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Abstract: Fire monitoring and early detection are critical tasks in which Unmanned Aerial Vehicles
(UAVs) are commonly employed. This paper presents a system to plan the drone patrolling schedule
according to a real-time estimation of a fire propagation index that is derived from satellite data,
such as the Normalized Difference Vegetation Index (NDVI) measurement and the Digital Elevation
Model (DEM) of the surveilled area. The proposed system employs a waypoint scheduling logic,
derived from a dynamic Voronoi Tessellation of the area, that combines characteristics of the territory
(e.g., vegetation density) with real-time measurements (e.g., wind speed and direction). The system
is validated on a case study in Italy, in the municipality of the city of L’Aquila, on three different
fire scenarios. In normal situations, the designed waypoint-based navigation system provided an
effective monitoring of the area, enabling the early detection of starting fires. The developed solution
also demonstrated good performance in tracking and anticipating the fire front advance, potentially
providing a better situational awareness to emergency operators and support their response policies.
Both the test environment and the simulator have been made open-source.

Keywords: UAV; satellite data; wildfires; fire detection; drone patrolling

1. Introduction

Forest fires have always been a fundamental element in the global ecosystem balance [1],
but, with the industrialization of society, global warming and the ever-increasing de-
forestation process, climate experts predict a significant increase in their frequency and
intensity [2]. In fact, more than three billion animals deaths were estimated in the 2019–2020
Australian bushfires [3], with unprecedented environmental [4,5] and economic impacts [6].

Efficient systems for fire management are then one of the utmost priorities for any
environmental protection policy. In fact, a fast response and an adequate and preemptive
employment of fire response resources has immediate impacts on the preservation of both
the territory and the economic fabric of the region.

This work presents the system developed in the scope of the project ARIES, funded by
the European Space Agency (ESA), dedicated to drone surveillance of forests and wildfire
monitoring. The proposed system exploits satellite data to build a digital twin of the
monitored area, in the form of a dynamical model employed to predict the propagation
of fire during emergencies. The fire propagation model will then be used to determine
a real-time and adaptive waypoint scheduling for a fleet of drones with the purpose of
offering to fire response operators a better situational awareness and more precise fire
observations.

The remainder of the paper is structured as follows: Section 2 reports some related
works; Section 3 details the overall logical architecture of the proposed system; Section 4
details the satellite data used in our system and the dynamical model employed to predict
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the fire propagation; Section 5 provides the needed background on the concept of Voronoi
tessellation and then details how it has been applied on the fire risk distribution identified
by the dynamical model to determine the optimal waypoint scheduling for the drone
patrolling; Section 6 details the simulated environment and the case study in Italy; finally,
Section 7 draws the conclusions and highlights some possible future works.

2. Related Works and Main Contributions

Drones are commonly used to provide operators with an aerial perspective of the
interested area in various applicative scenarios. Regarding emergency management, drones
proved to be useful to access and gather data from impervious zone, enhancing the situa-
tional awareness and response velocity to critical events, such as earthquakes, floods, and
forest fires [7]. Regarding wildfire management, drone formations can be deployed both to
respond to ongoing emergencies and to preventively patrol vulnerable areas for the early
detection of fire break-outs.

Several works in literature propose integrated systems for fire management, e.g.,
reference [8–11]. In reference [9], Skorput, Mandzuka, and Vojvodic proposed a system
architecture to guarantee constant communication between small Unmanned Aerial Ve-
hicles (UAVs) and human operators on a test case in Croatia. The system proposed in
reference [10] validated this time on an area in Spain and Portugal, determining the optimal
patrolling schedule for UAVs based on satellite weather data and the Nesterov index [12],
while the solution presented in reference [11] consists of a real-time algorithm to allow
a fleet of UAV equipped with an infrared sensor track the fire perimeter of an ongoing
emergency.

Several classes of drones have been studied for fire detection and monitoring pur-
poses, such as high altitude/large coverage UAVs [13], quadrotors [14], and fixed wing
or stratospheric UAVs for long-term flights [15], with some solutions even envisaging
the deployment of fleets of heterogeneous drones [16–18] to better exploit their different
capabilities. In fact, drone patrolling has always been connected to the problem of for-
mation control, as different drones may be equipped with different sensors or devices
to offer specific sensing functionalities. In the recent study [18], Afghah et al. proposed
a framework to monitor wildfires in various environments using a flock composed by
different types of drones, and, in order to guarantee the full coverage of the interested area,
they developed a decentralized leader-follower structure.

The aerial operations of UAVs can be enhanced by combining their observations with
data gathered on the ground by a heterogeneous network of sensors. In this direction, a
solution for real-time wildfire prediction and forecasting based on the IoT/Fog computing
paradigm was proposed [19]. Mao et al. proposed, in reference [20], an optimization
framework to determine the optimal drone positioning strategy to support the ground
IoT segment with the advanced connectivity and the low-latency computing capabilities
offered by UAVs.

A different approach was followed by Simoes et al. in reference [21], where drone
formations are used to provide support to firefighters during operations, providing them
with information regarding the fire perimeter and guidance. In the work, drones are able
to autonomously position to provide the information required by firefighters, who can
interact with them through a ground station.

The prediction of the wildfire propagation is a crucial functionality needed to enable
any kind of proactive measure. For this reason, several models [22–25] have been proposed
in the literature. By combining the model predictions with a real-time feedback gathered by
distributed sensors and UAVs, it is possible to attain precise short-term forecasts on the fire
evolution, further increasing the importance of an effective strategy for drone patrolling.

Compared to the existing literature, the main contributions of this work are:

• the design of an integrated system for drone surveillance/patrolling against wildfires,
employing a dynamical system that is built starting from satellite-sensed data;
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• the formulation of an adaptive Voronoi tessellation-based solution for the identi-
fication of the optimal waypoints for the drone patrolling, determined on a fire
propagation risk index;

• the validation of the proposed scheme on a case study in Italy on a simulated environ-
ment; and

• the presentation of the open-sourced simulator used for the validation of the proposed
system [26].

3. System Architecture

The architecture of the main functional blocks of the proposed system is reported
in Figure 1. The system is composed by three main functionalities, namely the Cellular
Automata, the Voronoi Tessellation subsystem, and the Patrolling Controller, that determine
a flight schedule for a fleet of drones, equipped with monitoring sensors, starting from the
analysis of satellite and terrestrial data.

Figure 1. Functional architecture of the system.

The core element of the architecture is the Cellular Automata (described in Section 4.2),
which is the dynamical model that will be used as a digital twin of the monitored area to
produce fire spreading predictions.

The Cellular Automata is fed with offline data available from satellite sources, as
described in Section 4.1, and real-time data from ground sensors. The offline data is
employed to determine the characteristics of the model dynamics, whereas the real-time fire
detection is used as a feedback to determine the initial conditions for the fire propagation
predictions. Note that the real-time measurement on the wind speed and direction is
employed by the Cellular Automata as an exogenous input/disturbance to determine the
fire evolution. The two outputs of the Cellular Automata are: (i) a fire risk distribution,
denoted by pburn in the figure, that describes the likelihood of fire spreading in the
monitored area, and (ii) a short-term prediction of the fire propagation.

On the basis of the fire risk distribution, the system determines a Voronoi Tessellation
(described in Section 5.2) of the area, whose centroids will be used as waypoints by the
drone fleet.

Based on the fire prediction, the Patrolling Controller (described in Section 5.3) deter-
mines the optimal flight planning for the fleet, in terms of waypoints visiting order, so that
areas more subject to fire risk—or even areas in which the fire front is moving into—are
monitored first and/or more frequently.

4. Fire Propagation Modeling

In this section, we present the fire propagation modeling employed, analyzing in
particular how different sources of data have been used to obtain a realistic simulated
environment. In particular, Section 4.1 starts with an analysis of the used satellite images;
Section 4.2 describes of the implemented fire dynamics.
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4.1. Satellite Data

The environmental dynamical model that our system employs to estimate the short-
term fire propagation is fed with relevant satellite imaging data. In particular, we will utilize
information regarding the vegetation structure, its health status, and stress level, combined
with information regarding ground elevation/structure and weather data. Figure 2 reports
a satellite image of the test area that will be used in the rest of the paper.

Figure 2. Satellite image of the test area—‘Pineta di Roio’ (Monteluco), Abruzzo, Italy. Red star:
center of the area.

The most widely used index to assess such vegetation aspects is the Normalized
Difference Vegetation Index (NDVI) [27], as it allows a fairly immediate evaluation of the
plant vigor, hydration, and health. Remote measurements, such as the NDVI, are of funda-
mental importance in industries, such as precision agriculture [28,29], forestry [30,31], and
crop [32] monitoring, where a feedback-based and predictive evaluation of which actions
or corrective measures are the most effective allows for significantly better performances.

For a given area, the NDVI is defined as the ratio between the difference and the sum
of the radiations reflected in the near infrared and in the red wavebands:

NDVI =
NIR− RED
NIR + RED

, (1)

where NIR and RED are the spectral reflectances measured in the near infrared and in
the visible (red) wavebands, corresponding, respectively, to a central wavelengths of
acquisition of 832.8 nm and 664.6 nm [33].

Several different satellite data sources are available to compute the NDVI, such as the
Landsat 8 and Landsat 7 satellites. In this study, we employ data from the more recent
Sentinel-2 constellation, due to its greater resolution (10× 10 meters per pixel compared to
the 30× 30 meters per pixel archived by Landsat 8) and faster revisit time (5 days instead
of the 16 days required by Landsat satellites [34]). In general, the NDVI index can assume
values in the set [−1, 1] and allows for creation of a pixel-wise heat map of the vegetation
status in the monitored area.

For our tests, the satellite data was obtained from the public source for Sentinel 2
data [35]. This data was then elaborated in the QGIS software [36], obtaining the NDVI
image that is reported in Figure 3, for the area shown in Figure 2 (Pineta di Roio, in the
Italian region of Abruzzo).

Other than the NDVI, our system will conduct its analysis also on a Digital Elevation
Model (DEM) of the area, that we retrieved from reference [37], with the same resolution of
the NDVI data.
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Figure 3. NDVI image of the test area obtained from Sentinel-2 data.

4.2. Fire Dynamics

An accurate simulation of fire dynamics enables pro-active patrolling, monitoring,
and intervention. Once a fire start is detected, the system will be able to predict its spread
and better manage the available fire-response resources.

The dynamic model we consider for the proposed system is derived from the discrete
Cellular Automata (CA) system originally proposed in reference [38]. CAs are a very
popular tool used for the modeling of terrestrial areas, as they offer an efficient yet flexible
solution to capture events, such as wildfires. The first usages of CA related to wildfires
date back to the 1990s [39,40], with newer and more refined models commonly employed
in recent years [38,41].

The CA model is constituted of the combination of a finite number of identical ele-
ments, referred to as cells, each one having an individual shape and state. The state of
every cell was modeled so that it can assume values in a discrete set of integers, and their
discrete dynamics is dictated by a local transition law that depends on the cell state and
on the states of its neighboring cells. The concept of cell neighborhood is a fundamental
element of a CA, as it can be derived from an arbitrary definition of distance among two
cells, and, for this reason, it is one of the elements that impact the entire modeling process.

The dependency obtained with this interdependence is what constitutes the overall
dynamical system that will be used to capture the fire propagation over time.

We mention that, typically, CA systems assume cells to have a regular shape (e.g.,
square or hexagonal) obtained from an a priori partition that leads to a so-called regular
CA system. However, in principle, generalized CA does not assume any regular or com-
mon shape among the various cells, which consequently may have different numbers
of neighbors.

In order to formally define a CA model, we need to define its following characteristics:
cell state, cell neighborhood, and the local transition function.

4.2.1. Cell State

As mentioned, each cell can assume a finite number of states that can be encoded with
an integer index. In our model, we let the state of the system cells assume values in the set
{1, 2, 3, 4}, corresponding to the states:

• 1: not burnable cell,
• 2: burnable cell,
• 3: burning cell, and
• 4: burned cell.

The monitored area is divided as a grid formed by 10 m × 10 m cells, in line with
the satellite data resolution. The initial state assignment is then conducted on the basis
of the NDVI data, identifying the appropriate state value for each cell in the grid. In
detail, a state equal to 1 is associated with cells whose area has an NDVI value of less
than an user-defined threshold, that can be defined depending on the geographic area
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characteristics and vegetation type, and the value 2 is given to the other cells. In our test
area, we observed that a threshold of 0.52 almost perfectly recognized as non-burnable
cells the ones with roads or buildings. Note that, in the initial state definition, we assumed
that no cells were burning or were recently burned, but, in principle, the model allows the
presence of such cells in its initial conditions, and their identification may be carried out by
exploiting data from terrestrial measurements.

We can associate with each burnable cell (i.e., cell whose state is equal to 2) the
following (static) properties:

• an index that captures how likely the area is to catch fire due to the type of vegetation
present in the cell, denoted by pveg(i);

• an index that captures the impact of the vegetation density on the burn likelihood,
denoted by pden(i); and

• the (average) cell altitude from the DEM, which we obtained from reference [37].

In principle, the values of pveg(i) and pden(i) can be derived from several data sources,
with the satellite ones being among the most effective (e.g., other than NDVI one could use
the Normalized Difference Water Index (NDWI), the Enhanced vegetation index (EVI), the
Land Surface Temperature (LST) [42], or even an arbitrary combination of multiple factors),
or empirically from the analysis of past wildfires, as done in reference [38]. Without loss of
generality, in our study, we utilize the same values for pveg(i) proposed in reference [38],
employing the NDVI in place of an identification of the vegetation type (recalling that
higher values of NDVI are associated with lower probabilities of catching fires) and as-
suming a constant vegetation density. More refined criteria (e.g., reference [43]) can be
seamlessly integrated for both factors in the presented formulation and in the open-source
simulator.

The two additional properties, pveg(i) and pden(i), that have been associated with
the various cells will play a fundamental role in estimating the short-term fire propaga-
tion. Their role will be clarified when describing the transition function that governs the
system dynamics.

4.2.2. Cell Neighborhood

As mentioned, the neighborhood definition is one of the most important definitions
of the entire CA system. In our case, where the natural choice for the distance metric
is the Euclidean distance between the cells, two possible neighborhood definitions can
be considered: the von Neumann and the Moore neighborhoods. According to the first
definition, each cell is assigned four neighbors that correspond to the elements adjacent to
the cell sides. In the Moore neighborhood definition, each cell is considered to have eight
neighbors, therefore also considering the elements that are connected diagonally to one
of the vertices of the cell. The two approaches are depicted in Figure 4. In our study, we
considered Moore’s definition, as fire can spread in any direction, and we denote with Ni
the set of neighbors of the cell i.

Figure 4. von Neumann (left) and Moore’s definitions of neighborhoods.
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4.2.3. Local Transition Function

The local transition function is the core of a CA system because it relates each cell
state with the states of its neighbors, hence interconnecting the atomic elements of the
overall system. In principle, it is possible to define either a deterministic or a probabilistic
transition function. Due to the stochastic nature of fire evolution, our model implements a
discrete-time function of the latter class.

In line with reference [38], we assume the fire propagation to occur between two
neighboring burnable cells i, j with a given probability pburn(i, j). Furthermore, the state of
non-burnable cells remains fixed to 1, while burning cells become burned after 1 time step
has passed, and it remains so thereafter. Taking a generic cell i, and letting celli(τ) be its
state a time time τ, Ni be its set of neighboring cells, and T be the sampling time, we can
write the aforementioned conditions as:

celli(τ) = 1 =⇒ celli(τ + T) = 1, (2)

i.e., a not-burnable cell remains so for all following time steps;

celli(τ) = 4 =⇒ celli(τ + T) = 4, (3)

i.e., a burned cell remains so for all following time steps;

celli(τ) = 3 =⇒ celli(τ + T) = 4, (4)

i.e., a burning cell becomes burned at the following time step;

celli(τ) = 3 =⇒ cellj(τ + T) = 3

with probability pburn(i, j) ∀j ∈ Ni, (5)

i.e., fire spreads from the cell i towards any neighboring cell j with a probability pburn(i, j)
that depends on the characteristics of both cells.

The crucial aspect that impacts the most the fire behavior prediction is the identifica-
tion of an adequate pburn(i, j) parameter. In order to define a proper value for such critical
parameter, one should include relevant environmental factors, such as wind and terrain,
but also factors strictly related to the vegetation, such as the NDVI. Following the same
structure of reference [38], we can write:

pburn(i, j) = ph(j)(1 + pveg(j))(1 + pden(j))pw(i, j)ps(i, j), (6)

where the probability-like scaling values pveg(j), pden(j), pw(i, j) and ps(i, j) capture the
probability of fire propagation occurring depending, respectively, on the vegetation type/
health, its density, the wind speed, and the terrain slope. The factor ph(j) is a constant value
that represents the probability that a burnable cell starts to burn if some of its neighborhoods
is burning, neglecting the influence of the other environmental factors. Before detailing
each parameter, we mention that, for our testing, we assumed their empirical components
to have the same values that were identified in reference [38]. Additionally, we can define
the overall fire risk level associated with each cell as

pburn(j) = ∑
i∈Nj

pburn(i, j), (7)

which captures the risk of fire propagating to cell j from any of its neighbors.
Several methods exist to estimate the vegetation density (e.g., starting from NDVI/

satellite data or from low altitude imaging [44]). Starting from this estimation, appropriate
values can be given to the pden(j) parameter for the various cells, depending also on the
type of vegetation that is found in the specific cell.
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To include the effects of ground elevation into our model, we have to determine ps(i, j).
To do so, we follow the approach originally proposed in reference [45], conducting a terrain
analysis based on DEM data retrieved from reference [37]. In both reference [38,45], ps(i, j)
is assumed to have an exponential behavior of the form:

ps(i, j) = eaΘ(i,j), (8)

where a is a tuning parameter that can be empirically determined, and Θ(i, j) is the slope
between the cells i and j.

An similar form is assumed by pw:

pw(i, j) = eα1V+α2V(cos(θ(i,j)−1)), (9)

where α1 and α2 are constant empirical values, θ is the angle between the fire spread
direction (i.e., the vector that connects the two cells i and j) and the wind, and V represents
the wind velocity. Note that pw(i, j) is a dynamical variable, as the wind direction and
speed vary over time, making pburn(j) a time-dependent quantity.

As shown by the simulations in Section 6, by using the parameters computed in (6)–(9)
in the time-difference relations (2)–(5), the proposed system is able to reasonably predict
the short-term fire propagation in order to dynamically adapt the drone patrolling schedule
to better monitor the wildfire.

5. Voronoi Tessellation Based Dynamic Drone Patrolling

To properly manage the drone patrolling schedule, we need to define some control
points, or waypoints, inside the monitored area. Since the waypoints will be visited in a
certain order by the drones during their monitoring, their position should be optimized
to offer maximum coverage of the most important areas. To accomplish our objective, we
propose to build a Voronoi partition [46] of the monitored area starting from its NDVI
measurements and burn probability index-pburn(i)-analysis. With adequate design choices
that will be detailed in the following, the centroids of our tessellation will be the points
that offer a better coverage of the areas (cells) more likely to catch fire, making them the
ideal positions to station the drone fleet. The following section reports some background
on the concept of Voronoi tessellations, whereas Section 5.2 details the solution designed
for the fire management system.

5.1. Background on Voronoi Tessellation

The Voronoi tessellation is, in general, a partition of a given area, that divides the
plane in distinct regions whose boundaries are based on a relation that typically captures
a distance measure of some form. The most common Voronoi diagram is the Centroidal
Voronoi Tessellation (CVT) [46], in which each region is determined starting from a set of
given points known as centroids.

Assuming to have a set of n ≥ 2 points C = {c1, c2 . . . cn} in a two-dimensional space
S and a distance function of interest between two points (e.g., Euclidean and Manhattan
distances are commonly used also in their weighted forms, but custom distances can also
be defined), denoted by d(s, k), with s, k ∈ S, it is possible to obtain a Voronoi tessellation
of the considered space following the steps:

1. compute the distance d(s, ci) with respect to all centroids ci ∈ C, ∀s ∈ S\C;
2. assign each point s to the centroid ci ∈ C from which it has the shortest distance,

∀s ∈ S\C; and
3. the points s ∈ C which are equidistant from two or more centroids are the edge points

of the regions; for practical purposes, these points can be assigned arbitrarily to any
of such centroids.

The resulting division of the plane is a tessellation of the form T = {C(c1), C(c2) . . . C(cn)},
where C(ci) is a region that encloses all points s for which the point ci is the closest centroid.
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The regions C(ci) can then be characterized as:

C(ci) = {s : d(s, ci) ≤ d(s, cj), ∀cj ∈ C\{ci}}. (10)

5.2. Voronoi Tessellation for Forest Fires Monitoring

In the discussion reported so far, it was assumed that the set of centroids C was
predetermined and given as an input to the system to obtain the Voronoi tessellation. The
rationale behind the choice of the centroids is, hence, a crucial aspect to obtain an adequate
partition of the monitored area. For our purposes, we identified the following system
requirements:

1. the maximum distance between two centroids must be limited (e.g., by the range of
observation of the drones), so that no area remain uncovered during the waypoint-
based patrolling, independently from the path taken by the drone fleet when moving
from one waypoint to the following one; and

2. the centroids shall be positioned so that they offer a good coverage of the most critical
areas (e.g., their position shall be closer to areas associated with an higher fire risk
probability) in order to assure faster early fire detection and better monitoring of
the vegetation.

In order to satisfy the first requirement, a possible solution is to divide the monitored
area into a grid of squares, or rectangles, of the same size (hereinafter referred to as
macro-cells) and then impose that each macro-cell contains exactly one centroid. With this
preliminary partition, the distance between two centroids is at most equal to two times the
diagonal of the macro-cells. In this way, the distance can be arbitrarily set by adjusting the
dimensions of the macro-cells.

Regarding the second requirement, a simple solution to set the centroid location within
the macro-cells would be to pick the center of mass of the fire risk probability pburn(i) (i.e.,
the mean point of the fire risk distribution), evaluated over the cells that fall within the
macro-cell area. In practice, one may desire to monitor even more closely the areas subject
to a higher fire risk, and, to do so, the center of mass could be computed with respect to
other quantities that give to such areas more relative focus (e.g., pburn(i)2).

In our test system, we decided to compute the center of mass with respect to the
following quantity:

p∗burn(i) =

{
1 if pburn(i) ≥ Pmin

burn
0otherwise

, (11)

where Pmin
burn is an arbitrary threshold value that let the computation of the center of mass

be performed considering only the cells with an arbitrarily high risk of catching fire.
We mention that refined approaches, involving a constrained optimization problem,

can also be implemented to determine the number and the positioning of the centroids, at
the expense of a more demanding and less scalable system. The proposed solution, despite
being sub-optimal, can be seamlessly applied on arbitrarily large areas with limited solving
times that are in line with an emergency management system.

Given the centroids, it is now possible to compute the Voronoi tessellation by following
the procedure reported in Section 5.1 and considering the Euclidean distance, possibly
weighting each cell by its associated pburn(i) value. To conclude, we associate each macro-
cell m with its average fire propagation risk

pburn(m) =
∑i∈m pburn(i)

|m| , (12)

where |m| represents the number of cells i ∈ m.
Algorithm 1 summarizes the presented procedure, while Figure 5 depicts the NDVI

values of the monitored area, paired with its p∗burn distribution and the corresponding
Voronoi partition.
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Algorithm 1 Voronoi tessellation of the monitored area to identify drone patrolling way-
points.

1: Divide the monitored area into M macro-cells
2: for all macro-cells m do
3: for all cells i ∈ m do
4: Evaluate p∗burn(i) based on the given threshold Pmin

burn
5: end for
6: Compute the center of mass cm of the macro-cell m with respect to p∗burn(i) and add

it to the centroid set C
7: Associate to the macro-cell m its average burn probability pburn(m)
8: end for
9: Determine the Voronoi tessellation of the given area determined by the centroids in C

and the selected distance metric (e.g., weighted Euclidean distance)

Figure 5. NDVI image of the monitored area (left); threshold evaluation of p∗burn(i) (1: yellow, 0:
blue) with macro-cells and centroids (center) obtained according to Algorithm 1 (line 4); resulting
Voronoi tesselation (right).

Note that the proposed algorithm is not strictly related to the pburn(i) factors, and, in
principle, it may consider other quantities for the determination of the centroid position,
such as pveg (i.e., the fire risk related to the cell vegetation type), or metrics that also consider
information regarding the terrain altitude derived from the DEM.

We remark that being that pburn(i) is a time-varying quantity, as it is influenced both
by offline data (NDVI, vegetation structure, ...) and real-time measurements (wind speed
and direction, on-going fire events,...) as depicted in Figure 1, the proposed Voronoi
Partition can be periodically updated to better reflect changes in the pburn(i) distribution,
for example, on a hourly basis during normal conditions or more frequently (every few
minutes) during fire events with high wind variability. Note that, if the drones are equipped
with NDVI cameras, one may update the satellite NDVI data with a more recent feedback
on the vegetation health, obtaining a more precise Voronoi tessellation.

Figure 6 depicts how the centroids move (black lines) depending on the wind direction,
that moves from 0◦ to 180◦, paired with the initial and final Voronoi tessellations.

5.3. Dynamic Drone Patrolling

After the determination of the Voronoi tessellation, our system has identified the way-
point points (i.e., the centroids) on which the drone fleet should hover during its patrolling
and the areas that it should monitor for each of the waypoints (i.e., the corresponding
Voronoi region).

What is left is the definition of a logic to adapt the patrolling schedule (i.e., the
waypoint visit order) in response to fire events or changes in the fire risk of certain areas
(e.g., due to a change in the wind direction).
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Figure 6. Effect of wind direction on the position of the centroids and the Voronoi tesselation. The
wind direction varies from 0◦ (black dots) to 180◦ (red dots). The black lines show how the centroids
vary for intermediate angles.

The role of the controller that governs the drone patrolling is then to:

• periodically update the pburn(i) values of all the various cells, in order to adapt the
Voronoi tessellation depending on factors, such as the wind or new NDVI measure-
ments (coming either from satellite or UAV sources);

• collect data from the drones and the ground sensors to monitor instant-by-instant the
fire events inside the Voronoi regions and provide the overall system with adequate
situational awareness; and

• to guide the UAV fleet towards strategical monitoring points (i.e., the Voronoi cen-
troids), depending on the ongoing situation.

During normal conditions, the patrolling controller may arbitrarily schedule the
order of visit of the waypoints so that, periodically, all Voronoi regions are monitored. A
reasonable prioritization order may be defined according to the average fire risk level of the
region (i.e., pburn(i)), so that areas with a higher risk are visited more frequently. Another
solution could be to implement the visiting order corresponding to the shortest flying path,
so that the monitoring is concluded in the minimum time possible.

In emergency situations, i.e., during a wildfire event, the system shall evaluate a
short-term fire propagation prediction, relying on the fire dynamics model, starting from
a first assessment of the burning cells (obtained, e.g., from ground sensors and human
observations, possibly enhanced by the drones monitoring). By analyzing this prediction,
the system is then able to sort the Voronoi regions according to, for example, the quantity
(or percentage) of their cells that will be burning in the next few minutes. The controller
then commands the drone fleet to cycle thought the waypoints whose regions are burning
more than a user-defined threshold (e.g., considering under emergency only the regions in
which more than 10 cells are currently burning). To better track the fire front and current
spreading direction, the controller may also consider the temporal order in which the
various regions exceed the given threshold, commanding the drones towards the centroids
that will be interested first.

Note that, thanks to the definition of the Voronoi partition on the basis of pburn(i), the
centroids are in the mean positions of their region regarding the fire spread likelihood,
meaning that (on average) the drones stationed over them will have the opportunity to
observe for a prolonged period of time the front of the wildfire.

The control of the drone fleet is delegated to the flight controller, that employs a
formation control logic. In our testing and simulator, we implemented a control law based
on reference [47], so that the drones may form and maintain a triangle formation. Both
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simpler and more advanced control logics may be employed depending on the drones
used (e.g., quad-copters, high/low altitude Remotely Piloted Aerial Systems, fixed wing
and/or single rotor helicopters), and, for this reason, our simulator offers the possibility of
seamlessly change both the flight dynamics and their related controllers.

Given the fact that the formation must fly over a non-flat environment, the formation
control is enhanced with DEM information regarding the terrain altitude in order to avoid
drone-ground collisions and allow the entire fleet to fly at the same height.

6. Case Study and Simulations
6.1. Case Study in Italy, City of L’aquila

All the above mentioned system parts are tested and simulated on a case study in
Italy (see Figure 7), namely the “Pineta di Roio” (Monteluco). The selected area is a case
study for the ESA Aries project [48,49] , that aims at providing preventive tool for wildfire
management to the municipality of the city of L’Aquila. The area is situated in the region
of Abruzzo, and its protection is considered to be critical due to its adjacency to the city of
L’Aquila. The specific area selected, as highlighted in Figure 2, presents several types of
vegetation (pines, ferns, and meadows) paired with human structures and roads, offering
the possibility of testing the system on a highly heterogeneous territory.

Figure 7. Images the case study area—Pineta di Roio (Monteluco), L’Aquila.

6.2. Simulation Setup

In order to build the CA, we start with the geo-localization of the area of interest on
the QGIS 3.16 software [36], that allows the extraction of the geographical data that is then
processed on MATLAB to create a CA discrete-time dynamical system able to simulate the
fire propagation.

In the second phase, after the import of the DEM provided by reference [37], whose
ground resolution is exactly equal to the Sentinel-2 images ground resolution (i.e., 10 m) [35]
from which we collect the NDVI data, the area of interest S is divided into a regular grid of
10 m × 10 m square cells, as described in Section 6. Each cell is then assigned its NDVI and
DEM data (that are all the off-line factors needed to compute pburn(i)).

The wind direction is then set in the simulation environment (as if it was measured by
the real system), and pburn(i) and pburn(i)∗ are evaluated.

The entire area is then divided into eight regular macro-cells for the identification of
the centroid locations, as described in Section 5.2, and Algorithm 1 is employed to obtain
the Voronoi tessellation.

In our testings, we simulate a fleet composed by N = 3 quadcopters with their
proper dynamics. The three drones were programmed to assume a V-shape formation
when navigating from one waypoint to another, while also avoiding internal and ground
collisions and flying at a constant altitude of 50 m from the ground. We mention that our
simulator, that was open-sourced in reference [26], also offers the possibility of integrating
drones with different flight dynamics (e.g., airship-like UAVs).
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6.3. First Simulation: Normal Conditions-Drone Patrolling for Area Monitoring

This first simulation reports the functioning of the proposed system when no fire
events are detected and the drones are employed only to monitor the area. In this situation,
since there are no ongoing emergencies, the order in which the centroids are visited may
be selected on a simple shortest path logic to preserve drone batteries and minimize travel
times. Figure 8 reports an example of a possible trajectory for this setup. Thanks to the
assured maximum distance between the centroids, at the end of the patrolling round, the
entire area has been monitored, ensuring an adequate situational awareness to fire brigades.

Figure 8. Example of patrolling of the area: the red arrow represents how the drone(s) should
navigate to cover the identified centroids in the selected order. The figure also reports the labeling of
the centroids that will be used in the following figures.

6.4. Second Simulation: Single Ignition Point

In this test, the ignition point was inside the fourth Voronoi region of the first row in
Figure 5 (C(c4)) (the exact location is reported in Figures 9 and 10 with a red star), and,
during the iterations, the fire spreads according to the the CA dynamics and the defined
transition rules, with a sampling time T = 200 s. The same CA was used as the predictive
model of our system to obtain a 15 min ahead prediction of the fire propagation.

For our testing, we considered a Voronoi region to be in critical state when more than
45% of its cells are either burning or are burned down. The patrolling controller then set as
the target waypoint for the drone fleet the latest region that became critical. If no region is
critical, we let our drone hover independently and randomly over the area.

We can see from Figure 11a that the fire front shortly propagates into the other Voronoi
regions, except the fifth and the first ones that remain unaffected due to the wind conditions
and their geographical location. Unsurprisingly, C(c4) is the first region to surpass the
threshold of 45%, so the drones receive as their first command the order to station over
c4, as depicted in Figure 11b. From the figure, we note how the target waypoint changes
about 15 min before the actual surpassing of the threshold, since the monitoring system is
basing its analysis on the predictive model. After a few minutes, we see how the target
waypoint changes to c3 as fire is spreading the the rest of the area. Figure 9 reports a 3D
visualization of the monitored zone, with the drones’ trajectory, their formation, and the
Voronoi centroids highlighted. Figure 10 reports the same scenario in 2D.
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Figure 9. Evolution of the fire spreading and formation monitoring on the modeled area. Base colors
(green, orange, yellow, and red): NDVI levels, as in Figure 3; vivid red: burning cells; black: burned
cells. Drones trajectories are reported with orange, yellow, and blue lines; the drone fleet is depicted
in purple; the eight centroids are reported in different colors and highlighted by blue dashed circles
around them.

Figure 10. Aerial view of Figure 9.
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Figure 11. (a) Percentage of burining or burned cells in the various Voronoi regions over time;
(b) target waypoint for the drone fleet.

6.5. Third Simulation: Multiple Ignition Points

In this test, we want to analyze the response of the system against scenarios in which
multiple ignition points are present at the same time. To this end, we consider two
test cases:

• In the first scenario, a second fire starts during an on-going emergency, as depicted in
Figure 12.

• In the second scenario, two fires start at the same time, as depicted in Figure 13.

Figure 12. The second ignition point (blue start) becomes active after the first fire event (red star) has
compromised a significant area in the north east. The blue arrow in the center represents the wind direction.

Figure 13. Two fires start at the same time (red and blue stars). The blue arrow represents the wind
direction.
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In the first setting, we expect the drone fleet to monitor initially the fourth waypoint
(as the first fire started from it) and its neighbors (waypoints 3 and 8), to then switch to the
area around waypoint 5 as the second fire grows. Figure 14 reports the expected behavior,
highlighting also how after waypoint 5 the following waypoint is the sixth, mostly due to
the wind direction.

Figure 14. First scenario: target waypoint given to the drone fleet over time.

Figure 15 reports a 3D view of the simulation at time 6500, shortly after the drones
have moved towards the third waypoint.

Figure 15. First scenario: 3D visualization of the drone patrolling at time 6500 s.

Regarding the second scenario, in which the two fires start at the same time, we
observe in Figure 16 how the drones alternate between waypoints closer to one or the other
ignition points. Figure 17 depicts the same simulation.

Figure 16. Second scenario: target waypoint given to the drone fleet over time.
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Figure 17. Second scenario: aerial view of the drone patrolling schedule at time 3250 s.

7. Conclusions and Future Works

This paper presented a system for dynamically adapt the patrolling/flight planning
of a fleet of drones for fire monitoring purposes.

The proposed controller combines satellite data sources (NDVI and DEM) with terres-
trial data (wind speed and direction) to build a predictive fire spread model. The internal
functioning of the tool is based around a dynamic fire risk-aware Voronoi partition of the
monitored area, that allows the identification of a set of waypoints that may be used to
schedule the path of a group of drones to efficiently monitor the area.

During fire events, the system employs its internal model to generate predictions on
its propagation. Such predictions are then used to determine which area (i.e., waypoint) is
the most crucial to monitor at any given time.

The paper present three simulations of different fire events on a test area, identified by
the ESA-funded project ARIES, located in Italy. The proposed control scheme demonstrated
good performance in anticipating the fire spread and in dispatching, accordingly, the drones
on the territory, both on simpler scenarios with one ignition point and in more complex
fire events.

This work also presented our open-source simulator, that provides the flexibility
of tailoring different metrics and criteria in its internal functioning (e.g., using different
satellite data sources to determine another fire risk index) and includes flights dynamics
and several different flight control logics.

Future works are aimed at improving the capabilities of our simulator, by including
multiple drone fleets, battery charging/drone substitution logics, and more accurate fire
prediction models.
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