped wave equation, with and without mass,

reorganizing and unifying them, other than proving new results in the massive case (for the

purely damped case, we �nd an improvement in the lifespan estimates in 1-dimension). The

main tool we will use is a Kato-type lemma, whose mechanism is essentially based on an

inductive argument. Our analysis wants to stress in particular the competition between the

“wave-like” and “heat-like” behaviors of the solutions, not only respect to the critical power,

but also respect to the lifespan estimates. The precise meaning of what we intend with this

terms will be explained later in Subsection 4.1.1. Anyway, making a small digression and

trying to leave a cli�hanger, we recall that some wave-like equations behaves indeed more

like the heat equation. A classical example is the telegraph equation utt −∆u+ ut = 0,

whose solution experiences the di�usion phenomenon like the corresponding heat equation

−∆ + ut = 0, as t→ +∞. The fact that this two equations are connected can be seen by
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Articles of the thesis

a scaling argument: setting u(t, x) = v(λt,
√
λx), λt = s and

√
λx = y, with a positive

parameter λ, we have that λvss−∆yv+vs = 0. Hence letting λ→ 0+
, which corresponds

to t→ +∞, we get the wave equation −∆yv + vs = 0. In Chapter 4, whose results are

collected in [S4], one of the main goals is to explore this “heat versus wave” antagonism in

the blow-up context.

Least but not least, in Chapter 5, corresponding to the paper [S5], we consider the

generalized Tricomi equation, or Gellerstedt equation (namely the speed of propagation is

equal to a(t) = t2m for some positive constant m), with derivative nonlinearity |ut|p and

small initial data. We do not consider any damping or mass term this time. Very recently

this equation catalyzed a lot of attention and many papers appeared about it in a short time,

see Section 5.1 for the background. We will study the blow-up of this equation furnishing

the papabili critical exponent and lifespan estimates. Of course, to con�rm that they are

indeed the right ones, further consideration should be done demonstrating existence results.

An attempt in this direction is done here proving a local existence result by using Fourier

estimates for the Taniguchi-Tozaki multipliers. As a consequence, we show the optimality

of the lifespan estimates at least in 1-dimension. This time, the main strategy relies on the

construction of a suitable test function and hence applying the test function method in

order to reach our claimed results.

Articles of the thesis

[S1] P. D’Ancona, L. Fanelli, and N. M. Schiavone. Eigenvalue bounds for non-selfadjoint

Dirac operators. Math. Ann., 2021. DOI: 10.1007/s00208-021-02158-x.

[S2] P. D’Ancona, L. Fanelli, D. Krejčiřík, and N. M. Schiavone. Localization of eigen-

values for non-self-adjoint Dirac and Klein-Gordon operators. Nonlinear Analysis,
214:112565, 2021. DOI: 10.1016/j.na.2021.112565.

[S3] H. Mizutani, and N. M. Schiavone. Keller-type bounds for Dirac operators perturbed

by rigid potentials. arXiv preprint arXiv:2108.12854, 2021.

[S4] N.-A. Lai, N. M. Schiavone, and H. Takamura. Heat-like and wave-like lifespan

estimates for solutions of semilinear damped wave equations via a Kato’s type lemma.

J. Di�erential Equations, 269(12):11575–11620, 2020. DOI: 10.1016/j.jde.2020.08.020.

[S5] N.-A. Lai, and N. M. Schiavone. Blow-up and lifespan estimate for generalized Tricomi

equations related to Glassey conjecture. arXiv preprint arXiv:2007.16003v2, 2020.

xii

https://doi.org/10.1007/s00208-021-02158-x
https://doi.org/10.1016/j.na.2021.112565
https://arxiv.org/abs/2108.12854
https://doi.org/10.1016/j.jde.2020.08.020
https://arxiv.org/abs/2007.16003v2


Part I

Spectral theory of
non-self-adjoint Dirac operators



Science is spectral analysis.
Art is light synthesis.

Karl Kraus, Pro domo et mundo, 1912



Chapter 1

Eigenvalue bounds for
non-self-adjoint Dirac operators

In this chapter we are goint to prove that the eigenvalues of the massive Dirac operator,

perturbed by a possibly non-Hermitian potential V , are enclosed in the union of two disjoint

disks of the complex plane, provided V is su�ciently small with respect to the mixed norms

L1
xjL
∞
x̂j

, for any j ∈ {1, . . . , n}. In the massless case instead, under the same smallness

assumption on V , the spectrum is shown to be the same of that for the unperturbed operator,

and the point spectrum is empty. At this aim we establish new Agmon-Hörmander-type

resolvent estimates, which will be combined with the Birman-Schwinger principle.

The reference for the following results is [S1], joint work with Piero D’Ancona and

Luca Fanelli.

1.1 The Dirac operator

Let us start turning the spotlights on the star of the show: the perturbation of the free

Dirac operator Dm by an eventually non-Hermitian potential, namely

Dm,V := Dm + V.

We consider the operator Dm,V acting on the Hilbert space of spinors H = L2(Rn;CN ),

where n is the dimension, N := 2dn/2e and d·e is the ceiling function. The perturbed

operator Dm,V is only formally de�ned as a sum of operators; we will be able to properly

de�ne it later, thanks to Lemma 1.4.

The free Dirac operator Dm, with non-negative mass m, is de�ned as

Dm := −ic~α · ∇+mc2αn+1 = −ic~
n∑
k=1

αk∂k +mc2αn+1, (1.1.1)

being c the speed of light, ~ the reduced Planck constant and αk ∈ CN×N , for k ∈
{1, . . . , n+ 1}, the Dirac matrices. These are Hermitian matrices elements of the Cli�ord

algebra (see e.g. [Obo98]), satisfying the anti-commutation relations

αjαk + αkαj = 2δkj IN , for j, k ∈ {1, . . . , n+ 1}, (1.1.2)
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1.1. The Dirac operator

where δkj is the Kronecker symbol and IN theN ×N unit matrix. We will handle in greater

details the Dirac matrices later in Section 3.5. For now, it is enough to know that, without

loss of generality, we can take

αn+1 =

(
IN/2 0

0 −IN/2

)
.

Additionally, we can change the unit of measure in such a way that c = ~ = 1. Finally, we

recall also that free Dirac operator is self-adjoint with domain

dom(Dm) = {ψ ∈ H : ∇ψ ∈ Hn}

and core C∞0 (Rn;CN ).

The potential V : Rn → CN×N may be any complex matrix-valued function such

that V ∈ L2
loc

(Rn;R). We will say that V ∈ X for a generic space X if |V | ∈ X , where

| · | : CN×N → R is the operator norm. To make things concrete, here and in the rest of the

thesis we will consider | · | as the norm induced by the Euclidean one, viz. |A| =
√
ρ(A∗A),

where ρ(M) is the spectral radius of a matrix M . With the usual slight abuse of notation,

the same symbol V denotes both the matrix and the corresponding multiplication operator

on H, with initial domain dom(V ) = C∞0 (Rn;CN ).

Before to move on presenting our results, let us collect a selection of the known ones.

In the Introduction, we already cited the point spectrum enclosure in dimension n = 1
proved by Cuenin, Laptev and Tretter [CLT14]. As we said, in that work they show the

non-embedded eigenvalues to be con�ned in two disjoint disks of the complex plane,

assuming ‖V ‖L1(R) smaller than 1. The study on the spectrum of Dm,V they initiated in

the 1-dimensional case was followed by [Cue14, CS18, Enb18]. In the higher dimensional

case instead, we may refer to the works [Dub14, CT16, Cue17, FK19, Sam16].

In [Cue17], Cuenin localized the eigenvalues of the perturbed Dirac operator in terms

of the Lp-norm of the potential V , but in an unbounded region of the complex plane.

Indeed, Theorem 6.1.b of [Cue17] states that, if n ≥ 2 and V ∈ Lp, with p ≥ n, then any

non-embedded eigenvalue of Dm,V satis�es∣∣∣∣=z<z
∣∣∣∣n−1

p

|=z|1−
n
p ≤ C ‖V ‖Lp(Rn) ,

for some positive constant C independent of z and V . Similar unbounded enclosing

regions were obtained in [CT16], where Cuenin and Tretter study arbitrary non-symmetric

perturbations of self-adjoint operators. In particular, for the massless Dirac operator in R2
,

if V ∈ Lp with p > 2, they obtain that

σ(Dm,V ) ⊂
⋂

0<b<1

z ∈ C : |=z|2 ≤
(2π(p− 2))

− 2
p−2 ‖V ‖

2p
p−2

Lp(R2)
b
− 4
p−2 + b2|<z|2

1− b2

 .

Considering instead the massive Dirac operator with Coulomb-like potential in R3
, the

authors in [CT16] obtain that, if |V (x)|2 ≤ C2
1 + C2

2 |x|−2
for almost all x ∈ R3

, where

C1, C2 ≥ 0 are constants such that C2
1 + 4C2

2m
2 < m2

, then

σ(Dm,V ) ⊂
{
z ∈ C : |<z| ≥ m−

√
C2

1 + 4C2
2m

2, |=z|2 ≤ C2
1 + 4C2|<z|2

1− 4C2
2

}
.
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1.2. Main results

A di�erent result on the localization of eigenvalues in an unbounded region was proved

by Fanelli and Krejčiřík in [FK19]: in 3D, if V ∈ L3(R3) and z ∈ σp(Dm,V ), then(
1 +

(<z)2

(<
√
m2 − z2)2

)−1/2

<
(π

2

)1/3√
1 + e−1 + 2e−2 ‖V ‖L3(R3) . (1.1.3)

The advantage of the last result lies in the explicit condition which is easy to check in the

applications. However, also in this result the eigenvalues are localized in an unbounded

region around σ(Dm) = (−∞,−m] ∪ [m,+∞).

In the works [EGG19] by Erdoğan, Goldberg and Green, and [EG21] by Erdoğan and

Green, the authors, studying the limiting absorption principle and dispersive bounds, prove

that for a bounded, continuous potential V satisfying a mild decaying condition, there are

no eigenvalues of the perturbed Dirac operator in a sector of the complex plane containing

a portion of the real line su�ciently far from zero energy. However these results are

qualitative, in the sense that their bounds does not explicitly depend on some norm of the

potential, as in the inequalities object of our study.

Lastly, we mention the recent paper [CFK20] by Cossetti, Fanelli and Krejčiřík, where

the authors obtain results on the absence of eigenvalues for the Schrödinger and Pauli

operators with a constant magnetic �eld and non-Hermitian potentials, and for the purely

magnetic Dirac operators. However, Dirac operators with electric perturbations can not be

treated by the multiplicative techniques of [CFK20]. In fact, the square of a purely magnetic

Dirac operator is a diagonal magnetic Laplacian, which allows one to use the multiplier

method.

What moved our analysis is the desire of �nding some sort of generalization of the result

by Cuenin, Laptev and Tretter [CLT14] in higher dimensions. As we saw, in the literature

similar results already raised, but often involving eigenvalues con�nement in unbounded
regions wrapping around the real continuous spectrum of the free Dirac operator. We are

interested instead in �nding compact regions where to cage our eigenvalues. However, one

of the major di�culties, as explicit in the Introduction, is the absence ofLp(Rn)→ Lp
′
(Rn)

resolvent estimates for the free Dirac operator. In their place, we discover and use the

Agmon-Hörmander-type estimates in Lemma 1.1, �nding in this way our coveted bounds.

1.2 Main results

Before formalizing our results in Theorems 1.1 and 1.2 below, we introduce a few notations

used throughout the chapter.

We use the symbols σ(H), σp(H), σe(H) and ρ(H) respectively for the spectrum, the

point spectrum, the essential spectrum and the resolvent of an operator H . More explicitly,

we de�ne

σe(H) = {z ∈ C : H − z is not a Fredholm operator},

whereas the discrete spectrum is de�ned as

σd(H) = {z ∈ C : z is an isolated eigenvalue of H of �nite multiplicity}.

Recall that, for non-self-adjoint operators, the essential spectrum de�ned above is not

the complement of the discrete spectrum, see e.g. [EE18]. For z ∈ ρ(H), we denote with
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1.2. Main results

RH(z) := (H − z)−1
the resolvent operator of H . We recall also that

σ(−∆) = σe(−∆) = [0,+∞),

σ(Dm) = σe(Dm) = (−∞,−m] ∪ [m,+∞).

For j ∈ {1, . . . , n} and x = (x1, . . . , xn) ∈ Rn, we write

x̂j := (x1, . . . , xj−1, xj+1, . . . , xn) ∈ Rn−1,

(x, x̂j) := (x1, . . . , xj−1, x, xj+1, . . . , xn) ∈ Rn.

The mixed Lebesgue spaces LpxjL
q
x̂j

(Rn) are the spaces of measurable functions on Rn

such that

‖f‖LpxjLqx̂j
:=

(∫
R

(∫
Rn−1

|f(xj , x̂j)|qdx̂j
)p/q

dxj

)1/p

<∞.

Obvious modi�cations occur for p =∞ or q =∞ (see e.g. [BP61] for general properties of

such spaces).

For any matrix-valued function M : Rn → CN×N , we set

‖M‖LpxjLqx̂j
:= ‖|M |‖LpxjLqx̂j

where | · | : CN×N → R denotes the operator norm induced by the Euclidean one. Further-

more, we write

[f ∗xj g](x) :=

∫
R
f(yj , x̂j)g(xj − yj , x̂j)dyj ,

[Fxjf ](ξj , x̂j) :=
1√
2π

∫
R
e−ixjξjf(xj , x̂j)dxj ,

[F−1
ξj
f ](xj , x̂j) :=

1√
2π

∫
R
eixjξjf(ξj , x̂j)dξj ,

to denote the partial convolution respect to xj , the partial Fourier transform with respect

to xj , and its inverse, respectively. The partial (inverse) Fourier transform with respect to

x̂j and the complete (inverse) Fourier transform with respect to x are de�ned in a similar

way. Finally, we shall need the function spaces

X ≡ X(Rn) :=

n⋂
j=1

L1
xjL

2
x̂j

(Rn), Y ≡ Y (Rn) :=

n⋂
j=1

L1
xjL
∞
x̂j

(Rn),

with norms de�ned as follows

‖f‖X := max
j∈{1,...,n}

‖f‖L1
xj
L2
x̂j

, ‖f‖Y := max
j∈{1,...,n}

‖f‖L1
xj
L∞
x̂j

.

The dual space of X and the norm with which is endowed are given by

X∗ ≡ X∗(Rn) :=

n∑
j=1

L∞xjL
2
x̂j

(Rn), ‖f‖X∗ := inf


n∑
j=1

‖fj‖L∞xjL2
x̂j

: f =

n∑
j=1

fj

 ,

see e.g. [BL76].

We can �nally state our results.
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1.2. Main results

Theorem 1.1. Letm > 0. There exists a constant C0 > 0 such that if

‖V ‖Y < C0,

then all eigenvalues z ∈ σp(Dm,V ) of Dm,V are contained in the union

z ∈ BR0(x−0 ) ∪BR0(x+
0 )

of the two closed disks in C with centers x−0 , x
+
0 and radius R0 given by

x±0 := ±m ν2 + 1

ν2 − 1
, R0 := m

2ν

ν2 − 1
, ν ≡ ν(V ) :=

[
(n+ 1)C0

‖V ‖Y
− n

]2

> 1.

Theorem 1.2. Letm = 0. There exists a constant C0 > 0 such that if

‖V ‖Y < C0,

then D0,V has no eigenvalues. In this case, we have σ(D0,V ) = R.

Remark 1.1. As anticipated, the crucial tool in our proof is a sharp uniform resolvent

estimate for the free Dirac operator. This approach is inspired by [Fra11], where the result

by Kenig, Ruiz and Sogge [KRS87] was used for the same purpose. In our case, we prove in

Section 1.3 the following estimates, of independent interest:

‖R−∆(z)‖X→X∗ ≤ C|z|
−1/2,

‖∂kR−∆(z)‖X→X∗ ≤ C,

and

‖RDm(z)‖X→X∗ ≤ C

[
n+

∣∣∣∣z +m

z −m

∣∣∣∣sgn(<z)/2
]
.

These can be regarded as precised resolvent estimates of Agmon-Hörmander-type. Note also

that similar uniform estimates, but in non sharp norms, were proved earlier by D’Ancona

and Fanelli in [DF07, DF08, EGG19]. In Section 1.4, we combine our uniform estimates

with the Birman-Schwinger principle, enabling us in Section 1.5 to complete the proof of

Theorems 1.1 and 1.2.

Remark 1.2. The space Y satis�es the embedding

Y ↪→ Ln,1(Rn) ↪→ Ln(Rn), (1.2.1)

where Lp,q(Rn) denotes the Lorentz spaces. Moreover, we have

W 1,1(Rn) ↪→
n⋂
j=1

L1
x̂j
L∞xj (R

n) ↪→ Ln/(n−1),1(Rn),

where Wm,p(Rn) is the Sobolev space. In particular, in dimension n = 2 we obtain

W 1,1(R2) ↪→ Y = L1
x1L
∞
x2(R2) ∩ L1

x2L
∞
x1(R2) ↪→ L2,1(R2) ↪→ L2(R2).

We refer to Fournier [Fou87], Blei and Fournier [BF89] and Milman [Mil] for these inclusions.
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1.3. The Agmon-Hörmander-type estimates

Remark 1.3. According to the previous remark we have Y (R3) ↪→ L3(R3). Thus in the

massive 3-dimensional case the assumption ‖V ‖Y < C0 implies both our result, Theorem

1.1, and the one by Fanelli and Krejčiřík [FK19], i.e. the eigenvalue bound (1.1.3). Although

our result improves the latter one for large eigenvalues, bounding them in two compact

regions, it may happen that, in a neighbourhood of z = −m and z = m, the bound in

(1.1.3) improves the one stated in Theorem 1.1. It is not hard to check that, supposing ‖V ‖Y
su�ciently small, our disks are enclosed in the region found by Fanelli and Krejčiřík if

m
ν2 + 1

ν2 − 1
−

√(
m

2ν

ν2 − 1

)2

− (=z)2

≥

√√√√(1− c2 ‖V ‖2L3)m2 −

(
1− 1

c2 ‖V ‖2L3

)
(=z)2, (1.2.2)

where

c = (π/2)1/3
√

1 + e−1 + 2e−2, ν =

[
4C0

‖V ‖Y
− 3

]2

.

This condition may not always be satis�ed and depends on the norms of the potential V
in the spaces L3(R3) and Y (R3). If this happens, the result in Theorem 1.1 and the one

in [FK19] should be jointly taken in consideration for the eigenvalues bound. This situation

is illustrated in Figure 1.1.

<

=

0 m−m

(a)

<

=

0 m−m

(b)

Figure 1.1: The disks in our Theorem 1.1, for n = 3, are represented in red; the Fanelli-Krejčiřík

region from [FK19] de�ned by (1.1.3) is in blue; the spectrum of Dm is in green. When (1.2.2) holds

we are in situation (a) and our result implies the result in [FK19]; if (1.2.2) does not hold the two

results are not entirely comparable, as shown in picture (b).

1.3 The Agmon-Hörmander-type estimates

Let us �x the constants r,R, δ > 0 such that

1 < r < R,
√
R2 − 1 < δ < 1,
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1.3. The Agmon-Hörmander-type estimates

arctan δ

S∞

S+j

S−j
1 r R ξ̂j

ξj

Figure 1.2: In the picture, the set S∞ from the cover S = {S+j ,S
−
j ,S∞}j∈{1,...,n} is enlighten in

red, while the sets S+j and S−j for �xed j ∈ {1, . . . , n} are colored in blue.

and consider the open cover S = {S+
j ,S

−
j ,S∞}j∈{1,...,n} of the space Rn de�ned by

S±j = {ξ ∈ Rn : ± ξj > δ|ξ̂j |, |ξ| < R}, S∞ = {ξ ∈ Rn : |ξ| > r}.

See Figure 1.2 for a graphical representation. Let {χ+
j , χ

−
j , χ∞}j∈{1,...,n} be a smooth

partition of unity subordinate to S , that is to say a family of smooth positive functions

such that

suppχ±j ⊂ S
±
j , suppχ∞ ⊂ S∞, χ∞ +

n∑
j=1

[χ+
j + χ−j ] ≡ 1.

From these, de�ne the smooth partition of unity χ := {χj}j∈{1,...,n}, with

χj := χ+
j + χ−j +

1

n
χ∞, (1.3.1)

and correspondingly, for j ∈ {1, . . . , n}, the Fourier multipliers

χj(|z|−1/2D)f = F−1
ξ [χj(|z|−1/2ξ) Fxf ].

Note in particular that

n∑
j=1

χj(|z|−1/2D)f = f. (1.3.2)

Therefore, the following estimates hold true.

Lemma 1.1. For every z ∈ ρ(−∆) = C \ [0,+∞), f ∈ L1
xjL

2
x̂j

and j, k ∈ {1, . . . , n}, we
have that ∥∥∥χj (|z|−1/2D

)
R−∆(z)f

∥∥∥
L∞xjL

2
x̂j

≤ C |z|−1/2 ‖f‖L1
xj
L2
x̂j

,∥∥∥χj (|z|−1/2D
)
∂kR−∆(z)f

∥∥∥
L∞xjL

2
x̂j

≤ C ‖f‖L1
xj
L2
x̂j

,

where {χj}j∈{1,...,n} are de�ned in (1.3.1) and C > 0 does not depend on z. In particular, it
follows that

‖R−∆(z)‖X→X∗ ≤ C|z|
−1/2, ‖∂kR−∆(z)‖X→X∗ ≤ C.
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1.3. The Agmon-Hörmander-type estimates

Lemma 1.2. For every z ∈ ρ(Dm) = {(−∞,−m] ∪ [m,+∞)}, f ∈ L1
xjL

2
x̂j

and j ∈
{1, . . . , n} we have that∥∥∥χj (|z2 −m2|−1/2D

)
RDm(z)f

∥∥∥
L∞xjL

2
x̂j

≤ C

[
n+

∣∣∣∣z +m

z −m

∣∣∣∣sgn(<z)/2
]
‖f‖L1

xj
L2
x̂j

,

where {χj}j∈{1,...,n} are de�ned in (1.3.1) and C > 0 is the same as in Lemma 1.1. In
particular, it follows that

‖RDm(z)‖X→X∗ ≤ C

[
n+

∣∣∣∣z +m

z −m

∣∣∣∣sgn(<z)/2
]
.

Remark 1.4. Before we proceed further, we give a heuristic explanation for the choice

of the localization in the frequency domain via the Fourier multipliers χj(|z|−1/2D) for

j ∈ {1, . . . , n}. Since the symbol (|ξ|2− z)−1
of the resolvent R−∆(z) blows-up as z → ζ ,

for every �xed ζ ≥ 0, our trick is to use the norms L∞xjL
2
x̂j

for j ∈ {1, . . . , n}, which

allows us to restrict the problem from the spherical surface {ξ ∈ Rn : |ξ| = |z|−1/2} to the

“equators” given by {ξ ∈ Rn : ξj = 0, |ξ̂j | = |z|−1/2}. We then avoid these regions thanks

to the smooth functions χj .

Proof of Lemma 1.1. The last two estimates follow trivially from the �rst two estimates,

(1.3.2) and the de�nitions of the norms on X and X∗.

For simplicity, from now onC > 0 will stand for a generic positive constant independent

of z and which may change from line to line. Clearly, by scaling, it is su�cient to consider

z ∈ C such that |z| = 1, z 6= 1. Thus we boil down to show that

‖χj(D)∂skR−∆(z)f‖L∞xjL2
x̂j

≤ C ‖f‖L1
xj
L2
x̂j

,

where |z| = 1, s ∈ {0, 1}, ∂0
k = 1, ∂1

k = ∂k and j, k ∈ {1, . . . , n}. This is equivalent to∥∥∥∥F−1
ξ

(
ξsk χj(ξ)

|ξ|2 − λ− iε
Fxf

)∥∥∥∥
L∞xjL

2
x̂j

≤ C ‖f‖L1
xj
L2
x̂j

, (1.3.3)

where we have written z = λ+ iε, with λ2 + ε2 = 1 and z 6= 1. We proceed by splitting

χj in the functions which appear in its de�nition (1.3.1), localizing ourselves in the regions

of the frequency domain near the unit sphere, i.e. S±j , and far from it, i.e. S∞.

Estimate on S±j . We want to prove∥∥∥∥∥F−1
ξ

(
ξskχ
±
j (ξ)

|ξ|2 − λ− iε
Fxf

)∥∥∥∥∥
L∞xjL

2
x̂j

≤ C ‖f‖L2
x̂j
L1
xj
. (1.3.4)

Let us de�ne the family of operators

T±j : LpxjL
2
x̂j
→ LpxjL

2
x̂j
, f 7→ T±j f := F−1

ξ

(
f̂ ◦ Φ

)
,

where

Φ(ξ) := (ξj + ϕ(ξ̂j), ξ̂j), ϕ(ξ̂j) := ±
√
|1− |ξ̂j |2|.
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1.3. The Agmon-Hörmander-type estimates

Roughly speaking, the operator T±j �attens the upper half unit sphere in the frequency

domain {ξ ∈ Rn : |ξ| = 1,±ξj > 0}. Writing more explicitly these operators, we have

T±j f(x) =
1

(2π)n/2

∫
Rn
eix·ξ f̂(ξj + ϕ(ξ̂j), ξ̂j)dξ

=
1

(2π)n

∫
Rn
eix·ξ

∫
Rn
f(y)e−iy·(ξj+ϕ(ξ̂j),ξ̂j)dydξ

=
1

(2π)n

∫
Rn−1

eix̂j ·ξ̂j
∫
Rn−1

e−iŷj ·ξ̂j
∫
R

∫
R
f(y)ei(xj−yj)ξj−iyjϕ(ξ̂j)dyjdξjdŷjdξ̂j

=
1

2π
F−1

ξ̂j
Fŷj

(
e−ixjϕ(ξ̂j)

∫
R

∫
R
f(y)ei(xj−yj)ξjdyjdξj

)
= F−1

ξ̂j
Fŷj

(
e−ixjϕ(ξ̂j)f(xj , ŷj)

)
where we used the substitution ξj 7→ ξj−ϕ(ξ̂j) in the fourth step. Applying the Plancherel

Theorem twice, we obtain that T±j are isometries on LpxjL
2
x̂j

, viz. for p ∈ [1,+∞] we have∥∥∥T±j f∥∥∥
LpxjL

2
x̂j

= ‖f‖LpxjL2
x̂j

. (1.3.5)

Then we can write∥∥∥∥∥F−1
ξ

(
ξskχ
±
j (ξ)

|ξ|2 − λ− iε
Fxf

)∥∥∥∥∥
L∞xjL

2
x̂j

=

∥∥∥∥∥T±j F−1
ξ

(
ξskχ
±
j (ξ)

|ξ|2 − λ− iε
Fxf

)∥∥∥∥∥
L∞xjL

2
x̂j

=

∥∥∥∥∥F−1
ξ

(
(ξskχ

±
j ) ◦ Φ

|Φ|2 − λ− iε
T̂±j f

)∥∥∥∥∥
L∞xjL

2
x̂j

=
1√
2π

∥∥∥∥∥∥aλ,ε(D)ψ ∗xj F−1
ξj

 T̂±j f

ξj − i|ε|

∥∥∥∥∥∥
L∞xjL

2
ξ̂j

≤ 1√
2π
‖aλ,ε(D)ψ‖L1

xj
L∞
ξ̂j

∥∥∥∥∥∥F−1
ξ

 T̂±j f

ξj − i|ε|

∥∥∥∥∥∥
L∞xjL

2
ξ̂j

where the last inequality follows from Young’s inequality and

aλ,ε(D)ψ = F−1
ξj

(
aλ,εFxj (ψ)

)
,

aλ,ε(ξ) :=

(ξj − i|ε|)
(
ξk ± δk,j

√
1− |ξ̂j |2

)s
ξj

(
ξj ± 2

√
1− |ξ̂j |2

)
+ 1− λ− iε

√
(χ±j ◦ Φ)(ξ),

ψ(xj , ξ̂j) = F−1
ξj

(√
(χ±j ◦ Φ)(ξ)

)
.

Note that we dropped the absolute value appearing in ϕ, i.e.

√
|1− |ξ̂j |2| =

√
1− |ξ̂j |2,

because supp{χ±j ◦ Φ} ⊂ {ξ ∈ Rn : |ξ̂j | ≤ 1}, thanks to the de�nition of S±j and the

11



1.3. The Agmon-Hörmander-type estimates

assumption δ ≥
√
R2 − 1. Now, despite the truly cumbersome de�nition of aλ,ε, it is

simple to see that aλ,ε(D)ψ ∈ S , where S is the space of the Schwartz functions, since

aλ,ε(D)ψ is the inverse Fourier transform of a smooth compactly supported function.

Moreover, we can consider aλ,ε(D)ψ as a pseudodi�erential operator with symbol aλ,ε
applied to the Schwartz function ψ; letting λ+ iε→ 1 we have the pointwise convergence

lim
λ+iε→1

aλ,ε(ξ) =

(
ξk ± δk,j

√
1− |ξ̂j |2

)s
ξj ± 2

√
1− |ξ̂j |2

√
χ±j

(
ξj ±

√
1− |ξ̂j |2, ξ̂j

)
=: a(ξ) ∈ S

and hence aλ,ε(D)ψ → a(D)ψ in S , which implies

lim
λ+iε→1

‖aλ,ε(D)ψ‖L1
xj
L∞
ξ̂j

= ‖a(D)ψ‖L1
xj
L∞
ξ̂j

< +∞.

Thus, ‖aλ,ε(D)ψ‖L1
xj
L∞
ξ̂j

is uniformly bounded respect to z ∈ C with |z| = 1, and we

proved∥∥∥∥∥F−1
ξ

(
ξskχ
±
j (ξ)

|ξ|2 − λ− iε
Fxf

)∥∥∥∥∥
L∞xjL

2
x̂j

≤ C

∥∥∥∥∥∥F−1
ξ

 T̂±j f

ξj − i|ε|

∥∥∥∥∥∥
L∞xjL

2
ξ̂j

. (1.3.6)

By Plancherel’s Theorem, Young’s inequality, and the equality (1.3.5), we get

√
2π

∥∥∥∥∥∥F−1
ξj

 T̂±j f

ξj − i|ε|

∥∥∥∥∥∥
L∞xjL

2
ξ̂j

=

∥∥∥∥F−1
ξj

(
1

ξj − i|ε|

)
∗xj Fx̂j (T

±
j f)

∥∥∥∥
L∞xjL

2
ξ̂j

=
∥∥∥ie−|ε|xjΘ ∗xj Fx̂j (T

±
j f)

∥∥∥
L∞xjL

2
ξ̂j

≤

∥∥∥∥∥e−|ε|xjΘ ∗xj ∥∥∥T±j f∥∥∥L2
x̂j

∥∥∥∥∥
L∞xj

≤
∥∥∥e−|ε|xjΘ∥∥∥

L∞xj

‖f‖L1
xj
L2
x̂j

= ‖f‖L1
xj
L2
x̂j

,

where Θ ≡ Θ(xj) is the Heaviside function. Inserting this inequality in (1.3.6), we �nally

reach (1.3.4).

Estimate on S∞. We shall now prove that∥∥∥∥F−1
ξ

(
ξskχ∞(ξ)

|ξ|2 − λ− iε
Fxf

)∥∥∥∥
L∞xjL

2
x̂j

≤ C ‖f‖L2
x̂j
L1
xj
. (1.3.7)

We consider three cases, depending on whether we are localized in the regions de�ned by

C1
R,j := {ξ ∈ Rn : |ξ̂j | > R},

C2
R,j := {ξ ∈ Rn : |ξ̂j | ≤ R, |ξj | ≤ 2R},

C3
R,j := {ξ ∈ Rn : |ξ̂j | ≤ R, |ξj | > 2R}.

12



1.3. The Agmon-Hörmander-type estimates

We set

χ1
∞(ξ) :=

{
1 if |ξ̂j | > R,

0 otherwise,

χ2
∞(ξ) :=

{
χ∞(ξ) if |ξ̂j | ≤ R and |ξj | ≤ 2R,

0 otherwise,

χ3
∞(ξ) :=

{
1 if |ξ̂j | ≤ R and |ξj | > 2R,

0 otherwise,

and observe that χ∞ = χ1
∞ + χ2

∞ + χ3
∞, since χ∞ ≡ 1 for |ξ| > R, from the assumptions

on the cover S and the partition χ.

By Plancherel’s Theorem and Hölder’s, Young’s and Minkowski’s integral inequalities,

for h ∈ {1, 2, 3} we infer∥∥∥∥F−1
ξ

(
ξskχ

h
∞(ξ)

|ξ|2 − λ− iε
Fxf

)∥∥∥∥
L∞xjL

2
x̂j

≤ Ch ‖f‖L1
xj
L2
x̂j

with

Ch :=
1√
2π

∥∥∥∥∥F−1
ξj

(
ξsk χ

h
∞(ξ)

ξ2
j + σ2

)∥∥∥∥∥
L∞xjL

∞
ξ̂j

, σ :=

√
|ξ̂j |2 − λ− iε. (1.3.8)

Here and below, we always consider the principal branch of the complex square root

function. Clearly, if we prove that Ch, for h ∈ {1, 2, 3}, are bounded uniformly with

respect to λ and ε, we recover (1.3.7).

Estimate on C1
R,j . Observing that χ1

∞(ξ) ≡ χ1
∞(ξ̂j) and noting that

<σ =

√
|σ|2 + |ξ̂j |2 − λ

2
> 0,

we can explicitly compute the Fourier transforms:

� if k 6= j, then

C1 =

∥∥∥∥∥χ1
∞(ξ̂j)ξ

s
k

e−σ|xj |

2σ

∥∥∥∥∥
L∞xjL

∞
ξ̂j

≤

∥∥∥∥∥χ1
∞(ξ̂j)|ξ̂j |s

e−<σ|xj |

2|σ|

∥∥∥∥∥
L∞xjL

∞
ξ̂j

≤ sup
|ξ̂j |>R

|ξ̂j |s

2(|ξ̂j |4 − 2λ|ξ̂j |2 + 1)1/4

≤

{
Rs

2
√
R2−1

if λ > 0,

1/2 if λ ≤ 0;

� if s = 1, k = j, then

C1 =

∥∥∥∥χ1
∞(ξ̂j)

i

2
sgn(xj)e

−σ|xj |
∥∥∥∥
L∞xjL

∞
ξ̂j

≤ 1

2
.
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1.3. The Agmon-Hörmander-type estimates

Estimate on C2
R,j . By the de�nition of the inverse Fourier transform in (1.3.8) and from

the fact that χ2
∞(ξ) = 0 when |ξ| < r, we see that

C2 ≤
1

2π

∥∥∥∥∫ +∞

−∞

|eixjξj | |ξsk|χ2
∞(ξ)

||ξ|2 − λ|
dξj

∥∥∥∥
L∞xjL

∞
ξ̂j

≤ (2R)s

2π

∥∥∥∥ χ2
∞(ξ)

|ξ|2 − 1

∥∥∥∥
L∞
ξ̂j
L1
ξj

which is �nite since χ2
∞ is compactly supported due to its de�nition.

Estimate on C3
R,j . By the inverse Fourier transform in (1.3.8), recalling the de�nition of

χ3
∞ and exploiting the substitution ξj 7→ sgn(xj)ξj , we have

C3 =
1

2π

∥∥∥∥∥(1− χ1
∞)(ξ̂j)

∫
|ξj |>2R

ei|xj |ξj
ξsk

ξ2
j + σ2

dξj

∥∥∥∥∥
L∞xjL

∞
ξ̂j

=
1

2π

∥∥∥∥∥
∫
|ξj |>2R

ψ(xj , ξ̂j ; ξj)dξj

∥∥∥∥∥
L∞xjL

∞
ξ̂j

where, for �xed ξ̂j , xj , the complex function ψ(xj , ξ̂j ; ·) : C→ C is de�ned by

ψ(xj , ξ̂j ;w) :=


(1− χ1

∞)(ξ̂j)
ξsk

w2 + σ2
ei|xj |w if k 6= j,

(1− χ1
∞)(ξ̂j)

w

w2 + σ2
ei|xj |w if s = 1, k = j,

which is holomorphic in C\{w−, w+}, wherew± = ±iσ. Observe that ψ ≡ 0 for |ξ̂j | > R,

and if |ξ̂j | ≤ R we have

|w±| = |σ| =
4

√
(|ξ̂j |2 − λ)2 + ε2 <

√
2R. (1.3.9)

De�ne, for a radius A > 0, the semicircle γA := {Aeiθ : θ ∈ [0, π]} in the upper half-

complex plane. Fixing ρ > 2R, by the Residue Theorem, we get(∫
[−ρ,−2R]

−
∫
γ2R

+

∫
[2R,ρ]

+

∫
γρ

)
ψ(xj , ξ̂j ;w)dw = 0.

Observing that we can consider xj 6= 0, letting ρ→ +∞ we can apply Jordan’s lemma to

the integral on the curve γρ, �nally obtaining

C3 =
1

2π

∥∥∥∥∫
γ2R

ψ(xj , ξ̂j ;w)dw

∥∥∥∥
L∞xjL

∞
ξ̂j

≤ (2R)s

2π

∥∥∥∥∥
∫ π

0

(1− χ1
∞)(ξ̂j)

|4R2e2iθ + σ2|
dθ

∥∥∥∥∥
L∞
ξ̂j

≤ (2R)s−2

where we used the relation (1.3.9).

Summing all up, we can �nally recover the desired estimate (1.3.3), where the positive

constant C does not depend on λ and ε, but only on R and the partition χ.

Let us prove now Lemma 1.2, which is a straightforward corollary of Lemma 1.1.
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1.4. The Birman-Schwinger principle

Proof of Lemma 1.2. Again, the last estimate in the statement follows from the �rst one,

(1.3.2) and the de�nition of the X and X∗ norms.

From the anticommutation relations (1.1.2) we can infer, for every z ∈ C, the identity

(Dm − zIN )(Dm + zIN ) = (−∆ +m2 − z2)IN .

Thus, for z ∈ ρ(Dm) we can write

RDm(z) = (Dm + zIN )R−∆(z2 −m2)IN .

Let us set fj = χj(|z2 −m2|−1/2D)f for simplicity. By Lemma 1.1, it is easy to recover

‖RDm(z)fj‖L∞xjL2
x̂j

≤

∥∥∥∥∥
n∑
k=1

αk∂kR−∆(z2 −m2)fj

∥∥∥∥∥
L∞xjL

2
x̂j

+
∥∥(mαn+1 + zIN )R−∆(z2 −m2)fj

∥∥
L∞xjL

2
x̂j

≤
n∑
k=1

∥∥∂kR−∆(z2 −m2)fj
∥∥
L∞xjL

2
x̂j

+ max{|z +m|, |z −m|}
∥∥R−∆(z2 −m2)fj

∥∥
L∞xjL

2
x̂j

≤C

[
n+

∣∣∣∣z +m

z −m

∣∣∣∣sgn(<z)/2
]
‖f‖L1

xj
L2
x̂j

as claimed.

1.4 The Birman-Schwinger principle

In this section, following the method of [Kat66] by Kato and [KK66] by Konno and Kuroda,

we de�ne in a rigorous way the closed extension of a perturbed operator with a factorizable

potential, formally de�ned as H0 +B∗A, and we will provide an abstract version of the

Birman-Schwinger principle. In the recent work [HK20], Hansmann and Krejčiřík use a

di�erent approach to establish the Birman-Schwinger principle, establishing it for di�erent

kind of spectra, and not only for the point one. In particular, they develop a nice and

innovative argument to deal with the embedded eigenvalues, which will be borrowed also

in this section. Since both the road are worth of interest, in Section 2.3 of the next chapter

we will revive the Birman-Schwinger principle, following there [HK20].

Let H,H′ be Hilbert spaces and consider the densely de�ned, closed linear operators

H0 : dom(H0) ⊆ H→ H, A : dom(A) ⊆ H→ H′, B : dom(B) ⊆ H→ H′,

such that ρ(H0) 6= ∅ and

dom(H0) ⊆ dom(A), dom(H∗0 ) ⊆ dom(B).

For simplicity, we assume also that σ(H0) ⊂ R. By RH0(z) = (H0 − z)−1
, we denote the

resolvent operator of H0 for any z ∈ ρ(H0).
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1.4. The Birman-Schwinger principle

The idea of the principle is easy to explain in the case of bounded operators A and B.

In this case H = H0 +B∗A is well de�ned as a sum of operators, and if z ∈ ρ(H0), the

Birman-Schwinger operator

Kz = A(H0 − z)−1B∗

is also a bounded operator. One checks immediately that z ∈ σp(H)∩ ρ(H0) implies−1 ∈
σp(Kz), and so ‖Kz‖H′→H′ ≥ 1. Hence, a bound for the norm of Kz gives information on

the localization of the non-embedded eigenvalues of H .

We now return to the general case of an unbounded perturbation B∗A. As in [KK66],

we assume the following set of assumptions.

AssumptionA. For some, and hence for all, z ∈ ρ(H0), the operatorARH0(z)B∗, densely

de�ned on dom(B∗), has a closed extension Kz in H′,

Kz = ARH0(z)B∗,

which we call the Birman-Schwinger operator, with norm bounded by

‖Kz‖H′→H′ ≤ Λ(z) (1.4.1)

for some function Λ: ρ(H0)→ R+.

Assumption B. There exists z0 ∈ ρ(H0) such that −1 ∈ ρ(Kz0).

Observe that the last assumption is implied by the following one:

Assumption B ′. There exists z0 ∈ ρ(H0) such that Λ(z0) < 1.

Indeed, assuming Assumptions A and B’, we get that ‖Kz0‖H′→H′ < 1. Thus, expanding

in a Neumann series, we see that (1 +Kz0)−1
exists and hence −1 ∈ ρ(Kz0).

Let us collect some useful facts in the next lemma.

Lemma 1.3. Suppose Assumptions A and B and let z, z1, z2 ∈ ρ(H0). Then the following
holds true:

(i) ARH0(z) ∈ B(H,H′), RH0(z)B∗ = [B(H∗0 − z)−1]∗ ∈ B(H′,H);

(ii) RH0(z1)B∗ −RH0(z2)B∗ = (z1 − z2)RH0(zi)RH0(zj)B∗, for i, j ∈ {1, 2}, i 6= j;

(iii) Kz = ARH0(z)B∗, K∗z = BRH0(z)∗A∗;

(iv) ran(RH0(z)B∗) ⊆ dom(A), ran(RH0(z)∗A∗) ⊆ dom(B);

(v) Kz1 −Kz2 = (z1 − z2)ARH0(zi)RH0(zj)B∗, for i, j ∈ {1, 2}, i 6= j.

Proof. See Lemma 2.2 in [GLMZ05].

We can construct now the extension of the perturbed operator H0 +B∗A.
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1.4. The Birman-Schwinger principle

Lemma 1.4 (Extension of operators with factorizable potential). Suppose Assumptions A
and B. Let z0 ∈ ρ(H0) such that −1 ∈ ρ(Kz0). Then the operator

RH(z0) = RH0(z0)−RH0(z0)B∗(1 +Kz0)−1ARH0(z0) (1.4.2)

de�nes a densely de�ned, closed, linear operator H in H which has RH(z0) as resolvent and
which extends H0 +B∗A.

Proof. We refer to Theorem 2.3 in [GLMZ05]. See also Kato [Kat66].

We can �nally formulate the abstract Birman-Schwinger principle.

Lemma 1.5 (Birman-Schwinger principle). Suppose Assumptions A and B. Let z0 ∈ ρ(H0)
such that −1 ∈ ρ(Kz0) and H be the extension of H0 + B∗A given by Lemma 1.4. Fix
z ∈ σp(H) with eigenfunction 0 6= ψ ∈ dom(H), i.e. Hψ = zψ, and set φ := Aψ.

Then φ 6= 0, and in addition

(i) if z ∈ ρ(H0) then
Kzφ = −φ

and in particular
1 ≤ ‖Kz‖H′→H′ ≤ Λ(z);

(ii) if z ∈ σ(H0) \ σp(H0) and if H0 is self-adjoint, then

lim
ε→0±

Kz+iεφ = −φ weakly,

id est
lim
ε→0±

(ϕ,Kz+iεφ)H′ = −(ϕ, φ)H′ (1.4.3)

for every ϕ ∈ H′, where (·, ·)H′ is the scalar product on H′. In particular

1 ≤ lim inf
ε→0±

‖Kz+iε‖H′→H′ ≤ lim inf
ε→0±

Λ(z + iε). (1.4.4)

Proof. Let ε = 0 if z ∈ ρ(H0) and ε 6= 0 if z ∈ σ(H0) \ σp(H0). In order to treat the

embedded eigenvalues, we will adapt the argument of Lemma 1 in [KK66] together with

the limiting argument from Theorem 8 in [HK20].

Note that Hψ = zψ is equivalent to

ψ = (z − z0)RH(z0)ψ, (1.4.5)

and hence we obtain from (1.4.2) that

(H0 − z − iε)RH0(z0)ψ

= −(z − z0)RH0(z0)B∗(1 +Kz0)−1ARH0(z0)ψ − iεRH0(z0)ψ. (1.4.6)

De�ne

ψ̃ := (1 +Kz0)−1ARH0(z0)ψ.
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1.4. The Birman-Schwinger principle

If ψ̃ = 0, by (1.4.6) follows (H0 − z)RH0(z0)ψ = 0. Since 0 6= RH0(z0)ψ ∈ dom(H0), we

get z ∈ σp(H0), which contradicts the assumption on z. Thus, we proved ψ̃ 6= 0. Moreover,

we can show the identity

φ = Aψ = (z − z0)(1 +Kz0)−1ARH0(z0)ψ = (z − z0)ψ̃, (1.4.7)

from which in particular φ 6= 0. Indeed, by (1.4.2) and (iii) of Lemma 1.3, it follows that

ARH(z0) = (1 +Kz0)−1ARH0(z0),

which combined with (1.4.5) gives us (1.4.7).

Multiplying by (1 +Kz0)−1ARH0(z + iε) both sides of (1.4.6), we obtain

ψ̃ =− (z − z0)(1 +Kz0)−1ARH0(z + iε)RH0(z0)B∗ψ̃

− iε(1 +Kz0)−1ARH0(z + iε)RH0(z0)ψ

and so, by (v) of Lemma 1.3 and by the resolvent identity, we have

ψ̃ =− z − z0

z − z0 + iε
(1 +Kz0)−1[Kz+iε −Kz0 ]ψ̃

− iε

z − z0 + iε
(1 +Kz0)−1A[RH0(z + iε)−RH0(z0)]ψ

= ψ̃ − z − z0

z − z0 + iε
(1 +Kz0)−1(1 +Kz+iε)ψ̃

− iε

z − z0 + iε
(1 +Kz0)−1ARH0(z + iε)ψ,

from which, using identity (1.4.7), we �nally arrive at

Kz+iεφ = −φ− iεARH0(z + iε)ψ. (1.4.8)

If z ∈ ρ(H0), then ε = 0 and we completely proved case (i), the “in particular” part being

straightforward.

In the following, we suppose z ∈ σ(H0) \ σp(H0) and H0 self-adjoint. Fixed ϕ ∈ H′,
we get from (1.4.8) that

(ϕ,Kz+iεφ)H′ = −(ϕ, φ)H′ − iε(ϕ,ARH0(z + iε)ψ)H′

=: −(ϕ, φ)H′ + Iε.

Exploiting the Spectral Theorem and denoting the spectral measure of H0 as E0, we have

Iε =

∫
σ(H0)

fε(λ)d(ϕ,AE0(λ)ψ)H′ , where fε(λ) :=
−iε

λ− z − iε
.

From the fact that

lim
ε→0±

fε(λ) =

{
0 if λ 6= z,

1 if λ = z,

and E0({z}) = 0 since z 6∈ σp(H0), we infer that fε → 0 as ε→ 0± almost everywhere

with respect to the spectral measure. Moreover

|fε(λ)| = |ε|√
(λ− z)2 + ε2

≤ 1 and

∫
σ(H0)

d(ϕ,AE0(λ)ψ)H′ = (ϕ,Aψ)H′ ,
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1.5. Proof of the theorems

hence by Dominated Converge Theorem we conclude that Iε → 0 as ε → 0±, proving

(1.4.3).

Finally, since by (1.4.3) we have

‖φ‖2H′ = |(φ, φ)H′ | = lim
ε→0±

|(φ,Kz+iεφ)H′ | ≤ ‖φ‖2H′ lim inf
ε→0±

‖Kz+iε‖H′→H′

we get the �rst inequality in (1.4.4), while the second one is obvious by Assumption A.

1.5 Proof of the theorems

We can now specialize to our problem the abstract theory developed in the last section. We

choose H = H′ = L2(Rn;CN ) and H0 the free Dirac operator Dm. The factorization of V
is given using the polar decomposition V = UW where W = (V ∗V )1/2

and the unitary

matrix U is a partial isometry: then we may set A = W 1/2
and B = W 1/2U∗. It is easy to

see that Assumption A holds thanks to Lemma 1.2 with

Λ(z) := nC ‖V ‖Y

[
n+

∣∣∣∣z +m

z −m

∣∣∣∣sgn(<z)/2
]
.

Indeed, for ϕ ∈ C∞0 (Rn;CN ),

‖ARDm(z)B∗ϕ‖H ≤
n∑
j=1

∥∥∥Aχj(|z2 −m2|−1/2D)RDm(z)B∗ϕ
∥∥∥
H

≤ C

[
n+

∣∣∣∣z +m

z −m

∣∣∣∣sgn(<z)/2
]

n∑
j=1

‖A‖L2
xj
L∞
x̂j

‖B∗‖L2
xj
L∞
x̂j

‖ϕ‖H

≤ Λ(z) ‖ϕ‖H ,

and hence by density (1.4.1). We used above the s

‖A‖L2
xj
L∞
x̂j

= ‖B∗‖L2
xj
L∞
x̂j

=
∥∥∥W 1/2

∥∥∥
L2
xj
L∞
x̂j

= ‖V ‖1/2
L1
xj
L∞
x̂j

.

We show now that also Assumption B’ holds. To �nd z0 ∈ ρ(Dm) such that Λ(z0) < 1,

let us de�ne

C0 = [n(n+ 1)C]−1, ν = [(n+ 1)C0/ ‖V ‖Y − n]2.

Since from the hypothesis of Theorems 1.1 and 1.2 we have ‖V ‖Y < C0 and so ν > 1, the

condition 1 ≤ Λ(z) is equivalent to ν ≤ |z/z| if m = 0, and to(
<z − sgn(<z)m ν2 + 1

ν2 − 1

)2

+ =z2 ≤
(
m

2ν

ν2 − 1

)2

(1.5.1)

if m > 0. Then, if m = 0 it is su�cient to choose z0 ∈ C \ R, while if m > 0 we take

z0 ∈ ρ(Dm) outside the disks in the statement of Theorem 1.1.

Thus, we can apply Lemma 1.4 to properly de�neDm,V , and Lemma 1.5 in combination

with the relations (1.5.1) and ν ≤ |z/z| to prove Theorem 1.1 and the absence of eigenvalues

in the massless case, respectively. For the �nal claim in Theorem 1.2, we will follow the
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1.5. Proof of the theorems

argument in [CLT14] to prove that the potential V ∈ Y =
⋂n
j=1 L

1
xjL
∞
x̂j

(Rn) leaves the

essential spectrum invariant and that σ(Dm,V ) \ σe(Dm,V ) = σd(Dm,V ). The argument

hold for any m ≥ 0, and in particular, in the massless case, we get σ(D0,V ) \ R = ∅.

To get the invariance of the essential spectrum, it is su�cient to prove that, �xed

z ∈ ρ(Dm) such that −1 ∈ ρ(Kz), the operator ARDm(z) is a Hilbert-Schmidt operator,

hence compact. Thus identity (1.4.2) gives

RDm,V (z)−RDm(z) = −RDm(z)B∗(1 +Kz)
−1ARDm(z)

from which it follows that RDm,V (z) − RDm(z) is compact and so, by Theorem 9.2.4

in [EE18],

σe(Dm,V ) = σe(Dm) = (−∞,−m] ∪ [m,+∞).

To see that ARDm(z) is a Hilbert-Schmidt operator, we need to prove that its kernel

A(x)K (z, x−y) is in L2(Rn×Rn;CN ), where K (z, x−y) is the kernel of the resolvent

(Dm − z)−1
. By the Young inequality∥∥A(D − z)−1

∥∥2

HS
=

∫
Rn

∫
Rn
|A(x)|2|K (z, x− y)|2dxdy ≤ ‖V ‖Lp ‖K ‖

2
L2q (1.5.2)

where 1/p+ 1/q = 2. Hence we need to �nd in which Lebesgue space L2q(Rn;CN ) the

kernel K (z, x) lies. For z ∈ ρ(−∆) = C \ [0,∞), it is well-known (see e.g. [GS16]) that

the kernel K0(z, x− y) of the resolvent operator (−∆− z)−1
is given by

K0(z, x− y) =
1

(2π)n/2

( √
−z

|x− y|

)n
2
−1

Kn
2
−1(
√
−z|x− y|)

where Kν(w) is the modi�ed Bessel function of second kind and we consider the principal

branch of the complex square root. Fixed now z ∈ ρ(Dm) = C \ {(−m,−∞]∪ [m,+∞)},
from the identity

(Dm − zIN )−1 = (Dm + zIN )(−∆ +m2 − z2)−1IN

and relations (A.4) and (A.5) for the derivative of the modi�ed Bessel functions, we get

K (z, x− y) =
1

(2π)n/2

(
k(z)

|x− y|

)n
2

α · (x− y)Kn
2
(k(z)|x− y|)

+
1

(2π)n/2

(
k(z)

|x− y|

)n
2
−1

(mαn+1 + z)Kn
2
−1(k(z)|x− y|)

where for simplicity k(z) =
√
m2 − z2

. From the limiting form for the modi�ed Bessel

functions (A.7), (A.8) and (A.10), we obtain that

‖K (z, x)‖ ≤ C(n,m, z)

{
|x|−(n−1)

if |x| ≤ x0(n,m, z)

|x|−(n−1)/2e−<k(z)|x|
if |x| ≥ x0(n,m, z)

for some positive constants C(n,m, z), x0(n,m, z) depending on z. Hence it is clear that

K (z, x) ∈ L2q(Rn;CN ) for 2q < n/(n− 1) and, consequently, from equation (1.5.2) we

have that A(Dm − z)−1
is a Hilbert-Schmidt operator if V ∈ Lp(Rn;CN ) for p > n/2.

Since by (1.2.1) we have V ∈ Ln(Rn;CN ), the proof of the identity σe(Dm,V ) = σe(Dm)
is complete.

Finally, since ρ(Dm) = C \ σe(Dm) is composed by one, or two in the massless case,

connected components which intersect ρ(Dm,V ) in a non-empty set, by Theorem XVII.2.1

in [GGK90] we have σ(Dm,V ) \ σe(Dm,V ) = σd(Dm,V ).
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Chapter 2

Localization of eigenvalues for
non-self-adjoint Dirac and

Klein-Gordon operators

In the Introduction, we already explained in a nutshell which are the gears grinding in the

Birman-Schwinger principle, stressing that to each resolvent estimate of a free operator we

can correspond, via the principle, a localization estimate for the eigenvalues of the perturbed

operator. Since resolvent estimates have been an object of study for a considerably longer

time with respect to the eigenvalues con�nement for non-selfadjoint operators, it is natural

that some results for the latter problem, even if interesting per se, go unnoticed.

The goal of the current chapter is indeed bringing to light some new spectral results for

the Dirac and Klein-Gordon operators, by inserting already established resolvent estimates

in the main engine of the Birman-Schwinger principle. The assumptions we will impose on

the potential are essentially of pointwise smallness and decay near the origin and in�nity.

The results in this chapter are contained in [S2], joint work with Piero D’Ancona, Luca

Fanelli and David Krejčiřík.

2.1 Main results

In this chapter, together our main protagonist, the spinorial Dirac operator, there will be

the scalar Klein-Gordon operator. They are formally de�ned respectively as

Dm,V = Dm + V and Gm,V = Gm + V

where, for �xed mass m ≥ 0, the free Klein-Gordon operator is

Gm =
√
m2 −∆,

while the Dirac operator is de�ned in (1.1.1), where the Dirac matrices αk ∈ CN×N , with

N := 2dn/2e, satisfy the anti-commutation relations (1.1.2). If we set for simplicity N := 1
when we are dealing with the Klein-Gordon operator, we can say that both the operators
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2.1. Main results

Gm and Dm act on H = L2(Rn;CN ), have domain H1(Rn;CN ) and are self-adjoint with

core C∞0 (Rn;CN ).

Concerning both perturbed operators, the potential V : Rn → CN×N is a generic,

possibly non-Hermitian, matrix-valued function (respectively scalar valued in the case of

Klein-Gordon). Invoking the usual abuse of notation, we denote with the same symbol V the

multiplication operator by the matrix V in H with initial domain dom(V ) = C∞0 (Rn;CN ).

Again, for any matrix-valued function M : Rn → CN×N and norm ‖·‖ : C → R+,

we write ‖M‖ := ‖|M |‖, where |M(x)| denotes the operator norm of the matrix M(x)
induced by the Euclidean norm.

For simplicity, we will say that the spectrum of Gm,V or Dm,V is stable (with respect to

the corresponding free operator spectrum) if

σ(Gm,V ) = σc(Gm,V ) = σ(Gm) = [m,+∞) (2.1.1)

in the case of the Klein-Gordon operator, whereas

σ(D0,V ) = σc(D0,V ) = σ(D0) = R , (2.1.2)

σ(Dm,V ) = σc(Dm,V ) = σ(Dm) = (−∞,−m] ∪ [m,+∞) , (2.1.3)

in the case of the massless and massive Dirac operators respectively. In any case, note that

this means in particular that the point and residual spectra of the perturbed operator are

empty.

Finally, let us introduce the weights de�ned as

τε(x) := |x|
1
2
−ε + |x| (2.1.4)

wσ(x) := |x|(1 + | log |x||)σ, for σ > 1. (2.1.5)

We are ready to enunciate our results.

Theorem 2.1. Let n ≥ 3. There exist positive constants α and ε, which are independent of
V , such that if ∥∥τ2

ε V
∥∥
L∞

< α

then the spectrum of Gm,V is stable, viz. (2.1.1) holds true.

Theorem 2.2. Let n ≥ 3. Form = 0, there exists a positive constant α, independent of V ,
such that if

‖wσV ‖L∞ < α

then the spectrum of D0,V is stable, viz. (2.1.2) holds true.

Form > 0, there exist positive constants α and ε, independent of V , such that if∥∥τ2
ε V
∥∥
L∞

< α

then the spectrum of Dm,V is stable, viz. (2.1.3) holds true.

For the Dirac operator we can improve the above theorem in two ways. Firstly, slightly

generalizing the choice of the weights (see also Remark 2.3 below). Secondly, and above all,

we can give a quantitative form for the smallness condition of the potential (even if our
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2.1. Main results

expression for the constant is probably far from being optimal). With this aim we bring

into play the dyadic norms de�ned as

‖u‖p`pLq :=
∑
j∈Z
‖u‖p

Lq(2j−1≤|x|<2j)
, ‖u‖`∞Lq := sup

j∈Z
‖u‖Lq(2j−1≤|x|<2j) , (2.1.6)

for 1 ≤ p <∞ and 1 ≤ q ≤ ∞.

Theorem 2.3. Let n ≥ 3,m ≥ 0 and ρ ∈ `2L∞(Rn) be a positive weight. Ifm > 0, assume
in addition that |x|1/2ρ ∈ L∞(Rn). Form > 0, de�ne

C1 ≡ C1(n,m, ρ) := 576n
[√
n+ (2m+ 1) 4

√
64n+ 324

]
‖ρ‖2`2L∞

+ (2m+ 1)

√
π

2(n− 2)

∥∥∥|x|1/2ρ∥∥∥2

L∞

whereas ifm = 0,

C1 ≡ C1(n, 0, ρ) := 2C2 ‖ρ‖2`2L∞ , (2.1.7)

C2 ≡ C2(n) := 576nmax{
√
n, 4
√

64n+ 324}. (2.1.8)

Supposing
C1

∥∥|x|ρ−2V
∥∥
L∞

< 1

then the spectrum of Dm,V is stable, viz. (2.1.3) holds true.

In the massless case, we can ask for less stringent conditions on the potential in order

to still get the spectrum stable.

Theorem 2.4. Let n ≥ 3,m = 0 and

2C2 ‖|x|V ‖`1L∞ < 1,

where C2 is de�ned in (2.1.7). Then the spectrum of D0,V is stable, viz. (2.1.2) holds true.

Last but not least, we prove some results on the eigenvalues con�nement in two complex

disks for the massive Dirac operator. To this end one can use either the weighted dyadic

norm (this gives the counterpart form > 0 of Theorem 2.4), or again the weighted-L2
norm

with weaker conditions on the weight ρ (namely, removing in Theorem 2.3 the assumption

|x|1/2ρ ∈ L∞(Rn) when m > 0).

Theorem 2.5. Let n ≥ 3,m > 0 and

N1(V ) := ‖|x|V ‖`1L∞ , N2(V ) := ‖ρ‖2`2L∞
∥∥|x|ρ−2V

∥∥
L∞

for some positive weight ρ ∈ `2L∞(Rn). For �xed j ∈ {1, 2}, if we assume

2C2Nj(V ) < 1,

with C2 de�ned in (2.1.7), then

σp(Dm,V ) ⊂ Br0(x−0 ) ∪Br0(x+
0 )

where the two closed complex disks have centres x−0 , x
+
0 and radius r0 de�ned by

x±0 := ±m
ν2
j + 1

ν2
j − 1

, r0 := m
2νj

ν2
j − 1

, with νj :=

[
1

C2Nj(V )
− 1

]2

> 1.

23
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Remark 2.1. In the above Theorem 2.5, the case j = 2 is actually redundant. Indeed,

one can easily observe that N1(V ) ≤ N2(V ) simply by Hölder’s inequality. Thus, if

2C2N2(V ) < 1, it follows that ν2 ≤ ν1 and the disks obtained for j = 1 are enclosed in

those obtained for j = 2. However, we explicit both the case since, as observed above,

Theorem 2.5 is in some sense the counterpart of Theorem 2.3 and Theorem 2.4.

Remark 2.2. In our results, the low dimensional cases n = 1, 2 are excluded. This

restriction comes from the key resolvent estimates we are going to employ, collected in

Lemma 2.1, Lemma 2.2 and Lemma 2.3 and proved in [DF08] and [CDL16] (see Section 2.2

below). Indeed, regarding the last lemma, it holds for n ≥ 3 since to prove it the multiplier

method is exploited, which fails in low dimensions. In the case of the �rst two lemmata

instead, the low dimensions are excluded essentially due to the use of Kato-Yajima’s

estimates; but there is a deeper reason behind instead of a mere technical one.

In fact, tracing back the computations in [DF08], a key step in the proof of Lemma 2.1

and Lemma 2.2 is equation (2.19) of [DF08] concerning the Schrödinger resolvent, namely∥∥τ−1
ε (−∆− z)−1f

∥∥
L2 ≤ C(1 + |z|2)−1/2 ‖τεf‖L2 ≤ C ‖τεf‖L2 ,

with some positive constant C and n ≥ 3. The above inequality is obtained by fusing

together results by Barcelo, Ruiz and Vega [BRV97] and by Kato and Yajima [KY89], and it

is without any doubt false for n = 1, 2. In fact, by contradiction, exploiting computations

similar to the ones we will carry on in Section 2.4, one should be able to prove the counter-

part of Theorems 2.1 and 2.2 for the Schrödinger operator, in other words the spectrum

of −∆ + V would be stable if

∥∥τ2
ε V
∥∥
L∞

< α for some positive constants α and ε. This

assertion is true for n ≥ 3, but certainly impossible for n = 1, 2, due to the well-know fact

that the Schrödinger operator is critical if, and only if, n = 1, 2.

The criticality of an operator H0 means that it is not stable against small perturbations:

there exists a compactly supported potential V such that H0 + εV possesses a discrete

eigenvalue for all small ε > 0. For the Schrödinger operator this is equivalent to the lack

of Hardy’s inequality. On the contrary, the existence of Hardy’s inequality in dimension

n ≥ 3 is sometimes referred to as the subcriticality of −∆.

In the light of this argument for the Schrödinger operator, a very interesting question,

deserving to be pursued, naturally arises: one can conjecture that also the Klein-Gordon

and Dirac operators are critical if and only if n = 1, 2, that is Theorems 2.1 and 2.2 are

false in low dimensions and their spectra are not stable if perturbed by small compactly

supported potentials.

Remark 2.3. In Theorem 2.1 and 2.2 we used the explicit weights τε and wσ , while in the

subsequent statements exploiting the weighted-L2
norm they are replaced by the weight

|x|ρ−2
with ρ ∈ `2L∞(Rn). We compare these assumptions.

It easy to check that ρ1 := (1 + | log |x||)−σ/2 and ρ2 := (|x|−ε + |x|δ)−1
are weights

in `2L∞(Rn) for any σ > 1 and ε, δ > 0. Consequently we can set |x|ρ−2 = wσ(x) or

|x|ρ−2 = (|x|1/2−ε + |x|1/2+δ)2
. The additional condition |x|1/2ρ ∈ L∞ can be obtained

for ρ2 if we set δ = 1/2, and hence τ2
ε = |x|ρ−2

2 . In other words, wσ and τε are the

prototypes of the class of weights we used, since |x|1/2w−1/2
σ , |x|1/2τ−1

ε ∈ `2L∞(Rn) and

|x|τ−1
ε ∈ L∞(Rn).
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This generalization gives only a minor improvement in the type of admissible weights,

however we think it is useful since it stresses the properties and limiting behaviors required

on them.

Finally, we note that the extra condition |x|1/2ρ ∈ L∞(Rn) a�ects the behavior of

ρ ∈ `2L∞(Rn) only at in�nity. Indeed, near the origin, say when |x| ≤ 1,

|x|1/2ρ ≤ ‖ρ‖L∞ ≤ ‖ρ‖`2L∞ ,

so no further requirement is added on the behavior of ρ near x = 0; on the contrary

‖ρ‖`2L∞(|x|≥1) ≤
∥∥∥|x|−1/2

∥∥∥
`2L∞(|x|≥1)

∥∥∥|x|1/2ρ∥∥∥
L∞

=
√

2
∥∥∥|x|1/2ρ∥∥∥

L∞

when |x| ≥ 1, so L∞(|x| ≥ 1) ⊂ `2L∞(|x| ≥ 1).

Remark 2.4. For a concrete example, let us make the constants C1 and C2 explicit in a

special case. We set n = 3, m ∈ [0, 1] and choose ρ = |x|1/2τ−1
1/2 = (|x|−1/2 + |x|1/2)−1

,

which implies easily ‖ρ‖`2L∞ ≤ 2 and

∥∥|x|1/2ρ∥∥
L∞
≤ 1.

Therefore, it follows thatC2 ≤ 8.24 ·103
, C1 ≤ 1.11 ·105

ifm > 0 andC1 ≤ 6.59 ·104

if m = 0. Hence the smallness condition on the potential in Theorem 2.3 is implied by

∥∥(1 + |x|)2V
∥∥
L∞

<

{
9.00 · 10−6

if m > 0,

1.51 · 10−5
if m = 0,

and the one in Theorem 2.4 by ‖|x|V ‖`1L∞ < 6.06 · 10−5.

Our conditions on the potential V are certainly not sharp. We conjecture that the point-

wise smallness conditions of Theorem 2.2 can be replaced by suitable integral hypotheses.

Conjecture. Let n = 3. There exists a positive constant α independent of V such that

if ‖V ‖L3 < α, then the spectrum of D0,V is stable, viz. (2.1.2) holds true, whereas if

‖V ‖L3 + ‖V ‖L3/2 < α, then the spectrum of Dm,V is stable, viz. (2.1.3) holds true.

2.2 A bundle of resolvent estimates

As anticipated above, the main ingredients in our proofs are a collection of inequalities

already published in the literature. The �rst two, recalled in the next two lemmata, come

from [DF08].

Lemma 2.1. Let n ≥ 3 and z ∈ C. There exist ε > 0 su�ciently small and a constant C > 0
such that ∥∥∥τ−1

ε (
√
m2 −∆− z)−1f

∥∥∥
L2
≤ C ‖τεf‖L2

where the weight τε is de�ned in (2.1.4).

The massless case for this Klein-Gordon resolvent estimate is obtained by equation (2.39)

in [DF08] letting W = 0. Instead, equation (2.43) from the same paper gives us the massive

case for unitary mass m = 1, and for all positive m by a change of variables.

Let us face now the Dirac operator.
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2.2. A bundle of resolvent estimates

Lemma 2.2. Let n ≥ 3 and z ∈ C. There exist ε > 0 su�ciently small and a constant C > 0
such that ∥∥∥w−1/2

σ (D0 − zIN )−1f
∥∥∥
L2
≤ C

∥∥∥w1/2
σ f

∥∥∥
L2
, (2.2.1)∥∥τ−1

ε (Dm − zIN )−1f
∥∥
L2 ≤ C ‖τεf‖L2 , (2.2.2)

in the massless and massive case respectively, where the weights τε and wσ are de�ned in
(2.1.4) and (2.1.5).

These estimates correspond to equation (2.49) and (2.52) from [DF08] respectively, even

if the estimate for the massless case was previously proved in [DF07] by the same authors.

It should be noted that, in the cited paper, estimates (2.49) and (2.52) are explicated only in

the 3-dimensional case, but it can be easily seen that they hold in any dimension n ≥ 3,

since their proofs mostly rely on the well-known identity D2
m = (−∆ +m2)IN .

The resolvent estimates just stated are uniform, in the sense that the constant C in

the estimates is independent of z. This will imply, as we will see, the total absence of

eigenvalues under suitable smallness assumptions on the potential.

For the Dirac operator the above result can be improved. First of all, we can give a

non-sharp but explicit estimate for the constant C . Moreover, paying with a constant

dependent on z (obtaining then a localization for the eigenvalues instead of their absence

in the massless case) we can substitute the weighted-L2
norms with dyadic ones, or relax

the hypothesis on the weights in the massive case.

This step-up will be gained making use of the sharp resolvent estimate for the Schrödinger

operator in dimension n ≥ 3 contained in Theorem 1.1 of [CDL16] (the same estimate can

be obtained also e.g. from Theorem 1.2 in [D’A20], but the latter does not provide explicit

constants). Setting a = In, b = c = 0, N = ν = 1 and Ca = Cb = Cc = C− = C+ = 0 in

the referred theorem, one immediately obtain the trio of estimates stated below.

Lemma 2.3. Let n ≥ 3, z ∈ C \ [0,+∞) and R0(z) := (−∆− z)−1. Then

‖R0(z)f‖2
Ẋ

+ ‖∇R0(z)f‖2
Ẏ
≤ (288n)2 ‖f‖2

Ẏ ∗ ,

|<z| ‖R0(z)f‖2
Ẏ
≤ (576

√
2n2)2 ‖f‖2

Ẏ ∗ ,

|=z| ‖R0(z)f‖2
Ẏ
≤ (864

√
2n)2 ‖f‖2

Ẏ ∗ ,

where the Ẋ and Ẏ norms are the Morrey-Campanato-type norms de�ned by

‖u‖2
Ẋ

:= sup
R>0

1

R2

∫
|x|=R

|u|2dS, ‖u‖2
Ẏ

:= sup
R>0

1

R

∫
|x|≤R

|u|2dx,

and the Ẏ ∗ norm is predual to the Ẏ norm.

Since the Morrey-Campanato-type norms above introduced are not so handy, observe

that the Ẋ norm can be written as a radial-angular norm

‖u‖Ẋ =
∥∥|x|−1u

∥∥
`∞L∞|x|L

2
θ

:= sup
j∈Z

sup
R∈[2j−1,2j)

∥∥|x|−1u
∥∥
L2(|x|=R)
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whereas the Ẏ norm is equivalent to the weighted dyadic norm

∥∥|x|−1/2 ·
∥∥
`∞L2 , and hence

by duality the Ẏ ∗ norm is equivalent to

∥∥|x|1/2 ·∥∥
`1L2 (being ‖·‖`pLq de�ned in (2.1.6)).

More precisely, since we want to show explicit constants, we have that

∥∥∥|x|−1/2u
∥∥∥2

`∞L2
= sup

j∈Z

∫ 2j

2j−1

|x|−1|u|2dx ≤ 2 sup
j∈Z

1

2j

∫
|x|≤2j

|u|2dx ≤ 2 ‖u‖2
Ẏ
,

while from the other side, �xed R ∈ [2j−1, 2j) for some j ∈ Z, we get

1

R

∫
|x|≤R

|u|2dx ≤ 21−j
j∑

n=−∞
2n
∫ 2n

2n−1

|x|−1|u|2dx ≤ 4
∥∥∥|x|−1/2u

∥∥∥2

`∞L2
.

Summarizing

2−1/2
∥∥∥|x|−1/2u

∥∥∥
`∞L2

≤ ‖u‖Ẏ ≤ 2
∥∥∥|x|−1/2u

∥∥∥
`∞L2

2−1
∥∥∥|x|1/2u∥∥∥

`1L2
≤ ‖u‖Ẏ ∗ ≤ 21/2

∥∥∥|x|1/2u∥∥∥
`1L2

.

Inserting the above norm equivalence relations in Lemma 2.3 one can straightforwardly

infer the following.

Corollary 2.1. Under the same assumptions of Lemma 2.3, the estimates∥∥|x|−1R0(z)f
∥∥
`∞L∞|x|L

2
θ
≤ 576n

∥∥∥|x|1/2f∥∥∥
`1L2

,

|z|1/2
∥∥∥|x|−1/2R0(z)f

∥∥∥
`∞L2

≤ 576n 4
√

64n+ 324
∥∥∥|x|1/2f∥∥∥

`1L2
,∥∥∥|x|−1/2∇R0(z)f

∥∥∥
`∞L2

≤ 576n
∥∥∥|x|1/2f∥∥∥

`1L2
,

hold true.

Simply applying Hölder’s inequality, one can deduce also the weighted-L2
version

of Lemma 2.1. Moreover, this allows us to employ the −∆-supersmoothness of |x|−1
to

obtain a homogeneous (in e�ect even stronger) weighted-L2
estimate for the Schrödinger

resolvent. Namely, we have the following.

Corollary 2.2. Under the same assumptions of Lemma 2.3, the following estimates hold∥∥∥|x|−3/2ρR0(z)f
∥∥∥
L2
≤ 576n ‖ρ‖2`2L∞

∥∥∥|x|1/2ρ−1f
∥∥∥
L2
,

|z|1/2
∥∥∥|x|−1/2ρR0(z)f

∥∥∥
L2
≤ 576n 4

√
64n+ 324 ‖ρ‖2`2L∞

∥∥∥|x|1/2ρ−1f
∥∥∥
L2
,∥∥∥|x|−1/2ρ∇R0(z)f

∥∥∥
L2
≤ 576n ‖ρ‖2`2L∞

∥∥∥|x|1/2ρ−1f
∥∥∥
L2
, (2.2.3)

for any arbitrary positive weight ρ ∈ `2L∞(Rn).

If in addition |x|1/2ρ ∈ L∞(Rn), then

〈z〉1/2
∥∥∥|x|−1/2ρR0(z)f

∥∥∥
L2
≤ C3

∥∥∥|x|1/2ρ−1f
∥∥∥
L2
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2.2. A bundle of resolvent estimates

where

C3 ≡ C3(n, ρ) := 576n 4
√

64n+ 324 ‖ρ‖2`2L∞ +

√
π

2(n− 2)

∥∥∥|x|1/2ρ∥∥∥2

L∞

and 〈x〉 :=
√

1 + x2 are the Japanese brackets.

Proof. By Hölder’s inequality we easily obtain the set of inequalities∥∥∥|x|1/2u∥∥∥
`1L2
≤ ‖ρ‖`2L∞

∥∥∥ρ−1|x|1/2u
∥∥∥
L2
,∥∥∥|x|−1/2ρu

∥∥∥
L2
≤ ‖ρ‖`2L∞

∥∥∥|x|−1/2u
∥∥∥
`∞L2

,∥∥∥|x|−3/2ρu
∥∥∥
L2
≤
∥∥∥|x|−1/2ρ

∥∥∥
`2L2
|x|L

∞
θ

∥∥|x|−1u
∥∥
`∞L∞|x|L

2
θ

≤ ‖ρ‖`2L∞
∥∥|x|−1u

∥∥
`∞L∞|x|L

2
θ
,

which inserted in Corollary 2.1 give us the �rst three weighted-L2
estimates.

The last one is instead obtained making use of the celebrated Kato-Yajima result in

[KY89], that is ∥∥|x|−1R0(z)f
∥∥
L2 ≤

√
π

2(n− 2)
‖|x|f‖L2 ,

with the best constant furnished by Simon [Sim92], combined with the trivial bounds

‖|x|u‖L2 ≤
∥∥∥|x|1/2ρ∥∥∥

L∞

∥∥∥|x|1/2ρ−1u
∥∥∥
L2
,∥∥∥|x|−1/2ρu

∥∥∥
L2
≤
∥∥∥|x|1/2ρ∥∥∥

L∞

∥∥|x|−1u
∥∥
L2 ,

given again by Hölder’s inequality.

We can return now to the Dirac operator. As a consequences of Corollaries 2.1 and 2.2

we obtain the following lemma.

Lemma 2.4. Let n ≥ 3 and z ∈ C \ {(−∞,−m] ∪ [m,+∞)}. Then

∥∥∥|x|−1/2(Dm − z)−1f
∥∥∥
`∞L2

≤ C2

[
1 +

∣∣∣∣z +m

z −m

∣∣∣∣ sgn<z2

]∥∥∥|x|1/2f∥∥∥
`1L2

where C2 is de�ned in (2.1.7), and in particular

∥∥∥|x|−1/2ρ(Dm − z)−1f
∥∥∥
L2
≤ C2 ‖ρ‖2`2L∞

[
1 +

∣∣∣∣z +m

z −m

∣∣∣∣ sgn<z2

]∥∥∥|x|1/2ρ−1f
∥∥∥
L2

(2.2.4)

for any positive weight ρ ∈ `2L∞(Rn).

If in addition |x|1/2ρ ∈ L∞(Rn), then∥∥∥|x|−1/2ρ(Dm − z)−1f
∥∥∥
L2
≤ C1

∥∥∥|x|1/2ρ−1f
∥∥∥
L2

(2.2.5)

where C1 is de�ned in the statement of Theorem 2.3.
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2.3. The Birman-Schwinger principle, da capo version

Proof. By Corollary 2.1 and the identity

(Dm − z)−1 = (Dm + z)(−∆ +m2 − z2)−1IN

we obtain∥∥∥|x|−1/2ρ(Dm − z)−1f
∥∥∥
`∞L2

≤

∥∥∥∥∥|x|−1/2ρ

n∑
k=1

αk∂kR0(z2 −m2)f

∥∥∥∥∥
`∞L2

+
∥∥∥|x|−1/2ρ(mαn+1 + zIN )R0(z2 −m2)f

∥∥∥
`∞L2

≤
√
n
∥∥∥|x|−1/2ρ∇R0(z2 −m2)f

∥∥∥
`∞L2

+ max{|z +m|, |z −m|}
∥∥∥|x|−1/2ρR0(z2 −m2)f

∥∥∥
`∞L2

≤C2

[
1 +

∣∣∣∣z +m

z −m

∣∣∣∣sgn(<z)/2
]∥∥∥|x|1/2ρ−1f

∥∥∥
`1L2

.

Similarly we have the other two inequalities, using Corollary 2.2 and the fact that

max{|z +m|, |z −m|}〈z2 −m2〉−1/2 ≤ 2m+ 1

for the homogenous estimate (2.2.5). Note also that, in the massless case, (2.2.5) is already

contained in (2.2.4).

2.3 The Birman-Schwinger principle, da capo version

In this section, we recall again the technicalities for the Birman-Schwinger principle and

for properly de�ne an operator perturbed by a factorizable potential. This time, in contrast

with the approach of Section 1.4, we completely rely on the abstract analysis carried out by

Hansmann and Krejčiřík in [HK20], to which we refer for more results and background.

There, in addition to the point spectrum, appropriate versions of the principle are stated

even for the residual, essential and continuous spectra.

Let us start recalling some spectral de�nitions. The spectrum σ(H) of a closed operator

H in a Hilbert space H is the set of the complex numbers z for whichH−z : dom(H)→ H
is not bijective. The resolvent set is the complement of the spectrum, ρ(H) := C \ σ(H).

The point spectrum σp(H) is the set of eigenvalues ofH , namely the set of complex number

such that H − z is not injective. The continuous spectrum σc(H) is the set of elements of

σ(H) \ σp(H) such that the closure of the range of H − z equals H; if instead such closure

is a proper subset of H , we speak of the residual spectrum σr(H).

Here we collect the set of hypotheses we need.

Assumption I. Let H and H′ be complex separable Hilbert spaces, H0 be a self-adjoint

operator in H and |H0| := (H2
0 )1/2

its absolute value. Also, letA : dom(A) ⊆ H→ H′ and

B : dom(B) ⊆ H→ H′ be linear operators such that dom(|H0|1/2) ⊆ dom(A)∩dom(B).

We assume that for some (and hence for all) b > 0 the operators A(|H0| + b)−1/2
and

B(|H0|+ b)−1/2
are bounded and linear from H to H.

At this point, de�ning G0 := |H0| + 1, we can consider, for any z ∈ ρ(H0), the

Birman-Schwinger operator

Kz := [AG
−1/2
0 ][G0(H0 − z)−1][BG

−1/2
0 ]∗, (2.3.1)
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2.3. The Birman-Schwinger principle, da capo version

which is linear and bounded from H′ to H′.

The second assumption we need is stated below.

Assumption II. There exists z0 ∈ ρ(H0) such that −1 6∈ σ(Kz0).

While in general Assumption I is easy to check in the applications, Assumption II is

more tricky. Thus, we can replace it with the following one, stronger but more manageable.

Assumption II ′. There exists z0 ∈ ρ(H0) such that ‖Kz0‖H′→H′ < 1.

That the latter implies Assumption II can be easily proved by observing that the spectral

radius is dominated by the operator norm, or recurring to Neumann series. Alternative

conditions implying Assumption II are collected in Lemma 1 of [HK20], but for our purposes

Assumption II
′

will be enough.

Before recalling the Birman-Schwinger principle, we properly de�ne the formal per-

turbed operator H0 + V with V = B∗A.

Theorem 2.6. Under Assumptions I and II, there exists a unique closed extension HV of
H0 + V such that dom(HV ) ⊆ dom(|H0|1/2) and the following representation formula
holds true:

(φ,HV ψ)H→H = (G
1/2
0 φ, (H0G

−1
0 + [BG

−1/2
0 ]∗AG

−1/2
0 )G

1/2
0 ψ)H→H

for φ ∈ dom(|H0|1/2), ψ ∈ dom(HV ).

This result correspond to Theorem 5 in [HK20], where the operator HV is obtained

via the pseudo-Friedrichs extension. Note that following the alternative approach by

Kato [Kat66], the extension of H0 +B∗A is not only closed, but also quasi-selfadjoint. We

refer to the paper of Hansmann and Krejčiřík [HK20] for a cost-bene�t comparison of the

two methods, and for a list of cases when the two extensions coincide.

Finally, we can exhibit the abstract Birman-Schwinger principle, for the proof of which

see Theorem 6, 7, 8 and Corollary 4 of [HK20].

Theorem 2.7. Under Assumption I and II, we have:

(i) if z ∈ ρ(H0), then z ∈ σp(HV ) if and only if −1 ∈ σp(Kz);

(ii) if z ∈ σc(H0) ∩ σp(HV ) and HV ψ = zψ for 0 6= ψ ∈ dom(HV ), then Aψ 6= 0 and

lim
ε→0±

(Kz+iεAψ, φ)H′→H′ = −(Aψ, φ)H′→H′

for all φ ∈ H′.

In particular

(i) if z ∈ σp(HV ) ∩ ρ(H0), then ‖Kz‖H′→H′ ≥ 1;

(ii) if z ∈ σp(HV ) ∩ σc(H0), then lim infε→0± ‖Kz+iε‖H→H′ ≥ 1.
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2.4. Proof of the theorems

While from the “in particular” part of the previous theorem one could infer a localization

for the eigenvalues of HV , the principle can be employed in a “negative” way to prove their

absence when the norm of the Birman-Schwinger operator is strictly less than 1 uniformly

respect to z ∈ ρ(H0). This is precisely stated in the next concluding result, corresponding

to Theorem 3 in [HK20], which is even richer: not only gives information on the absence

of the eigenvalues, but also on the invariance of the spectrum of the perturbed operator.

Theorem 2.8. Suppose Assumption I and that supz∈ρ(H0) ‖Kz‖H′→H′ < 1. Then we have:

(i) σ(H0) = σ(HV );

(ii) σp(HV ) ∪ σr(HV ) ⊆ σp(H0) and σc(H0) ⊆ σc(HV ).

In particular, if σ(H0) = σc(H0), then σ(HV ) = σc(HV ) = σc(H0).

2.3.1 A concrete case

We now specialize the situation from the abstract to a concrete setting, typical in many

common applications and relevant for our analysis.

Suppose that H = H′ = L2(Rn;CN×N ), N ∈ N, and V is the multiplication operator

generated in H by a matrix-valued (scalar-valued if N = 1) function V : Rn → CN×N ,

with initial domain dom(V ) = C∞0 (Rn;CN ). As customary, we consider the factorization

of V given by the polar decomposition V = UW , where W =
√
V ∗V and the unitary

matrix U is a partial isometry. Therefore we may set A =
√
W , B =

√
WU∗ and consider

the corresponding multiplication operators generated byA andB∗ in H with initial domain

C∞0 (Rn;CN ), denoted by the same symbols. In the end, we can factorize the potential V in

two closed operators A and B∗. Via the Closed Graph Theorem, Assumption I is veri�ed.

Furthermore, in general the operatorKz de�ned in (2.3.1) is a bounded extension of the

classical Birman-Schwinger operator A(H0 − z)−1B∗ de�ned on dom(B∗). Since in our

case the initial domain of B∗ is C∞0 (Rn;CN ), hence dense in H, we get that Kz is exactly

the closure of A(H0 − z)−1B∗.

In conclusion, everything reduces to the study of

∥∥A(H0 − z)−1B∗
∥∥
H→H

: if there

exists z0 ∈ ρ(H0) such that this norm is strictly less than 1, then Theorem 2.7 holds; if this

is true uniformly respect to z ∈ ρ(H0), then also Theorem 2.8 holds true.

2.4 Proof of the theorems

Taking into account the last subsection and recalling the uniform resolvent estimates from

Section 2.2, proving our claimed results on the Klein-Gordon and Dirac operators is now a

simple matter.

For z ∈ ρ(H0) and φ ∈ C∞0 (Rn), from the resolvent estimate in Lemma 2.1, we

immediately get∥∥A(Gm − z)−1B∗φ
∥∥
L2 ≤ ‖Aτε‖L∞

∥∥τ−1
ε (Gm − z)−1B∗φ

∥∥
L2

≤ C ‖Aτε‖L∞ ‖τεB
∗φ‖L2

≤ C
∥∥τ2
ε V
∥∥
L∞
‖φ‖L2

< αC ‖φ‖L2 .
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2.4. Proof of the theorems

If α = 1/C , then Theorem 2.1 follows from Theorem 2.8. By analogous computations one

obtains Theorem 2.2 making use of the resolvent estimates in Lemma 2.2, and the other

theorems concerning the Dirac operator exploiting Lemma 2.4.

Let us just make explicit the computations for Theorem 2.5 withN1(V ) = ‖|x|V ‖`1L∞ .

By Lemma 2.4 we have that∥∥A(Dm − z)−1B∗φ
∥∥
L2 ≤

∥∥∥A|x|1/2∥∥∥
`2L∞

∥∥∥|x|−1/2(Dm − z)−1B∗φ
∥∥∥
`∞L2

≤ C2

[
1 +

∣∣∣∣z +m

z −m

∣∣∣∣sgn<z/2
]∥∥∥A|x|1/2∥∥∥

`2L∞

∥∥∥|x|1/2B∗φ∥∥∥
`1L2

≤ C2

[
1 +

∣∣∣∣z +m

z −m

∣∣∣∣sgn<z/2
]
‖|x|V ‖`1L∞ ‖φ‖L2 .

Setting ν1 := [1/[C2N1(V )]− 1]2 > 1, the condition

∥∥A(Dm − z)−1B∗φ
∥∥
H→H

≥ 1 turns

out to be equivalent to the expression(
<z − sgn(<z)mν2

1 + 1

ν2
1 − 1

)2

+ (=z)2 ≤
(
m

2ν1

ν2
1 − 1

)2

which de�ne exactly the disks in the statement of the theorem. Just take any z0 ∈ ρ(Dm)
outside these two disks to verify Assumption II

′
, and �nally we can prove the statement

applying the “in particular” part of Theorem 2.7.
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Chapter 3

Keller-type bounds for
Dirac operators perturbed

by rigid potentials

In this chapter we are interested in generalizing Keller-type eigenvalue estimates for the

non-self-adjoint Schrödinger operator to the Dirac operator, imposing some suitable rigidity

conditions on the matricial structure of the potential. What is relevant is that we obtain

results for the Dirac operator without necessarily requiring the smallness of its norm.

The reference for the results in this chapter is [S3], joint work with Haruya Mizutani.

3.1 Keller-type bound for Schrödinger

Let us start recapping in greater details the Keller-type bound for the Schrödinger operator,

partly anticipated in the Introduction.

As we know, the �rst Keller-type inequality for the non-self-adjoint Schrödinger op-

erator −∆ + V is due to Abramov, Aslanyan and Davies [AAD01] in 1-dimension, viz.

|z|1/2 ≤ 1

2
‖V ‖L1 , (3.1.1)

where z ∈ σp(−∆ + V ) and the constant is sharp.

Subsequently, Laptev and Safronov [LS09] conjectured that the eigenvalues localization

bound |z|γ ≤ Dγ,n ‖V ‖γ+n/2

Lγ+n/2
should hold for any 0 < γ ≤ n/2 and some constant

Dγ,n > 0. Thanks to Frank [Fra11], the conjecture turned out to be true for 0 < γ ≤ 1/2,

and later Frank and Simon [FS17b] proved it completely under radial symmetry assumptions.

Explicitly, in dimension n ≥ 2 the eigenvalues of −∆ + V satisfy the estimates

|z|γ ≤ Dγ,n


‖V ‖γ+n/2

Lγ+n/2
for 0 < γ ≤ 1

2
,

‖V ‖γ+n/2

L
γ+n/2
ρ L∞θ

for

1

2
< γ <

n

2
,

‖V ‖n
Ln,1ρ L∞θ

for γ =
n

2
,

(3.1.2)
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3.1. Keller-type bound for Schrödinger

where the positive constant Dγ,n is independent of z and V and where the radial-angular

spaces LpρLsθ and Lp,qρ Lsθ are de�ned as

LpρL
s
θ :=Lp(R+, r

n−1dr;Ls(Sn−1))

Lp,qρ Lsθ :=Lp,q(R+, r
n−1dr;Ls(Sn−1))

(3.1.3)

being Lp,q the Lorentz spaces and Sn−1
the n-dimensional unit spherical surface. In the

case 1 ≤ p, q <∞, the respective norms are explicitly given by

‖f‖LpρLsθ :=

(∫ ∞
0
‖f(r ·)‖p

Ls(Sn−1)
rn−1dr

)1/p

‖f‖Lp,qρ Lsθ
:=

(
p

∫ ∞
0

tq−1µ
{
r > 0: ‖f(r ·)‖Ls(Sn−1) ≥ t

}q/p
dt

)1/q
(3.1.4)

where µ is the measure rn−1dr on R+ = (0,+∞). The above relations (3.1.2) hold also in

the case γ = 0, in the sense that if D0,n ‖V‖n/2Ln/2
< 1 for some D0,n > 0, then the point

spectrum of −∆ + V is empty (the optimal constant is given by D0,3 = 4/(33/2π2) in

3-dimensions).

The Laptev-Safronov conjecture certainly does not hold for γ > n/2, as already noted

by Laptev and Safronov themselves. For the range 1/2 < γ ≤ n/2, an argument in [FS17b]

suggested that the conjecture should fail in general, and this was recently con�rmed

in [BC21] with the construction of a suitable counterexample.

Nevertheless, for n ≥ 1 and γ > 1/2, Frank in [Fra18] proved a localization result still

involving the Lγ+n/2
norm of the potential, but in an unbounded region of the complex

plane around the semi-line σ(−∆) = [0,+∞), viz.

|z|1/2 dist(z, [0,+∞))γ−1/2 ≤ Dγ,n ‖V ‖γ+n/2

Lγ+n/2
. (3.1.5)

In the limiting case γ =∞ one has the trivial bound

dist(z, [0,+∞)) ≤ D∞,n ‖V ‖L∞ . (3.1.6)

Thus, it seems that to go beyond the threshold γ = 1/2, one should ask radial symmetry

on the potential, or abandon the idea of localizing the eigenvalues in compact regions (cf.

Section 3.3 below).

To conclude the recap on the spectral results for the Schrödinger operator, besides

the ones related to the above conjecture, one should refer also to [FLLS06], where bounds

on sums of eigenvalues outside a cone around the positive axis were proved, and to the

works [DN02, Saf10, Enb16, FS17a, FKV18b, Fra18, LS19, Cue20], where one can �nd Keller-

type inequalities involving not only the Lp norms.

We turn out our attention to the Dirac operator (1.1.1). If we look at the results we

proved in the �rst two chapter of this thesis and at the literature therein mentioned,

two situations seems to arise: or the con�nement regions are unbounded, containing the

continuous spectrum of the free Dirac operator Dm, or the regions are bounded, but the

potential is required to be small respect to some “cumbersome” norm.

In the present chapter we recover Keller-type bounds which we believe to be a worthy

analogous of the Schrödinger enclosures in (3.1.2), hence exploiting Lp norms at least for
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3.2. Idea and main results

n/2 ≤ p ≤ (n + 1)/2; also, we can remove the smallness assumption on the potential

(when p 6= n/2). Of course, to reach such a nice result, the price to pay is high: we will

require to our potentials to be of the form V = vV , where v : Rn → C is a scalar function

in the desired space of integrability, whereas V is a constant matrix satisfying some suitable

rigidity conditions. Hence, in a way to be clari�ed later, we will fully take advantage of

the matricial structure of the Dirac operator in order to reduce ourselves basically to the

Schrödinger case.

3.2 Idea and main results

As anticipated above, the trick of our argument relies completely on the matricial structure

of the potential, which in the rest of the chapter will be denoted with the calligraphic letter

V . Before to rattle o� the hypothesis we are going to impose on it, in order to understand

our idea we need to apply the Birman-Schwinger principle in its simplest form. In order to

make things work and being formal, just for the moment assume that V is bounded, such

that Dm,V = Dm + V is well de�ned as sum of operators.

We know that the principle assure us that z is an eigenvalue of Dm,V , where V = B∗A
is a factorizable potential, if and only if −1 is an eigenvalue of the Birman-Schwinger

operator Kz := A(Dm − z)−1B∗. If −1 ∈ σp(Kz) then ‖Kz‖ ≥ 1, which turns out to be

the desired localization bound, if one is able to estimate the Birman-Schwinger operator.

From the well-known identity

(Dm − z)−1 = (Dm + z)R0(z2 −m2)IN (3.2.1)

which links the resolvent for the Dirac operator (Dm − z)−1
with the resolvent for the

Schrödinger operator R0(z) := (−∆− z)−1
, we have that

A(Dm−z)−1B∗ = −i
n∑
k=1

Aαk∂kR0(z2−m2)B∗+A(mαn+1+z)R0(z2−m2)B∗. (3.2.2)

At this point, the receipt one usually cooks (as in the previous two chapters) is the following.

First of all, the polar decomposition V = UW of the potential is exhibited, whereW =√
V∗V and the unitary matrix U is a partial isometry. Then one takes A =

√
W and

B =
√
WU∗; this choice assures a certain symmetry in splitting the potential, since A and

B are in the same space of integrability. Therefore, making use of resolvent estimates and

of the Hölder’s inequality, one reaches an estimate of the form 1 ≤ ‖Kz‖ ≤ κ(z) ‖V‖X
for some suitable function κ : C→ R and space X .

Clearly, the main problem is reduced to the research of nice resolvent estimates. For the

Schrödinger operator, these have been extensively studied, so if we look at (3.2.2) the main

concern comes from the estimates for the derivatives ofR0(z). Our idea here is to chooseA
and B in such a way that the termsAαk∂kR0(z2−m2)B∗, for any k ∈ {1, . . . , n}, simply

disappear (we will make an exception to this for Theorem 3.9). If additionally we impose

also AR0(z2 −m2)B∗ to be zero, we are also able to remove the smallness assumption on

the potential, because it turns out that they originates from this term. Therefore, let us

state the following hypothesis.

Rigidity Assumptions. Let us consider a potential of the type V = vV = B∗A, with

A = aA and B = bB, in such a way that v = ba and V = B∗A, where a, b, v : Rn → C
are complex-valued functions and A,B, V ∈ CN×N are constant matrices.
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3.2. Idea and main results

On the scalar part v, we impose the usual polar decomposition, viz. a = |v|1/2 and

b = sgn(v)|v|1/2, where the sign function is de�ned as sgn(w) = w/|w| for 0 6= w ∈ C
and sgn(0) = 0.

On the matricial part V , we ask the following set of conditions:

AαkB
∗ = 0 for k ∈ {1, . . . , n},
V = B∗A 6= 0.

It is not restrictive to assume also that

|A| = |B| = 1

where | · | : CN×N → R denotes the operator norm induced by the Euclidean norm, viz.

|A| =
√
ρ(A∗A), where ρ(M) is the spectral radius of a matrix M .

In addition to the above stated hypothesis, suppose also one between the next condi-

tions:

(i) Aαn+1B
∗ 6= 0 and AB∗ 6= 0;

(ii) Aαn+1B
∗ 6= 0 and AB∗ = 0;

(iii) Aαn+1B
∗ = 0 and AB∗ 6= 0;

(iv) Aαn+1B
∗ = 0 and AB∗ = 0.

In the following, we will refer to our set of rigidity assumptions as RA(ι), where

ι ∈ {i, ii, iii, iv} depends on which of the four conditions above is considered.

Remark 3.1. Note that we will not assume any Rigidity Assumptions in Theorem 3.9, but

only in Theorems 3.1–3.8 below.

Remark 3.2. At this point the reader may argue that the assumptions above are not

rigorous, since we have not explicitly de�ned the Dirac matrices αk, k ∈ {1, . . . , n+ 1}.
Moreover, there is not a unique representation for these matrices! The concern is legit, and

we will furnish later the exact de�nitions of our Dirac matrices, in Section 3.5, which will

be all devoted to computations with matrices. The choice of a particular representation of

the Dirac matrices is not restrictive, see Remark 3.6.

Remark 3.3. As will be proved in Section 3.5, we can �nd matrices A and B satisfying

RA(i) in any dimension n ≥ 1, whereas there are no matrices satisfying RA(ii) and RA(iii)

in dimensions n = 2, 4 and no matrices satisfying RA(iv) in dimensions n = 1, 2. This

explains the dimensions restriction in the statements of the theorems below.

We can state now our main results. Recall, other than the Lebesgue norm, the Lorentz

norm and the radial-angular norm introduced in (3.1.4). We refer to Figures 3.1, 3.2 and 3.3

to visualize the boundary curves of the con�nement regions described in the various

theorems.

Let us start considering the case of RA(ii).
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3.2. Idea and main results

Theorem 3.1. Letm > 0, n = 1 and V = vB∗A satisfying RA(ii). Then

|z2 −m2|1/2 ≤ 1

2
‖v‖L1

for any z ∈ σp(Dm,V).

Theorem 3.2. Letm > 0, n ∈ N \ {1, 2, 4} and V = vB∗A satisfying RA(ii). There exists
Dγ,n,m > 0 such that

|z2 −m2|γ ≤ Dγ,n,m


‖v‖γ+n/2

Lγ+n/2
for 0 < γ ≤ 1

2
,

‖v‖γ+n/2

L
γ+n/2
ρ L∞θ

for
1

2
< γ <

n

2
,

‖v‖n
Ln,1ρ L∞θ

for γ =
n

2
,

for any z ∈ σp(Dm,V).

In the case γ = 0, there exists D0,n > 0 such that, if

‖v‖Ln/2 < D0,n,m

then
σ(Dm,V) = σc(Dm,V) = σ(Dm) = (−∞,−m] ∪ [m,+∞)

and in particular σp(Dm,V) = ∅.

Theorem 3.3. Let m > 0, n ∈ N \ {1, 2, 4}, γ > 1/2 and V = vB∗A satisfying RA(ii).
There exists Dγ,n,m > 0 such that

|z2 −m2|1/2 dist(z2 −m2, [0,+∞))γ−1/2 ≤ Dγ,n,m ‖v‖γ+n/2

Lγ+n/2

for any z ∈ σp(Dm,V). In the case γ =∞, the above relation is replaced by

dist(z2 −m2, [0,+∞)) ≤ D∞,n,m ‖v‖L∞ .

Remark 3.4. Note that, since

dist(z, [0,+∞)) =

{
|=z| if <z ≥ 0,

|z| if <z ≤ 0,

then

dist(z2 −m2, [0,+∞)) =

{
2|<z||=z| if (<z)2 − (=z)2 ≥ m2

,

|z2 −m2| if (<z)2 − (=z)2 ≤ m2
.

The results collected in the three theorems above should be compared with the corre-

sponding ones for the Schrödinger operator, respectively (3.1.1), (3.1.2), (3.1.5) and (3.1.6).

We supposed RA(ii) with positive mass m > 0, which means, looking (3.2.2), that

A(Dm − z)−1B∗ = m[Aαn+1B
∗][aR0(z2 −m2)b].

Roughly speaking, the Birman-Schwinger operator for Dm + V behaves (more or less) as

the Birman-Schwinger operator for −∆ + v. This explains the strict connection between

the Dirac and Schrödinger results.

If we consider RA(ii) with m = 0, or instead RA(iv), then the Birman-Schwinger

operator for Dirac vanish identically, implying the following result of spectral stability.
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3.2. Idea and main results

(a) Case of Theorems 3.1 and 3.2.

(b) Case of Theorem 3.3.

Figure 3.1: The plots of the boundary curves corresponding to the spectral enclosures described in

Theorems 3.1, 3.2 and 3.3, for various values of the norm of the potential.

When β := Dγ,n,m ‖v‖γ+n/2 = 1, where D1/2,1,m = 1/2 and ‖v‖ is one of the norms appearing

in the theorems, we have two regions joined only in the origin (in yellow). If β < 1 there are two

disconnected regions (in red), while if β > 1 there is one connected region (in blue).

The curves in picture (a) are known as Cassini ovals with foci in m and −m.
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3.2. Idea and main results

Theorem 3.4. Let n ∈ N \ {2, 4},m = 0 and V = vB∗A satisfying RA(ii), or alternatively
n ∈ N \ {1, 2},m ≥ 0 and V = vB∗A satisfying RA(iv). Then

σ(Dm,V) = σc(Dm,V) = σ(Dm) = (−∞,−m] ∪ [m,+∞)

and in particular σp(Dm,V) = ∅.

We stress out again that the above results does not require any smallness assumption on

the potential, even if, of course, the regions of con�nement described in Theorems 3.1, 3.2

and 3.3 become larger and larger when the norm of v increases.

Let us wonder now what happens removing the condition AB∗ = 0. As we see from

the following theorems, the requirement that the potential should be small pops up again.

Moreover, we �nd a compact localization for the eigenvalues (or their absence) only respect

to the L1
-norm when n = 1, and to the Ln,1ρ L∞θ -norm when n ≥ 2.

About the localization around the continuous spectrum of the free operator, it is not

so nice as that in Theorem 3.3, where the region of con�nement, even if unbounded,

“narrows” around σ(Dm). Denoting for simplicity with N one of the region described in

Theorems 3.6 and 3.8, we have that it “become wider” around σ(Dm), even if the sections

N ∩ {z ∈ C : <z = x0} are compact for any �xed x0 ∈ R. Also, we need to require

γ ≥ n/2, otherwise the region N would be the complement of a bounded set, and hence

not so interesting (see Section 3.4).

Hence, let us state now the results assuming RA(iii) and RA(i) respectively.

Theorem 3.5. Let n ∈ N \ {2, 4},m ≥ 0 and V = vB∗A satisfying RA(iii). Moreover, let
us set for simplicity

‖·‖ :=

{
‖·‖L1 if n = 1,
‖·‖

Ln,1ρ L∞θ
if n ≥ 2.

There exists C0 > 0 such that, if ‖v‖ < C0 andm > 0, then

|z2 −m2|1/2|z|−1 ≤ C−1
0 ‖v‖

for any z ∈ σp(Dm,V), whereas, if ‖v‖ < C0 andm = 0, then

σ(D0,V) = σc(D0,V) = σ(D0) = R

and in particular σp(D0,V) = ∅.

If n = 1, we can take C0 = 2.

Theorem 3.6. Let n ∈ N \ {1, 2, 4}, m ≥ 0, V = vB∗A satisfying RA(iii) and γ ≥ n/2.
Then there exists C0 > 0 such that

|z2 −m2|1/2|z|−γ−n/2 dist(z2 −m2, [0,+∞))γ−
1
2 ≤ C−1

0 ‖v‖
γ+n/2

Lγ+n/2

for any z ∈ σp(Dm,V). If γ =∞, the above relation is substituted by

|z|−1 dist(z2 −m2, [0,+∞)) ≤ C−1
0 ‖v‖L∞ .

If γ = n/2, we should ask also that ‖v‖γ+n/2

Lγ+n/2
< C0.
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3.2. Idea and main results

(a) Case of Theorem 3.5.

(b) Case of Theorems 3.7 and 3.9.

Figure 3.2: The plots of the boundary curves corresponding to the spectral enclosures described

in Theorem 3.5 and in Theorems 3.7 and 3.9, for various values of the norm of the potential. The

region is always the union of two disconnected components.
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3.2. Idea and main results

(a) Case of Theorem 3.6.

(b) Case of Theorem 3.8.

Figure 3.3: The plots of the boundary curves corresponding to the spectral enclosures described in

Theorems 3.6 and 3.8, for various values of the norm of the potential and for n/2 < γ <∞.

According to the value of the norm of v, the enclosure region can be composed: by two disconnected

components (in red); by two components joining in two points in the case of Theorem 3.6, and in

the origin in the case of Theorem 3.8 (in yellow); by one connected region (in blue), which presents

a “hole” around the origin in the case of Theorem 3.6.
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3.2. Idea and main results

Theorem 3.7. Let n ≥ 1,m ≥ 0 and V = vB∗A satisfying RA(i). Moreover, let us set for
simplicity

‖·‖ :=

{
‖·‖L1 if n = 1,
‖·‖

Ln,1ρ L∞θ
if n ≥ 2.

There exists a constantC0 > 0 such that, ifm > 0 and ‖v‖ < C0, then the point spectrum
of Dm,V is con�ned in the union of the two closed disks

σp(DV) ⊆ BR(c+) ∪BR(c−)

with centers and radius given by

c± = ±mC4
0 + ‖v‖4

C4
0 − ‖v‖

4 , R = m
2C2

0 ‖v‖
2

C4
0 − ‖v‖

4 .

Instead, ifm = 0 and ‖v‖ < C0, then

σ(D0,V) = σc(D0,V) = σ(D0) = R

and in particular σp(D0,V) = ∅.

If n = 1, we can take C0 = 2.

Theorem 3.8. Let n ≥ 2, m ≥ 0, V = vB∗A satisfying RA(i) and γ ≥ n/2. Then there
exist C0 > 0 such that

|z2 −m2|
1
2(1−γ−n

2 )
∣∣∣∣z +m

z −m

∣∣∣∣−(γ+n
2 ) sgn<z

2

dist(z2 −m2, [0,+∞))γ−
1
2 ≤ C−1

0 ‖v‖
γ+n/2

Lγ+n/2

for any z ∈ σp(Dm,V). If γ =∞, the above relation is substituted by

|z −m|
sgn<z−1

2 |z +m|−
sgn<z+1

2 dist(z2 −m2, [0,+∞)) ≤ C−1
0 ‖v‖L∞ .

If γ = n/2, we should ask also that ‖v‖γ+n/2

Lγ+n/2
< C0.

As we already explained, the main trick to get the theorems above basically consists of

imposing all the term of the type Aαk∂kR0(z2 −m2)B∗ in (3.2.2) to vanish, leaving only

the last term:

A(Dm − z)−1B∗ = A(mαn+1 + z)B∗
[
aR0(z2 −m2)b

]
.

This because we want to employ estimates for the resolvent of the Schrödinger operator but

not for its derivatives. However, the work [BRV97] furnish us some kind of such estimates

for the derivatives of the Schrödinger resolvent (see Lemma 3.3 below). Consequently, we

can easily obtain the following con�nement result without requiring any special structure

on the potential V , but only assuming its smallness respect to the Ln,1ρ L∞θ -norm.

Theorem 3.9. Let n ≥ 2,m ≥ 0 and V : Rn → CN×N a generic potential. There exists a
constant C0 > 0 such that, ifm > 0 and ‖V‖

Ln,1ρ L∞θ
< C0, then the point spectrum of Dm,V

is con�ned in the union of the two closed disks

σp(DV) ⊆ BR(c+) ∪BR(c−)
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3.3. Resolvent estimates for Schrödinger

with centers and radius given by

c± = ±mν2 + 1

ν2 − 1
, R = m

2ν

ν2 − 1
, ν :=

[
2C0

‖V‖
Ln,1ρ L∞θ

− 1

]2

.

Instead, ifm = 0 and ‖V‖
Ln,1ρ L∞θ

< C0, then

σ(D0,V) = σc(D0,V) = σ(D0) = R

and in particular σp(D0,V) = ∅.

The above theorem is a generalization of Theorem 3.7, dropping the many restrictions

on V and with slightly modi�ed de�nitions for the centers and the radius of the disks. In

some sense, it can be seen as the radial version of the result in Theorem 1.1 from Chapter 1.

3.3 Resolvent estimates for Schrödinger

In this section we collect some well-known resolvent estimates for the Schrödinger operator.

For our purposes the estimates on the conjugate line are su�cient, but we think it is nice

to look at the complete picture.

For dimension n ≥ 3, let us de�ne the following endpoints

A :=

(
n+ 1

2n
,
n− 3

2n

)
, A′ :=

(
n+ 3

2n
,
n− 1

2n

)
,

B :=

(
n+ 1

2n
,

(n− 1)2

2n(n+ 1)

)
, B′ :=

(
n2 + 4n− 1

2n(n+ 1)
,
n− 1

2n

)
,

A0 :=
A+A′

2
=

(
n+ 2

2n
,
n− 2

2n

)
, B0 :=

B +B′

2
=

(
n+ 3

2(n+ 1)
,
n− 1

2(n+ 1)

)
,

C :=

(
n+ 1

2n
,
n− 1

2n

)
,

and the trapezoidal region

Tn :=

{(
1

p
,
1

q

)
∈ Q :

2

n+ 1
≤ 1

p
− 1

q
≤ 2

n
,

1

p
>
n+ 1

2n
,

1

q
<
n− 1

2n

}
= [A,B,B′, A′] \ {[A,B] ∪ [A′, B′]}

where Q is the square [0, 1]× [0, 1] and, for any �nite set of points {p1, . . . , pk} ⊆ Q, we

denote with [p1, . . . , pk] its convex hull.

In the 2-dimensional case we de�ne

B :=

(
3

4
,

1

12

)
, B′ :=

(
11

12
,
1

4

)
, B0 :=

B +B′

2
=

(
5

6
,
1

6

)
,

A0 := (1, 0), C :=

(
3

4
,
1

4

)
, D :=

(
3

4
, 0

)
, D′ :=

(
1,

1

4

)
and the diamond region

T2 :=

{(
1

p
,
1

q

)
∈ Q :

2

3
≤ 1

p
− 1

q
< 1,

3

4
<

1

p
≤ 1, 0 ≤ 1

q
<

1

4

}
= [B,D,A0, D

′, B′] \ {[B,D] ∪ {A0} ∪ [B′, D′]}.
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3.3. Resolvent estimates for Schrödinger

Lemma 3.1. Let z ∈ C \ [0,+∞). If n = 1, then∥∥(−∆− z)−1
∥∥
L1→L∞ ≤

1

2
|z|−1/2.

If n ≥ 2, there exists a constant C > 0 independent on z such that:

(i) if (1/p, 1/q) ∈ Tn, then∥∥(−∆− z)−1
∥∥
Lp→Lq ≤ C|z|

−1+n
2

(
1
p
− 1
q

)
; (3.3.1)

(ii) if (1/p, 1/q) ∈ {B,B′} or if, when n ≥ 3, (1/p, 1/q) ∈ {A,A′}, then the restricted
weak-type estimate∥∥(−∆− z)−1

∥∥
Lp,1→Lq,∞ ≤ C|z|

−1+n
2

(
1
p
− 1
q

)

holds true.

The 1-dimensional estimate immediately follows from the explicit representation for

the kernel of the Laplacian resolvent, i.e.

(−∆− z)−1u(x) =

∫ +∞

−∞

i

2
√
z
ei
√
z|x−y|u(y)dy,

and from the Young’s inequality. This estimate was �rstly applied to obtain an eigenvalues

localization for the Schrödinger operator by Abramov, Aslanyan and Davies [AAD01].

The estimate in Lemma 3.1.(i) has been proved true on the open segment (A,A′) and

on the conjugate segment [A0, B0] in Lemma 2.2.(b) and Theorem 2.3 of the celebrated

paper [KRS87] by Kenig, Ruiz and Sogge. From here comes out the adjective “uniform”

with which these kind of estimates are known (even if the multiplicative factor in general

shows a dependence on z): the main result in [KRS87] concerns the exponents on the

segment (A,A′), on which the exponent in the factor |z|−1+(1/p−1/q)n/2
is indeed equal

to zero. Nowadays, the term “uniform” is generally used when the multiplicative factor is

bounded for large value of |z|, which is relevant if we want to localize the eigenvalues in

compact sets.

The estimate (3.3.1) was then proved true on the optimal range (1/p, 1/q) ∈ Tn by

Gutiérrez in Theorem 6 of [Gut04]. In this work the author proved also the inequality at

Lemma 3.1.(ii) on the endpoints B and B′, whereas the proof for the endpoints A and A′

was recently given by Ren, Xi and Zhang in [RXZ18].

It should be noted that both the works [KRS87] and [Gut04] assume n ≥ 3. The

2-dimensional case seems to have been gone quietly in the literature, nevertheless the

arguments in the aforementioned papers can be quite smoothly extended in dimension

n = 2. This has been observed �rstly in Frank [Fra11] concerning the Kenig, Ruiz and

Sogge’s result, and by Kwon and Lee [KL20] about the work by Gutiérrez.

Now, one question arises naturally: does estimates similar to (3.3.1) hold outside the

region Tn? Well yes, but actually no. The range of exponents stated in the above theorem

is optimal: estimates (3.3.1) does not hold true if (1/p, 1/q) lies outside Tn. For n ≥ 3,

the constrains
1
p >

n+1
2n and

1
q <

n−1
2n are due to considerations from the theory of the
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3.3. Resolvent estimates for Schrödinger

Bochner-Riesz operators of negative orders, the condition
1
p −

1
q ≥

2
n+1 comes from the

Knapp counterexample (see e.g. [Str77]) and �nally
1
p −

1
q ≤

2
n follows by an argument

involving the Littlewood-Paley projection. For details on this discussion we refer to [KL20]

(and to [KRS87]).

Nonetheless, we can still extend the region of the estimates if we sacri�ce something.

This is the main theme of the paper [KL20] by Kwon and Lee, where they conjecture that,

for n ≥ 2 and z ∈ C \ [0,+∞), the relation

∥∥(−∆− z)−1
∥∥
Lp→Lq ≈ |z|

−1+ d
2

(
1
p
− 1
q

)(
|z|

dist(z, [0,+∞))

)γ(n,p,q)

(3.3.2)

with

γ(n, p, q) := max

{
0, 1− n+ 1

2

(
1

p
− 1

q

)
,
n+ 1

2
− n

p
,
n

q
− n− 1

2

}
(3.3.3)

should hold on the “stripe”

S :=

{(
1

p
,
1

q

)
∈ Q : 0 ≤ 1

p
− 1

q
≤ 2

n

}
\ S0 (3.3.4)

where

S0 :=

{
[A,B] ∪ [A′, B′] ∪ [E,E0) ∪

(
E0, E

′] ∪ {F} ∪ {F ′} if n ≥ 3,

[B,D] ∪ [B′, D′] ∪ [E,E0) ∪
(
E0, E

′] ∪ {A0} if n = 2,

E :=

(
n− 1

2n
,
n− 1

2n

)
, E′ :=

(
n+ 1

2n
,
n+ 1

2n

)
, E0 :=

(
1

2
,
1

2

)
,

F :=

(
2

n
, 0

)
, F ′ :=

(
1,
n− 2

n

)
.

The symbol A ≈ B in (3.3.2) means that there exists an absolute constant, independent on

z, such that C−1B ≤ A ≤ CB.

Observe that the region S contains in particular Tn, on which γ(n, p, q) = 0 as one

can naturally expect in light of the Kenig-Ruiz-Sogge-Gutiérrez inequalities. In their work,

Kwon and Lee prove their conjecture to be indeed true, making exception of the upper

bound implicitly contained in (3.3.2) on the region

R̃ :=

{
∅ if n = 2,

R∪R′ if n ≥ 3,

(3.3.5)

where

R := [P∗, P◦, E0] \ {E0}, R′ := [P ′∗, P
′
◦, E0] \ {E0},

and the endpoints are de�ned by

P◦ :=

(
1

p◦
,

1

q◦

)
, P ′◦ :=

(
1− 1

q◦
, 1− 1

p◦

)
,

P∗ :=

(
1

p∗
,

1

p∗

)
, P ′∗ :=

(
1− 1

p∗
, 1− 1

p∗

)
,
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3.3. Resolvent estimates for Schrödinger

with

1

p◦
:=


(n+ 5)(n− 1)

2(n2 + 4n− 1)
if n is odd,

n2 + 3n− 6

2(n2 + 3n− 2)
if n is even,

1

q◦
:=


(n+ 3)(n− 1)

2(n2 + 4n− 1)
if n is odd,

(n− 1)(n+ 2)

2(n2 + 3n− 2)
if n is even,

1

p∗
:=


3(n− 1)

2(3n+ 1)
if n is odd,

3n− 2

2(3n+ 2)
if n is even.

Let us gather the above results by Kwon and Lee [KL20] in the following lemma.

Lemma 3.2. Let n ≥ 2 and z ∈ C \ [0,+∞). There exists a constant K > 0 independent
on z such that:

(i) if (1/p, 1/q) ∈ S , then

∥∥(−∆− z)−1
∥∥
Lp→Lq ≥ K

−1|z|−1+n
2

(
1
p
− 1
q

)(
|z|

dist(z, [0,+∞))

)γ(n,p,q)

;

(ii) if (1/p, 1/q) ∈ S \ R̃, then

∥∥(−∆− z)−1
∥∥
Lp→Lq ≤ K|z|

−1+n
2

(
1
p
− 1
q

)(
|z|

dist(z, [0,+∞))

)γ(n,p,q)

.

The regions S and R̃ are described in (3.3.4) and (3.3.5) respectively, while γ(n, p, q) is de�ned
in (3.3.3).

The analysis of Kwon and Lee pictures quite clearly the situation outside the so-called

“uniform boundedness range” Tn: we can still have Lp − Lq inequalities so long as the

factor depending on z explodes when =z → 0±, and this can not be improved. If we want

to apply these estimates in the eigenvalues localization problem, this means that we can

not obtain the eigenvalues con�ned in a compactly supported region of the complex plane,

but in a set containing the continuous spectrum of the unperturbed operator.

In this optic, one can instead try to save the uniformity of the estimates, in the sense

that the factor depending on z should be uniformly bounded for |z| su�ciently large. In

this way, we can again hope to get the eigenvalues con�ned inside compact regions. This

can be indeed obtained on a smaller region respect to S if we restrict ourself on considering

radial functions.

De�ne, for n ≥ 2, the open triangle

P :=

{(
1

p
,
1

q

)
∈ Q :

1

n
<

1

p
− 1

q
<

2

n+ 1
,

1

p
>
n+ 1

2n
,

1

q
<
n− 1

2n

}
= [B,C,B′] \ {[B,B′] ∪ [B,C] ∪ [C,B′]}.
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Recall the radial-angular spaces de�ned in (3.1.3) and their norms (3.1.4). Adopting the

terminology and notations of [BRV97] and [FS17b], we introduce also the radial Mizohata-

Takeuchi norm

‖w‖MT := sup
R>0

∫ ∞
R

r√
r2 −R2

‖w(r ·)‖L∞(Sn−1) dr

and we say that w ∈MT if ‖w‖MT <∞.

Lemma 3.3. Let n ≥ 2 and z ∈ C \ [0,+∞). There exists a constant K > 0 independent
on z such that:

(i) if (1/p, 1/q) ∈ (C,B0), then∥∥(−∆− z)−1
∥∥
LpρL

2
θ→L

q
ρL

2
θ
≤ K|z|−1−n

2
+n
p ;

(ii) if (1/p, 1/q) = C , then∥∥(−∆− z)−1
∥∥
L
2n/(n+1),1
ρ L2

θ→L
2n/(n−1),∞
ρ L2

θ

≤ K|z|−1/2, (3.3.6)∥∥∇(−∆− z)−1
∥∥
L
2n/(n+1),1
ρ L2

θ→L
2n/(n−1),∞
ρ L2

θ

≤ K. (3.3.7)

If in particular u ∈ Lp(Rn) is a radial function, then

∥∥(−∆− z)−1u
∥∥
Lq
≤ K|z|−1+n

2

(
1
p
− 1
q

)
‖u‖Lp

for any (1/p, 1/q) ∈ P , and∥∥(−∆− z)−1u
∥∥
L2n/(n−1),∞ ≤ K|z|−1/2 ‖u‖L2n/(n+1),1∥∥∇(−∆− z)−1u
∥∥
L2n/(n−1),∞ ≤ K ‖u‖L2n/(n+1),1

in the case (1/p, 1/q) = C .

Proof. The result in Lemma 3.3.(i) is stated in Theorem 4.3 by Frank and Simon [FS17b].

Instead, the case of the endpoint C is essentially due to Theorem 1.(b) and Theorem 2 by

Barcelo, Ruiz and Vega [BRV97]. Indeed, let us consider �rstly the estimate for (−∆−z)−1
.

Observe that, by Hölder’s inequality and by duality, the estimate (3.3.6) is equivalent to∥∥∥w1/2
1 (−∆− z)−1w

1/2
2 u

∥∥∥
L2
≤ K|z|−1/2 ‖w1‖1/2

Ln,1ρ L∞θ
‖w2‖1/2

Ln,1ρ L∞θ
‖u‖L2 (3.3.8)

for any w1, w2 ∈ Ln,1ρ L∞θ . In fact, that (3.3.6) implies (3.3.8) is obvious by Hölder’s inequal-

ity for Lorentz spaces. Conversely, we have that

∥∥∥(−∆− z)−1w
1/2
2 u

∥∥∥
L
2n/(n−1),∞
ρ L2

θ

= sup
06=w1∈Ln,1ρ L∞θ

∥∥∥w1/2
1 (−∆− z)−1w

1/2
2 u

∥∥∥
L2∥∥∥w1/2

1

∥∥∥
L2n,2
ρ L∞θ

≤ K|z|−1/2 ‖w2‖Ln,1ρ L∞θ
‖u‖L2 ,
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3.3. Resolvent estimates for Schrödinger

that is to say that, for any �xed w ∈ Ln,1ρ L∞θ , the operator (−∆− z)−1w1/2
is bounded

from L2
to L

2n/(n−1),∞
ρ L2

θ with norm∥∥∥(−∆− z)−1w1/2
∥∥∥
L2→L2n/(n−1),∞

ρ L2
θ

≤ K|z|−1/2 ‖w‖
Ln,1ρ L∞θ

.

By duality this implies that the operator w1/2(−∆− z)−1
is bounded from L

2n/(n+1),1
ρ L2

θ

to L2
with norm∥∥∥w1/2(−∆− z)−1

∥∥∥
L
2n/(n+1),1
ρ L2

θ→L2
≤ K|z|−1/2 ‖w‖

Ln,1ρ L∞θ
,

from which we �nally get

∥∥(−∆− z)−1u
∥∥
L
2n/(n−1),∞
ρ L2

θ

= sup
06=w1∈Ln,1ρ L∞θ

∥∥∥w1/2
1 (−∆− z)−1u

∥∥∥
L2∥∥∥w1/2

1

∥∥∥
L2n,2
ρ L∞θ

≤ K|z|−1/2 ‖u‖
L
2n/(n+1),1
ρ L2

θ

.

From Barcelo, Ruiz and Vega [BRV97] we have that∥∥∥w1/2
1 (−∆− z)−1w

1/2
2 u

∥∥∥
L2
≤ K|z|−1/2 ‖w1‖1/2MT ‖w2‖1/2MT ‖u‖L2 (3.3.9)

which implies (3.3.8). Indeed, we can replace theMT norm with the Ln,1ρ L∞θ norm since,

as proved in equation (4.2) of [FS17b], the embedding

Ln,1ρ L∞θ ↪→MT

holds true (cf. Theorem 4.4 in [FS17b]). To be precise, equation (3.3.9) is proved in [BRV97]

for w1 = w2 ∈MT , but the possibility of choosing two di�erent weights follows easily

from their proof (see Proposition 2 of the same paper).

Consider now the estimate for ∇(−∆ − z)−1
on the endpoint C . From Theorem 2

in [BRV97] we have that

‖v‖L2 ≤ K ‖w‖MT
∥∥∥w1/2∇(−∆− z)w−1/2v

∥∥∥
L2

(3.3.10)

for z ≥ 0. Supposing this inequality true for any complex number z, we can then obtain

estimate (3.3.7) following the same argument as above. The fact that (3.3.10) is true ev-

erywhere on the complex plane is implicit in the proof given by Barcelo, Ruiz and Vega.

Indeed, the proof of Theorem 2 at pages 373–374 of [BRV97] is still valid for any real z.

Then, the argument based on the Phragmén-Lindelöf principle exploited at page 373 to

prove Theorem 1.(b) can be adapted also to this situation, proving (3.3.10) for any z ∈ C.

Finally, for radial functions the radial-angular norms (3.1.4) from [FS17b] reduce simply

to the Lebesgue and Lorentz norms. Real interpolation between the estimates on the open

segment (C,B0) and the ones on the open segment (B,B′) coming from Lemma 3.1 prove

the assertion on P for radial functions.

Thus ends our recap on the Schrödinger resolvent estimates. The results in Lem-

mata 3.1, 3.2 and 3.3 are visually summarized in Figure 3.4. We conclude this section with a

direct corollary of Lemma 3.3 concerning the free Dirac resolvent.
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D

B

C B′ D′

B0

E

E0

E′

T2

S̃

P

1
q

(0, 0) 1
p

(0, 1)

A0

(a) Case n = 2.

A

B

C B′ A′

B0

A0

F

F ′

P∗
P◦

E0

P ′◦

P ′∗

Tn

S̃

P

R

R′

1
q

(0, 0) 1
p

(0, 1)

(1, 0)

(b) Case n ≥ 3.

Figure 3.4: In this picture we visualize the many regions and endpoints appearing in Section 3.3.

The Kenig-Ruiz-Sogge-Gutiérrez region Tn from Lemma 3.1 is highlighted in blue, while in red we

show the triangle P from Lemma 3.3 about the estimates for radial functions. Finally, the yellow

region S̃ is such that S \ R̃ = S̃ ∪P ∪Tn, where S is the Kwon-Lee region interested by Lemma 3.2

and R̃ = R∪R′ is pictured dotted.

Corollary 3.1. Let n ≥ 2, m ≥ 0 and z ∈ C \ {(−∞,−m] ∪ [m,+∞)}. There exists a
constantK > 0 independent on z such that

∥∥(Dm − z)−1
∥∥
L
2n/(n+1),1
ρ L2

θ→L
2n/(n−1),∞
ρ L2

θ

≤ K

[
1 +

∣∣∣∣z +m

z −m

∣∣∣∣ sgn<z2

]

and in particular, if u ∈ L
2n
n+1

,1(Rn) is a radial function, then

∥∥(Dm − z)−1u
∥∥
L2n/(n−1),∞ ≤ K

[
1 +

∣∣∣∣z +m

z −m

∣∣∣∣ sgn<z2

]
‖u‖L2n/(n+1),1 .

Proof. By the identity (3.2.1) and the estimates (3.3.6)–(3.3.7), it is immediate to get∥∥(Dm − z)−1u
∥∥
L

2n
n−1 ,∞

≤

∥∥∥∥∥
n∑
k=1

αk∂k(−∆ +m2 − z2)−1u

∥∥∥∥∥
L

2n
n−1 ,∞

+
∥∥(mαn+1 + zIN )(−∆ +m2 − z2)−1u

∥∥
L

2n
n−1 ,∞

≤
√
n
∥∥∇(−∆ +m2 − z2)−1u

∥∥
L

2n
n−1 ,∞

+ max{|z +m|, |z −m|}
∥∥(−∆ +m2 − z2)−1u

∥∥
L

2n
n−1 ,∞

≤K

[
1 +

∣∣∣∣z +m

z −m

∣∣∣∣ sgn<z2

]
‖u‖L2n/(n+1),1

and hence the claimed inequalities.

Let us combine now the estimates above with the Birman-Schwinger principle to get

our claimed results.
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3.4 Proof for the theorems

Before to put our hands on the computations for the theorems, we need to bring to mind the

abstract technicalities of the Birman-Schwinger principle exploited in Section 2.3, where

we also properly de�ned an operator perturbed by a factorizable potential. In our case,

H = H′ = L2(Rn;CN×N ) and V = B∗A is a multiplication operator in H, with initial

domain dom(V) = C∞0 (Rn;CN ), generated by a matrix-valued function V : Rn → CN×N
(again, with the customary abuse of notation, we use the same symbol to denote the

matrix and the operator). Same thing holds for the operators A and B∗, which is not

restrictive to consider closed. In this way, Assumption I is veri�ed by the Closed Graph

Theorem. By the argument exploited in Subsection 2.3.1, since dom(B∗) = C∞0 (Rn;CN ),

then Kz = A(H0 − z)−1B∗. As usual, we reduced to study just

∥∥A(H0 − z)−1B∗
∥∥
H→H

.

Recall the identity (3.2.2). Exploiting the Rigidity Assumptions and setting for simplicity

k2 ≡ k2(z) := z2 −m2
, (3.2.2) becomes

A(Dm − z)−1B∗ = (mAαn+1B
∗ + zAB∗)aR0(k2)b.

In particular, assume that RA(ι) hold, for �xed ι ∈ {i, ii, iii, iv}. Then, since |A| = |B| = 1,

we get

‖A(mαn+1 + zIN )B∗‖L∞ ≤ κ

where

κ ≡ κ(z) :=


|k(z)|

∣∣∣∣z +m

z −m

∣∣∣∣ sgn<z2

if ι = i and m > 0,

m if ι = ii and m > 0,

|z| if ι = iii, or ι = i and m = 0,

0 if ι = iv, or ι = ii and m = 0.

By Hölder’s inequality,∥∥A(Dm − z)−1B∗φ
∥∥
L2 ≤ κ ‖a‖

L
2q
q−2
‖b‖

L
2p
2−p

∥∥R0(k2)
∥∥
Lp→Lq ‖φ‖L2

and so, recalling that |a| = |b| = |v|1/2, setting q = p′ and 1/r = 1/p− 1/q, we get∥∥A(Dm − z)−1B∗φ
∥∥
L2 ≤ κ ‖v‖Lr

∥∥R0(k2)
∥∥
Lp→Lq ‖φ‖L2 .

Similarly one infers also∥∥A(Dm − z)−1B∗
∥∥
L2→L2 ≤ κ ‖v‖LrρL∞θ

∥∥R0(k2)
∥∥
LpρL

2
θ→L

q
ρL

2
θ∥∥A(Dm − z)−1B∗

∥∥
L2→L2 ≤ κ ‖v‖

Lr,1ρ L∞θ

∥∥R0(k2)
∥∥
Lp,1ρ L2

θ→L
q,∞
ρ L2

θ
.

From Lemmata 3.1, 3.2 and 3.3 on the conjugate line (hence on the segments [A0, B0],
(B0, C] and (C,E0] respectively), if n = 1 we get∥∥A(Dm − z)−1B∗

∥∥
L2→L2 ≤

κ
2
|k|−1 ‖v‖L1 (3.4.1)
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whereas, if n ≥ 2 and r > 1, we have

∥∥A(Dm − z)−1B∗
∥∥
L2→L2 . κ|k|−2+n

r


‖v‖Lr if r ∈

[
n

2
,
n+ 1

2

]
,

‖v‖LrρL∞θ if r ∈
(
n+ 1

2
, n

)
,

‖v‖
Ln,1ρ L∞θ

if r = n,

(3.4.2)

∥∥A(Dm − z)−1B∗
∥∥
L2→L2 .

κ|k|−
1
r

dist(k2, [0,∞))1−n+1
2r

‖v‖Lr if r ∈
(
n+ 1

2
,∞
]

. (3.4.3)

In short, we have found inequalities of the type∥∥A(Dm − z)−1B∗
∥∥
L2→L2 ≤ Cκ(z) ‖v‖

for a suitable norm ‖·‖ of v, a positive constant C independent on z and where the function

κ is either

κ(z) = κ(z)|k(z)|−2+n
r or κ(z) = κ(z)

|k(z)|−1/r

dist(z2 −m2, [0,+∞))1−n+1
2r

.

Applying the Birman-Schwinger principle and proving our results is now straightforward

and easy, maybe just a bit dazzling due to the fauna of cases. According to the hypothesis

assumed in the statements of each of our theorems, observe that the region S described by

S = {z ∈ C : 1 ≤ Cκ(z) ‖v‖}

in any case covers all the region ρ(Dm) = C \ {(−∞,−m] ∪ [m,+∞)}. Ergo we can

always �x a complex number z0 ∈ ρ(Dm) outside S satisfying CK(z0) ‖v‖ < 1, namely

Assumption II
′

is veri�ed (e.g. one can take z0 = iy0, for y0 ∈ R su�ciently large). By

Theorem 2.7 we can deduce that the point spectrum of the perturbed operator Dm,V is

con�ned in S . If in particular κ(z) is a nonnegative constant smaller than 1 (even 0, in

which case the Birman-Schwinger operator is identically zero), we can exploit Theorem 2.8

obtaining that σ(Dm,V) = σc(Dm,V) = σc(Dm) = (−∞,−m]∪[m,+∞) and in particular

σp(Dm,V) = ∅.

In the case of RA(ii) with m > 0, we have κ ≡ 1 and it is immediate, from the Birman-

Schwinger principle and all the above estimates forA(Dm−z)−1B∗, to conclude the proofs

for Theorems 3.1, 3.2 and 3.3. When we consider RA(ii) with m = 0 or instead RA(iv), then

κ ≡ 0 and hence the Birman-Schwinger operator is identically zero, implying the stability

of the spectrum stated in Theorem 3.4.

Now consider the case of RA(i) and m > 0. Therefore κ(z) = |k(z)|
∣∣∣ z+mz−m

∣∣∣sgn<z/2
and

hence κ(z) is either of the form

κ(z) = |k(z)|−1+n
r

∣∣∣∣z +m

z −m

∣∣∣∣sgn<z/2
(3.4.4)

or of the form

κ(z) =
|k(z)|1−1/r

dist(z2 −m2, [0,+∞))1−n+1
2r

∣∣∣∣z +m

z −m

∣∣∣∣sgn<z/2
(3.4.5)
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We are interested in localizing the eigenvalues in compact regions, or at least in neighbor-

hoodN of the continuous spectrum ofDm such thatN ∩{z ∈ C : <z = x0} is compact for

any �xed x0 ∈ R. At this aim one should ask that κ(z) is uniformly bounded as |z| → ∞
in the �rst case, and that K(x0 + =z) is uniformly bounded as |=z| → ∞ in the second

case. It is easy to check that if κ(z) is like in (3.4.4), then

κ(z) ∼ |z|−1+n/r
as |z| → ∞

whereas if κ(z) is like in (3.4.5), then

κ(<z + i=z) ∼ |=z|−1+n
r as |=z| → ∞

for �xed <z ∈ R. In both cases, we should ask r ≥ n to get an interesting (in the sense

speci�ed above) localization for the eigenvalues. The same argument holds in the case of

RA(i) and m = 0, or in the case of RA(iii), namely when κ(z) = |z|. For this reason, to

get Theorems 3.5–3.8 we only employ the estimates (3.4.1), (3.4.2) for r = n and (3.4.3) for

γ := r − n/2 ≥ n/2.

In particular, Theorem 3.7 when κ(z) = |k(z)|
∣∣∣ z+mz−m

∣∣∣sgn<z/2
is implied by (3.4.1) and

(3.4.2) for r = n, taking in account that
C0
‖v‖ ≤

∣∣∣ z+mz−m

∣∣∣sgn<z/2
is equivalent to

(
|<z| −mC4

0 + ‖v‖4

C4
0 − ‖v‖

4

)2

+ (=z)2 ≤

(
m

2C2
0 ‖v‖

2

C4
0 − ‖v‖

4

)2

if ‖v‖ < C0. In the same case, (3.4.3) implies Theorem 3.8. When instead κ(z) = |z|
and m = 0, noting that κ|k|−1 ≡ 1, thanks to (3.4.1) and (3.4.2) for r = n we can prove

the massless cases in Theorems 3.5 and 3.7. The last inequalities are used to prove also

Theorem 3.5, in the case of RA(iii) and m > 0. Finally, Theorem 3.6 is proved exploiting

(3.4.3) in the case κ = |z|. We conclude noting that in Theorems 3.6 and 3.8, when γ = n/2,

the additional hypothesis ‖v‖γ+n/2

Lγ+n/2
< C0 is necessary, since in this caseK(x0 + i=z) ∼ 1

as |=z| → ∞ for �xed x0 ∈ R. Hence, if the norm of the potential is not small enough, the

condition N ∩ {z ∈ C : <z = x0} compact would not be satis�ed.

Last but not least, we sketch the proof of Theorem 3.9, which is not so di�erent from

that of Theorem 3.7. Here we need to use the usual polar decomposition V = UW = B∗A
with A =

√
W and B =

√
WU∗. Employing Corollary 3.1, by Hölder’s inequality we

immediately obtain

∥∥A(Dm − z)−1B∗φ
∥∥
L2 ≤ K ‖V‖Ln,1ρ L∞θ

[
1 +

∣∣∣∣z +m

z −m

∣∣∣∣ sgn<z2

]
‖φ‖L2 .

Assumptions I and II are veri�ed as above, and note that in the massive case the inequality

1 ≤ K ‖V‖
Ln,1ρ L∞θ

[
1 +

∣∣∣∣z +m

z −m

∣∣∣∣ sgn<z2

]

describes the two disks in the statement of Theorem 3.9, letting C0 = 1
2K . Another

application of the Birman-Schwinger principle concludes the proof.
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3.5 Game of matrices

The present section is fully dedicated to computations with matrices in order to exhibit some

explicit examples of potentials V = vV such that the matricial part V can be factorized

in the product of two matrices B∗ and A satisfying the various assumptions stated in

Section 3.2.

We will prove that in some low dimensions it is not possible to �nd the required

potential, more precisely they do not exists in dimension n = 2, 4 in the case of RA(ii)

and RA(iii), and in dimension n = 1, 2 in the case of RA(iv). In all the other case, we will

exhibit at least a couple of examples. There is no intent here to be exhaustive in �nding

the suitable matrices, but rather we want to suggest an idea to build them. At this aim we

�rstly need to show an explicit representation for the Dirac matrices, and then we need to

introduce some special “brick” matrices.

3.5.1 The Dirac matrices

First of all, as anticipated in Remark 3.2, let us explicitly de�ne the Dirac matrices we are

going to employ in our calculations, or better, one of their possible representations. At this

aim we rely on the recursive construction performed by Kalf and Yamada in the Appendix

of [KY01].

Let us introduce the Pauli matrices

σ1 :=

(
0 1
1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0
0 −1

)
.

Moreover, let us de�ne for two matrices A = (aij) ∈ Cr1×c1 and B = (bij) ∈ Cr2×c2 ,

with r1, c1, r2, c2 ∈ N, the Kronecker product

A⊗B :=

a11B · · · a1nB
.
.
.

.
.
.

.

.

.

an1B · · · annB

 ∈ Cr1r2×c1c2 .

Recall that the Kronecker product satis�es, among others, the associative property and the

mixed-product property, viz.

A1 ⊗ (A2 ⊗A3) = (A1 ⊗A2)⊗A3 = A1 ⊗A2 ⊗A3

(A1 ⊗B1)(A2 ⊗B2) = (A1A2)⊗ (B1B2).

The Dirac matrices in low dimensions can be chosen to be the Pauli matrices, namely

for n = 1 we set

α
(1)
1 := σ1, α

(1)
2 := σ3,

and for n = 2
α

(2)
1 := σ1, α

(2)
2 := σ2, α

(2)
3 := σ3.

The apex (n) stands for the dimension; we will omit it when there is no possibility of

confusion. Let us start the recursion, after recalling that we de�ned N := 2dn/2e:

53



3.5. Game of matrices

(i) if n ≥ 3 is odd, we use the matrices α
(n−1)
1 , . . . , α

(n−1)
n+1 known from the dimension

n− 1 to construct

α
(n)
k := σ1 ⊗ α(n−1)

k , α
(n)
n+1 := σ3 ⊗ IN/2

for k ∈ {1, . . . , n};

(ii) if the dimension n ≥ 4 is even, we de�ne

α
(n)
1 := σ1 ⊗ IN/2, α

(n)
k+1 := σ2 ⊗ α(n−2)

k , α
(n)
n+1 := σ3 ⊗ IN/2

for k ∈ {1, . . . , n− 1}.

In any dimension n ≥ 1, the Dirac matrices α1, . . . , αn+1 just de�ned are Hermitian,

satisfy (1.1.2) and have the structure

αk =

(
0 βk
β∗k 0

)
, αn+1 =

(
IN/2 0

0 −IN/2

)
for k ∈ {1, . . . , n}, where the matrices βk ∈ CN/2×N/2 satisfy

βkβ
∗
j + βjβ

∗
k = 2δjkIN/2

and are Hermitian if n is odd.

Remark 3.5. Not only in dimension n = 1, 2, but also in dimension n = 3, the above

representation for the Dirac matrices coincides with the classical one:

α
(3)
1 = σ1 ⊗ σ1 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 , α
(3)
2 = σ1 ⊗ σ2 =


0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0

 ,

α
(3)
3 = σ1 ⊗ σ3 =


0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

 , α
(3)
4 = σ3 ⊗ I2 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 .

Remark 3.6. If {α1, . . . , αn+1} and {α̃1, . . . , α̃n+1} are a pair of sets of Dirac matrices,

then there exists a unitary matrixU ∈ CN×N such that α̃k = UαkU
−1

or α̃k = −UαkU−1
,

for k ∈ {1, . . . , n+ 1}. If n is odd we always fall in the �rst case; if n is even and we are

in the second case, set Ũ = U
∏n
k=1 αk, then

D̃m = −i
n∑
j=1

α̃k∂k +mα̃n+1 = Ũ

−i n∑
j=1

αk∂k −mαn+1

 Ũ−1 = ŨD−mŨ−1.

Therefore, considering the perturbed operator D̃
m,Ṽ , in odd dimension it is unitarily

equivalent toDm,V with Ṽ = ŨVŨ−1
, whereas in even dimension it is unitarily equivalent

to either Dm,V or D−m,V .

In our case, noting that all the results in Section 3.2 are symmetric respect to the

imaginary axis (namely they are not e�ected replacing m with −m in the de�nition of the

Dirac operator), it becomes evident that the choice of a particular representation for the

Dirac matrices is not restrictive at all.
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The above recursive de�nition for the matrices may appear too much implicit, but we

can go further exploding the representation. Let us de�ne the “Kronecker exponentiation”

M⊗0 = 1

M⊗k = M ⊗ · · · ⊗M︸ ︷︷ ︸
k times

for any complex matrix M and for any k ∈ N, imposing the natural identi�cation between

1 ∈ C and the matrix (1) ∈ C1×1
. Therefore, one can explicitly write the Dirac matrices in

even dimension n ≥ 2 as

αk =


σ⊗k−1

2 ⊗ σ1 ⊗ I⊗n/2−k2 for k ∈
{

1, . . . ,
n

2

}
σ
⊗n/2
2 for k =

n

2
+ 1

σ⊗n+1−k
2 ⊗ σ3 ⊗ I⊗k−n/2−2

2 for k ∈
{n

2
+ 2, . . . , n+ 1

} (3.5.1)

and in odd dimension n ≥ 3 as

αk =



σ1 ⊗ σ⊗k−1
2 ⊗ σ1 ⊗ I⊗(n−1)/2−k

2 for k ∈
{

1, . . . ,
n− 1

2

}
σ1 ⊗ σ⊗(n−1)/2

2 for k =
n− 1

2
+ 1

σ1 ⊗ σ⊗n−k2 ⊗ σ3 ⊗ I⊗k−(n−1)/2−2
2 for k ∈

{
n− 1

2
+ 2, . . . , n

}
σ3 ⊗ I⊗(n−1)/2

2 for k = n+ 1.

The odd dimensional case follow easily from the recursive de�nition and from the explicit

de�nition (3.5.1) of the Dirac matrices in the even dimensional case; the latter can be easily

veri�ed by induction, and we omit the proof.

For later use, we collect in the following lemma a recursive formula which connects

the Dirac matrices associated to two di�erent dimensions.

Lemma 3.4. Let n,m ∈ N such that 2 ≤ m ≤ n and n −m is even. Thus the following
identity hold:

α
(n)
k =


α

(m)
k ⊗ I⊗(n−m)/2

2 for k ∈
{

1, . . . ,
⌊m

2

⌋}
α

(m)
bm/2c+1 ⊗ α

(n−m)
k−bm/2c for k ∈

{⌊m
2

⌋
+ 1, . . . , n−m+

⌊m
2

⌋
+ 1
}

α
(m)
k−(n−m) ⊗ I

⊗(n−m)/2
2 for k ∈

{
n−m+

⌊m
2

⌋
+ 2, . . . , n+ 1

}
where b·cis the �oor function.

Proof. If n,m are both even, we want to prove

α
(n)
k =


α

(m)
k ⊗ I⊗(n−m)/2

2 for k ∈
{

1, . . . ,
m

2

}
α

(m)
m/2+1 ⊗ α

(n−m)
k−m/2 for k ∈

{m
2

+ 1, . . . , n− m

2
+ 1
}

α
(m)
k−(n−m) ⊗ I

⊗(n−m)/2
2 for k ∈

{
n− m

2
+ 2, . . . , n+ 1

}
.

(3.5.2)
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3.5. Game of matrices

But, from (3.5.1) and setting for simplicity j := k−m/2, h := k− (n−m) for any k ∈ N,

we immediately have

α
(n)
k =



σ⊗k−1
2 ⊗ σ1 ⊗ I

⊗m
2
−k

2 ⊗ I⊗
n−m

2
2 for k ∈

{
1, . . . ,

m

2

}
σ
⊗m

2
2 ⊗ σj−1

2 ⊗ σ1 ⊗ I
⊗n−m

2
−j

2 for k ∈
{m

2
+ 1, . . . ,

n

2

}
σ
⊗m

2
2 ⊗ σ⊗

n−m
2

2 for k =
n

2
+ 1

σ
⊗m

2
2 ⊗ σn−m+1−j

2 ⊗ σ3 ⊗ I
⊗j−n−m

2
−2

2 for k ∈
{n

2
+ 2, . . . , n− m

2
+ 1
}

σ⊗m+1−h
2 ⊗ σ3 ⊗ I

⊗h−m
2
−2

2 ⊗ I⊗
n−m

2
2 for k ∈

{
n− m

2
+ 2, . . . , n+ 1

}
from which our assertion is evident.

If n,m are both odd, exploiting (3.5.2) it follows that

α
(n)
k =

{
σ1 ⊗ α(n−1)

k for k ∈ {1, . . . , n}

σ3 ⊗ I⊗n/2−1
2 for k = n+ 1

=



σ1 ⊗ α(m−1)
k ⊗ I⊗(n−m)/2

2 for k ∈
{

1, . . . ,
m− 1

2

}
σ1 ⊗ α(m−1)

(m−1)/2+1 ⊗ α
(n−m)
k−(m−1)/2 for k ∈

{
m− 1

2
+ 1, . . . , n− m− 1

2

}
σ1 ⊗ α(m−1)

k−(n−m) ⊗ I
⊗(n−m)/2
2 for k ∈

{
n− m− 1

2
+ 1, . . . , n

}
σ3 ⊗ I⊗n/2−1

2 for k = n+ 1

=



α
(m)
k ⊗ I⊗(n−m)/2

2 for k ∈
{

1, . . . ,
m− 1

2

}
α

(m)
(m−1)/2+1 ⊗ α

(n−m)
k−(m−1)/2 for k ∈

{
m− 1

2
+ 1, . . . , n− m− 1

2

}
α

(m)
k−(n−m) ⊗ I

⊗(n−m)/2
2 for k ∈

{
n− m− 1

2
+ 1, . . . , n+ 1

}
which concludes the proof.

To conclude this subsection on the Dirac matrices, it seems interesting to us noting the

following relation about their product, even if we are not going to exploit it.

Lemma 3.5. We have that

α̃ := (−i)b
n
2
c
n+1∏
k=1

αk =

{
−iσ2 ⊗ IN/2 if n is odd,
IN if n is even,

(3.5.3)

and in particular

α̃2 = (−1)nIN , α̃∗ = (−1)nα̃, αkα̃ = (−1)nα̃αk

for k ∈ {1, . . . , n+ 1}.
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3.5. Game of matrices

Proof. The three properties follows obviously from the anticommutation relations (1.1.2),

so we need just to prove the second equality in (3.5.3). Suppose �rstly that n is even. Then

the identity follows by inductive argument. If n = 2, it is directly veri�ed that

−iα(2)
1 α

(2)
2 α

(2)
3 = −iσ1σ2σ3 = I2.

Fix now n ≥ 4 even and suppose that

(−i)n/2−1
n−1∏
k=1

α
(n−2)
k = IN/2.

Exploiting the de�nitions of the Dirac matrices and the mixed-product property of the

Kronecker product, we get

(−i)n/2
n+1∏
k=1

α
(n)
k = (−i)n/2

[
σ1 ⊗ IN/2

] [n−1∏
k=1

σ2 ⊗ α(n−2)
k

] [
σ3 ⊗ IN/2

]
= (−i)n/2

[
σ1 ⊗ IN/2

] [
σn−1

2 ⊗
n−1∏
k=1

α
(n−2)
k

] [
σ3 ⊗ IN/2

]
= −i

[
σ1 ⊗ IN/2

] [
σ2 ⊗ IN/2

] [
σ3 ⊗ IN/2

]
= −iσ1σ2σ3 ⊗ IN/2
= IN

Finally, let n ≥ 1 be odd. If n = 1, then it is trivially checked that α
(1)
1 α

(1)
2 = σ1σ3 = −iσ2.

If n ≥ 3, then

(−i)
n−1
2

n∏
k=1

α
(n)
k = (−i)

n−1
2

n∏
k=1

σ1 ⊗ α(n−1)
k = (−i)

n−1
2 σn1 ⊗

n∏
k=1

α
(n−1)
k = σ1 ⊗ IN/2

and hence

(−i)
n−1
2

n+1∏
k=1

α
(n)
k = [σ1 ⊗ IN/2][σ3 ⊗ IN/2] = −iσ2 ⊗ IN/2

concluding the proof of the identity.

3.5.2 The brick matrices

Before to proceed with the construction of the examples for the potentials, we need to point

our attention on some peculiar 2× 2 matrices. We want to �nd ρk, τk ∈ C2×2
satisfying

the conditions

ρkσ1(τk)∗ = 0 = ρkσk(τ
k)∗

ρkσh(τk)∗ 6= 0 6= (τk)∗ρk

for �xed k ∈ {0, 2, 3} and any h ∈ {0, 2, 3} \ {k}, where we de�ne for simplicity σ0 := I2.

Moreover, let us ask also |ρk| = |τk| = 1, where | · | is the matricial 2-norm, a.k.a. the

spectral norm. It is quite simple to �nd a couple of such matrices for any k ∈ {0, 2, 3},
properly combining the Pauli matrices.
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3.5. Game of matrices

In the case k = 0, we can consider

ρ0
+ =

σ2 + iσ3

2
= τ0
−, τ0

+ =
I2 + σ1

2
= ρ0

−,

from which, using the anticommutation relations (1.1.2), it easy to check

ρ0
±σ0(τ0

±)∗ = 0 = ρ0
±σ1(τ0

±)∗

ρ0
±σ2(τ0

±)∗ =
I2 + σ1

2
= ∓iρ0

±σ3(τ0
±)∗

(τ0
±)∗ρ0

± =
σ2 ± iσ3

2
.

In the case k = 2, we can set

ρ2
± =

σ1 ∓ iσ2

2
= τ2
±,

and thus

ρ2
±σ1(τ2

±)∗ = 0 = ρ2
±σ2(τ2

±)∗

ρ2
±σ0(τ2

±)∗ =
I2 ∓ σ3

2
= ±ρ2

±σ3(τ2
±)∗

(τ2
±)∗ρ2

± =
I2 ± σ3

2
.

Finally, in the case k = 3, we can consider

ρ3
± =

I2 ± σ2

2
= τ3
±

and hence

ρ3
±σ1(τ3

±)∗ = 0 = ρ3
±σ3(τ3

±)∗

ρ3
±σ0(τ3

±)∗ =
I2 ± σ2

2
= ±ρ3

±σ2(τ3
±)∗

(τ3
±)∗ρ3

± =
I2 ± σ2

2
.

The couple of matrices we found for each of the three cases are not the only solutions

satisfying the required set of conditions, but for our purposes are enough.

Now, we want to �nd matrices A,B ∈ CN×N
such that

AαkB
∗ = 0

V = B∗A 6= 0

for k ∈ {1, . . . , n}. In addition, we will also impose, or not, that AB∗ and Aαn+1B
∗

are

null matrices.
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3.5.3 The odd-dimensional case

Let us start with the 1-dimensional case, for which we have basically already found the

admissible matricial part for the potentials, thanks to the brick matrices found in the

previous subsection.

In fact, to satisfy RA(i) we need to �nd V = B∗A 6= 0 such thatAσ1B
∗ = 0, AB∗ 6= 0,

Aσ3B
∗ 6= 0, thus we can choose A± = ρ2

±, B± = τ2
±, obtaining the couple of examples

V± =
1

2

(
1± 1 0

0 1∓ 1

)
=

[
1

2

(
0 1∓ 1

1± 1 0

)]∗ [
1

2

(
0 1∓ 1

1± 1 0

)]
= B∗±A±.

Similarly we can proceed for the case of RA(ii) and RA(iii), in which case we use ρ0
±, τ

0
±

and ρ3
±, τ

3
± respectively, viz. for RA(ii) we have the couple of examples

V± =
i

2

(
±1 −1
1 ∓1

)
=

[
1

2

(
1 ±1
1 ±1

)]∗ [
i

2

(
1 ∓1
1 ∓1

)]
= B∗±A±,

while for RA(iii) we have the couple of examples

V± =
1

2

(
1 ∓i
±i 1

)
=

[
1

2

(
1 ∓i
±i 1

)]∗ [
i

2

(
1 ∓i
±i 1

)]
= B∗±A±.

This examples can be easily generalized in any odd dimension, taking in account the

following lemma.

Lemma 3.6. If V (n−2) = [B(n−2)]∗A(n−2) is an admissible matrix in dimension n− 2, then
an admissible matrix in dimension n is given by

V (n) := V (n−2) ⊗ I2 =
[
B(n−2) ⊗M−1

]∗ [
A(n−2) ⊗M

]
=: [B(n)]∗A(n)

for any invertible matrixM ∈ C2×2.

This assertion is a trivial consequence of Lemma 3.4. Thus, in any odd dimension n ≥ 1,

couples of examples satisfying RA(i), RA(ii) and RA(iii) are given respectively by

V± =
1

2

(
IN

2
±IN

2
0

0 IN
2
∓IN

2

)
, V± =

i

2

(
±IN

2
−IN

2

IN
2
∓IN

2

)
, V± =

1

2

(
IN

2
∓iIN

2

±iIN
2

IN
2

)
.

Let us turn now our attention to the case of RA(iv), for which there are no examples

of potentials in dimension n = 1. Indeed, let us �x A,B ∈ C2×2
and let us denote with

a = (a1, a2) and b = (b1, b2) their respective �rst rows. Since we are imposing

Aσ1B
∗ = Aσ3B

∗ = AB∗ = 0,

in particular we obtain that

a2b1 + a1b2 = a1b1 − a2b2 = a1b1 + a2b2 = 0,

from which we deduce that if a 6= 0, then b = 0, and vice versa if b 6= 0, then a = 0.

Therefore, one can easily be convinced that there are no solutions such that both A and B
are non-trivial.
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Let us consider then the 3-dimensional case. By the de�nition of the Dirac matrices,

we would like to �nd matrices A,B such that B∗A 6= 0 and

A(σ1⊗σ1)B∗ = A(σ1⊗σ2)B∗ = A(σ1⊗σ3)B∗ = A(σ3⊗ I2)B∗ = A(I2⊗ I2)B∗ = 0.

Anyway, from the properties of our brick matrices and by the mixed-product property of

the Kronecker product, it is readily seen that we can chooseA = ρk±⊗ρ0
± andB = τk±⊗τ0

±
for any k ∈ {0, 2, 3}. In fact

(ρk± ⊗ ρ0
±)(σ1 ⊗ σj)(τk± ⊗ τ0

±)∗ = ρk±σ1(τk±)∗ ⊗ ρ0
±σj(τ

0
±)∗ = 0⊗ ρ0

±σj(τ
0
±)∗ = 0

for j ∈ {1, 2, 3}, and

(ρk± ⊗ ρ0
±)(σh ⊗ I2)(τk± ⊗ τ0

±)∗ = ρk±σh(τk±)∗ ⊗ ρ0
±I2(τ0

±)∗ = ρk±σh(τk±)∗ ⊗ 0 = 0

for h ∈ {0, 3}. Essentially, we use the fact that the �rst tensorial factors appearing in the

de�nitions of A and B kill σ1, while the second tensorial factors kill I2. At this point, as

above we can extend the 3-dimensional case to any odd dimension n ≥ 5.

Exempli gratia, letting k = 0, we have that a couple of examples of matricial part of

potentials satisfying RA(iv) for odd dimension n ≥ 3 are given by

V± =
1

4


−1 ±1 ±1 −1
∓1 1 1 ∓1
∓1 1 1 ∓1
−1 ±1 ±1 −1

⊗ IN/4
= −1

4

(
±1 −1
1 ∓1

)⊗2

⊗ IN/4

=

[
1

4

(
1 ±1
1 ±1

)⊗2

⊗ IN/4

]∗ [
−1

4

(
1 ∓1
1 ∓1

)⊗2

⊗ IN/4

]

=

1

4


1 ±1 ±1 1
1 ±1 ±1 1
1 ±1 ±1 1
1 ±1 ±1 1

⊗ IN/4

∗ 1

4


−1 ±1 ±1 −1
−1 ±1 ±1 −1
−1 ±1 ±1 −1
−1 ±1 ±1 −1

⊗ IN/4


= B∗±A±.

3.5.4 The even-dimensional case

We will consider the situation case by case for RA(i)–RA(iv).

3.5.4.1 Case of RA(i)

Between the four cases, this is the only one for which we can �nd examples of our desired

potentials in any dimension. Indeed, let us start from n = 2, for which a couple of examples

can be found immediately exploiting our brick matrices, setting A = ρ2
± and B = τ2

±.

Therefore, making use of Lemma 3.6, a couple of examples for the matricial part of the
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potentials satisfying RA(i) for any even dimension n ≥ 2 is given by

V± =
1

2

(
IN/2 ± IN/2 0

0 IN/2 ∓ IN/2

)
=

[
1

2

(
0 IN/2 ∓ IN/2

IN/2 ± IN/2 0

)]∗ [
1

2

(
0 IN/2 ∓ IN/2

IN/2 ± IN/2 0

)]
= B∗±A±.

3.5.4.2 Case of RA(ii)

We can �nd potentials only for n ≥ 6. Indeed, in dimension n = 2, the situation is

similar to the case of RA(iv) for n = 1. We are searching matrices A,B ∈ C2×2
such that

V = B∗A 6= 0, Aσ3B
∗ 6= 0 and

Aσ1B
∗ = Aσ2B

∗ = AB∗ = 0.

Denoting with a = (a1, a2) and b = (b1, b2) the �rst rows of A and B respectively, from

the previous condition we infer

a2b1 + a1b2 = a2b1 − a1b2 = a1b1 + a2b2 = 0

and therefore a = 0 if b 6= 0 and on the contrary b = 0 if a 6= 0. Thus, there are no

solutions such that A 6= 0 and B 6= 0.

Analogously, we can repeat the argument for n = 4. In this case the Dirac matrices are

α
(4)
1 = σ1 ⊗ I2, α

(4)
2 = σ2 ⊗ σ1, α

(4)
3 = σ2 ⊗ σ2,

α
(4)
4 = σ2 ⊗ σ3, α

(4)
5 = σ3 ⊗ I2.

(3.5.4)

We impose

Aα
(4)
j B∗ = AB∗ = 0

Aα
(4)
5 B∗ 6= 0

(3.5.5)

for j ∈ {1, 2, 3, 4}. Let us denote with a = (a1, . . . , a4) and b = (b1, . . . , b4) the �rst rows

of A and B respectively. Hence from the conditions (3.5.5) we infer

a3b1 + a4b2 + a1b3 + a2b4 = 0

−a4b1 − a3b2 + a2b3 + a1b4 = 0

a4b1 − a3b2 − a2b3 + a1b4 = 0

−a3b1 + a4b2 + a1b3 − a2b4 = 0

a1b1 + a2b2 + a3b3 + a4b4 = 0

a1b1 + a2b2 − a3b3 − a4b4 6= 0

and equivalently

a3b1 + a2b4 = a3b2 − a1b4 = a4b1 − a2b3 = a4b2 + a1b3 = 0

a1b1 + a2b2 = −a3b3 − a4b4 6= 0.
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However, this system is impossible. Suppose indeed that a1 6= 0. Then

b3 = −a4

a1
b2, b4 =

a3

a1
b2

a4

(
b1 +

a2

a1
b2

)
= a3

(
b1 +

a2

a1
b2

)
= 0

a1b1 + a2b2 = −a3b3 − a4b4 6= 0.

From the �rst two lines one infers that or a1b1 + a2b2 = 0, or a3 = a4 = b3 = b4 = 0.

Both the possibilities are incompatible with the last condition. Similarly one can prove that

the system is impossible also when a1 = 0.

Now, let us look at the dimension n = 6. Here we can build examples by the aid of our

brick matrices, but it is not so straightforward as in the odd-dimensional case, and we need

to be sneaky. Firstly, recall that

α
(6)
1 = σ1 ⊗ I4, α

(6)
k+1 = σ2 ⊗ α(4)

k , α
(6)
7 = σ3 ⊗ I4

for k ∈ {1, . . . , 5}. We search matrices A,B ∈ C8×8
such that

AB∗ = Aα
(6)
k B∗ = 0

B∗A 6= 0 6= Aα
(6)
7 B∗

for k ∈ {1, . . . , 6}. Let us start with the ansatz that A and B have the following structure:

A =
1

2

(
Ã −Ã(σ1 ⊗ σ1)

Ã −Ã(σ1 ⊗ σ1)

)
, B =

1

2

(
B̃ B̃(σ1 ⊗ σ1)

B̃ B̃(σ1 ⊗ σ1)

)

with Ã, B̃ ∈ C4×4
. In this way, recalling the de�nition of the Dirac matrices and observing

that (σ1 ⊗ σ1)2 = I4, the conditions AB∗ = 0 and Aα
(6)
1 B∗ = A(σ1 ⊗ I4)B∗ = 0 are

immediately veri�ed and the other ones become

Aα
(6)
k+1B

∗ = − i
4

(
1 1
1 1

)
⊗ Ã[(σ1 ⊗ σ1)α

(4)
k + α

(4)
k (σ1 ⊗ σ1)]B̃∗ = 0 (3.5.6)

for k ∈ {1, . . . , 5}, and

Aα7B
∗ = A(σ3 ⊗ I4)B∗ =

1

2

(
1 1
1 1

)
⊗ ÃB̃∗ 6= 0

B∗A =
1

2

(
B̃∗Ã −B̃∗Ã(σ1 ⊗ σ1)

(σ1 ⊗ σ1)B̃∗Ã −(σ1 ⊗ σ1)B̃∗Ã(σ1 ⊗ σ1)

)
6= 0.

In (3.5.6), exploiting the de�nition of the Dirac matrices in dimension n = 4, the anticom-

mutation relations (1.1.2) and the identities σ1σ2 = iσ3 and σ1σ3 = −iσ2, we get that also

the identities

Aα
(6)
3 B∗ = Aα

(6)
6 B∗ = 0

62



3.5. Game of matrices

are immediately satis�ed, and the remaining ones reduce to

Aα
(6)
2 B∗ = − i

2

(
1 1
1 1

)
⊗ Ã(I2 ⊗ σ1)B̃∗ = 0

Aα
(6)
4 B∗ =

i

2

(
1 1
1 1

)
⊗ Ã(σ3 ⊗ σ3)B̃∗ = 0

Aα
(6)
5 B∗ = − i

2

(
1 1
1 1

)
⊗ Ã(σ3 ⊗ σ2)B̃∗ = 0.

Thus, it would be enough to �nd Ã, B̃ ∈ C4×4
such that

Ã(I2 ⊗ σ1)B̃∗ = Ã(σ3 ⊗ σ3)B̃∗ = Ã(σ3 ⊗ σ2)B̃∗ = 0

ÃB̃∗ 6= 0 6= B̃∗Ã.

This step is easily achieved exploiting our brick matrices, indeed we can choose

Ã± = ρ3
± ⊗ ρk±, B̃± = τ3

± ⊗ τk±
for any �xed k ∈ {0, 2, 3}. In this way we can construct many examples for the 6-

dimensional case. If we choose e.g. k = 3 in the above de�nition of Ã and B̃, and taking

again in account Lemma 3.6, we can exhibit the following couple of examples for matrices

satisfying RA(ii) for even dimension n ≥ 6:

V± =
1

8

(
(I2 ± σ2)⊗2 −(σ1 ∓ iσ3)⊗2

(σ1 ± iσ3)⊗2 −(I2 ∓ σ2)⊗2

)
⊗ IN/8

=
1

8



1 ∓i ∓i −1 1 ±i ±i −1
±i 1 1 ∓i ±i −1 −1 ∓i
±i 1 1 ∓i ±i −1 −1 ∓i
−1 ±i ±i 1 −1 ∓i ∓i 1
−1 ±i ±i 1 −1 ∓i ∓i 1
±i 1 1 ∓i ±i −1 −1 ∓i
±i 1 1 ∓i ±i −1 −1 ∓i
1 ∓i ∓i −1 1 ±i ±i −1


⊗ IN/8

= B∗±A±

where

A± =
1

8

(
(I2 ± σ2)⊗2 −(σ1 ∓ iσ3)⊗2

(I2 ± σ2)⊗2 −(σ1 ∓ iσ3)⊗2

)
⊗ IN/8,

B± =
1

8

(
(I2 ± σ2)⊗2 (σ1 ∓ iσ3)⊗2

(I2 ± σ2)⊗2 (σ1 ∓ iσ3)⊗2

)
⊗ IN/8.

3.5.4.3 Case of RA(iii).

Mutatis mutandis, the situation is similar to the the case of RA(ii), hence we skip the

computations. As above, one can prove the absence of our desired potentials in dimension

n = 2 and n = 4. In even dimension n ≥ 6 instead, we impose to A and B to have the

structure

A =
1

2

(
Ã Ã(σ1 ⊗ σ1)

Ã Ã(σ1 ⊗ σ1)

)
⊗ IN/8, B =

1

2

(
B̃ B̃(σ1 ⊗ σ1)

B̃ B̃(σ1 ⊗ σ1)

)
⊗ IN/8,
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where Ã, B̃ ∈ C4×4
have to satisfy the relations

Ã(σ1 ⊗ σ1)B̃∗ = Ã(σ3 ⊗ I2)B̃∗ = Ã(σ2 ⊗ σ1)B̃∗ = 0

ÃB̃∗ 6= 0 6= B̃∗Ã.

For example we can choose again

Ã± = ρ3
± ⊗ ρ3

±, B̃± = τ3
± ⊗ τ3

±,

and hence we obtain the following couple of examples of matrices satisfying RA(iii) in even

dimension n ≥ 6:

V± =
1

8

(
(I2 ± σ2)⊗2 (σ1 ∓ iσ3)⊗2

(σ1 ± iσ3)⊗2 (I2 ∓ σ2)⊗2

)
⊗ IN/8

=
1

8



1 ∓i ∓i −1 −1 ∓i ∓i 1
±i 1 1 ∓i ∓i 1 1 ±i
±i 1 1 ∓i ∓i 1 1 ±i
−1 ±i ±i 1 1 ±i ±i −1
−1 ±i ±i 1 1 ±i ±i −1
±i 1 1 ∓i ∓i 1 1 ±i
±i 1 1 ∓i ∓i 1 1 ±i
1 ∓i ∓i −1 −1 ∓i ∓i 1


⊗ IN/8

= B∗±A±

where

A± =
1

8

(
(I2 ± σ2)⊗2 (σ1 ∓ iσ3)⊗2

(I2 ± σ2)⊗2 (σ1 ∓ iσ3)⊗2

)
⊗ IN/8 = B±.

3.5.4.4 Case of RA(iv)

In dimension n = 2 there are no potentials, and this can be easily seen as in the above case

of RA(ii). In even dimension n ≥ 4 instead, recalling the de�nition of the Dirac matrices in

4-dimensions (3.5.4) and Lemma 3.6, it is easy to check that a couple of examples for our

desired matrices is obtained choosing V± = B∗±A± with

A± = ρ2
± ⊗ ρ0

± ⊗ IN/4, B± = τ2
± ⊗ τ0

± ⊗ IN/4,

hence videlicet

V± =
i

4


1± 1 −1∓ 1 0 0
1± 1 −1∓ 1 0 0

0 0 −1± 1 −1± 1
0 0 1∓ 1 1∓ 1

⊗ IN/4.
Thus concludes the parade of examples for the matricial parts V of the potentials

satisfying our Rigidity Assumptions (i)–(iv), and also the �rst part of this thesis.
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Part II

Blow-up phenomena
for wave-like models



Fun years for me, for a guy who used to like to blow up things.
We had lots of explosions, lots of blowups.

John Kobak, engineer at the NASA Propulsion Systems Laboratory



Chapter 4

Heat-like and wave-like
lifespan estimates for solutions of

semilinear damped wave equations
via a Kato-type lemma

The aim of the present chapter is to study blow-up phenomena and lifespan estimates for

solutions of Cauchy problems with small data for several semilinear damped wave models,

especially the semilinear wave equations with power-nonlinearity and scale-invariant

damping and mass terms. In particular, we are interested in exploring the competition

between so-called “heat-like” and “wave-like” behavior of the solutions, which concerns

not only critical exponents, but also lifespan estimates, in a way that we will clarify later.

This chapter contains the results proved in [S4], joint work with Ning-An Lai and

Hiroyuki Takamura.

4.1 Preamble

The problem we mainly concern about is�u+
µ1

1 + t
ut +

µ2

(1 + t)2
u = |u|p, in Rn × (0, T ),

u(x, 0) = εf(x), ut(x, 0) = εg(x), x ∈ Rn,
(4.1.1)

where � := ∂tt − ∆ is the d’Alembert operator, µ1, µ2 ∈ R, p > 1, n ∈ N, T > 0 and

ε > 0 is a “small” parameter. First of all, let us denote the energy and weak solutions of

our problem (4.1.1).

De�nition 4.1. We say that u is an energy solution of (4.1.1) over [0, T ) if

u ∈ C([0, T ), H1(Rn)) ∩ C1([0, T ), L2(Rn)) ∩ C((0, T ), Lp
loc

(Rn))
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satis�es u(x, 0) = εf(x) in H1(Rn), ut(x, 0) = εg(x) in L2(Rn) and∫
Rn
ut(x, t)φ(x, t)dx−

∫
Rn
εg(x)φ(x, 0)dx

+

∫ t

0
ds

∫
Rn
{−ut(x, s)φt(x, s) +∇u(x, s) · ∇φ(x, s)} dx

+

∫ t

0
ds

∫
Rn

µ1

1 + s
ut(x, s)φ(x, s)dx+

∫ t

0
ds

∫
Rn

µ2

(1 + s)2
u(x, s)φ(x, s)dx

=

∫ t

0
ds

∫
Rn
|u(x, s)|pφ(x, s)dx

(4.1.2)

for t ∈ [0, T ) and any test function φ ∈ C∞0 (Rn × [0, T )).

Employing the integration by parts in the above equality and letting t→ T , we reach

to the de�nition of the weak solution of (4.1.1), that is∫
Rn×[0,T )

u(x, s)

{
�φ(x, s)− ∂

∂s

(
µ1

1 + s
φ(x, s)

)
+

µ2

(1 + s)2
φ(x, s)

}
dxds

= ε

∫
Rn
{µ1f(x)φ(x, 0) + g(x)φ(x, 0)− f(x)φt(x, 0)} dx

+

∫
Rn×[0,T )

|u(x, s)|pφ(x, s) dxds.

We recall that the critical exponent pcrit of (4.1.1) is the smallest exponent greater than

1 such that, if p > pcrit, there exists a unique global-in-time energy solution to the problem,

whereas if 1 < p ≤ pcrit the solution blows up in �nite time. In the latter case, one is also

interested in �nding estimates for the lifespan Tε, which is the maximal existence time of

the solution, depending on the parameter ε.

Our principal model is the one in (4.1.1), for which we obtain Theorem 4.2 and Theo-

rem 4.4, according to the di�erent conditions imposed on the initial data. As straightforward

consequences, we also obtain Theorem 4.1 and Theorem 4.3 for the massless case, i.e. the

model with µ2 = 0. The lifespan estimate in dimension n = 1 in this case is improved,

comparing to the known results. Moreover, we continue the study of semilinear wave

equations with scattering damping, negative mass term and power nonlinearity, which we

introduced together with Lai and Takamura in [LST19, LST20].

In the rest of the section, we compare the classical models for the heat and wave

equations with power-nonlinearity in order to introduce the “heat-like” and “wave-like”

terminology. In Section 4.2 we sketch the background of the problems under consideration

and we exhibit our main results, which will be proved in Section 4.4, exploiting, as main

tool, a Kato-type lemma in integral form presented in Section 4.3.

4.1.1 Heat versus wave

Let us consider the toy-models of the heat and wave equations, respectively given by{
ut −∆u = |u|p,
u(x, 0) = εf(x),

{
utt −∆u = |u|p,
(u, ut)(x, 0) = ε(f, g)(x).
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Nowadays the study of these two equations is almost classic: the well-known results include

the lifespan estimates and the critical exponents, which are the so-called Fujita exponent

pF (n) and the Strauss exponent pS(n), corresponding to the heat and the wave equation

respectively. For our purposes, let us de�ne these two exponents for all ν ∈ R:

pF (ν) :=

1 +
2

ν
if ν > 0,

+∞ if ν ≤ 0,

pS(ν) :=


ν + 1 +

√
ν2 + 10ν − 7

2(ν − 1)
if ν > 1,

+∞ if ν ≤ 1.

We remark that

1 < p < pF (ν) =⇒ γF (p, ν) := 2− ν(p− 1) > 0,

1 < p < pS(ν) =⇒ γS(p, ν) := 2 + (ν + 1)p− (ν − 1)p2 > 0.

In particular, if ν > 0, pF (ν) is the solution of the linear equation γF (p, ν) = 0, whereas if

ν > 1, pS(ν) is the positive solution of the quadratic equation γS(p, ν) = 0. Although the

expression γS(p, ν) is well-known in the literature, the introduction of γF (p, ν) is justifyed

from the fact that γF plays for the heat equation the same role that γS plays for the wave

equation, as it emerges from the lifespan estimates.

Suppose for simplicity that f , g are non-negative, non-vanishing, compactly supported

functions (for di�erent conditions on the initial data, we can have di�erent lifespan esti-

mates, see Subsection 4.2.4). We have that the blow-up results are the ones collected in the

following table.

Table 4.1: Heat versus wave blow-up results.

Heat Wave

Critical exponent pcrit pF (n) pS(n)

Subcritical lifespan Tε
for 1 < p < pcrit

∼ ε−2(p−1)/γF (p,n)

∼ ε−(p−1)/γF (p,n−1)

if n = 1 or n = 2, 1 < p < 2

∼ a(ε)
if n = p = 2, ε2a2 log(1 + a) = 1

∼ ε−2p(p−1)/γS(p,n)

if n = 2, 2 < p < pS(n) or n ≥ 3

Critical lifespan Tε
for p = pcrit

∼ exp(Cε−(p−1))
∼ exp(Cε−p(p−1))

(in general, lower bound open for n ≥ 9)

Here and in the following, we use the notation F . G (respectively F & G) if there

exists a constant C > 0 independent of ε such that F ≤ CG (respectively F ≥ CG), and

the notation F ∼ G if F . G and F & G.

For a more detailed story of these results, we refer to the book [ER18], the doctoral

thesis [Wak14b], the introductions of [IKTW19, Tak15, TW11, TW14] and the references

therein.

For the comparison between the heat and wave equations, let us introduce an informal

but evocative notation to describe the behavior of the critical exponents and of the lifespan

estimates in our models. We will call the critical exponent heat-like if it is related to the
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Fujita exponent, i.e. pcrit = pF (ν) for some ν ∈ R, whereas we will call it wave-like if it is

related to the Strauss exponent, i.e. pcrit = pS(ν) for some ν ∈ R.

Similarly, we will say that the lifespan estimate is heat-like if it is related in some way

to the one of the heat equation, i.e. to the exponent 2(p− 1)/γF (p, ν) in the subcritical

case and to exp(ε−(p−1)) in the critical one, whereas we will say it wave-like if related to

the one of the wave equation, i.e. to the exponent 2p(p−1)/γS(p, ν) in the subcritical case

and to exp(ε−p(p−1)) in the critical one. However, we also de�ne a mixed-type behavior

when the lifespan estimate is related to 2p(p− 1)/γF (p, ν) in the subcritical case (as we

will see in Theorem 4.3 and 4.4), to remark that the lifespan is longer than the heat-like

one, due to the additional p in the exponent.

4.2 Problems and main results

This section is devoted to presenting the models under consideration and to stating our

results. More precisely, we start to consider the damped wave equation by adding the

damping term µ/(1+ t)βut to the wave equation, focusing then on the scale-invariant case,

i.e. setting β = 1. Afterwards, we add also the mass term µ2/(1 + t)2u. In Subsection 4.2.4,

we observe that a special condition on the initial data can signi�cantly change the blow-up

results. Finally, in Subsection 4.2.5 we consider a special wave model with scattering

damping and negative mass term, the study of which can be essentially reduced to that of

the previous models.

4.2.1 Damped wave equation

Let us proceed by adding the damping term µ/(1 + t)βut to the wave equation, with µ ≥ 0
and β ∈ R, hence we consider the Cauchy problemutt −∆u+

µ

(1 + t)β
ut = |u|p, in Rn × (0, T ),

u(x, 0) = εf(x), ut(x, 0) = εg(x), x ∈ Rn.
(4.2.1)

According to the works by Wirth [Wir04, Wir06, Wir07], in the study of the associated

homogeneous problem u
0
tt −∆u0 +

µ

(1 + t)β
u0
t = 0,

u0(x, 0) = f(x), u0
t (x, 0) = g(x),

(4.2.2)

we can classify the damping term into four cases, depending on the di�erent values of

β. When β < 1, the damping term is said to be overdamping and the solution does not

decay to zero when t → ∞. If −1 ≤ β < 1, the solution behaves like that of the heat

equation and we say that the damping term is e�ective. Hence, the term u0
tt in (4.2.2) has no

in�uence on the behavior of the solution and the Lp − Lq decay estimates of the solution

are almost the same as those of the heat equation. In contrast, when β > 1, it is known

that the solution behaves like that of the wave equation, which means that the damping

term in (4.2.2) has no in�uence on the behavior of the solution. In fact, in this case the

solution scatters to that of the free wave equation when t→∞, and thus we say that we

have scattering. Finally, when β = 1, the equation in (4.2.2) is invariant under the scaling

ũ0(x, t) := u0(λx, λ(1 + t)− 1), λ > 0,
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and hence we say that the damping term is scale-invariant. In this case the behavior of the

solution of (4.2.2) has been observed to be determined by the value of µ. We summarize all

the classi�cations of the damping term in (4.2.2) in the next table.

Table 4.2: Classi�cation of damped wave equations.

Range of β Classi�cation

β ∈ (−∞,−1) overdamping

β ∈ [−1, 1) e�ective

β = 1 scale-invariant

β ∈ (1,∞) scattering

Let us return to problem (4.2.1), which inherits the above terminology and has very

di�erent behaviors from case to case. Indeed, in the overdamping case the solution exists

globally for any p > 1. In the e�ective case, the problem is heat-like, both in the critical

exponent and in the lifespan estimates, while in the scattering case the problem seems to be

wave-like. Finally, the scale-invariant case has an intermediate behavior, and a competition

between heat-like and wave-like arises. Before moving to the last case, let us collect in the

following two tables some blow-up and global existence results for β 6= 1, at the best of

our knowledge.

Table 4.3: Blow-up in �nite time for β 6= 1.

Authors Range of β Exponent p Lifespan Tε

Fujiwara, Ikeda,

Wakasugi [FIW19]

Ikeda, Inui [II19]

β = −1 1 < p < pF (n)
p = pF (n)

∼ exp(Cε
− 2(p−1)
γF (p,n) )

∼ exp exp(Cε−(p−1))

Li, Zhou [LZ95]

Zhang [Zha01]

Todorova, Yordanov [TY01]

Kirane, Qafsaoui [KQ02]

Ikeda, Ogawa [IO16]

Lai, Zhou [LZ]

Ikeda, Wakasugi [IW15]

Nishihara [Nis11]

Fujiwara, Ikeda,

Wakasugi [FIW19]

β = 0
1 < p < pF (n)
p = pF (n)

∼ ε−
2(p−1)
γF (p,n)

∼ exp(Cε−(p−1))

Fujiwara, Ikeda,

Wakasugi [FIW19]

Ikeda, Inui [II19]

Ikeda, Ogawa [IO16]

Ikeda, Wakasugi [IW15]

−1 < β < 1
β 6= 0

1 < p < pF (n)
p = pF (n)

∼ ε−
2(p−1)

(1+β)γF (p,n)

∼ exp(Cε−(p−1))

Lai, Takamura [LT18]

Wakasa, Yordanov [WY19]

β > 1
1 < p < pS(n)
p = pS(n)

. ε
− 2p(p−1)
γS(p,n)

. exp(Cε−p(p−1))

71



4.2. Problems and main results

Table 4.4: Global-in-time existence for β 6= 1.

Authors Range of β Dimension n Exponent p

Ikeda, Wakasugi [IW20] β < −1 n ≥ 1 p > 1

Wakasugi [Wak17] β = −1 n = 1, 2
n ≥ 3

p > pF (n)
pF (n) < p < n

n−2

Todorova, Yordanov [TY01] β = 0
n = 1, 2
n ≥ 3

p > pF (n)
pF (n) < p ≤ n

n−2

D’Abbicco, Lucente, Reissig [DLR15]

Nishihara [Nis11]

Lin, Nishihara, Zhai [LNZ12]

−1 < β < 1
β 6= 0

n = 1, 2
n ≥ 3

p > pF (n)
pF (n) < p < n+2

n−2

Liu, Wang [LW20] β > 1 n = 3, 4 p > pS(n)

4.2.2 Scale-invariant damped wave equation

We consider now (4.2.1) for β = 1, hence we consider the Cauchy problemutt −∆u+
µ

1 + t
ut = |u|p, in Rn × (0, T ),

u(x, 0) = εf(x), ut(x, 0) = εg(x), x ∈ Rn.
(4.2.3)

The scale-invariant problem has been studied intensively in the last years. This great

interest is motivated by the fact that, di�erently from the damped wave equation with

β 6= 1, in the scale-invariant case the results depend also on the damping coe�cient µ, for

determining both the critical exponent and the lifespan estimate. Hence, the situation is a

bit more complicated, since the scale-invariant case shows results intermediate between

the ones for the e�ective (−1 ≤ β < 1) and non-e�ective (β > 1) damping cases, and then

it seems to be a threshold between a heat-like and a wave-like behavior.

In the following two tables we collect, at the best of our knowledge, results concerning

the existence and blow-up for the scale-invariant damping.

Table 4.5: Global-in-time existence for β = 1.

Authors Dimension n Coe�cient µ Exponent p

D’Abbicco [D’A15]

n = 1
n = 2
n ≥ 3

µ ≥ 5
3

µ ≥ 3
µ ≥ n+ 2

p > pF (1)
p > pF (2)
pF (n) < p ≤ n

n−2

D’Abbicco, Lucente,

Reissig [DLR15]

Kato, Sakuraba [KS19]

Lai [Lai20]

n = 2, 3 µ = 2 p > pS(n+ 2)

D’Abbicco,

Lucente [DL15]

n ≥ 5
(odd dim., rad. symm.)

µ = 2 pS(n+ 2) < p < min
{
2, n+1

n−3

}
Palmieri [Pal19a] n ≥ 4 (even dim.) µ = 2 pS(n+ 2) < p < pF (2)
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Table 4.6: Blow-up in �nite time for β = 1.

Authors Dim. n Coe�cient µ Exponent p Lifespan Tε

Wakasugi

[Wak14a, Wak14b]

n ≥ 1
µ ≥ 1
0 < µ < 1

1 < p ≤ pF (n)
1 < p < 1 + 2

n+µ−1

. ε−(p−1)/γF (p,n)

. ε−(p−1)/γF (p,n+µ−1)

D’Abbicco,

Lucente,

Reissig [DLR15]

n = 1
n = 2, 3

µ = 2
1 < p ≤ pF (1)
1 < p ≤ pS(n+ 2)

Wakasa [Wak16]

Kato,

Takamura,

Wakasa [KTW19]

n = 1 µ = 2
1 < p < pF (1)
p = pF (1)

∼ ε−(p−1)/γF (p,1)

∼ exp(Cε−(p−1))

Imai,

Kato,

Takamura,

Wakasa [IKTW20]

n = 2 µ = 2
1 < p < pF (2) = pS(2)
p = pF (2) = pS(2)

∼ ε−(p−1)/γF (p,2)

∼ exp(Cε−1/2)

Kato,

Sakuraba [KS19]

n = 3 µ = 2
1 < p < pS(5)
p = pS(5)

∼ ε−2p(p−1)/γS(p,5)

∼ exp(Cε−p(p−1))

Lai,

Takamura,

Wakasa [LTW17]

n ≥ 2 0 < µ < n2+n+2
2(n+2)

pF (n) ≤ p < pS(n+ 2µ) . ε−2p(p−1)/γS(p,n+2µ)

Ikeda,

Sobajima [IS18]

n ≥ 1
0 ≤ µ < n2+n+2

n+2

(µ 6= 0 if n = 1)

pF (n) < p ≤ pS(n+ µ)

. ε−2p(p−1)/γS(p,n+µ)−δ

if


n = 1, 2

3
≤ µ < 4

3

n = 1, 0 < µ < 2
3
, p ≥ 2

µ

n ≥ 2, p > pS(n+ 2 + µ)

. ε−
2(p−1)
µ
−δ

if n = 1, 0 < µ < 2
3
, p < 2

µ

. ε−1−δ

if n ≥ 2, p < pS(n+ 2 + µ)

. exp(Cε−p(p−1))
if p = pS(n+ µ).

Tu, Lin

[TL17, TL19]

n ≥ 2
µ > 0

0 < µ < n2+n+2
n+2

1 < p < pS(n+ µ)
p = pS(n+ µ)

. ε−2p(p−1)/γS(p,n+µ)

. exp(Cε−p(p−1))

Observe that the special case µ = 2 was widely studied, starting from D’Abbicco,

Lucente and Reissig [DLR15]. The reason is that, if we exploit the Liouville transform

v(x, t) := (1 + t)µ/2u(x, t)

in problem (4.2.3), it turns out to be
vtt −∆v +

µ(2− µ)

4(1 + t)2
v =

|v|p

(1 + t)µ(p−1)/2
, in Rn × (0, T ),

v(x, 0) = εf(x), vt(x, 0) = ε
{µ

2
f(x) + g(x)

}
, x ∈ Rn.

For µ = 2 the damping term disappears, making the analysis more manageable and related

to the undamped wave equation. From the works [DL15, DLR15, IS18, Pal19a, Wak14a] it is

now clear that the critical exponent for µ = 2 is pcrit = max{pF (n), pS(n+ 2)}, with the

lifespan estimates stated in low dimensions n ≤ 3 by the works [IKTW20, KS19, KTW19,

Wak16].

When µ 6= 2, it was observed that for small µ the problem is wave-like in the critical

exponent and in the lifespan estimates, whereas it is heat-like for larger µ. However, the
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exact threshold was still unclear. We conjecture, in accordance with Remarks 1.2 and 1.4

in [IS18], that the threshold value should be

µ∗ ≡ µ∗(n) :=
n2 + n+ 2

n+ 2
,

and that the critical exponent should be

pcrit = pµ(n) := max{pF (n− [µ− 1]−), pS(n+ µ)}

=

{
pS(n+ µ) if 0 ≤ µ < µ∗,

pF (n) if µ ≥ µ∗.
(4.2.4)

Here and in the following, [x]± = |x|±x
2 indicates the positive and negative part functions

respectively.

The blow-up part of this conjecture has already been proved, combining [Wak14a]

and [IS18]. In our next theorem, which is a straightforward corollary of Theorem 4.2, we

recon�rm the blow-up range and we give cleaner estimates for the lifespan in the subcritical

case, obtaining improvements mainly in the 1-dimensional case (see Remark 4.2). We refer

to Figure 4.1 for a graphic representation of the results below.

Theorem 4.1. Let µ ≥ 0 and 1 < p < pµ(n), with pµ(n) de�ned in (4.2.4). Assume that
f ∈ H1(Rn), g ∈ L2(Rn) and

f, h ≥ 0, h 6≡ 0, where h := [µ− 1]+f + g.

Suppose that u is an energy solution of (4.2.3) on [0, T ) that satis�es

suppu ⊂ {(x, t) ∈ Rn × [0,∞) : |x| ≤ t+R}

with some R ≥ 1.

Then, there exists a constant ε1 = ε1(f, g, µ, p,R) > 0 such that the blow-up time Tε of
problem (4.2.3), for 0 < ε ≤ ε1, has to satisfy:

� if 0 ≤ µ < µ∗, then

Tε .


ε−(p−1)/γF (p,n−[µ−1]−) if 1 < p ≤ 2

n− |µ− 1|
,

ε−2p(p−1)/γS(p,n+µ) if
2

n− |µ− 1|
< p < pµ(n);

� if µ ≥ µ∗, then
Tε . ε

−(p−1)/γF (p,n) = ε−[2/(p−1)−n]−1

.

Moreover, if µ = n = 1 and 1 < p ≤ 2 the estimate for Tε is improved by

Tε . φ0(ε)

where φ0 ≡ φ0(ε) is the solution of

εφ
2
p−1
−1

0 ln(1 + φ0) = 1.
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µ∗ =
4
3

pF (1) = 32

1

0

1

µ

p

p = pS(1 + µ)

p = 2
1−|µ−1|

µ∗ =
4
3

µ∗ = 2n− 1

(a) Case n = 1.

µ∗ = 2

pF (2) = 2

1

pS(2)

0

1

µ

p

p = pS(2 + µ)

p = 2
2−|µ−1|

µ∗ =
4
3

µ∗ = 2n− 1

(b) Case n = 2.

µ∗

pF (n)

n− 1

pS(n)

0

1

µ

p

p = pS(n+ µ)

p = 2
n−µ+1

µ∗ =
4
3

µ∗ = 2n− 1

(c) Case n ≥ 3.

Figure 4.1: In this �gure we collect the results from Theorem 4.1. If (p, µ) is in the blue area, we

have that Tε . ε−2p(p−1)/γS(p,n+µ) and hence the lifespan estimate is wave-like. Otherwise, if

(p, µ) is in the red area, then Tε . ε−(p−1)/γF (p,n−[µ−1]−)
and the lifespan estimate is heat-like.

In the case n = 1, the dash-dotted line given by µ = 1, 1 < p ≤ 2 highlights the improvement

Tε . φ0(ε).
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Remark 4.1. Note that, if n ≥ 3 and 0 ≤ µ < n− 1, we can write the lifespan estimates

in Theorem 4.1 explicitly as

Tε .


ε−2p(p−1)/γS(p,n+µ)

if 0 ≤ µ ≤ n− 1 or

if n− 1 < µ < µ∗ and

2

n− µ+ 1
< p < pµ(n),

ε−(p−1)/γF (p,n)
if n− 1 < µ < µ∗ and 1 < p ≤ 2

n− µ+ 1
.

Remark 4.2. Comparing the lifespan estimates in Theorem 4.1 with the known results

summarized in Table 4.6, we remark that the heat-like estimates for n ≥ 1 were already

proved by Wakasugi [Wak14b], whereas the wave-like ones for n ≥ 2 by Tu and Lin [TL17].

The wave-like estimates for n = 1 were almost obtained by Ikeda and Sobajima [IS18] for

pF (n) ≤ p < pS(n+ µ), with a loss in the exponent given by a constant δ > 0.

Hence our improvements are given by the wave-like estimates if n = 1 and by the

logarithmic gain Tε . φ0(ε) if n = µ = 1 and 1 < p ≤ 2. Moreover, about the wave-like

estimates for n ≥ 2, in [TL17] the initial data are supposed to be non-negative, whereas

our conditions on the initial data are less restrictive.

Anyway, our approach is di�erent and based on an iteration argument rather than on

a test function method.

Remark 4.3. We conjecture that the lifespan estimates in Theorem 4.1 are indeed optimal,

except on the “transition curve” (in the (p, µ)-plane) from the wave-like to the heat-like

zone, given by

p =
2

n− |µ− 1|
for 0 ≤ µ ≤ µ∗ and 1 < p ≤ pµ(n).

On this curve, the identity

2p γF (p, n− [µ− 1]−) = γS(p, n+ µ)

holds true and here we expect a logarithmic gain, as already obtained for the case p = 2,

µ = n = 1 in the previous theorem, and for the case n = p = 2, µ = 0 for the wave

equation (see Subsection 4.1.1). As we see from [IKTW20, KS19, KTW19, Wak16] the

conjecture holds true if µ = 2 and n ≤ 3.

Remark 4.4. In the current analysis we do not treat the critical case, but, to conclude our

prospectus, it is natural to conjecture that

Tε ∼

 exp
(
Cε−p(p−1)

)
if 0 ≤ µ < µ∗ and p = pµ(n) = pS(n+ µ),

exp
(
Cε−(p−1)

)
if µ > µ∗ and p = pµ(n) = pF (n),

for some constant C > 0. We refer to [IS18, TL19] for the wave-like lifespan estimate

from above in the critical case and to [IKTW20, KS19, KTW19, Wak16] for the proof of the

conjecture if µ = 2 and n = 1, 3.

However, we expect a di�erent behavior if µ = µ∗ and p = pµ∗(n), that is when

the transition curve from Remark 4.3 intersects the blow-up curve. This expectation is

motivated from [IKTW20], where the authors prove for n = µ = µ∗ = pF (2) = pS(4) = 2
that Tε ∼ exp(Cε−1/2), which is neither a wave-like critical lifespan, nor a heat-like one.
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4.2.3 Wave equation with scale-invariant damping and mass

Finally, we return to our main problem (4.1.1). The scale-invariant damped and massive

wave equation was studied by A. Palmieri as object of his doctoral dissertation [Pal18b],

under the supervision of M. Reissig. However, as far as we know, the research of the

lifespan estimates in case of blow-up is still underdeveloped.

A key parameter for the study of this problem is

δ ≡ δ(µ1, µ2) := (µ1 − 1)2 − 4µ2,

which, roughly speaking, quanti�es the interaction between the damping and the mass term.

Indeed, if δ ≥ 0, the damping term is predominant and we observe again a competition

between the wave-like and heat-like behaviors. In particular, the critical exponent seems

to be wave-like for small positive values of δ, while it is heat-like for large ones. If on

the contrary δ < 0, the mass term has more in�uence and the equation becomes of Klein-

Gordon-type. To see this, apply again the Liouville transform v(x, t) := (1 + t)µ1/2u(x, t)
to problem (4.1.1), which therefore becomes

vtt −∆v +
(1− δ)/4
(1 + t)2

v =
|v|p

(1 + t)µ1(p−1)/2
, in Rn × (0, T ),

v(x, 0) = εf(x), vt(x, 0) = ε
{µ1

2
f(x) + g(x)

}
, x ∈ Rn.

(4.2.5)

In the following, we will consider only the case δ ≥ 0.

Let us start by collecting some known results. From [dNPR17, Pal18a, PR18], we know

that for µ1, µ2 > 0 and δ ≥ (n+ 1)2
the critical exponent for problem (4.1.1) is the shifted

Fujita exponent

pcrit = pF

(
n+

µ1 − 1−
√
δ

2

)
.

On the contrary, from [Pal19a,Pal19b], in the special case δ = 1 and under radial symmetric

assumptions for n ≥ 3, Palmieri proved that the critical exponent is

pcrit = pS (n+ µ1) .

The case δ = 1 is clearly the analogous of the case µ = 2 for the scale-invariant damped

wave equation without mass: under this assumption we see from (4.2.5) that the equation

can be transformed into a wave equation without damping and mass and with a suitable

nonlinearity. In [PR19], Palmieri and Reissig proved, by using the Kato’s lemma and

Yagdjian integral transform, a blow-up result for δ ∈ (0, 1], showing a competition between

the shifted Fujita and Strauss exponents. Indeed, they obtained the blow-up result for

1 < p ≤ max

{
pF

(
n+

µ1 − 1−
√
δ

2

)
, pS(n+ µ1)

}
except for the critical case p = pS(n+ µ1) in dimension n = 1. Finally, Palmieri and Tu

in [PT19], under suitable sign assumptions on the initial data and for µ1, µ2, δ non-negative,

established a blow-up result for 1 < p ≤ pS(n+µ1) and furthermore the following lifespan

estimates:

Tε .


ε−2p(p−1)/γS(p,n+µ1)

if 1 < p < pS(n+ µ1),

exp(Cε−p(p−1)) if p = pS(n+ µ1) and p >
2

n−
√
δ

.

77



4.2. Problems and main results

They used an iteration argument based on the technique of double multiplier for the

subcritical case and a version of test function method developed by Ikeda and Sobajima

[IS18] for the critical case. Of course, we refer to the works by Palmieri and to his doctoral

thesis for a more detailed background. We also mention the recent work [IM21] by Inui

and Mizutani for results on the scattering and asymptotic order for the wave equation with

scale-invariant damping and mass terms and energy critical nonlinearity.

We present now our main result, concerning the blow-up of (4.1.1) for µ1, µ2 ∈ R and

δ ≥ 0, and the upper bound for the lifespan estimates. Firstly, let us introduce the value

d∗(ν) :=


1

2

(
−1− ν +

√
ν2 + 10ν − 7

)
if ν > 1,

0 if ν ≤ 1,

(4.2.6)

and set for simplicity

d∗ := d∗(n+ µ1) ∈ [0, 2). (4.2.7)

Observe that, if n+ µ1 > 1, then

√
δ = n− d∗ ⇐⇒ γS(p, n+ µ1) = 2 γF

(
p, n+

µ1 − 1−
√
δ

2

)
= 0

⇐⇒ pS(n+ µ1) = pF

(
n+

µ1 − 1−
√
δ

2

)
=

2

n−
√
δ
.

(4.2.8)

The following result holds.

Theorem 4.2. Let µ1, µ2 ∈ R, δ ≥ 0 and 1 < p < pµ1,δ(n), with

pµ1,δ(n) := max

{
pF

(
n+

µ1 − 1−
√
δ

2

)
, pS (n+ µ1)

}
. (4.2.9)

Assume that f ∈ H1(Rn), g ∈ L2(Rn) and

f, h ≥ 0, h 6≡ 0, where h :=
µ1 − 1 +

√
δ

2
f + g. (4.2.10)

Suppose that u is an energy solution of (4.1.1) on [0, T ) that satis�es

suppu ⊂ {(x, t) ∈ Rn × [0,∞) : |x| ≤ t+R} (4.2.11)

with some R ≥ 1.

Then, there exists a constant ε2 = ε2(f, g, µ1, µ2, n, p,R) > 0 such that the blow-up
time Tε of problem (4.1.1), for 0 < ε ≤ ε2, has to satisfy:

� if
√
δ ≤ n− 2, then

Tε . ε
−2p(p−1)/γS(p,n+µ1);

� if n− 2 <
√
δ < n− d∗(n+ µ1), then

Tε .


φ(ε) if 1 < p ≤ 2

n−
√
δ
,

ε−2p(p−1)/γS(p,n+µ1) if
2

n−
√
δ
< p < pµ1,δ(n),
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where φ ≡ φ(ε) is the solution of

εφ
γF (p,n+(µ1−1−

√
δ)/2)

p−1 ln(1 + φ)1−sgn δ = 1;

� if
√
δ ≥ n− d∗(n+ µ1), then

Tε . φ(ε).

If in particular δ > 0, then

φ(ε) = ε−(p−1)/γF (p,n+(µ1−1−
√
δ)/2) = ε−[2/(p−1)−n−(µ1−1−

√
δ)/2]

−1

.

Here and in the following, the sign function is de�ned as sgnx = |x|
x if x 6= 0, whereas

sgnx = 0 if x = 0.

Remark 4.5. We can write the exponent in (4.2.9) explicitly as

pµ1,δ(n) =



pS (n+ µ1) if n+ µ1 > 1,

√
δ ≤ n− d∗,

pF

(
n+

µ1 − 1−
√
δ

2

)
if n+ µ1 > 1, n− d∗ <

√
δ < 2n+ µ1 − 1,

+∞ if n+ µ1 > 1,

√
δ ≥ 2n+ µ1 − 1

or if n+ µ1 ≤ 1.

Remark 4.6. Note that, setting the mass coe�cient µ2 = 0 and the damping coe�cient

µ1 = µ > 0, then

√
δ = |µ− 1| and

√
δ ≤ n− d∗(n+ µ)⇐⇒ 0 < µ ≤ µ∗.

It is straightforward to check that, by imposing µ2 = 0, the results in Theorem 4.2 coincide

with those in Theorem 4.1.

Remark 4.7. Analogously as in Remark 4.3, we conjecture that pµ1,δ(n) de�ned in (4.2.9)

is indeed the critical exponent and that the lifespan estimates presented in Theorem 4.2 are

optimal, except on the “transition surface” (in the (p, µ1, δ)-space) de�ned by

p =
2

n−
√
δ

for n− 2 <
√
δ < n− d∗(n+ µ1) and 1 < p ≤ pµ1,δ(n), (4.2.12)

on which we expect a logarithmic gain.

The exponent p = 2
n−
√
δ

already emerged in Palmieri and Tu [PT19], but as a technical

condition. We underline that this exponent comes out to be the solution of the equation

2p γF

(
p, n+

µ1 − 1−
√
δ

2

)
= γS(p, n+ µ1)

when n− 2 <
√
δ < n− d∗(n+ µ1).

Remark 4.8. Similarly as in Remark 4.4, we expect that, if p = pµ1,δ(n), then

Tε ∼

 exp
(
Cε−p(p−1)

)
if n+ µ1 > 1 and

√
δ < n− d∗,

exp
(
Cε−(p−1)

)
if n+ µ1 > 1 and n− d∗ <

√
δ < 2n+ µ1 − 1,

for some constant C > 0. See [PT19] for the proof of the wave-like upper bound of the

lifespan estimate in the critical case. Moroever, if

√
δ = n− d∗(n+ µ1) and p = pµ1,δ(n),

we expect a di�erent lifespan estimate, as in the massless case.
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4.2.4 Di�erent lifespans for di�erent initial conditions

In Theorems 4.1 and 4.2 we impose on the initial data the condition

h =
µ1 − 1 +

√
δ

2
f + g 6≡ 0.

One could ask if this is only a technical condition, but it turns out that this is not the

case: if we impose h ≡ 0, the lifespan estimates change drastically. This phenomenon was

recently taken in consideration also in the works by Imai, Kato, Takamura and Wakasa

[IKTW19, IKTW20, KTW19].

Let us return to the wave equation{
utt −∆u = |u|p, in Rn × (0, T ),

u(x, 0) = εf(x), ut(x, 0) = εg(x), x ∈ Rn.

Since µ1 = µ2 = 0, in this case the condition h ≡ 0 is equivalent to g ≡ 0. Indeed, under

the assumption ∫
Rn
g(x)dx = 0,

collecting the results from the works [IKTW19, LZ14, Lin90, LS96, Tak15, TW11, Zho92b,

Zho92a, Zho93], we have that, for n ≥ 1, the lifespan estimates

Tε ∼

ε
−2p(p−1)/γS(p,n)

if 1 < p < pS(n),

exp
(
Cε−p(p−1)

)
if p = pS(n),

hold, with the exclusion of the critical case p = pS(n) if n ≥ 9 and there are not radial

symmetry assumptions. We refer to the Introduction of [IKTW19] by Imai, Kato, Takamura

and Wakasa for a detailed background on these results. What is interesting is the fact

that now we observe always a wave-like lifespan. This is in contrast with the estimates

presented in Subsection 4.1.1, where, under the assumption∫
Rn
g(x)dx > 0,

we have heat-like lifespans in low dimensions, more precisely if n = 1 or if n = 2 and

1 < p ≤ 2, with a logarithmic gain if n = p = 2.

Let us consider now the Cauchy problem for the scale-invariant damped wave equation

(4.2.1) with µ = 2, that isutt −∆u+
2

1 + t
ut = |u|p, in Rn × (0, T ),

u(x, 0) = εf(x), ut(x, 0) = εg(x), x ∈ Rn.

Since µ1 = 2 and µ2 = 0, the condition h ≡ 0 is equivalent to f+g ≡ 0. In low dimensions

n = 1 and n = 2, Kato, Takamura and Wakasa [KTW19] and Imai, Kato, Takamura and

Wakasa [IKTW20] proved that, if the initial data satisfy∫
Rn
{f(x) + g(x)}dx = 0,
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then the lifespan estimates in 1-dimension are

Tε ∼


ε−2p(p−1)/γS(p,3)

if 1 < p < 2,

b(ε) if p = 2,

ε−p(p−1)/γF (p,1)
if 2 < p < pF (1),

exp(Cε−p(p−1)) if p = pF (1) = 3,

where b ≡ b(ε) satis�es the equation ε2b log(1 + b) = 1, and in 2-dimensions are

Tε ∼

{
ε−2p(p−1)/γS(p,4)

if 1 < p < pF (1) = pS(4) = 2,

exp(Cε−2/3) if p = pF (2) = pS(4) = 2.

These estimates are greatly di�erent from the ones presented in Subsection 4.2.2, which

hold under the assumption ∫
Rn
{f(x) + g(x)}dx 6= 0.

In dimension n = 1, we have no more a heat-like behavior, but a wave-like one appears

for p < 2, whereas for p > 2 we have a mixed-like behavior, according to the notation

introduced in Subsection 4.1.1. Indeed, in the latter case, even if the lifespan is related

to the heat-like one, an additional p appears. In dimension n = 2, we have no more a

heat-like behavior, but a wave-like one. The strange exponent in the critical lifespan can

be explained by the same phenomenon underlined in Remark 4.4.

We are ready to exhibit our results, which give upper lifespan estimate in the subcritical

case when h ≡ 0. It is easy to see that our estimates coincide with the ones just showed

above in the respective cases. Going on with the exposition followed until now, we will

present �rstly the particular massless case, then the more general one with also the mass

term. For simplicity, we will consider only non-negative damping coe�cients.

Let us introduce the exponent

p∗ ≡ p∗(n+ µ1, n−
√
δ) :=

1 +
n−
√
δ + 2

n+ µ1 − 1
, if n+ µ1 6= 1,

+∞, if n+ µ1 = 1,

(4.2.13)

and note that, for p > 1 and n+ µ1 6= 1,

p = p∗ ⇐⇒ γS(p, n+ µ1) = 2 γF

(
p, n+

µ1 − 1−
√
δ

2

)
. (4.2.14)

The following results hold. See Figure 4.2 for a graphic representation of the claim in

Theorem 4.3.

Theorem 4.3. Let µ ≥ 0 and 1 < p < pµ(n), with pµ(n) as in Theorem 4.1. Assume that
f ∈ H1(Rn), g ∈ L2(Rn) and

f ≥ 0, f 6≡ 0, [µ− 1]+f + g ≡ 0.

Suppose that u is an energy solution of (4.2.3) on [0, T ) that satis�es (4.2.11) for some R ≥ 1.

Then there exists a constant ε3 = ε3(f, g, µ, p,R) > 0 such that the blow-up time Tε of
problem (4.2.3), for 0 < ε ≤ ε3, has to satisfy:
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� if 0 ≤ µ ≤ µ∗, then
Tε . ε

−2p(p−1)/γS(p,n+µ);

� if µ∗ < µ < n+ 3, then

Tε .


ε−2p(p−1)/γS(p,n+µ), if 1 < p < p∗,

σ0(ε), if p = p∗,

ε−p(p−1)/γF (p,n), if p∗ < p < pµ(n),

where σ0 ≡ σ0(ε) is the solution of

εpσ
2
p−1
−n

0 ln(1 + σ0) = 1

and
p∗ = 1 +

n− µ+ 3

n+ µ− 1
;

� if µ ≥ n+ 3, then
Tε . ε

−p(p−1)/γF (p,n).

Moreover, if n = 1, 0 < µ < 2 and

1 < p <
2

1 + |µ− 1|
,

then the estimate for the blow-up time Tε is improved by

Tε . ε
−(p−1)/γF (p,1+[µ−1]+).

Theorem 4.4. Let µ1 ≥ 0, µ2 ∈ R, δ ≥ 0 and 1 < p < pµ1,δ(n), with pµ1,δ(n) de�ned in
(4.2.9). Assume that f ∈ H1(Rn), g ∈ L2(Rn) and f ≥ 0, f 6≡ 0, h ≡ 0, with h de�ned in
(4.2.10). Suppose that u is an energy solution of (4.1.1) on [0, T ) that satis�es (4.2.11) with
some R ≥ 1.

Then, there exists a constant ε4 = ε4(f, g, µ1, µ2, p, R) > 0 such that the blow-up time
Tε of problem (4.1.1), for 0 < ε ≤ ε4, has to satisfy:

� if
√
δ ≤ n− d∗(n+ µ1), then

Tε . ε
−2p(p−1)/γS(p,n+µ1);

� if n− d∗(n+ µ1) <
√
δ < n+ 2, then

Tε .


ε−2p(p−1)/γS(p,n+µ1), if 1 < p < p∗,

σ∗(ε) if p = p∗,

σ(ε), if p∗ < p < pµ1,δ(n),

where σ ≡ σ(ε) and σ∗ ≡ σ∗(ε) are the solutions respectively of

εpσ
γF (p,n+(µ1−1−

√
δ)/2)

p−1 ln(1 + σ)1−sgn δ = 1,

εpσ
γF (p,n+(µ1−1−

√
δ)/2)

p−1
∗ ln(1 + σ∗)

2−sgn δ = 1;
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� if
√
δ ≥ n+ 2, then

Tε . σ(ε).

Moreover, if n = 1, 0 ≤ δ < 1 and

1 < p < r∗(µ1, δ) :=



1 + 2
2−
√
δ

1 + µ1 +
√
δ
, if

√
δ < θ,

1 + 2
2− θ

1 + µ1 + θ
=

2

1 + θ
, if

√
δ = θ,

2

1 +
√
δ
, if

√
δ > θ,

(4.2.15)

with
θ ≡ θ(µ1) := 1 +

µ1

2
− 1

2

√
µ2

1 + 16 ∈ (−1, 1), (4.2.16)

then the estimate for the blow-up time Tε is improved by

Tε . ε
−(p−1)/γF (p,(µ1+1+

√
δ)/2).

Remark 4.9. In the 1-dimensional case of Theorem 4.4, one can check that r∗ < pµ1,δ(1)
holds always, except when µ1 = 3 and δ = 0, since in this case r∗ = p3,0(1) = pS(4) = 2.

About the relation between p∗ and r∗, we have that, for 0 ≤ δ < 1, if

√
δ Q θ then p∗ Q r∗.

Remark 4.10. We conjecture that the estimates in the previous two theorems are indeed

optimal, except in dimension n = 1 for Theorem 4.3 on the transition curve de�ned by

p =
2

1 + |µ− 1|
for 0 ≤ µ ≤ 2,

and for Theorem 4.4 on the transition surface

p = r∗(µ1, δ) for 0 ≤ δ ≤ 1.

Moreover, in the critical case we expect, due to the wave-like and mixed-type behaviors,

Tε ∼ exp(Cε−p(p−1)),

except for

√
δ = n− d∗(n+ µ1) and p = pµ1,δ(n), where the lifespan should be di�erent.

Remark 4.11. The conditions (4.2.10) on the initial data in Theorem 4.1 and 4.2 can be

replaced by the less strong conditions∫
Rn
f(x) ≥ 0,

∫
Rn
f(x)φ1(x) ≥ 0,

∫
Rn
h(x) > 0,

∫
Rn
h(x)φ1(x) > 0,

where the positive function φ1(x) is de�ned later in (4.4.9).

Similarity can be done for the initial conditions of Theorem 4.3 and 4.4, requiring∫
Rn
f(x) > 0,

∫
Rn
f(x)φ1(x) > 0,

∫
Rn
h(x) = 0,

∫
Rn
h(x)φ1(x) = 0.

It will be clear from the proof of our theorems that these weaker hypothesis are su�cient.
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µ∗ =
4
3

pF (1) = 32

1

4

2

0

1

µ

p

p = pS(1 + µ)

p = 2
1+|µ−1|

p = p∗(n, µ)

µ∗ =
4
3n+ 3

(a) Case n = 1.

µ∗

pF (n)

n+ 3

pS(n)

0

1

µ

p

p = pS(n+ µ)

p = p∗(n, µ)

µ∗ =
4
3n+ 3

(b) Case n ≥ 2.

Figure 4.2: Here we collect the results from Theorem 4.3. If (p, µ) is in the blue area, then

Tε . ε−2p(p−1)/γS(p,n+µ), hence the lifespan estimate is wave-like. If (p, µ) is in the purple area,

then Tε . ε−p(p−1)/γF (p,n)
and the lifespan estimate is of mixed-type. The dash-dotted line given

by p = p∗(n, µ) highlights the improvement Tε . σ0(ε). In the case n = 1, if (p, µ) is in the red

area, Tε . ε−(p−1)/γF (p,1+[µ−1]−)
and the lifespan estimate is heat-like.
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4.2.5 Wave equation with scattering damping and negative mass

In the end, in this subsection we want to continue the study of a problem we examined

in [LST19, LST20] together with Ning-An Lai and Hiroyuki Takamura. In these two works,

we considered the Cauchy problem for the wave equation with scattering damping and

negative mass term, viz.wtt −∆w +
ν1

(1 + t)β
wt +

ν2

(1 + t)α+1
w = |w|p, in Rn × (0, T ),

w(x, 0) = εf(x), wt(x, 0) = εg(x), x ∈ Rn,
(4.2.17)

where ν1 ≥ 0, ν2 < 0, α ∈ R and β > 1.

In Subsection 4.2.2 we already observed that, if the damping is of scattering type, the

solution of the homogeneous damped wave equation “scatters” to the one of the wave

equation. For the equation with power non-linearity, according to the results by Lai and

Takamura [LT18] and Wakasa and Yordanov [WY19], the solution again seems to be

wave-like both in the critical exponent and in the lifespan estimate.

In [LST19], we took in consideration (4.2.17) with α > 1 and observed a double

scattering phenomenon, in the sense that both the damping and the mass terms seem to

be not e�ective. Hence, the solution behaves like that of the wave equation with power

non-linearity utt − ∆u = |u|p. More precisely, supposing for simplicity that f, g are

non-negative, non-vanishing, compactly supported functions, we established the blow-up

for 1 < p < pS(n) and the upper bound for the lifespan estimates

Tε .


ε
− p−1
γF (p,n−1)

if n = 1 or n = 2, 1 < p < 2,

a(ε) if n = p = 2,

ε
− 2p(p−1)
γS(p,n)

if n = 2, 2 < p < pS(n) or if n ≥ 3,

where a ≡ a(ε) satis�es ε2a2 log(1 + a) = 1, although in the case n = p = 2 more

technical conditions were required.

In [LST20], we studied the case α < 1, discovering a new behavior in the lifespan

estimate. Indeed, we proved that there is blow-up for every p > 1 and that the upper

lifespan estimate

Tε . ζ(Cε)

hold, where ζ ≡ ζ(ε) is the larger solution of the equation

εζ
γF (p,n−(1+α)/4)

p−1 exp
(
Kζ

1−α
2

)
= 1,

with

K =
2
√
|ν2|

1− α
exp

(
ν1

2(1− β)

)
.

As observed in Remark 2.1 of [LST20], a less sharp but more clear estimate for the lifespan

in the case α < 1 is

Tε .

[
log

(
1

ε

)] 2
1−α

.

Hence, the negative mass term with α > 1 seems to have no in�uence on the behavior of

the solution; on the contrary, if α < 1 the negative mass term becomes extremely relevant,
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implying the blow-up for all p > 1 and a lifespan estimate which is much shorter, compared

to the ones introduced previously.

We now come to the case α = 1. This is particular and was not deepened in our

previous works. Indeed in Subsection 4.4.5, after introducing a multiplier to absorb the

damping term, we will show that we can get blow-up results and lifespan estimates for

this problem by reducing ourself to calculations similar to the ones we will perform to

prove the results exhibited in the previous subsections. Roughly speaking, we will �nd

out that (4.2.17) with α = 1 has the same behavior as that of (4.1.1) with µ1 = 0 and

µ2 = ν2e
ν1/(1−β)

.

Therefore, in the rest of this subsection we will consider the Cauchy problemwtt −∆w +
ν1

(1 + t)β
wt +

ν2

(1 + t)2
w = |w|p, in Rn × (0, T ),

w(x, 0) = εf(x), wt(x, 0) = εg(x), x ∈ Rn,
(4.2.18)

where ν1 ≥ 0, ν2 < 0 and β > 1.

De�nition 4.2. We say that u is an energy solution of (4.2.18) over [0, T ) if

w ∈ C([0, T ), H1(Rn)) ∩ C1([0, T ), L2(Rn)) ∩ C((0, T ), Lp
loc

(Rn))

satis�es w(x, 0) = εf(x) in H1(Rn), wt(x, 0) = εg(x) in L2(Rn) and∫
Rn
wt(x, t)φ(x, t)dx

+

∫ t

0
ds

∫
Rn
{−wt(x, s)φt(x, s) +∇w(x, s) · ∇φ(x, s)} dx

+

∫ t

0
ds

∫
Rn

ν1

(1 + s)β
wt(x, s)φ(x, s)dx

+

∫ t

0
ds

∫
Rn

ν2

(1 + s)2
w(x, s)φ(x, s)dx

=

∫
Rn
εg(x)φ(x, 0)dx

+

∫ t

0
ds

∫
Rn
|w(x, s)|pφ(x, s)dx

(4.2.19)

with any test function φ ∈ C∞0 (Rn × [0, T )) for t ∈ [0, T ).

We have the following result, graphically pictured in Figure 4.3.

Theorem 4.5. Fix ν1 ≥ 0, ν2 < 0, β > 1. De�ne

δ := 1− 4ν2e
ν1/(1−β) > 1,

and the parameter

d∗(n) :=
1

2

(
−1− n+

√
n2 + 10n− 7

)
∈ [0, 2).
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Let 1 < p < pδ(n), with

pδ(n) = max

{
pF

(
n− 1 +

√
δ

2

)
, pS (n)

}

=


pS (n) if n ≥ 2,

√
δ ≤ n− d∗(n),

pF

(
n− 1 +

√
δ

2

)
if n ≥ 2, n− d∗(n) <

√
δ < 2n− 1,

+∞ if n = 1 or if n ≥ 2,
√
δ ≥ 2n− 1.

Assume that f ∈ H1(Rn), g ∈ L2(Rn) are non-negative and not both vanishing. Suppose
that w is an energy solution of (4.2.18) on [0, T ) that, for some R ≥ 1, satis�es

suppw ⊂ {(x, t) ∈ Rn × [0,∞) : |x| ≤ t+R}.

Then, there exists a constant ε5 = ε5(f, g, β, ν1, ν2, n, p,R) > 0 such that the blow-up
time Tε of problem (4.2.18), for 0 < ε ≤ ε5, has to satisfy:

� if
√
δ ≤ n− 2, then

Tε . ε
−2p(p−1)/γS(p,n);

� if n− 2 <
√
δ < n− d∗(n), then

Tε .


ε−(p−1)/γF (p,n−(1+

√
δ)/2), if 1 < p ≤ 2

n−
√
δ
,

ε−2p(p−1)/γS(p,n), if
2

n−
√
δ
< p < pδ(n);

� if
√
δ ≥ n− d∗(n), then

Tε . ε
−(p−1)/γF (p,n−(1+

√
δ)/2) = ε−[2/(p−1)−n+(1+

√
δ)/2]

−1

.

Remark 4.12. As a direct consequence of Remark 4.7 and 4.8, we expect that pδ(n) is the

critical exponent and that the lifespan estimates presented in Theorem 4.5 are optimal,

except on the transition curve (in the (p, δ)-plane) de�ned by

p =
2

n−
√
δ

for n− 2 <
√
δ < n− d∗(n) and 1 < p ≤ pδ(n),

on which we presume a logarithmic gain can appear.

Moreover, we expect that, if p = pδ(n), then

Tε ∼

 exp
(
Cε−p(p−1)

)
if n ≥ 2,

√
δ < n− d∗(n),

exp
(
Cε−(p−1)

)
if n ≥ 2, n− d∗(n) <

√
δ < 2n− 1,

for some constant C > 0. If

√
δ = n − d∗(n) and p = pδ(n), we presume a lifespan

estimate of di�erent kind.
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1

2

0

1

√
δ

p

p = 2

1−
√
δ

2− d∗(2)n− d∗(n)

(a) Case n = 1.

2− d∗(2)

3

pS(2)

0

1

√
δ

p

p = pF
(
2− 1+

√
δ

2

)

p = 2

2−
√
δ

2− d∗(2)n− d∗(n)

(b) Case n = 2.

n− d∗(n)

n− 2

2n− 1

pS(n)

0

1

√
δ

p

p = 2

n−
√
δ

p = pF
(
n− 1+

√
δ

2

)

2− d∗(2)n− d∗(n)

(c) Case n ≥ 3.

Figure 4.3: Here we collect the results from Theorem 4.5. If (p,
√
δ) is in the blue area, then

Tε . ε−2p(p−1)/γS(p,n), hence the lifespan estimate is wave-like. Otherwise, if (p,
√
δ) is in the

red area, then Tε . ε−(p−1)/γF (p,n−(1+
√
δ)/2)

and the lifespan is heat-like. Note that this �gure

represents also the results of Theorem 4.2 for the case µ1 = 0, µ2 ≤ 1/4.
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4.3 The Kato-type lemma

The principal ingredient we will employ in the demonstration of our theorems is the

following Kato-type lemma. Although this tool is well known and used in the literature,

here we will reformulate it in such a way that, in the following sections, we can directly

apply it to obtain not only the condition to �nd the possible critical exponent, but also

the upper bound of the lifespan estimate. We will prove it using the so-called iteration

argument.

Lemma 4.1. Let p > 1, a, b ∈ R satisfy

γ := 2[(p− 1)a− b+ 2] > 0.

Assume that F ∈ C([0, T )) satis�es, for t ≥ T0,

F (t) ≥ EAta [ln(1 + t)]c , (4.3.1)

F (t) ≥ B
∫ t

T0

ds

∫ s

T0

r−bF (r)pdr, (4.3.2)

where c, T0 ≥ 0 and E,A,B > 0. Suppose that there exists T̃ ≥ T0 which solves

ET̃
γ

2(p−1)

[
ln(1 + T̃ )

]c
= 1. (4.3.3)

Then, we have that
T < CT̃

for some positive constant C independent of E.

Proof. Let T̃ be as in the statement of the lemma and start with the ansatz

F (t) ≥ Dj

[
ln(1 + T̃ )

]cj
t−bj (t− T̃ )aj for t ≥ T̃ , j = 1, 2, 3, . . . (4.3.4)

where Dj , aj , bj , cj are positive constants to be determined later. Due to hypothesis (4.3.1),

note that (4.3.4) is true for j = 1 with

D1 = EA, a1 = [a]+, b1 = [a]−, c1 = c, (4.3.5)

where [x]± := (|x| ± x)/2. Plugging (4.3.4) into (4.3.2), we get

F (t) ≥ Dp
jB

∫ t

T̃
ds

∫ s

T̃

[
ln(1 + T̃ )

]pcj
r−b−pbj (r − T̃ )pajdr

≥
Dp
jB

(paj + [b]− + 2)2

[
ln(1 + T̃ )

]pcj
t−pbj−[b]+(t− T̃ )paj+[b]−+2

for t ≥ T̃ , and then we can de�ne the sequences {Dj}j∈N, {aj}j∈N, {bj}j∈N, {cj}j∈N by

aj+1 = paj + [b]− + 2, bj+1 = pbj + [b]+,

cj+1 = pcj , Dj+1 =
Dp
jB

(paj + [b]− + 2)2
,
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to establish (4.3.4) with j replaced by j + 1. Hence for any j ∈ N, it follows from the

previous relations and from (4.3.5) that

aj = pj−1

(
[a]+ +

[b]− + 2

p− 1

)
− [b]− + 2

p− 1
, bj = pj−1

(
[a]− +

[b]+
p− 1

)
− [b]+
p− 1

,

cj = pj−1c.

In particular, we obtain that

paj + [b]− + 2 = aj+1 ≤ pj
(

[a]+ +
[b]− + 2

p− 1

)
=⇒ Dj+1 ≥ C̃p−2jDp

j , (4.3.6)

where C̃ := B/{[a]+ + ([b]− + 2)/(p− 1)}2 > 0. From (4.3.6) and D1 = EA, by an

inductive argument we infer, for j ≥ 2, that

Dj ≥ exp
{
pj−1 [ln(EA)− Sj ]

}
,

where

Sj :=

j−1∑
k=1

2k ln p− ln C̃

pk
.

Since

∑∞
k=0 x

k = 1/(1− x) and

∑∞
k=1 kx

k = x/(1− x)2
when |x| < 1, we obtain

S∞ := lim
j→+∞

Sj = ln{C̃p/(1−p)p2p/(1−p)2}.

Moreover, there exists j0 ≥ 2 such that the sequence Sj is increasing for j ≥ j0. Hence we

obtain that

Dj ≥ (EAe−S∞)p
j−1

for j su�ciently large. Let us turning back to (4.3.4) and let C > 1 be a constant to be

determined later. If we suppose t ≥ CT̃ , so that in particular t − T̃ ≥ (1 − 1/C)t, and

considering (4.3.3), we have

F (t) ≥ t
[b]+
p−1 (t− T̃ )

− [b]−+2

p−1

{
EAe−S∞

[
ln(1 + T̃ )

]c
t
−[a]−−

[b]+
p−1 (t− T̃ )

[a]++
[b]−+2

p−1

}pj−1

≥ t
[b]+
p−1 (t− T̃ )

− [b]−+2

p−1

EAe−S∞
(

1− 1

C

)[a]++
[b]−+2

p−1 [
ln(1 + T̃ )

]c
t

γ
2(p−1)


pj−1

≥ t
[b]+
p−1 (t− T̃ )

− [b]−+2

p−1 Jp
j−1

with

J := Ae−S∞
(

1− 1

C

)[a]++
[b]−+2

p−1

C
γ

2(p−1) .

Since γ > 0, we can choose C > 1 large enough, in such a way that J > 1. Letting

j → +∞ in the above inequality, we get F (t)→ +∞. Then, T < CT̃ as claimed.

Remark 4.13. We can observe that the previous lemma is still true if in (4.3.2) an arbitrary

number of integrals appear, more precisely if we replace (4.3.2) with

F (t) ≥ B
∫ t

T0

dt1

∫ t1

T0

dt2 · · ·
∫ tk−1

T0

t−bk F (tk)
pdtk for t ≥ T0,

and γ with γk := 2[(p− 1)a− b+ k], for any positive integer k ∈ N.
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4.4 Proof for the theorems

We come now to the demonstration of Theorems 4.2 and 4.4. In the next two subsections, we

will prove some key inequalities which will be employed in the machinery of the Kato-type

lemma. Applying the latter, we will �nd a couple of results, which will be compared in

Subsection 4.4.4 to �nd the claimed ones. The proof of Theorems 4.1 and 4.3 are clearly

omitted, since they are straightforward corollaries of Theorems 4.2 and 4.4 respectively,

just set the mass equal to zero. In the end, we will sketch the proof of Theorem 4.5 in

Subsection 4.4.5.

4.4.1 The key estimates

Let us de�ne the functional

F0(t) :=

∫
Rn
u(x, t)dx.

Choosing the test function φ = φ(x, s) in (4.1.2) to satisfy

φ ≡ 1 in {(x, s) ∈ Rn × [0, t] : |x| ≤ s+R}, (4.4.1)

we get ∫
Rn
ut(x, t)dx−

∫
Rn
ut(x, 0)dx

+

∫ t

0
ds

∫
Rn

µ1

1 + s
ut(x, s)dx+

∫ t

0
ds

∫
Rn

µ2

(1 + s)2
u(x, s)dx

=

∫ t

0
ds

∫
Rn
|u(x, s)|pdx,

which yields, by taking derivative with respect to t,

F ′′0 (t) +
µ1

1 + t
F ′0(t) +

µ2

(1 + t)2
F0(t) =

∫
Rn
|u(x, t)|pdx. (4.4.2)

Setting

λ := 1 +
√
δ > 0, κ :=

µ1 − 1−
√
δ

2
, δ := (µ1 − 1)2 − 4µ2,

we obtain that (4.4.2) is equivalent to

d

dt

{
(1 + t)λ

d

dt
[(1 + t)κF0(t)]

}
= (1 + t)κ+λ

∫
Rn
|u(x, t)|pdx.

Integrating twice the above equality over [0, t], we get

F0(t) = L(t) +M(t), (4.4.3)

where

L(t) := F0(0)(1 + t)−κ + [κF0(0) + F ′0(0)](1 + t)−κ
∫ t

0
(1 + s)−λds,

M(t) := (1 + t)−κ
∫ t

0
(1 + s)−λds

∫ s

0
(1 + r)κ+λdr

∫
Rn
|u(x, r)|pdx ≥ 0.
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Consider now the functional

F(t) := (1 + t)κ+λF0(t),

and observe that F0 and F imply the same blow-up results, so it is su�cient to study the

latter functional. Since∫
Rn
f(x)dx ≥ 0, H0 :=

∫
Rn
h(x)dx ≥ 0,

and they are not both equal to zero, we want to prove that there exists a time T0 > 0,

independent of ε, such that, for t ≥ T0, the following estimates hold:

F(t) &
∫ t

T0

ds

∫ s

T0

r−(n+κ+λ)(p−1)F(r)pdr, (4.4.4)

F(t) & ε

{
t if H0 = 0,

tλ ln1−sgn δ(1 + t) if H0 > 0,

(4.4.5)

F(t) & εp


tκ+λ−(n+µ1−1) p

2
+n+1

if κ− (n+ µ1 − 1)
p

2
+ n+ 1 > 0,

tλ ln2−sgn δ(1 + t) if κ− (n+ µ1 − 1)
p

2
+ n+ 1 = 0,

tλ ln1−sgn δ(1 + t) if κ− (n+ µ1 − 1)
p

2
+ n+ 1 < 0.

(4.4.6)

Thanks to the Hölder inequality and using the compact support of the solution (4.2.11),

we have∫
Rn
|u(x, t)|pdx & t−n(p−1)|F0(t)|p = (1 + t)−n(p−1)−(κ+λ)pF(t)p (4.4.7)

for t & 1. Considering L and recalling the de�nition (4.2.10) of H0 we obtain

L(t) =


(1 + t)−κ[F0(0) + εH0 ln(1 + t)] if δ = 0,

(1 + t)−κ√
δ

{
εH0 + [

√
δF0(0)− εH0](1 + t)−

√
δ
}

if δ > 0.

So, from the condition on the initial data we get, for t & 1 su�ciently large, that

L(t) & ε


t−κ−

√
δ

if H0 = 0,

t−κ if H0 > 0, δ > 0,

t−κ ln(1 + t) if H0 > 0, δ = 0,

(4.4.8)

and in particular the positiveness of L for large time. Neglecting L from (4.4.3), inserting

(4.4.7) and recalling that λ > 0, we get (4.4.4). Instead, inserting (4.4.8) in (4.4.3) and

neglecting M , we reach (4.4.5).

Finally, we will prove (4.4.6) in the next section.
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4.4.2 The weighted functional

Let us introduce

F1(t) :=

∫
Rn
u(x, t)ψ1(x, t)dx,

where ψ1 is the test function presented by Yordanov and Zhang in [YZ06],

ψ1(x, t) := e−tφ1(x), φ1(x) :=


∫
Sn−1

ex·ωdω for n ≥ 2,

ex + e−x for n = 1,
(4.4.9)

which satis�es the following inequality (equation (2.5) in [YZ06]):∫
|x|≤t+R

ψ1(x, t)
p
p−1dx . (1 + t)

(n−1)
{

1− p
2(p−1)

}
. (4.4.10)

We want to establish the lower bound for F1. From the de�nition of energy solution (4.1.2),

we have that

d

dt

∫
Rn
ut(x, t)φ(x, t)dx

−
∫
Rn
ut(x, t)φt(x, t)dx−

∫
Rn
u(x, t)∆φ(x, t)dx

+

∫
Rn

µ1

1 + t
ut(x, t)φ(x, t)dx+

∫
Rn

µ2

(1 + t)2
u(x, t)φ(x, t)dx

=

∫
Rn
|u(x, t)|pφ(x, t)dx.

Integrating the above inequality over [0, t], and in particular using the integration by parts

on the second term in the �rst line and on the �rst term in the second line, we infer∫
Rn
ut(x, t)φ(x, t)dx− ε

∫
Rn
g(x)φ(x, 0)dx

−
∫
Rn
u(x, t)φt(x, t)dx+ ε

∫
Rn
f(x)φt(x, 0)dx

+

∫ t

0
ds

∫
Rn
u(x, s)φtt(x, s)dx−

∫ t

0
ds

∫
Rn
u(x, s)∆φ(x, s)dx

+

∫
Rn

µ1

1 + t
u(x, t)φ(x, t)dx− εµ1

∫
Rn
f(x)φ(x, 0)dx

+

∫ t

0
ds

∫
Rn
u(x, s)

µ1

(1 + s)2
φ(x, s)dx−

∫ t

0
ds

∫
Rn
u(x, s)

µ1

1 + s
φt(x, s)dx

+

∫ t

0
ds

∫
Rn

µ2

(1 + s)2
u(x, s)φ(x, s)dx

=

∫ t

0
ds

∫
Rn
|u(x, s)|pφ(x, s)dx.

(4.4.11)

Setting

φ(x, t) = ψ1(x, t) = e−tφ1(x) on suppu,

then we have

φt = −φ, φtt = ∆φ on suppu.
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Hence from (4.4.11) we obtain

F ′1(t) + 2F1(t) +
µ1

1 + t
F1(t) +

∫ t

0

{
µ1

1 + s
+
µ1 + µ2

(1 + s)2

}
F1(s)ds

= ε

∫
Rn
{(1 + µ1)f(x) + g(x)}φ1(x)dx+

∫ t

0
ds

∫
Rn
|u(x, s)|pφ(x, s)dx,

from which, after a derivation,

F ′′1 (t) +

(
2 +

µ1

1 + t

)
F ′1(t) +

(
µ1

1 + t
+

µ2

(1 + t)2

)
F1(t)

=

∫
Rn
|u(x, t)|pφ(x, t)dx (4.4.12)

Let us de�ne the multiplier

m(t) := et(1 + t)
µ1−1

2 > 0.

Multiplying equation (4.4.12) by m(t), using for convenience the change of variables

z := 1 + t and denoting

B(z) := m(t)F1(t), (4.4.13)

we obtain that B satis�es the nonlinear modi�ed Bessel equation

z2 d
2B
dz2

(z) + z
dB
dz

(z)−
(
z2 +

δ

4

)
B(z) = N(z) (4.4.14)

with initial data

B(1) = ε

∫
Rn
f(x)φ1(x)dx,

dB
dz

(1) = ε

∫
Rn

{
µ1 − 1

2
f(x) + g(x)

}
φ1(x)dx,

(4.4.15)

and where

N(z) := z2m (z − 1)

∫
Rn
|u(x, z − 1)|pφ(x, z − 1)dx ≥ 0.

Now, let us estimate the function B.

4.4.2.1 Homogeneous problem

Let us �rstly consider the homogeneous Cauchy problem
z2 d

2B0

dz2
(z) + z

dB0

dz
(z)−

(
z2 +

δ

4

)
B0(z) = 0, z ≥ 1,

B0(1) = B(1),
dB0

dz
(1) =

dB
dz

(1).

The fundamental solutions are the modi�ed Bessel’s functions B+√
δ/2

(z) := I√δ/2(z) and

B−√
δ/2

(z) := K√δ/2(z). Therefore

B0(z) = εc+B
+√
δ/2

(z) + εc−B
−√
δ/2

(z),
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where, thanks to the relations (A.3), (A.4) and (A.5), it holds

c± = ± ε−1

{
dB0

dz
(1)−

√
δ

2
B0(1)

}
B∓√

δ/2
(1) + ε−1B0(1)B∓

1+
√
δ/2

(1)

= ±B∓√
δ/2

(1)

∫
Rn
h(x)φ1(x)dx

+
[
∓
√
δB∓√

δ/2
(1) +B∓

1+
√
δ/2

(1)
] ∫

Rn
f(x)φ1(x)dx

=


±B∓0 (1)

∫
Rn
h(x)φ1(x)dx+B∓1 (1)

∫
Rn
f(x)φ1(x)dx if δ = 0,

±B∓√
δ/2

(1)

∫
Rn
h(x)φ1(x)dx+B∓

−1+
√
δ/2

(1)

∫
Rn
f(x)φ1(x)dx if δ > 0.

Due to the assumptions on the initial data and recalling that B+
ν (z), B−ν (z) > 0 when

ν > −1 and z > 0 (see for example 9.6.1 in [AS64]), we can deduce that c+ > 0 (see also

Remark 4.11). Exploiting the asymptotic expansions for the modi�ed Bessel’s functions (A.9)

and (A.10), we have that

B0(z) = ε

[
c+

ez√
2πz

+ c−

√
π

2z
e−z
](

1 +O

(
1

z

))
whereO is the BigO from the Bachmann-Landau notation. Then, there exist two constants

C > 0 and z0 ≥ 1, both independent of ε, such that

B0(z) ≥ Cεz−1/2ez for z ≥ z0. (4.4.16)

4.4.2.2 Inhomogeneous problem

Let us consider now the Cauchy problem
z2 d

2BN
dz2

(z) + z
dBN
dz

(z)−
(
z2 +

δ

4

)
BN (z) = N(z), z ≥ 1,

BN (1) =
dBN
dz

(1) = 0.

Exploiting the method of variation of parameters, we have that

BN (z) = B+√
δ/2

(z)

∫ z

1
ξB−√

δ/2
(ξ)N(ξ)dξ −B−√

δ/2
(z)

∫ z

1
ξB+√

δ/2
(ξ)N(ξ)dξ.

Recalling that N(z) ≥ 0 and using the fact that B+√
δ/2

(z) is increasing and B−√
δ/2

(z) is

decreasing respect to the argument for z > 0 (due to the relations (A.4) and (A.5)), we get

that

BN (z) ≥ 0 for z ≥ 1. (4.4.17)

Since the solution B to the Cauchy problem (4.4.14)–(4.4.15) is the sum of B0 and BN ,

from estimates (4.4.16) and (4.4.17) we get

B(z) = B0(z) + BN (z) & εz−1/2ez for z ≥ z0.
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At this point, recalling the de�nition (4.4.13) of B and changing again the variables, we

reach

F1(t) & ε(1 + t)−µ1/2 for t & 1. (4.4.18)

By Hölder’s inequality and using estimates (4.4.10) and (4.4.18), we obtain∫
Rn
|u(x, t)|pdx ≥

(∫
Rn
|ψ1(x, t)|p/(p−1)

)1−p
|F1(t)|p

& εp(1 + t)−(n+µ1−1) p
2

+n−1

for t & 1, plugging which into (4.4.3) and recalling that L(t) is positive for t large enough,

we get

F0(t) & εp(1 + t)−κ
∫ t

T1

(1 + s)−λds

∫ s

T1

(1 + r)q+
√
δ−1dr

for t ≥ T1 with a suitable T1 > 0 independent of ε, and where we de�ne

q ≡ q(p) := κ− (n+ µ1 − 1)
p

2
+ n+ 1. (4.4.19)

We obtain, for large time t & 1, that:

� if q > −
√
δ, then

F0(t) & εpt−κ


tq if q > 0,

ln(1 + t) if q = 0,

1 if q < 0;

� if q = −
√
δ, then

F0(t) & εpt−κ
{

1 if δ > 0,

ln2(1 + t) if δ = 0;

� if q < −
√
δ, then

F0(t) & εpt−κ
{

1 if δ > 0,

ln(1 + t) if δ = 0.

Summing all up, we �nally deduce the relations in (4.4.6).

4.4.3 Application of the Kato-type lemma

We are ready now to apply the Kato-type lemma, as presented in Section 4.3, twice to two

di�erent couples of inequalities, and subsequently we will infer which result is optimal.

The calculations in this subsection are all elementary (and quite tedious), so we will only

sketch them.
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Apply Lemma 4.1 to the inequalities (4.4.4) and (4.4.5), with

E = ε,

a =

{
1 if H0 = 0,

λ if H0 > 0,

b = (n+ κ+ λ)(p− 1), c =

{
0 if H0 = 0,

1− sgn δ if H0 > 0,

1 < p < pc :=

{
pF (n+ κ+

√
δ) if H0 = 0,

pF (n+ κ) if H0 > 0,

γ =

{
2γF (p, n+ κ+

√
δ) if H0 = 0,

2γF (p, n+ κ) if H0 > 0.

We chose p ∈ (1, pc) since this is equivalent to γ > 0 for p > 1. Then, for every p ∈ (1, pc),

we have Tε . T̃ ≡ T̃ (ε), with

εpT̃
pγ
p−1

[
ln(1 + T̃ )

]pc
= 1. (4.4.20)

Apply Lemma 4.1 to the inequalities (4.4.4) and (4.4.6), with

E = εp,

a =

{
λ+ q if q > 0,

λ if q ≤ 0,

b = (n+ κ+ λ)(p− 1), c =


0 if q > 0,

2− sgn δ if q = 0,

1− sgn δ if q < 0,

1 < p < pc, γ =

{
γS(p, n+ µ1) if q > 0,

2γF (p, n+ κ) if q ≤ 0,

where q is the one in (4.4.19) and pc ∈ (1,+∞] is de�ned as the exponent such that γ > 0
for 1 < p < pc (we will explicitly de�ne this exponent later). Then, for every p ∈ (1, pc),

we have Tε . S̃ ≡ S̃(ε), with

εpS̃
γ
p−1

[
ln(1 + S̃)

]c
= 1. (4.4.21)

In both cases, since (4.4.4), (4.4.6) and (4.4.5) are true for t ≥ T0 with some time T0, and

since we need to require T̃ , S̃ ≥ T0 to apply the Kato-type lemma, we need to impose

also that ε is su�ciently small. From these computations, we deduce the blow-up for

1 < p < pk := max{pc, pc} and the upper bound of the lifespan estimate Tε . min{T̃ , S̃}.
We will go further in the analysis to clarify these values.

Before moving forward, in order to understand the de�nition of S̃ we need to write

down more explicitly the de�nitions of c, pc and γ, since they depend on q and therefore

on the exponent p. Firstly, recall the de�nition (4.2.13) of p∗ = p∗(n + µ1, n −
√
δ) and

that, by (4.2.14), for p > 1 and µ1 + n 6= 1, it holds

p = p∗ ⇐⇒ q(p) = 0⇐⇒ γS(p, n+ µ1) = 2γF (p, n+ κ).

We will consider several cases, due to the generality of the constants involved, but what lies

beneath is the elementary comparison between the parabola γS (line in the case µ1 +n = 1)

and the line 2γF . Also, since we want to be in the hypothesis of the Kato-type lemma, our

interest is directed to γ > 0, and so we explicit its de�nition only for the range 1 < p < pc.
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4.4.3.1 Case n+ µ1 > 1

Recalling the de�nition (4.2.6)–(4.2.7) of d∗ := d∗(n+ µ1) and the relation (4.2.8), we have

that the following hold true:

0 < d∗ < 2,
√
δ = n− d∗ ⇐⇒ p∗ = pS(n+ µ1) = pF (n+ κ) =

2

d∗
.

Taking also in account that

√
δ ≤ n− d∗(n+ µ1)⇐⇒ p∗ ≥ pS(n+ µ1),

√
δ < n+ 2⇐⇒ p∗ > 1,

q > 0⇐⇒ p < p∗,

we have:

� if

√
δ ≤ n− d∗, then

pc = pS(n+ µ1),

γ = γS(p, n+ µ1), for 1 < p < pc,

c = 0;

� if n− d∗ <
√
δ < n+ 2, then

pc = pF (n+ κ),

γ =

{
γS(p, n+ µ1), for 1 < p < p∗,

2γF (p, n+ κ), for p∗ ≤ p < pc,

c =


0, for 1 < p < p∗,

2− sgn δ, for p = p∗,

1− sgn δ, for p∗ < p < pc;

� if

√
δ ≥ n+ 2, then

pc = pF (n+ κ),

γ = 2γF (p, n+ κ) for 1 < p < pc,

c = 1− sgn δ.

4.4.3.2 Case n+ µ1 = 1

Taking in account that

q > 0⇐⇒
√
δ < n+ 2

we have:

� if

√
δ < n+ 2, then

pc = pS(n+ µ1) = pS(1) = +∞,
γ = γS(p, n+ µ1) = γS(p, 1) = 2 + 2p, for 1 < p < pc,

c = 0;
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� if

√
δ = n+ 2, then

pc = pS(n+ µ1) = pF (n+ κ) = +∞,
γ = γS(p, n+ µ1) = 2γF (p, n+ κ) = 2 + 2p, for 1 < p < pc,

c = 2− sgn δ;

� if

√
δ > n+ 2, then

pc = pF (n+ κ) = pF

(
(n−

√
δ)/2

)
= +∞,

γ = 2γF (p, n+ κ) = 2γF

(
p, (n−

√
δ)/2

)
, for 1 < p < pc,

c = 1− sgn δ.

4.4.3.3 Case n+ µ1 < 1

Taking in account that

p∗ > 1⇐⇒
√
δ > n+ 2,

q > 0⇐⇒ p > p∗,

we have:

� if

√
δ ≤ n+ 2, then

pc = pS(n+ µ1) = +∞,
γ = γS(p, n+ µ1) for 1 < p < pc,

c = 0;

� if

√
δ > n+ 2, then

pc = pS(n+ µ1) = +∞,

γ =

{
2γF (p, n+ κ), for 1 < p ≤ p∗,
γS(p, n+ µ1), for p∗ < p < pc,

c =


1− sgn δ, for 1 < p < p∗,

2− sgn δ, for p = p∗,

0, for p∗ < p < pc.

Now that the de�nitions of pc, pc and T̃ , S̃ are clear, we can proceed further.

4.4.4 Proof for Theorem 4.2 and Theorem 4.4

As we said, from our computations we found the blow-up for 1 < p < pk = max{pc, pc}
and the upper bound of the lifespan estimates Tε . min{T̃ , S̃}. Observing that

T̃ (ε), S̃(ε)→ +∞ for ε→ 0+
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and comparing the relations (4.4.20) and (4.4.21), we get that

pγ ≷ γ =⇒ T̃ ≶ S̃.

If pγ = γ, the exponent of the logarithm comes into play, indeed

pc R c =⇒ T̃ Q S̃.

Now, we need to consider two cases according to the fact that H0 =
∫
Rn h(x)dx is positive

or null.

4.4.4.1 Case H0 > 0

We can easily infer that pk = pµ1,δ(n) de�ned in (4.2.9). We establish the upper bound for

the lifespan Tε without making distinctions according to the value of n+ µ1. Taking in

account that, for p > 1,

2p γF (p, n+ κ) > γS(p, n+ µ1)⇐⇒


p > 1, if

√
δ ≥ n,

1 < p <
2

n−
√
δ
, if n− 2 <

√
δ < n,

n− d∗ <
√
δ < n and n+ µ1 > 1 =⇒ pF (n+ κ) <

2

n−
√
δ
,

√
δ ≤ n− d∗ and 1 < p < pk =⇒ q > 0,

we have:

� if

√
δ ≤ n− 2 and 1 < p < pk, then pγ < γ and so S̃ < T̃ ;

� if n− 2 <
√
δ < n− d∗ and

� if 1 < p < 2
n−
√
δ
, then pγ > γ and so T̃ < S̃;

� if p = 2
n−
√
δ
, then pγ = γ and pc ≥ c, so that T̃ ≤ S̃;

� if
2

n−
√
δ
< p < pk, then pγ < γ, so that S̃ < T̃ ;

� if

√
δ ≥ n− d∗ and if 1 < p < pk, then pγ > γ so that T̃ < S̃.

4.4.4.2 Case H0 = 0

From now on we will impose the additional hypothesis that µ1 > 0 (which however can

be relaxed to n+ µ1 > 1).

Obviously, pF (n+ κ+
√
δ) ≤ pF (n+ κ), hence again pk = pµ1,δ(n) de�ned in (4.2.9).

Consider that, for p > 1,

pγF (p, n+ κ+
√
δ) > γF (p, n+ κ)⇐⇒

√
δ < 2 and 1 < p < 1 +

2−
√
δ

n+ κ+
√
δ
,

2p γF (p, n+ κ+
√
δ) > γS(p, n+ µ1)⇐⇒ n = 1 and

√
δ < 1 and 1 < p <

2

1 +
√
δ

.
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If n ≥ 2, taking into account that

n− d∗ <
√
δ < n+ 2 =⇒ 1 +

2−
√
δ

n+ κ+
√
δ
< p∗,

we can prove that pγ < γ for 1 < p < pk, and so S̃ < T̃ .

Suppose now that n = 1. Recall the de�nition (4.2.16) of θ and note that it satis�es

sgn θ = sgn(µ1 − 3). Moreover the following relations hold:

µ1 > 0 =⇒ 1− d∗ < 1 and 1 +
2−
√
δ

n+ κ+
√
δ
< pS(1 + µ1),

0 < µ1 < 3⇐⇒ 1− d∗ > 0,

0 < µ1 < 3 =⇒ |1− d∗| > θ,
√
δ > −1 + d∗ =⇒ 2

1 +
√
δ
< pS(1 + µ1),

θ <
√
δ < 3 =⇒ 1 +

2−
√
δ

n+ κ+
√
δ
< p∗ and

2

1 +
√
δ
< p∗.

Recall also the de�nition (4.2.15) of r∗ ≡ r∗(µ1, δ) and Remark 4.9. Hence, we get that:

� if

√
δ = 0, µ1 = 3 and if 1 < p < pk, then pγ > γ and so T̃ < S̃;

� if

√
δ = 0 and µ1 6= 3, or if 0 <

√
δ < 1, we have:

� if 1 < p < r∗, then pγ > γ and so T̃ < S̃;

� if p = r∗, then pγ = γ and pc ≤ c, so that S̃ ≤ T̃ ;

� if r∗ < p < pk, then pγ < γ, so that S̃ < T̃ ;

� if

√
δ ≥ 1 and if 1 < p < pk, then pγ < γ so that S̃ < T̃ .

In the end, recalling the de�nitions of γ, γ, c and c in the various cases and summing

all up, we can conclude the proof for Theorem 4.2 and Theorem 4.4.

4.4.5 Proof for Theorem 4.5

We will only sketch the demonstration, since it is a variation of the previous one. Let us

introduce the functional

G0(t) =

∫
Rn
w(x, t)dx

and, as in [LST19, LST20], the bounded multiplier

m(t) := exp

(
ν1

(1 + t)1−β

1− β

)
.

Choosing the test function φ = φ(x, s) in (4.2.19) to satisfy (4.4.1), deriving respect to the

time and multiplying by m, we get that
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4.4. Proof for the theorems

[m(t)G′0(t)]′ +
ν2

(1 + t)2
m(t)G0(t) = m(t)

∫
Rn
|w(x, t)|pdx,

and hence

G0(t) = G0(0) +m(0)G′0(0)

∫ t

0
m−1(s)ds

−
∫ t

0
m−1(s)ds

∫ s

0
m(r)

ν2

(1 + r)2
G0(r)dr

+

∫ t

0
m−1(s)ds

∫ s

0
m(r)dr

∫
Rn
|w(x, r)|pdx.

(4.4.22)

It is simple to see, by a comparison argument, thatG0 is positive. Indeed, by the hypothesis

on initial data, we know that G0(0) =
∫
Rn f(x)dx and G′0(0) =

∫
Rn g(x)dx are non-

negative and not both zero. If G0(0) > 0, by continuity G0 is positive for small time. If

G0(0) = 0 and G′(0) > 0, then G0 is increasing and again positive for small time t > 0.

If we suppose that there exists a time t0 > 0 such that G0(t0) = 0, calculating (4.4.22) in

t = t0 we get a contradiction, since the left-hand term would be zero and the right-hand

term would be strictly positive. Then, G0 is positive for any time t > 0. De�ne now the

functional G0 as the solution of the integral equation

G0(t) =
1

2
G0(0) +

m(0)

2
G′0(0)t−m(0)

∫ t

0
ds

∫ s

0

ν2

(1 + r)2
G0(r)dr

+m(0)

∫ t

0
ds

∫ s

0
dr

∫
Rn
|w(x, r)|pdx.

(4.4.23)

Since m(0) < m(t) < 1 for any t > 0 and ν2 < 0, we have that

G0(t)−G0(t) ≥ 1

2
G0(0) +

m(0)

2
G′0(0)t

−m(0)

∫ t

0
ds

∫ s

0

ν2

(1 + r)2
[G0(r)−G0(r)]dr,

and, again by a comparison argument, we may infer that G0 ≥ G0. From (4.4.23) we get

that G0 satis�es

G
′′
0(t) +

m(0)ν2

(1 + t)2
G(t) = m(0)

∫
Rn
|w(x, t)|pdx,

which has the same structure of (4.4.2) with µ1 = 0 and µ2 = m(0)ν2. Setting

λ := 1 +
√
δ, κ := −λ/2, G(t) := (1 + t)κ+λG0(t),

similarly as in Subsection 4.4.1 we obtain

G0(t) = G0(0)(1 + t)−κ + [κG0(0) +G
′
0(0)](1 + t)−κ

∫ t

0
(1 + s)−λds

+ (1 + t)−κ
∫ t

0
(1 + s)−λds

∫ s

0
(1 + r)κ+λdr

∫
Rn
|w(x, r)|pdx

(4.4.24)
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and then

G(t) &
∫ t

T0

ds

∫ s

T0

r−(n+κ+λ)(p−1)G(r)pdr, (4.4.25)

G(t) & εtλ. (4.4.26)

Now, to get the counterpart of (4.4.6), de�ne the functional

G1(t) :=

∫
Rn
w(x, t)ψ1(x, t)dx,

with ψ1 de�ned in (4.4.9). After taking a derivative respect to the time in the de�nition of

energy solution (4.2.19) and multiplying both of its sides with m(t), we have that

d

dt

{
m(t)

∫
Rn
wt(x, t)φ(x, t)dx

}
+m(t)

∫
Rn
{−wt(x, t)φt(x, t)− w(x, t)∆φ(x, t)} dx

= −m(t)

∫
Rn

ν2

(1 + t)2
w(x, t)φ(x, t)dx+m(t)

∫
Rn
|w(x, t)|pφ(x, t)dx.

By integration on [0, t] we get

m(t)

∫
Rn
wt(x, t)φ(x, t)dx−m(0)ε

∫
Rn
g(x)φ(x, 0)dx

−m(t)

∫
Rn
w(x, t)φt(x, t)dx+m(0)ε

∫
Rn
f(x)φt(x, 0)dx

+

∫ t

0
ds

∫
Rn
m(s)

ν1

(1 + s)β
w(x, s)φt(x, s)dx

+

∫ t

0
ds

∫
Rn
m(s)w(x, s)φtt(x, s)dx−

∫ t

0
ds

∫
Rn
m(s)w(x, s)∆φ(x, s)dx

= −
∫ t

0
ds

∫
Rn
m(s)

ν2

(1 + s)2
w(x, s)φ(x, s)dx

+

∫ t

0
ds

∫
Rn
m(s)|w(x, s)|pφ(x, s)dx.

Settingφ(x, t) = ψ1(x, t) = e−tφ1(x) on suppw and recalling the bounds on the multiplier

m(t), we obtain

G′1(t) + 2G1(t) ≥m(0)G′1(0) + 2m(0)G1(0)

+m(0)

∫ t

0

{
ν1

(1 + s)β
− ν2

(1 + s)2

}
G1(s)ds

+m(0)

∫ t

0
ds

∫
Rn
|w(x, s)|pdx.
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Integrating the above inequality over [0, t] after a multiplication by e2t
, we get

G1(t) ≥ G1(0)e−2t +m(0){G′1(0) + 2G1(0)}1− e−2t

2

+m(0)e−2t

∫ t

0
e2sds

∫ s

0

{
ν1

(1 + r)β
− ν2

(1 + r)2

}
G1(r)dr

+m(0)e−2t

∫ t

0
e2sds

∫ s

0
dr

∫
Rn
|w(x, r)|pφ(x, r)dx,

from which, thanks again to a comparison argument, we infer that G1 is non-negative, and

so, neglecting the last two term in the above inequality, it is easy to reach

G1(t) & ε for t & 1.

Hence, we have also∫
Rn
|w(x, t)|pdx & εp(1 + t)−(n−1) p

2
+n−1

for t & 1,

and so, taking into account (4.4.24), it holds

G0(t) & εp(1 + t)−κ
∫ t

T1

(1 + s)−λds

∫ s

T1

(1 + r)q+
√
δ−1dr for t ≥ T1,

for some T1 > 0, where

q ≡ q(p) := −1 +
√
δ

2
− (n− 1)

p

2
+ n+ 1.

Finally, we obtain the inequality analogous to (4.4.6), i.e.

G(t) & εp


tλ+q

if q > 0,

tλ ln(1 + t) if q = 0,

tλ if q < 0.

(4.4.27)

Thanks to (4.4.25), (4.4.26) and (4.4.27) and applying the Kato-type lemma as in Subsection

4.4.3, we can conclude the proof of Theorem 4.5.
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Chapter 5

Blow-up and lifespan estimate for
generalized Tricomi equations
related to Glassey conjecture

In this chapter, we consider the small data Cauchy problem for the semilinear generalized

Tricomi equations with a power-nonlinearity of derivative type, suggesting the papabili
candidates both for the critical exponent and for the lifespan estimates. Other than the

blow-up phenomena, we prove also a local existence result.

The reference for this chapter is [S5], joint work with Ning-An Lai.

5.1 The generalized Tricomi model

The object of our investigation is the problem{
utt − t2m∆u = |ut|p in [0, T )× Rn,
u(x, 0) = εf(x), ut(x, 0) = εg(x), x ∈ Rn,

(5.1.1)

where m ≥ 0 is a real constant, n ≥ 1 is the dimension and ε > 0 is a “small” parameter.

The initial data f, g are compactly supported functions from the energy spaces

f ∈ H1(Rn), g ∈ H1− 1
m+1 (Rn),

and, without loss of generality, we may assume

supp f, supp g ⊆ {x ∈ Rn : |x| ≤ 1}. (5.1.2)

The mathematical investigation of the semilinear generalized Tricomi equations and

related models is motivated by the fact that such kind of equations apper in the study of

gas dynamic problems, see e.g. [Ber58]. If we set ourselves in dimension n = 1, letting

m = 1/2, the equation becomes

utt − tuxx = 0,
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5.1. The generalized Tricomi model

namely the classical linear Tricomi equation, introduced by the Italian mathematician

in [Tri23] apropos of boundary value problems for partial di�erential equations of mixed-

type. Later, Frankl [Fra45] highlighted the connection between the study of gas �ows with

nearly sonic speed and the Tricomi equation, which indeed describes the transition from

subsonic �ow (for t < 0, when the Tricomi equation is elliptic) to supersonic �ow (for

t > 0, when it is hyperbolic). For more details and applications, we refer to the series of

works by Yagdjian [Yag04, Yag06, Yag07a, Yag07b, Yag07c] and to the references therein,

such as the already cited [Ber58] and moreover [CC86, Ger98, Mor82, Mor04, Noc86, Ras90].

For k > 0 and n ≥ 1, the operator

T := ∂2
t − t2k∆ (5.1.3)

is also known as Gellerstedt operator. The �rst steps in the study of (generalized) Tricomi

equations move in the direction of building the explicit fundamental solution. In their

works [BNG99, BNG02, BNG05], Barros-Neto and Gelfand established the fundamental

solution for

yuxx + uyy = 0

in the whole plane. Instead, for the Gellerstedt operator (5.1.3) with 2k ∈ N, Yagdjian

constructed in [Yag04] a fundamental solution with support located in the “forward cone”

C(t0, x0) :=

{
(t, x) ∈ Rn+1 : |x− x0| ≤

tk+1 − tk+1
0

k + 1

}

and relative to any arbitrary point (t0, x0) ∈ [0,+∞)× Rn.

Recently, the long time behavior of solutions for small data Cauchy problem of the

semilinear generalized Tricomi equation{
utt − t2k∆u = |u|p, in [0, T )× Rn

u(x, 0) = εf(x), ut(x, 0) = εg(x), x ∈ Rn,
(5.1.4)

has attracted scholarly attention. The main goal is determining the critical power pc(k, n),

namely, as we know, the value such that if 1 < p ≤ pc(k, n) then the solution blows

up in a �nite time, whereas if p > pc(k, n) there exists a unique global-in-time solution.

Yagdjian [Yag06] obtained some partial results, nevertheless in his work there was still a gap

between the blow-up and global existence ranges. The critical power was �nally established

in a recent series of works by He, Witt and Yin [HWY17a, HWY17b, HWY16, HWY18] (see

also the doctoral dissertation by He [He16]). For k > 1/2, pc(k, n) admits the following

expression:

� if n = 1, then pc(k, 1) = 1 +
2

k
;

� if n ≥ 2, then pc(k, n) is the positive root of the quadratic equation

2 +

[
n+ 1− 3

(
1− 1

k + 1

)]
p−

[
n− 1 +

(
1− 1

k + 1

)]
p2 = 0.

Lately, Lin and Tu [LT19b] studied the upper bound of lifespan estimate for (5.1.4), and

Ikeda, Lin and Tu [ILT21] established the blow-up and upper bound of lifespan estimate for
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the weakly coupled system of the generalized Tricomi equations with multiple propagation

speed. The critical power above should be compared with the corresponding one for the

semilinear wave equation utt−∆u = |u|p. Indeed, letting k = 0 in the de�nition of pc(k, n),

we infer pc(0, 1) = +∞ and, for n ≥ 2, pc(0, n) becomes the Strauss exponent, which is

the critical power for the small data Cauchy problem in (5.1.4) with k = 0 (see Chapter 4).

Finally, we refer also to Ruan, Witt and Yin [RWY14,RWY15a,RWY15b,RWY18] for results

about the local existence and local singularity structure of low regularity solutions for the

equation utt − tk∆u = f(t, x, u).

In this chapter, we consider the semilinear generalized Tricomi equations with power-

nonlinearity of derivative type, focusing on blow-up result and lifespan estimate from

above for the small data Cauchy problem. Note that, setting m = 0 in (5.1.1), we come

back to the semilinear wave equation

utt −∆u = |ut|p. (5.1.5)

For this problem, Glassey [Gla] conjectured that the critical exponent is the power, now

named after him, de�ned by

pG(n) :=

1 +
2

n− 1
if n ≥ 2,

+∞ if n = 1.

(5.1.6)

The research on this problem was initiated by John [Joh81], where more general equations

in dimension n = 3 are considered, proving the blow-up of solutions for p = 2. Then,

the study of the blow-up was continued in the low dimensional case by Masuda [Mas],

Schae�er [Sch86], John [Joh85] and Agemi [Age91], whereas Rammaha [Ram87] treated the

high dimensional case n ≥ 4 under radial symmetric assumptions. Finally, Zhou [Zho01]

proved the blow-up for n ≥ 1 and 1 < p ≤ pG(n), furnishing the upper bound for the

lifespan of the solutions, namely

Tε ≤

Cε−
2(p−1)

2−(n−1)(p−1)
if 1 < p < pG(n),

exp(Cε−(p−1)) if p = pG(n),

(5.1.7)

for some positive constantC independent of ε. We recall that the lifespan Tε is de�ned as the

maximal existence time of the solution, depending on the parameter ε. Regarding the global

existence part, we refer to Sideris [Sid83], Hidano and Tsutaya [HT95] and Tzvetkov [Tzv98]

for results in dimension n = 2, 3 and Hidano, Wang15 and Yokoyama [HWY12] for the

high dimensional cases n ≥ 4 under radially symmetric assumptions. For more details

about the Glassey conjecture, one can see the references [LT19a] and [Wan15].

The study of problem (5.1.1) under consideration generalizes the Glassey conjecture.

Therefore, it is interesting to �nd the critical exponent and lifespan estimate for (5.1.1),

which will coincide with the Glassey exponent (5.1.6) and Zhou’s lifespan estimate (5.1.7)

respectively for m = 0. The main tool we are going to use is the test function method.

In [HWY17b], the blow-up result for (5.1.4) is based on a test function given by the product

of the harmonic function

∫
Sn−1 e

x·ωdω and the solution of the ordinary di�erential equation

λ′′(t)− tkλ′(t) = 0.
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Inspired by the works [ISW19] and [LT20], we construct a nonnegative test function

composed by a cut-o� function, the harmonic function

∫
Sn−1 e

x·ωdω and the solution of the

ODE (5.4.1) below. Since we consider the Tricomi-type equations with derivative nonlinear

term, the �rst derivative with respect to the time variable and a factor t−2m
are included in

the special test function. Before proving the blow-up result, we give also a local existence

result following the approach of Yagdjian [Yag06], from which we can deduce the optimality

of the lifespan estimates at least for n = 1.

When the paper [S5], the results of which this chapter refers to, was almost �nished,

we found the paper [LP21] by Lucente and Palmieri, where they independently studied the

same problem with a di�erent approach. However, the result we are going to present here

seems to improve the blow-up range and lifespan estimates there found.

We cite also the very recent papers [CLP21] by Chen, Lucente and Palmieri and [HH20]

by Hamouda and Hamza, where the blow-up phenomena for generalized Tricomi equations

with combined nonlinearities, i.e. utt − t2m∆u = |ut|p + |u|q , is independently studied

exploiting the iteration argument. In particular, the work [HH20] con�rms the blow-

up result presented in this chapter by giving an alternative proof. Conversely, we are

con�dent that also our method can be adapted to study various blow-up problems involving

generalized Tricomi equations, including the combined nonlinearity. This means that the

test function method presented in the following and the iteration argument developed

in [CLP21, HH20] furnish two di�erent approaches for the study of blow-up phenomena

for Tricomi-related problems.

5.2 Main result

Let us start stating the de�nition of energy solution for our problem (5.1.1), similarly as

in [ISW19, LT18] and as in the previous Chapter 4.

De�nition 5.1. We say that the function

u ∈ C([0, T ), H1(Rn)) ∩ C1([0, T ), H1− 1
m+1 (Rn)), with ut ∈ Lp

loc
((0, T )× Rn),

is a weak solution of (5.1.1) on [0, T ) if

u(0, x) = εf(x) in H1(Rn), ut(0, x) = εg(x) in H1− 1
m+1 (Rn)

and

ε

∫
Rn
g(x)Ψ(0, x)dx+

∫ T

0

∫
Rn
|ut|pΨ(t, x) dxdt

=

∫ T

0

∫
Rn
−ut(t, x)Ψt(t, x) dxdt+

∫ T

0

∫
Rn
t2m∇u(t, x) · ∇Ψ(t, x) dxdt,

(5.2.1)

for any Ψ(t, x) ∈ C1
0 ([0, T )× Rn) ∩ C∞ ((0, T )× Rn).

Remark 5.1. The choice of the functional spacesH1(Rn) andH1− 1
m+1 (Rn) for the initial

data u(0, x) and ut(0, x) respectively are suggested by [He16] and by Theorem 5.2 below.

Of course, if m = 0 we have H0(Rn) = L2(Rn).
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In the same spirit of Chapter 4, let us de�ne the exponent

pT (n,m) :=

1 +
2

(m+ 1)(n− 1)−m
if n ≥ 2,

+∞ if n = 1,

as the root (when n ≥ 2) of the expression γT (n,m; p) = 0, where

γT (n,m; p) := 2− [(m+ 1)(n− 1)−m](p− 1),

and observe that γT (n,m; p) > 0 for 1 < p < pT (n,m).

We state now our main result for (5.1.1).

Theorem 5.1. Let n ≥ 1, m ≥ 0 and 1 < p ≤ pT (n,m). Assume that f ∈ H1(Rn),
g ∈ H1− 1

m+1 (Rn) satisfy the compact support assumption (5.1.2) and that

a(m)f + g, a(m) := [2(m+ 1)]
m
m+1

Γ
(

1
2 + m

2(m+1)

)
Γ
(

1
2 −

m
2(m+1)

) , (5.2.2)

is non-negative and not identically vanishing. Suppose that u is an energy solution of (5.1.1)

with compact support in the “cone”

suppu ∈
{

(t, x) ∈ [0, T )× Rn : |x| ≤ γ(t) := 1 +
tm+1

m+ 1

}
. (5.2.3)

Then, there exists a constant ε0 = ε0(f, g,m, n, p) > 0 such that the lifespan Tε satis�es

Tε ≤

Cε
− 2(p−1)
γT (n,m;p) if 1 < p < pT (n,m),

exp
(
Cε−(p−1)

)
if p = pT (n,m),

(5.2.4)

for 0 < ε ≤ ε0 and some positive constant C independent of ε.

Remark 5.2. For m = 0 the exponent pT becomes the Glassey exponent (5.1.6), namely

pT (n, 0) = pG(n), and the lifespan estimate (5.2.4) is exactly the same as (5.1.7).

Remark 5.3. It is interesting to note that, if n = 2, then the blow-up power pT (2,m) = 3

and the subcritical lifespan estimate Tε ≤ Cε
−
(

1
p−1
− 1

2

)−1

are independent of m.

Remark 5.4. We conjecture that pT (n,m) is indeed the critical exponent for problem

(5.1.1) and the lifespan (5.2.4) are optimal. The next goal should be to verify this conjecture

considering the global-in-time existence for solutions to (5.1.1).

5.3 Local existence result

Before to proceed with the demonstration of Theorem 5.1 in Section 5.4, we �rstly want

to present in this section a local existence result. As observed in [LP21], it is possible to

prove a local-in-time existence result for problem (5.1.1), regardless the size of the Cauchy

data, following the steps in Section 2.1 of [DDG01]. However, we believe that the following
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Theorem 5.2 is interesting to justify the choice of the energy space for the solution and

the initial data in Theorem 5.1. In addition, we can verify the optimality of the lifespan

estimate in the 1-dimensional case.

Let us consider the integral equation

u(t, x) = εV1(t,Dx)f(x) + εV2(t,Dx)g(x)

+

∫ t

0
[V2(t,Dx)V1(s,Dx)− V1(t,Dx)V2(s,Dx)]|ut(s, x)|pds

(5.3.1)

where ε > 0 is not necessarily small, f ∈ H1(Rn), g ∈ H1− 1
m+1 (Rn) and the Fourier

multiplier V1(t,Dx) and V2(t,Dx) will be de�ned below. As remarked in [Yag06], any

classical or distributional solution to our problem (5.1.1) solves also the integral equation

(5.3.1). We have the following result.

Theorem 5.2. Let 0 ≤ m < 2, p > max
{

2, 1 + n
2

}
, σ ∈

(
n
2 −

m
2(m+1) , p− 1− m

2(m+1)

)
and f ∈ Hσ+1(Rn), g ∈ Hσ+1− 1

m+1 (Rn). Then there exists a unique solution u = u(t, x)
to equation (5.3.1) satisfying

u ∈ C
(

(0, T ); Ḣ
σ+ m

2(m+1)
+1

(Rn)
)
, ut ∈ C

(
[0, T );H

σ+ m
2(m+1) (Rn)

)
for some T > 0.

Moreover, if ε > 0 is small enough, then T & ε−
(

1
p−1

+m
2

)−1

.

As in Yagdjian [Yag07c] and Taniguchi and Tozaki [TT80], we introduce the di�erential

operators V1(t,Dx) and V2(t,Dx) as follows. Set

z := 2iφ(t)|ξ|, φ(t) :=
tm+1

m+ 1
, µ :=

m

2(m+ 1)
.

Then V1(t,Dx) and V2(t,Dx) are the Fourier multiplier

V1(t,Dx)ψ = F−1[V1(t, |ξ|)Fψ],

V2(t,Dx)ψ = F−1[V2(t, |ξ|)Fψ],

de�ned by the symbols

V1(t, |ξ|) := e−z/2Φ(µ, 2µ; z),

V2(t, |ξ|) := te−z/2Φ(1− µ, 2(1− µ); z),

where F ,F−1
are the Fourier transform and its inverse respectively, and Φ(a, c; z) is the

con�uent hypergeometric function. Recall that Φ(a, c; z) is an entire analytic function of z
such that

Φ(a, c; z) = 1 +O(z) for z → 0 (5.3.2)

and which satis�es the following di�erential relations (see e.g. [AS64, Section 13.4]):

dn

dzn
Φ(a, c; z) =

(a)n
(c)n

Φ(a+ n, c+ n; z), (5.3.3)

d

dz
Φ(a, c; z) =

1− c
z

[Φ(a, c; z)− Φ(a, c− 1; z)] , (5.3.4)
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where (x)n = x(x+ 1) · · · (x+ n− 1) is the Pochhammer’s symbol. Moreover Φ(a, c; z)
satis�es the estimate

|Φ(a, c; 2iφ(t)|ξ|)| ≤ Ca,c,m(φ(t)|ξ|)max{a−c,−a}
for 2φ(t)|ξ| ≥ 1. (5.3.5)

Remark 5.5. In the case of the wave equation, i.e. whenm = 0, the de�nitions of V1(t,Dx)
and V2(t,Dx) should be understood taking the limit for m→ 0 in their formulas. Indeed,

using the identities 10.2.14, 13.6.3 and 13.6.14 in [AS64], we get

lim
m→0

V1(t, |ξ|) = lim
µ→0

Γ

(
µ+

1

2

)(z
4

)1/2−µ
Iµ−1/2

(z
2

)
= cosh

(z
2

)
,

lim
m→0

V2(t, |ξ|) =
2t

z
sinh

(z
2

)
,

where Iν(w) is the modi�ed Bessel function of �rst kind. Thus for m = 0 one recovers the

well-known wave operators V1(t,Dx) = cos(t
√
−∆) and V2(t,Dx) = sin(t

√
−∆)√
−∆

.

As Yagdjian observes, there are two di�erent phase functions of two di�erent waves

hidden in Φ(a, c; z). More precisely, for 0 < arg z < π, we can write (see [Inu67])

e−z/2Φ(a, c; z) =
Γ(c)

Γ(a)
ez/2H+(a, c; z) +

Γ(c)

Γ(c− a)
e−z/2H−(a, c; z) (5.3.6)

where

H+(a, c; z) =
e−iπ(c−a)

eiπ(c−a) − e−iπ(c−a)

1

Γ(c− a)
za−c

∫ (0+)

∞
e−ωωc−a−1

(
1− ω

z

)a−1
dω,

H−(a, c; z) =
1

eiπa − e−iπa
1

Γ(a)
z−a

∫ (0+)

∞
e−ωωa−1

(
1 +

ω

z

)c−a−1
dω.

For |z| → ∞ and 0 < arg z < π, the following asymptotic estimates hold:

H+(a, c; z) ∼ za−c
[

1 +

∞∑
k=1

(c− a)k(1− a)k
k!

z−k

]
,

H−(a, c; z) ∼ (e−iπz)−a

[
1 +

∞∑
k=1

(−1)k
(a)k(1 + a− c)k

k!
z−k

]
.

Combining the asymptotic estimates for H+(a, c; z) and H−(a, c; z) with their de�nitions,

one can infer, for 2φ(t)|ξ| ≥ 1, the relations

|∂kt ∂
β
ξH+(a, c; 2iφ(t)|ξ|)| ≤ Ca,c,m,k,β(φ(t)|ξ|)a−c〈ξ〉

k
m+1

−|β|, (5.3.7)

|∂kt ∂
β
ξH−(a, c; 2iφ(t)|ξ|)| ≤ Ca,c,m,k,β(φ(t)|ξ|)−a〈ξ〉

k
m+1

−|β|, (5.3.8)

where 〈ξ〉 = (1 + |ξ|2)1/2
are the Japanese brackets.

Finally, let us introduce for simplicity of notation the operators

W1(s, t,Dx) :=V1(t,Dx)V2(s,Dx),

W2(s, t,Dx) :=V2(t,Dx)V1(s,Dx),
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whose symbols, if we set z := 2iφ(t)|ξ| and ζ := 2iφ(s)|ξ|, are given by

W1(s, t, |ξ|) = se−(z+ζ)/2Φ(µ, 2µ; z)Φ(1− µ, 2(1− µ); ζ),

W2(s, t, |ξ|) = te−(z+ζ)/2Φ(µ, 2µ; ζ)Φ(1− µ, 2(1− µ); z).

The key estimates employed in the proof of Theorem 5.2 are given in Corollary 5.1,

which comes straightforwardly from Theorem 5.3, and in Lemma 5.1. The estimates in

the following Theorem 5.3, which are of independent interest, are obtained adapting the

argument exploited by Yagdjian [Yag06] and Reissig [Rei97] for the case of the operators

V1(t,Dx) and V2(t,Dx). In order to not weigh down the exposition, we postpone the proof

of this theorem in Appendix 5.B.

Theorem 5.3. Let n ≥ 1, m ≥ 0, µ := m
2(m+1) and ψ ∈ C∞0 (Rn). Then the following

Lq − Lq′ estimates on the conjugate line, i.e. for 1
q + 1

q′ = 1, hold for 0 < s ≤ t and for all
admissible q ∈ (1, 2]:

(i) if n
(

1
q −

1
q′

)
− 1 ≤ σ ≤ −µ+ n

(
1
q −

1
q′

)
, then

∥∥∥(
√
−∆)−σW1(s, t,Dx)ψ

∥∥∥
Lq′
. (t/s)−m/2s

1+
[
σ−n

(
1
q
− 1
q′

)]
(m+1) ‖ψ‖Lq ;

(ii) if n
(

1
q −

1
q′

)
− 1 ≤ σ ≤ −1 + µ+ n

(
1
q −

1
q′

)
, then

∥∥∥(
√
−∆)−σW2(s, t,Dx)ψ

∥∥∥
Lq′
. (t/s)−m/2s

1+
[
σ−n

(
1
q
− 1
q′

)]
(m+1) ‖ψ‖Lq ;

(iii) if n
(

1
q −

1
q′

)
≤ σ ≤ 1− µ+ n

(
1
q −

1
q′

)
, then

∥∥∥(
√
−∆)−σ∂tW1(s, t,Dx)ψ

∥∥∥
Lq′
. (t/s)m/2s

[
σ−n

(
1
q
− 1
q′

)]
(m+1) ‖ψ‖Lq ;

(iv) if σ = n
(

1
q −

1
q′

)
, then∥∥∥(
√
−∆)−σ∂tW2(s, t,Dx)ψ

∥∥∥
Lq′
. (t/s)m/2 ‖ψ‖Lq .

Remark 5.6. As in Yagdjian [Yag06], it is easy to obtain similar estimates for the (homo-

geneous) Besov spaces and then for the Sobolev-Slobodeckij spaces.

In the previous theorem, choosing q = q′ = 2 and σ = −1 for W1(s, t,Dx) and

W2(s, t,Dx), and σ = 0 for their derivatives, we immediately get the next corollary.

Corollary 5.1. The following estimates hold

‖Wj(s, t,Dx)ψ‖Ḣγ+1 . (ts)−m/2 ‖ψ‖Ḣγ ,

‖∂tWj(s, t,Dx)ψ‖Ḣγ . (t/s)m/2 ‖ψ‖Ḣγ ,

‖∂tWj(s, t,Dx)ψ‖Hγ . (t/s)m/2 ‖ψ‖Hγ ,

for n ≥ 1,m ≥ 0, γ ∈ R and j ∈ {1, 2}.
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We furnish now estimates in the energy space Ḣγ(Rn) and Hγ(Rn) also for V1(t,Dx),

V2(t,Dx) and their derivatives with respect to time.

Lemma 5.1. Let γ ∈ R,m ≥ 0 and µ := m
2(m+1) . The following estimates hold:

‖V1(t,Dx)ψ‖Ḣγ−σ . tσ(m+1) ‖ψ‖Ḣγ for −µ ≤ σ ≤ 0;

‖V2(t,Dx)ψ‖Ḣγ−σ . tσ(m+1)+1 ‖ψ‖Ḣγ for −1 + µ ≤ σ ≤ 0;

‖∂tV1(t,Dx)ψ‖Hγ−σ . tσ(m+1)−1 ‖ψ‖Hγ for 1− µ ≤ σ ≤ 1;

‖∂tV2(t,Dx)ψ‖Hγ−σ . 〈t〉σ(m+1) ‖ψ‖Hγ for µ ≤ σ.

Proof. By estimates (5.3.5), for the range of σ in the hypothesis we have that

||ξ|−σV1(t, |ξ|)| .

{
|ξ|−σ(φ(t)|ξ|)−µ if φ(t)|ξ| ≥ 1,

|ξ|−σ if φ(t)|ξ| ≤ 1,

≤ tσ(m+1);

||ξ|−σV2(t, |ξ|)| .

{
t|ξ|−σ(φ(t)|ξ|)µ−1

if φ(t)|ξ| ≥ 1,

t|ξ|−σ if φ(t)|ξ| ≤ 1,

≤ tσ(m+1)+1;

|〈ξ〉−σ∂tV1(t, |ξ|)| .

{
tm|ξ|1−σ(φ(t)|ξ|)−µ if φ(t)|ξ| ≥ 1,

tm|ξ|1−σ if φ(t)|ξ| ≤ 1,

≤ tσ(m+1)−1;

|〈ξ〉−σ∂tV2(t, |ξ|)| .

{
〈ξ〉−σ(φ(t)|ξ|)µ if φ(t)|ξ| ≥ 1,

〈ξ〉−σ[1 + φ(t)|ξ|] if φ(t)|ξ| ≤ 1,

≤ 〈ξ〉−σ〈φ(t)|ξ|〉µ

≤ 〈φ(t)〉µ〈ξ〉µ−σ

. 〈t〉σ(m+1).

Consequently

‖V1(t,Dx)ψ‖Ḣγ−σ =
∥∥∥|ξ|γ−σV1(t, |ξ|)ψ̂

∥∥∥
L2

≤
∥∥|ξ|−σV1(t, |ξ|)

∥∥
L∞

∥∥∥|ξ|γψ̂∥∥∥
L2

. tσ(m+1) ‖ψ‖Ḣγ ,

and similarly we can obtain the other estimates.

Remark 5.7. The previous lemma should be compared with Lemma 3.2 in [RWY15a],

where similar estimates are obtained under the restriction 0 < t ≤ T , for some �xed

positive constant T .

Finally, let us recall also the following useful relations that come from an application of

Theorems 4.6.4/2 and 5.4.3/1 in [RS96].
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Lemma 5.2. The following estimates hold:

(i) if γ > 0 and u, v ∈ Hγ(Rn) ∩ L∞(Rn), then

‖uv‖Hγ . ‖u‖L∞ ‖v‖Hγ + ‖u‖Hγ ‖v‖L∞ ;

(ii) if p > 1, γ ∈
(
n
2 , p
)
and u ∈ Hγ(Rn), then

‖|u|p‖Hγ . ‖u‖Hγ ‖u‖p−1
L∞ .

We can now start the proof of the local existence result.

Proof of Theorem 5.2. Let us consider the map

Ψ[v](t, x) = εV1(t,Dx)f(x) + εV2(t,Dx)g(x)

+

∫ t

0
[V2(t,Dx)V1(s,Dx)− V1(t,Dx)V2(s,Dx)]|vt(s, x)|pds

and the complete metric space

X(a, T ) :=
{
v : v ∈ C((0, T ); Ḣγ+1(Rn)), vt ∈ C([0, T );Hγ(Rn)) and ‖v‖X ≤ a

}
for some a, T > 0 to be chosen later, where γ := σ + µ, µ := m

2(m+1) and

‖v‖X := sup
0≤t≤T

[
tm/2 ‖v‖Ḣγ+1 + 〈t〉−m/2 ‖vt‖Hγ

]
.

Note that, since the operators V1(t,Dx) and V2(t,Dx) commute, we have

∂tΨ[v](t, x) = ε∂tV1(t,Dx)f(x) + ε∂tV2(t,Dx)g(x)

+

∫ t

0
[∂tV2(t,Dx)V1(s,Dx)− ∂tV1(t,Dx)V2(s,Dx)]|vt(s, x)|pds.

We want to show that Ψ is a contraction mapping on X(a, T ).

By Lemma 5.1 and the immersion Hs(Rn) ↪→ Ḣs(Rn) for s > 0, we get

‖V1(t,Dx)f‖Ḣγ+1 . t−m/2 ‖f‖Hγ−µ+1 ,

‖V2(t,Dx)g‖Ḣγ+1 . t−m/2 ‖g‖Hγ+µ ,

‖∂tV1(t,Dx)f‖Hγ . tm/2 ‖f‖Hγ−µ+1 ,

‖∂tV2(t,Dx)g‖Hγ . 〈t〉m/2 ‖g‖Hγ+µ .

Moreover by Corollary 5.1 we infer

‖V2(t,Dx)V1(s,Dx)|vt(s, x)|p‖Ḣγ+1 . (st)−m/2 ‖vt(s, x)‖pHγ ,

‖V1(t,Dx)V2(s,Dx)|vt(s, x)|p‖Ḣγ+1 . (st)−m/2 ‖vt(s, x)‖pHγ ,

‖∂tV2(t,Dx)V1(s,Dx)|vt(s, x)|p‖Hγ . (s/t)−m/2 ‖vt(s, x)‖pHγ ,

‖∂tV1(t,Dx)V2(s,Dx)|vt(s, x)|p‖Hγ . (s/t)−m/2 ‖vt(s, x)‖pHγ ,
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where we used the estimates

‖|vt(s, x)|p‖Ḣγ ≤ ‖|vt(s, x)|p‖Hγ . ‖vt(s, x)‖pHγ ,

which come from Lemma 5.2 and the Sobolev embeddings.

From these estimates and from the fact that t〈t〉−1 < 1 for any t > 0, we obtain

tm/2 ‖Ψ[v](t, ·)‖Ḣγ+1 + 〈t〉−m/2 ‖∂tΨ[v](t, ·)‖Hγ

. ε [‖f‖Hγ−µ+1 + ‖g‖Hγ+µ ] +

∫ t

0
s−m/2 ‖vt(s, ·)‖pHγ ds

and hence, since m < 2, we get

‖Ψ[v]‖X ≤ C0ε [‖f‖Hγ−µ+1 + ‖g‖Hγ+µ ] + C0T
1−m

2 〈T 〉
m
2
p ‖v‖pX

for some constantC0 > 0 independent of ε. Choosing a su�ciently large and T su�ciently

small, namely a ≥ 2C0ε [‖f‖Hγ−µ+1 + ‖g‖Hγ+µ ] and T 1−m
2 〈T 〉

m
2
p ≤ (2C0a

p−1)−1
, we

infer that Ψ[v] ∈ X(a, T ).

Now we show that Ψ is a contraction. Fixed v, ṽ ∈ X(a, T ), we have similarly as above

tm/2 ‖Ψ[v](t, ·)−Ψ[ṽ](t, ·)‖Ḣγ+1 + 〈t〉−m/2 ‖∂tΨ[v](t, ·)− ∂tΨ[ṽ](t, ·)‖Hγ

.
∫ t

0
s−m/2 ‖|vt(s, ·)|p − |ṽt(s, ·)|p‖Hγ ds. (5.3.9)

Since we can write

|vt|p − |ṽt|p = 2−pp

∫ 1

−1
(vt − ṽt)(vt + ṽt + λ(vt − ṽt))|vt + ṽt + λ(vt − ṽt)|p−2dλ

and recalling that p > 2 and γ ∈ (n/2, p− 1), an application of Lemma 5.2 combined with

Sobolev embeddings give us

‖|vt|p − |ṽt|p‖Hγ . ‖vt − ṽt‖L∞
∥∥(|vt|+ |ṽt|)p−1

∥∥
Hγ

+ ‖vt − ṽt‖Hγ

∥∥(|vt|+ |ṽt|)p−1
∥∥
L∞

. ‖vt − ṽt‖L∞
(
‖vt‖p−1

Hγ + ‖ṽt‖p−1
Hγ

)
+ ‖vt − ṽt‖Hγ

(
‖vt‖p−1

L∞ + ‖ṽt‖p−1
L∞

)
. ‖vt − ṽt‖Hγ

(
‖vt‖p−1

Hγ + ‖ṽt‖p−1
Hγ

)
.

Inserting this inequality into (5.3.9) we get

‖Ψ[v]−Ψ[ṽ]‖X ≤ C1T
1−m

2 〈T 〉
m
2
pap−1 ‖v − ṽ‖X

for someC1 > 0, and so Ψ is a contraction for T 1−m
2 〈T 〉

m
2
p ≤ (C1a

p−1)−1
. By the Banach

�xed point theorem we conclude that there exists a unique v ∈ X(a, T ) such that Ψ[v] = v.

As a by-product of the computations, from the conditions on T and a we can choose

the existence time such that T 1−m
2 〈T 〉

m
2
p = Cε−(p−1)

for some C > 0 independent of ε,

hence T & ε
−
[

1
p−1

+m
2

]−1

for ε small enough.
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5.4 Blow-up via a test function method

We come now to the proof of Theorem 5.1, which heavily relies on a special test function,

closely related to a time dependent function satisfying the following ordinary di�erential

equation:

λ′′(t)− 2mt−1λ′(t)− t2mλ(t) = 0, (5.4.1)

where t > 0 and m ∈ R.

Lemma 5.3. The fundamental solutions λ−, λ+ of (5.4.1) are the functions de�ned by:

� ifm = −1:

λ−(t) = t−
1+
√
5

2 , λ+(t) = t−
1−
√
5

2 ;

� ifm 6= −1:

λ−(t) = tm+ 1
2K 1

2
+ m

2(m+1)

(
tm+1

|m+ 1|

)
, λ+(t) = tm+ 1

2 I 1
2

+ m
2(m+1)

(
tm+1

|m+ 1|

)
,

where Iν(z),Kν(z) are the modi�ed Bessel functions of the �rst and second kind
respectively.

Proof. The result trivially follows from straightforward computations based on formulas

for Bessel functions collected in Appendix A. Instead in Appendix 5.A we show a way to

reach the expression of the solutions for m 6= −1.

If m = −1, it is immediate to check that λ− and λ+ are two independent solutions

of (5.4.1). Suppose now m 6= −1 and set z = tm+1/|m + 1| and σ = sgn(m + 1) for

simplicity. From (A.5) and (A.1), we get

λ′−(t) =

(
m+

1

2

)
tm−1/2Km+1/2

m+1

(z) + σt2m+1/2K ′m+1/2
m+1

(z)

=

(
m+

1

2

)
tm−1/2Km+1/2

m+1

(z)− σt2m+1/2

×
[
K− 1

2(m+1)
(z) + σ

(
m+

1

2

)
t−m−1Km+1/2

m+1

(z)

]
=− σt2m+1/2K− 1

2(m+1)
(z)

=− σt2m+1/2K 1
2(m+1)

(z),

and

λ′′−(t) =− σ
(

2m+
1

2

)
t2m−1/2K 1

2(m+1)
(z)− t3m+1/2K ′ 1

2(m+1)

(z)

=− σ
(

2m+
1

2

)
t2m−1/2K 1

2(m+1)
(z)

+ t3m+1/2

[
K−m+1/2

m+1

(z) + σ
t−m−1

2
K 1

2(m+1)
(z)

]
=t3m+1/2Km+1/2

m+1

(z)− 2mσ t2m−1/2K 1
2(m+1)

(z)

=t2mλ−(t) + 2mt−1λ′−(t).
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Analogously, using (A.4) and (A.5), we obtain

λ′+(t) = σt2m+1/2I− 1
2(m+1)

(z),

λ′′+(t) = t3m+1/2Im+1/2
m+1

(z) + 2mσ t2m−1/2I− 1
2(m+1)

(z)

= t2mλ+(t) + 2mt−1λ+(t).

Then, it is clear that λ− and λ+ solve equation (5.4.1) and, from relation (A.3), we can check

that the Wronskian W (t) = λ−(t)λ′+(t)− λ+(t)λ′−(t) is

W (t) = σt3m+1[I− 1
2(m+1)

K− 1
2(m+1)

+1 + I− 1
2(m+1)

+1K− 1
2(m+1)

](z)

= (m+ 1)t2m > 0

for t > 0, hence the two solutions are independent.

Lemma 5.4. Supposem > −1/2. De�ne µ := m
2(m+1) and

λ(t) := tm+1/2Kµ+ 1
2

(
tm+1

m+ 1

)
.

Then, λ ∈ C1([0,+∞)) ∩ C∞(0,+∞) and satis�es the following properties:

(i) λ(t) > 0, λ′(t) < 0,

(ii) lim
t→0+

λ(t) = 2µ−
1
2 (m+ 1)µ+ 1

2 Γ

(
µ+

1

2

)
=: c0(µ) > 0,

(iii) lim
t→0+

λ′(t)

t2m
= −c0(−µ) < 0,

(iv) λ(t) =

√
(m+ 1)π

2
tm/2 exp

(
− tm+1

m+ 1

)
× (1 +O(t−(m+1))), for large t > 0,

(v) λ′(t) = −
√

(m+ 1)π

2
t3m/2 exp

(
− tm+1

m+ 1

)
×(1+O(t−(m+1))), for large t > 0,

where Γ is the Gamma function and O is the Big O from the Bachmann-Landau notation.

Proof. From (A.4) we know that λ is smooth for t > 0. Since Kν(z) is real and positive for

ν ∈ R and z > 0, also λ is real and positive. Recall from the proof of Lemma 5.3 that

λ′(t) = −t2m+1/2K−µ+ 1
2

(
tm+1

m+ 1

)
,

and hence λ′ is negative. From (A.8) we have λ(t) ∼ c0(µ) and λ′(t) ∼ −c0(−µ)t2m for

t→ 0+
, so we can prove (ii) and (iii). Finally, from (A.10) we obtain (iv) and (v).

We can start now the proof of our main theorem.
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Proof of Theorem 5.1. As in [ISW19], let η(t) ∈ C∞([0,+∞)) satisfying

η(r) :=


1 for r ≤ 1

2 ,

decreasing for
1
2 < r < 1,

0 for r ≥ 1,

and denote, for M ∈ (1, T ),

ηM (t) := η

(
t

M

)
, η0(t, x) := η

(
|x|
2

(
1 +

tm+1

m+ 1

)−1
)
.

We remark that one can assume 1 < T ≤ Tε, since otherwise our result holds obviously by

choosing ε small enough. The last ingredient other than λ, ηM and η0
to construct our test

function is

φ(x) :=


∫
Sn−1

ex·ωdω if n ≥ 2,

ex + e−x if n = 1,

which satis�es

∆φ = φ, 0 < φ(x) ≤ C0(1 + |x|)−
n−1
2 e|x|, (5.4.2)

for some C0 > 0. We can �nally introduce the test function

Φ(t, x) :=− t−2m∂t

(
η2p′

M (t)λ(t)
)
φ(x)η0(t, x)

=− t−2m
(
∂tη

2p′

M (t)λ(t) + η2p′

M (t)λ′(t)
)
φ(x)η0(t, x),

(5.4.3)

where M ∈ (1, T ) and p′ = p/(p− 1) is the conjugate exponent of p. It is straightforward

to check that Φ(t, x) ∈ C1
0 ([0,+∞)× Rn) ∩ C∞0 ((0,+∞)× Rn) if we set

Φ(0, x) := lim
t→0+

Φ(t, x) = c0(−µ)φ(x)η

(
|x|
2

)
≥ 0,

where c0 is de�ned in Lemma 5.4.(ii). Note also that

Φ(t, x) = −t−2m∂t

(
η2p′

M (t)λ(t)
)
φ(x)

in the cone de�ned in (5.2.3).

Taking Φ as the test function in the de�nition of weak solution (5.2.1), exploiting the

compact support condition (5.2.3) on u and integrating by parts, we obtain

εc0(−µ)

∫
Rn
gφdx+

∫ T

0

∫
Rn
|ut|pt−2mη2p′

M |λ
′|φdxdt

+

∫ T

0

∫
Rn
|ut|pt−2m|∂tη2p′

M |λφ dxdt

=

∫ T

0

∫
Rn
utt
−2m

[
−2mt−1

(
∂tη

2p′

M λ+ η2p′

M λ′
)

+ ∂2
t η

2p′

M λ+ 2∂tη
2p′

M λ′ + η2p′

M λ′′
]
φdxdt

−
∫ T

0

∫
Rn
∇u · ∇φ∂t

(
η2p′

M λ
)
dxdt
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5.4. Blow-up via a test function method

and hence

εc0(−µ)

∫
Rn
gφdx+

∫ T

0

∫
Rn
|ut|pt−2mη2p′

M |λ
′|φdxdt

+

∫ T

0

∫
Rn
|ut|pt−2m|∂tη2p′

M |λφ dxdt

=− εc0(µ)

∫
Rn
fφdx− 2m

∫ T

0

∫
Rn
utt
−2m−1∂tη

2p′

M λφ dxdt

+

∫ T

0

∫
Rn
utt
−2m

(
∂2
t η

2p′

M λ+ 2∂tη
2p′

M λ′
)
φdxdt∫ T

0

∫
Rn
utt
−2mη2p′

M

(
λ′′ − 2mt−1λ′ − t2mλ

)
φdxdt.

Neglecting the third term in the left hand-side and recalling that λ solve the ODE (5.4.1), it

follows that

εC1 +

∫ T

0

∫
Rn
|ut|pt−2mη2p′

M |λ
′|φdxdt,

≤− 2m

∫ T

0

∫
Rn
utt
−2m−1∂tη

2p′

M λφ dxdt

+

∫ T

0

∫
Rn
utt
−2m∂2

t η
2p′

M λφ dxdt

+ 2

∫ T

0

∫
Rn
utt
−2m∂tη

2p′

M λ′φdxdt

=: I + II + III,

(5.4.4)

where

C1 ≡ C1(m, f, g) := c0(µ)

∫
Rn
fφdx+ c0(−µ)

∫
Rn
gφdx > 0

is a positive constant thanks to (5.2.2).

Now we will estimate the three terms I, II, III by Hölder’s inequality. Firstly let us

de�ne the functions

θ(t) :=

{
0 for t < 1

2 ,

η(t) for t ≥ 1
2 ,

θM (t) := θ

(
t

M

)
,

for which it is straightforward to check the following relations:

|∂tη2p′

M | ≤
2p′

M

∥∥η′∥∥
L∞

θ
2p′/p
M , (5.4.5)

|∂2
t η

2p′

M | ≤
2p′

M2

[
(2p′ − 1)

∥∥η′∥∥2

L∞
+
∥∥ηη′′∥∥

L∞

]
θ

2p′/p
M . (5.4.6)

From now on, C will stand for a generic positive constant, independent of ε and M , which

can change from line to line.
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5.4. Blow-up via a test function method

Exploiting the estimates (5.4.2) and (5.4.5), the asymptotic behaviors (iv)–(v) in Lemma 5.4

and the �nite speed of propagation property (5.2.3), for I we obtain

I =− 2m

∫ T

0

∫
Rn
utt
−2m−1∂tη

2p′

M λφ dxdt

≤CM−2

(∫ M

M
2

∫
|x|≤γ(t)

t−2m|λ′|−
1
p−1 |λ|

p
p−1φdxdt

) 1
p′

×
(∫ T

0

∫
Rn
|ut|pt−2mθ2p′

M |λ
′|φdxdt

) 1
p

≤CM−2

∫ M

M
2

∫ 1+ tm+1

m+1

0
t
−2m+mp−3m

2(p−1) (1 + r)
n−1
2 er−

tm+1

m+1 drdt

 1
p′

×
(∫ T

0

∫
Rn
|ut|pt−2mθ2p′

M |λ
′|φdxdt

) 1
p

≤CM−2− 3m
2

+m
2p

+
[
(m+1)(n−1)

2
+1
]
p−1
p

(∫ T

0

∫
Rn
|ut|pt−2mθ2p′

M |λ
′|φdxdt

) 1
p

.

(5.4.7)

Analogously, for II and III we have

II =

∫ T

0

∫
Rn
utt
−2m∂2

t η
2p′

M λφ dxdt

≤CM−2− 3m
2

+m
2p

+
[
(m+1)(n−1)

2
+1
]
p−1
p

×
(∫ T

0

∫
Rn
|ut|pt−2mθ2p′

M |λ
′|φdxdt

) 1
p

,

(5.4.8)

and

III = 2

∫ T

0

∫
Rn
utt
−2m∂tη

2p′

M λ′φdxdt

≤CM−1

(∫ M

M
2

∫
|x|≤γ(t)

t−2m|λ′|φdxdt

) 1
p′

×
(∫ T

0

∫
Rn
|ut|pt−2mθ2p′

M |λ
′|φdxdt

) 1
p

≤CM−1−m
2

+m
2p

+
[
(m+1)(n−1)

2
+1
]
p−1
p

×
(∫ T

0

∫
Rn
|ut|pt−2mθ2p′

M |λ
′|φdxdt

) 1
p

.

(5.4.9)

Since m ≥ −1 is equivalent to

−1− m

2
+
m

2p
≥ −2− 3m

2
+
m

2p
,
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5.4. Blow-up via a test function method

we conclude, by plugging (5.4.7), (5.4.8) and (5.4.9) in (5.4.4), that

C1ε+

∫ T

0

∫
Rn
|ut|pt−2mη2p′

M |λ
′|φdxdt

≤CM−1−m
2

+m
2p

+
[
(m+1)(n−1)

2
+1
]
p−1
p

×
(∫ T

0

∫
Rn
|ut|pt−2mθ2p′

M |λ
′|φdxdt

) 1
p

.

(5.4.10)

De�ne now the function

Y [w](M) :=

∫ M

1

(∫ T

0

∫
Rn
w(t, x)θ2p′

σ (t) dxdt

)
σ−1dσ

and let us denote for simplicity

Y (M) := Y
[
|ut|pt−2m|λ′(t)|φ(x)

]
(M).

From direct computations we see that

Y (M) =

∫ M

1

(∫ T

0

∫
Rn
|ut|pt−2m|λ′(t)|φ(x)θ2p′

σ (t) dxdt

)
σ−1dσ

=

∫ T

0

∫
Rn
|ut|pt−2m|λ′(t)|φ(x)

∫ M

1
θ2p′(t/σ)σ−1dσ dxdt

=

∫ T

0

∫
Rn
|ut|pt−2m|λ′(t)|φ(x)

∫ t

t
M

θ2p′(s)s−1ds dxdt

≤
∫ T

0

∫
Rn
|ut|pt−2m|λ′(t)|φ(x)η2p′

(
t

M

)∫ 1

1
2

s−1ds dxdt

= ln 2

∫ T

0

∫
Rn
|ut|pt−2mη2p′

M (t)|λ′(t)|φ(x) dxdt,

(5.4.11)

where we used the de�nition of θ(t). Moreover

Y ′(M) =
d

dM
Y (M) = M−1

∫ T

0

∫
Rn
|ut|pt−2mθ2p′

M (t)|λ′(t)|φ(x) dxdt. (5.4.12)

Hence by combining (5.4.10), (5.4.11) and (5.4.12), we get

M

[
(m+1)(n−1)−m

2

]
(p−1)

Y ′(M) ≥
[
C1ε+ (ln 2)−1Y (M)

]p
,

which leads to

M ≤

{
Cε
−
(

1
p−1

+
m−(m+1)(n−1)

2

)−1

for 1 < p < pT (n,m),

exp
(
Cε−(p−1)

)
for p = pT (n,m).

Since M is arbitrary in (1, T ), we �nally obtain the blow-up for 1 < p ≤ pT (n,m) and

the lifespan estimates (5.2.4).
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5.A. Solution formula for the ODE

5.A Solution formula for the ODE

We show in this section how to discover the formula of the solution for equation (5.4.1).

Let us suppose m ∈ N and make the ansatz

λ(t) =
∞∑
h=0

aht
h, (5.A.1)

for some constants {ah}h∈N. Hence,

λ′(t) =

∞∑
h=1

haht
h−1, λ′′(t) =

∞∑
h=2

h(h− 1)aht
h−2.

Substituting in (5.4.1) and multiplying by t2, we get

0 =

∞∑
h=2

h(h− 1)aht
h − 2m

∞∑
h=1

haht
h −

∞∑
h=0

aht
h+2m+2

=

∞∑
h=2

h(h− 1)aht
h − 2m

∞∑
h=1

haht
h −

∞∑
h=2m+2

ah−2m−2t
h

=

2m∑
h=1

h(h− 2m− 1)aht
h +

∞∑
2m+2

[h(h− 2m− 1)ah − ah−2m−2]th.

(5.A.2)

Let us �x the constant a0 and a2m+1. We will write the other constants in dependence of

these ones. Indeed, we infer from (5.A.2) that

ah = 0 for h = 1, . . . , 2m,

ah =
ah−2m−2

h(h− 2m− 1)
for h ≥ 2m+ 2.

Hence, by an inductive argument, we can prove that, for any k ∈ N

ah =



a0

[2(m+ 1)]k k!
∏k
j=1[2(m+ 1)j − (2m+ 1)]

if h = 2(m+ 1)k,

a2m+1

[2(m+ 1)]k k!
∏k
j=1[2(m+ 1)j + (2m+ 1)]

if h = 2(m+ 1)k + 2m+ 1,

0 otherwise,

=



[2(m+ 1)]−2k Γ
(

1− m+1/2
m+1

)
k! Γ

(
k + 1− m+1/2

m+1

) a0 if h = 2(m+ 1)k,

[2(m+ 1)]−2k Γ
(

1 + m+1/2
m+1

)
k! Γ

(
k + 1 + m+1/2

m+1

) a2m+1 if h = 2(m+ 1)k + 2m+ 1,

0 otherwise,

where we used the relations

k∏
j=1

(cj ± 1) = ck
Γ(k + 1± 1/c)

Γ(1± 1/c)
.
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Substituting the values of ah into (5.A.1), we have

λ(t) = a0Γ

(
1− m+ 1/2

m+ 1

) ∞∑
k=0

[2(m+ 1)]−2k

k! Γ
(
k + 1− m+1/2

m+1

) t2(m+1)k

+ a2m+1Γ

(
1 +

m+ 1/2

m+ 1

)
t2m+1

∞∑
k=0

[2(m+ 1)]−2k

k! Γ
(
k + 1 + m+1/2

m+1

) t2(m+1)k

= c−a0t
m+1/2

∞∑
k=0

1

k! Γ
(
k + 1− m+1/2

m+1

) [ tm+1

2(m+ 1)

]2k−m+1/2
m+1

+ c+a2m+1t
m+1/2

∞∑
k=0

1

k! Γ
(
k + 1 + m+1/2

m+1

) [ tm+1

2(m+ 1)

]2k+
m+1/2
m+1

,

with

c± = Γ

(
1± m+ 1/2

m+ 1

)
[2(m+ 1)]±

m+1/2
m+1 .

Taking into account the relations (A.2) and (A.1) we get

λ(t) = c−a0t
m+1/2I−m+1/2

m+1

(
tm+1

m+ 1

)
+ c+a2m+1t

m+1/2Im+1/2
m+1

(
tm+1

m+ 1

)
= k1t

m+1/2Im+1/2
m+1

(
tm+1

m+ 1

)
+ k2t

m+1/2Km+1/2
m+1

(
tm+1

m+ 1

)
with

k1 = c−a0 + c+a2m+1, k2 =
2

π
c−a0 sin

(
m+ 1/2

m+ 1
π

)
.

In this way we can deduce the fundamental solutions of the equation (5.4.1) when m ∈ N,

and from Lemma 5.3 we know that the solution formula hold also for m ∈ R \ {−1}.

5.B Proof of Theorem 5.3

In this appendix we prove the Lp − Lq estimates on the conjugate line for W1(s, t,Dx),

W2(s, t,Dx) and their derivatives respect to time collected in Theorem 5.3. The argument

is adapted from the proof of Theorem 3.3 by Yagdjian [Yag06] (see also [Rei97] and [ER18,

Chapter 16]), where similar estimates for V1(t,Dx) and V2(t,Dx) are presented. Note that

in [Yag06] the additional hypothesis σ ≥ 0 is supposed, but this can be dropped, as we will

show.

Before to proceed, we recall the following key lemmata.

De�nition 5.2. Denote by Lqp ≡ Lqp(Rn) the space of tempered distributions T such that

‖T ∗ f‖Lq ≤ C ‖f‖Lp

for a suitable positive constant C independent on f and all Schwartz functions f ∈ S (Rn).

Denote instead with M q
p ≡M q

p (Rn) the set of multiplier of type (p, q), i.e. the set of

Fourier transforms F (T ) of distributions T ∈ Lqp.
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Lemma 5.5 ( [Hör60], Theorem 1.11). Let f be a measurable function such that for all
positive λ, we have

meas{ξ ∈ Rn : |f(ξ)| ≤ λ} ≤ Cλ−b

for some suitable b ∈ (1,∞) and positive C . Then, f ∈ M q
p if 1 < p ≤ 2 ≤ q < ∞ and

1/p− 1/q = 1/b.

Lemma 5.6 ( [Bre75], Lemma 2). Fix a nonnegative smooth function χ ∈ C∞0 ([0,∞)) with
compact support suppχ ⊂ {x ∈ Rn : 1/2 ≤ |x| ≤ 2} such that

∑∞
k=−∞ χ(2−kx) = 1

for x 6= 0. Set χk(x) := χ(2−kx) for k ≥ 1 and χ0(x) := 1 −
∑∞

k=1 χk(x), so that
suppχ0 ⊂ {x ∈ Rn : |x| ≤ 2}.

Let a ∈ L∞(Rn), 1 < p ≤ 2 and assume that∥∥F−1(aχkv̂)
∥∥
Lp′
≤ C ‖v‖Lp for k ≥ 0.

Then for some constant A independent of a we have∥∥F−1(av̂)
∥∥
Lp′
≤ AC ‖v‖Lp .

Lemma 5.7 (Littman-type lemma, see Lemma 4 in [Bre75]). Let P be a real function, smooth
in a neighbourhood of the support of v ∈ C∞0 (Rn). Assume that the rank of the Hessian
matrix (∂2

ηjηk
P (η))j,k∈{1,...,n} is at least ρ on the support of v. Then for some integer N the

following estimate holds:∥∥∥F−1(eitP (η)v(η))
∥∥∥
L∞
≤ C(1 + |t|)−ρ/2

∑
|α|≤N

∥∥∂αη v∥∥L1 .

We will prove now only estimate (iii) of Theorem 5.3, since the computation for estimates

(i) and (ii) are completely analogous; about estimate (iv), we will sketch the proof since it

could be strange to the reader that this is the only case where the range of σ collapses to

be only a value.

First of all, let us set τ := t/s ≥ 1, z = 2iφ(t)ξ, ζ = 2iφ(s)ξ and let us introduce the

smooth functions X0, X1, X2 ∈ C∞(Rn; [0, 1]) satisfying

X0(x) =

{
1 for |x| ≤ 1/2,

0 for |x| ≥ 3/4,

X2(x) =

{
1 for |x| ≥ 1,

0 for |x| ≤ 3/4,

X1(x) = 1−X0(τm+1x)−X2(x).

In particular, observe that

X0(φ(t)ξ) +X1(φ(s)ξ) +X2(φ(s)ξ) ≡ 1

for 0 < s ≤ t and ξ ∈ Rn.

By relations (5.3.3) and (5.3.4), it is straightforward to get

∂tV1(t, |ξ|) =
m+ 1

2
t−1ze−z/2[Φ(µ+ 1, 2µ+ 1; z)− Φ(µ, 2µ; z)]

∂tV2(t, |ξ|) = e−z/2
[
Φ(1− µ, 1− 2µ; z)− m+ 1

2
zΦ(1− µ, 2(1− µ); z)

]
.
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Thus one can check, using identity (5.3.6), that

∂tW1(s, t, |ξ|) = istme−(z+ζ)/2|ξ|
× [Φ(µ+ 1, 2µ+ 1; z)− Φ(µ, 2µ; z)]Φ(1− µ, 2(1− µ); ζ)

= istme−ζ/2|ξ|[ez/2H0
+(z) + e−z/2H0

−(z)+]Φ(1− µ, 2(1− µ); ζ)

= istm|ξ|
[
e[1+τm+1]ζ/2H0

+(z)H1
+(ζ) + e−[1−τm+1]ζ/2H0

+(z)H1
−(ζ)

+e[1−τm+1]ζ/2H0
−(z)H1

+(ζ) + e−[1+τm+1]ζ/2H0
−(z)H1

−(ζ)
]

∂tW2(s, t, |ξ|) = e−(z+ζ)/2

× Φ(µ, 2µ; ζ)
[
Φ(1− µ, 1− 2µ; z)− itm+1|ξ|Φ(1− µ, 2(1− µ); z)

]
= e−ζ/2Φ(µ, 2µ; ζ)[ez/2H2

+(z) + e−z/2H2
−(z)]

= e[1+τm+1]ζ/2H2
+(z)H3

+(ζ) + e−[1−τm+1]ζ/2H2
+(z)H3

−(ζ)

+ e[1−τm+1]ζ/2H2
−(z)H3

+(ζ) + e−[1+τm+1]ζ/2H2
−(z)H3

−(ζ)

where for the simplicity we set

H0
±(z) :=

Γ(2µ+ 1)

Γ
(
µ+ 1

2 ±
1
2

)H±(µ+ 1, 2µ+ 1; z)− Γ(2µ)

Γ(µ)
H±(µ, 2µ; z),

H1
±(ζ) :=

Γ(2(1− µ))

Γ(1− µ)
H±(1− µ, 2(1− µ); ζ),

and

H2
±(z) :=

Γ(1− 2µ)

Γ
(

1
2 ±

1
2 − µ

)H±(1− µ, 1− 2µ; z)

− itm+1|ξ|Γ(2(1− µ))

Γ(1− µ)
H±(1− µ, 2(1− µ); z),

H3
±(ζ) :=

Γ(2µ)

Γ(µ)
H±(µ, 2µ; ζ).

Estimates at low frequencies for ∂tW1(s, t,Dx)

Let us consider the Fourier multiplier

F−1
ξ→x

(
X0(φ(t)ξ)|ξ|−σ∂tW1(s, t, |ξ|)ψ̂

)
.

By the change of variables η := φ(t)ξ and x := φ(t)y we get∥∥∥F−1
ξ→x

(
X0(φ(t)ξ)|ξ|−σ∂tW1(s, t, |ξ|)ψ̂

)∥∥∥
Lq′

. τ−1t(n/q
′−n+σ)(m+1)

∥∥∥T0 ∗F−1
η→y

(
ψ̂(η/φ(t))

)∥∥∥
Lq′

where

T0 := F−1
η→y

(
X0(η)|η|1−σe−i[1+1/τm+1]|η|Φ0(µ; τ ; |η|)

)
Φ0(µ; τ ; |η|) := [Φ(µ+ 1, 2µ+ 1; 2i|η|)− Φ(µ, 2µ; 2i|η|)]

× Φ(1− µ, 2(1− µ); 2i|η|/τm+1)

=O(|η|)[1 + τ−(m+1)O(|η|)].
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The last equality above is implied by (5.3.2), from which we deduce |Φ0(µ; τ ; |η|)| . 1 if

|η| ≤ 3/4. So, for any λ > 0, we obtain

meas{η ∈ Rn : |Fy→η(T0)| ≥ λ} ≤ meas{η ∈ Rn : |η| ≤ 3/4 and |η|1−σ & λ}

.


1 if 0 < λ ≤ 1,

0 if λ ≥ 1 and σ ≤ 1,

λ−
n
σ−1 if λ ≥ 1 and σ > 1,

. λ−b,

where 1 < b < ∞ if σ ≤ 1 and 1 < b ≤ n
σ−1 if σ > 1. Hence by Lemma 5.5, we

get T0 ∈ Lq
′
q for 1 < q ≤ 2 ≤ q′ < ∞ and σ ≤ 1 + n(1

q −
1
q′ ). Then we obtain the

Hardy-Littlewood-type inequality∥∥∥F−1
ξ→x

(
X0(φ(t)ξ)|ξ|−σ∂tW1(s, t, |ξ|)ψ̂

)∥∥∥
Lq′
. τ−1t

[
σ−n

(
1
q
− 1
q′

)]
(m+1) ‖ψ‖Lq .

Observing that, by the assumption on the range of σ,

τ−1t

[
σ−n

(
1
q
− 1
q′

)]
(m+1)

= τ
−
[
1−µ+n

(
1
q
− 1
q′

)
−σ
]
(m+1)

τm/2s

[
σ−n

(
1
q
− 1
q′

)]
(m+1)

≤ τm/2s
[
σ−n

(
1
q
− 1
q′

)]
(m+1)

,

we �nally get∥∥∥F−1
ξ→x

(
X0(φ(t)ξ)|ξ|−σ∂tW1(s, t, |ξ|)ψ̂

)∥∥∥
Lq′
. τ

m
2 s

[
σ−n

(
1
q
− 1
q′

)]
(m+1) ‖ψ‖Lq .

(5.B.1)

Estimates at intermediate frequencies for ∂tW1(s, t,Dx)

We proceed similarly as before. Let us consider now the Fourier multiplier

F−1
ξ→x

(
X1(φ(s)ξ)|ξ|−σ∂tW1(s, t, |ξ|)ψ̂

)
.

Exploiting this time the change of variables η := φ(s)ξ and x := φ(s)y, we get∥∥∥F−1
ξ→x

(
X1(φ(s)ξ)|ξ|−σ∂tW1(s, t, |ξ|)ψ̂

)∥∥∥
Lq′

. τm/2s(n/q′−n+σ)(m+1)
∥∥∥T1 ∗F−1

η→y

(
ψ̂(η/φ(s))

)∥∥∥
Lq′

where

T1 := F−1
η→y

(
X1(η)|η|1−σe−i[1+τm+1]|η|Φ1(µ; τ ; |η|)

)
Φ1(µ; τ ; |η|) := τm/2[Φ(µ+ 1, 2µ+ 1; 2iτm+1|η|)− Φ(µ, 2µ; 2iτm+1|η|)]

× Φ(1− µ, 2(1− µ); 2i|η|).

Taking in account (5.3.2) and (5.3.5), we infer that

|Φ1(µ; τ ; |η|)| . τm/2(τm+1|η|)−µ = |η|−µ on suppX1(η) ⊆
[
(2τm+1)−1, 1

]
,
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and thus, for any λ > 0, we obtain

meas{η ∈ Rn : |Fy→η(T1)| ≥ λ} ≤ meas{η ∈ Rn : |η| ≤ 1 and |η|1−µ−σ & λ}

.


1 if 0 < λ ≤ 1,

0 if λ ≥ 1 and σ ≤ 1− µ,

λ
− n
σ−1+µ if λ ≥ 1 and σ > 1− µ,

. λ−b,

where 1 < b < ∞ if σ ≤ 1 − µ and 1 < b ≤ n
σ−1+µ if σ > 1 − µ. Hence by Lemma 5.5,

we get T ∈ Lq
′
q for 1 < q ≤ 2 ≤ q′ <∞ and σ ≤ 1− µ+ n(1

q −
1
q′ ). Then we reach∥∥∥F−1

ξ→x

(
X1(φ(s)ξ)|ξ|−σ∂tW1(s, t, |ξ|)ψ̂

)∥∥∥
Lq′
. τ

m
2 s

[
σ−n

(
1
q
− 1
q′

)]
(m+1) ‖ψ‖Lq .

(5.B.2)

Estimates at high frequencies for ∂tW1(s, t,Dx)

Finally, we want to estimate the Fourier multiplier

F−1
ξ→x

(
X2(φ(s)ξ)|ξ|−σ∂tW1(s, t, |ξ|)ψ̂

)
.

We choose a set of functions {χk}k≥0 as in the statement of Lemma 5.6.

L1 − L∞ estimates. We claim that, for k ≥ 0,∥∥∥F−1
ξ→x

(
X2(φ(s)ξ)χk(φ(s)ξ) |ξ|−σ∂tW1(s, t, |ξ|)

)∥∥∥
L∞
. 2k(n−σ)τ

m
2 s(σ−n)(m+1).

(5.B.3)

Exploiting the change of variables φ(s)ξ = 2kη and 2kx = φ(s)y, by the expression of the

symbol ∂tW1(s, t, |ξ|), we obtain∥∥∥F−1
ξ→x

(
X2(φ(s)ξ)χk(φ(s)ξ) |ξ|−σ∂tW1(s, t, |ξ|)

)∥∥∥
L∞

. 2k(n−σ+1)τms(σ−n)(m+1)[A+
+ +A+

− +A−+ +A−−] (5.B.4)

where

A+
± :=

∥∥∥F−1
η→y

(
ei[±1+τm+1]2k|η|v+,±

k (η)
)∥∥∥

L∞
,

A−± :=
∥∥∥F−1

η→y

(
ei[±1−τm+1]2k|η|v−,±k (η)

)∥∥∥
L∞

,

and

v+,±
k (η) :=X2(2kη)χ(η)|η|1−σH0

+(2iτm+12k|η|)H1
±(2i2k|η|),

v−,±k (η) :=X2(2kη)χ(η)|η|1−σH0
−(2iτm+12k|η|)H1

±(2i2k|η|).

The functions v±,±k (η) are smooth and compactly supported on {η ∈ Rn : 1/2 ≤ |η| ≤ 2}.
When k = 0, it is easy to see by estimates (5.3.7) and (5.3.8) that∥∥∥F−1

η→y

(
ei[±1+τm+1]|η|v+,±

0 (η)
)∥∥∥

L∞
≤
∥∥∥v+,±

0

∥∥∥
L1

. τ−(m+1)µ
∥∥X2(η)χ(η)|η|−σ

∥∥
L1

. τ−m/2.
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For k ≥ 1, by Lemma 5.7 we have, for some integer N > 0, that∥∥∥F−1
η→y

(
ei[±1+τm+1]2k|η|v+,±

k (η)
)∥∥∥

L∞

. (1 + [±1 + τm+1]2k)−
n−1
2

∑
|α|≤N

∥∥∥∂αη v+,±
k

∥∥∥
L1
. (5.B.5)

Since X2(2kη)χ(η) = χ(η) for k ≥ 1, by estimates (5.3.7)–(5.3.8) and Leibniz rule we infer

|∂αη v
+,±
k (η)|

=

∣∣∣∣∣∣
∑

γ≤β≤α

(
α

β

)(
β

γ

)
∂α−βη

(
χ(η)|η|1−σ

)
∂β−γη H0

+(2iτm+12k|η|)∂γηH1
±(2i2k|η|)

∣∣∣∣∣∣
. τ−m/22−k

∑
β≤α

Cµ,α,β1[1/2,2](η)|η|−1−|β|

where 1[1/2,2](η) = 1 for 1/2 ≤ |η| ≤ 2 and 1[1/2,2](η) = 0 otherwise. From the latter

estimate and (5.B.5), we get

A+
± . τ

−m/22−k(1 + [±1 + τm+1])−
n−1
2 ≤ τ−m/22−k.

Similarly we obtain also that A−± . τ
−m/22−k . Thus, inserting in (5.B.4) we obtain (5.B.3),

which combined with the Young inequality give us the L1 − L∞ estimate∥∥∥F−1
ξ→x

(
X2(φ(s)ξ)χk(φ(s)ξ) |ξ|−σ∂tW1(s, t, |ξ|)ψ̂

)∥∥∥
L∞

. 2k(n−σ)τm/2s(σ−n)(m+1) ‖ψ‖L1 . (5.B.6)

L2 − L2 estimates. By the Plancherel formula, Hölder inequality, estimate (5.3.5) and

the substitution φ(s)ξ = 2kη, we obtain∥∥∥F−1
ξ→x

(
X2(φ(s)ξ)χk(φ(s)ξ) |ξ|−σ∂tW1(s, t, |ξ|)ψ̂

)∥∥∥
L2

≤
∥∥X2(φ(s)ξ)χk(φ(s)ξ) |ξ|−σ∂tW1(s, t, |ξ|)

∥∥
L∞
‖ψ‖L2

. 2−kστm/2sσ(m+1) ‖ψ‖L2 .
(5.B.7)

Lq − Lq′ estimates. The interpolation between (5.B.6) and (5.B.7) give us the estimates

on the conjugate line∥∥∥F−1
ξ→x

(
X2(φ(s)ξ)χk(φ(s)ξ) |ξ|−σ∂tW1(s, t, |ξ|)ψ̂

)∥∥∥
Lq′

. 2
k
[
n
(

1
q
− 1
q′

)
−σ
]
τm/2s

[
σ−n

(
1
q
− 1
q′

)]
(m+1) ‖ψ‖Lq , (5.B.8)

where 1 < q ≤ 2. Now, choosing n
(

1
q −

1
q′

)
≤ σ, putting together (5.B.1), (5.B.2) and

(5.B.8) with an application of Lemma 5.6, we �nally obtain the Lq − Lq
′

estimate for

∂tW1(s, t,Dx).
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Estimates for ∂tW2(s, t,Dx)

For the intermediate and high frequencies cases, proceeding as above we straightforwardly

obtain, under the constrains σ ≤ µ+ n(1
q −

1
q′ ) and n

(
1
q −

1
q′

)
≤ σ respectively, that

∥∥∥F−1
ξ→x

(
Xj(φ(s)ξ)|ξ|−σ∂tW2(s, t, |ξ|)ψ̂

)∥∥∥
Lq′
. τm/2s

[
σ−n

(
1
q
− 1
q′

)]
(m+1) ‖ψ‖Lq .

(5.B.9)

for j ∈ {1, 2} and 1 < q ≤ 2 ≤ q′ <∞.

At low frequencies, by computations similar to that for ∂tW1(s, t,Dx), we obtain∥∥∥F−1
ξ→x

(
X0(φ(t)ξ)|ξ|−σ∂tW2(s, t, |ξ|)ψ̂

)∥∥∥
Lq′

. t(n/q
′−n+σ)(m+1)

∥∥∥T0 ∗F−1
η→y

(
ψ̂(η/φ(t))

)∥∥∥
Lq′

where this time

T0 := F−1
η→y

(
X0(η)|η|−σe−i[1+1/τm+1]|η|Φ0(µ; τ ; |η|)

)
Φ0(µ; τ ; |η|) := Φ(µ, 2µ; 2i|η|/τm+1)

× [Φ(1− µ, 1− 2µ; 2i|η|)− i(m+ 1)|η|Φ(1− µ, 2(1− µ); 2i|η|)]
= [1 + τ−(m+1)O(|η|)][1 +O(|η|)],

and hence again |Φ0(µ; τ ; |η|)| . 1 if |η| ≤ 3/4. For any λ > 0, we get

meas{η ∈ Rn : |Fy→η(T0)| ≥ λ} ≤ meas{η ∈ Rn : |η| ≤ 3/4 and |η|−σ & λ} . λ−b,

where 1 < b <∞ if σ ≤ 0 and 1 < b ≤ n
σ if σ > 0. Another application of Lemma 5.5 tell

us that T0 ∈ Lq
′
q for 1 < q ≤ 2 ≤ q′ <∞ with the condition on σ given by σ ≤ n(1

q −
1
q′ ).

Finally, similarly as in the case of ∂tW1(s, t,Dx) we conclude that (5.B.9) holds true also

for j = 0.

The proof of estimates (iv) in Theorem 5.3 is thus reached combining the inequality

(5.B.9) for j ∈ {0, 1, 2}; putting together all the constrains on the range of σ, we are forced

to choose σ = n(1
q −

1
q′ ).
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Appendix A

Some formulas for the modi�ed
Bessel functions

For the reader’s convenience, here we gather some formulas, often employed in the thesis,

from Section 9.6 and Section 9.7 of the handbook by Abramowitz and Stegun [AS64].

� The solutions to the di�erential equation

z2 d2

dz2
w(z) + z

d

dz
w(z)−

(
z2 + ν2

)
w(z) = 0

are the modi�ed Bessel functions I±ν(z) and Kν(z). Iν(z) and Kν(z) are real and

positive when ν > −1 and z > 0.

� Relations between solutions:

Kν(z) = K−ν(z) =
π

2

I−ν(z)− Iν(z)

sin(νπ)
. (A.1)

When ν ∈ Z, the right hand-side of this equation is replaced by its limiting value.

� Ascending series:

Iν(z) =
∞∑
k=0

(z/2)2k+ν

k! Γ(k + 1 + ν)
, (A.2)

where Γ is the Gamma function.

� Wronskian:

Iν(z)Kν+1(z) + Iν+1(z)Kν(z) =
1

z
. (A.3)

� Recurrence relations:

∂zIν(z) = Iν+1(z) +
ν

z
Iν(z), ∂zKν(z) = −Kν+1(z) +

ν

z
Kν(z), (A.4)

∂zIν(z) = Iν−1(z)− ν

z
Iν(z), ∂zKν(z) = −Kν−1(z)− ν

z
Kν(z). (A.5)
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A. Some formulas for the modified Bessel functions

� Limiting forms for �xed ν and z → 0:

Iν(z) ∼ 1

Γ(ν + 1)

(z
2

)ν
for ν 6= −1,−2, . . . (A.6)

K0(z) ∼ − ln(z), (A.7)

Kν(z) ∼ Γ(ν)

2

(z
2

)−ν
, for <ν > 0. (A.8)

� Asymptotic expansions for �xed ν and large |z|:

Iν(z) =
1√
2π
z−1/2ez × (1 +O(z−1)), for | arg z| < π

2
, (A.9)

Kν(z) =

√
π

2
z−1/2e−z × (1 +O(z−1)), for | arg z| < 3

2
π. (A.10)
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