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Introduction

In the present thesis, we are going to collect results belonging to two lines of research:
the first part of the work is devoted to the spectral theory for non-self-adjoint operators,
whereas in the second part we consider nonlinear hyperbolic equations with time depending
coefficients, and in particular their blow-up phenomena. The first argument is in some sense
the lion’s share of the thesis, being the main interest of research during my doctoral studies.
Nevertheless, both of them have been deeply explored for decades and are still highly
topical nowadays, being fascinating both for the mathematical and physical community.

The bulk of the thesis is constituted by five chapters, all almost completely self-
contained, mirroring the five independent papers listed at the end of this Introduction. In
the following two sections, we are going to present our problems and aims, outlining the
results we proved.

Cages for eigenvalues

Since around the dawn of the millennium, there has been a flood of interest in the study of
non-self-adjoint operators in Quantum Mechanics. This is due in part for their physical
relevance, which relies, inter alia, on the new concept of representing quantomechanic
observables by operators which are merely similar to self-adjoint ones. On the other side,
the mathematical community is thrilled by the absence of tools such as the spectral theorem
and the variational methods, which makes this topic challenging. The difficulty of the
non-self-adjoint theory is nicely caught in the following quotation from [Dav07] by E. B.
Davies:

Studying non-self-adjoint operators is like being a vet rather than a doctor: one
has to acquire a much wider range of knowledge, and to accept that one cannot
expect to have as high a rate of success when confronted with particular cases.

As good sources for the non-self-adjoint operators theory and its developments, we may

cite the monographs [GK69,Kat95,Tre08] or the more recent books [Dav02,BGSZ15], where
physical applications may also be found.

vi
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In particular, a huge attention is paid to the spectral properties of non-self-adjoint
operators and to the so-called Keller-type inequalities, id est bounds on the eigenvalues in
terms of norms of the potential. Especially in the case of the Schrédinger operator, they can
be referred to as well as Lieb-Thirring-type inequalities. Indeed, they constitute somewhat
the counterpart of the celebrated inequalities for the self-adjoint Schrédinger operator
—A + V, exploited by E. H. Lieb and W. E. Thirring in the ‘70 of the last century to prove
the stability of matter (an exciting argument, but here we just cite the monograph [LS10]
for an academic treatment of the subject).

The first appearance of a Keller-type inequality for the non-self-adjoint Schrédinger
operator —A + V, where the potential V' is a complex-valued function, is due to A. A.
Abramov, A. Aslanyan and E. B. Davies in [AADO01], where they observed that the bound

22 < S IVl

5|

2

holds, in dimension n = 1, for any eigenvalue z € 0,(—A + V'), and the constant is sharp.
In view of this result, A. Laptev and O. Safronov in [LS09] conjectured that the eigen-

values localization bound

+n/2
2" < Dy VI,

should be true for any 0 < v < n/2 and a positive constant D, ,,. In the seminal work
[Fra11], R. Frank proved the conjecture to be true for 0 < v < 1/2, and later in [FS17b],
together with B. Simon, extended the range up to the one suggested by Laptev and Safronov
under radial symmetry assumptions. The above relation holds also in the case v = 0, in the

sense that if Dy, \|V||n/2

ns2 < 1 for some positive constant Dy, then the point spectrum
of —A 4+ V is empty.

The Laptev-Safronov conjecture certainly can not be true for v > n/2, as observed
originally by Laptev and Safronov themselves (see also S. Bogli [Bog17] for the construction
of bounded potentials in LY/, v > n /2, with infinitely many eigenvalues accumulating
to the real non-negative semi-axis). The situation in the range 1/2 < v < n/2 remained
unclear for more than a decade. An argument in [FS17b] suggested that, for these values of
7, the Laptev-Safronov conjecture should fail in general, but it was not until very recently
that S. Bogli and J.-C. Cuenin completely disproved the conjecture for this range of v in
their new preprint [BC21].

The Lieb-Thirring-type bound in [Frall] are obtained by Frank exploiting two main
tools: the Birman-Schwinger principle and the Kenig-Ruiz-Sogge estimates in [KRS87] on
the conjugate line, viz.

H(_A — 5 , < C|Z|—n/2+n/p—1’

)_1HLP—>LP

where 1/p + 1/p' = 1 and C is some positive constant. In fact, the combination of the
Birman-Schwinger principle with resolvent estimates for free operators is one of the way to
approach the localization problem for eigenvalues: it has been widely employed in the later
times (see e.g. [Fra11,CLT14,Enb16,FS17b,Cuel7,FKV18b,FK19,CIKS20,CPV20] to cite just
few recent papers) and it will be the approach we are going to follow in this work too, as we
will see. Despite the robustness of the Birman-Schwinger principle, it is not the only tool
one could use to obtain spectral enclosures for non-self-adjoint operators: another powerful
technique is the method of multipliers, see e.g. [FKV18a, FKV18b, Cos17, CFK20, CK20].

vii
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Roughly speaking, the principle states that z € C is an eigenvalue of an operator
H := Hp+ B*Aif and only if —1 is an eigenvalue of the Birman-Schwinger operator
K, := A(Hy — z)"!B*. In typical quantum mechanical examples, Hy is a differential
operator representing the kinetic energy of the system, while B* A is a factorization of
a multiplication operator representing an electromagnetic interaction. In this way, the
spectral problem for an unbounded differential operator is reduced to a bounded integral
operator. In particular, the eigenvalues of the perturbed operator H are confined in the
complex region defined by 1 < || K| and the point spectrum is empty if ||K,| < 1
uniformly with respect to z.

It is clear from the definition of the Birman-Schwinger operator that this approach
reduces to establishing suitable resolvent estimates for the unperturbed operator Hy. Indeed,
once we know how to bound (Hy — 2) 7!, it is usually an easy matter setting A and B in a
suitable normed space, and then obtain an estimate for K,. Of course, this naif reasoning
is well-known, and can be synthesized claiming that each resolvent estimate corresponds,
via the Birman-Schwinger principle, to a localization estimate for the eigenvalues of the
perturbed operator.

The aim of the first part of the thesis is to apply this strategy to the non-self-adjoint
Dirac operator formally defined by

n
Dpy =Dy +V = —ichz a0 + mc2an+1 +V
k=1

where n > 1 is the dimension, m > 0 is the mass, ¢ is the speed of light, & is the reduced
Planck constant and o, € CN*N for k € {1,...,n+1}and N := 2[7/2] are the Dirac
matrices. The potential V: R" — CN*¥ is a possibly non-Hermitian matrix-valued
function. The Dirac operator plays a huge role in Quantum Physics, with widespread
applications: just to cite the classic ones, it describes the relativistic quantum mechanics
of spin-1/2 particles both compatibly with the theory of relativity and naturally taking
in account the spin of the particle and its magnetic moment. Moreover, it successfully
describes the hydrogen atom. An essential reference for the theory of the Dirac operator
(in the self-adjoint setting) is the B. Thaller’s monography [Tha92].

The spectral studies for D,,, v were started by J.-C. Cuenin, A. Laptev and C. Tretter
in their celebrated work [CLT14], for the 1-dimensional case. There they proved that if
V € C?*2 is a potential such that

IV la ey = / V(@)de < 1,

where |V (-)] is the operator norm of V(-) in C? with the Euclidean norm, then every
non-embedded eigenvalue z € C \ {(—o0, —m] U [m, +00)} of Dy, v lies in the union

AS ERO(xg) UERO(JUED

of two disjoint closed disks in the complex plane, with centers and radius respectively

-2 2 1 -2 2 1
- \/nvrl VIE+2 1 \/nvul IVIE+2 1

41— V[17) an-vip 2
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In particular, in the massless case the spectrum is 0(Dp1y) = R. Moreover, this inclusion is
shown to be optimal. Again, the proof relies on the combination of the Birman-Schwinger
principle with a resolvent estimate for the free Dirac operator, namely

_ 1 1
[(Dm — 2) IHLl(R)HLOO(]R) < \/2 T

In some sense, this is the counterpart for the Dirac operator of the above-cited Abramov-
Aslanyan-Davies inequality for the Schrodinger operator in 1-dimension.

zZ+m liz—m
_|_

zZ—m Z

z4+m|

One could ask if, in the same fashion of the Frank’s argument in [Frall], one can
combine the Birman-Schwinger principle with LP — L” resolvent estimates for the free Dirac
operator, to derive Keller-type inequalities for the perturbed Dirac operator. Unfortunately,
these reasoning can not be straightforwardly applied, since such Kenig-Ruiz-Sogge-type
estimates does not exists in the case of Dirac for dimension n > 2, as observed by Cuenin
in [Cuel4]. Indeed, due to the Stein-Thomas restriction theorem and standard estimates for
Bessel potentials, the resolvent (D,, — z)~': LP(R") — L (R") is bounded uniformly
for |z| > 1 if and only if

2 1
< =
n+1"p

+—= <

)

3=

1

v
hence the only possible choice is (n, p,p’) = (1, 1, 00). For the Schrédinger operator the
situation is much better since the right-hand side of the above range is replaced by 2/n, as
per the Kenig-Ruiz-Sogge estimates.

For the high dimensional case n > 2, we may refer among others to the works [Dub14,
CT16,Cuel7,FK19] where the eigenvalues are localized in terms of LP-norm of the potential,
but the confinement region is unbounded around o (D,,) = (—o0, —m] U [m, +00), i.e.
the spectrum of the free Dirac operator D,,. Instead, we are mainly devoted to the research
of a compact region in which to localize the point spectrum.

In Chapter 1, corresponding to the paper [S1], we achieve this objective, generalizing
in higher dimensions the above result by Cuenin, Laptev and Tretter [CLT14]. Indeed,
assuming V' small enough respect to a suitable mixed Lebesgue norm, namely

Wik = o Vil ne = je?llfl..}fn}/u@ Vs )l oo en-y dj < Co
for a positive constant Cjy independent of V', we prove in the massive case m > 0 that
the eigenvalues of D,, y/ are contained in the union of two closed disks in the complex
plane with centers and radius depending on ||V||,.. Instead, in the massless case m = 0,
the spectrum is the same of the one for the unperturbed operator, viz. o(Dpy) = R,
and there are no eigenvalues, under the same smallness assumption for the potential.
This results are proved combining the Birman-Schwinger principle together with new
Agmond-Hormander-type estimates for the resolvent of the Schrodinger operator and its
first derivatives.

In Chapter 2, whose results are proved in [S2], again we take advantage of the main
engine of the Birman-Schwinger operator fueled this time with resolvent estimates already
published in the literature, but which imply spectral results for the Dirac operator (and
for the Klein-Gordon one) worthy of consideration. In particular, in dimension n > 3 we
show again results similar to the previous ones, hence confinement of the eigenvalues in

ix
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two disks in the massive case and their absence in the massless case, assuming now for the
potential the smallness assumption

NVl g = SV e 251 <pafcan) < O
JEZ

The constant C can be explicitly showed as a number depending only on the dimension n
and, even if far to be optimal, is still valuable in the applications. Moreover, in this chapter
the results for the spectrum stability are proved not only in the massless case, but also in
the massive one, assuming smallness pointwise assumptions on the weighted potential,
namely H || p*2VH 100 < C2. The constant (3 is made explicit in terms of the dimension n

and the mass m, and p is a positive weight satisfying >, ||p||%oo(2j71<|x‘<2]’) < oo and

additionally, in the massive case, such that |z|'/2p € L (R™) (prototypes of such kind of
weights already appeared e.g. in [BRV97]).

Finally, in Chapter 3, which corresponds to the work [S3], we consider some families
of potentials with a peculiar matricial structure satisfying some rigidity assumptions. Em-
ploying resolvent estimates for the Schrédinger operator well-established in the literature,
we can obtain, among others, the counterpart of the above-mentioned results by Abramoyv,
Aslanyan and Davies [AADO01] and by Frank [Fra11] for the Dirac operator, viz. we prove
that, for some positive constant D., ;, .,

+n/2

2% = m*[" < Dy VI3,
holds, where v = 1/2ifn = 1,and 0 < v < 1/2if n € N\ {2,4} (the exclusion of
dimensions n = 2 and n = 4 are due to the conditions required on the potential). The

case v = 0 is again included, in the sense that if Dy, ,, HVHZ{LQ/Z < 1, then there is no
eigenvalue. In the massless case, we obtain the spectrum stability of the perturbed Dirac
operator for any of our special potentials. What is remarkable in these results (for v # 0)
is the absence of any restriction on the norm size of the potential, contrary to the known
results regarding the Dirac operator; however, we dearly pay on the rigidity structure of
the potential. Here we underline these results in order to appreciate the parallelism with
the Schrodinger case, but many others are presented in this chapter, concerning both the
eigenvalues enclosure in (un)bounded regions and the spectrum stability, depending on
the rigidity assumptions for the potential and involving different kinds of norms. In one
case, no rigidity assumptions at all are required, but a eigenvalues confinement in two
complex closed disks is obtained supposing the Lg’ngo-norm of V' small enough, in the
same fashion of the result in Chapter 1. As already said, the Birman-Schwinger machine
is here powered by many well-known Schrodinger resolvent estimates, of which we will
depict a complete picture.

A trigger to blow-up

In order to start presenting the topic of Part II of this thesis, we will borrow the words from
the Introduction of the monograph [Str89] by W. Strauss:

Any hyperbolic equation is a wave equation, but there are other wave equa-
tion as well, such as the Schrédinger and Korteweg-de Vries equations. The



A TRIGGER TO BLOW-UP

solutions of such equations tend to be oscillations which spread out spatially.
A nonlinear term such as u” will tend to magnify the size of u where u is large,
and to be negligible when u is small. It can make a solution blow-up in a finite
time, it can produce a solitary wave, or (if it involves derivatives of w) it can
produce a shock wave.

The Cauchy problem associated to a general nonlinear wave equation with time-
depending speed of propagation, damping and mass terms, viz.

u — a(t)Au + d(t)us + m(t)u = F(x,t, u, ur, Vu)

with initial data u(0, z) = wug(z), ut(0,z) = ui(x) in suitable initial spaces, have been
widely studied during the last half a century, collecting a great interest and a enormous
numbers of results. Despite this, a complete theory classifying the results of the above
equation according to the properties of its coefficients is still not developed. However, for
suitable choices of the coefficients and of the nonlinearity, many progresses have been
achieved.

Generally speaking, when addressing the Cauchy problem above, the research focuses
on the understanding of the structural properties of the solution (after all, the properties
are what define what is a solution, see the nice Section 3.2 in [Ta006]). One is interested in
exhibiting a representation formula, deriving L” — L9 decay estimates, getting an asymptotic
descriptions of the solutions, and classifying their behavior according to the behavior of
the coefficients. Some of the first questions one can ask are about the wellposedness or
illposedness of the problem: there exist (in some sense) solutions of the equation? Are they
global with respect to time? Or something dramatic occurs, and we face blow-up, with
norms exploding in finite time?

Our investigation will be indeed focused on the blow-up phenomena. When considering
a nonlinearity of the type e.g. |u[P or |u:|P, typically there exists a critical exponent peyit
such that, if p > peit, there exists a unique global-in-time solution to the problem, whereas
if 1 < p < Perit, the solutions blow-up in finite time, that is there exists a time 1" > 0 such
that beyond it no reasonable kind of solution exists anymore. In this case, one is interested
in estimating this lifespan T'.

In Chapter 4, we consider the above problem with constant speed of propagation
a(t) = 1, scale-invariant damping and mass terms, nonlinearity of the type |u|P and small
initial data. We proceed recollecting, at the best of our knowledge, the many results achieved
during the decades on the widely studied damped wave equation, with and without mass,
reorganizing and unifying them, other than proving new results in the massive case (for the
purely damped case, we find an improvement in the lifespan estimates in 1-dimension). The
main tool we will use is a Kato-type lemma, whose mechanism is essentially based on an
inductive argument. Our analysis wants to stress in particular the competition between the
“wave-like” and “heat-like” behaviors of the solutions, not only respect to the critical power,
but also respect to the lifespan estimates. The precise meaning of what we intend with this
terms will be explained later in Subsection 4.1.1. Anyway, making a small digression and
trying to leave a clifthanger, we recall that some wave-like equations behaves indeed more
like the heat equation. A classical example is the telegraph equation uy; — Au + u; = 0,
whose solution experiences the diffusion phenomenon like the corresponding heat equation
—A 4 uy = 0, as t — 400. The fact that this two equations are connected can be seen by

xi
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a scaling argument: setting u(t, z) = v(A, v/ z), \t = s and v Az = y, with a positive
parameter )\, we have that Avgs — Ayv+v, = 0. Hence letting A — 07, which corresponds
tot — +o00, we get the wave equation —A,v + v5 = 0. In Chapter 4, whose results are
collected in [S4], one of the main goals is to explore this “heat versus wave” antagonism in
the blow-up context.

Least but not least, in Chapter 5, corresponding to the paper [S5], we consider the
generalized Tricomi equation, or Gellerstedt equation (namely the speed of propagation is
equal to a(t) = t>™ for some positive constant m), with derivative nonlinearity |u;|P and
small initial data. We do not consider any damping or mass term this time. Very recently
this equation catalyzed a lot of attention and many papers appeared about it in a short time,
see Section 5.1 for the background. We will study the blow-up of this equation furnishing
the papabili critical exponent and lifespan estimates. Of course, to confirm that they are
indeed the right ones, further consideration should be done demonstrating existence results.
An attempt in this direction is done here proving a local existence result by using Fourier
estimates for the Taniguchi-Tozaki multipliers. As a consequence, we show the optimality
of the lifespan estimates at least in 1-dimension. This time, the main strategy relies on the
construction of a suitable test function and hence applying the test function method in
order to reach our claimed results.
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Science is spectral analysis.
Art is light synthesis.

Karl Kraus, Pro domo et mundo, 1912



CHAPTER

Eigenvalue bounds for
non-self-adjoint Dirac operators

In this chapter we are goint to prove that the eigenvalues of the massive Dirac operator,
perturbed by a possibly non-Hermitian potential V, are enclosed in the union of two disjoint
disks of the complex plane, provided V' is sufficiently small with respect to the mixed norms
Lglg]_ L%‘;, for any j € {1,...,n}. In the massless case instead, under the same smallness
assumption on V, the spectrum is shown to be the same of that for the unperturbed operator,
and the point spectrum is empty. At this aim we establish new Agmon-Ho6rmander-type
resolvent estimates, which will be combined with the Birman-Schwinger principle.

The reference for the following results is [S1], joint work with Piero D’Ancona and
Luca Fanelli.

1.1 The Dirac operator

Let us start turning the spotlights on the star of the show: the perturbation of the free
Dirac operator Dy, by an eventually non-Hermitian potential, namely

'Dm7v =D, +V.

We consider the operator Dy, 1 acting on the Hilbert space of spinors $ = L?(R"; CY),
where 7 is the dimension, N := 2["/2] and [-] is the ceiling function. The perturbed
operator Dy, v is only formally defined as a sum of operators; we will be able to properly
define it later, thanks to Lemma 1.4.

The free Dirac operator D,,,, with non-negative mass m, is defined as

n
Dy = —icho -V +mctapy = —ichz a0 + mct o1, (1.1.1)
k=1

being c the speed of light, A the reduced Planck constant and ay, € CN*N, for k €
{1,...,n+ 1}, the Dirac matrices. These are Hermitian matrices elements of the Clifford
algebra (see e.g. [Ob098]), satisfying the anti-commutation relations

ajoy + ooy = 25?[1\7, forj, ke {l,...,n+ 1}, (1.1.2)

3
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where 5;? is the Kronecker symbol and Iy the N x N unit matrix. We will handle in greater
details the Dirac matrices later in Section 3.5. For now, it is enough to know that, without
loss of generality, we can take

(Iygp O

Additionally, we can change the unit of measure in such a way that ¢ = A = 1. Finally, we
recall also that free Dirac operator is self-adjoint with domain

dom(D,,) ={y € H: VY € H"}
and core C§°(R™; CV).

The potential V: R" — CN¥*VN may be any complex matrix-valued function such
that V € L2 (R";R). We will say that V € X for a generic space X if |V| € X, where
|- CN*N 5 R is the operator norm. To make things concrete, here and in the rest of the
thesis we will consider | - | as the norm induced by the Euclidean one, viz. |A| = y/p(A*A),
where p(M) is the spectral radius of a matrix M. With the usual slight abuse of notation,
the same symbol V' denotes both the matrix and the corresponding multiplication operator

on $), with initial domain dom (V') = C§°(R"; CV).

Before to move on presenting our results, let us collect a selection of the known ones.
In the Introduction, we already cited the point spectrum enclosure in dimension n = 1
proved by Cuenin, Laptev and Tretter [CLT14]. As we said, in that work they show the
non-embedded eigenvalues to be confined in two disjoint disks of the complex plane,
assuming V|| .1 (g) smaller than 1. The study on the spectrum of Dy, v they initiated in
the 1-dimensional case was followed by [Cue14,CS18,Enb18]. In the higher dimensional
case instead, we may refer to the works [Dub14,CT16,Cuel7,FK19,Sam16].

In [Cuel7], Cuenin localized the eigenvalues of the perturbed Dirac operator in terms
of the LP-norm of the potential V/, but in an unbounded region of the complex plane.
Indeed, Theorem 6.1.b of [Cuel7] states that, if n > 2 and V' € LP, with p > n, then any
non-embedded eigenvalue of D, / satisfies

n—1

R¥ANE

=182 < C Vg

for some positive constant C independent of z and V. Similar unbounded enclosing
regions were obtained in [CT16], where Cuenin and Tretter study arbitrary non-symmetric
perturbations of self-adjoint operators. In particular, for the massless Dirac operator in R2,
if V € LP with p > 2, they obtain that

2 = : 2|5, (2
@r(p—2)) 72 |VIIZsge)b 772 +b7°[Rz]
. 2 LP(R?)
o(Dmy) C [ {2€C: |92 < 3
0<b<1

Considering instead the massive Dirac operator with Coulomb-like potential in R?, the
authors in [CT16] obtain that, if |V (z)|? < C? + C3|z|~2 for almost all 7 € R3, where
(', Cy > 0 are constants such that 012 + 4C’22m2 < m?2, then

2 2
o(Dpy) C {z €C: Rz > m— \JC? 1+ 4C2m?, 322 < (W} .
- 2

4
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A different result on the localization of eigenvalues in an unbounded region was proved
by Fanelli and Krejéitik in [FK19]: in 3D, if V € L3(R?) and 2 € 0}(Dp,v ), then

—-1/2
(Rz)? T\ 1/3
14+ —— < (—) 1 “142e 2|V . 1.1.3
The advantage of the last result lies in the explicit condition which is easy to check in the
applications. However, also in this result the eigenvalues are localized in an unbounded
region around o (D,,) = (—o0, —m| U [m, +00).

In the works [EGG19] by Erdogan, Goldberg and Green, and [EG21] by Erdogan and
Green, the authors, studying the limiting absorption principle and dispersive bounds, prove
that for a bounded, continuous potential V' satisfying a mild decaying condition, there are
no eigenvalues of the perturbed Dirac operator in a sector of the complex plane containing
a portion of the real line sufficiently far from zero energy. However these results are
qualitative, in the sense that their bounds does not explicitly depend on some norm of the
potential, as in the inequalities object of our study.

Lastly, we mention the recent paper [CFK20] by Cossetti, Fanelli and Krej¢ifik, where
the authors obtain results on the absence of eigenvalues for the Schrédinger and Pauli
operators with a constant magnetic field and non-Hermitian potentials, and for the purely
magnetic Dirac operators. However, Dirac operators with electric perturbations can not be
treated by the multiplicative techniques of [CFK20]. In fact, the square of a purely magnetic
Dirac operator is a diagonal magnetic Laplacian, which allows one to use the multiplier
method.

What moved our analysis is the desire of finding some sort of generalization of the result
by Cuenin, Laptev and Tretter [CLT14] in higher dimensions. As we saw, in the literature
similar results already raised, but often involving eigenvalues confinement in unbounded
regions wrapping around the real continuous spectrum of the free Dirac operator. We are
interested instead in finding compact regions where to cage our eigenvalues. However, one
of the major difficulties, as explicit in the Introduction, is the absence of LP(R") — L (R™)
resolvent estimates for the free Dirac operator. In their place, we discover and use the
Agmon-Hoérmander-type estimates in Lemma 1.1, finding in this way our coveted bounds.

1.2 Main results

Before formalizing our results in Theorems 1.1 and 1.2 below, we introduce a few notations
used throughout the chapter.

We use the symbols o(H), 0,(H), 0c(H) and p(H ) respectively for the spectrum, the
point spectrum, the essential spectrum and the resolvent of an operator H. More explicitly,
we define

o.(H) ={z € C: H — zis not a Fredholm operator},
whereas the discrete spectrum is defined as
o4(H) = {z € C: z is an isolated eigenvalue of H of finite multiplicity}.

Recall that, for non-self-adjoint operators, the essential spectrum defined above is not
the complement of the discrete spectrum, see e.g. [EE18]. For z € p(H ), we denote with
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Ry (z) := (H — 2)~! the resolvent operator of H. We recall also that

o(—A) = ,(~A) = [0, +00),
0(Dp,) = 0¢(Dyy) = (—00, —m] U [m, +00).

Forje{l,...,n}and z = (z1,...,2,) € R", we write

— n—1
Tj = (131,...,$j71,33'j+1,...,l'n)ER ,

($,$j) = (1}1,.. L1, Ty Ly ,Cﬂn) e R™

The mixed Lebesgue spaces L% y L%j (R™) are the spaces of measurable functions on R"

such that
p/q 1/p
ez = | [ ([ W) dn ) <.
J x4 R Rnfl

Obvious modifications occur for p = co or ¢ = oo (see e.g. [BP61] for general properties of
such spaces).

For any matrix-valued function M : R” — CN*V | we set
HMHL’;.Li = |||M|||L§.L‘i,
T3 i3

where | - |: CV*¥ — R denotes the operator norm induced by the Euclidean one. Further-
more, we write

[f *z; gl(x) := Af(ijfj)g(wj — Y5, Z5)dy;,
- 1 imig ~
(Fef1635) = = [ 799 (), ),
- 1 i £ ~
Fe e ) = o= [ 0106t

to denote the partial convolution respect to z;, the partial Fourier transform with respect
to x;, and its inverse, respectively. The partial (inverse) Fourier transform with respect to
zj and the complete (inverse) Fourier transform with respect to = are defined in a similar
way. Finally, we shall need the function spaces

n n
X =XR") =)Ly, L5 [R"), Y=Y®R"):=()L,LZ([R"),
j=1 j=1

with norms defined as follows

1fllx = i ?faxn} Hf”L;jL;j ’ 1flly = i %axn} HfHL;ng; :

The dual space of X and the norm with which is endowed are given by

n

X*=X*R") =) LTLE (RY), |Ifly-:=infq) illpgsrz = f = D figs
j=1

=1 =1
see e.g. [BL76].

We can finally state our results.
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Theorem 1.1. Let m > 0. There exists a constant Cy > 0 such that if
VIly < Co,
then all eigenvalues z € 0p(Dy,,v) of Dy, v are contained in the union
2 € BRy(zy) U Bg,y(zg)
of the two closed disks in C with centers zy , x5 and radius Ry given by

2
1 2
a:(f:::tmi Ro:zmiy VEV(V)::[

(n—{—l)Cb 2
v2—1’ v2—1’ -nl >1

VIly
Theorem 1.2. Let m = 0. There exists a constant Cy > 0 such that if
Vlly < Co,

then Dy v has no eigenvalues. In this case, we have 0(Dy ) = R.

Remark 1.1. As anticipated, the crucial tool in our proof is a sharp uniform resolvent
estimate for the free Dirac operator. This approach is inspired by [Fra11], where the result
by Kenig, Ruiz and Sogge [KRS87] was used for the same purpose. In our case, we prove in
Section 1.3 the following estimates, of independent interest:

IR-a ()l x5 x+ < Clal Y2,
1Ok R-a(2)] xx- < C,

and
zZ+m

1BD,, () xx- < C |0+

sgn(Rz)/2
z—m ’

These can be regarded as precised resolvent estimates of Agmon-Hormander-type. Note also
that similar uniform estimates, but in non sharp norms, were proved earlier by D’Ancona
and Fanelli in [DF07, DF08, EGG19]. In Section 1.4, we combine our uniform estimates
with the Birman-Schwinger principle, enabling us in Section 1.5 to complete the proof of
Theorems 1.1 and 1.2.

Remark 1.2. The space Y satisfies the embedding
Y — L™Y(R") — L™"(R"), (1.2.1)
where LP7(R"™) denotes the Lorentz spaces. Moreover, we have
n
WHHR™) — () Lf, Ly (R™) = L/ =1L Rmy,
j=1
where W™P(RR™) is the Sobolev space. In particular, in dimension n = 2 we obtain
WH(R?) — YV = L. L2(R*) N LL L (R?) — L*1(R?) — L*(R?).

We refer to Fournier [Fou87], Blei and Fournier [BF89] and Milman [Mil] for these inclusions.
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Remark 1.3. According to the previous remark we have Y (R?) < L3(R3). Thus in the
massive 3-dimensional case the assumption ||V, < Cj implies both our result, Theorem
1.1, and the one by Fanelli and Krejéifik [FK19], i.e. the eigenvalue bound (1.1.3). Although
our result improves the latter one for large eigenvalues, bounding them in two compact
regions, it may happen that, in a neighbourhood of z = —m and z = m, the bound in
(1.1.3) improves the one stated in Theorem 1.1. It is not hard to check that, supposing ||V||y

2 2
vi+1 2v 9
Mo \/<mu2_1> —(S2)

> | (1—=¢? ||V||%3)m2 - (1 1) (S2)2, (1.2.2)

A |VIiza

where

2
c:(7r/2)1/3 /1_{_671_}_26727 U= |: 400 3:| )

Vly

This condition may not always be satisfied and depends on the norms of the potential V/
in the spaces L3(R?) and Y (R?). If this happens, the result in Theorem 1.1 and the one
in [FK19] should be jointly taken in consideration for the eigenvalues bound. This situation
is illustrated in Figure 1.1.

&
&

ﬁv

o | A
D
N

(a) (b)

.....

region from [FK19] defined by (1.1.3) is in blue; the spectrum of D,, is in green. When (1.2.2) holds
we are in situation (a) and our result implies the result in [FK19]; if (1.2.2) does not hold the two
results are not entirely comparable, as shown in picture (b).

1.3 The Agmon-Hormander-type estimates

Let us fix the constants r, R, > 0 such that

l<r<R, VR:2-1</<1,
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Figure 1.2: In the picture, the set S, from the cover S = {S;r, S; S tjepn

red, while the sets S;r and S; for fixed j € {1,...,n} are colored in blue.

n} is enlighten in

.....

and consider the open cover S = {SJTF, S, Sootje(n,...,ny of the space R" defined by
SF={6cR": £ > 3§ [€| <R}, Sx={EcR":|¢>r).

See Figure 1.2 for a graphical representation. Let {X;r, X; s Xoo}je{l,...,n} be a smooth
partition of unity subordinate to S, that is to say a family of smooth positive functions
such that

n
Supp X; C S, SUPP Xoo C Soos  Xoo + Y _XT +X; 1= 1.
j=1

From these, define the smooth partition of unity x := {x;}e(1,.. n}> With

1
o— AT - -
Xj =X TX; t 2 Xoos (1.3.1)
and correspondingly, for j € {1,...,n}, the Fourier multipliers
xi (12l 72D) f = Z i (12]77%6) Faf].

Note in particular that
n

> xi(lz7*D)f = f. (1.3.2)

j=1
Therefore, the following estimates hold true.

Lemma 1.1. Foreveryz € p(—A) =C\ [0,+0), f € L}CjL%j andj, k € {1,...,n}, we
have that

[ (1s1772D) Reata)s||,_, < €Ly 2
T Ej J

HXJ‘ (!2\*1/217) 3kR—A(Z)f‘

<C
perz S 1Al 2

where {x; }je{l,...,n} are defined in (1.3.1) and C > 0 does not depend on z. In particular, it
follows that

IB-a(2)lxox S Cll™Y2 0kR-a() ] xoxe < C.
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Lemma 1.2. For every z € p(Dy,) = {(—00, —m] U [m,+00)}, f € L;J_L%j and j €
{1,...,n} we have that

<C Z+m

n -+

|x; (1% = m*7/2D) Ro, (2)f|

sgn(éRz)/Q]

— o £l 52

where {X;j}jec(1,...n} are defined in (1.3.1) and C' > 0 is the same as in Lemma 1.1. In
particular, it follows that

z+m

IR, (xox- <C n+ |

sgn(%z)/Z]

Remark 1.4. Before we proceed further, we give a heuristic explanation for the choice
of the localization in the frequency domain via the Fourier multipliers x;(|z|~'/2D) for
j € {1,...,n}. Since the symbol (|£|? — z) ! of the resolvent R_(z) blows-up as z — (,
for every fixed ¢ > 0, our trick is to use the norms L%?L%j for j € {1,...,n}, which
allows us to restrict the problem from the spherical surface {£ € R”: |¢| = |z|7'/?} to the
“equators” given by {{ € R": §; =0, |§Aj] = |2|~/2}. We then avoid these regions thanks
to the smooth functions x;.

Proof of Lemma 1.1. The last two estimates follow trivially from the first two estimates,
(1.3.2) and the definitions of the norms on X and X*.

For simplicity, from now on C' > 0 will stand for a generic positive constant independent
of z and which may change from line to line. Clearly, by scaling, it is sufficient to consider
z € Csuch that |z| = 1, z # 1. Thus we boil down to show that

I (D)0 R-a(2)fllpge 2 < Cll ey 12
where |z| =1, s € {0,1},8Y = 1,0} = 9y, and j, k € {1,...,n}. This is equivalent to
H -1 ( & xi(§)

e \EP—r—i
where we have written z = \ + ic, with A + £ = 1 and 2z # 1. We proceed by splitting
X; in the functions which appear in its definition (1.3.1), localizing ourselves in the regions
of the frequency domain near the unit sphere, i.e. S;-t, and far from it, i.e. Seo.

)

%J)

<C HfHL;jL%_ ) (1.3.3)
J

2
L L2
J

Estimate on Sjﬁ We want to prove

o gx©
Ze (,g‘z_&_zgd‘wf

<Cfllgz - (1.3.4)
z; 7T

Le L2
J Ty
Let us define the family of operators

+ . 2 2 + . -1 R
TEIDIE IR 12, [ TEf =5 (fo(I)),

B(E) = (& +0(&), &), &) =+£\1-E.

10

where
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Roughly speaking, the operator TjjE flattens the upper half unit sphere in the frequency
domain {{ € R": |{] = 1, ££; > 0}. Writing more explicitly these operators, we have

1 iz f A3
Tff(x)zm et + ol&). 8

P f(y)e™ y-(§5+0(5).85) dyd¢
n R'Il

(27T) /R » le 5]/1; B Zy] 5]//f 11'] y])ﬁjfzyjip(éj dy déjdy]déj
1
- %ﬂélﬂc ( —izjp(€) //f el y])ﬁjdy dfj)

= 6‘:_19@_ (e—mw(ﬁj)f(xj, yj))

where we used the substitution §; — &; — (EJ) in the fourth step. Applying the Plancherel
Theorem twice, we obtain that TjE are isometries on L% L2 , viz. for p € [1,+00] we have

(I)] CE )
+ _
HTJ f‘ ey = ||f||L§jL%j - (1.3.5)
Then we can write
s * o &
ygl Mﬁ;f = T,igzgl ng]@
€12 — X —ie J €2 =X —ie
L L2 Lo L2
J Ty T,
= LO/\_l M :I:f
CO\eP - A—ie 5
Le L2
J oz

| L TEf
axe(D)y % ﬁgjl J

NeT & — il
LR L2
Jg
.y
1 5 f
S aA .D oo 9_1 J .
m || ,E( )wHL%ngj 3 é’] — 1|5|
ng_LzA

i
where the last inequality follows from Young’s inequality and

a)\,E(D)w = ygl (a/\,atg‘\wj (W) )
(& —ilel) (ik £ 0k, 1 — @\2)
13 (gjimh— |Ej|2> +1-XA—ic

i) =75 (G o )(©).

are(€) == (x; © ®)(&),

Note that we dropped the absolute value appearing in ¢, i.e. \/|1 - |EJ|2| = \/1 - |§] 2
because supp{xjE od} C {£ € R™: |EJ| < 1}, thanks to the definition of SJi and the

3

11
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assumption § > v/ R? — 1. Now, despite the truly cumbersome definition of a), it is
simple to see that a) (D) € ., where .7 is the space of the Schwartz functions, since
axc(D)1y is the inverse Fourier transform of a smooth compactly supported function.
Moreover, we can consider ay (D)1 as a pseudodifferential operator with symbol a) .
applied to the Schwartz function v; letting A + ie — 1 we have the pointwise convergence

(620051 - 160) —
Jim are(€) = — \/X}IE <§j +4/1 - ’§j|2>§j) =1a(§) €S
+ie—1 €ji2m

and hence a) . (D)y — a(D)1 in .7, which implies

li D o = D o < .
i lar (D)l e = oDl g < +ox

Thus, |laxe(D)]l;1 ;o is uniformly bounded respect to z € C with |z| = 1, and we
proved
& (€ T f
7! #3@ f <ozt L (1.3.6)
|€]2 — X —ie s & —ilel
L L3, L L2
J J zj gj
By Plancherel’s Theorem, Young’s inequality, and the equality (1.3.5), we get
T} f i
Vor |7 [ == =\ F ) %y T, (T
& \ &Gl CRGETEACREICEL
L L2 T
SLe
_ Ml;o—lelx; - +
= ||ie”" O xo; F5, (T f)‘Lgo.L%
J 53
< |le~lelig *a, HT]if‘ L%
%j
< |leF=e|| Nl i
Lg;’, 5T,

— 1l z2 s
J x5
where © = ©(x;) is the Heaviside function. Inserting this inequality in (1.3.6), we finally
reach (1.3.4).
Estimate on So.. We shall now prove that

-1 SIL?;XOO(&) ar
Hﬁf (|£|2 By z’s"“”f)

<COfllpz - (1.3.7)

Lg L’;lj
We consider three cases, depending on whether we are localized in the regions defined by
Ch;={€€R": |§| > R},
Chy = 1{E €R": 5] < R, Jg| < 2R},
C3 = {€ €R": |§| < R, |¢;] > 2R)}.

12
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We set

(6 = {1 if [§] > R,

0 otherwise,

Y2 (€) = {Xw(f) ifIEj! < Rand |¢| < 2R,

0 otherwise,
s 1 if |€;] < Rand |¢;| > 2R,
0 otherwise,

and observe that Yoo = X1, + X% + Xo0, sincCe Yoo = 1 for || > R, from the assumptions
on the cover § and the partition Y.

By Plancherel’s Theorem and Hoélder’s, Young’s and Minkowski’s integral inequalities,
for h € {1,2,3} we infer

H‘/ﬁ (\az X —z’e"””“’f)

<Crllfllpy r2
L2

L L%j
with

1
Cy = —
h \/ﬂ

o=/ = A —ie. (1.3.8)

L3P LX
T g

()

Here and below, we always consider the principal branch of the complex square root
function. Clearly, if we prove that Cj, for h € {1,2,3}, are bounded uniformly with
respect to A and ¢, we recover (1.3.7).

Estimate on C}%, ;- Observing that x5 (6) = xL (Ej) and noting that

24|62 —
o[ BE

we can explicitly compute the Fourier transforms:

m if k #£ j, then

1 (F Sefg\wjl R Se*%ﬂljl
L L .
J 5] ° é]
< gk
&>k 21611 = 2M[g; 2 4+ 1)1/
R? .
<o A0
- 1/2 i) <0
m if s =1,k = j, then
L (€, ‘ —olz,| 1
Cl = Xoo(€])§ Sgn(xj)e 7 S 5

(e o) [e @)
Lg ng

13
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Estimate on C%, ;- By the definition of the inverse Fourier transform in (1.3.8) and from
the fact that 2 (¢) = 0 when [£| < 7, we see that

1|+ e 6] & (6)
< o0 ,
© =5 H/oo LS

(2R)*
- 27

L® L
*3¢

X2 (€)
€12 -1

Le Ll
IS

which is finite since y2_ is compactly supported due to its definition.

Estimate on C% ;- By the inverse Fourier transform in (1.3.8), recalling the definition of
x>, and exploiting the substitution &; — sgn(x;)&;, we have

1 ~ G &
Cy = o || (1= xa)(&) ettty 2k dg
27T ! |£J">2R §]2+0-2 ’ [0 [,°
= TR
2m || iggisam

o0 (e o)
Lg ng

where, for fixed Ej, xj, the complex function v(x;, Ej; -): € — C s defined by
(1—x2 )(A.)ieilﬂﬁjlw if k # 7§,
I 2 4 o2

(1= x5)( j)ﬁe”x”w ifs=1,k=j,
w g

(), i w) =

which is holomorphic in C\ {w_, w4 }, where wy = +io. Observe that ¢ = 0 for |g]] > R,
and if |¢;| < R we have

wal = o] = (&2 - N2 +2 < VIR, (1.3.9)

Define, for a radius A > 0, the semicircle y4 := {Ae?: § € [0,7]} in the upper half-
complex plane. Fixing p > 2R, by the Residue Theorem, we get

</[p,2R1 B /723 i /[2R,p] * LP> V(&5 w)dw = 0.

Observing that we can consider x; # 0, letting p — 400 we can apply Jordan’s lemma to
the integral on the curve 7, finally obtaining

1
C3 = —
3 2

(2R)*
27

< < (2R)*?

L®
&

/W (1—x2)E)
0

|4R262w + 02‘

/ w(xj,gj;w)dw
T2R

oo o0
Lg LEJ_

where we used the relation (1.3.9).

Summing all up, we can finally recover the desired estimate (1.3.3), where the positive
constant C' does not depend on A and ¢, but only on R and the partition . O

Let us prove now Lemma 1.2, which is a straightforward corollary of Lemma 1.1.

14
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Proof of Lemma 1.2. Again, the last estimate in the statement follows from the first one,
(1.3.2) and the definition of the X and X* norms.

From the anticommutation relations (1.1.2) we can infer, for every z € C, the identity
(D — 2IN)(Dyy + 2In) = (A +m? — 2% Iy.
Thus, for z € p(D,;,) we can write
Rp, (2) = (D + 2IN)R_a(22 — m?)Iy.

Let us set f; = x;(|22 — m?|7'/2D) f for simplicity. By Lemma 1.1, it is easy to recover

||RDm(z)fj||LgO_L2 < ZakakR_A(Zg—mQ)fj
7 k=1

Lee L2
a:J Ij

+ ||(maom41 + 2IN)R_a(2" — m2)fj“L°°L2
2%,

<) |okR-a(z® - mQ)fjHLg?L;_

k=1
+ max{|z + m|, |z — m|} HR,A(Z2 — 7712)]‘}HL§O_L2
jE
24 m sgn(Rz)/2
<
<C|n+ T —m HfHLglch%j
as claimed. ]

1.4 The Birman-Schwinger principle

In this section, following the method of [Kat66] by Kato and [KK66] by Konno and Kuroda,
we define in a rigorous way the closed extension of a perturbed operator with a factorizable
potential, formally defined as Hy + B* A, and we will provide an abstract version of the
Birman-Schwinger principle. In the recent work [HK20], Hansmann and Krej¢ifik use a
different approach to establish the Birman-Schwinger principle, establishing it for different
kind of spectra, and not only for the point one. In particular, they develop a nice and
innovative argument to deal with the embedded eigenvalues, which will be borrowed also
in this section. Since both the road are worth of interest, in Section 2.3 of the next chapter
we will revive the Birman-Schwinger principle, following there [HK20].

Let $), $ be Hilbert spaces and consider the densely defined, closed linear operators
Hy: dom(Hp) C€H — $H, A: dom(A)C$H—H', B: dom(B)CH— 5,
such that p(Hy) # @ and
dom(Hp) C dom(A), dom(Hy) C dom(B).

For simplicity, we assume also that o(Hp) C R. By Ry, (z) = (Ho — z) !, we denote the
resolvent operator of Hy for any z € p(Hy).
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1.4. THE BIRMAN-SCHWINGER PRINCIPLE

The idea of the principle is easy to explain in the case of bounded operators A and B.
In this case H = Hy + B* A is well defined as a sum of operators, and if z € p(H)), the
Birman-Schwinger operator
K.=A(Hy—z)"'B*

is also a bounded operator. One checks immediately that z € o,(H) N p(Hp) implies —1 €
op(K), and so || K. ||g ¢ > 1. Hence, a bound for the norm of K, gives information on
the localization of the non-embedded eigenvalues of H.

We now return to the general case of an unbounded perturbation B*A. As in [KK66],
we assume the following set of assumptions.

Assumption A. For some, and hence for all, z € p(Hj), the operator ARy, (z)B*, densely
defined on dom(B*), has a closed extension K, in §)’,

K. = ARp,(2)B*,
which we call the Birman-Schwinger operator, with norm bounded by

1Kl < A2) (141
for some function A: p(Hp) — Ry.

Assumption B. There exists zgp € p(Hp) such that —1 € p(K,).

Observe that the last assumption is implied by the following one:

Assumption B’. There exists zg € p(Hy) such that A(zp) < 1.

Indeed, assuming Assumptions A and B’, we get that || K, ||/, < 1. Thus, expanding
in a Neumann series, we see that (1 4+ K, )~ ! exists and hence —1 € p(K,).

Let us collect some useful facts in the next lemma.

Lemma 1.3. Suppose Assumptions A and B and let z, z1, zo € p(Hy). Then the following
holds true:

(i) ARHO(Z) € B(f),f)/), RHO(Z)B* = [B(HS _E)_l]* € B(ﬁlvﬁ);

(ii) RHO(Zl)B* — RHO(ZQ)B* = (21 — ZQ)RHO(ZZ')RHO(ZJ‘)B*, fori,j c {1,2}, 7 75 7;

(iii) K. = ARp,(2)B*, K= BRp,(z)"A*;

(iv) ran(Rp,(z)B*) C dom(A), ran(Rp,(z)*A*) C dom(B);
v) K, — K., = (21 — 22)ARpu, (2:)Ru, (25)B*, fori,j € {1,2},i# j.
Proof. See Lemma 2.2 in [GLMZ05]. O

We can construct now the extension of the perturbed operator Hy + B* A.
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1.4. THE BIRMAN-SCHWINGER PRINCIPLE

Lemma 1.4 (Extension of operators with factorizable potential). Suppose Assumptions A
and B. Let zg € p(Hy) such that —1 € p(K,). Then the operator

RH(ZO) = RHO (ZO) - RHO (ZO)B*(l + KZO)_IARHO (ZO) (1.4.2)

defines a densely defined, closed, linear operator H in $) which has Ry (z) as resolvent and
which extends Hy + B* A.

Proof. We refer to Theorem 2.3 in [GLMZ05]. See also Kato [Kat66]. O

We can finally formulate the abstract Birman-Schwinger principle.

Lemma 1.5 (Birman-Schwinger principle). Suppose Assumptions A and B. Let zg € p(Hy)
such that —1 € p(K,) and H be the extension of Hy + B*A given by Lemma 1.4. Fix
z € op(H) with eigenfunction 0 # 1 € dom(H ), i.e. Hy) = 21, and set ¢ := Aq.

Then ¢ # 0, and in addition

(i) ifz € p(Hp) then
and in particular
1< ||KZH53'—>5' < A(2);
(ii) if z € o(Hy) \ 0p(Ho) and if Hy is self-adjoint, then
lim K,1jc0=—¢ weakly,
e—0%

id est
lim (Spsz—I—ia(b)fJ’ = —((,0, ¢)5’J’ (1.4.3)

e—0+
forevery o € §', where (-, )¢ is the scalar product on $)'. In particular
1< lierg(i)rilf K epiellgy gy < lierg(i)ng(z + ig). (1.4.4)
Proof. Lete = 0if z € p(Hp) and ¢ # 0if z € o(Hyp) \ 0p(Hp). In order to treat the

embedded eigenvalues, we will adapt the argument of Lemma 1 in [KK66] together with
the limiting argument from Theorem 8 in [HK20].

Note that Hy = 2 is equivalent to
Y = (2 — 20)Ru(20)7), (1.4.5)

and hence we obtain from (1.4.2) that

(Ho — z —ie) Ry, (z0)¢
= —(z — ZO)RHO (Z())B*(l + Kzo)ilARHO (Zg)lb — i@RH()(Zo)w. (1.4.6)

Define B
= (1 + KZO)_IARHO (ZO)UL
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1.4. THE BIRMAN-SCHWINGER PRINCIPLE

If ¢ = 0, by (1.4.6) follows (Ho — 2)Rp,(z0)1 = 0. Since 0 # Ry, (20)y € dom(Hp), we
get z € op(Hp), which contradicts the assumption on z. Thus, we proved ¢ # 0. Moreover,
we can show the identity

¢ =AY = (z - ZO)(l + KZO)_IARHO (ZO)'(/) = (Z - ZO)J? (1.4.7)
from which in particular ¢ # 0. Indeed, by (1.4.2) and (iii) of Lemma 1.3, it follows that
ARy (20) = (1 + K.,) ' ARp,(20),
which combined with (1.4.5) gives us (1.4.7).
Multiplying by (1 + K.,) "' ARy, (z + ic) both sides of (1.4.6), we obtain
b =— (2 — 20)(1 + K.) " ARp (2 + i) Ry, (20) B*
- i5(1 + KZO)_lARHo (z + ig)RHo (Zo)dJ

and so, by (v) of Lemma 1.3 and by the resolvent identity, we have

= T (4 Kay) T Keie = KO
e (L Ky M ARy (2 ) — Ry ()]

=0 = o (U K)o Kapic)d

- z_zi;igu + K.,) YARy, (2 + ie)v,

from which, using identity (1.4.7), we finally arrive at
K. i = —¢ —ic ARy, (2 + ig). (1.4.8)

If z € p(Hyp), then € = 0 and we completely proved case (i), the “in particular” part being
straightforward.
In the following, we suppose z € o(Hy) \ 0,(Hp) and Hy self-adjoint. Fixed ¢ € §/,
we get from (1.4.8) that
(0, Kotic®)sy = =, @)sy — ie(p, ARpo (2 + )9 sy
= —(p,9)sy + L.
Exploiting the Spectral Theorem and denoting the spectral measure of Hy as Ejp, we have
—1i€
L= [ ROV ABS Oy, where ()=
o(Hop

A—z—ig

From the fact that

0 if\# 2,
)1 ifA =z,

and Fy({z}) = 0 since z ¢ 0,(Hy), we infer that f- — 0 as € — 0% almost everywhere
with respect to the spectral measure. Moreover

S = ——L < ad [ e AB () = (5 A
o(Hop)

NCEnEE
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1.5. PROOF OF THE THEOREMS

hence by Dominated Converge Theorem we conclude that I. — 0 as ¢ — 0F, proving
(1.4.3).

Finally, since by (1.4.3) we have
2 . 2 qe .
16l = 1(¢, 9)sy| = lim |(d, Kzricd)sy| < (1Ml Hmnint [ Koricl g,y

we get the first inequality in (1.4.4), while the second one is obvious by Assumption A. [

1.5 Proof of the theorems

We can now specialize to our problem the abstract theory developed in the last section. We
choose $ = H' = LQ(R”; cN ) and H the free Dirac operator D,,. The factorization of V'
is given using the polar decomposition V' = UW where W = (V*V)l/ 2 and the unitary
matrix U is a partial isometry: then we may set A = W'/2 and B = W/2U* It is easy to
see that Assumption A holds thanks to Lemma 1.2 with

Z+m

A(z) =nC||V]ly [n+

sgn(?Rz)/?]

Z—m

Indeed, for p € C$°(R™; CV),

|ARp, (2)B*¢lly < 3 [ Ax;(12* = m?| " /2D) R, (2) B

j=1
Z4+m sgn(Rz)/2] n .
<C|n+ o Z ”AHngLg? | B HngLgé el
]:l J J
< A(Z) [lellg

and hence by density (1.4.1). We used above the s

— V|32

o * o 1/2
||A”ngLg; =B ”ngL;j - HW ‘L%J,Lg‘; L;.],L;j_

We show now that also Assumption B’ holds. To find zp € p(D,,) such that A(z) < 1,
let us define
Co=[nn+1)C™, v=[n+1)C/|Vly —n]

Since from the hypothesis of Theorems 1.1 and 1.2 we have ||V||y, < Cp and so v > 1, the
condition 1 < A(z) is equivalent to v < |z/z| if m = 0, and to

2 1 2 2 2
<§Rz —sgn(Rz)m Z2 —_F 1> + 322 < <m 2 i 1) (1.5.1)

if m > 0. Then, if m = 0 it is sufficient to choose zy € C \ R, while if m > 0 we take
20 € p(Dy,) outside the disks in the statement of Theorem 1.1.

Thus, we can apply Lemma 1.4 to properly define D, y/, and Lemma 1.5 in combination
with the relations (1.5.1) and v < |z/z| to prove Theorem 1.1 and the absence of eigenvalues
in the massless case, respectively. For the final claim in Theorem 1.2, we will follow the
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1.5. PROOF OF THE THEOREMS

argument in [CLT14] to prove that the potential V' € Y = (7_, L}cj L%j (R™) leaves the
essential spectrum invariant and that 0(D,,v) \ 0¢(Dm,v) = 04(Dp,v ). The argument
hold for any m > 0, and in particular, in the massless case, we get 0(Dy ) \ R = @.

To get the invariance of the essential spectrum, it is sufficient to prove that, fixed
z € p(Dy,) such that —1 € p(K), the operator ARp,, (z) is a Hilbert-Schmidt operator,
hence compact. Thus identity (1.4.2) gives

Rp, ,(2) — Rp, (2) = —Rp,, (2)B*(1 + K.) ' ARp,,(2)

from which it follows that Rp,, | (2) — Rp,,(z) is compact and so, by Theorem 9.2.4
in [EE18],
0e(Dm,v) = 0e(Dpy,) = (—00, —m] U [m, +00).

To see that ARp,, (z) is a Hilbert-Schmidt operator, we need to prove that its kernel
A(x)H (2,7 —y)isin L2(R™ x R"; CV), where ¥ (z, x —y) is the kernel of the resolvent
(D, — z)~L. By the Young inequality

AP —2) s = / / 2)]P|# (2,2 — y)Pdady < V| 1€ 720 (15.2)

where 1/p + 1/q = 2. Hence we need to find in which Lebesgue space L?(R™; C") the
kernel J# (z, x) lies. For z € p(—A) = C\ [0, 00), it is well-known (see e.g. [GS16]) that
the kernel % (z, z — y) of the resolvent operator (—A — 2)~! is given by

o) = 5 ( V=2 )g_lKg_IWTzwx—y)

2m)"/2 \ |z —y|
where K, (w) is the modified Bessel function of second kind and we consider the principal
branch of the complex square root. Fixed now z € p(D,,) = C\ {(—m, —oo] U [m, +00)},

from the identity
(Dm — ZIN)fl = (Dm + ZIN)(—A + m? — 2’2)71[]\[
and relations (A.4) and (A.5) for the derivative of the modified Bessel functions, we get

1 k(z) 2
H =9 = G () (= DR e o)

1 k(z) \2 !
+ i (k) (man + K51 (e — )
where for simplicity k(z) = v/m? — z2. From the limiting form for the modified Bessel
functions (A.7), (A.8) and (A.10), we obtain that

||~ (V) if |z| < zo(n,m, z)

||~ (V2R i |2 > o (n,m, 2)

for some positive constants C'(n, m, z), xo(n, m, z) depending on z. Hence it is clear that
H (z,z) € L*(R"; CN) for 2¢ < n/(n — 1) and, consequently, from equation (1.5.2) we
have that A(D,, — z)~! is a Hilbert-Schmidt operator if V € LP(R";C") for p > n/2.
Since by (1.2.1) we have V' € L™(R™; C"), the proof of the identity 0. (Dy, v) = 0c(Dy)
is complete.

1 (2, )| < C(n,m, 2){

Finally, since p(D,,,) = C\ 0¢(D,,) is composed by one, or two in the massless case,
connected components which intersect p(D,,, 1) in a non-empty set, by Theorem XVIL.2.1
in [GGK90] we have 0(D,, v) \ 0¢(Drm,v) = 04(Dm,v).
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CHAPTER

Localization of eigenvalues for
non-self-adjoint Dirac and
Klein-Gordon operators

In the Introduction, we already explained in a nutshell which are the gears grinding in the
Birman-Schwinger principle, stressing that to each resolvent estimate of a free operator we
can correspond, via the principle, a localization estimate for the eigenvalues of the perturbed
operator. Since resolvent estimates have been an object of study for a considerably longer
time with respect to the eigenvalues confinement for non-selfadjoint operators, it is natural
that some results for the latter problem, even if interesting per se, go unnoticed.

The goal of the current chapter is indeed bringing to light some new spectral results for
the Dirac and Klein-Gordon operators, by inserting already established resolvent estimates
in the main engine of the Birman-Schwinger principle. The assumptions we will impose on
the potential are essentially of pointwise smallness and decay near the origin and infinity.

The results in this chapter are contained in [S2], joint work with Piero D’Ancona, Luca

.....

2.1 Main results

In this chapter, together our main protagonist, the spinorial Dirac operator, there will be
the scalar Klein-Gordon operator. They are formally defined respectively as

Dyy=Dn+V and Gpv=G,+V
where, for fixed mass m > 0, the free Klein-Gordon operator is
gm = m? — A)

while the Dirac operator is defined in (1.1.1), where the Dirac matrices oy, € CV XV, with
N := 2[7/2] satisfy the anti-commutation relations (1.1.2). If we set for simplicity N := 1
when we are dealing with the Klein-Gordon operator, we can say that both the operators
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Gm and Dy, act on ) = L*(R™; CV), have domain H'(R"; C") and are self-adjoint with
core CS°(R™; CN).

Concerning both perturbed operators, the potential V': R* — CV*¥ is a generic,
possibly non-Hermitian, matrix-valued function (respectively scalar valued in the case of
Klein-Gordon). Invoking the usual abuse of notation, we denote with the same symbol V' the
multiplication operator by the matrix V' in §) with initial domain dom (V') = C$°(R"; CV).

Again, for any matrix-valued function M : R” — CN*N and norm |- : C — R,
we write || M || := ||| M]|]|, where |M(x)| denotes the operator norm of the matrix M (x)
induced by the Euclidean norm.

For simplicity, we will say that the spectrum of G,,, v or D, v is stable (with respect to
the corresponding free operator spectrum) if

U(gm,V) = Uc(gm,V) = U(gm) = [m7 +OO) (2'1‘1)
in the case of the Klein-Gordon operator, whereas

o(Dov) = 0c(Dov) = o(Dy) =R, (2.1.2)
0(Pm,v) = 0c(Dm,v) = 0(D) = (—00, —m| U [m, +00) , (2.1.3)
in the case of the massless and massive Dirac operators respectively. In any case, note that

this means in particular that the point and residual spectra of the perturbed operator are
empty.

Finally, let us introduce the weights defined as

o (z) = |z|27F + |z (2.1.4)
we(z) = |z|(1 + |log |x||)?, foro > 1. (2.1.5)

We are ready to enunciate our results.

Theorem 2.1. Let n > 3. There exist positive constants o and €, which are independent of
V, such that if
IV <@

then the spectrum of G, v is stable, viz. (2.1.1) holds true.

Theorem 2.2. Let n > 3. Form = 0, there exists a positive constant «, independent of V,
such that if
oVl <

then the spectrum of Dy v is stable, viz. (2.1.2) holds true.

Form > 0, there exist positive constants o and €, independent of V', such that if
IVl <@
then the spectrum of Dy, v is stable, viz. (2.1.3) holds true.

For the Dirac operator we can improve the above theorem in two ways. Firstly, slightly
generalizing the choice of the weights (see also Remark 2.3 below). Secondly, and above all,
we can give a quantitative form for the smallness condition of the potential (even if our
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expression for the constant is probably far from being optimal). With this aim we bring
into play the dyadic norms defined as

lallo = 3 Nl arciapenry s tllio o = 5D [l pagas1cppcany - (216)
JEZ JEL

forl<p<oandl < g < cc.

Theorem 2.3. Letn > 3,m > 0 and p € (?L>(R") be a positive weight. If m > 0, assume
in addition that |z|'/?p € L>°(R™). Form > 0, define

C1 = Ci(n,m,p) :==576n [v/n + (2m + 1)v/64n + 324 01122 1 o0

) e

C1 = C1(n,0,p) :=2Cx ||pllfa oo » (2.1.7)
Co = Cs(n) :=576n max{\/n, v64n + 324}. (2.1.8)

whereas if m = 0,

S .
upposing B
Cy H\x!p VHLOO <1

then the spectrum of Dy, v is stable, viz. (2.1.3) holds true.

In the massless case, we can ask for less stringent conditions on the potential in order
to still get the spectrum stable.

Theorem 2.4. Letn > 3, m = 0 and
202 ||z V][ peo <1,

where Cy is defined in (2.1.7). Then the spectrum of Dy v/ is stable, viz. (2.1.2) holds true.

Last but not least, we prove some results on the eigenvalues confinement in two complex
disks for the massive Dirac operator. To this end one can use either the weighted dyadic
norm (this gives the counterpart for m > 0 of Theorem 2.4), or again the weighted-L? norm
with weaker conditions on the weight p (namely, removing in Theorem 2.3 the assumption
|z|*/2p € L®(R™) when m > 0).

Theorem 2.5. Letn > 3, m > 0 and
Ni(V) = 2lVlipgee: No(V) = lpllpe [[l2l07*V ]| oo
for some positive weight p € {2L°°(R™). For fixed j € {1,2}, if we assume
20oN;(V) < 1,
with Cy defined in (2.1.7), then
0p(Dp,v) C Bry(wg ) U Bry(24)

where the two closed complex disks have centres x , :U(T and radius rq defined by

241 2w 1 2
+ J j .
= 4 it th vi=|—— — 1| >1.
:CO m J2 1 To mljjz — 1, Wi V] |:CQ ](V) :|
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Remark 2.1. In the above Theorem 2.5, the case j = 2 is actually redundant. Indeed,
one can easily observe that N1(V) < Ny(V') simply by Holder’s inequality. Thus, if
209N, (V') < 1, it follows that 15 < 17 and the disks obtained for j = 1 are enclosed in
those obtained for j = 2. However, we explicit both the case since, as observed above,
Theorem 2.5 is in some sense the counterpart of Theorem 2.3 and Theorem 2.4.

Remark 2.2. In our results, the low dimensional cases n = 1,2 are excluded. This
restriction comes from the key resolvent estimates we are going to employ, collected in
Lemma 2.1, Lemma 2.2 and Lemma 2.3 and proved in [DF08] and [CDL16] (see Section 2.2
below). Indeed, regarding the last lemma, it holds for n > 3 since to prove it the multiplier
method is exploited, which fails in low dimensions. In the case of the first two lemmata
instead, the low dimensions are excluded essentially due to the use of Kato-Yajima’s
estimates; but there is a deeper reason behind instead of a mere technical one.

In fact, tracing back the computations in [DF08], a key step in the proof of Lemma 2.1
and Lemma 2.2 is equation (2.19) of [DF08] concerning the Schrodinger resolvent, namely

I (A = 2) 7 o < CA+ P2 17 fllpe < Cllref 2

with some positive constant C' and n > 3. The above inequality is obtained by fusing
together results by Barcelo, Ruiz and Vega [BRV97] and by Kato and Yajima [KY89], and it
is without any doubt false for n = 1, 2. In fact, by contradiction, exploiting computations
similar to the ones we will carry on in Section 2.4, one should be able to prove the counter-
part of Theorems 2.1 and 2.2 for the Schrédinger operator, in other words the spectrum
of —A + V would be stable if HTg VH s < « for some positive constants o and . This
assertion is true for n > 3, but certainly impossible for n = 1, 2, due to the well-know fact
that the Schrédinger operator is critical if, and only if, n = 1, 2.

The criticality of an operator Hjy means that it is not stable against small perturbations:
there exists a compactly supported potential V' such that Hy + €V possesses a discrete
eigenvalue for all small € > 0. For the Schrédinger operator this is equivalent to the lack
of Hardy’s inequality. On the contrary, the existence of Hardy’s inequality in dimension
n > 3 is sometimes referred to as the subcriticality of —A.

In the light of this argument for the Schrédinger operator, a very interesting question,
deserving to be pursued, naturally arises: one can conjecture that also the Klein-Gordon
and Dirac operators are critical if and only if n = 1, 2, that is Theorems 2.1 and 2.2 are
false in low dimensions and their spectra are not stable if perturbed by small compactly
supported potentials.

Remark 2.3. In Theorem 2.1 and 2.2 we used the explicit weights 7. and w,, while in the
subsequent statements exploiting the weighted-L? norm they are replaced by the weight
|z|p~2 with p € £2L°°(R™). We compare these assumptions.

It easy to check that p; := (1 + |log |z||)~?/? and py := (|z|~¢ + |z|°) ! are weights
in /2L°°(R") for any 0 > 1 and &,6 > 0. Consequently we can set |z|p~2 = w,(z) or
lz|p~2 = (|=|'/27¢ + |2|*/?19)2. The additional condition |z|*/2p € L>° can be obtained
for po if we set § = 1/2, and hence 72 = |x|p; 2. In other words, w, and 7. are the
prototypes of the class of weights we used, since ]x\l/zw;1/2, |z|*/271 € (2L°(R™) and
|z|7t € L°(R™).
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This generalization gives only a minor improvement in the type of admissible weights,
however we think it is useful since it stresses the properties and limiting behaviors required
on them.

Finally, we note that the extra condition |z|'/?p € L>(R™) affects the behavior of
p € (2L>°(R") only at infinity. Indeed, near the origin, say when |z| < 1,

20 < [lpll e < llpllg2po

so no further requirement is added on the behavior of p near x = 0; on the contrary

L T L R R

”ﬂ||e2Lo<>(|x\z1) < H‘I Lo (jz|>1)

when |z| > 1,50 L*®(|z| > 1) C 2L>(|x| > 1).

Remark 2.4. For a concrete example, let us make the constants C'y and Cs explicit in a
special case. We set n = 3, m € [0, 1] and choose p = |;1:|1/27'1_/12 = (Ja|7Y2 + ||V,
which implies easily ||p]|,2;~ < 2 and H|x!1/2pHLOo <1

Therefore, it follows that Cy < 8.24-10%,C; < 1.11-10° if m > 0 and C; < 6.59-10%

if m = 0. Hence the smallness condition on the potential in Theorem 2.3 is implied by

9.00-1076 ifm >0,

1 2

and the one in Theorem 2.4 by [||2|V || 100 < 6.06-107°.

Our conditions on the potential V' are certainly not sharp. We conjecture that the point-
wise smallness conditions of Theorem 2.2 can be replaced by suitable integral hypotheses.

Conjecture. Let n = 3. There exists a positive constant « independent of V' such that
if ||V||z3s < a, then the spectrum of Dy y is stable, viz. (2.1.2) holds true, whereas if
Vs + |V 13/2 < c, then the spectrum of D,,, v is stable, viz. (2.1.3) holds true.

2.2 A bundle of resolvent estimates

As anticipated above, the main ingredients in our proofs are a collection of inequalities
already published in the literature. The first two, recalled in the next two lemmata, come
from [DF08].

Lemma 2.1. Letn > 3 and z € C. There existe > 0 sufficiently small and a constant C' > 0
such that

where the weight 7. is defined in (2.1.4).

W = A=) < Clinfll

The massless case for this Klein-Gordon resolvent estimate is obtained by equation (2.39)
in [DF08] letting W = 0. Instead, equation (2.43) from the same paper gives us the massive
case for unitary mass m = 1, and for all positive m by a change of variables.

Let us face now the Dirac operator.
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Lemma 2.2. Letn > 3 and z € C. There existe > 0 sufficiently small and a constant C' > 0
such that

G e P L P

|7 (D — 2IN) 7 f]| 2 S Cll7efll 2 (2.2.2)

(2.2.1)

in the massless and massive case respectively, where the weights 7. and w, are defined in
(2.1.4) and (2.1.5).

These estimates correspond to equation (2.49) and (2.52) from [DF08] respectively, even
if the estimate for the massless case was previously proved in [DF07] by the same authors.
It should be noted that, in the cited paper, estimates (2.49) and (2.52) are explicated only in
the 3-dimensional case, but it can be easily seen that they hold in any dimension n > 3,
since their proofs mostly rely on the well-known identity D2, = (—A + m?)Iy.

The resolvent estimates just stated are uniform, in the sense that the constant C' in
the estimates is independent of z. This will imply, as we will see, the total absence of
eigenvalues under suitable smallness assumptions on the potential.

For the Dirac operator the above result can be improved. First of all, we can give a
non-sharp but explicit estimate for the constant C. Moreover, paying with a constant
dependent on z (obtaining then a localization for the eigenvalues instead of their absence
in the massless case) we can substitute the weighted-L? norms with dyadic ones, or relax
the hypothesis on the weights in the massive case.

This step-up will be gained making use of the sharp resolvent estimate for the Schrédinger
operator in dimension n > 3 contained in Theorem 1.1 of [CDL16] (the same estimate can
be obtained also e.g. from Theorem 1.2 in [D’A20], but the latter does not provide explicit
constants). Settinga = I,,b=c=0,N=v=1andC, =Cy, =C,=C_=C. =0in
the referred theorem, one immediately obtain the trio of estimates stated below.

Lemma 2.3. Letn >3,z € C\ [0, +00) and Ro(z) := (—A — 2)7L. Then

|Ro(2)fII% + IVRo(2)fI[3 < (288n)% || fII3- .
[Rz| | Ro(2) f|I3 < (576V2n%)2 || f]13. |
Sz] | Ro(2) £ < (864v2n)* ||f]3. |

where the X andY norms are the Morrey-Campanato-type norms defined by

1 2 1 2
lull% = sup — / wPdS,  Jul? =swp s [ |ufde
X reo R? =R Y oo R Jjw<n ’

and the Y* norm is predual to the Y norm.

Since the Morrey-Campanato-type norms above introduced are not so handy, observe
that the X norm can be written as a radial-angular norm

Jull x = H|x|71uH£°°L°° [z *=sup  sup H’xrl“Hm(m:R)
|| ™0 )

l JEZ Re[2i-1,2i
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whereas the Y norm is equivalent to the weighted dyadic norm H |x\*1/ 2 H go0 2> and hence
by duality the Y* norm is equivalent to H |2|1/2 -HélLQ (being ||-||sp ¢ defined in (2.1.6)).
More precisely, since we want to show explicit constants, we have that

2 2 1
~1/2 H / —1y,,12 2 2
x| " = sup x| ul*dx < 2 sup — lu|*dz < 2 ||ul|
H‘ (2L* ez Joi-1 | | jez 2 Jiz<oi v

while from the other side, fixed R € [2771,27) for some j € Z, we get

1 U 2n 2
- jufde < 23 2"/ |xr1\u|2dxg4H|x|*1/2uH .
R |z|<R e —oo on—1 goo 2
Summarizing
2*1/2ny|*1/2uH < ully < 2H|xr1/2uH
g [,2 - Y = ¢ [,2
27 22|, < el <272 22|
L2 L2

Inserting the above norm equivalence relations in Lemma 2.3 one can straightforwardly
infer the following.

Corollary 2.1. Under the same assumptions of Lemma 2.3, the estimates

|2 f

I

H|x|_1R0(z)fH€ooLlo;‘Lg S 576n ALz

FRE H\xrl/QRo(z)fHZ |, < 5760360 + 324

H‘$|_1/2VR0(Z)fH£OOL2 < 576n H|x|1/2f

|| /2 f

)

0nr2

)

0nr2

hold true.

Simply applying Holder’s inequality, one can deduce also the weighted-L? version
of Lemma 2.1. Moreover, this allows us to employ the —A-supersmoothness of |z|~! to
obtain a homogeneous (in effect even stronger) weighted-L? estimate for the Schrédinger
resolvent. Namely, we have the following.

Corollary 2.2. Under the same assumptions of Lemma 2.3, the following estimates hold
—-3/2 2 1/2 —1
12172200 201 , < 576m ol g [|121267 1], -
212 |lal /20 Ro ()£ |, < 5760680+ 324 |ol[f o |22 1|

#7720V Ro(2) 1], < 576m ol | /257 ]

2’

o (2.2.3)

for any arbitrary positive weight p € (>L>°(R™).
If in addition |x|'/?p € L (R"), then

()72 |lal 2pRo(2)f |, < Ol /27" 1]

L2
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where
2
C3 = C3(n, p) == 576nv/64n + 324 ||p||2 ;o + /ﬁ H‘“"'UQPHLOO

and (z) := \/1 + 22 are the Japanese brackets.

Proof. By Holder’s inequality we easily obtain the set of inequalities

1/2 —1 1/2
22|, , < ellag o722, -
2], < s
[t < 172 ™l e

ol °!
1
S ||pH£2L°° |HIZ’| quooLT;‘Lg )
which inserted in Corollary 2.1 give us the first three weighted-L? estimates.

The last one is instead obtained making use of the celebrated Kato-Yajima result in

[KY89], that is
12 Ro(2) /]2 < Vhﬂmﬁh%

with the best constant furnished by Simon [Sim92], combined with the trivial bounds

T

)

.2
[la=12pu| , < [[121/26]| "]

given again by Holder’s inequality. O

We can return now to the Dirac operator. As a consequences of Corollaries 2.1 and 2.2
we obtain the following lemma.

Lemma 2.4. Letn > 3 and z € C\ {(—o0, —m| U [m, +00)}. Then

sgn Nz
~1/2(p  _ -1 H <0yl |2m| H 1/2
H]w\ (D = 2) fzooLZ_ B Il e 2 f£1L2
where Cy is defined in (2.1.7), and in particular
r sgn Rz 7
_ 2 z+m| 2
[l121- /20Dy , < Callpllfage |14 || |l (224)
for any positive weight p € £2L>°(R™).
Ifin addition |z|'/?p € L(R™), then
27200 — 2)711]| , < €1 |lel 2 (2.25)

where C is defined in the statement of Theorem 2.3.
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Proof. By Corollary 2.1 and the identity
(D — 2) ' = (D + 2) (A +m?* — 2*) "y
we obtain

2|29 i Ro(2* — m®)
k=1

~1/2 -1
Hm P(Drm = 2) fHeooHS

L2

{122 p (e + 21 Ro(22 = md) |

<V |lef 2oV Ro(% — m?) |

{2
+ max{|z +m/|, |z — m|} H\$|_1/2PR0(22 - m2)szooL2
s+ m sgn(RNz)/2
ol et o],
<(Cy —+ L |CC| p f 112

Similarly we have the other two inequalities, using Corollary 2.2 and the fact that
max{|z +m|, |z — m[}(zZ = m?) 2 <2m +1

for the homogenous estimate (2.2.5). Note also that, in the massless case, (2.2.5) is already
contained in (2.2.4). O

2.3 The Birman-Schwinger principle, da capo version

In this section, we recall again the technicalities for the Birman-Schwinger principle and
for properly define an operator perturbed by a factorizable potential. This time, in contrast
with the approach of Section 1.4, we completely rely on the abstract analysis carried out by
There, in addition to the point spectrum, appropriate versions of the principle are stated
even for the residual, essential and continuous spectra.

Let us start recalling some spectral definitions. The spectrum o (H) of a closed operator
H in a Hilbert space $) is the set of the complex numbers z for which H —z: dom(H) — $
is not bijective. The resolvent set is the complement of the spectrum, p(H) := C\ o(H).
The point spectrum o, (H ) is the set of eigenvalues of H, namely the set of complex number
such that H — z is not injective. The continuous spectrum o.(H) is the set of elements of
o(H) \ op(H) such that the closure of the range of H — z equals $); if instead such closure
is a proper subset of H, we speak of the residual spectrum o.(H).

Here we collect the set of hypotheses we need.

Assumption L. Let ) and $’ be complex separable Hilbert spaces, Hy be a self-adjoint
operator in $) and | Hy| := (HZ)'/? its absolute value. Also, let A: dom(A) C $ — $’ and
B: dom(B) C £ — £’ be linear operators such that dom(| Hy|'/?) C dom(A)Ndom(B).
We assume that for some (and hence for all) b > 0 the operators A(|Hy| + b)~'/? and
B(|Ho| 4 b)~'/? are bounded and linear from $) to £.

At this point, defining Gy := |Hp| + 1, we can consider, for any z € p(Hy), the
Birman-Schwinger operator

K. = [AG; *)[Go(Ho — )7 1[BG, V7T, (2:3.1)

29



2.3. THE BIRMAN-SCHWINGER PRINCIPLE, DA CAPO VERSION

which is linear and bounded from Y to §'.

The second assumption we need is stated below.

Assumption II. There exists zg € p(Hp) such that —1 & o(K,).

While in general Assumption I is easy to check in the applications, Assumption II is
more tricky. Thus, we can replace it with the following one, stronger but more manageable.

Assumption IT'. There exists zo € p(Hp) such that || K, |[¢ ¢ < 1.

That the latter implies Assumption II can be easily proved by observing that the spectral
radius is dominated by the operator norm, or recurring to Neumann series. Alternative
conditions implying Assumption II are collected in Lemma 1 of [HK20], but for our purposes
Assumption 11" will be enough.

Before recalling the Birman-Schwinger principle, we properly define the formal per-
turbed operator Hy + V with V = B*A.

Theorem 2.6. Under Assumptions I and II, there exists a unique closed extension Hy of
Hy + V such that dom(Hy) C dom(|Hy|'/?) and the following representation formula
holds true:

(6, Hyh)g s = (G320, (HoGy ' + [BGy ) AGy )Gy ) g

for ¢ € dom(|Hy|'/?), v € dom(Hy).

This result correspond to Theorem 5 in [HK20], where the operator Hy is obtained
via the pseudo-Friedrichs extension. Note that following the alternative approach by
Kato [Kat66], the extension of Hy + B* A is not only closed, but also quasi-selfadjoint. We

.....

two methods, and for a list of cases when the two extensions coincide.

Finally, we can exhibit the abstract Birman-Schwinger principle, for the proof of which
see Theorem 6, 7, 8 and Corollary 4 of [HK20].

Theorem 2.7. Under Assumption I and II, we have:
(i) ifz € p(Hy), then z € op(Hy) if and only if —1 € 0,(K);
(ii) ifz € o.(Ho) Nop(Hy) and Hytp = 21 for 0 # ¢ € dom(Hy ), then Ay # 0 and
lim (K.1icAY, ¢)g—gr = —(AY, 9) g sy
e—0
forallp € 8.
In particular
(i) ifz € op(Hy) N p(Ho), then || K. ||g 5 > 1;

(i) ifz € op(Hy ) Noc(Ho), then liminf, o+ | K. yiellg_ 5 = 1.
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While from the “in particular” part of the previous theorem one could infer a localization
for the eigenvalues of Hy, the principle can be employed in a “negative” way to prove their
absence when the norm of the Birman-Schwinger operator is strictly less than 1 uniformly
respect to z € p(Hy). This is precisely stated in the next concluding result, corresponding
to Theorem 3 in [HK20], which is even richer: not only gives information on the absence
of the eigenvalues, but also on the invariance of the spectrum of the perturbed operator.

Theorem 2.8. Suppose Assumption I and that sup,c, g,y 15z 5 < 1. Then we have:

(i) o(Ho) = o(Hv);
(ii) Up(Hv) U OT(Hv) - O'p(Ho) and JC(H0> - O’C(H\/).

In particular, if o (Hy) = 0.(Hy), then o (Hy) = o.(Hy) = 0.(Hp).

2.3.1 A concrete case

We now specialize the situation from the abstract to a concrete setting, typical in many
common applications and relevant for our analysis.

Suppose that $ = ' = L2(R"; CV*N), N € N, and V is the multiplication operator
generated in §) by a matrix-valued (scalar-valued if N = 1) function V: R? — CN*V,
with initial domain dom(V') = C§°(R™; CV). As customary, we consider the factorization
of V given by the polar decomposition V' = UW, where W = +/V*V and the unitary
matrix U is a partial isometry. Therefore we may set A = /W, B = v/WU* and consider
the corresponding multiplication operators generated by A and B* in §) with initial domain
C§°(R™; CV), denoted by the same symbols. In the end, we can factorize the potential V in
two closed operators A and B*. Via the Closed Graph Theorem, Assumption I is verified.

Furthermore, in general the operator K, defined in (2.3.1) is a bounded extension of the
classical Birman-Schwinger operator A(Hy — z) ! B* defined on dom(B*). Since in our
case the initial domain of B* is C$°(R™; C), hence dense in £), we get that K, is exactly
the closure of A(Hy — z)~!B*.

: if there

In conclusion, everything reduces to the study of HA(HO - z)*lB*H Hor’
exists zo € p(Ho) such that this norm is strictly less than 1, then Theorem 2.7 holds; if this
is true uniformly respect to z € p(Hj), then also Theorem 2.8 holds true.

2.4 Proof of the theorems

Taking into account the last subsection and recalling the uniform resolvent estimates from
Section 2.2, proving our claimed results on the Klein-Gordon and Dirac operators is now a
simple matter.

For z € p(Hp) and ¢ € C3°(R"™), from the resolvent estimate in Lemma 2.1, we
immediately get

[A(Gm — 2) "' B8] 2 < 1 ATe ]l e |72 (G — 2) 7' B9 2
< C | A7) oo [17=B* ¢ 12
<72V 1 18] 2
<aC ¢l 2 -
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If « = 1/C, then Theorem 2.1 follows from Theorem 2.8. By analogous computations one
obtains Theorem 2.2 making use of the resolvent estimates in Lemma 2.2, and the other
theorems concerning the Dirac operator exploiting Lemma 2.4.

Let us just make explicit the computations for Theorem 2.5 with N1 (V') = [||z|V]| 1 [ -
By Lemma 2.4 we have that

|A(Dy — 2) ' B* |, < HA|:c!1/2 o H!m\‘”zwm - z)-leHM
sgnRz/2
e R |2, _ [l=172B9], .
zZ—m (2L L
24+ m sgnRz/2
<Cy|l+ po— Vg oo 122 -

Setting vy := [1/[C2N1(V))] — 1]* > 1, the condition || A(D,,, — z)*lB*qﬁHﬁ_m > 1 turns
out to be equivalent to the expression

v2+1 2 21 2
Rz — sgn(R L 32)? <
< z — sgn( z)my12 - 1) +(S2)° < <my12 — 1)

which define exactly the disks in the statement of the theorem. Just take any zy € p(Dyy,)
outside these two disks to verify Assumption II’, and finally we can prove the statement
applying the “in particular” part of Theorem 2.7.
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CHAPTER

Keller-type bounds for
Dirac operators perturbed
by rigid potentials

In this chapter we are interested in generalizing Keller-type eigenvalue estimates for the
non-self-adjoint Schrédinger operator to the Dirac operator, imposing some suitable rigidity
conditions on the matricial structure of the potential. What is relevant is that we obtain
results for the Dirac operator without necessarily requiring the smallness of its norm.

The reference for the results in this chapter is [S3], joint work with Haruya Mizutani.

3.1 Keller-type bound for Schrédinger

Let us start recapping in greater details the Keller-type bound for the Schrédinger operator,
partly anticipated in the Introduction.

As we know, the first Keller-type inequality for the non-self-adjoint Schrédinger op-
erator —A + V is due to Abramov, Aslanyan and Davies [AADO01] in 1-dimension, viz.

1
2 < SV 6.11)

where z € 0,(—A + V') and the constant is sharp.

Subsequently, Laptev and Safronov [LS09] conjectured that the eigenvalues localization

bound |2|” < D, , |]V||th,{/22 should hold for any 0 < v < n/2 and some constant
D, ,, > 0. Thanks to Frank [Fral1], the conjecture turned out to be true for 0 < v < 1/2,
and later Frank and Simon [FS17b] proved it completely under radial symmetry assumptions.

Explicitly, in dimension n > 2 the eigenvalues of —A + V satisfy the estimates

1
VI fro<y <,

Ly+n/2
v y+n/2 1 n
2| < Dyn HVHLW/QLEO for 5 <7 <3, (3.1.2)

n
n —
HV”LZ*ngO fory = >
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where the positive constant D, ,, is independent of z and V' and where the radial-angular
spaces L L5 and L)Y L} are defined as

LPLG = LP(Ry, v tdr; L5(S"71)) (5.13)
3.1.3
LPALG = LPY(Ry " dr; L (S"7)

being P4 the Lorentz spaces and S"~! the n-dimensional unit spherical surface. In the
case 1 < p, g < oo, the respective norms are explicitly given by

o . 1/p
ligag o= ([ 170y )

/ (3.1.4)
> q/p
gy = (0 [ 6> 05 150 oy = 1} )

1/q

where y is the measure 7" ~!dr on R, = (0, +-0c). The above relations (3.1.2) hold also in

the case v = 0, in the sense that if Dy, ||VHZ{L2/2 < 1 for some Dy, > 0, then the point
spectrum of —A + V is empty (the optimal constant is given by D3 = 4/(3%?7?) in

3-dimensions).

The Laptev-Safronov conjecture certainly does not hold for v > n/2, as already noted
by Laptev and Safronov themselves. For the range 1/2 < v < n/2, an argument in [FS17b]
suggested that the conjecture should fail in general, and this was recently confirmed
in [BC21] with the construction of a suitable counterexample.

Nevertheless, for n > 1 and v > 1/2, Frank in [Fra18] proved a localization result still
involving the LY+"/2 norm of the potential, but in an unbounded region of the complex
plane around the semi-line o(—A) = [0, +00), viz.

. _ n/2
|2V dist (2, [0, +00)) V2 < Dy IV, (3.1.5)

In the limiting case v = oo one has the trivial bound
dist(z, [0, 4+00)) < Doon |V| 0o - (3.1.6)

Thus, it seems that to go beyond the threshold v = 1/2, one should ask radial symmetry
on the potential, or abandon the idea of localizing the eigenvalues in compact regions (cf.
Section 3.3 below).

To conclude the recap on the spectral results for the Schrédinger operator, besides
the ones related to the above conjecture, one should refer also to [FLLS06], where bounds
on sums of eigenvalues outside a cone around the positive axis were proved, and to the
works [DN02,Saf10,Enb16,FS17a, FKV18b,Fra18,1.519, Cue20], where one can find Keller-
type inequalities involving not only the L? norms.

We turn out our attention to the Dirac operator (1.1.1). If we look at the results we
proved in the first two chapter of this thesis and at the literature therein mentioned,
two situations seems to arise: or the confinement regions are unbounded, containing the
continuous spectrum of the free Dirac operator D,,, or the regions are bounded, but the
potential is required to be small respect to some “cumbersome” norm.

In the present chapter we recover Keller-type bounds which we believe to be a worthy
analogous of the Schrodinger enclosures in (3.1.2), hence exploiting L” norms at least for
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n/2 < p < (n+ 1)/2; also, we can remove the smallness assumption on the potential
(when p # n/2). Of course, to reach such a nice result, the price to pay is high: we will
require to our potentials to be of the form V = vV, where v : R™ — C is a scalar function
in the desired space of integrability, whereas V' is a constant matrix satisfying some suitable
rigidity conditions. Hence, in a way to be clarified later, we will fully take advantage of
the matricial structure of the Dirac operator in order to reduce ourselves basically to the
Schrodinger case.

3.2 Idea and main results

As anticipated above, the trick of our argument relies completely on the matricial structure
of the potential, which in the rest of the chapter will be denoted with the calligraphic letter
V. Before to rattle off the hypothesis we are going to impose on it, in order to understand
our idea we need to apply the Birman-Schwinger principle in its simplest form. In order to
make things work and being formal, just for the moment assume that V is bounded, such
that Dy, y = Dy, + V is well defined as sum of operators.

We know that the principle assure us that z is an eigenvalue of Dy, y, where V = B* A
is a factorizable potential, if and only if —1 is an eigenvalue of the Birman-Schwinger
operator K, := A(Dy, — 2)"!B*. If =1 € 0,(K.) then ||K,|| > 1, which turns out to be
the desired localization bound, if one is able to estimate the Birman-Schwinger operator.

From the well-known identity
(D — 2) 7L = (D + 2)Ro(22 — m?) Iy (3.2.1)

which links the resolvent for the Dirac operator (D,, — z)~! with the resolvent for the
Schradinger operator Ro(z) := (—A — z) ™!, we have that

n
A(Dp—2)"1B* = —i ZAakakRo(z2—m2)l3*+A(man+1+Z)R0(z2—m2)B*. (3.2.2)
k=1

At this point, the receipt one usually cooks (as in the previous two chapters) is the following.
First of all, the polar decomposition ¥V = UW of the potential is exhibited, where W =
vV V*V and the unitary matrix I{ is a partial isometry. Then one takes A = /W and
B = v/ WU*; this choice assures a certain symmetry in splitting the potential, since .4 and
B are in the same space of integrability. Therefore, making use of resolvent estimates and
of the Holder’s inequality, one reaches an estimate of the form 1 < || K || < k(2) ||V| x
for some suitable function x : C — R and space X.

Clearly, the main problem is reduced to the research of nice resolvent estimates. For the
Schrédinger operator, these have been extensively studied, so if we look at (3.2.2) the main
concern comes from the estimates for the derivatives of Ry(z). Our idea here is to choose A
and B in such a way that the terms A0 Ro(2% — m?)B*, for any k € {1,...,n}, simply
disappear (we will make an exception to this for Theorem 3.9). If additionally we impose
also ARy(2? — m?)B* to be zero, we are also able to remove the smallness assumption on
the potential, because it turns out that they originates from this term. Therefore, let us
state the following hypothesis.

Rigidity Assumptions. Let us consider a potential of the type V = vV = B*A, with
A = aA and B = bB, in such a way that v = ba and V' = B* A, where a,b,v: R — C
are complex-valued functions and A, B,V € CNV*¥ are constant matrices.
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On the scalar part v, we impose the usual polar decomposition, viz. a = |v\1/ 2 and

b = sgn(v)|v|'/2, where the sign function is defined as sgn(w) = w/|w| for 0 # w € C
and sgn(0) = 0.

On the matricial part V', we ask the following set of conditions:

AapB* =0 fork e {1,...,n},
V = B*A#0.

It is not restrictive to assume also that
Al =|B[=1

where | - [: CV*N — R denotes the operator norm induced by the Euclidean norm, viz.

|A| = \/p(A*A), where p(M) is the spectral radius of a matrix M.

In addition to the above stated hypothesis, suppose also one between the next condi-
tions:

(i) Aapy1B* # 0and AB* # 0;
(i) Aay41B* # 0and AB* = 0;
(iii) Aapy1B* =0and AB* # 0;
(iv) Aayy1B*=0and AB* =0.

In the following, we will refer to our set of rigidity assumptions as RA(t), where
v € {i,1i,11i,iv} depends on which of the four conditions above is considered.

Remark 3.1. Note that we will not assume any Rigidity Assumptions in Theorem 3.9, but
only in Theorems 3.1-3.8 below.

Remark 3.2. At this point the reader may argue that the assumptions above are not
rigorous, since we have not explicitly defined the Dirac matrices oy, k € {1,...,n+ 1}.
Moreover, there is not a unique representation for these matrices! The concern is legit, and
we will furnish later the exact definitions of our Dirac matrices, in Section 3.5, which will
be all devoted to computations with matrices. The choice of a particular representation of
the Dirac matrices is not restrictive, see Remark 3.6.

Remark 3.3. As will be proved in Section 3.5, we can find matrices A and B satisfying
RA(i) in any dimension n > 1, whereas there are no matrices satisfying RA(ii) and RA(iii)
in dimensions n = 2,4 and no matrices satisfying RA(iv) in dimensions n = 1, 2. This
explains the dimensions restriction in the statements of the theorems below.

We can state now our main results. Recall, other than the Lebesgue norm, the Lorentz
norm and the radial-angular norm introduced in (3.1.4). We refer to Figures 3.1, 3.2 and 3.3
to visualize the boundary curves of the confinement regions described in the various
theorems.

Let us start considering the case of RA(i).
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Theorem 3.1. Letm > 0,n =1 and V = vB* A satisfying RA(ii). Then

22 —m?V? < ol

N =

forany z € o,(Dy,p).

Theorem 3.2. Letm > 0,n € N\ {1,2,4} and V = vB* A satisfying RA(ii). There exists
D nm > 0 such that

+n/2 1
W fro<ys s,
2 .21y v+4n/2 1 n
22 —=m*|" < Dypm HUHLZ*"”L;X’ for§ <v< 5
n
n —
HUHLZL‘ngO fory = 5;

forany z € o,(Dy, ).
In the casey = 0, there exists Dy, > 0 such that, if
[v][n/2 < Dopm
then
(D) = e(Diny) = 7(Don) = (~00, ~m] U [m, +55)
and in particular op(Dyyy) = .

Theorem 3.3. Letm > 0,n € N\ {1,2,4},v > 1/2 and V = vB* A satisfying RA(ii).
There exists D, .y, > 0 such that
|22 —m?/2 dist(2? = m?,0,4:00)) /2 < Dy 0]} 1107,

forany z € o,(Dp,y). In the case y = oo, the above relation is replaced by
diSt(ZQ - m2a [07 +OO)) < Doo,n,m HU”LOO :
Remark 3.4. Note that, since

1Sz if Rz >0,

dist(z, [0, +o0)) = {]z! if Rz <0

then

2|Rz||Sz| if(@?z)2 2

|22 —m?| if (R2)? —

(S2)? >m
Ry m?

dist(2? — m?, [0, +00)) = { (@2)? <

5

The results collected in the three theorems above should be compared with the corre-
sponding ones for the Schrédinger operator, respectively (3.1.1), (3.1.2), (3.1.5) and (3.1.6).
We supposed RA(ii) with positive mass m > 0, which means, looking (3.2.2), that

A(Dp, — 2) 7' B* = m[Aa,11B*][aRo(2* — m?)b].

Roughly speaking, the Birman-Schwinger operator for D,,, + V behaves (more or less) as
the Birman-Schwinger operator for —A + v. This explains the strict connection between
the Dirac and Schrédinger results.

If we consider RA(ii) with m = 0, or instead RA(iv), then the Birman-Schwinger
operator for Dirac vanish identically, implying the following result of spectral stability.
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R

\m/

(a) Case of Theorems 3.1 and 3.2.

o

!
Y

(b) Case of Theorem 3.3.

Figure 3.1: The plots of the boundary curves corresponding to the spectral enclosures described in
Theorems 3.1, 3.2 and 3.3, for various values of the norm of the potential.

When 5 := D n.m HU||A’+"/2 = 1, where D1 /31, = 1/2 and ||v|| is one of the norms appearing
in the theorems, we have two regions joined only in the origin (in yellow). If 5 < 1 there are two
disconnected regions (in red), while if 8 > 1 there is one connected region (in blue).

The curves in picture (a) are known as Cassini ovals with foci in m and —m.
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Theorem 3.4. Letn € N\ {2,4}, m = 0 and V = vB* A satisfying RA(ii), or alternatively
n € N\ {1,2}, m > 0 and V = vB* A satisfying RA(iv). Then

U(Dm,V) = Uc(Dm,V) = U(Dm) = (_007 _m] U [m, +OO)
and in particular op(Dy,y) = .

We stress out again that the above results does not require any smallness assumption on
the potential, even if, of course, the regions of confinement described in Theorems 3.1, 3.2
and 3.3 become larger and larger when the norm of v increases.

Let us wonder now what happens removing the condition AB* = 0. As we see from
the following theorems, the requirement that the potential should be small pops up again.
Moreover, we find a compact localization for the eigenvalues (or their absence) only respect
to the L'-norm when n = 1, and to the Lg’ngo—norm whenn > 2.

About the localization around the continuous spectrum of the free operator, it is not
so nice as that in Theorem 3.3, where the region of confinement, even if unbounded,
“narrows” around o (D,,,). Denoting for simplicity with A/ one of the region described in
Theorems 3.6 and 3.8, we have that it “become wider” around o (D, ), even if the sections
N Nn{z € C: Rz = ¢} are compact for any fixed zy € R. Also, we need to require
v > n/2, otherwise the region N would be the complement of a bounded set, and hence
not so interesting (see Section 3.4).

Hence, let us state now the results assuming RA(iii) and RA(i) respectively.
Theorem 3.5. Letn € N\ {2,4}, m > 0 and V = vB* A satisfying RA(iii). Moreover, let
us set for simplicity

= {ku =1,
o * n ] > .
gy ifn>2
There exists Coy > 0 such that, if ||v]| < Co and m > 0, then
|22 = m?|V2 |2 < Gyt ol
forany z € o,(Dp, ), whereas, if ||v|| < Cy and m = 0, then
(Do) = 0e(Poy) = o(Do) =R

and in particular 0,(Dy y) = @.
Ifn =1, we can take Cy = 2.

Theorem 3.6. Letn € N\ {1,2,4}, m > 0,V = vB*A satisfying RA(iii) and y > n/2.
Then there exists Cy > 0 such that

22 — m?|Y/2]2] 772 dist(22 — m?, [0, +00))7 72 < Gyt o177,

forany z € 0,(Dy,v). If ¥ = 00, the above relation is substituted by
|2 dist(2* —m?, [0, +00)) < C5 [[v]| e -

vy+n/2

Ify = n/2, we should ask also that ||v||, />

< Cy.
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)

(a) Case of Theorem 3.5.

(b) Case of Theorems 3.7 and 3.9.
Figure 3.2: The plots of the boundary curves corresponding to the spectral enclosures described

in Theorem 3.5 and in Theorems 3.7 and 3.9, for various values of the norm of the potential. The
region is always the union of two disconnected components.
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(a) Case of Theorem 3.6.

1224

(b) Case of Theorem 3.8.

Figure 3.3: The plots of the boundary curves corresponding to the spectral enclosures described in
Theorems 3.6 and 3.8, for various values of the norm of the potential and for n/2 < v < oco.
According to the value of the norm of v, the enclosure region can be composed: by two disconnected
components (in red); by two components joining in two points in the case of Theorem 3.6, and in
the origin in the case of Theorem 3.8 (in yellow); by one connected region (in blue), which presents
a “hole” around the origin in the case of Theorem 3.6.
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Theorem 3.7. Letn > 1, m > 0 and V = vB* A satisfying RA(i). Moreover, let us set for

simplicity
o {H-m =1
gy ifn>2

There exists a constant Cy > 0 such that, ifm > 0 and ||v|| < Co, then the point spectrum
of D,y is confined in the union of the two closed disks

op(Dy) € Br(cy) U Bg(c-)
with centers and radius given by

C4 + vt 202 ||lv|?
e =m0 | H4’ - 40H H4'
Co — [l Co — vl

Instead, if m = 0 and ||v]| < Cy, then
o(Do,y) = 0c(Doy) = 0(Do) = R

and in particular 0,(Dy y) = @.
Ifn =1, we can take Cy = 2.

Theorem 3.8. Letn > 2, m > 0,V = vB*A satisfying RA(i) and v > n/2. Then there
exist Cy > 0 such that

sgn Nz

z4+m _(’H_%) 2 v+n/2

L'y+n/2

122 — 2|z (17=3) dist (22 — m?, [0, +00))7"2 < C5* o]

Z—m

forany z € o,(Dyy,v). If ¥ = 00, the above relation is substituted by

sgn Rz—1 sgn Rz+1

lz—m| 2 |z4+m|" 2 dist(z? —m? [0, +0)) < Cy [|v]| oo -
Ify = n/2, we should ask also that ||v|]7::f,{/22 < Cp.

As we already explained, the main trick to get the theorems above basically consists of
imposing all the term of the type A0 Ro(2? — m?)B* in (3.2.2) to vanish, leaving only
the last term:

A(D,, — 2)71B* = A(may1 + 2)B* [aRo(22 - mz)ﬂ :

This because we want to employ estimates for the resolvent of the Schrodinger operator but
not for its derivatives. However, the work [BRV97] furnish us some kind of such estimates
for the derivatives of the Schrédinger resolvent (see Lemma 3.3 below). Consequently, we
can easily obtain the following confinement result without requiring any special structure
on the potential V, but only assuming its smallness respect to the LZ’ngo—norm.

Theorem 3.9. Letn > 2, m > 0 and V: R* — CN*N g generic potential. There exists a
constant Co > 0 such that, ifm > 0 and HV”L’,}’ngO < Cy, then the point spectrum of D,y

is confined in the union of the two closed disks

op(Dy) € Br(cs+) U Bp(c-)
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with centers and radius given by

2
ve+4+1 2v
Ci:imm, R:mr_l, V=

Instead, if m = 0 and HV”Lﬁ’ngO < Cy, then
o(Do,v) = 0c(Do,v) = (Do) =R
and in particular o,,(Dyy) = 2.
The above theorem is a generalization of Theorem 3.7, dropping the many restrictions

on V and with slightly modified definitions for the centers and the radius of the disks. In
some sense, it can be seen as the radial version of the result in Theorem 1.1 from Chapter 1.

3.3 Resolvent estimates for Schrodinger

In this section we collect some well-known resolvent estimates for the Schrédinger operator.
For our purposes the estimates on the conjugate line are sufficient, but we think it is nice
to look at the complete picture.

For dimension n > 3, let us define the following endpoints
n+1l n—-3 , n+3 n—1
A'_<2n’2n>’ A'_(2n’2n>’

B::<n+1 (n—1)2>’ B,::<n2+4n—1 n—1>7

2n ' 2n(n +1 2n(n+1) = 2n
_A+A’_<n—|—2 n—2 _B+B’_< n+3 n—1 >

AO : ) )
2n 2n 2

n+1n-1
C:=
( 2n 7 2n ) ’
and the trapezoidal region

11 2 1 1 21 11 -1
Tni=<(=~)€Q: gf——g—,—>n+ ,—<n
P q n+l1 7" p q " n p 2n ¢ on

=[A,B,B A]\ {[A,B|U A, B']}

By =
2 0 2(n+1)"2(n +1)

where Q is the square [0, 1] x [0, 1] and, for any finite set of points {p1,...,pr} C Q, we
denote with [p, ..., px| its convex hull.

In the 2-dimensional case we define

(31 , (111 _B+B" (51
p=(py) #= (1) B="5 =(3a)

31 3 1

Ag:=(1 =(-,- D:= (- D :=(1,=
0 (70>7 C <474>7 (47())7 <74>

and the diamond region
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3.3. RESOLVENT ESTIMATES FOR SCHRODINGER

Lemma 3.1. Let z € C\ [0, 400). Ifn = 1, then

1
-2 =2 g < el

Ifn > 2, there exists a constant C > 0 independent on z such that:
(i) if (1/p,1/q) € Ty, then

[(-A -2 < oo *3G), (3.3.1)

-1

) ||LP~>L‘1

(i) if (1/p,1/q) € {B, B’} orif, whenn > 3, (1/p,1/q) € {A, A’}, then the restricted
weak-type estimate

(o= < clef163)

)71HLP71—>L‘L°°

holds true.

The 1-dimensional estimate immediately follows from the explicit representation for
the kernel of the Laplacian resolvent, i.e.

(Ao = [ eV
—A—z_uac:/ —— "V Yy (y)dy,

oo 2V/Z
and from the Young’s inequality. This estimate was firstly applied to obtain an eigenvalues
localization for the Schrédinger operator by Abramov, Aslanyan and Davies [AADO1].

The estimate in Lemma 3.1.(i) has been proved true on the open segment (A, A’) and
on the conjugate segment [Ag, By| in Lemma 2.2.(b) and Theorem 2.3 of the celebrated
paper [KRS87] by Kenig, Ruiz and Sogge. From here comes out the adjective “uniform”
with which these kind of estimates are known (even if the multiplicative factor in general
shows a dependence on z): the main result in [KRS87] concerns the exponents on the
segment (A, A’), on which the exponent in the factor |z|~1+(1/P=1/0)%/2 js indeed equal
to zero. Nowadays, the term “uniform” is generally used when the multiplicative factor is
bounded for large value of |z|, which is relevant if we want to localize the eigenvalues in
compact sets.

The estimate (3.3.1) was then proved true on the optimal range (1/p,1/q) € T, by
Gutiérrez in Theorem 6 of [Gut04]. In this work the author proved also the inequality at
Lemma 3.1.(ii) on the endpoints B and B’, whereas the proof for the endpoints A and A’
was recently given by Ren, Xi and Zhang in [RXZ18].

It should be noted that both the works [KRS87] and [Gut04] assume n > 3. The
2-dimensional case seems to have been gone quietly in the literature, nevertheless the
arguments in the aforementioned papers can be quite smoothly extended in dimension
n = 2. This has been observed firstly in Frank [Frall] concerning the Kenig, Ruiz and
Sogge’s result, and by Kwon and Lee [KL20] about the work by Gutiérrez.

Now, one question arises naturally: does estimates similar to (3.3.1) hold outside the
region 7,,? Well yes, but actually no. The range of exponents stated in the above theorem
is optimal: estimates (3.3.1) does not hold true if (1/p, 1/q) lies outside 7,,. For n > 3,

1

the constrains 5> "2—21 and é < "2—;1 are due to considerations from the theory of the
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3.3. RESOLVENT ESTIMATES FOR SCHRODINGER

Bochner-Riesz operators of negative orders, the condition  — % > %H comes from the

Knapp counterexample (see e.g. [Str77]) and finally % - é < % follows by an argument
involving the Littlewood-Paley projection. For details on this discussion we refer to [KL20]
(and to [KRS87]).

=

Nonetheless, we can still extend the region of the estimates if we sacrifice something.
This is the main theme of the paper [KL20] by Kwon and Lee, where they conjecture that,
forn > 2and z € C\ [0, +00), the relation

_ _qyd(1_1 |2| v(n,p,q)
H(_A —2) IHLPan ~ 4] +2(p Q) <dist(z, [0,—|—OO))> (3:3.2)

with

1 /1 1 1 —1
y(n, p,q) ::maX{O,l—n+ <_>’n—|— —E,E—n } (3.3.3)

should hold on the “stripe”

S:—{<1,1>€Q:0§1—1§2}\80 (3.3.4)
b q b q n

where

_ [IA,BJU[A, B'|U[E, Eo) U (Eo, E'J U{F}U {F'} ifn >3,
*" 1B, D]U[B,D'|U[E, Eo) U (Eo, E'| U{Ao} ifn =2,

o n—l’n—l . n+1’n+1 By = 171 ’
2n 2n 2n 2n 22

F = (2,0>, F = (1,”_2>.
n n

The symbol A = B in (3.3.2) means that there exists an absolute constant, independent on
2z, suchthat C"'B < A < CB.

Observe that the region S contains in particular 7, on which v(n,p,q) = 0 as one
can naturally expect in light of the Kenig-Ruiz-Sogge-Gutiérrez inequalities. In their work,
Kwon and Lee prove their conjecture to be indeed true, making exception of the upper
bound implicitly contained in (3.3.2) on the region

- (o ifn — 2,
R = nn (3.3.5)
RUR' ifn >3,

where
R = [P*7P07E0]\{E0}7 R = [PLP(;EO]\{EU}?

and the endpoints are defined by
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with
M5 =D e i odd M3 =1 e s odd
1 e an— ) SRR WD PICEE TR ’
Po M if 1 is even % w if n is even
2(”2 +3n_ 2) ven, 2(n2—|—3n—2) ’
3(n—1) . .
— 7 if
i B 23T 1) if n is odd,
T -2
D+ 2(337;14—2) if n is even.

Let us gather the above results by Kwon and Lee [KL20] in the following lemma.

Lemma 3.2. Letn > 2 and z € C\ [0, +00). There exists a constant K > 0 independent
on z such that:

(i) if (1/p,1/q) € S, then

- 4y —14n(iot |2| v(n,p,9)
H(_A_Z) IHLPanZK 2] +2(p Q) <diSt(Za [0,-1-00))) !

(i) if (1/p,1/q) € S\ R, then

H(_A_Z)_IHLPHL‘I

" ¥(n,p,q)
< Klz\_lﬁ(%_%) id :
- dist(z, [0, +00))

The regions S and R are described in (3.3.4) and (3.3.5) respectively, whiley(n, p, q) is defined
in (3.3.3).

The analysis of Kwon and Lee pictures quite clearly the situation outside the so-called
“uniform boundedness range” 7T,,: we can still have LP — L9 inequalities so long as the
factor depending on z explodes when Sz — 0%, and this can not be improved. If we want
to apply these estimates in the eigenvalues localization problem, this means that we can
not obtain the eigenvalues confined in a compactly supported region of the complex plane,
but in a set containing the continuous spectrum of the unperturbed operator.

In this optic, one can instead try to save the uniformity of the estimates, in the sense
that the factor depending on z should be uniformly bounded for |z| sufficiently large. In
this way, we can again hope to get the eigenvalues confined inside compact regions. This
can be indeed obtained on a smaller region respect to S if we restrict ourself on considering
radial functions.

Define, for n > 2, the open triangle

Y > 9
p q n+1 p 2n

1 1 1 2 1 n+1 1 n—l}

— - - <

n q
=[B,C,B'|\{|B,B|U[B,C]U|[C, B]}.

2n
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Recall the radial-angular spaces defined in (3.1.3) and their norms (3.1.4). Adopting the
terminology and notations of [BRV97] and [FS17b], we introduce also the radial Mizohata-
Takeuchi norm

w = su M oo (gn—1y dr
ey M ey = L PR

and we say that w € MT if ||wl| 7 < oo.

Lemma 3.3. Letn > 2 and z € C\ [0, +00). There exists a constant K > 0 independent
on z such that:

() if (1/p,1/q) € (C, Bo), then

l-a—2)" < Ko7' 75

' HLﬂL%aLng

(i) if (1/p,1/q) = C, then
[(—A == *1HL2,L/(M),1L2 pn/niee s < K|z|71/2, (3.3.6)

[V(-A - HLG/(n+1> 1pa /e S K. (3.3.7)
Ifin particular u € LP(R™) is a radial function, then
G0
I(=A =27l < K2l 2070 ],

forany (1/p,1/q) € P, and

H(_A - Z)_luHLG/(n—l),oo < K|Z|_1/2 [[ull p2n /).

HV(*A - Z)_IUHLQTL/(n—l),oo < K Jull p2n/mna

in the case (1/p,1/q) =

Proof. The result in Lemma 3.3.(i) is stated in Theorem 4.3 by Frank and Simon [FS17b].
Instead, the case of the endpoint C' is essentially due to Theorem 1.(b) and Theorem 2 by
Barcelo, Ruiz and Vega [BRV97]. Indeed, let us consider firstly the estimate for (—A — 2)~1.
Observe that, by Holder’s inequality and by duality, the estimate (3.3.6) is equivalent to

1/2 1/2 — 1/2
[ (=8 = 27wy ||, < K ol el e 538)

for any wy,ws € Lg’ngo. In fact, that (3.3.6) implies (3.3.8) is obvious by Hélder’s inequal-
ity for Lorentz spaces. Conversely, we have that

1/2 1, 1/2
Hw/ (—A—2) 1w2/ u‘
sup
0w €L Lge H

L2

H(—A —2)” 1w%/2u’

2/ (Do 2 - 1/2‘

wy

2n,2 r 0o
L22rs

< Kl2| 72 flwal g e llull 2
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n

that is to say that, for any fixed w € L,
from L? to L?)n/(n_l)’ooLg with norm

’ILCQ’O, the operator (—A — z)~'w!/2 is bounded

< K|z|7Y2

A o—1,1/2
H( A=z w ’L2—>L,2)"/("_1)’°°Lg_ ”wHLZL’lL?'

By duality this implies that the operator w'/2(—A — z)~! is bounded from L,Q)n/ (n+1)’1Lg

to L? with norm

< K122 ]

s

/2 e Lg”

from which we finally get
Hwi/Q(—A - z)_lu‘

(=A = 2) 7| 2njm-1y.00 0 = sup
H HLi /(n=1),00 12 Ostun L L Hwiﬂ’

L2

2n,2
22

< K z 1/2 u n/(n+ .
= | | || ||[f7 /( 1),1[3
From Barcelo, Ruiz and Vega [BRV 97] we haVe that

1/2 — 1/2 — 1/2 1/2
e G e N g [ e 1 1 PP CX X0

which implies (3.3.8). Indeed, we can replace the M7 norm with the LZ’ILEO norm since,
as proved in equation (4.2) of [FS17b], the embedding

L Ly — MT

holds true (cf. Theorem 4.4 in [FS17b]). To be precise, equation (3.3.9) is proved in [BRV97]
for w1 = wy € MT, but the possibility of choosing two different weights follows easily
from their proof (see Proposition 2 of the same paper).

Consider now the estimate for V(—A — z)~! on the endpoint C. From Theorem 2

in [BRV97] we have that

ol 2 < K wll g [|w!/29 (=2 = 2)w /2| (33.10)

L2

for z > 0. Supposing this inequality true for any complex number z, we can then obtain
estimate (3.3.7) following the same argument as above. The fact that (3.3.10) is true ev-
erywhere on the complex plane is implicit in the proof given by Barcelo, Ruiz and Vega.
Indeed, the proof of Theorem 2 at pages 373-374 of [BRV97] is still valid for any real z.
Then, the argument based on the Phragmén-Lindelof principle exploited at page 373 to
prove Theorem 1.(b) can be adapted also to this situation, proving (3.3.10) for any z € C.

Finally, for radial functions the radial-angular norms (3.1.4) from [FS17b] reduce simply
to the Lebesgue and Lorentz norms. Real interpolation between the estimates on the open
segment (C, By) and the ones on the open segment (B, B’) coming from Lemma 3.1 prove
the assertion on P for radial functions. O

Thus ends our recap on the Schrodinger resolvent estimates. The results in Lem-
mata 3.1, 3.2 and 3.3 are visually summarized in Figure 3.4. We conclude this section with a

direct corollary of Lemma 3.3 concerning the free Dirac resolvent.
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Q=
Q

(0,1) (0,1)
E/
Pl
e R!_»P)
Bo - Bo -7
?/ ° - F
~ ’R// ‘
S. 7
- Puolg
7
B
5
(0.0 0.0 F L0) 1
(a) Case n = 2. (b) Case n > 3.

Figure 3.4: In this picture we visualize the many regions and endpoints appearing in Section 3.3.
The Kenig-Ruiz-Sogge-Gutiérrez region 7,, from Lemma 3.1 is highlighted in blue, while in red we
show the triangle P from Lemma 3.3 about the estimates for radial functions. Finally, the yellow
region S is such that S \ R = SUPUT,, where S is the Kwon-Lee region interested by Lemma 3.2
and R = R U TR’ is pictured dotted.

Corollary 3.1. Letn > 2, m > 0 and z € C\ {(—o00, —m] U [m, 4+00)}. There exists a
constant K > 0 independent on z such that

H(Dm — 2,’)_1HLin/(n+1),lL§_>L;2)n/(n—1),ooLg S K 1 +

zZ—m

sgn Nz
z+m| 2 ]

2n
and in particular, ifu € L»+1'(R™) is a radial function, then

14 Z+m

1P =) et oo < K

Z—m

sgn Rz
2
] [wll p2n/eany.a -

Proof. By the identity (3.2.1) and the estimates (3.3.6)—(3.3.7), it is immediate to get

|(Dm — 2) || 2n o < Zakﬁk(—A+m2 — 2ty

Ln—1" 2n
k=1 Ln—1°°
+ ||(mant1 + 2InN) (A +m* — Z2)71“HL%@°
<vn HV(—A +m? — 22)_1uHL%m
+ max{|z + m|, |z — m|} H(—A +m? — :52)*11LHL%,oo
sgn Rz
z+m| 2
<K |1+ ] ||u”L2n/(n+1),1
z—m
and hence the claimed inequalities. O

Let us combine now the estimates above with the Birman-Schwinger principle to get
our claimed results.
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3.4 Proof for the theorems

Before to put our hands on the computations for the theorems, we need to bring to mind the
abstract technicalities of the Birman-Schwinger principle exploited in Section 2.3, where
we also properly defined an operator perturbed by a factorizable potential. In our case,
H =9 = L2(R"CV*N)and V = B*A is a multiplication operator in $), with initial
domain dom(V) = C§°(R"™; CV), generated by a matrix-valued function V: R" — CV*V
(again, with the customary abuse of notation, we use the same symbol to denote the
matrix and the operator). Same thing holds for the operators .4 and B*, which is not
restrictive to consider closed. In this way, Assumption I is verified by the Closed Graph
Theorem. By the argument exploited in Subsection 2.3.1, since dom(B*) = C$°(R"; CV),
then K, = A(Hy — z)~1B*. As usual, we reduced to study just HA 0—2) 1B

Hﬁai)
Recall the identity (3.2.2). Exploiting the Rigidity Assumptions and setting for simplicity
k% = k2(z) := 22 — m?2, (3.2.2) becomes

A(Dy, — 2)7'B* = (mAay, 11 B* + zAB*)aRy(k*)b.

In particular, assume that RA(¢) hold, for fixed ¢ € {1, 74, 4i%, v }. Then, since |A| = |B| =1,
we get
[A(mani1 + 2IN) B*|| o < 5

where
) sgn Rz
|k(2)] zrml ift =i¢andm > 0,
zZ—m
w=xn(z):=¢(m ift =4 and m > 0,
H ift =443, 0or e =1and m = 0,
0 if t = 4v,0r ¢ = 95 and m = 0.

By Holder’s inequality,
A~ 2756 o < llall 20 W1 2o [ RoG)] o 6

1/2

and so, recalling that |a| = |b| = |v|'/*, setting g = p’ and 1/r = 1/p — 1/q, we get

[ AP = 2)7'B*¢|| 12 < |0l

RO(k2)HLp_>Lq H¢HL2 :

Similarly one infers also

APy, = 2) 7' B*|| o2 < %ol y e HRO(kQ)HLngﬁLZLg
[ A(Dm = 2)7'B"|| 2,2 < %HU”LZ’ILEO HRO(kQ)HLgvngaLgng :

From Lemmata 3.1, 3.2 and 3.3 on the conjugate line (hence on the segments [Ag, By,
(Bo, C| and (C, Ey] respectively), if n = 1 we get

|A(Dy, — 2)~'B* Z1k o)l (3.4.1)

HL2—>L2 = 9
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whereas, if n > 2 and r > 1, we have

1
bl ifre s o],
2 2
—1 72+ﬂ
|A(Dm — 2) 7' B|| ;2,2 S k727 loll g ifr € <“+17n>, (3.4.2)
ad’] 2
H’UHLZ,ngo ifr =n,
%|k‘]_% n+1
HA(Dm_Z)_llg*HLQA)LQ ~ |_nil ||’UHLr ifr € <27OO:| (343)
2r

dist(k2, [0, 00))
In short, we have found inequalities of the type

[A(Dm = 2)7'B" < Cr(2) |l

HL2—>L2

for a suitable norm ||-|| of v, a positive constant C' independent on z and where the function
k is either

k(2) = 2(2)[k(2)| 72T or k(z) = (2

|k(z)| 1"
dist(22 — m?2, |0, -l—oo))lfn;r1 ‘

Applying the Birman-Schwinger principle and proving our results is now straightforward
and easy, maybe just a bit dazzling due to the fauna of cases. According to the hypothesis
assumed in the statements of each of our theorems, observe that the region S described by

S={z€C: 1< Ck(z)|v||}

in any case covers all the region p(D,,) = C \ {(—o0, —m] U [m, +00)}. Ergo we can
always fix a complex number zy € p(D,,) outside S satisfying CK(2g) ||v|| < 1, namely
Assumption I’ is verified (e.g. one can take zy = iyo, for yp € R sufficiently large). By
Theorem 2.7 we can deduce that the point spectrum of the perturbed operator D,, y is
confined in §. If in particular x(z) is a nonnegative constant smaller than 1 (even 0, in
which case the Birman-Schwinger operator is identically zero), we can exploit Theorem 2.8
obtaining that o(Dy, v) = 0c(Dm,v) = 0c(Dr) = (—00, —m]U[m, +00) and in particular
Up(Dm,V) =4a.

In the case of RA(ii) with m > 0, we have s = 1 and it is immediate, from the Birman-
Schwinger principle and all the above estimates for A(D,, — z) 1%, to conclude the proofs
for Theorems 3.1, 3.2 and 3.3. When we consider RA(ii) with m = 0 or instead RA(iv), then
2 = 0 and hence the Birman-Schwinger operator is identically zero, implying the stability
of the spectrum stated in Theorem 3.4.

sgn Rz/2
Now consider the case of RA(i) and m > 0. Therefore »(z) = |k(z)| |ZE2 ¢ an
hence x(z) is either of the form
ialz4m sgnRz/2
k(z) = [k(z)] 1 P (3.4.4)
or of the form
k(2)|1-1/r 2 4+m sgnRNz/2
K(z) = — [k(2)] ) (3.4.5)
dist(z2 —m?2,[0,400)) "z |2
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We are interested in localizing the eigenvalues in compact regions, or at least in neighbor-
hood V of the continuous spectrum of D,,, such that VN {z € C: Rz = z} is compact for
any fixed xo € R. At this aim one should ask that x(z) is uniformly bounded as |z| — oo
in the first case, and that K (xg + 3%) is uniformly bounded as |3z| — oo in the second
case. It is easy to check that if x(z) is like in (3.4.4), then

K(z) ~ |2 7T as |z = oo
whereas if £(z) is like in (3.4.5), then
KRz +1iS2) ~ Sz as Sz = oo

for fixed Rz € R. In both cases, we should ask 7 > n to get an interesting (in the sense
specified above) localization for the eigenvalues. The same argument holds in the case of
RA(i) and m = 0, or in the case of RA(iii), namely when »(z) = |z|. For this reason, to
get Theorems 3.5-3.8 we only employ the estimates (3.4.1), (3.4.2) for » = n and (3.4.3) for
yi=r—n/2>n/2

sgnRz/2

In particular, Theorem 3.7 when »(z) = |k(z)] | ZE2 is implied by (3.4.1) and
sgn Rz /2
(3.4.2) for r = n, taking in account that HCT?\ < |z is equivalent to

G+ ol*)” 23 ol \’
(|§Rz] - m04> +(32)? < <m04>

Co — Il Co — Ilvl
if ||v|| < Cp. In the same case, (3.4.3) implies Theorem 3.8. When instead »(z) = |z|
and m = 0, noting that s|k|~! = 1, thanks to (3.4.1) and (3.4.2) for 7 = n we can prove
the massless cases in Theorems 3.5 and 3.7. The last inequalities are used to prove also
Theorem 3.5, in the case of RA(iii) and m > 0. Finally, Theorem 3.6 is proved exploiting
(3.4.3) in the case > = |z|. We conclude noting that in Theorems 3.6 and 3.8, when v = n/2,
the additional hypothesis Hv!]zjﬂ/zg < () is necessary, since in this case K (xg +i3z) ~ 1
as |Jz| — oo for fixed zp € R. Hence, if the norm of the potential is not small enough, the
condition N’ N {z € C: Rz = x¢} compact would not be satisfied.

Last but not least, we sketch the proof of Theorem 3.9, which is not so different from
that of Theorem 3.7. Here we need to use the usual polar decomposition V = UW = B* A
with A = VW and B = vWWU*. Employing Corollary 3.1, by Hélder’s inequality we
immediately obtain

sgn Rz
2
] b1l e -

Assumptions I and II are verified as above, and note that in the massive case the inequality

sgn Nz
zZ+m| 2 ]

zZ+m

[ ADm = 2) 7 B o < K [Vlpnape |1+

zZ—m

LK Vil |1+

zZ—m

describes the two disks in the statement of Theorem 3.9, letting Cy = % Another
application of the Birman-Schwinger principle concludes the proof.
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3.5 Game of matrices

The present section is fully dedicated to computations with matrices in order to exhibit some
explicit examples of potentials VV = vV such that the matricial part V' can be factorized
in the product of two matrices B* and A satisfying the various assumptions stated in
Section 3.2.

We will prove that in some low dimensions it is not possible to find the required
potential, more precisely they do not exists in dimension n = 2,4 in the case of RA(ii)
and RA(iii), and in dimension n = 1, 2 in the case of RA(iv). In all the other case, we will
exhibit at least a couple of examples. There is no intent here to be exhaustive in finding
the suitable matrices, but rather we want to suggest an idea to build them. At this aim we
firstly need to show an explicit representation for the Dirac matrices, and then we need to
introduce some special “brick” matrices.

3.5.1 The Dirac matrices

First of all, as anticipated in Remark 3.2, let us explicitly define the Dirac matrices we are
going to employ in our calculations, or better, one of their possible representations. At this
aim we rely on the recursive construction performed by Kalf and Yamada in the Appendix
of [KY01].

Let us introduce the Pauli matrices

(0 1 ({0 — (1 0
g1 = 1 0 ; o9 — i O s o3 = O 1 .

Moreover, let us define for two matrices A = (a;;) € C"*“ and B = (b;;) € C"2*,
with rq, c1, 72, co € N, the Kronecker product

anB - a1,B
A® B := : .. : c Qriraxeics
apmB - apyB

Recall that the Kronecker product satisfies, among others, the associative property and the
mixed-product property, viz.

A1®(A2®A3) :(A1®A2)®A3:A1®A2®A3
(A1 ® B1)(A2 ® By) = (A142) ® (B1Bs).

The Dirac matrices in low dimensions can be chosen to be the Pauli matrices, namely
for n = 1 we set

(1) . (1) .
o’ =01, 042).20'3,

and forn = 2
(2) (2) (2)

Q1 =01, Qo " 1= 02, Qg " 1= 03.

The apex (n) stands for the dimension; we will omit it when there is no possibility of
confusion. Let us start the recursion, after recalling that we defined N := 2 [n/2],
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(i) if n > 3 is odd, we use the matrices agn_l) ey aﬁln_;ll) known from the dimension
n — 1 to construct
n -1 n
aé)::m@a,(cn ), ozfl_gl =03 ® Injo
fork e {1,...,n}
(ii) if the dimension n > 4 is even, we define
-2
agn) =0 ® IN/Q, 0‘1(:21 =09 ® a;n ), agil =03 ® IN/2
forke{l,...,n—1}
In any dimension n > 1, the Dirac matrices o, ..., ay41 just defined are Hermitian,

satisfy (1.1.2) and have the structure

a’“‘(ﬁz 0)’ ‘“"“‘( 0 ~Inp

for k € {1,...,n}, where the matrices ) € CN/2XN/2 gatisfy
BrB; + BB = 207 In/o
and are Hermitian if n is odd.

Remark 3.5. Not only in dimension n = 1, 2, but also in dimension n = 3, the above
representation for the Dirac matrices coincides with the classical one:

0 001 0 0 0 —i
3) _ 10 0 1 0 (3) _ 10 0 ¢ O
MTABAT Ao 4 g o) 2 TAERT g g oo |
1 0 00 : 0 0 O
0 0 1 0 10 0 O
3) 10 0 0 -1 3) 101 0 O
A SNEo=g g g oo [0 M TBER=(g 0 4
0 -1 0 O 00 0 -1
Remark 3.6. If {a1,...,ap4+1} and {a, ..., G,11} are a pair of sets of Dirac matrices,
then there exists a unitary matrix U € CV*¥ suchthat &y, = UapU toray = —UapU™L,
fork € {1,...,n+ 1}. If n is odd we always fall in the first case; if n is even and we are

in the second case, set U = U szl o, then

n n
ﬁm = —1 Z &kak + m&m_l = ﬁ —1 Z Ckkak — MOp+1 (7_1 = ﬁD_mﬁ_l.
j=1 j=1

Therefore, considering the perturbed operator D in odd dimension it is unitarily

m,\~/’
equivalent to Dy, 1 with VV = UVU ~1, whereas in even dimension it is unitarily equivalent

to either D,y or D_,;, y.

In our case, noting that all the results in Section 3.2 are symmetric respect to the
imaginary axis (namely they are not effected replacing m with —m in the definition of the
Dirac operator), it becomes evident that the choice of a particular representation for the
Dirac matrices is not restrictive at all.
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The above recursive definition for the matrices may appear too much implicit, but we
can go further exploding the representation. Let us define the “Kronecker exponentiation”
M =1
M*F=M® - oM
—_—
k times

for any complex matrix M and for any £ € N, imposing the natural identification between
1 € C and the matrix (1) € C!*!, Therefore, one can explicitly write the Dirac matrices in
even dimension n > 2 as

a?k_1®01®12®n/2_k forke{l,...,g}
n
o = a?n/Q for k = 5 +1 (3.5.1)
J§"+1_k®03®1§k_n/2_2 forke{g—l—Q,...,n—i—l}

and in odd dimension n > 3 as

1)/2- —1
G1®U§®k_1®01®12®(n /2-k fork‘e{l,...,n2 }

n— -1
01®0’§( /2 fork‘:n2

—(n—1)/2— -1
U1®O’§®n_k®03®fé®k (n—1)/2-2 forkE{n2+2,...,n}

+1

€93

03®12®(n_1)/2 fork=n-+1

The odd dimensional case follow easily from the recursive definition and from the explicit
definition (3.5.1) of the Dirac matrices in the even dimensional case; the latter can be easily
verified by induction, and we omit the proof.

For later use, we collect in the following lemma a recursive formula which connects
the Dirac matrices associated to two different dimensions.

Lemma 3.4. Let n,m € N such that 2 < m < n andn — m is even. Thus the following
identity hold:

a,(ﬂm)®12®(nfm)/2 fork € {1,..., V;LJ}
ozl(cn) = O‘(LZ)/zﬁ-l ®ozl(€n__$)/2J fork € {L%J +1,...,n—m+ V;J + 1}

oz,(cm)(n_m) ®I§§(”_m)/2 fork € {n—m—l— {%J +2,...,n+1}

where |- |is the floor function.

Proof. If n, m are both even, we want to prove

al™ @ 2n-m/2 for k € {1%}
o) = Lol @almm) forke{5+1,...,n—5+1} (3.5.2)

al(ﬁ)(nim) ®I£®("_m)/2 for k € {n— % +2,...,n+ 1}.
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But, from (3.5.1) and setting for simplicity j := k —m/2, h := k — (n —m) forany k € N,
we immediately have

0§®k71®01®f2®%_k®12®n_2m forke{l,...,%}
a§%®ag_1®01®1§%ﬁ forke{%—&-l,...,%}
ag‘): gf% ®g;®n_2m forkzzg—i—l
a§%®ag’_m+1_j®03®1§j_%_2 forke{g—l-z ,n—%—l—l}
ag®m+1—h®a3®1§h*%*2®[§"5m for k € {n—%+2,...,n+1}
from which our assertion is evident.
If n, m are both odd, exploiting (3.5.2) it follows that
(n) o1 ® oz,(ﬁnfl) fork e {1,...,n}
Y = ®n/2—1 B
03 ® Iy fork=n+1
_ _ —1
01®a,(€m 1)®12®(n m)/2 forke{l, ,mz}
2™ @al"™ forke ™11 -l
_ O ¥ -1y 241  Ypm(m-1)j2 1O B R B
_ _ 1
01®a](:f(72m)®fgg(n m)/2 forkze{nJrl, .,n}
03®I2®n/2_1 fork=n+1
_ -1
a,(cm)®12®(n m)/2 forke{l,...,m2}
_ ) m (n—m) forkedm™=1 m—1
=) Ym-n/241 @ Chnonyp frRE T A L m e
_ -1
agf)(nim)(@l'g@(n m)/2 forke{n—mz—i-l,...,n—i—l}

which concludes the proof. O

To conclude this subsection on the Dirac matrices, it seems interesting to us noting the
following relation about their product, even if we are not going to exploit it.

Lemma 3.5. We have that

n+1 . . .
&= (=)l 3 ] ow = —102® Iny2 lfn s odd, (3.5.3)
1 In ifn is even,

and in particular

forke{l,...,n+1}.
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Proof. The three properties follows obviously from the anticommutation relations (1.1.2),
so we need just to prove the second equality in (3.5.3). Suppose firstly that n is even. Then
the identity follows by inductive argument. If n = 2, it is directly verified that

(2) () (2) _

—ioy g 'y’ = —i010203 = Io.

Fix now n > 4 even and suppose that

n—1
(71-)11/2—1 H a](gan) _ IN/2~

Exploiting the definitions of the Dirac matrices and the mixed-product property of the
Kronecker product, we get

n+1

”/QH(X "/2 [01®IN/2 [H@@a,ﬁ -2)
k=1

n—1
—1 n—2
gy ® 1_‘[&,(g )
k=1

=—3 [01 ® IN/Q] [02 ® IN/2] [03 ® IN/2]

= —1010203 @ In/2

[0'3 & IN/Q]

= (—i)n/g [01 ® IN/2] [03 ® IN/Z]

Finally, let n > 1 be odd. If n = 1, then it is trivially checked that ozg ) ( ) — 0103 = —109.
If n > 3, then

—1 n n n—1 L n— =1 n = n—
7Ha/(€):(—z)2 H01®0¢1(¢ 1):(—1)201®Ho‘l(c 1):C"l(g’INﬂ
k=1 k=1 =1

and hence
n+1
kR H Oék (01 ® Inpollos @ Inj] = —ioe @ In)s
concluding the proof of the identity. O

3.5.2 The brick matrices

Before to proceed with the construction of the examples for the potentials, we need to point
our attention on some peculiar 2 x 2 matrices. We want to find p*, 7% € C2*2 satisfying
the conditions

pko_l(Tk)* =0= ,OkO'k(Tk *

pron(rh)" #0# ()"
for fixed k € {0,2,3} and any h € {0, 2,3} \ {k}, where we define for simplicity oy := Is.
Moreover, let us ask also |p*| = |7%| = 1, where | - | is the matricial 2-norm, ak.a. the

spectral norm. It is quite simple to find a couple of such matrices for any & € {0, 2, 3},
properly combining the Pauli matrices.
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In the case k = 0, we can consider

o9 + 103 Ih+ o1

from which, using the anticommutation relations (1.1.2), it easy to check

pLog(tR)* =0 = ploy(r2)*

Is 4+ o . «
Poa(r)” = 2L igh o)
(T4)"pr = 9
In the case &k = 2, we can set
p:l: = 9 = T4,

and thus

pioi(t3)* =0 = ploa(ri)*

. 1laFos N
proo(t) = 5 = +pios(72)

Iy + o3
5

(r3)*p% =

Finally, in the case £ = 3, we can consider

IQ:l:O’Q
pr="F—=r1i

and hence

plo(r2)* =0 = plos(rd)*

% 12 + (o] *
ploo(rs) 5 = +ploa(r2)

. I, £ o9

The couple of matrices we found for each of the three cases are not the only solutions
satisfying the required set of conditions, but for our purposes are enough.

Now, we want to find matrices A, B € CN*¥ such that

AakB* =0
V=BA#0
for k € {1,...,n}. In addition, we will also impose, or not, that AB* and A«,, 1 B* are
null matrices.
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3.5.3 The odd-dimensional case

Let us start with the 1-dimensional case, for which we have basically already found the
admissible matricial part for the potentials, thanks to the brick matrices found in the
previous subsection.

In fact, to satisfy RA(i) we need to find V' = B*A # 0 such that Aoy B* = 0, AB* # 0,
Ao3B* # 0, thus we can choose A+ = p2, B+ = 72, obtaining the couple of examples

S 1/1+1 0o\ _[1/ 0 1F0\]'[1/ 0 1F1\] .
Viz( 0 1;1)[2(&1 0 )] [2(&1 0 )] = Bede
Similarly we can proceed for the case of RA(ii) and RA(iii), in which case we use p%., 7

and p}, 73 respectively, viz. for RA(ii) we have the couple of examples

i1 =1\ (11 £0\]T i 1 F1\] _ ..
Vi_2<1 ;1)‘[2 (1 j:l)] [2 <1 :F1>]_BiAi’

while for RA(iii) we have the couple of examples

R A == N B O T <A N A A =AW
Vi_2<ii 1> - [2<ii 1)] [2<ii 1 )] = BiAs
This examples can be easily generalized in any odd dimension, taking in account the
following lemma.

Lemma 3.6. IfV("~2) = [B"=2)|* A("=2) 5 an admissible matrix in dimension n — 2, then

an admissible matrix in dimension n is given by
v =y g, = [BW” ® M*l} ’ [AW*?) ® M} —: [BM]A®™
for any invertible matrix M € C?*2,

This assertion is a trivial consequence of Lemma 3.4. Thus, in any odd dimension n > 1,
couples of examples satisfying RA(i), RA(ii) and RA(iii) are given respectively by

Vv 1 (In+ixn 0 v i (TIn —In Vv 1( Ix Filx
—_ 2 2 — 2 2 — 2 2
79 0 InFly ) 73 Iy Fly) S tily Iy )

Let us turn now our attention to the case of RA(iv), for which there are no examples
of potentials in dimension n = 1. Indeed, let us fix A, B € C2*2 and let us denote with
a = (a1,a3) and b = (by, by) their respective first rows. Since we are imposing

‘/40'1B>’< == AUgB* == AB* == 0,
in particular we obtain that
asby + a1by = a1by — asby = a1by + azby = 0,

from which we deduce that if @ # 0, then b = 0, and vice versa if b # 0, then a = 0.
Therefore, one can easily be convinced that there are no solutions such that both A and B
are non-trivial.
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Let us consider then the 3-dimensional case. By the definition of the Dirac matrices,
we would like to find matrices A, B such that B*A # 0 and

A(o1®01)B* = A(01 ®09)B* = A(01 ®03)B* = A(03®12)B* = A(la® [3)B* = 0.

Anyway, from the properties of our brick matrices and by the mixed-product property of
the Kronecker product, it is readily seen that we can choose A = p ®p%. and B = 7f @ 1
for any k € {0, 2, 3}. In fact

(Pt @ pL) (o1 ® o)) (th @ 72)* = phoy (7)) ® ploj (D) = 0® ploj(r))* =0
for j € {1,2,3}, and
(Ph @ pL) (o @ L) (T @ 72)* = phon(h)* @ pLIa(72)* = phon(th)* ® 0 =0

for h € {0, 3}. Essentially, we use the fact that the first tensorial factors appearing in the
definitions of A and B kill o1, while the second tensorial factors kill I5. At this point, as
above we can extend the 3-dimensional case to any odd dimension n > 5.

Exempli gratia, letting £ = 0, we have that a couple of examples of matricial part of
potentials satisfying RA(iv) for odd dimension n > 3 are given by

—1 41 +1 -1
111 1 1 =F1
4lF1 1 1 F1

—1 41 #+1 -1

1 /41 —1\*?
=71 ® Inya

Vi = ® Iny4

4 F1
EYEES! ®2®I 1o ®2®I
e\l +1 N/4 4\1 FI1 N/4
[ /1 +1 +1 1 * 1 +1 +1 -1
_;111i11®j 1[-1 +1 +1 -1 o1
I R O S R NAT 12 =1 +1 +1 —1 N/4
o\l 1 #11 1 41 +1 -1
= Bi A,

3.5.4 The even-dimensional case

We will consider the situation case by case for RA(i)-RA(iv).

3.5.4.1 Case of RA(i)

Between the four cases, this is the only one for which we can find examples of our desired
potentials in any dimension. Indeed, let us start from n = 2, for which a couple of examples
can be found immediately exploiting our brick matrices, setting A = p% and B = 73.
Therefore, making use of Lemma 3.6, a couple of examples for the matricial part of the
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potentials satisfying RA(i) for any even dimension n > 2 is given by

1 (Tns + Inso 0 )
Vo == / /
=72 < 0 Inse F Inj2
_ {1 < 0 Inp F IN/2>:| " [1 ( 0 IngF IN/2>}
2 \Inj2 £ Iny2 0 2 \Inj2 £ Iny2 0
_ BiA..

3.5.4.2 Case of RA(ii)

Indeed, in dimension n = 2, the situation is

We can find potentials only for n > 6.
1. We are searching matrices A, B € C?*2 such that

similar to the case of RA(iv) for n =
V =B*A#0, Ao3B* # 0 and

AO’lB* = AO'QB* = AB* = 0.

Denoting with a = (a1, a2) and b = (b1, by) the first rows of A and B respectively, from
the previous condition we infer

azby + arby = asby — a1by = a1by + azby = 0

and therefore a = 0 if b # 0 and on the contrary b = 0 if a # 0. Thus, there are no
solutions such that A # 0 and B # 0.

Analogously, we can repeat the argument for n = 4. In this case the Dirac matrices are

(4)

(4) (4)

o =01 @I, ay =020, a3 =02Q® 09, (35.4)
CEZ(:l) :0'2@0'3, 04(54) :0’3@]2.
We impose
Al B* = AB* =0
J (3.5.5)

A0 B* £ 0
for j € {1,2,3,4}. Let us denote with a = (ay,...,a4) and b = (by, ..., bs) the first rows
of A and B respectively. Hence from the conditions (3.5.5) we infer

agby + asby + arbs + azbs = 0
—aygby — agby + asbs + a1by =0
asby — azby — asbs + arby =0
—agby + agbs + a1bs — asby =0
a1by + agby + asbs + asby =0
a1by + asby — azbs — ashy # 0

and equivalently

asbi + azbs = agby — a1by = asby — azbs = asby + a1bg =0

aiby + agby = —asbs — agby # 0.
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However, this system is impossible. Suppose indeed that a; # 0. Then

— ay— — as—
bs = ——bo, by = —bs
aj aj

— ao — — ag-—
as <b1 + 2b2) = a3 <b1 + 2bz> =0
ay ay
a1by + agby = —azbs — agby # 0.
From the first two lines one infers that or a;b; + asby = 0, or ag = a4 = bz = by = 0.

Both the possibilities are incompatible with the last condition. Similarly one can prove that
the system is impossible also when a; = 0.

Now, let us look at the dimension n = 6. Here we can build examples by the aid of our
brick matrices, but it is not so straightforward as in the odd-dimensional case, and we need
to be sneaky. Firstly, recall that

0456) =01 ® 1y, Ozl(i)_l 20'2®Oé,(€4), a;6) =03® 1y
for k € {1,...,5}. We search matrices A, B € C®*8 such that
AB* = Aal¥B* = 0
B*A#0+# Aal” B*

for k € {1,...,6}. Let us start with the ansatz that A and B have the following structure:

_1 (4 —Al1®0) _1(B Bloi®on)
A—2<A —A(01®01)>’ b 2(3 B(Jl®o'1)>

with A, B € C***. In this way, recalling the definition of the Dirac matrices and observing

that (07 ® 01)? = I4, the conditions AB* = 0 and Aa§6)B* = A(o1 ® I)B* = 0 are
immediately verified and the other ones become

(11~ ~
Aa®) B = —ﬁ (1 1) ® Aoy o)l + ol (o1 @o)]BF=0  (35.6)
fork € {1,...,5},and

1 o
Aa7B* = A(O’g ®I4)B* = — (1 1) ®AB* 7§ 0

2\1 1
" 1 E*AV —E*g(al &® 0'1)
BA— - - 1 ¢ 0.
2 ((01®0'1)B*A —(01®0'1)B*A(01®01) ?é

In (3.5.6), exploiting the definition of the Dirac matrices in dimension n = 4, the anticom-
mutation relations (1.1.2) and the identities 0109 = 703 and 0103 = —iog, we get that also
the identities

4098 = 409 B* =0
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are immediately satisfied, and the remaining ones reduce to

11

N =

Aa§6)B* = — <1 1> ® A(l, @ 01)B* =0

Aalpe = b G 1) % A(0y ® 03)B* =0

N

1

[\)

Aa?)B* = _! <1 1) ® Av((fg X UQ)E* =0.

Thus, it would be enough to find A, B € C*** such that
A(l; ® 01)B* = A(o3 ® 03)B* = A(03 ® 02)B* =0
AB* + 0+ B*A.
This step is easily achieved exploiting our brick matrices, indeed we can choose
Ar=plop, Bi=tlerl

for any fixed k¥ € {0,2,3}. In this way we can construct many examples for the 6-
dimensional case. If we choose e.g. £ = 3 in the above definition of A and B, and taking
again in account Lemma 3.6, we can exhibit the following couple of examples for matrices
satisfying RA(ii) for even dimension n > 6:

1 ([2 + 02)®2 —(0'1 + i03)®2

g <(0’1 + i03)®2 —(IQ F 0'2)®2 > ® IN/S
1 Fi ¥ -1 1 +i +i -1
+i 01 1 Fi +i -1 -1 Fi
+i 01 1 Fi i -1 -1 Fi
N A A S R~ A | s
T8l o1 i i1 -1 wiowo1 | ©fs
+i 01 1 Fi +i -1 -1 Fi
+i 01 1 Fi 4 -1 -1 Fi
1 ¥ ¥ -1 1 +i +i -1

Vi =

where

[2 + 02)®2 —(01 + i03)®2 &1

IQ :|:O'2)®2 —(01 :F’L'0'3)®2 N/8>
I +09)%% (01 Fio3)®? 2

[2 :|:02)®2 (0'1 :|:i03)®2 N/8

3.5.4.3 Case of RA(iii).

Mutatis mutandis, the situation is similar to the the case of RA(ii), hence we skip the
computations. As above, one can prove the absence of our desired potentials in dimension
n = 2 and n = 4. In even dimension n > 6 instead, we impose to A and B to have the
structure

1 (A Ao, ®01) 1 (B B(oy®o0y)
( > @ 1IN/, 5 (B Bloy @ o) @ Inys,
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where A, B € C*** have to satisfy the relations
Z(al ® Ul)é* = Z(O’g ® IQ)E* = g(ag ® O’1>§* =0
AB* + 0+ B*A.
For example we can choose again
Ac=plopl, Bi=tiorl,

and hence we obtain the following couple of examples of matrices satisfying RA(iii) in even
dimension n > 6:

v L (Iy £ 02)%? (01 Fios)®? o1
= (0'1:|:’i0'3)®2 (123130'2)@2 N/8

1 7= + -1 -1 72 F1 1
+i 01 1 Fi Fi 1 01 i
i 01 1 Fi Fi 1 01 i
B D SR A N
T8l o1 i i1 1 4 i 1| @A
+i 01 1 Fi oFi 11 i
i 01 1 Fi oFi 101 i

1 F F+ -1 -1 F2 F1 1

O | =

where

1 <(IQ + 02)®2 (01 F i03)®2
Ay =

=3 (I % 09)®2 (013Fi03)®2> ® In/g = Bx.

3.5.4.4 Case of RA(iv)

In dimension n = 2 there are no potentials, and this can be easily seen as in the above case
of RA(ii). In even dimension n > 4 instead, recalling the definition of the Dirac matrices in
4-dimensions (3.5.4) and Lemma 3.6, it is easy to check that a couple of examples for our
desired matrices is obtained choosing V3 = B} A4 with

Ay :ch@P(j):@IN/@ By :7—:2|:®7—:(|):®IN/47

hence videlicet

1+1 —1F1 0 0
Cif1+1 —171 0 0

==11 o 0 141 —1+1]|@va
0 0 1F1 1F1

Thus concludes the parade of examples for the matricial parts V' of the potentials
satisfying our Rigidity Assumptions (i)-(iv), and also the first part of this thesis.
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ParT II

Blow-up phenomena
for wave-like models



Fun years for me, for a guy who used to like to blow up things.
We had lots of explosions, lots of blowups.

John Kobak, engineer at the NASA Propulsion Systems Laboratory



CHAPTER

Heat-like and wave-like

lifespan estimates for solutions of
semilinear damped wave equations
via a Kato-type lemma

The aim of the present chapter is to study blow-up phenomena and lifespan estimates for
solutions of Cauchy problems with small data for several semilinear damped wave models,
especially the semilinear wave equations with power-nonlinearity and scale-invariant
damping and mass terms. In particular, we are interested in exploring the competition
between so-called “heat-like” and “wave-like” behavior of the solutions, which concerns
not only critical exponents, but also lifespan estimates, in a way that we will clarify later.

This chapter contains the results proved in [S4], joint work with Ning-An Lai and
Hiroyuki Takamura.

4.1 Preamble

The problem we mainly concern about is

M1 M2 :
Ou + up + w=|ulP, inR"x(0,T),
T+t (1+1¢)2 ful (©.7) (4.1.1)

U($,0) :é“f(x), ut(x,O) :{;“g(.%'), r € R",

where [ := 0y — A is the d’Alembert operator, p1, 42 € R, p > 1,n € N, T > 0 and
e > 0 is a “small” parameter. First of all, let us denote the energy and weak solutions of
our problem (4.1.1).

Definition 4.1. We say that u is an energy solution of (4.1.1) over [0, 7T") if

ue C([0,T), H (R")nC([0,T), L*(R™)) N C((0,T), LY (R™))
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satisfies u(z,0) = ef(z) in HY(R"), uy(x,0) = eg(x) in L*(R™) and
/ (e, )6, t)d / eg(x)o(, 0)da
+ /Ot ds/n {~ui(@, 8)du(x, 8) + Vulw,s) - V(x,5)} dz
+/Otds/n A ut(x,s)<b(:c,s)dx+/0tds/n(lf’L_:Pu(:n,s)qb(x,s)d:U

(4.1.2)

1+s

:/Ot ds/n lu(z, $)/P(, s)da

fort € [0,T) and any test function ¢ € C§°(R"™ x [0,T))).

Employing the integration by parts in the above equality and letting ¢ — 7', we reach
to the definition of the weak solution of (4.1.1), that is

/nx[o,T) u(z, s) {D¢(x,s) - % <llﬁs¢(x,s)> + (1—7—728)2¢(x’ s)} duds

=< /.. {p1f(x)(x,0) + g(2)¢(x,0) = f(x)i(z,0)} d

+ / lu(z, s)[Pp(x, s) dzds.
R7™x[0,T)

We recall that the critical exponent pei; of (4.1.1) is the smallest exponent greater than
1 such that, if p > peit, there exists a unique global-in-time energy solution to the problem,
whereas if 1 < p < peit the solution blows up in finite time. In the latter case, one is also
interested in finding estimates for the lifespan T, which is the maximal existence time of
the solution, depending on the parameter ¢.

Our principal model is the one in (4.1.1), for which we obtain Theorem 4.2 and Theo-
rem 4.4, according to the different conditions imposed on the initial data. As straightforward
consequences, we also obtain Theorem 4.1 and Theorem 4.3 for the massless case, i.e. the
model with pe = 0. The lifespan estimate in dimension n = 1 in this case is improved,
comparing to the known results. Moreover, we continue the study of semilinear wave
equations with scattering damping, negative mass term and power nonlinearity, which we
introduced together with Lai and Takamura in [LST19,LST20].

In the rest of the section, we compare the classical models for the heat and wave
equations with power-nonlinearity in order to introduce the “heat-like” and “wave-like”
terminology. In Section 4.2 we sketch the background of the problems under consideration
and we exhibit our main results, which will be proved in Section 4.4, exploiting, as main
tool, a Kato-type lemma in integral form presented in Section 4.3.

4.1.1 Heat versus wave

Let us consider the toy-models of the heat and wave equations, respectively given by

{ut — Au = |ul?, {utt — Au = |uf?,
u(xv 0) = 5f($)’ (Uaut)(xa 0) = 5(fa g)(l‘)
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Nowadays the study of these two equations is almost classic: the well-known results include
the lifespan estimates and the critical exponents, which are the so-called Fujita exponent
pr(n) and the Strauss exponent pg(n), corresponding to the heat and the wave equation
respectively. For our purposes, let us define these two exponents for all v € R:

9 1 \/217_
142 ifr>0, vrlrveit v =T e g
pr(v) == v ps(v) == 2(v—1)
+o0o0 ifv <0, + 00 ifv <1.

We remark that

1<p<pr(v) = vr(p,v) =2—v(p—1) >0,
1<p<ps(v) = ys(p,v) =2+ (v+1)p—(v—1)p° > 0.

In particular, if v > 0, pp(v) is the solution of the linear equation yp(p, v) = 0, whereas if
v > 1, pg(v) is the positive solution of the quadratic equation vs(p, ) = 0. Although the
expression s (p, ) is well-known in the literature, the introduction of vz (p, v/) is justifyed
from the fact that v plays for the heat equation the same role that vg plays for the wave
equation, as it emerges from the lifespan estimates.

Suppose for simplicity that f, g are non-negative, non-vanishing, compactly supported
functions (for different conditions on the initial data, we can have different lifespan esti-
mates, see Subsection 4.2.4). We have that the blow-up results are the ones collected in the
following table.

Table 4.1: Heat versus wave blow-up results.

Heat Wave

Critical exponent peit pr(n) ps(n)

~ g~ (P=1)/7F(p,n—1)
ifn=1lorn=2,1<p<?2
Subcritical lifespan 7% —2(p=1)/vp (pyn) ~ a(g)
for 1 < p < Perit ~E ifn=p=2¢e%?log(l+a)=1
~ g 2p(P=1)/7s(P;n)
ifn=22<p<ps(n)orn>3

~ exp(Cs_m’_l))
(in general, lower bound open for n > 9)

Critical lifespan Tt

~ —(p—-1)
for p = po exp(Ce )

Here and in the following, we use the notation ' < G (respectively F' 2 G) if there
exists a constant C' > 0 independent of € such that F' < CG (respectively F' > C'G), and
the notation F' ~ Gif F < Gand F 2 G.

For a more detailed story of these results, we refer to the book [ER18], the doctoral
thesis [Wak14b], the introductions of [IKTW19, Tak15,TW11,TW14] and the references
therein.

For the comparison between the heat and wave equations, let us introduce an informal
but evocative notation to describe the behavior of the critical exponents and of the lifespan
estimates in our models. We will call the critical exponent heat-like if it is related to the
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Fujita exponent, i.e. peit = pr(v) for some v € R, whereas we will call it wave-like if it is
related to the Strauss exponent, i.e. pyit = ps(v) for some v € R.

Similarly, we will say that the lifespan estimate is heat-like if it is related in some way
to the one of the heat equation, i.e. to the exponent 2(p — 1)/~vr(p, ) in the subcritical
case and to exp(e~(P~1)) in the critical one, whereas we will say it wave-like if related to
the one of the wave equation, i.e. to the exponent 2p(p — 1) /vs(p, V) in the subcritical case
and to exp(e PP~ in the critical one. However, we also define a mixed-type behavior
when the lifespan estimate is related to 2p(p — 1) /vr(p, v) in the subcritical case (as we
will see in Theorem 4.3 and 4.4), to remark that the lifespan is longer than the heat-like
one, due to the additional p in the exponent.

4.2 Problems and main results

This section is devoted to presenting the models under consideration and to stating our
results. More precisely, we start to consider the damped wave equation by adding the
damping term 11/ (1 +t)%u; to the wave equation, focusing then on the scale-invariant case,
i.e. setting 3 = 1. Afterwards, we add also the mass term pi2/(1 + t)?u. In Subsection 4.2.4,
we observe that a special condition on the initial data can significantly change the blow-up
results. Finally, in Subsection 4.2.5 we consider a special wave model with scattering
damping and negative mass term, the study of which can be essentially reduced to that of
the previous models.

4.2.1 Damped wave equation

Let us proceed by adding the damping term /(1 + )%u; to the wave equation, with ;2 > 0
and 8 € R, hence we consider the Cauchy problem

gt =l B .7), o
u(z,0) =cef(x), wu(z,0)=cg(x), xeR"™ -

According to the works by Wirth [Wir04, Wir06, Wir07], in the study of the associated
homogeneous problem

Ut — AU+

0 0 H 0
Uy — Au” + ———u; =0,
. (141)8"" (4.2.2)

UO(ZE,O) :f(w)a u?(x,()) :g(zv),

we can classify the damping term into four cases, depending on the different values of
B. When 8 < 1, the damping term is said to be overdamping and the solution does not
decay to zero when t — oo. If —1 < 8 < 1, the solution behaves like that of the heat
equation and we say that the damping term is effective. Hence, the term v, in (4.2.2) has no
influence on the behavior of the solution and the LP — L9 decay estimates of the solution
are almost the same as those of the heat equation. In contrast, when g > 1, it is known
that the solution behaves like that of the wave equation, which means that the damping
term in (4.2.2) has no influence on the behavior of the solution. In fact, in this case the
solution scatters to that of the free wave equation when ¢ — oo, and thus we say that we
have scattering. Finally, when 8 = 1, the equation in (4.2.2) is invariant under the scaling

ﬁ(w,t) =Mz, \(1+1t) —1), A>0,
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and hence we say that the damping term is scale-invariant. In this case the behavior of the
solution of (4.2.2) has been observed to be determined by the value of . We summarize all
the classifications of the damping term in (4.2.2) in the next table.

Table 4.2: Classification of damped wave equations.

Range of 3 Classification
B € (—o0,—1) overdamping
gel-1 ) effective
=1 scale-invariant
B e (1,00) scattering

Let us return to problem (4.2.1), which inherits the above terminology and has very
different behaviors from case to case. Indeed, in the overdamping case the solution exists
globally for any p > 1. In the effective case, the problem is heat-like, both in the critical
exponent and in the lifespan estimates, while in the scattering case the problem seems to be
wave-like. Finally, the scale-invariant case has an intermediate behavior, and a competition
between heat-like and wave-like arises. Before moving to the last case, let us collect in the
following two tables some blow-up and global existence results for 8 # 1, at the best of
our knowledge.

Table 4.3: Blow-up in finite time for 5 # 1.

Authors Range of 3 Exponent p Lifespan Tt

Fujiwara, Ikeda, 1 < p<pr(n) _ 2(?71))
Wakasugi [FIW19] B=-1 =P ( f)F ~ exp(Ce ”F_"(’:_z)
Tkeda, Inui [I119] p=pr ~ expexp(Ce )

Li, Zhou [LZ95]

Zhang [Zha01]

Todorova, Yordanov [TY01]
Kirane, Qafsaoui [KQ02]

Tkeda, Ogawa [1016] 50 1<p<pr(n) ~ e oo
Lai, Zhou [LZ] - p=pr(n) ~ exp(Ce™P~1)
Ikeda, Wakasugi [TW15]
Nishihara [Nis11]
Fujiwara, Ikeda,
Wakasugi [FIW19]
Fujiwara, Ikeda,
Wakasugl.[FIW19] —1<p<1l 1<p<pr(n) ~g (1+2(>I;;1<)p,n)
Ikeda, Inui [I119] B £0 = pr(n) (o1
Ikeda, Ogawa [1016] 7 p=Dprin ~ exp(Ce™ "~ 7)
Ikeda, Wakasugi [I[W15]

. _2p(p—1)
Lai, Takamura [LT18] B>1 1<p<ps(n) <e s
Wakasa, Yordanov [WY19] =ps(n) < exp(Ce~PP=1)
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Table 4.4: Global-in-time existence for 8 # 1.

Authors Range of 8 Dimensionn ~ Exponent p
Ikeda, Wakasugi [I[W20] g <—1 n>1 p>1
. _ n=1,2 p>pr(n)
Wakasugi [Wak17] g=-1 n>3 pr(n) <p<
B n=1,2 p > pr(n)
Todorova, Yordanov [TY01] 8=0 n>3 pr(n) < p < _n_
D.Ab.blcco, Lgcente, Reissig [DLR15] 1<B<1 n=12 p> pr(n)
Nishihara [Nis11] B+£0 n>3 (n) < p < 2t2
Lin, Nishihara, Zhai [LNZ12] < br Psn
Liu, Wang [LW20] B>1 n =34 p > ps(n)

4.2.2 Scale-invariant damped wave equation

We consider now (4.2.1) for 8 = 1, hence we consider the Cauchy problem

uy — Au +

H P i Tn
uy = |ulP, inR" x (0,T),
1+t [ (©.7) (4.2.3)
u(z,0) =cf(z), w(z,0)=eg(z), zeR™

The scale-invariant problem has been studied intensively in the last years. This great
interest is motivated by the fact that, differently from the damped wave equation with
B # 1, in the scale-invariant case the results depend also on the damping coefficient p, for
determining both the critical exponent and the lifespan estimate. Hence, the situation is a
bit more complicated, since the scale-invariant case shows results intermediate between
the ones for the effective (—1 < 8 < 1) and non-effective (8 > 1) damping cases, and then
it seems to be a threshold between a heat-like and a wave-like behavior.

In the following two tables we collect, at the best of our knowledge, results concerning
the existence and blow-up for the scale-invariant damping.

Table 4.5: Global-in-time existence for 8 = 1.

Authors Dimension n Coefficient 4 Exponent p

n=1 p>3 p>pr(l)
D’Abbicco [D’A15] n=2 nw>3 p > pr(2)

n>3 p>n+2  pr(n) <p< s

D’Abbicco, Lucente,
Reissig [DLR15]

Kato, Sakuraba [KS19] n=23 p=2 p>ps(n+2)

Lai [Lai20]

D’Abbicco, n>>5 _ . n+1
Lucente [DL15] (odd dim., rad. symm.) p=2 ps(n +2) <p < min {2’ n—3
Palmieri [Pal19a] n > 4 (even dim.) =2 ps(n+2) <p<pr(2)
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Table 4.6: Blow-up in finite time for g = 1.

Authors Dim. n Coefficient Exponent p Lifespan T;
Wakasugi n>1 pw>1 1<p<pr(n) < e =D/ )
[Wak14a, Wak14b] = O<pu<1 1<p<1l+ ﬁ < e—(@=1)/vp(pntp—1)
D’Abbicco,
Lucente n=1 w=2 L<p<pr(l)

: n=23 1<p<ps(n+2)

Reissig [DLR15]

Wakasa [Wak16]
Kato,

Takamura,
Wakasa [KTW19]

1<p<pr(l) ~ e (P=1)/7r(p,1)
p=pr(1) ~ exp(Ce~ P 1)

Imai,
Kato, n—2 p=2 1<p<pr(2)=ps(2) ~ e—P=1)/7r(p,2)
Takamura, p=pr(2) =ps(2) ~ exp(Ce™1/2)
Wakasa [IKTW20]
Kato, n=3 p—2 1<p<ps5) ~ = 2P(P=1)/75(p:5)
Sakuraba [KS19] p = ps(5) ~ exp(Ce”’“”l))
Lai, )
Takamura, n>2 0<up< 712(:1;)2 pr(n) <p <psn+2u) < e PE-D/rspnt2u)
Wakasa [LTW17]
< g=20(p=1)/vs(pntp) =6
n=13<p<j
fin=10<pu<3p>2
n>2,p>ps(n+2+p)
n2+n+2 _
eda, nx1 CSHSTRRT ) <p<psnin) SeE
Sobajima [IS18] (n#0ifn =1) ifn=10<p< §7p<%
< 6_1_6
ifn>2,p <ps(n+2+p)
< exp(Ce™P(P~D)
if p = ps(n+ p).
Tu, Lin W9 >0 L<p<ps(n+p) < e 2-D)/vs (Pt
[TL17,TL19] - 0<p< tnts :f;z p=ps(n+p) < exp(CePP~D)

Observe that the special case ¢ = 2 was widely studied, starting from D’Abbicco,
Lucente and Reissig [DLR15]. The reason is that, if we exploit the Liouville transform

v(z,t) := (14 )" ?u(x, t)
in problem (4.2.3), it turns out to be

B p(2—p) |v[? o
Vgt Av—|—4(1+t)2v— = inR" x (0,7,

o(z,0) = e f(z), vt(:r,()):s{%f(x)—l—g(a:)}, z € R",

For p = 2 the damping term disappears, making the analysis more manageable and related
to the undamped wave equation. From the works [DL15,DLR15,1S18,Pal19a, Wak14a] it is
now clear that the critical exponent for it = 2 is peit = max{pr(n), ps(n + 2)}, with the
lifespan estimates stated in low dimensions n < 3 by the works [IKTW20,KS19,KTW19,
Wak16].

When p # 2, it was observed that for small i the problem is wave-like in the critical
exponent and in the lifespan estimates, whereas it is heat-like for larger 1. However, the
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exact threshold was still unclear. We conjecture, in accordance with Remarks 1.2 and 1.4
in [IS18], that the threshold value should be

n2+n+2

[ = () := Thr2

and that the critical exponent should be

Perit = pu(n) == max{pp(n — [p—1]_),ps(n+ p)}

) ps(n+p) 00 < p < p, (4.2.4)
pr(n) if 1> fua.
Here and in the following, [z]+ = ‘xl% indicates the positive and negative part functions

respectively.

The blow-up part of this conjecture has already been proved, combining [Wak14a]
and [IS18]. In our next theorem, which is a straightforward corollary of Theorem 4.2, we
reconfirm the blow-up range and we give cleaner estimates for the lifespan in the subcritical
case, obtaining improvements mainly in the 1-dimensional case (see Remark 4.2). We refer
to Figure 4.1 for a graphic representation of the results below.

Theorem 4.1. Let yt > 0 and 1 < p < p,(n), with p,(n) defined in (4.2.4). Assume that
f € HY(R"), g € L*(R") and

fih>0, h#0, whereh:=[p—1]+f+g.
Suppose that u is an energy solution of (4.2.3) on [0,T") that satisfies
suppu C {(z,t) € R" x [0,00): |z| <t + R}

with some R > 1.

Then, there exists a constant 1 = €1(f, g, i, p, R) > 0 such that the blow-up time T, of
problem (4.2.3), for 0 < ¢ < €1, has to satisfy:

B if0 < p < sy, then

e~ = D/wln—lp=1l-) ] < p < :

n—|u—1

T. <

=2p(p—1)/vs(p,ntp) = .
€ zfn_|u_1|<p<pu(n),

® if > p, then
T. < e~ (=1 /vr(pm) _ 5—[2/(p—1)—n]*1'

Moreover, if i =n =1 and1 < p < 2 the estimate for T . is improved by
T: S ¢0(€)
where ¢g = ¢o(€) is the solution of
2 _1
ept™ In(l+ ¢p) = 1.
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[ = 3
1
0

(a) Case n = 1.
o
P =2

1 p=ps(2+np)
0
L pr(2)=2 ps(2) p

(b) Case n = 2.
n
7.
n—1

p=ps(n+p)

0

1 pr(n) ps(n) p

(c) Case n > 3.

Figure 4.1: In this figure we collect the results from Theorem 4.1. If (p, i) is in the blue area, we
have that T, < e=2P(P=1)/7s(n+1) and hence the lifespan estimate is wave-like. Otherwise, if
(p, p) is in the red area, then T, < ¢~ (®=1/7r(Pn=[1=1]-) and the lifespan estimate is heat-like.
In the case n = 1, the dash-dotted line given by ;x = 1, 1 < p < 2 highlights the improvement
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Remark 4.1. Note that, if n > 3and 0 < 4 < n — 1, we can write the lifespan estimates
in Theorem 4.1 explicitly as

if0o<pu<n-—1lor
e 2p(p=1)/7s (p;+p)

T < ifn—1<u<u*andn < p < pu(n),

N —ptl
g~ =1/ vr(p.n) fn—1l<p<prandl <p< ———.
n—up+1
Remark 4.2. Comparing the lifespan estimates in Theorem 4.1 with the known results
summarized in Table 4.6, we remark that the heat-like estimates for n > 1 were already
proved by Wakasugi [Wak14b], whereas the wave-like ones for n > 2 by Tu and Lin [TL17].
The wave-like estimates for n = 1 were almost obtained by Ikeda and Sobajima [IS18] for
pr(n) < p < pg(n + u), with a loss in the exponent given by a constant § > 0.

Hence our improvements are given by the wave-like estimates if n = 1 and by the
logarithmic gain T, < ¢o(e) if n = p = 1and 1 < p < 2. Moreover, about the wave-like

estimates for n > 2, in [TL17] the initial data are supposed to be non-negative, whereas
our conditions on the initial data are less restrictive.

Anyway, our approach is different and based on an iteration argument rather than on
a test function method.

Remark 4.3. We conjecture that the lifespan estimates in Theorem 4.1 are indeed optimal,
except on the “transition curve” (in the (p, p1)-plane) from the wave-like to the heat-like
zone, given by

2

:m for0 < p<p,and1 <p <pu(n).

p

On this curve, the identity

2pyr(psn — [ —1]-) = vs(p,n + p)

holds true and here we expect a logarithmic gain, as already obtained for the case p = 2,
@ = n = 1 in the previous theorem, and for the case n = p = 2, u = 0 for the wave
equation (see Subsection 4.1.1). As we see from [IKTW20, KS19, KTW19, Wak16] the
conjecture holds true if 4 = 2 and n < 3.

Remark 4.4. In the current analysis we do not treat the critical case, but, to conclude our
prospectus, it is natural to conjecture that

exp (CE*p(p*1)> if 0 < p < pyandp =pu(n) =ps(n+p),
T: ~

exp (05—(11—1)) if 4 > py and p = pu(n) = pr(n),

for some constant C' > 0. We refer to [IS18, TL19] for the wave-like lifespan estimate
from above in the critical case and to [IKTW20,KS19, KTW19, Wak16] for the proof of the
conjecture if y =2 andn =1, 3.

However, we expect a different behavior if 4 = p, and p = p,,, (n), that is when
the transition curve from Remark 4.3 intersects the blow-up curve. This expectation is
motivated from [IKTW20], where the authors prove forn =y = p. = pp(2) = ps(4) = 2
that T, ~ exp(Ce~1/?), which is neither a wave-like critical lifespan, nor a heat-like one.
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4.2.3 Wave equation with scale-invariant damping and mass

Finally, we return to our main problem (4.1.1). The scale-invariant damped and massive
wave equation was studied by A. Palmieri as object of his doctoral dissertation [Pal18b],
under the supervision of M. Reissig. However, as far as we know, the research of the
lifespan estimates in case of blow-up is still underdeveloped.

A key parameter for the study of this problem is
6 = 6(p1, p) == (a1 — 1)* — g,

which, roughly speaking, quantifies the interaction between the damping and the mass term.
Indeed, if § > 0, the damping term is predominant and we observe again a competition
between the wave-like and heat-like behaviors. In particular, the critical exponent seems
to be wave-like for small positive values of §, while it is heat-like for large ones. If on
the contrary J < 0, the mass term has more influence and the equation becomes of Klein-
Gordon-type. To see this, apply again the Liouville transform v(z, ) := (1 + t)*1/2u(x, t)
to problem (4.1.1), which therefore becomes
(1-4)/4 Kl

v = AV e Y S ey RO,

(z,0) = ef(z), vt(a:,())zs{%f(x)—l—g(x)}, z € R",

In the following, we will consider only the case § > 0.

(4.2.5)

Let us start by collecting some known results. From [dNPR17,Pal18a, PR18], we know
that for y11, 12 > 0 and § > (n + 1)? the critical exponent for problem (4.1.1) is the shifted

Fujita exponent
g —1—5 )

Parit = PF (n + 2

On the contrary, from [Pal19a,Pal19b], in the special case § = 1 and under radial symmetric
assumptions for n > 3, Palmieri proved that the critical exponent is

Derit = PS (TL + ,ul) .

The case § = 1 is clearly the analogous of the case ;1 = 2 for the scale-invariant damped
wave equation without mass: under this assumption we see from (4.2.5) that the equation
can be transformed into a wave equation without damping and mass and with a suitable
nonlinearity. In [PR19], Palmieri and Reissig proved, by using the Kato’s lemma and
Yagdjian integral transform, a blow-up result for § € (0, 1], showing a competition between
the shifted Fujita and Strauss exponents. Indeed, they obtained the blow-up result for

—1-/6
1<p§maX{pF <n+w> ,ps(n+m)}

except for the critical case p = pg(n + p1) in dimension n = 1. Finally, Palmieri and Tu
in [PT19], under suitable sign assumptions on the initial data and for p1, p12, d non-negative,
established a blow-up result for 1 < p < pg(n+ p1) and furthermore the following lifespan
estimates:

TE S 1 2
exp(Ce™PP~1) ifp=pg(n+p)andp > .
n—+/6
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They used an iteration argument based on the technique of double multiplier for the
subcritical case and a version of test function method developed by Ikeda and Sobajima
[IS18] for the critical case. Of course, we refer to the works by Palmieri and to his doctoral
thesis for a more detailed background. We also mention the recent work [IM21] by Inui
and Mizutani for results on the scattering and asymptotic order for the wave equation with
scale-invariant damping and mass terms and energy critical nonlinearity.

We present now our main result, concerning the blow-up of (4.1.1) for p;, 2 € R and
0 > 0, and the upper bound for the lifespan estimates. Firstly, let us introduce the value

1
7<—1—1/—|—\/V2+10V—7) > 1,

di(v):= ¢ 2 (4.2.6)
0 ifvr <1,
and set for simplicity

dy :==di(n+ p1) €10,2). (4.2.7)

Observe that, if n + 1 > 1, then

—1—-+4
Vo =n—d. <= s(p,n+m) =29r (p,n+m2\[> =0

(4.2.8)

pr—1—+/6 2
2 N

< ps(n+ 1) =pr <n+

The following result holds.

Theorem 4.2. Let juy, 12 € R, 6 > 0 and 1 < p < p,, 5(n), with

Ppy,s(n) = max {PF (n + ,u1—12—\/5) , s (n+ ul)} . (4.2.9)

Assume that f € HY(R"), g € L*(R") and

— 140
Fh>0, h#0, where h:= Ml;\[f tg. (4.2.10)

Suppose that u is an energy solution of (4.1.1) on [0,T) that satisfies
suppu C {(z,t) € R" x [0,00): |z| <t + R} (4.2.11)
with some R > 1.
Then, there exists a constant €9 = £a9(f, g, 1, 2, n, p, R) > 0 such that the blow-up

time T of problem (4.1.1), for 0 < € < €9, has to satisfy:

u l'f\/gﬁn—Q,then
T. < 572p(p*1)/"/5(1’7n+ﬂl);

mifn—2<V6<n—d.n+ ), then

. o(e) if1<p§n_\/3,

e~ 2p(p=D/yspntmn)

2 <p< (n)
n— \/g p pu1,5 )
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where ¢ = ¢() is the solution of

vr (Pt (1 —1-V35)/2) 1 5
o In(1 +¢)' 80 = 1;

m ifV6>n—d.(n+ p), then

T. 5 ¢(e).

If in particular § > 0, then
b(e) = e~ 0= /7r (Pt (pa—1-V3)/2) _ 5—[2/(p—1)—n—(u1—1—\/5)/2]_1'

Here and in the following, the sign function is defined as sgnz = % if x # 0, whereas
sgnx = 0ifz = 0.

Remark 4.5. We can write the exponent in (4.2.9) explicitly as
ps (n+ ) ifn+p >1,V6<n—d,

—-1-0
pp<n—|—'ul> ifn+u1>1,n—d*<\/g<2n+,u1—1,

pu1,5(n) = 2

ifn+u1>1,\/522n+ul—1

oo orifn+ pu; <1.

Remark 4.6. Note that, setting the mass coefficient ;12 = 0 and the damping coefficient
p1 = > 0,then V6 = |p — 1| and

Vo <n—di(n+p) = 0<pu< .

It is straightforward to check that, by imposing ji2 = 0, the results in Theorem 4.2 coincide
with those in Theorem 4.1.

Remark 4.7. Analogously as in Remark 4.3, we conjecture that p,,, 5(n) defined in (4.2.9)
is indeed the critical exponent and that the lifespan estimates presented in Theorem 4.2 are
optimal, except on the “transition surface” (in the (p, i1, 0)-space) defined by

2
p =
n—+/s
on which we expect a logarithmic gain.
2

forn—2<Vé<n—dyn+p)andl <p< Pu,s(n), (4.2.12)

The exponent p = = already emerged in Palmieri and Tu [PT19], but as a technical

condition. We underline that this exponent comes out to be the solution of the equation

pr—1—+/6

5 )zvdnn+uﬂ

2PWF‘<PJ1+

whenn72<\/g<n—d*(n+,u1).

Remark 4.8. Similarly as in Remark 4.4, we expect that, if p = p,,, 5(n), then

exp (Ce_p(p_1)> ifn+ u > land V§ < n — d,,
T, ~
exp (Cs_(p_1)> ifn4+pu; >landn —d, < Vi < 2n + w1 — 1,

for some constant C' > 0. See [PT19] for the proof of the wave-like upper bound of the
lifespan estimate in the critical case. Moroever, if V6 = n — di(n + p1) and p = p,, 5(n),
we expect a different lifespan estimate, as in the massless case.
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4.2.4 Different lifespans for different initial conditions

In Theorems 4.1 and 4.2 we impose on the initial data the condition

7#1—14—\/5

h
2

f+g#0.

One could ask if this is only a technical condition, but it turns out that this is not the
case: if we impose h = 0, the lifespan estimates change drastically. This phenomenon was
recently taken in consideration also in the works by Imai, Kato, Takamura and Wakasa
[[KTW19,IKTW20,KTW19].

Let us return to the wave equation

ug — Au = |[ulP, inR" x (0,7T),
u(z,0) =ef(z), wu(x,0) =eg(r), =eR"

Since p1; = pg = 0, in this case the condition h = 0 is equivalent to g = 0. Indeed, under

the assumption
[ stz =0,

collecting the results from the works [IKTW 19,1714, Lin90,LS96, Tak15, TW11, Zho92b,
Zho92a,Zho93], we have that, for n > 1, the lifespan estimates

e—2p(p=1)/7s(pn) if1 <p<ps(n),

T. ~
EXp(Ck_p@_”> if p = ps(n),

hold, with the exclusion of the critical case p = pg(n) if n > 9 and there are not radial
symmetry assumptions. We refer to the Introduction of [IKTW19] by Imai, Kato, Takamura
and Wakasa for a detailed background on these results. What is interesting is the fact
that now we observe always a wave-like lifespan. This is in contrast with the estimates
presented in Subsection 4.1.1, where, under the assumption

/nﬂxﬂx>0,

we have heat-like lifespans in low dimensions, more precisely if n = 1 or if n = 2 and
1 < p < 2, with a logarithmic gainif n = p = 2.

Let us consider now the Cauchy problem for the scale-invariant damped wave equation
(4.2.1) with p = 2, that is

2
Uy — Au + mut = lul’, inR" x (0,7),

u(z,0) =ef(x), wu(z,0)=cg(x), xeR™

Since p11 = 2 and po = 0, the condition h = 0 is equivalent to f+ ¢ = 0. In low dimensions
n = 1 and n = 2, Kato, Takamura and Wakasa [KTW19] and Imai, Kato, Takamura and
Wakasa [IKTW20] proved that, if the initial data satisfy

[ 5@+ gtz =0,
o
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then the lifespan estimates in 1-dimension are

e~ 2p=N/1sP3) if1 < p < 2,
b(e) if p=2,

e P DIr®D if 9 < p < pp(l),
exp(cs—p(p—l)) if p=ppr(l) =3,

T. ~

where b = b(¢) satisfies the equation £2blog(1 + b) = 1, and in 2-dimensions are

. =N/ if ] < p < pp(l) = pg(4) =2,
: exp(Ce™2/3)  ifp = pp(2) = pg(4) = 2.

These estimates are greatly different from the ones presented in Subsection 4.2.2, which
hold under the assumption

| 4@+ a@pyda o0

In dimension n = 1, we have no more a heat-like behavior, but a wave-like one appears
for p < 2, whereas for p > 2 we have a mixed-like behavior, according to the notation
introduced in Subsection 4.1.1. Indeed, in the latter case, even if the lifespan is related
to the heat-like one, an additional p appears. In dimension n = 2, we have no more a
heat-like behavior, but a wave-like one. The strange exponent in the critical lifespan can
be explained by the same phenomenon underlined in Remark 4.4.

We are ready to exhibit our results, which give upper lifespan estimate in the subcritical
case when h = 0. It is easy to see that our estimates coincide with the ones just showed
above in the respective cases. Going on with the exposition followed until now, we will
present firstly the particular massless case, then the more general one with also the mass
term. For simplicity, we will consider only non-negative damping coeflicients.

Let us introduce the exponent

—Vo42
YO if n+py # 1,

P = pu(n+p,n— Vo) = n4pu—1’ (4.2.13)
+ o0, ifn+p =1,
and note that, forp > 1 and n + p1 # 1,
—1-+5
P =Dpx ’YS(pan+Ml) = 2'YF (P,n+ M12> . (4.2.14)

The following results hold. See Figure 4.2 for a graphic representation of the claim in
Theorem 4.3.

Theorem 4.3. Let n > 0 and 1 < p < p,(n), with p,(n) as in Theorem 4.1. Assume that
f € HY(R"), g € L*(R") and

F20, f£0, u—1f+g=0,
Suppose that u is an energy solution of (4.2.3) on [0, T) that satisfies (4.2.11) for some R > 1.

Then there exists a constant €3 = €3(f, g, u, p, R) > 0 such that the blow-up time T; of
problem (4.2.3), for 0 < € < g3, has to satisfy:

81



4.2. PROBLEMS AND MAIN RESULTS

B if0 < p < puy, then
T. < 5*2p(p*1)/'ys(p,n+u);

B ifue < p<n+ 3, then

g 2p(p=1)/7s(pmtu) ifl <p < px,
Tss 00(5)7 ifp:p*’
e~ P=D/vr(pm) if p. <p < pu(n),

where o9 = 0¢(€) is the solution of

2

€p05’jin In(l+0p)=1
and
n—p+3
n+pu—1
B ifu >n+ 3, then
T. < g Pe=1)/vrpm),

Moreover, ifn =1,0 < u < 2 and

l<p<—",
PE T 1]

then the estimate for the blow-up time T . is improved by

T. < e~ (=1)/vr(p,1+[n—1]+)
Theorem 4.4. Let iy > 0, 2 € R, 8 > 0 and 1 < p < p,, 5(n), with p,, 5(n) defined in
(4.2.9). Assume that f € HY(R"),g € L2 (R") and f >0, f # 0, h = 0, with h defined in

(4.2.10). Suppose that u is an energy solution of (4.1.1) on [0, T) that satisfies (4.2.11) with
some R > 1.

Then, there exists a constant £4 = e4(f, g, 111, 12, p, R) > 0 such that the blow-up time
T, of problem (4.1.1), for 0 < € < g4, has to satisfy:

m if V6 <n—d.(n+p), then

T. < g—2p(p=1)/7s(p;ntp1)

B ifn—do(n+p) < V6 <n+2, then

e N/rs(entin) - if] < p < p,,
T. S § 0.(e) ifp = ps
o(e), ifpe <p < pus(n),
where 0 = o(¢) and 0, = 0. () are the solutions respectively of

YE(Pnt+(pg —1-v73)/2)

ePo p—1 In(1+ U)I_Sgn‘s =1,
YR (Pnt(p—1-V3)/2)
ePo, Pt In(1+ o,)%7%8m9 = 1;
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] if\/52n+2, then
T. < o(e).

Moreover, ifn=1,0 < < 1 and

4 2_
1+27\/g,
1+ +V0o
2-60 2
T+ +60 146

ifVo <0,

1<p<re(p1,0):=<1+2 if\/S:Q7 (4.2.15)

9
14+0

_ a1/ _

then the estimate for the blow-up time I is improved by

ifVo >0,

with

T. < e~ @=D/r(p (1 +14V5)/2).

Remark 4.9. In the 1-dimensional case of Theorem 4.4, one can check that 7, < p,, 5(1)
holds always, except when p1; = 3 and § = 0, since in this case r, = p3 (1) = ps(4) = 2.
About the relation between p, and r,, we have that, for 0 < § < 1, if N § 0 then p, § Ts.

Remark 4.10. We conjecture that the estimates in the previous two theorems are indeed
optimal, except in dimension n = 1 for Theorem 4.3 on the transition curve defined by

2

=—— for0< u<2,
T i —1] ==

p
and for Theorem 4.4 on the transition surface
p=re(p1,0) for0<4d <1
Moreover, in the critical case we expect, due to the wave-like and mixed-type behaviors,
T, ~ exp(Ce PP~1)),

except for /6 =n — d.(n + p1) and p = p,, 5(n), where the lifespan should be different.

Remark 4.11. The conditions (4.2.10) on the initial data in Theorem 4.1 and 4.2 can be
replaced by the less strong conditions

[twzo [ j@awzo [ w@s0 [ d@ew o

where the positive function ¢ (z) is defined later in (4.4.9).

Similarity can be done for the initial conditions of Theorem 4.3 and 4.4, requiring

f@>0. [ f@a@>0 [ b@=0. [ ‘@l =0
Rn Rn n n
It will be clear from the proof of our theorems that these weaker hypothesis are sufficient.
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e =

— ol

(a) Casen = 1.

n+3

e

p=ps(n+p)

1 pr(n) ps(n) P
(b) Case n > 2.

Figure 4.2: Here we collect the results from Theorem 4.3. If (p, 1) is in the blue area, then
T. < e 2pp=1/vs:n+1) hence the lifespan estimate is wave-like. If (p, 1) is in the purple area,
then 7. < e=P(P=1/vr (1) and the lifespan estimate is of mixed-type. The dash-dotted line given
by p = p.«(n, 1) highlights the improvement T, < o¢(¢). In the case n = 1, if (p, p) is in the red

~

area, T. < e~ (p=1)/7r(p1+[1=1]-) and the lifespan estimate is heat-like.
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4.2.5 Wave equation with scattering damping and negative mass

In the end, in this subsection we want to continue the study of a problem we examined
in [LST19,LST20] together with Ning-An Lai and Hiroyuki Takamura. In these two works,
we considered the Cauchy problem for the wave equation with scattering damping and
negative mass term, viz.

vy V2 . on
(1+1¢)8 G o, R (0.T), (4.2.17)
w(z,0) =cf(x), wzr,0)=cg(x), zeR"

Wt — Aw +

wy +

where ;1 > 0,15 < 0, € Rand 8 > 1.

In Subsection 4.2.2 we already observed that, if the damping is of scattering type, the
solution of the homogeneous damped wave equation “scatters” to the one of the wave
equation. For the equation with power non-linearity, according to the results by Lai and
Takamura [LT18] and Wakasa and Yordanov [WY19], the solution again seems to be
wave-like both in the critical exponent and in the lifespan estimate.

In [LST19], we took in consideration (4.2.17) with @ > 1 and observed a double
scattering phenomenon, in the sense that both the damping and the mass terms seem to
be not effective. Hence, the solution behaves like that of the wave equation with power
non-linearity u; — Au = |u|P. More precisely, supposing for simplicity that f, g are
non-negative, non-vanishing, compactly supported functions, we established the blow-up
for 1 < p < ps(n) and the upper bound for the lifespan estimates

—_p=1
g wer-) dfp=1lorn=2,1<p<?2,
T. < ale) ifn=p=2,

_ 2p(p=1)

g sl ifn=22<p<pg(n)orifn >3,

where a = a(¢) satisfies £2a?log(1 + a) = 1, although in the case n = p = 2 more
technical conditions were required.

In [LST20], we studied the case a < 1, discovering a new behavior in the lifespan
estimate. Indeed, we proved that there is blow-up for every p > 1 and that the upper
lifespan estimate

T. 5 ¢(Ce)
hold, where { = ((€) is the larger solution of the equation

Yr(Ppn—(1+a)/4)

¢ p—1 exp (KCPTC» =1,

_2 |I/2| 141
K= ()

As observed in Remark 2.1 of [LST20], a less sharp but more clear estimate for the lifespan

in the case v < 1 is )
1\1T=
T. < {log <)] .
€

Hence, the negative mass term with o > 1 seems to have no influence on the behavior of
the solution; on the contrary, if a < 1 the negative mass term becomes extremely relevant,

with
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implying the blow-up for all p > 1 and a lifespan estimate which is much shorter, compared
to the ones introduced previously.

We now come to the case & = 1. This is particular and was not deepened in our
previous works. Indeed in Subsection 4.4.5, after introducing a multiplier to absorb the
damping term, we will show that we can get blow-up results and lifespan estimates for
this problem by reducing ourself to calculations similar to the ones we will perform to
prove the results exhibited in the previous subsections. Roughly speaking, we will find

out that (4.2.17) with a = 1 has the same behavior as that of (4.1.1) with u; = 0 and
Ly = 1/261’1/(1_’8)-

Therefore, in the rest of this subsection we will consider the Cauchy problem

e At (117175)51% " (1:7275)21” =l R (0,1, (4.2.18)
w(x,0) =cf(z), we(z,0)=cg(x), xeR"

where 1 > 0,15 < 0and 5 > 1.

Definition 4.2. We say that u is an energy solution of (4.2.18) over [0, T") if
w e C([0,T), H'(R™) nC*([0,T), L*(R™)) N C((0,T), L}, (R™))

loc

satisfies w(x,0) = ef(x) in H'(R"), wy(x,0) = eg(z) in L?(R™) and
/ wi(z, t)p(x, t)dr
Rn
+ / ds {—wi(z, s)pi(z, s) + Vw(x,s) - Vo(z,s)} do
0

Rn
! 1%
# [ [ e et

—i—/ot ds/n q iQS)Qw(x,S)gb(x’S)dx

= /R eg(z)d(z,0)dw
i /ot ds/n lw(z, s)[Pé(z, s)dx

(4.2.19)

with any test function ¢ € C§°(R"™ x [0,T)) fort € [0,T).
We have the following result, graphically pictured in Figure 4.3.
Theorem 4.5. Fixvy > 0,9 < 0, 8 > 1. Define
§:i=1— dvne/(=0) 5 1,

and the parameter

di(n) :=

(—1 —n+v/n?+ 10n — 7) € [0,2).

N |
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Let1 < p < ps(n), with

ps(n) = max {pF (n 1 +2\/5> , DS (n)}

ps (n) ifn22,\/5§n—d*(n),
1
— pF<n— +2\/$> ifn22,n—d*(n)<\/5<2n—1,
+ o0 ifnzlorifn22,\/522n—1.

Assume that f € H'(R"), g € L?>(R") are non-negative and not both vanishing. Suppose
that w is an energy solution of (4.2.18) on [0, T) that, for some R > 1, satisfies

suppw C {(z,t) € R" x [0,00): |a| < ¢ + R}.

Then, there exists a constant 5 = e5(f, g, 5,v1,v2,n,p, R) > 0 such that the blow-up
time T of problem (4.2.18), for 0 < € < €5, has to satisfy:

] ifﬂgn—lthen
T, < e 2p—D/rspm)

)

] ifn—2<\/3<n—d*(n),then

e~ D/rpn—(HV8)/2) i1 < < ,
. n—/06
~ 5—2p(p—1)/“rs(:Dﬂ%)7 if

2 < p<ps(n)
n);
n—+v4 P=ps

m ifV6 > n—d.(n), then

T. < e~ D/rren—(14V8)/2) _ ~[2/(p-)-nt(1+v5)/2) "

Remark 4.12. As a direct consequence of Remark 4.7 and 4.8, we expect that ps(n) is the
critical exponent and that the lifespan estimates presented in Theorem 4.5 are optimal,
except on the transition curve (in the (p, §)-plane) defined by

_ 2
p_n_\/g

on which we presume a logarithmic gain can appear.

forn —2 < V0 <n—d.(n)and 1 < p < ps(n),

Moreover, we expect that, if p = ps(n), then

exp (Cs_p(p_l)) ifn>2Vs<n-— d«(n),
T, ~
exp (05—(19—1)) ifn>2,n—d.(n) < V< 2n — 1,

for some constant C' > 0. If /6 = n — d.(n) and p = ps(n), we presume a lifespan
estimate of different kind.
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(a) Casen = 1.

2 — d.(2)

1 ps(2) p

(b) Case n = 2.
NG

2n —1

1 ps(n) p

(c) Case n > 3.

Figure 4.3: Here we collect the results from Theorem 4.5. If (p,/d) is in the blue area, then
T. < g=2p(p=1)/7s(P:n) hence the lifespan estimate is wave-like. Otherwise, if (p, N} ) is in the
red area, then 7. < ¢~ (P=1)/7r (pn=(14+v2)/2) and the lifespan is heat-like. Note that this figure
represents also the results of Theorem 4.2 for the case 13 = 0, po < 1/4.
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4.3 The Kato-type lemma

The principal ingredient we will employ in the demonstration of our theorems is the
following Kato-type lemma. Although this tool is well known and used in the literature,
here we will reformulate it in such a way that, in the following sections, we can directly
apply it to obtain not only the condition to find the possible critical exponent, but also
the upper bound of the lifespan estimate. We will prove it using the so-called iteration
argument.

Lemma 4.1. Letp > 1, a,b € R satisfy
v:=2[(p—1)a—b+2] > 0.
Assume that F' € C([0,T)) satisfies, fort > Ty,

F(t) > EAt" [In(1 +¢)]°, (4.3.1)

) > B/ ds/ r)Pdr, (4.3.2)
To To

where ¢, Ty > 0 and E, A, B > 0. Suppose that there exists T > Ty which solves
~ o4 ~ C
ET? D [m(l + T)} =1 (4.3.3)

Then, we have that N
T<CT

for some positive constant C' independent of E.
Proof. Let T be as in the statement of the lemma and start with the ansatz
~ Cj ~ ~
F(t) > D, [1n(1 + T)] Tt —T)Y fort>T, j=1,2,3,... (4.3.4)

where D;, a;, b;, cj are positive constants to be determined later. Due to hypothesis (4.3.1),
note that (4.3.4) is true for j = 1 with

Dy =FEA, ay=lay, by=ld-, a=c (4.3.5)

where [z]+ := (Jz| & x)/2. Plugging (4.3.4) into (4.3.2), we get

t s " s _
F(t) > Dﬁ-)B/~ d5/~ [ln(l + T)]p by (o TYPO gy
T T
DB

~ 1PCj ~
> In(1 =T~ ¢ pbi—[bl+ (¢ _ \paj+[b]-+2
= (pa; + [b]- + 2)? [n( * )] ( )

for t > T, and then we can define the sequences {Dj}jen {aj}jen, {bj}jen, {cj}jen by

ajr1 =paj+[bl- +2,  bjp1 = pbj+ [b]4,
D'B
(paj + [b]- +2)*’

Cit1 =p¢,  Djp =
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to establish (4.3.4) with j replaced by j + 1. Hence for any j € N, it follows from the
previous relations and from (4.3.5) that

i, [b]- +2Y [p]- +2 iy, Bl [b)s
I G B R R ) et
cj:pj_lc.

In particular, we obtain that

[b]- +2
p—1

pa;+ [0 +2=a;11 <P/ ([a]+ + ) = D1 > Cp ¥D?,  (43.6)

where C := B/{[a]; + ([b]- +2)/(p—1)}* > 0. From (43.6) and D; = EA, by an

inductive argument we infer, for j > 2, that
Dj; > exp {p] In(EA) — S, ]} ,
where -
e ~
2kInp —InC
Sj=>_ F :
k=1 p
Since Y o2 2% =1/(1 —z) and > 72 | ka® = /(1 — 2)? when |z| < 1, we obtain
Soeo = lim S; = In{CP/(1=P) 2p/(17p)2}.

Jj—+oo
Moreover, there exists jo > 2 such that the sequence S; is increasing for j > jo. Hence we
obtain that
j—1
Dj > (EAe™ =)’

for j sufficiently large. Let us turning back to (4.3.4) and let C' > 1 be a constant to be
determined later. If we suppose ¢ > CT, so that in particular t — T' > (1 -1/C)t, and
considering (4.3.3), we have

[b] ~  [bl_+2 ~ - [b]_+2 Pt
F(t) >t (t—T) v—l{EAe—Soo [in(1 )15 (¢ Pyl }
-1
@ B+ 1 L+ =2 e o)
>t (t=T) » 1 EAe <1 - C) {ln(l + T)] t2(p-1)
[b] ~ [b_+2 B
Z tpj(t—T) p—1 Jp] 1
with -
lal++—=
J = Ae™% (1 = é) " ow,

Since v > 0, we can choose C' > 1 large enough, in such a way that J > 1. Letting
j — 400 in the above inequality, we get F'(t) — +o00. Then, T' < CT as claimed. O

Remark 4.13. We can observe that the previous lemma is still true if in (4.3.2) an arbitrary
number of integrals appear, more precisely if we replace (4.3.2) with

te—1
>B/ dtl/ dty - / t VF (ty)Pdty  fort > Ty,
To

and y with v := 2[(p — 1)a — b + k], for any positive integer k € N.
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4.4 Proof for the theorems

We come now to the demonstration of Theorems 4.2 and 4.4. In the next two subsections, we
will prove some key inequalities which will be employed in the machinery of the Kato-type
lemma. Applying the latter, we will find a couple of results, which will be compared in
Subsection 4.4.4 to find the claimed ones. The proof of Theorems 4.1 and 4.3 are clearly
omitted, since they are straightforward corollaries of Theorems 4.2 and 4.4 respectively,
just set the mass equal to zero. In the end, we will sketch the proof of Theorem 4.5 in
Subsection 4.4.5.
4.4.1 The key estimates
Let us define the functional
Fo(t) :== / u(x, t)dz.

Choosing the test function ¢ = ¢(x, s) in (4.1.2) to satisfy

¢p=1lin{(z,s) e R" x [0,¢] : |z| < s+ R}, (4.4.1)

we get

/ ut(:c,t)d:c—/ ut(x,0)dz
R R
! M1 ’ w2
+/0 ds/n 1+Sut(x,s)daz+/0 ds/n mu(:ﬂ,s)dm

t
:/ ds/ |u(zx, s)|Pdx,
O n

which yields, by taking derivative with respect to ¢,

FI(t) + LRt o Ft:/ t)|Pdz. 44.2
Setting
—1—-4
Ai=1+4+V6>0, ﬁ;::w, 6= (1 — 1) — 4dpo,

we obtain that (4.4.2) is equivalent to

jt{u 10 —|—t)”F0(t)]} R TR

Integrating twice the above equality over [0, t], we get
Fo(t) = L(t) + M(t), (4.4.3)

where
L(t) := Fo(0)(1 + )" + [k Fp(0) + EJ(0)](1 +¢)~" /Ot(l + s)f/\ds,

M(t) = (148)" /t(1+s)>‘ds/5(1+r)”+)‘dr/ u(z, )Pz > 0.

0 0 n
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4.4. PROOF FOR THE THEOREMS

Consider now the functional
F(t) = (1+)"FFy(t),

and observe that Fj and F imply the same blow-up results, so it is sufficient to study the
latter functional. Since

f(x)dx >0, Hp:= / h(z)dx >0,
R’ﬂ

n

and they are not both equal to zero, we want to prove that there exists a time 7y > 0,
independent of ¢, such that, for ¢t > Ty, the following estimates hold:

t s
Ft) > / ds / = (RN E=D F ()P, (4.4.4)
To To
o> t if Hy =0, w45)
€ 445
Y i1 4 t)  if Hy > 0,
tn+>\—(n+u1—1)§+n+l ifr — (n 4+ — l)g tn+1>0,
F(t) = e { P In2—s8n0(1 4 ¢) if ki — (n+ pg — 1)§ Yntl1=0, (446)
A Inl—send(1 4 1) if/i—(n+u1—1)§+n+1<0.

Thanks to the Holder inequality and using the compact support of the solution (4.2.11),
we have

/ u(z, t)|Pdx 2t Fy(4)|P = (14 ) P D= E (1P (4.4.7)

for t 2 1. Considering L and recalling the definition (4.2.10) of Hy we obtain

(14+t)""[Fy(0) + eHpIn(1 + t)] if § =0,
L(t)=<¢ (1+¢)7*
( ) (;) {EH(] + [\/SF()(O) — EHo](l + t)_\/g} if 6 > 0.
V6
So, from the condition on the initial data we get, for ¢ 2 1 sufficiently large, that
Vo if Hy = 0,
L(t) z et ™" if Hy>0,6 >0, (4.4.8)

t*In(1+t) ifHy>0,6=0,

and in particular the positiveness of L for large time. Neglecting L from (4.4.3), inserting
(4.4.7) and recalling that A > 0, we get (4.4.4). Instead, inserting (4.4.8) in (4.4.3) and
neglecting M, we reach (4.4.5).

Finally, we will prove (4.4.6) in the next section.
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4.4. PROOF FOR THE THEOREMS

4.4.2 The weighted functional

Let us introduce
Fi(t) = [ uloitr(ot)de

where 1) is the test function presented by Yordanov and Zhang in [YZ06],

), o L Pz

et +e " forn =1,

which satisfies the following inequality (equation (2.5) in [YZ06]):
/ ()7 Tde < (1+4)™Y {i-wts ), (4.4.10)
|z|<t+R

We want to establish the lower bound for F. From the definition of energy solution (4.1.2),
we have that

;lt/n e, ) (, t)da
_ / (e ) ) - / u(z, ) Ag(x, t)da

—I-/Rn 1/:_1tut(ﬂc t)o(x,t) d:v+/ a —|—t u(z, t)o(z,t)dx

_ / Jula, Do, )

Integrating the above inequality over [0, ¢], and in particular using the integration by parts
on the second term in the first line and on the first term in the second line, we infer

/n ug(x, t)p(x, t)dx — E/n g(z)p(z,0)dz
u(x, t)d(z, t)dx —l—s/Rn f(z)pe(z,0)dx

ds/Rnu(x,s)qbtt(x,s)dx—/tds/nu(x,s)Aqb(az,s)dac

/
/,
+/Rn T u(z, t)p(x, t)dr — 5u1/ f(z ,0)dz (4.4.11)
J
<,

(bt(x s)dx

tds/Rnu 2¢x5dw—/ds/n u(z, s)
- [a / (e, s)de

Setting

¢(z,t) = 1 (x,t) = e 'p1(x) onsuppu,
then we have
¢ = —¢, ¢y =A¢ onsuppu.
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4.4. PROOF FOR THE THEOREMS

Hence from (4.4.11) we obtain

F{(t) +2F () +

t
+
- Fl(t)+/{ moy A MZ}Fl(S)dS
0

1
1+t 1+s (1+49)
[0+ mr@) g are)da+ [ ds [ e o)l ote.s)da

from which, after a derivation,

zww+@+’“>ﬂ@+<“1+ “)>EQ

1+t 1+t (1+1)2

_ / (e, )P é(z, t)de  (44.12)

Let us define the multiplier

m(t) == e'(1 +1) s

Multiplying equation (4.4.12) by m(t), using for convenience the change of variables
z := 14t and denoting

B(z) :=m(t)Fi(t), (4.4.13)
we obtain that B3 satisfies the nonlinear modified Bessel equation
d*B dB 4]
24 ° it _ 2, 7 —
2 (2)+ = P (2) (z + 4> B(z) = N(z) (4.4.14)

with initial data

B(l)=e | f(x)pr(x)dx
R

%(1) - g/n {“12_ 1f(ac) —i—g(x)} ¢1(z)dz

N(z) :=2’m (z — 1)/ lu(z,z — 1)[Pp(z, z — 1)dx > 0.

(4.4.15)

and where

n

Now, let us estimate the function B.

4.4.2.1 Homogeneous problem

Let us firstly consider the homogeneous Cauchy problem

S TR R~ (2+7) B =0 221
Bo(1) = B(1), %(UZ%(U

The fundamental solutions are the modified Bessel’s functions B, Vi) 2( z)=1y; /2(2) and
B\_/S/Q(z) = K\/E/Q(z). Therefore

Bo(z) =ecy BT (2)+ec_B

V5 /2 f/z()
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where, thanks to the relations (A.3), (A.4) and (A.5), it holds

e e { R0 < P800} 0+ BB, 0

= £ 57, [ ha)o(eps
[:F\[B\//Q( )+ 1:F+\/g/2(1)} f(z)p1(x)dx

Rn

+ 57 (1) /R h(w)é1(x)dz + B (1) /R (@) ()da if 6 =0,
+ B (1 )/n h(@)i(w)de + BF, | 5 (1) . f(@)pr(z)dz  if6 > 0.

Due to the assumptions on the initial data and recalling that B,/ (2), B, (2) > 0 when
v > —1and z > 0 (see for example 9.6.1 in [AS64]), we can deduce that ¢y > 0 (see also
Remark 4.11). Exploiting the asymptotic expansions for the modified Bessel’s functions (A.9)
and (A.10), we have that

=[5 (o)

where O is the Big O from the Bachmann-Landau notation. Then, there exist two constants
C > 0and 29 > 1, both independent of ¢, such that

By(z) > CezY2%e%  forz > 20. (4.4.16)

4.4.2.2 Inhomogeneous problem

Let us consider now the Cauchy problem

2
22 ddf;N (2) +de—ZN(z) - <22 + 5) Bn(z) = N(z), =z2>1,

By(1) = di{vu) = 0.

Exploiting the method of variation of parameters, we have that

Bule) = By (o) [ €85, (V€ ~ By (o) [ €8y (ON @
Recalling that N(z) > 0 and using the fact that B\J;S /2( z) is increasing and B~ 75 /2( z) is

decreasing respect to the argument for z > 0 (due to the relations (A.4) and (A.5)), we get
that
By(z) >0 forz>1. (4.4.17)

Since the solution B to the Cauchy problem (4.4.14)—(4.4.15) is the sum of By and By,
from estimates (4.4.16) and (4.4.17) we get

B(z) = Bo(2) + By (2) = e27Y2e*  for z > 2.
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At this point, recalling the definition (4.4.13) of B and changing again the variables, we
reach

Fi(t) > e(1+8)7"/2 fort>1. (4.4.18)
By Holder’s inequality and using estimates (4.4.10) and (4.4.18), we obtain

[ wtepae= ([ |w1<x,t>rp/<p-”)l_p F(o)P

> eP(1+ t)—(n-hul—l)%'i'”—l
for t 2 1, plugging which into (4.4.3) and recalling that L(t) is positive for ¢ large enough,
we get
t

Fo(t) 2 eP(1 + t)_’"“/

(1+ s)_)‘ds/ (1+ r)q‘“/g_ldr
T

T

for t > I with a suitable 77 > 0 independent of ¢, and where we define
g=4q(p) =rk—(n+ —1)§+n—|—1. (4.4.19)
We obtain, for large time ¢ 2 1, that:

mifg > —\/?5, then

4 if g > 0,
Fo(t) 2 ePt ™™ < In(1+¢t) ifg=0,
1 if g <O0;

mifg= —+/4, then

Folt) > <Pt 1 itfto >0,
1>
o~ In%(1+1t)  ifd=0;

mifg< —+/0, then

1 if § > 0,
Fo(t) > ePt" '
In(1+¢) if § = 0.

Summing all up, we finally deduce the relations in (4.4.6).

4.4.3 Application of the Kato-type lemma

We are ready now to apply the Kato-type lemma, as presented in Section 4.3, twice to two
different couples of inequalities, and subsequently we will infer which result is optimal.
The calculations in this subsection are all elementary (and quite tedious), so we will only
sketch them.
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Apply Lemma 4.1 to the inequalities (4.4.4) and (4.4.5), with

F=c¢,
1 if Hy = 0, 0 if Hy =0,
a= oo b=(n+r+Np—1), c= oo
A if Hy > 0, 1—sgno if Hy > 0,
Ve if Hy = 0,
1<p<pc:= pF(n—i_H—i_ ) l 0
pr(n+ K) if Hy > 0,

B 2k (p,n + k + V) if Hy =0,
2vp(p,n + K) if Hy > 0.

We chose p € (1, p.) since this is equivalent to v > 0 for p > 1. Then, for every p € (1,p.),
we have T, < T = T(e), with

ePTro1 {111(1 + T)}pc = 1. (4.4.20)

Apply Lemma 4.1 to the inequalities (4.4.4) and (4.4.6), with

A+ ifg>0 0 ifg >0,
I , -
a:{)\ q ifZSU, b=(Mn+r+AN)(p—-1), ¢=92-sgnd ifg=0,

1—sgnd ifqg <0,

vs(p,n+p1)  ifg>0,

1<p<p, 7=
Pebe 0 {2fyp(p,n+n> ifq <0,

where ¢ is the one in (4.4.19) and p, € (1, +0o0] is defined as the exponent such that 5 > 0
for 1 < p < p,. (we will explicitly define this exponent later). Then, for every p € (1,p,.),
we have T, < S = S(e), with
~ 7 ~ ¢

= [1n(1 + S)} ~ 1. (4.4.21)
In both cases, since (4.4.4), (4.4.6) and (4.4.5) are true for ¢ > Tp with some time Tp, and
since we need to require 7', S > Tj to apply the Kato-type lemma, we need to impose
also that ¢ is sufficiently small. From these computations, we deduce the blow-up for

1 < p < pg := max{pe, .} and the upper bound of the lifespan estimate 7, < min{Tv, §}
We will go further in the analysis to clarify these values.

Before moving forward, in order to understand the definition of S we need to write
down more explicitly the definitions of ¢, p, and 7, since they depend on ¢ and therefore
on the exponent p. Firstly, recall the definition (4.2.13) of p. = p.«(n + p1,n — \/3) and
that, by (4.2.14), for p > 1 and p; + n # 1, it holds

p=p« <= q(p) =0 <= v5(p,n+ 1) = 2v7r(p,n + K).

We will consider several cases, due to the generality of the constants involved, but what lies
beneath is the elementary comparison between the parabola g (line in the case 11 +n = 1)
and the line 2yp. Also, since we want to be in the hypothesis of the Kato-type lemma, our
interest is directed to 7 > 0, and so we explicit its definition only for the range 1 < p < p,..
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44.3.1 Casen—+ u; >1

Recalling the definition (4.2.6)—(4.2.7) of dy := di(n + 1) and the relation (4.2.8), we have
that the following hold true:

0 <dy <2,

2
\/E:n—d*@p*zps(ner)ZPF(nJr/‘v):d*‘

Taking also in account that

Vo <n—du(n+m) < p. > ps(n+ m),
VE<n+2ep,>1,
q>0<p<ps

we have:

m if Vo <n—d,, then

Pe = ps(n+ p1),
¥="s(p,n+p1), forl <p<p,.,
c=0;
mifn—d, <0 <n+2 then
P = pr(n + k),

_ Jrstpnt+m),  forl<p<ps
= {2’yF(p,n+li), for p, < p < p,,
0, for1 < p < p.,
=4 2—sgnj, for p = p,
1 —sgnd, for p, < p <P

m if V6 > n + 2, then

Pe = pr(n+ k),
¥ =2vr(p,n+r) forl<p<p,
¢=1—sgnd.

4.43.2 Casen+pu; =1

Taking in account that
q> 0= Vo <n+2

we have:

m if V0 < n+ 2, then

Pe =ps(n+ p1) = ps(1l) = +o0,
F=7sp,n+p) =vs(p,1) =2+2p, forl <p<p,,
c=0;
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m if Vo =n + 2, then

Pe =ps(n+ p1) = pr(n+ k) = +oo,
¥=7s(p,n+p1) =2yr(p,n+r)=2+2p, forl<p<p,
¢=2—sgng;

m if V0 > n+ 2, then

P. =pr(n+ k) =pr ((n - \/5)/2) = o0,

7 = 23p(p,n+ &) = 2vr (p, (0 = V8)/2), forl<p<p,,

4433 Casen—+pu <1

Taking in account that

pe>1=V6>n+2,
q>0<=p>ps

we have:
m if V6 < n+ 2, then

De = ps(n + p1) = +oo,
¥="s(p,n+p) forl<p<p,
c=0;

m if V6 > n+ 2, then

Pe =ps(n+p) = +oo,
2yp(p,n+ k), forl<p<p,,
{VS(P,ner), for p. <p <P,
1 —sgnd, for 1 < p < ps,

i:

C=(2—sgnd, for p = p,
0, for p, < p < p,.

Now that the definitions of p., D, and T, S are clear, we can proceed further.

4.4.4 Proof for Theorem 4.2 and Theorem 4.4

As we said, from our computations we found the blow-up for 1 < p < py, = max{p, p.}
and the upper bound of the lifespan estimates 7. < min{7", S}. Observing that

~

T(e), S(e) — +oo fore — 0"
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and comparing the relations (4.4.20) and (4.4.21), we get that
pyzy=TsS.

If py = 7, the exponent of the logarithm comes into play, indeed
pc z c— T § §

Now, we need to consider two cases according to the fact that Hy = [, h(z)dz is positive
or null.

44.4.1 Case Hy >0

We can easily infer that py, = p,, s(n) defined in (4.2.9). We establish the upper bound for
the lifespan 7, without making distinctions according to the value of n + ;. Taking in
account that, for p > 1,

p>1, it Vo >n,
2 N+ K) > ,n+ = 2
pyF(p ) >s(p,n + ) l<p< C ifn_2<Vi<n,
n—+/0o
2
n—d,<Vé<nandn+pu >1=pr(n+r) < ,
n—+9o

\/ggn—d*and1<p<pk:>q>0,

we have:

[ if\/ggn—2and1<p<pk,thenp’y<ﬁandso§<f;
mifn—2<vVé<n—d,and

2
n—vs

oDifl<p< ,thenp’y>7andsof<§;

O ifp:n%ﬁ,thenpvzﬁandpczé,sothatfg§;

2
n—vs§

o if

< p < pg, then py < 7, so that S < T}
mifVé>n—d, andifl <p<pk,thenpfy>7sothatf<§.

44.4.2 Case Hy=0

From now on we will impose the additional hypothesis that 1; > 0 (which however can
be relaxed to n + pq > 1).

Obviously, pr(n+ & +v/4) < pr(n + ), hence again p, = Puy,s(n) defined in (4.2.9).
Consider that, for p > 1,
2 -6
n+r+V5
2
2p'yp(p,n+/<c+\/5) > vs5(p,n+ 1) <= n= land V6 < 1and1 <p< L

pyr(p,n+ K+ Vo) > yp(pn+k) <= Vi< 2andl <p <1+
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If n > 2, taking into account that

2 -6

n—d.<Vi<n+2=1+
n—l—/f—l-\/g

< 2T
we can prove that py <7 for 1 < p < pg, and so S <T.

Suppose now that n = 1. Recall the definition (4.2.16) of § and note that it satisfies
sgn @ = sgn(py — 3). Moreover the following relations hold:

NG

— < pg(l+ s
n+f£—|—\/5 s )

pw>0=—=1—-dy,<land1l+

O<p <3<=1-d, >0,
0<p <3=11—-d >0,

2
Vo> —1+d, = < ps(1+ ),
7 ps(1+ p)

2 -0 _ q 2 _
R « and —— e
n+k+V0o P 1+6 P

Recall also the definition (4.2.15) of 7« = r(u1,0) and Remark 4.9. Hence, we get that:

0<Vo<3=—1+

mifV6=0,p =3andifl <p<pk,thenp'y>7andsof<§;
u if\/?S:OandMlaéB,orif0<\/5<1,wehave:
oifl <p<r*,thenp7>7andsof<§;

0 if p = ry, then py = 7 and pc < G, so that S < T

] ifr*<p<pk,thenp’y<7,sothat§<f;

mifVo > 1andif1<p<pk,thenp7<isothat§<f

In the end, recalling the definitions of v,7, ¢ and € in the various cases and summing
all up, we can conclude the proof for Theorem 4.2 and Theorem 4.4.

4.4.5 Proof for Theorem 4.5

We will only sketch the demonstration, since it is a variation of the previous one. Let us
introduce the functional

Go(t) = / w(z, t)dz
and, as in [LST19,LST20], the bounded multiplier

(1 + _t>;5> ,

Choosing the test function ¢ = ¢(x, s) in (4.2.19) to satisfy (4.4.1), deriving respect to the
time and multiplying by m, we get that

m(t) := exp <yl
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V2

TGt = m(t) [ Jula.b)de.

[m(t)Go (1)) +

and hence

Go(t) = Go(0) + m(0)Gh(0 /m 5)ds

_/0 " /m 1+ GO( )dr (4.4.22)
+/Ot m_l(S)dS/O m(r)dr /Rn w(z,r)|Pdz.

It is simple to see, by a comparison argument that Gy is positive. Indeed by the hypothesis
on initial data, we know that Gy(0 fRn x)dx and G’ fRn x)dx are non-
negative and not both zero. If G (0 ) > 0, by continuity Gy is posmve for small time. If
Go(0) = 0 and G'(0) > 0, then Gj is increasing and again positive for small time ¢ > 0.
If we suppose that there exists a time to > 0 such that G(t9) = 0, calculating (4.4.22) in
t =ty we get a contradiction, since the left-hand term would be zero and the right-hand
term would be strictly positive. Then, G is positive for any time ¢ > 0. Define now the
functional Gy as the solution of the integral equation

Go(t):;G(O)+()G’ /ds/ s Co(r)r

0)/0 ds/o dr/n]w(x,r)pdac.

Since m(0) < m(t) < 1 for any ¢t > 0 and v < 0, we have that

(4.4.23)

Golt) ~ Go(t) = 1 Go(0) + "o

/ds/ 1+ 5[Go(r) — Go(r)]dr,

and, again by a comparison argument, we may infer that Gy > G. From (4.4.23) we get
that G satisfies

0+ TG0 = m(o) [ Jul s

which has the same structure of (4.4.2) with 1 = 0 and o = m(0)ve. Setting
ANi=1+V06, k:=-=X2, G(t):=1+t)"CGo(t),
similarly as in Subsection 4.4.1 we obtain

Go(t) = Go(0)(1 +t)~" + [Go(0) +@3(0)](1 +t)7" /t(l +5) Ads
0 (4.4.24)

t s
+(1 —|—t)_“/0 (1+ s)_’\ds/o (1 —|—r)”+)‘dr/n |w(z,r)Pdx
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and then
t s
G(t)z [ ds / = (RN =D G ()P, (4.4.25)
To To
G(t) = et (4.4.26)

Now, to get the counterpart of (4.4.6), define the functional

Gl(t) = /n w(wat)wl(xawdx

with ¢/; defined in (4.4.9). After taking a derivative respect to the time in the definition of
energy solution (4.2.19) and multiplying both of its sides with m(¢), we have that

% {m(t) /n wt(:z:,t)gb(:z,t)dx}
+ m(t) {—wi(z,t)pr(z,t) — w(z, t) Ap(x,t)} dx

RTL
— () /R K 1:Qt)Qw(x,t)¢(x,t)dx+m(t) / ol )Po(r, tda

By integration on [0, t] we get

n

() [ wte Dt e+ mO) [y 0
+[a
+[a
= —/0 ds (5)(1
+ s [ e spote. )i

Setting ¢(x, t) = 11 (x,t) = e !¢ () onsupp w and recalling the bounds on the multiplier
m(t), we obtain

m(t) /n we(z, t)p(x, t)dr — m(O)a/ g(x)p(x,0)dx

S)Lw(a:, $)pi(x, s)dx

[ mio;
[ o “%mx_/ds/n ARV
[om

n S)Zw(:z:, s)o(x, s)dz

S
S

m(0)G1(0)
%1 120}
+35)8  (1+4s)?

1+s
/ w(z, s)|Pdx.

G (t) + 2G1 () > m(0)G(0) + 2

G1(0) +
oL
/ds

} G (s)ds
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Integrating the above inequality over [0, #] after a multiplication by e, we get

1 67275

Gi(t) > G1(0)e™ + m(0){G}(0) +2G1(0)}——

+m(0)e2 /0 e /0 { q fr)ﬁ - (1i2r)2}G1(r)dr
+ m(0)e 2 /Ot e*ds /0 dr/n|w(m,r)|p¢(x,r)d$,

from which, thanks again to a comparison argument, we infer that G; is non-negative, and
so, neglecting the last two term in the above inequality, it is easy to reach

Gi(t) Z2 e fort 2> 1.

Hence, we have also
/ lw(z, t)|Pdx > eP(1 4 )~ DEH=1 for¢ > 1,
and so, taking into account (4.4.24), it holds

t s
Go(t) 2 eP(1+ t)”/ (1+ s)Ads/ (1+ T)qﬂ/g*ldr fort > Ty,
T1 Tl

for some 17 > 0, where

q=q(p) = —

Finally, we obtain the inequality analogous to (4.4.6), i.e.

At if g >0,
G(t) = eP P n(1+1t) ifg=0, (4.4.27)
tA if g < 0.

Thanks to (4.4.25), (4.4.26) and (4.4.27) and applying the Kato-type lemma as in Subsection
4.4.3, we can conclude the proof of Theorem 4.5.
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CHAPTER

Blow-up and lifespan estimate for
generalized Tricomi equations
related to Glassey conjecture

In this chapter, we consider the small data Cauchy problem for the semilinear generalized
Tricomi equations with a power-nonlinearity of derivative type, suggesting the papabili
candidates both for the critical exponent and for the lifespan estimates. Other than the
blow-up phenomena, we prove also a local existence result.

The reference for this chapter is [S5], joint work with Ning-An Lai.

5.1 The generalized Tricomi model

The object of our investigation is the problem

(5.1.1)

uy — AU = |wP in[0,T) x R",
U(l’,O) :€f(CL'), Ut(l',O) :€g($), T Ean

where m > 0 is a real constant, n > 1 is the dimension and € > 0 is a “small” parameter.
The initial data f, g are compactly supported functions from the energy spaces

feH\®R"), geH'w R,
and, without loss of generality, we may assume

supp f,suppg C {z € R" : [z| < 1}. (5.1.2)

The mathematical investigation of the semilinear generalized Tricomi equations and
related models is motivated by the fact that such kind of equations apper in the study of
gas dynamic problems, see e.g. [Ber58]. If we set ourselves in dimension n = 1, letting
m = 1/2, the equation becomes

U — TUge = 0,
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5.1. THE GENERALIZED TRICOMI MODEL

namely the classical linear Tricomi equation, introduced by the Italian mathematician
in [Tri23] apropos of boundary value problems for partial differential equations of mixed-
type. Later, Frankl [Fra45] highlighted the connection between the study of gas flows with
nearly sonic speed and the Tricomi equation, which indeed describes the transition from
subsonic flow (for ¢ < 0, when the Tricomi equation is elliptic) to supersonic flow (for
t > 0, when it is hyperbolic). For more details and applications, we refer to the series of
works by Yagdjian [Yag04, Yag06, Yag07a, Yag07b, Yag07c] and to the references therein,
such as the already cited [Ber58] and moreover [CC86, Ger98, Mor82, Mor04, Noc86, Ras90].

For k > 0 and n > 1, the operator
T =07 —t*A (5.1.3)

is also known as Gellerstedt operator. The first steps in the study of (generalized) Tricomi
equations move in the direction of building the explicit fundamental solution. In their
works [BNG99, BNG02, BNGO05], Barros-Neto and Gelfand established the fundamental
solution for

Ylzz + Uyy = 0
in the whole plane. Instead, for the Gellerstedt operator (5.1.3) with 2k € N, Yagdjian
constructed in [Yag04] a fundamental solution with support located in the “forward cone”

1 tk+1 o t§+1
Clto, o) = 4 (t,2) € R o —a| < =0
(to, o) (t,x) |z — xo| < )

and relative to any arbitrary point (¢g, zg) € [0, +00) x R™.

Recently, the long time behavior of solutions for small data Cauchy problem of the
semilinear generalized Tricomi equation

uy — t**Au = [ul’, in[0,T) x R"
(5.1.4)

u(z,0) =ef(x), wu(z,0)=cg(x), zeR",

has attracted scholarly attention. The main goal is determining the critical power p.(k,n),
namely, as we know, the value such that if 1 < p < p.(k,n) then the solution blows
up in a finite time, whereas if p > p.(k,n) there exists a unique global-in-time solution.
Yagdjian [Yag06] obtained some partial results, nevertheless in his work there was still a gap
between the blow-up and global existence ranges. The critical power was finally established
in a recent series of works by He, Witt and Yin [HWY17a, HWY17b,HWY16, HWY18] (see
also the doctoral dissertation by He [He16]). For k > 1/2, p.(k,n) admits the following
expression:

2
m ifn =1, thenp.(k,1) =1+ o

m if n > 2, then p.(k, n) is the positive root of the quadratic equation

[ e e

Lately, Lin and Tu [LT19b] studied the upper bound of lifespan estimate for (5.1.4), and
Ikeda, Lin and Tu [ILT21] established the blow-up and upper bound of lifespan estimate for
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5.1. THE GENERALIZED TRICOMI MODEL

the weakly coupled system of the generalized Tricomi equations with multiple propagation
speed. The critical power above should be compared with the corresponding one for the
semilinear wave equation u;;—Au = |u|P. Indeed, letting & = 0 in the definition of p.(k, n),
we infer p.(0, 1) = 400 and, for n > 2, p.(0,n) becomes the Strauss exponent, which is
the critical power for the small data Cauchy problem in (5.1.4) with k& = 0 (see Chapter 4).
Finally, we refer also to Ruan, Witt and Yin [RWY14,RWY15a,RWY15b, RWY18] for results
about the local existence and local singularity structure of low regularity solutions for the
equation us — tFAu = f(t,z,u).

In this chapter, we consider the semilinear generalized Tricomi equations with power-
nonlinearity of derivative type, focusing on blow-up result and lifespan estimate from
above for the small data Cauchy problem. Note that, setting m = 0 in (5.1.1), we come
back to the semilinear wave equation

Ut — Au = |ut\p. (5.1.5)

For this problem, Glassey [Gla] conjectured that the critical exponent is the power, now
named after him, defined by

2
14— ifn>2,
pa(n) = n—1 (5.1.6)
+ o0 ifn=1.

The research on this problem was initiated by John [Joh81], where more general equations
in dimension n = 3 are considered, proving the blow-up of solutions for p = 2. Then,
the study of the blow-up was continued in the low dimensional case by Masuda [Mas],
Schaeffer [Sch86], John [Joh85] and Agemi [Age91], whereas Rammaha [Ram87] treated the
high dimensional case n > 4 under radial symmetric assumptions. Finally, Zhou [Zho01]
proved the blow-up for n > 1 and 1 < p < pg(n), furnishing the upper bound for the
lifespan of the solutions, namely

2(p—1)

Ce =0-10-1  if1 < p < pg(n),

T. <
exp(Ce V) if p = pg(n),

(5.1.7)

for some positive constant C independent of €. We recall that the lifespan T is defined as the
maximal existence time of the solution, depending on the parameter €. Regarding the global
existence part, we refer to Sideris [Sid83], Hidano and Tsutaya [HT95] and Tzvetkov [Tzv98]
for results in dimension n = 2,3 and Hidano, Wang15 and Yokoyama [HWY12] for the
high dimensional cases n > 4 under radially symmetric assumptions. For more details
about the Glassey conjecture, one can see the references [LT19a] and [Wan15].

The study of problem (5.1.1) under consideration generalizes the Glassey conjecture.
Therefore, it is interesting to find the critical exponent and lifespan estimate for (5.1.1),
which will coincide with the Glassey exponent (5.1.6) and Zhou’s lifespan estimate (5.1.7)
respectively for m = 0. The main tool we are going to use is the test function method.
In [HWY17b], the blow-up result for (5.1.4) is based on a test function given by the product
of the harmonic function fS"71 €”“dw and the solution of the ordinary differential equation

N (t) —t*N(t) = 0.
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Inspired by the works [ISW19] and [LT20], we construct a nonnegative test function
composed by a cut-off function, the harmonic function fS"—l e¥“dw and the solution of the
ODE (5.4.1) below. Since we consider the Tricomi-type equations with derivative nonlinear
term, the first derivative with respect to the time variable and a factor 2™ are included in
the special test function. Before proving the blow-up result, we give also a local existence
result following the approach of Yagdjian [Yag06], from which we can deduce the optimality
of the lifespan estimates at least for n = 1.

When the paper [S5], the results of which this chapter refers to, was almost finished,
we found the paper [LP21] by Lucente and Palmieri, where they independently studied the
same problem with a different approach. However, the result we are going to present here
seems to improve the blow-up range and lifespan estimates there found.

We cite also the very recent papers [CLP21] by Chen, Lucente and Palmieri and [HH20]
by Hamouda and Hamza, where the blow-up phenomena for generalized Tricomi equations
with combined nonlinearities, i.e. uy — t2™Au = |u;|P + |u|?, is independently studied
exploiting the iteration argument. In particular, the work [HH20] confirms the blow-
up result presented in this chapter by giving an alternative proof. Conversely, we are
confident that also our method can be adapted to study various blow-up problems involving
generalized Tricomi equations, including the combined nonlinearity. This means that the
test function method presented in the following and the iteration argument developed
in [CLP21,HH20] furnish two different approaches for the study of blow-up phenomena
for Tricomi-related problems.

5.2 Main result

Let us start stating the definition of energy solution for our problem (5.1.1), similarly as
in [ISW19,LT18] and as in the previous Chapter 4.

Definition 5.1. We say that the function
we C([0,T), H'(R") N C(0,T), H' =7+ (R™), withu; € L ((0,T) x R"),
is a weak solution of (5.1.1) on [0, T") if

u(0,z) =ef(x) in Hl(Rn), ut(0,2) = eg(z) in Hl_%ﬂ(R”)

5/ o(2) 0 (Oxda:—i—/ /n\utv’w +) dad

/ / —u(t, z)We(t, da:dt—{—/ / t* M u(t, ) - VU(t, ) dzdt,

for any U (t,z) € C ([0,T) x R*) N C> ((0,T) x R™).

and

(5.2.1)

Remark 5.1. The choice of the functional spaces H'(R") and H 1= (R™) for the initial
data u(0, x) and u¢(0, ) respectively are suggested by [He16] and by Theorem 5.2 below.
Of course, if m = 0 we have H’(R") = L?(R").
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In the same spirit of Chapter 4, let us define the exponent

2
1+ ifn > 2,
pT(n’m) = (m + 1)(7’1, - 1) -—m

+ 00 ifn=1,

as the root (when n > 2) of the expression yp(n, m;p) = 0, where
and observe that yr(n, m;p) > 0for 1 < p < pr(n,m).
We state now our main result for (5.1.1).

Theorem 5.1. Letn > 1, m > 0 and 1 < p < pp(n,m). Assume that f € H'(R"),
1
ge H' mi (R™) satisfy the compact support assumption (5.1.2) and that

w D5+ 52
alm)f+g, a(m):=[2(m+ 1)+ (i 2( m+1)) ’
r <5 - m)

is non-negative and not identically vanishing. Suppose that u is an energy solution of (5.1.1)
with compact support in the “cone”

(5.2.2)

tm+1
3 €< (t,x) €[0,T) x R": <A(t):=1 . 5.2.3
swppu e {(t.0) € 0.1) xR ol () =14 L} 629)

Then, there exists a constant eg = eo(f, g, m,n,p) > 0 such that the lifespan T satisfies

2(p—1)

Ce ™ r(nmip) ifl <p<pr(n,m),
exp (Ce_(p_l)) ifp = pr(n,m),

T. < (5.2.4)

for 0 < e < g and some positive constant C independent of <.

Remark 5.2. For m = 0 the exponent py becomes the Glassey exponent (5.1.6), namely
pr(n,0) = pg(n), and the lifespan estimate (5.2.4) is exactly the same as (5.1.7).

Remark 5.3. It is interesting to note that, if n = 2, then the blow-up power pr(2,m) = 3
-1
(1
and the subcritical lifespan estimate 7, < Cc (P* 2> are independent of m.

Remark 5.4. We conjecture that pr(n,m) is indeed the critical exponent for problem
(5.1.1) and the lifespan (5.2.4) are optimal. The next goal should be to verify this conjecture
considering the global-in-time existence for solutions to (5.1.1).

5.3 Local existence result

Before to proceed with the demonstration of Theorem 5.1 in Section 5.4, we firstly want
to present in this section a local existence result. As observed in [LP21], it is possible to
prove a local-in-time existence result for problem (5.1.1), regardless the size of the Cauchy
data, following the steps in Section 2.1 of [DDGO01]. However, we believe that the following
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Theorem 5.2 is interesting to justify the choice of the energy space for the solution and
the initial data in Theorem 5.1. In addition, we can verify the optimality of the lifespan
estimate in the 1-dimensional case.

Let us consider the integral equation

u(t,x) =eVi(t, Dy) f(x) + eVia(t, Dy)g(z)

¢ (5.3.1)
—i—/o [Va(t, Dg)Vi(s, Dy) — Vi(t, Dy)Va(s, Dy)]|ue(s, z)|Pds

where ¢ > 0 is not necessarily small, f € H'(R"), g € H' e (R™) and the Fourier
multiplier Vi (¢, D;) and Va(t, D,) will be defined below. As remarked in [Yag06], any
classical or distributional solution to our problem (5.1.1) solves also the integral equation
(5.3.1). We have the following result.
Theorem 5.2. Let0 <m < 2,p > max{2,1 + %}, o€ (% — Q(T":Ll),p— 1-— %)
and f € H°H(R"), g € H”H_m%ﬂ(R”). Then there exists a unique solution u = u(t, )
to equation (5.3.1) satisfying
we C (0.1 A7 T RY),w e C([0,7); BT T (RY))
for some T > 0.
— (L_&_ﬂ) -t
Moreover, ife > 0 is small enough, thenT 2 ¢ \r=1" 2/ |
As in Yagdjian [Yag07c] and Taniguchi and Tozaki [TT80], we introduce the differential
operators Vi (t, D,) and Va(t, D, ) as follows. Set
tm—i—l

z:=2ipt)[E],  B(t) := m+1 H=

2(m+1)

Then Vi (t, D) and Va(t, D) are the Fourier multiplier

Vi(t, Do)y = F Vit [€) 7y,
Va(t, Do)y = ZH[Va(t, [€) 7],

defined by the symbols
Vi(t, [€]) = e (1, 2015 2),
Va(t, [€]) = te™*?@(1 — p, 2(1 — p); 2),

where .#, % ~1 are the Fourier transform and its inverse respectively, and ®(a, c; 2) is the
confluent hypergeometric function. Recall that ®(a, c; 2) is an entire analytic function of z
such that

®(a,c;2) =14+ 0(z) forz—0 (5.3.2)
and which satisfies the following differential relations (see e.g. [AS64, Section 13.4]):
dn
ﬁfb(a, ¢ z) = ((2: ®(a+n,c+n;z), (5.3.3)
d 1—c
d—fb(a, ¢ z) = [®(a,c;2) — P(a,c—1;2)], (5.3.4)
z z
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where (2), = z(x 4+ 1) -+ (x + n — 1) is the Pochhammer’s symbol. Moreover ®(a, ¢; 2)
satisfies the estimate

|®(a, ¢; 2i¢(8) |E])| < Caem(@(B)|EN™ 7 for 20(2)[¢] > 1. (5.3.5)

Remark 5.5. In the case of the wave equation, i.e. when m = 0, the definitions of V4 (¢, D)
and Va(t, D) should be understood taking the limit for m — 0 in their formulas. Indeed,
using the identities 10.2.14, 13.6.3 and 13.6.14 in [AS64], we get

1 1/2—p z z
Jim Va(t,J¢]) = lim T (,u+ 2) (4) 1) (5) — cosh (5) ,
. 275 .
Tim Va(t, |¢]) = - sinh (5) |
where I, (w) is the modified Bessel function of first kind. Thus for m = 0 one recovers the
well-known wave operators Vi (¢, D) = cos(tv/—A) and Va(t, D;) = % ng)'

As Yagdjian observes, there are two different phase functions of two different waves
hidden in ®(a, c; z). More precisely, for 0 < arg z < 7, we can write (see [[nu67])

r r
e 2®(a,¢;2) = l“écj;eZMHJr(a’ ¢ z) + F(C(j)a)ez/zH_(a, ¢ 2) (5.3.6)
where
—in(c—a) 1 (0+) a—1
: = € a—c —w, ,c—a—1 _ g
Hila.¢2) = g me o Te—a)° /OO v (1 z) oy
1 1 (0+) c—a—1
H,((Z,C; Z) = eima _ p—ima F(a) Z_a/ e Wt 1 (1 * w) dw.

For |z| = oo and 0 < arg z < , the following asymptotic estimates hold:

- i (c— a)l;g(!l - a)kz_k] |
k=1

]_ —
Lo 3l k] |

Combining the asymptotic estimates for H, (a, ¢; z) and H_ (a, ¢; z) with their definitions,
one can infer, for 2¢(t)|¢| > 1, the relations

Hi (a,c;z) ~ z

H_(a,c2) ~ (7"

10802 H (a, & 2i(D)|E))] < Cacomes (9(8)[ €))7 () 77717, (53.7)
0FOLH_(a, ¢; 2i() €])] < Cacomes(S(D)IEN () mrr 1A, (53.9)
where (¢) = (1 + |£|?)'/? are the Japanese brackets.
Finally, let us introduce for simplicity of notation the operators
Wwh (57 t, Da:) = Vl(ta DI)V2(57 Dx)a
W2(5> t, Dar:) = VQ(ta Dx)‘/l(Sy Dx)a
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whose symbols, if we set z := 2i¢(¢)[£| and ¢ := 2i¢(s)

, are given by
Wi(s, . [€]) = 86_(”0/2‘1)(% 203 2)®(1 — 1, 2(1 — p):Q),
Wa(s, t, [€]) = te™CFO2D(u, 203 Q)@ (1 — 11, 2(1 = pr); 2).

The key estimates employed in the proof of Theorem 5.2 are given in Corollary 5.1,
which comes straightforwardly from Theorem 5.3, and in Lemma 5.1. The estimates in
the following Theorem 5.3, which are of independent interest, are obtained adapting the
argument exploited by Yagdjian [Yag06] and Reissig [Rei97] for the case of the operators

Vi(t, D,) and Va(t, D). In order to not weigh down the exposition, we postpone the proof
of this theorem in Appendix 5.B.

Theorem 5.3. Letn > 1, m > 0, u := % and ¢p € C§°(R™). Then the following

LY — LY estimates on the conjugate line, i.e. for% + % =1, hold for 0 < s <t and for all
admissible g € (1,2]:

(1)U‘n(f——)—1<a< u+n< ),then

1
o

[V=8) it oy, 5 (s et b Gl g,

(ii) 1fn<f——>—1<a<—1+u+n<f——> then

1
o

|w=ByWats,t, D2y, < (o) m2s LGl gy

(iii) lfn(f——> <a<1—,u—|—n(f——> then

S
7

|w=aeawis.e.nau],, < @rsm/ast Gy,

(iv) ifoc =n <7 — —) then

|=8) 0wt D, S /sy 10l

Remark 5.6. As in Yagdjian [Yag06], it is easy to obtain similar estimates for the (homo-
geneous) Besov spaces and then for the Sobolev-Slobodeckij spaces.

In the previous theorem, choosing ¢ = ¢’ = 2 and ¢ = —1 for Wi(s,t, D,) and
Wa(s,t, D,), and o = 0 for their derivatives, we immediately get the next corollary.

Corollary 5.1. The following estimates hold
1W; (s, 8, Da)bllgoen S (88) ™™ 1011
10:Wj(s,t, Da )bl g S (t/8)™2 [0 e
10:Wj(s,t, Da )bl g S (t/8)™2 [0 gy
forn>1,m>0,y€Randj € {1,2}.
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5.3. LOCAL EXISTENCE RESULT

We furnish now estimates in the energy space H”(R") and H"(R") also for Vi (¢, D,),
Va(t, D,) and their derivatives with respect to time.

Lemma 5.1. Lety € R, m > 0 and j1 := ﬁ The following estimates hold:
Vit D)ool o S 70D [ for —p <o <0;
Va(t, Do)l -0 S 7T 0 10 for=1+p<o<0;
100V (t Do)l ST fori—p<o<1;
[0Vt D)l o < ()7 0], forp<o.

Proof. By estimates (5.3.5), for the range of ¢ in the hypothesis we have that

VA €D < {\£|°(<Z>(t)|5!)“ if p()[¢] > 1,

1177 if p(t)[¢] < 1,
Sta(m—i—l);
_ tET7 (@) i p()[E] > 1,
TVo(t, < 3 .
I vats, DI {tm ’ i o(1)lé] < 1

m|e|l—0o — :
6V A A (e, IE]) g{t €' (p(t)]E) ™ i p(t)|E] > 1,

prei-o £ o()le] < 1
Sto’(erl)fl;
. OGOl Lol > L
© atvz(t”g')5{<£>—“u+¢<t>|§u iEo(0le] < 1,

(1ye )
Consequently
IValt, Da)bl -0 = |l VaLE, €D,
< [le=vate. kel |Ji€r 3] ,
SV
and similarly we can obtain the other estimates. O

Remark 5.7. The previous lemma should be compared with Lemma 3.2 in [RWY15a],
where similar estimates are obtained under the restriction 0 < ¢t < T, for some fixed
positive constant 7.

Finally, let us recall also the following useful relations that come from an application of
Theorems 4.6.4/2 and 5.4.3/1 in [RS96].
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Lemma 5.2. The following estimates hold:
(i) ify > 0 andu,v € HY(R™) N L>°(R™), then
lwvll g S Null oo ol o+ llll g lloll o
(ii) ifp > 1,v € (%,p) andu € HY(R™), then
el?ll g7 < Nall o el
We can now start the proof of the local existence result.

Proof of Theorem 5.2. Let us consider the map
Vo] (t, x) =eVi(t, Da) f(z) + eVa(t, D2)g()

t
+ [ Wt D)V (5. D) = Vit Do) Vals. D)o (s,) s
0
and the complete metric space

X(a,T) := {v: v e C(0,T); HYFYR™), v, € C([0,T); HY(R™)) and [|v]y < a}

m

(m—+1) and

for some a,T' > 0 to be chosen later, where v := o + p, 1 := 5
Il = sup [#%/2jollgrs + (B ol ]
0<t<T

Note that, since the operators Vi (t, D) and V5(t, D,) commute, we have
QW [v](t, x) =0 Vi(t, Do) f(x) + €0 Va(t, Da)g(x)

t
+ / [0Va(t, Du)Vi(s, Da) — OiVi(t, Da)Vals, Do)]lve(s, z)Pds.
0

We want to show that V¥ is a contraction mapping on X (a,T).

By Lemma 5.1 and the immersion H*(R") < H*(R") for s > 0, we get

Va(t, Dz)fHHwH S ¢/ ”f”Hw—uH )
[Va(t, Dx)gHHW-&-l S ¢/ 9l g4+
10Vt Do) fll v S "2 1| s
10:Va(t, Da)gll i S (6™ gl v -

Moreover by Corollary 5.1 we infer

IVa(t, Da)Vi(s, Da)lvi(s, )P [| g1
Vi (t, Dz)Va(s, Da)lve(s, ©)[" ]| g1
10:Va(t, Da)Vi(s, Da)lvi(s, 2)["[| g+
10:Vi (¢, De)Va(s, Da)lvi(s, )P || g

V)
~

st) 72 foi(s, @) I
)2 |oe(s, @)
s/ |lue(s, @) |

s/ (s, @) |

I ANRYANRYANR AN
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5.3. LOCAL EXISTENCE RESULT

where we used the estimates
v (s, ) [Pl g < Mves, )Pl S Nves, )5y

which come from Lemma 5.2 and the Sobolev embeddings.

From these estimates and from the fact that ¢(t) =1 < 1 for any ¢ > 0, we obtain
W)t g + (O 108 (E) g

t
< 11 o + 9l e + / S (s, )| ds
0

and hence, since m < 2, we get
19]llx < Coe [I1Fll rvrwsr + gl gosu] + CoT 2 (T) 27 [|u]l%

for some constant Cy > 0 independent of €. Choosing a sufficiently large and 7" sufficiently
small, namely a > 2C0¢ [|| f|| -1 + [|g]l jrr+u] and T2 2 (T) 2P < (2CoaP~ 1), we
infer that U[v] € X (a,T).

Now we show that U is a contraction. Fixed v,v € X (a,T’), we have similarly as above
2N, ) = O] )| s + (62 1O0R (2, ) — B [B](E, )|y

t
< /0 ST [oy(s, )P — (s, P g ds. (539)

Since we can write

1
[og|P — |0y |P = 2_”p/ (ve — 0) (ve + O + Aoy — 62))|ve + 0 + Moy — ) [P~ 2dA
-1

and recalling that p > 2 and v € (n/2,p — 1), an application of Lemma 5.2 combined with
Sobolev embeddings give us

oel” = 1522 S ot = Gl | loel + 15177
o lfoe = Bl [|Clotl + 1377 e
< v =Bl oo (ol + 105"
o= ll g (Il + 1305
S llee = @l (el + 15 ) -
Inserting this inequality into (5.3.9) we get
[9le] - )l < T3 (D) BP0 o — B

for some Cy > 0, and so W is a contraction for 7' =2 (T) 2P < (CyaP~')~!. By the Banach
fixed point theorem we conclude that there exists a unique v € X (a, T") such that ¥[v] = v.

As a by-product of the computations, from the conditions on 7" and a we can choose

the existence time such that T~ % (1) 2P = Ce= =Y for some C' > 0 independent of ,
-1

|l 4m
hence T 2 ¢ [P—1+ 2 ] for € small enough. O
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5.4. BLOW-UP VIA A TEST FUNCTION METHOD

5.4 Blow-up via a test function method

We come now to the proof of Theorem 5.1, which heavily relies on a special test function,
closely related to a time dependent function satisfying the following ordinary differential

equation:
N'(t) — 2mt=IN () — 2™\ (t) = 0, (5.4.1)

where t > 0 and m € R.

Lemma 5.3. The fundamental solutions A_, A+ of (5.4.1) are the functions defined by:

mifm=—-1:

m ifm# —1:

1

N tm+1 L1 tm—}—l
A(t)=t""2K m —_ A(t)=t""2] m _
W bt () 0 bt (1)

where I,,(z), K, (z) are the modified Bessel functions of the first and second kind
respectively.

Proof. The result trivially follows from straightforward computations based on formulas
for Bessel functions collected in Appendix A. Instead in Appendix 5.A we show a way to
reach the expression of the solutions for m # —1.

If m = —1, it is immediate to check that A_ and A are two independent solutions
of (5.4.1). Suppose now m # —1 and set z = t™*!/|m + 1| and ¢ = sgn(m + 1) for
simplicity. From (A.5) and (A.1), we get

1
N (t) = (m + 2) tm_1/2Km+1/2 (Z) + O't2m+1/2K,m+1/2 (Z)

m+1 m+1

m—+1

1
= (m + 2) 2K pye (2) — ot/

X [K 1 (2) 4o <m+ 1) T K e (2)

T 2(m+1) 2 m+1
= — ot H2K | (2)
2(m+41)
)
2(m+1)

and

2(m+1) 2(m+1)

N({t)y=—0c <2m + ;) PR () = BTT2K L (2)

=—0 <2m + ;) 22K L (2)

2(m+1)
tfmfl

3m+1/2
+1 [K mt1/2 (2)+0 5 e~ (2)

(2)

R i (2) — 2mo
m+1 2(m+1)

=t*"A_(t) + 2mt A (2).
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5.4. BLOW-UP VIA A TEST FUNCTION METHOD

Analogously, using (A.4) and (A.5), we obtain
/ _ 42m+1/2
/\+(t) ot I_ 2(m,1+1) (2),

NL() = T2 iaye (2) + 2mo t?M7V20 1 (2)

m—+1 72("”‘*’1)

= t2m>\+(t) + 2m t_l)\+(t).

Then, it is clear that A_ and A, solve equation (5.4.1) and, from relation (A.3), we can check
that the Wronskian W (t) = A_(t) X, (t) — AL (t)A_(¢) is

W(t) = at3m+1[1_ml(_m at [_MlH) HK_Q(T:H)](,Z)
=(m+1t*" >0
for t > 0, hence the two solutions are independent. O
Lemma 5.4. Suppose m > —1/2. Define p := % and
At) ==t <tm+1 > .
Fta \m+1

Then, A € C*([0,+00)) N C>(0, +00) and satisfies the following properties:
(i) At) >0, N(t) <0,

1
(i) lim A(t) = 2“*%(771 + 1)”+%F <u + > =:¢co(p) >0,
t—0+t

!/
(iii) tl_i>r(§1+ tgm) = —co(—p) <0,

_ _ f(m+ D)7 m/2 g —(m+1)
(iv) A(t) = - t" = exp e X (1+0(t )), forlarget > 0,
PR L U R YL B ¢ —(m+1)
w) N(t) = 5 t exp 1) (1+0(t )), forlarget > 0,

where I is the Gamma function and O is the Big O from the Bachmann-Landau notation.

Proof. From (A.4) we know that A is smooth for ¢ > 0. Since K, (2) is real and positive for
v € Rand z > 0, also A is real and positive. Recall from the proof of Lemma 5.3 that

m+1
N(t) = 22 (H> ’

and hence ) is negative. From (A.8) we have A(t) ~ co(u) and N (t) ~ —co(—p)t>™ for
t — 0T, so we can prove (ii) and (iii). Finally, from (A.10) we obtain (iv) and (v). O

We can start now the proof of our main theorem.
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5.4. BLOW-UP VIA A TEST FUNCTION METHOD

Proof of Theorem 5.1. As in [ISW19], let n(t) € C*°([0, +00)) satisfying

1 forr < %,
n(r) := { decreasing for i <r <1,
0 forr > 1,

and denote, for M € (1,7,

n(t) =1 <J\Z> ;o n(ta) =1 ('; (1 + ;m111)1> .

We remark that one can assume 1 < T' < T, since otherwise our result holds obviously by
choosing ¢ small enough. The last ingredient other than ), 175, and 7 to construct our test

function is

/ e Ydw ifn > 2,
Sn—l

e +e " ifn =1,

¢(x) =

which satisfies .
Ap=¢, 0<o(x)<Co(l+|z))~ 7 el (5.4.2)

for some Cy > 0. We can finally introduce the test function

D(t,2) i=— 279, (0} (OAD)) D)t )

, , (5.4.3)
= — 72 (9 (DAE) + ] ON(1)) @)’ (2. ),

where M € (1,T) and p’ = p/(p — 1) is the conjugate exponent of p. It is straightforward
to check that ®(¢,z) € C3([0, +00) x R™) N C§°((0, +00) x R™) if we set

®(0,z) := lim ®(t,z) = co(—p)p()n (m) >0,

t—0t 2

where ¢ is defined in Lemma 5.4.(ii). Note also that

o(t,2) = —t72"0, () (HAWD)) 6(x)

in the cone defined in (5.2.3).

Taking @ as the test function in the definition of weak solution (5.2.1), exploiting the
compact support condition (5.2.3) on u and integrating by parts, we obtain

T /
ol [ godat [ [ pulre X6 dade
Rn 0 R~
T /
+ / / |ug [PE=2 Ol (N davdt
D n
T
_ / / upt=2m [—2mt*1 (amig A+ 1k A’) + 202 X+ 202 N 4 X’] o ddt
0 n
T »
— Vu-Voos(ny N dedt
0 Rn
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5.4. BLOW-UP VIA A TEST FUNCTION METHOD

and hence
eco(—p /R g¢dx+/ / | [Pt 2map2P "IN |¢ dzdt
w0 e o dea
=—¢eco(p / fgbda;—2m/ /nutt 2m= 18t77 /\qﬁdwdt
+ / / nutﬂm afnﬁg’A+zatn§§’A/)¢dxdt

/ / ugt =2 (N = 2mt T N — 4270 ¢ ddt.

Neglecting the third term in the left hand-side and recalling that A solve the ODE (5.4.1), it
follows that

501+/ / g P2 | N | dadlt,

2m/ / upt—2m" 1377 )\qbd:zdt

5.4.4
+ / / upt 202 A dadt (5.44)
+2 / / wit =20 N ¢ dwdt
=1+ 11+ 11,

where

C1 = Cilm. f.9) = colp) [ oo+ col=) / g0z > 0

is a positive constant thanks to (5.2.2).

Now we will estimate the three terms I, II, IIl by Holder’s inequality. Firstly let us
define the functions

0 fort < L, t
0(t) := 2 Op(t) =0 — |,
for which it is straightforward to check the following relations:

%/ ,
ot | < 2 AT o, (5.4.5)

2 ,
R | < <55 @0 = 1) [ [[7 + [l | 63577 (5.4.6)

From now on, C' will stand for a generic positive constant, independent of € and M, which
can change from line to line.
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5.4. BLOW-UP VIA A TEST FUNCTION METHOD

Exploiting the estimates (5.4.2) and (5.4.5), the asymptotic behaviors (iv)—(v) in Lemma 5.4
and the finite speed of propagation property (5.2.3), for I we obtain

:—2m/ / ut” 2m— 1877 )\qbdxdt
<CM- (/ / 2 N || A7 1¢dmdt>
B Szl ()
1
x ( /O / ]ut|pt_2m0§§/)\’|¢d:cdt>

1 t7n+1 % (547)
+ +1 _2m+¢ n—1 _ ¢+l
<CM™2 / / -0 (147r) 2 € T drdt
M

</ /n |ug[Pt=2m03F A’\(bd:):dt)l

1
—9—3m (m+1)(n—1) / P
el s i A </ / g P22 |X\qbdxdt> .

Analogously, for II and III we have

T
I = / / ut =2 OPN I \p dadt
O n

_9_ 3m+m+[w+1]

1
I

bS]

<CM
1
(/ / |ug[PE—2m g7 |>\’|¢d:ndt) ,

I =2 / / ugt 2O N ¢ davdt

<CM~ ( / / t—2m|Xy¢dxdt>
[ <~ (t)
' P 5.4.9
x( / / |ut]pt2m9]2\§|)\’|¢dxdt>p (549)
0 R"

_q_mym_ [(m+D(n=1) p=1
<om! 2y [Lnblins) g ]

T , v
x ( / / g P20 |\ | dxdt)
0 R

Since m > —1 is equivalent to

(5.4.8)

and

1
7/
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we conclude, by plugging (5.4.7), (5.4.8) and (5.4.9) in (5.4.4), that

T /
016 + / / ‘ut’pt—an]?\f; ’)\,’(Z) dzxdt
0 Rn

m_ om [(mt1)(n=1) p—1
<o E R[]

T ) 5
X ( / / |ut|pt_2m9]2\§|)\’|¢d:ndt) .
0 R™

Define now the function

Y [w](M) = /1 " < /0 ' / nw(t,x)@?,p/(t) dmdt) oo

and let us denote for simplicity
Y(M):=Y [JuPt2" X (t)]6()] (M).

From direct computations we see that
M s T /
Y (M) = / ( / / laa P12 N ()| ()02 (1) d:cdt) o Vdo

1 0 Jre
T Mo

:/ / \ut]pt2m|)\’(t)]q5($)/ 0% (t/o)o do dxdt
0 Jrn 1
T t

:/ / \ut|pt2m|)\’(t)]¢(as)/ 0% (s)s'ds dadt
0 JR» L

T ]W, t 1
<[ [ el () [ s s dea
0 n M %
T /
w2 [ [t Y @lo(e) dadt,
0 R™

where we used the definition of 0(¢). Moreover

d

T /
VD) = 00 =7 [ [ e O ol ded.

Hence by combining (5.4.10), (5.4.11) and (5.4.12), we get

(m+1)(n—1)—m -
[0 Dy gy > [ege + )ty (an),
which leads to

_<¢+m7(m+1)<n71>>*1
M<{ Ce \»! 2 for1 < p < ppr(n,m),
exp (C’E*(pfl)) for p = pr(n,m).

(5.4.10)

(5.4.11)

(5.4.12)

Since M is arbitrary in (1,T), we finally obtain the blow-up for 1 < p < pr(n,m) and

the lifespan estimates (5.2.4).
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5.A. SOLUTION FORMULA FOR THE ODE

5.A Solution formula for the ODE

We show in this section how to discover the formula of the solution for equation (5.4.1).
Let us suppose m € N and make the ansatz

o0
=> apth, (5.A.1)
for some constants {ay, }ren. Hence,
o o
=> hapt"', X)) =) h(h—Dapt".
h=2

Substituting in (5.4.1) and multiplying by ¢2, we get

[e.e] 0o ~
0= Z h(h — Dapt" —2m Z hayth — Z ayth2mE?
h=2 — P

o [o.¢] oo
= Z h(h — 1)ahth —2m Z hapt" — Z ap—om—ot" (5.A.2)
h=2m-+2
= Z h(h —2m —1 ahth + Z —2m — 1)ap — ah,gm,g]th.
2m+2

Let us fix the constant ag and ag,,+1. We will write the other constants in dependence of
these ones. Indeed, we infer from (5.A.2) that

ap =20 forh=1,...,2m,

Ah—2m—2
= forh > 2 2.
ap h(h —2m — 1) orh > 2m +

Hence, by an inductive argument, we can prove that, for any k € N

( m— , if h = 2(m + 1)k,
2(m + DJF K T [2(m + 1)5 — (2m + 1))]
ap = el ifh =2(m+ 1)k + 2m + 1,
2(m + D] KT [2(m + 1) + (2m + 1))
L0 otherwise,
( k m+1/2
[20m + 1)) T (1 - ZEL2)

agp if h=2(m+ 1)k,

kT <k+1—%>
= R0+ D] (14 52

1 m+1
kT (k‘ 1 4 mt1/2 . a2m+1 ifh=2(m+1)k+2m+1,
(et 2)

m+1

L0 otherwise,

where we used the relations

, T(k+1+1/c)
H(C] +1) = ckm.
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Substituting the values of ay, into (5.A.1), we have

mAL SR (k1 - )

o0 ok
+ agmiiT <1 Lmt 1/2> 2y 2(m +1)] (2Am+1)k

2
m+1 o kT (k14 i)
_m+1/2
o u tm+1/zi 1 [ ies! ]2’“ T
= C€-Qg
o BT (k+ 1 — b2y [2(m+ 1)

m+1/2
tm+1 :|2k+ mt1

oo
1
+ cpagmyrt™ T2 Z [
=T (k F1+ ngf) 2(m + 1

with

ce =T <1 + m+1/2> 2(m + 1)]im+1/2

m+1 |
m+1

Taking into account the relations (A.2) and (A.1) we get

tm+1 thrl
)\(t) = Cfaotm+1/217m+1/2 <> + c+a2m+1tm+1/21m+1/2 ()

m+1 m + 1 m—+1 m + 1
— kltm+1/zlm+1/2 tm+1 + thm+1/2Km+l/2 tm+1
mE1 m+1 mt1 m+1

with

2 . (m+1/2
k1 = c_ap + cyaom+1, ko = —c_apsin | ———m | .
T m—+1

In this way we can deduce the fundamental solutions of the equation (5.4.1) when m € N,
and from Lemma 5.3 we know that the solution formula hold also for m € R\ {—1}.

5.B Proof of Theorem 5.3

In this appendix we prove the LP — L estimates on the conjugate line for Wi (s, t, D,),
Ws(s,t, Dy) and their derivatives respect to time collected in Theorem 5.3. The argument
is adapted from the proof of Theorem 3.3 by Yagdjian [Yag06] (see also [Rei97] and [ER18,
Chapter 16]), where similar estimates for V; (¢, D) and Va(t, D,,) are presented. Note that
in [Yag06] the additional hypothesis ¢ > 0 is supposed, but this can be dropped, as we will
show.

Before to proceed, we recall the following key lemmata.

Definition 5.2. Denote by L} = L} (R") the space of tempered distributions 7" such that

1T fllpa < ClISflle

for a suitable positive constant C' independent on f and all Schwartz functions f € . (R").

Denote instead with M,] = M;!(R™) the set of multiplier of type (p, q), i.e. the set of
Fourier transforms .% (T') of distributions 7' € L.
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Lemma 5.5 ( [H6r60], Theorem 1.11). Let f be a measurable function such that for all
positive \, we have

meas{¢ € R": [f(&)| <A} < CA7°
for some suitable b € (1,00) and positive C. Then, f € M} if1 < p <2 < q < oo and
1/p—1/q=1)b.

Lemma 5.6 ( [Bre75], Lemma 2). Fix a nonnegative smooth function x € C§°([0,00)) with
compact support supp x C {x € R": 1/2 < |z| < 2} such that > 5o x(27%z) = 1

forz # 0. Set xx(x) = x(27Fx) for k > 1 and xo(z) := 1 — 332, xx(x), so that
supp xo C {z € R™: |z| < 2}.

Leta € L*(R"), 1 < p < 2 and assume that
|7 (@il < Ol fork 0.
Then for some constant A independent of a we have
|71 (@0)|| r < AC 0]

Lemma 5.7 (Littman-type lemma, see Lemma 4 in [Bre75]). Let P be a real function, smooth
in a neighbourhood of the support of v € C§°(R"™). Assume that the rank of the Hessian

matrix (8%],%P(77))j7k€{17m7n} is at least p on the support of v. Then for some integer N the

following estimate holds:

|71 om)|| < e S Yool
| <N

We will prove now only estimate (iii) of Theorem 5.3, since the computation for estimates
(i) and (ii) are completely analogous; about estimate (iv), we will sketch the proof since it
could be strange to the reader that this is the only case where the range of o collapses to
be only a value.

First of all, let us set 7 :=t/s > 1, z = 2i¢(t)&, ¢ = 2i¢(s)€ and let us introduce the
smooth functions Xy, X1, X9 € C*°(R™; [0, 1]) satisfying

Xo(x) 1 for |z| <1/2,
€Tr) =
0 0 for |z| > 3/4,

1 forl|z| > 1,
0 for |z| < 3/4,
Xi(z) =1— Xo(r™ ) — Xo(x).

In particular, observe that

Xo(o(t)§) + X1((s)€) + Xa(d(s)) =1
for0 < s <tand ¢ € R™.
By relations (5.3.3) and (5.3.4), it is straightforward to get

1
m+ til

aVi(t,[€]) = 2e 22D (n+ 1,20 + 152) — B(p, 245 2)]

m—+1

OVa(t, [€]) =e 2 | @(1 — p, 1 — 2p;2) — 2@(1 — p, 2(1 — p); 2)
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Thus one can check, using identity (5.3.6), that
O W1 (5,1, |€]) =ist™e” T g
X [@(p+ 1,20+ 1 2) — D(p, 205 2)] (1 — 1, 2(1 — )3 €)
— st~ e|[e*2HY (2) + 2 HO (2) 4]0 (1 — 1,21 — 1); )
—ist™[¢| [€[1+T7"+1]C/2H9_(Z)H}r(<) + 6_[1_Tm+1]C/2H9_(Z)Hl(C)
+e[1—rm+1]g/2H9 (Z)Hi(g) + 6—[1+7m+1]¢/2H9 (Z)Hl (C)}
OWa(s,t, [¢]) = e~ HO/2
X D1, 208 €) [B(1 — g1, 1 = 205 2) — it FHE|D(1 — 11, 2(1 — p); 2)]
= e 2, 205 Q) [P H (2) + e P H2 (2)]
_ e[1+7m+1]g/2Hi(Z)Hi(C) + 8_[1_TW+I]C/2H_2~_(Z)H§(C)
+ 6[1_Tm+1K/2H3(Z)H§_ (€) + 6_[1+Tm+1}4/2H3(Z)H§ ©)

where for the simplicity we set

HY(z):= mﬂi(u + 1,20+ 152) — Fr(f:))Hi(m 245 2),
2 2
HLQ) =y = Hu( - 201 = 050)
and
Hi(z) := mHi(l — 1 —2p;2)
2 2
—iem e b - 2 - i),
HE(Q) = o s 1. 2050)

Estimates at low frequencies for 0, (s,t, D)

Let us consider the Fourier multiplier
Fe, (Xo(6MOIEaWi(s, 1, 16)D)
By the change of variables 1 := ¢(t){ and = := ¢(t)y we get
|72 (Xoe®e)e"ams.tlchd) |,

< 7 1y(n/g —nto)(mt1) HTO « It (zﬁ(n/qﬁ(t)))

/

La

where
_ . m—+1
Ty i= 7,4, (Xolm) "=~/ Wil (173 ) )

Qo (s 75 |n|) == [®(n + 1,20 + 15 2i|n]) — P(p, 25 2i|n))]
X B(1— g1, 2(1 — p); 2ln| /1)

=O0(lnD[L +7~"FDO(In|)].
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The last equality above is implied by (5.3.2), from which we deduce |®o(u; 7;|n|)| < 1if
|n| < 3/4. So, for any A > 0, we obtain

meas{n € R": | F,_,(To)| > \} < meas{n € R": |n| < 3/4and |n|'~° > \}

1 if0<A<1,
<<0 ifA>1ando <1,

A7 1 ifA>lando > 1,
A

where 1 < b < 0ifoc < land1 < b < %5 if 0 > 1. Hence by Lemma 5.5, we

get Ty € Lq forl<g<2<¢< ooanda < 1+ (f — q—) Then we obtain the
Hardy- L1ttlew00d -type inequality

L

|72, (xoeworeamis.Lied)| |, -l Gmallo gy,
Observing that, by the assumption on the range of o,
e _ - frewen(-g) o s fron(i-3) e
< 7m/2glrn (=) ) eme

we finally get

L

|72, (xomene-camis.iehd)| |, < o5l GmRlo Dy,
(5.B.1)

Estimates at intermediate frequencies for 0,1V, (s,t, D,)

We proceed similarly as before. Let us consider now the Fourier multiplier

T, (X(0()€)E "W (5,1, IE)D)

Exploiting this time the change of variables 1 := ¢(s){ and x := ¢(s)y, we get

|7, (xaoele~oms,tiend)|

< 7m/2g(n/q =nto)(m+1) HTI* oy (A(n/¢(s)>>‘Lq

where

o_—1 Fmt+l
Ty =7k, (Xa )l o 4 1, (s ]

O1 (373 ) =72+ 1,20 + 15207 ) — ®(p, 205 267 )]
X (1 — p, 2(1 — p); 2in]).

Taking in account (5.3.2) and (5.3.5), we infer that
|1 (s 75 )| S 772 ) TH = [T onsupp Xa(n) € [(27) 7],
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and thus, for any A > 0, we obtain

meas{n € R": |#,_,(T1)| > A} < meas{n € R": |n| <1and |77|1_”_” = A}

1 fo< A<,
<10 ifA>1lando <1—yp,
P ifA>1lando >1—p,
<A

where 1l <b<o0ifc <1—pandl <b < if o > 1 — p. Hence by Lemma 5.5,

a—?—l—u
wegetT € Ld forl1<¢<2<¢ <ooando < 1—u+n(%—%).Thenwereach

|22, (xu@eneoamis Lighd)| |, <5l Gmale Dy,
(5.B.2)

Estimates at high frequencies for 0,W;(s,t, D,)

Finally, we want to estimate the Fourier multiplier

T (Xa(6(5)OIE AW (5,1, €)D) -
We choose a set of functions { X} x>0 as in the statement of Lemma 5.6.

LY — L°° estimates. We claim that, for k > 0,

|76t (Xa(6(96) xel0(5)6) el 0 (s, 1, €])) | S 24 slomtmen)
(5.B.3)
Exploiting the change of variables ¢(s)¢ = 2y and 2¥x = ¢(s)y, by the expression of the

symbol 9, W1 (s, t, [€]), we obtain
|72k, (Xa(o(2)9) xul@()9) el 0 (s, 1. 1eD) |
< oknmotl)pmglo—m)(mt A% 1 A% 4 AT + AZ] (5.B.4)
where
e O
i it ()
and

,+ _ . .
v () =X (25n) x () |~ HY (2ir™ 128 || ) HL (212" |n]),

4 o . .
v E () = Xo(25n)x(n)n|* T HO (2ir™ 12 |n|) Hi (2i2% |n]).

The functions v,f’i(n) are smooth and compactly supported on {n € R™: 1/2 < |n| < 2}.
When k = 0, it is easy to see by estimates (5.3.7) and (5.3.8) that

-
< D || X () x(0) 0l =7 .
5 T—m/2.
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For k > 1, by Lemma 5.7 we have, for some integer N > 0, that

g (e )
< (14 [F1+ 772k 3 ‘

lo|<N

ey ’iHLl . (5B.5)

Since Xo(2%n)x(n) = x(n) for k > 1, by estimates (5.3.7)~(5.3.8) and Leibniz rule we infer

050 ()]
. T |
3 (ﬁ)( )an 8 ()l =) 9= HO (i 2 )y HLL (202" )
y<B<a v
7m/2gk Z Cra,611/2,2] () ||+ 11
BLa

where 113 9](7) = 1 for 1/2 < |n| < 2 and 1};/32() = 0 otherwise. From the latter
estimate and (5.B.5), we get

AL ST R (L g [l 4 )T <2k,

Similarly we obtain also that AT < 7=m/29=k Thuys, inserting in (5.B.4) we obtain (5.B.3),
which combined with the Young inequality give us the L' — L°° estimate

|72 (Xalo(s19) xutos)) 16l amats.t. D) |,
< hn=a)pm/2glo=mmtl) ), (5.B.6)

L? — L? estimates. By the Plancherel formula, Holder inequality, estimate (5.3.5) and
the substitution ¢(s)¢ = 2¥n, we obtain

|2, (20050 xe(6(6) e 0 (5,1, €D |,

< [1X2(0(8) xa(D(5)€) €]~ 0Wa s, €D o 102
< 27korm 250D |y

(5.B.7)

L1 — LY estimates. The interpolation between (5.B.6) and (5.B.7) give us the estimates
on the conjugate line

|72 (X209 xe(6(0)9) 1170 (5.t 1€DD) |
s 2 1mw) el sz e God)lem g L gy

where 1 < ¢ < 2. Now, choosing n (% — %) < o, putting together (5.B.1), (5.B.2) and
(5.B.8) with an application of Lemma 5.6, we finally obtain the L¢ — L% estimate for

W1 (s,t, Dy).
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Estimates for 0,W5(s,t, D,,)

For the intermediate and high frequencies cases, proceeding as above we straightforwardly

obtain, under the constrains o < i + n(f — ql) and n (5 — —) < o respectively, that
o > m o—n l,% m+1)
|7, (xso0temamwas,1,16))|| |, < 72l Gl Dy,
(5.B.9)

forje{l,2}and1 < ¢<2<¢ < oc.
At low frequencies, by computations similar to that for 9, W (s, ¢, D), we obtain
|72, (ot amats, 116hd)|

< (/g =n+a)( m+1)HT0* . (i(n/@ﬁ(t)))(m

where this time

Ty = 7,4, (o)l ~oe 007 g s ) )
Do (p; 75 |0|) o=, 205 2| /7™
X [D(1 — p, 1T —2p5 2i|n]) — i(m + 1)[n| (1 — p, 2(1 — p); 2i[n])]
=[1+ 7" "Oo(n))[L + O(n))),

and hence again |®(u; 73 |n|)| < 1if |n] < 3/4. For any A > 0, we get
meas{n € R": | Z,,(To)| > \} < meas{n € R": |n| < 3/4and 5|7 > A} S\ P,

where 1 <b < ooifoc <0Oand1 < b < 7 ifo > 0. Another application of Lemma 5.5 tell

us that Ty € LZ forl<q¢<2<¢ < W1th the condition on o given by o < n(E — %)
Finally, similarly as in the case of 0; W (s, t, D,) we conclude that (5.B.9) holds true also
for j = 0.

The proof of estimates (iv) in Theorem 5.3 is thus reached combining the inequality

(5.B.9) for j € {0, 1,2}; putting together all the constrains on the range of o, we are forced
1

to choose 0 = n(, — %)
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APPENDIX

Some formulas for the modified
Bessel functions

For the reader’s convenience, here we gather some formulas, often employed in the thesis,
from Section 9.6 and Section 9.7 of the handbook by Abramowitz and Stegun [AS64].

® The solutions to the differential equation
z¢—w(z) +z —w(z) — (22 + V2) w(z) =0
are the modified Bessel functions /1, (z) and K, (z). I,(z) and K, (z) are real and
positive when v > —1 and z > 0.

m Relations between solutions:

mloy(2) — I,,(z).

Ko(z) = Koo (z) = 2 sin(vm)

(A.1)

When v € Z, the right hand-side of this equation is replaced by its limiting value.

m Ascending series:
i~ (2/2)2k+y

I,(z) = —_— A2
(2) 2L BT (k+ 1+ ) (A.2)
where I' is the Gamma function.
m Wronskian:
1
L(2)Ky1(2) + L11(2) Ku(2) = 2 (A.3)
m Recurrence relations:
v v
8ZIZ/(Z) = V—H(Z) + ;IV(Z)a azKu(z) = - 1/+1(z) + ;Ku(z)v (A'4)
v v
0.1,(z) =I,-1(2) — ;L,(z), 0.K,(z) = —-K,_1(z) — ;Kl,(z) (A.5)
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A. SOME FORMULAS FOR THE MODIFIED BESSEL FUNCTIONS

® Limiting forms for fixed v and z — 0:

1 AN
I(z) ~ m <§> forv # —1,-2,... (A.6)
Ko(z) ~ —1In(2), (A7)
K, (z) ~ F(;) (g)ﬂ/, for Rv > 0. (A.8)

m Asymptotic expansions for fixed v and large |z|:

L(z) = \/L /27 (14 0(z1)), for |arg 2| < 7, (A9)

\/? —1/2,—= (1+0(z~ )) for |arg z| < gﬁ. (A.10)
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