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1. Introduction

In [7], the author has introduced some special functions related to the arithmetic of 
function fields of positive characteristic (and more precisely, to the arithmetic of the 
ring Fq[θ] with θ an indeterminate), namely, L-values and vector-valued modular forms 
(the vectors having entries in certain ultrametric Banach algebras). The purpose of [7]
was to produce a new class of functional identities for L-values, and only very particular 
examples of these new special functions were required, in order to obtain the results in 
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that paper. The theory was later developed along several axes (see for example [1], which 
also contains quite a detailed bibliography).

The aim of this note is to highlight the connection that these special functions have 
with representations of algebras, groups etc. associated to A, and to present families of 
examples which can be the object of further studies. In particular, we are interested in 
certain irreducible representations of SL2(Fq[θ]) or GL2(Fq[θ]). We also provide a few 
explicit examples and properties of such representations.

The plan of the note is the following. In §2, we discuss algebra representations of A
and we will consider their associated ω-values and L-values. In §3, we present a class 
of irreducible representations ρI inside symmetric powers in the case q = p. In §4, we 
apply the results of §3 to show that certain tensor products ρII are irreducible. In §5 we 
use these results to show that the entries of certain vectorial Poincaré series generalizing 
those introduced in [7] are linearly independent and we present a conjecture on the rank 
of a certain module of vectorial modular forms.

In all the following, q = pe with p a prime number and e > 0. We set

Γ = GL2(Fq[θ]),

where q = pe for some prime number p and an integer e > 0. We shall write A = Fq[θ]
(so that Γ = GL2(A)). All along the paper, if a = a0 + a1θ + · · ·+ arθ

r is an element of 
A with a0, . . . , ar ∈ Fq and if t is an element of an Fq-algebra B, then a(t) denotes the 
element a0 + a1t + · · · + art

r ∈ B. Also, we set K = Fq(θ).

2. Algebra representations

In this section, we consider an integral, commutative Fq-algebra A and we denote 
by K its fraction field. We denote by Matn×m(R), with R a commutative ring, the 
R-module of the matrices with n rows and m columns, and with entries in R. If n = m, 
this R-module is equipped with the structure of an R-algebra. We choose an injective 
algebra representation

A
σ−→ Matd×d(K), (1)

which is completely determined by the choice of the image ϑ := σ(θ). Note that σ is not 
injective if and only if ϑ has all its eigenvalues in Fac

q , algebraic closure of Fq (in all the 
following, if L is a field, Lac denotes an algebraic closure of L). Further, we have that σ
is irreducible if and only if its characteristic polynomial is irreducible over K.

2.1. An example

We denote by A[θ]+ the multiplicative monoid of polynomials which are monic in θ. 
Let P be a polynomial in A[θ]+, let d be the degree of P in θ. The Euclidean division in 
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A[θ] by P defines for all a ∈ A[θ], in a unique way, a matrix σP (a) ∈ Matd×d(A) such 
that

aw ≡ σP (a)w (mod PA[θ]),

where w is the column vector with entries 1, θ, . . . , θd−1. Explicitly, if P = θd+Pd−1θ
d−1+

· · · + P0 with Pi ∈ A, then

σP (θ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 1
−P0 −P1 · · · −Pd−1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Hence, the map σP defines an algebra representation

A
σP−−→ End(Ad).

The representation σP is faithful if P has not all its roots in Fac
q and is irreducible if and 

only if P is irreducible over K.

2.2. L-values and ω-values of algebra representations and semi-characters

We give a few elementary properties of certain basic objects that can be associated 
to representations such as in (1). Since the proofs are in fact obvious generalizations of 
the arguments of [7,1], we will only sketch them.

For a ring R, we denote by R∗ the underlying multiplicative monoid of R (if we 
forget the addition of R we are left with the monoid R∗). We recall that A+ denotes the 
multiplicative monoid of monic polynomials of A. Let M be an Fq-algebra (for example, 
M = Matd×d(K) for some integer d).

Definition 1. A monoid homomorphism

σ : A+ → M∗

is a semi-character if there exist pairwise commuting Fq-algebra homomorphisms

σ1, . . . , σs : A → M

such that, for a ∈ A+,

σ(a) = σ1(a) · · ·σs(a).
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The trivial map σ(a) = 1M for all a is a semi-character, according to the convention 
that an empty product is equal to one. If, for all i = 1, . . . , s, ϑi = σi(θ) has a well 
defined minimal polynomial over K, we say that the semi-character σ is of Dirichlet 
type. This happens if, for example, M = Matd×d(K). The conductor of a semi-character 
of Dirichlet type is the product of all the pairwise distinct minimal polynomials of the 
elements ϑ1, . . . , ϑs.

Example. If we choose M = Fac
q , then a semi-character σ : A+ → Fac

q is always of Dirich-
let type, and our definition coincides in fact with the usual notion of a Dirichlet–Goss 
character A+ → Fac

q . There are non-pairwise conjugated elements ζ1, . . . , ζs ∈ Fac
q , of 

minimal polynomials P1, . . . , Ps ∈ A, such that σ(a) = a(ζ1)n1 · · · a(ζs)ns for all a ∈ A, 
with 0 < ni < qdi − 1 for all i, with di the degree of Pi. The conductor is the product 
P1 · · ·Ps.

Non-example. We set M = Fq[x] and we consider the map σ : A+ → M defined by 
a �→ xdegθ(a). Then, σ is a monoid homomorphism which is not a semi-character. Indeed, 
assuming the converse, then σ = σ1 · · ·σs for algebra homomorphisms σi : A → M . But 
since σ(θ) = σ1(θ) · · ·σs(θ) = x, we get s = 1 and σ would be an algebra homomorphism, 
which is certainly false.

From now on, we suppose, for commodity, that M = Matd×d(Ks) with Ks =
Fq(t1, . . . , ts) (but some of the arguments also hold with M any Fq-algebra). Let K∞
be the completion of K = Fq(θ) at the infinity place. Then, K∞ = Fq((θ−1)), with the 
norm | · | defined by |θ| = q (associated to the valuation v∞ such that v∞(θ) = −1). Let 
C∞ be the completion K̂ac

∞ , where Kac
∞ denotes an algebraic closure of K∞. We denote 

by Ks the completion of the field C∞(t1, . . . , ts) for the Gauss valuation extending the 
valuation of K∞, so that the valuation induced on Fac

q (t1, . . . , ts) ⊂ C∞(t1, . . . , ts) is 
the trivial one. Also, we denote by Ks,∞ the completion of K(t1, . . . , ts) in Ks; we have 
Ks,∞ = Ks((θ−1)). We have that K∞ = K0,∞, and K0 = C∞.

2.2.1. ω-values of an algebra representation
We consider a d-dimensional representation as in (1), in M = Matd×d(Ks). We con-

sider the following element of K∞⊗̂Fq
M = Matn×n(Ks,∞) ⊂ C∞⊗̂Fq

M = Matn×n(Ks), 
the topological product ⊗̂Fq

being considered with respect to the trivial norm over M . 
We denote by Πσ the convergent product

Πσ =
∏
i≥0

(Id − σ(θ)θ−qi)−1 ∈ GLd(Ks,∞)

(where Id denotes the identity matrix). Let λθ be a root (−θ)
1

q−1 ∈ Kac of −θ. The 
ω-value associated to σ is the product

ωσ = λθΠσ ∈ GLd(Ks,∞(λθ)).
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We have, on the other hand, a continuous Ks-algebra automorphism τ of Ks uniquely 
defined by setting τ(θ) = θq. By using an ultrametric version of Mittag–Leffler decom-
position, it is easy to show that Kτ=1

s , the subfield of Ks of the τ -invariant elements, 
is equal to Ks. We denote by τ the algebra endomorphism of Matd×d(Ks) defined by 
applying τ entry-wise.

Lemma 2. The element ωσ is a generator of the free M -submodule of rank one of 
Matd×d(Ks) of the solutions of the τ -difference equation

τ(X) = (σ(θ) − θId)X.

Proof. (Sketch.) It is easy to verify that ωσ is a solution of the above equation. If ω′

is another solution, then Y = ω′ω−1
σ is solution of τ(Y ) = Y in Matd×d(Ks), hence, 

Y ∈ M . �
Remark 3. It is also easy to prove that, for σ as in (1), det(ωσ) = ωα, where α ∈ Ks[θ] is 
−1 times the characteristic polynomial of σ(θ) and ωα is the function defined in [1, §6].

Let T be another indeterminate. The algebra Matd×d(Ks) is endowed with a structure 
of A[T ]-module in two ways. The first structure is that in which the multiplication by 
θ is given by the usual diagonal multiplication, and the multiplication by T is given by 
the left multiplication by σ(θ); this defines indeed, uniquely, a module structure. The 
second structure, called Carlitz module structure, denoted by C(Matd×d(Ks)), has the 
same multiplication by T and has the multiplication Cθ by θ independent of the choice 
of σ, and defined as follows. If m ∈ C(Matd×d(Ks)), then Cθ(m) = θm + τ(m).

We have the exponential map

expC : Matd×d(Ks) → C(Matd×d(Ks))

defined by expC(f) =
∑

i≥0 D
−1
i τ i(f), where Di is the product of the monic polynomials 

of A of degree i. It is quite standard to check that this is a continuous, open, surjective 
A[T ]-module homomorphism, of kernel π̃Matd×d(Ks[θ]), where

π̃ := θλθ

∏
i>0

(1 − θ1−qi)−1 ∈ λθK∞ ⊂ C∞

is a fundamental period of Carlitz’s exponential expC : C∞ → C∞.

Lemma 4. We have ωσ = expC

(
π̃(θId − σ(θ))−1).

Proof. We set f = expC

(
π̃(θId − σ(θ))−1). Since (Cθ−σ(θ))(f) = 0 in C(Matd×d(Ks)), 

Lemma 2 tells us that f belongs to the free M -submodule of rank one of Matd×d(Ks) of 
the solutions of the homogeneous linear difference equation described in that statement. 
Now, observe that
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ωσ = θλθ(θId − σ(θ))−1 + M1, f = θλθ(θId − σ(θ))−1 + M2,

where M1, M2 are matrices with coefficients in Ks,∞ whose entries have Gauss norms 
< |λθ| = q

1
q−1 . Hence ωσ = f . �

2.2.2. L-values associated to a semi-character
We again suppose that M = Matd×d(Ks), with Ks as in the previous sections. Let σ

be a semi-character A+ → M . Let n be a positive integer. The n-th L-value associated 
to σ is the following element of GLd(Ks,∞):

Lσ(n) =
∏
P

(
Id − σ(P )P−n

)−1 =
∑
a∈A+

σ(a)a−n = Id + · · · ,

the product running over the irreducible elements of A+.

2.2.3. Determinant
We write σ = σ1 · · ·σs for injective Fq-algebra homomorphisms σi : A → M with 

σi(θ), σj(θ) commuting each other. The elements Lσ(n) and ωσ1 · · ·ωσs
commute each 

other. Further we denote by λi,1, . . . , λi,d ∈ Kac
s the eigenvalues of σi(θ) for i = 1, . . . , s

(considered with multiplicities). For simplicity, we suppose that none of these eigenvalues 
belong to Fac

q . On the other hand, we consider variables x1, . . . , xs and the L-value:

Ls(n) :=
∏
P

(1 − ψs(P )P−n)−1,

where ψ : A+ → Fq[x1, . . . , xs]∗ is the semi-character defined by a �→ a(x1) · · · a(xs), and 
the series converges in the completion of K[x1, . . . , xs] for the Gauss norm extending | · |.

Lemma 5. We have the formula

det(Lσ(n)) = Ls(n) xj=λi,j

j=1,...,s
∈ Ks,∞.

Proof. We note that, for every polynomial P ∈ A+,

det((Id − σ(P )P−n)−1) = P dn det(IdPn − σ(P ))−1.

By the well known properties of the characteristic polynomial of an endomorphism, we 
have that

det(Pn − σ(P )) =
d∏

i=1
(X − μi,P )X=Pn ,

where μi,P ∈ Kac
s are the eigenvalues of the left multiplication by σ(P ). Now, observe 

that
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σ(P ) =
s∏

j=1
σj(P ) =

s∏
j=1

P (σj(θ))

(the elements σj(θ) commute each other). Hence, μi,P =
∏s

j=1 P (λi,j) for all i = 1, . . . , d. 
Thus,

det(Id − σ(P )P−n)−1 = P dn
s∏

j=1

⎛
⎝IdP

n −
s∏

j=1
P (λi,j)

⎞
⎠

−1

,

and the lemma follows. �
2.2.4. The case n = 1

We write σ = σ1 · · ·σs as above. Since for all a ∈ A+, Ca(ωσi
) = σi(a)ωσi

∈ M , we 
have the convergent series identity

∑
a∈A+

a−1Ca(ωσ1) · · ·Ca(ωσs
) = Lσ(1)ωσ1 · · ·ωσs

∈ Matd×d(Ks,∞(λθ))

(in fact, the series converges to an invertible matrix).

2.2.5. A simple application of Anderson’s log-algebraic theorem
We now invoke the result of B. Anglès, F. Tavares Ribeiro and the author [1, Theo-

rem 8.2] (note that in the statement, we can set Z = 1). For completeness, we mention 
the following result, which is a very easy consequence of [1, Theorem 8.2]:

Proposition 6. For every semi-character σ : A+ → M with σ = σ1 · · ·σs as above,

(ωσ1 · · ·ωσs
)−1 expC(ωσ1 · · ·ωσs

Lσ(1)) =: Sσ ∈ Matd×d(Ks[θ]).

Further, if s ≡ 1 (mod q − 1) and if s > 1, the matrix with polynomial entries Sσ is 
zero. In particular, in this case,

Lσ(1) = π̃(ωσ1 · · ·ωσs
)−1Bσ,

where Bσ is a matrix with polynomial entries in Ks[θ].

Hence, Lσ(1) is a “Taelman unit”, in the sense of [10]. If s = 1, we have a more explicit 
property. In this case, σ extends to an algebra homomorphism σ : A → M , and we have 
the simple explicit formula

Lσ(1) = ω−1
σ (Idθ − σ(θ))−1π̃

which can be proved in a way very similar to that of [7, §4]. We are going to see, in §5.2.1
that Lσ(n) is related to certain vectorial Eisenstein series, when n ≡ s (mod q − 1).
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2.3. Representations of Γ associated to an algebra representation

Let K be any commutative field extension of Fq. Let σ be a d-dimensional repre-
sentation as in (1). We associate to it, canonically, a representation of Γ = GL2(A) in 
GL2d(K).

We consider the map Γ 
ρσ−−→ Mat2d×2d(K), defined by

ρσ

((
a b
c d

))
=

(
σ(a) σ(b)
σ(c) σ(d)

)
.

Then, ρσ determines a representation Γ → GL2d(K). Indeed, σ(a), σ(b) commute each 
other, for a, b ∈ A. Furthermore, we have:

Lemma 7. ρσ is irreducible if and only if σ is irreducible.

Proof. Let V be a non-trivial sub-vector space of Matd×1(K) such that σ(a)(V ) ⊂ V . 
Then, if γ = ( a b

c d
) ∈ Γ, we have

ρσ(γ) =
(
σ(a) σ(b)
σ(c) σ(d)

)
(V ⊕ V ) ⊂ V ⊕ V

and σ not irreducible implies ρσ not irreducible.
Now, let us assume that σ is irreducible and let us consider V a non-zero sub-vector 

space of Mat2d×1(K) which is ρσ-invariant. We observe that V ∩ Δ 
= {0}, with Δ =
{
(
v
v

)
: v ∈ Matd×1(K)}. Indeed, ρσ(( 0 1

1 0 )) = ( 0 Id
Id 0 ) and ρσ(( 1 0

0 −1 )) = ( Id 0
0 −Id

). If 
(
x
y

)
is 

a non-zero vector of V with x 
= −y, we have 
(
x
y

)
+ ρσ(( 0 1

1 0 ))
(
x
y

)
=

(
x+y
x+y

)
∈ Δ \ {0}. If 

x = −y, then ρσ(( 1 0
0 −1 ))

(
x
y

)
∈ Δ \ {0}. Let 

(
v
v

)
be non-zero in V ∩Δ. Since for all a ∈ A, 

ρσ(( 1 a
0 1 ))

(
v
v

)
= ( Id σ(a)

0 Id
)
(
v
v

)
=

(
σ(a′)v

v

)
with a′ = a + 1 we have {

(
σ(a)(v)

v

)
: a ∈ A} ⊂ V . 

Let W be the K-sub-vector space of Matd×1(K) generated by the set {σ(a)(v) : a ∈ A}. 
Then, W is σ-invariant: if w =

∑
i ciσ(ai)(v) ∈ W (ci ∈ K, ai ∈ A), we have that

σ(a)(w) =
∑
i

ciσ(aai)(v) ∈ W.

By hypothesis, W is non-zero, so that W = Matd×1(K). We have proved that 
V ⊃ Matd×1(K) ⊕ {v}. Translating, this means that V ⊃ Matd×1(K) ⊕ {0}. Apply-
ing ρσ(( 0 1

1 0 )) we see that V ⊃ {0} ⊕ Matd×1(K) and V = Mat2d×1(K). �
Example. We can construct, in particular, the representation ρP = ρσP

: Γ → GL2d(A)
which is irreducible if and only if P is irreducible.
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3. Symmetric powers

In the first part of this section, we suppose that q is a prime number; p = q. Let B be 
an Fp-algebra. We denote by ρ the tautological representation GL2(B) → GL2(B). We 
consider the representation

ρr = Symr(ρ) : GL2(B) → GLr+1(B),

where Symr denotes the r-th symmetric power realized in the space of polynomials 
homogeneous of degree r + 1 with coefficients in B. If γ =

(
a b
c d

)
∈ GL2(B), then

ρr(γ)(Xr−iY i) = (aX + cY )r−i(bX + dY )i, i = 0, . . . , r.

Associated to an integer l ≥ 0 with p-expansion l = l0+l1p +· · ·+lsp
s (0 ≤ li ≤ p −1), 

we also consider the representations

ρIl = ρl0 ⊗ ρ
(1)
l1

⊗ · · · ⊗ ρ
(s)
ls

,

where, for a matrix M with entries in B, M (i) denotes the matrix obtained from M
raising all its entries to the power pi. The dimension of ρIl is equal to

φp(l) =
∏
i

(li + 1).

Lemma 8. The representation ρIl is isomorphic to a sub-representation of ρl.

Proof. We actually construct the sub-representation explicitly; the Lemma will follow 
easily. We consider, for γ ∈ GL2(B), the matrix ρ�l (γ) which is the square matrix ex-
tracted from

ρl(γ) = (ρi,j)1≤i,j≤l+1

in the following way. If 0 ≤ r ≤ l is such that 
(
l
r

)
≡ 0 (mod p), we drop the (r + 1)-th 

row and the (r + 1)-th column. In other words, one uses the row matrix

Dl =
((

l

l

)
, . . . ,

(
l

r

)
, . . . ,

(
l

0

))

and discards rows and columns of ρl according with the vanishing of the correspond-
ing entry of Dl and what is left precisely defines the matrix ρ�l . By Lucas formula, ρ�l
has dimension φp(l) and it is easy to see, by induction on the number of digits of the 
p-expansion of l, that ρ�l ∼= ρIl . �
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Example. If l = 1 + p, we have

DI
l = (1, 1, 1, 1) =

((
l

0

)
,

(
l

1

)
,

(
l

p

)
,

(
l

l

))
.

In this case, we find, for γ =
(
a b
c d

)
,

ρ�l (γ) =

⎛
⎜⎜⎜⎝

ap+1 apb abp bp+1

apc apd bpc bpd

acp bcp adp bdp

cp+1 cpd cdp dp+1

⎞
⎟⎟⎟⎠ .

Remark 9. We notice the following algorithm to construct the sequence of dimen-
sions (φp(l))l≥1. Define a0 = (1), a1 = (1, 2, . . . , p) (equal to the concatenation 
[a0, 2a0, . . . , pa0]) and then, inductively,

an = [an−1, 2an−1, . . . , pan−1].

Since it is clear that for all n, an−1 is a prefix of an, there is a well defined induc-
tive limit a∞ of the sequence (an)n≥0 which is easily seen to be equal to the sequence 
(φp(l))l≥1.

3.1. Representations of SL2(Fq′)

Let us set q′ = pf with f > 0. Then, B = Fq′ is an Fp-algebra and we can con-
struct the representations ρl and ρ�l ∼= ρIL of the beginning of this section. We denote 
by ρl the representation ρIl with B = Fq′ restricted to SL2(B). By using the fact that 
any non-zero stable subspace in a representation of a p-group over a vector space has 
a non-zero fixed vector, it is easy to show and in fact well known that, for all l ≥ 0, 
ρl is an irreducible representation if and only if l < q′. By Schur’s theory, one shows 
that the representations ρl with l < q′ exhaust all the isomorphism classes of irreducible 
representations of SL2(Fq′) over Fac

p . Indeed, counting isomorphism classes of SL2(Fq′)
is an easy task and we know that their number coincides with the number of isomor-
phism classes of irreducible representations so it suffices to check that the representations 
above are mutually inequivalent which is an elementary task. This explicit description 
first appears in the paper [2] of Brauer and Nesbitt. Steinberg tensor product theorem 
[5, Theorem 16.12] provides such a description when, at the place of G = SL2, we have, 
much more generally, a semisimple algebraic group of simply connected type, defined 
over an algebraically closed field B of positive characteristic. This also implies Lemma 8. 
The author is thankful to Gebhard Böckle for having drawn his attention to this result 
and reference.
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3.2. Some representations of GL2(A)

We now set q = pe with e > 0. We also set K := Fq(t) for a variable t all along 
this subsection. We consider the algebra homomorphism χt : A → Fq[t] ⊂ K defined by 
χt(a) = a(t) = a0 + a1t + · · · + adt

d for a = a0 + a1θ + · · · + adθ
d ∈ A, with coefficients 

ai ∈ Fq. We extend our notations by setting, for a matrix M with entries in A, χt(M)
the matrix obtained applying χt entry-wise. We denote by ρt, ρt,l, ρIt,l the representations 
χt ◦ρ1, χt ◦ρl, χt ◦ρIl over K-vector spaces with the appropriate dimensions, of the group 
Γ = GL2(A).

Lemma 10. For all l as above, the representation ρIt,l is irreducible.

Proof. It suffices to show that the restriction to SL2(Fp[θ]) ⊂ Γ is irreducible. Let us 
consider an element ζ ∈ Fac

q of degree f and let us denote by Fq′ with q′ = pf the subfield 
Fp(ζ) of Fac

p . The group homomorphism

evζ : SL2(Fp[θ]) → GL2(Fq′)

defined by the entry-wise evaluation evζ of θ by ζ has image SL2(Fq′). Indeed, the 
evaluation map evζ : Fp[θ] → Fq′ is surjective, the image of SL2(Fp[θ]) by evζ clearly 
contains the subgroup of triangular upper and lower matrices with coefficients in Fq′, 
which are known to generate SL2(Fq′).

We set N = φp(l). Let V be a non-zero K-subvector space of KN which is stable under 
the action of the representation of SL2(Fp[θ]) induced by ρIt,l. Let us fix a basis b of V . 
We choose f big enough so that q′ > l, q and the image b′ of b in FN

q′ by the evaluation 
at t = ζ is well defined and non-zero. Then, the Fq′-span of b′ is a non-trivial sub-vector 
space of FN

q′ which is left invariant under the action of ρl, which is impossible. �
Remark 11. Let m be a class of Z/(q − 1)Z and let us consider the representation

ρIt,l,m : Γ → GLφp(l)(K)

defined by

ρIt,l,m := ρIt,l ⊗ det−m .

By Lemma 10, it is irreducible. However, the representations ρIt,l,m do not cover all the 
irreducible representations of Γ in GLN (K) for some N . Due to the fact that we evaluate 
the functor GLN on a ring which is not a field (here, the ring A), there are irreducible 
representations which, after specialization at roots of unity, do not give irreducible rep-
resentations of SL2(Fq′).

Remark 12. The group S(p) of p-adic digit permutations of Zp discussed by Goss in [4]
acts on the positive integers l by means of their expansions in base p. This defines an 
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action of the group S(p) on the set of representations ρIl by ν(ρIl ) = ρIν(l), for ν ∈ S(p). 
Note that the dimensions of these representations are S(p)-invariants. It is easy to show 
that ν(ρIl ) ∼= ρIl′ if and only if ν(l) = l′.

Remark 13. We are thankful to Pietro Corvaja for having pointed out the following 
property. Let k be a perfect field. Then, for all γ ∈ SL2(kac) there exists a morphism 
φ : A1 → SL2 defined over k and α ∈ kac, such that φ(α) = γ.

4. Products of representations

Let t1, . . . , ts be independent variables. We denote by ts the set of variables (t1, . . . , ts)
and we set Ks = Fq(ts). If s = 1, we write t = t1 and we have Ks = K, the field of 
§3.2. We also consider l = (l1, . . . , ls) an s-tuple with entries in Z which are ≥ 1.

Theorem 14. The representation

ρII
t,l := ρIt1,l1 ⊗ · · · ⊗ ρIts,ls : Γ → GLφp(l1)···φp(ls)(Ks)

is irreducible.

Proof. We set N = φp(l1) · · ·φp(ls). Let us suppose by contradiction that the statement 
is false. Then, there exists a Ks-sub-vector space V 
= {0} ⊂ KN

s such that for all γ ∈ Γ, 
ρII
t,l(γ)(V ) ⊂ V . Let us fix a basis v = (v1, . . . , vr) of V . For integers 0 ≤ k1 ≤ · · · ≤ ks, we 

denote by ev the map Fq[ts] → Fq[t] which sends a(t1, . . . , ts) ∈ Fq[ts] to a(tk1 , . . . , tks) ∈
Fq[t]. This map is a ring homomorphism whose kernel is the prime ideal P generated by 

the polynomials tj − tq
kj−kj−1

j−1 , j = 2, . . . , s. We consider the associated multiplicative 
set S = Fq[ts] \ P. Then, the evaluation map ev extends to S−1Fq[ts] which is Zariski 
dense in Ks = Fq(ts). We now extend ev coefficient-wise on every matrix, vector, etc. 
with entries in S−1Fq[ts]. If k1 is big enough, ev(v) is well defined and non-zero.

We can in fact choose k1, . . . , ks so that we also have at once, ev(ρII
t,l) = ρIt,l for some 

l ≥ 0. Indeed, if we write the p-expansions li = li,0 + li,1p + · · · + li,rp
r (i = 1, . . . , s) 

for some r ≥ 0, then we can choose k1, . . . , ks so that there is no carry over in the 
p-expansion of the sum l = l1q

k1 + l2q
k2 + · · · + lsq

ks ; for such a choice of k1, . . . , ks, 
ev(ρII

t,l) is thus irreducible.
We now set W to be the K-span of ev(v), well defined and non-trivial in KN (we 

recall that K = Fq(t)). Let w be in W . We can write w = a1 ev(v1) + · · ·+ ar ev(vr) for 
elements ai ∈ K. Then,

ρIt,l(γ)(w) = a1ρ
I
t,l(γ)(ev(v1)) + · · · + arρ

I
t,l(γ)(ev(vr))

= a1 ev(ρII
t,l(γ)(v1)) + · · · + ar ev(ρII

t,l(γ)(vr))

is a vector of W , hence contradicting the irreducibility of ρIt,l. �
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5. Applications to Poincaré series

Definition 15. We say that a representation Γ 
ρ−→ GLN (K) is normal to the depth L ∈

{1, . . . , N} if for all γ ∈ H = {
( ∗ ∗

0 1
)
} ⊂ Γ, we have that ρ(γ) =

( ∗ ∗
0 IL

)
, where IL denotes 

the identity matrix of size L.

A representation as above which is normal to the depth N has finite image. To see 
this, note that ρ(( ∗ ∗

0 ∗ )) = (( ∗ 0
0 ∗ )) is finite. Hence,

ρ

(
∗ 0
∗ ∗

)
= ρ

((
0 1
1 0

)(
∗ ∗
0 ∗

)(
0 1
1 0

))

= ρ

(
0 1
1 0

)
ρ

(
∗ ∗
0 ∗

)
ρ

(
0 1
1 0

)

= ρ

(
0 1
1 0

)
ρ

(
∗ 0
0 ∗

)
ρ

(
0 1
1 0

)

= ρ

((
0 1
1 0

)(
∗ 0
0 ∗

)(
0 1
1 0

))
= ρ

(
∗ 0
0 ∗

)
.

We thus have ρ( ∗ 0
∗ ∗ ) = ρ( ∗ ∗

0 ∗ ) finite, and ρ(Γ) = ρ(( ∗ ∗
0 ∗ )( ∗ 0

∗ ∗ )) = ρ( ∗ 0
0 ∗ ) is finite.

The representation Γ 
ρσ−−→ GLN (K) with N = 2d associated to an algebra represen-

tation A σ−→ Matd×d(K) is normal to the depth L = d.
If, for some ring R, we have that M ∈ MatN×N (R) =

( ∗ ∗
X Y

)
with Y ∈ MatL×L, we 

set ML = (X, Y ) ∈ MatL×N (R). In other words, ML is the matrix constituted by the 
last L lines of M .

We denote by Ω = C∞ \K∞ the Drinfeld “upper-half plane” of C∞. We choose m a 
non-negative integer, an integer w ∈ Z>0, and, for δ ∈ Γ and z ∈ Ω, we set μw,m(δ, z) =
det(δ)−mJδ(z)w, where Jγ(z) is the usual “Drinfeldian” factor of automorphy defined, 
for γ =

(
a b
c d

)
∈ Γ by Jγ(z) = cz + d. We also denote by u(z) the uniformizer at infinity 

of Ω, that is, the function u(z) = 1
eC(z) with eC the exponential function C∞ → C∞

with lattice period A ⊂ C∞.
We consider a representation Γ 

ρ−→ GLN (K), normal to the depth L. Following 
[7, §2.4], we set, for δ ∈ Γ,

fδ = μw,m(δ, z)−1um(δ(z))ρ(δ)L : Ω → MatL×N (K),

where we recall that K = K1 is the completion of C∞(t) for the Gauss norm. It is easy 
to show that the series

Ew,m,ρ(z) =
∑

fδ,

δ∈H\Γ
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the sum being over the representatives of the cosets of Γ modulo the left action of 
H = {

( ∗ ∗
0 1

)
}, converges to a holomorphic function

Ew,m,ρ : Ω → MatL×N (K),

in the sense of [8].

Remark 16. For convenience of the reader, we recall here the definition of a holomorphic 
function Ω → K. For z ∈ Ω, we set |z|� := infλ∈K∞ |z − λ|, which is non-zero. We 
also define, on Ω, a Stein-like structure by considering the affinoids Un = {z ∈ Ω; |z| ≤
qn and |z|� ≥ q−n}, so that Ω = ∪n∈NUn. For n fixed, a function f : Un → K is 
holomorphic if it is a uniform limit of a converging sequence of rational functions Un → K, 
without poles in Un. A function f : Ω → K is holomorphic if, for all n ≥ 0, the restriction 
of f to Un is holomorphic.

Following and readapting the proof of [7, Proposition 22], we obtain:

Proposition 17. The following properties hold, for w ∈ Z>0, m ∈ Z≥0 and ρ a represen-
tation Γ → GLN (K):

(1) For all γ ∈ Γ, we have

Ew,m,ρ(γ(z)) = det(γ)−mJγ(z)wEw,m,ρ(z) · ρ(γ)−1.

(2) There exists h ∈ Z such that

u(z)hEw,m,ρ(z) → 0 ∈ MatL×N (K)

as u(z) → 0.

The last condition means that Ew,m,ρ(z) is tempered in the sense of [7]. The proposi-
tion means that the L columns of the transposed of Ew,m,ρ are vectorial modular forms 
of weight w and type m with respect to the contragredient representation of ρ. In the 
next two subsections, we analyze Poincaré series associated with two particular classes 
of representations.

5.1. Vectorial Poincaré series associated to representations ρσ

Let us consider an irreducible, faithful algebra representation A σ−→ Matd×d(K), and 
the associated representation Γ 

ρσ−−→ GLN (K) with N = 2d, which is normal to the 
depth L = d. We additionally suppose that the characteristic polynomial of ϑ = σ(θ), 
irreducible, is also separable.
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Proposition 18. The following properties hold, with ρ = ρσ.

(1) If w − 1 
≡ 2m (mod q − 1), then Ew,m,ρ = 0, identically.
(2) If w − 1 ≡ 2m (mod q − 1) and w ≥ (q + 1)m + 1, then, the rank of the matrix 

function Ew,m,ρ 
= 0 is d.
(3) In the second case, each row of the matrix function Ew,m,ρ has the entries which are 

K-linearly independent.

Proof. The hypotheses on σ imply that the matrix ϑ = σ(θ) has distinct conjugate 
eigenvalues λ1, . . . , λd ∈ Kac none of which lies in Fac

q . We consider a corresponding 
basis v1, . . . , vd ∈ (Kac)d of eigenvectors (considered as column matrices) which are then 
common eigenvectors for all the elements of the image of σ. In (Kac)2d = (Kac)N we 
consider the basis w1, . . . , w2d defined by wi = vi⊕0 and wd+i = 0 ⊕vi for i = 1, . . . , d. We 
also denote by M ∈ GLN (Kac) the matrix whose columns are the wi’s for i = 1, . . . , 2d. 
Then, for δ =

(
a b
c d

)
∈ Γ, we have

ρ(δ)LM = δ(t) ∗ (v1, . . . , vd)

:= (c(λ1)v1, . . . , c(λd)vd, d(λ1)v1, . . . , d(λd)vd) ∈ Matd×2d(K2d).

Hence we have, with the same significance of the product ∗ extended linearly, that

M · Ew,m,ρ = Ew,m,χt
∗ (v1, . . . , vd),

where Ew,m,χt
: Ω → Mat1×2(K) is the function defined by

Ew,m,χt
(z) =

∑
δ=

(
a b
c d

)
∈H\Γ

μw,m(δ, z)−1um(δ(z))(c(t), d(t)).

This matrix function is the deformation of vectorial Poincaré series Ew,m(z, t) considered 
in [7, Proposition 22] and we know the following:

• If w − 1 
≡ 2m (mod q − 1), then Ew,m,χt
is identically zero.

• If w− 1 ≡ 2m (mod q− 1) and w ≥ (q + 1)m + 1, then all the entries of Ew,m,χt
are 

non-zero.

We now observe that if C is a complete field containing A and if f(t) =
∑

i≥0 fit
i ∈ C[[t]]

is a non-zero formal power series, with fi → 0 for i → ∞ (an element of the Tate algebra 
of formal series with coefficients in C in the variable t) then, for λ ∈ Kac \ Fac

q , we have 

that f(λ) =
∑

i≥0 fiλ
i converges in the complete field K� := ̂Frac(C ⊗Fq

Kac) (with 
Kac carrying the trivial norm) to a non-zero element.

Since M is invertible, Ew,m,ρ is identically zero if and only if Ew,m,χt
is identically zero 

(we have supposed that ϑ has no eigenvalues in Fac
q ) and in the case of non-vanishing, 
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the rank is maximal equal to d. Properties 1) and 2) of our proposition hence follow from 
Proposition 22 of [7].

It remains to show the part 3); this follows from Lemma 7. Indeed, assuming that 
w − 1 ≡ 2m (mod q − 1) and w ≥ (q + 1)m + 1, let i be an index between 1 and d; 
we know that it is non-zero. Let us assume, by contradiction, that the entries of E are 
linearly dependent; then, the vector space V whose elements are the vectors v ∈ (K�)N
such that E(z) · v = 0 for all z ∈ Ω, is non-trivial.

Let v be in V . For all γ ∈ Γ, we have

0 = E(γ(z)) · v = det(γ)−mJγ(z)wE(z) · ρ(γ)−1 · v.

This means that ρ(γ)−1 · v ∈ V so that ρ(γ)(V ) ⊂ V for all γ ∈ Γ. Since ρ is irreducible, 
we thus have that V = (K�)N but E is non-zero, whence a contradiction. �
5.2. Vectorial Poincaré series associated to the representations ρII

t,l

We now consider the settings of §4 and we return to independent variables ts and to 
the field Ks = Fq(ts). We also consider l = (l1, . . . , ls) an s-tuple with entries in Z which 
are ≥ 1 and we note that the representation ρ = ρII

t,l of Theorem 14 is normal to the 
depth L = 1.

Proposition 19. We have the following properties, for w > 0 and m ≥ 0, and with ρ the 
above considered representation.

(1) The function

Ew,m,ρ : Ω → Mat1×N (K),

with N = φp(l1) · · ·φp(ls) is well defined, holomorphic, tempered, and satisfies

Ew,m,ρ(γ(z)) = det(γ)−mJγ(z)wEw,m,ρ(z) · ρ(γ)−1, γ ∈ Γ.

(2) If w′ := w − l1 − · · · − ls 
≡ 2m + 1 (mod q − 1), then Ew,m,ρ ≡ 0.
(3) With w′ defined as above, if w′ ≡ 2m + 1 and w′ ≥ (q + 1)m + 1, then Ew,m,ρ 
= 0.
(4) If m = 0 and w′ ≡ 1 (mod q − 1), then Ew,m,ρ 
= 0.
(5) In all cases in which Ew,m,ρ 
= 0, its entries are linearly independent over K.

Proof. The first two properties and the last one are simple variants of the corresponding 
parts of Proposition 18. For the third property, we consider the matrix function Fl : Ω →
MatN×1(C∞) with N = φp(l1) · · ·φp(ls), defined by

Fl(z) = Syml1,0(F ) ⊗ · · · ⊗ Syml1,r1 (F (r1)) ⊗ · · · ⊗ Symls,0(F ) ⊗ · · · ⊗ Symls,rs (F (rs)),
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with F (z) =
(
z
1
)

and where we have used the expansions in base p of l1, . . . , ls: li =
li,0 + li,1p + · · · + li,rip

ri with ri 
= 0 for i = 1, . . . , s. Then, as in [7], we note that

(Ew,m,ρ · Fl)ti=θ = Pw′,m

the Poincaré series of weight w′ and type m so that we can conclude with [3, Proposi-
tion 10.5.2]. The property 3) is not enough to show the property 4), but we can proceed 
more directly by noticing that in this case,

Ew,0,ρ =
∑

δ∈H\Γ
J−w
γ ρ(γ)1.

Hence, if we suppose that u(z) → ∞, then Ew,0,ρ → (0, . . . , 0, 1). �
The transposed of the matrix functions Ew,m,ρ are thus vectorial modular forms of 

weight w, type m associated to the representations tρ in the sense of [7].

5.2.1. Eisenstein series
We consider Fq-algebra representations σ1, . . . , σs : A → Matd×d(K). Let σ be the 

semi-character σ1 · · ·σs. We set:

Gw,σ(z) =
∑′

(a,b)∈A2

(az + b)−w(σ1(a), σ1(b)) ⊗ · · · ⊗ (σs(a), σs(b))

(the dash ′ denotes a sum which avoids the couple (0, 0)). This defines a holomorphic 
function

Gw,σ : Ω → Matds×2ds(K).

Let, on the other side, ρ be the representation ρ : Γ → Mat2ds×2ds(K) defined by 
ρ = ρσ1 ⊗ · · · ⊗ ρσs

. The following lemma is easy to verify.

Lemma 20. We have the identity Gw,σ = Lσ(w)Ew,0,ρ.

The matrix Lσ(w) is the L-value associated to the semi-character σ as defined in 
§2.2.2. This and Proposition 6 suggest that the Eisenstein series Gw,σ could be also 
related to Taelman units. Of course, this is quite speculative, because at the moment, we 
do not have at our disposal any kind of metric over the spaces of vectorial modular forms 
that we consider, allowing us to define an appropriate notion of unit group of Taelman 
in this setting. However, this seems to suggest the following conjecture.

Conjecture 21. The K-module of the vectorial modular forms of weight one and type 0
associated to a representation ρσ1 ⊗· · ·⊗ρσs

with σ1, . . . , σs algebra representations A →
Matd×d(K) is of rank one, generated by the Eisenstein series Gw,σ, where σ = σ1 · · ·σs.
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6. Other representations of Γ

Let K be a field containing a fixed base field k of positive characteristic (e.g. k = Fq) 
and let us consider a group representation ρ : G → GLN (K). The essential dimension
(over k) of ρ is the transcendence degree over k of the field generated by the entries of 
the image of ρ. If G is finite, then the essential dimension of ρ is zero. In this paper, 
we have studied several examples in the case k = Fq and G = Γ. For instance, the 
essential dimension of the tautological representation Γ → GL2(A) is one, and the es-
sential dimension of a representation ρII

t,l as in Theorem 14 is s, the number of variables 
in ts.

As a conclusion of the present note, we would like to point out that there are irre-
ducible, finite dimensional representations of GL2(k[t]) with infinite essential dimension. 
Indeed, for any field k, a Theorem of Nagao (see [6, Theorem 2] and Serre, [9, II.1.6]) 
asserts that

GL2(k[t]) ∼= GL2(k) ∗B(k) B(k[t]), (2)

where, for a commutative ring R, B(R) denotes the group of upper triangular matrices 
with entries in R with invertible determinant and where ∗B(k) stands for the amalga-
mated product along B(k). Therefore, we have the following:

Proposition 22. Any automorphism φ of GL2(k) extends to a group isomorphism be-
tween GL2(k[t]) and the subgroup Φ∞ of GL2(k[x1, x2, . . .]) generated by GL2(k) and the 

matrices 
(

λ xi

0 μ

)
, where x1, x2, . . . are independent indeterminates over k and λ, μ ∈ k×.

Proof. By (2), we see that the association 
(

λ ti

0 μ

)
�→

(
λ xi

0 μ

)
extends to give the above 

group isomorphism. �
The above proposition exhibits representations GL2(k[t]) → GL2(K∞) where K∞ =

k(x1, x2, . . .), which have infinite essential dimension over Fq.

Remark 23. The group SL2(Z) has uncountably many isomorphism classes of irreducible 
complex representations and their explicit classification is not yet understood. A similar 
question arises with the group GL2(A) and its representations in a complete algebraically 
closed field of characteristic p. The complete classification for SL2(Z) is however accessi-
ble if we impose an upper bound on the dimension. In [11], Tuba and Wenzl obtained a 
complete classification of irreducible representations of the braid group B3 of dimension 
≤ 5 yielding a similar result for irreducible complex representations of SL2(Z); it turns 
out that these families algebraically depend on finitely many parameters (eigenvalues, 
characters etc.). It would be nice to have a similar result for GL2(A).
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