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Abstract We construct Delaunay-type solutions for the fractional Yamabe problem
with an isolated singularity

(−�)γ w = cn,γ w
n+2γ
n−2γ , w > 0 in R

n\{0}.
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598 A. DelaTorre et al.

We follow a variational approach, in which the key is the computation of the fractional
Laplacian in polar coordinates.

1 Introduction and statement of the main result

Fix γ ∈ (0, 1) and n > 2 + 2γ . We consider the problem of finding radial solutions
for the fractional Yamabe problem in R

n with an isolated singularity at the origin.
That means that we look for positive, radially symmetric solutions of

(−�)γ w = cn,γ w
n+2γ
n−2γ in Rn\{0}, (1.1)

where cn,γ is any positive constant that, without loss of generality, will be normalized
as

cn,γ = 22γ
(

�( 12 (
n
2 + γ ))

�( 12 (
n
2 − γ ))

)2

> 0. (1.2)

In geometric terms, given the Euclidean metric |dx |2 on R
n , we are looking for a

conformal metric
gw = w

4
n−2γ |dx |2, w > 0,

with positive constant fractional curvature Qgw
γ ≡ cn,γ , that is radially symmetric and

has a prescribed singularity at the origin. It is a classical calculation that w1(r) =
r− n−2γ

2 is an explicit solution for (1.1) with the normalization constant (1.2) (see, for
instance, Proposition 2.4 in [28]).

Because of the well known extension theorem for the fractional Laplacian (−�)γ

[7–9], we have that Eq. (1.1) for the case γ ∈ (0, 1) is equivalent to the boundary
reaction problem⎧⎪⎪⎨

⎪⎪⎩
−div(y1−2γ ∇W ) = 0 in Rn+1+ ,

W = w on R
n\{0},

−dγ lim
y→0

y1−2γ ∂yW = cn,γ w
n+2γ
n−2γ on R

n\{0},
(1.3)

for the constant dγ = 22γ−1�(γ )
γ�(−γ )

.

In a recent paper [5] Caffarelli, Jin, Sire and Xiong characterize all the nonnegative
solutions to (1.3). Indeed, let W be any nonnegative solution of (1.3) in R

n+1+ and
suppose that the origin is not a removable singularity. Then, writing r = |x | for the
radial variable in Rn , we must have that

W (x, y) = W (r, y) and ∂rW (r, y) < 0 ∀ 0 < r < ∞.

In addition, they also provide their asymptotic behavior.Moreprecisely, ifw = W (·, 0)
denotes the trace of W , then near the origin

c1r
− n−2γ

2 ≤ w(x) ≤ c2r
− n−2γ

2 , (1.4)

where c1, c2 are positive constants.
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Delaunay-type singular solutions for the fractional Yamabe problem 599

We remark that if the singularity at the origin is removable, all the entire solutions
to (1.3) have been completely classified [10,19] and, in particular, they must be the
standard “bubbles”

w(x) = c

(
λ

λ2 + |x − x0|2
) n−2γ

2

, c, λ > 0, x0 ∈ R
n .

In this paper we study the existence of “Delaunay”-type solutions for (1.1), i.e,
solutions of the form

w(r) = r− n−2γ
2 v(r) on R

n\{0}, (1.5)

for some function 0 < c1 ≤ v ≤ c2 that, after the Emden–Fowler change of variable
r = et , is periodic in the variable t .With some abuse of the notation,wewrite v = v(t).

In the classical case γ = 1, Eq. (1.1) reduces to a standard second order ODE.
However, in the fractional case (1.1) becomes a fractional order ODE, so classical
methods cannot be directly applied here. Instead, we reformulate the problem into a
variational one for the the periodic function v. The main difficulty is to compute the
fractional Laplacian in polar coordinates.

Our approach does not use the extension problem (1.3). Instead we work directly
with the nonlocal operator, after suitable Emden–Fowler transformation. For γ ∈
(0, 1) we know that the fractional Laplacian can be defined as a singular kernel as

(−�)γ w(x) = κn,γ P.V.
∫
Rn

w(x) − w(x + y)

|y|n+2γ dy,

where P.V . denotes the principal value, and the constant κn,γ (see [21]) is given by

κn,γ = π
− n
2 22γ

�
(
n
2+γ

)
�(1−γ )

γ .

The main idea here is to use the Emden–Fowler change of variable in the singular
integral. After some more changes of variable, Eq. (1.1) will be written as

Lγ v = cn,γ vβ, v > 0, (1.6)

where

β = n+2γ
n−2γ

is the critical exponent in dimension n and Lγ is the linear operator defined by

Lγ v(t) = κn,γ P.V .

∫ ∞

−∞
(v(t) − v(τ))K (t − τ) dτ + cn,γ v(t),

for K a singular kernel which is precisely written in (2.7). The behaviour of K near
the origin is the same as the kernel of the fractional Laplacian (−	)γ in R and near
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600 A. DelaTorre et al.

infinity it presents an exponential decay. This kind of kernels corresponds to tempered
stable process and they have been studied in [20,32], for instance.

If we take into account just periodic functions v(t + L) = v(t), the operator Lγ

can be rewritten as

L L
γ v(t) = κn,γ P.V .

∫ L

0
(v(t) − v(τ))KL(t − τ) dτ + cn,γ v(t), (1.7)

where KL is a periodic singular kernel that will be defined in (2.17). For periodic
solutions, problem (1.6) is equivalent to finding a minimizer for the functional

FL(v) =
κn,γ

2

∫ L
0

∫ L
0 (v(t) − v(τ))2KL(t − τ) dt dτ + cn,γ

∫ L
0 v(t)2dt(∫ L

0 v(t)β+1dt
) 2

β+1

.

Note that a minimizer always exists as we can check in Lemma 4.1. The minimum
value for the functional will be denoted by c(L).

Our main result is the following:

Theorem 1.1 There is a unique L0 > 0 such that c(L) is attained by a nonconstant
minimizer when L > L0 and when L ≤ L0, c(L) is attained by the constant only.

In a recent paper [13] the authors study this fractional problem (1.1) from two dif-
ferent points of view. They carry out an ODE-type study and explain the geometrical
interpretation of the problem. In addition, they give some results towards the descrip-
tion of some kind of generalized phase portrait. For instance, they prove the existence
of periodic radial solutions for the linearized equation around the equilibrium v1 ≡ 1,
with period L0 = L0(γ ). For the original non-linear problem they show the existence
of a Hamiltonian quantity conserved along trajectories, which suggests that the non-
linear problem has periodic solutions too, for every period larger than this minimal
period L0. Theorem 1.1 proves this conjecture.

The construction of Delaunay solutions allows for many further studies. For
instance, as a consequence of our construction one obtains the non-uniqueness of
the solutions for the fractional Yamabe equation (see [18] for an introduction to this
problem) in the positive curvature case, since it gives different conformal metrics on
S
1(L)×S

n−1 that have constant fractional curvature. This is well known in the scalar
curvature case γ = 1 (see the lecture notes [30] for an excellent review, or the paper
[31]). In addition, this fact gives some examples for the calculation of the total frac-
tional scalar curvature functional, which maximizes the standard fractional Yamabe
quotient across conformal classes.

From another point of view, Delaunay solutions can be used in gluing problems.
Classical references are, for instance, [24,27] for the scalar curvature, and [25,26] for
the construction of constant mean curvature surfaces with Delaunay ends. In the non-
local case, we use Delaunay-type singularities to deal with the problem of constructing
metrics of constant fractional curvature with prescribed isolated singularities [2].

Recently it has been introduced a related notion of nonlocal mean curvature Hγ for
the boundary of a set in R

n (see [6,35]). Finding Delaunay-type surfaces with con-
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Delaunay-type singular solutions for the fractional Yamabe problem 601

stant nonlocal mean curvature has just been accomplished in [3]. For related nonlocal
equations with periodic solutions see also [4,12].

The paper will be structured as follows: in Sect. 2 we will introduce the problem. In
particular we will recall some known results for the classical case and we will present
the formulation of the problem through some properties of the singular kernel. In Sect.
3 we will show some technical results that we will need in the last Section; where we
will use the variational method to prove the main result in this paper, this is, Theorem
1.1.

2 Set up of the problem

2.1 Classical case γ = 1

We recall first some well known results. Consider the classical Yamabe problem

(−�)w = cn,1w
n+2
n−2 , w > 0 in Rn\{0}. (2.1)

Because of the asymptotic behavior in (1.4) we look at radially symmetric solutions
of the form

w(r) = r− n−2
2 v(r),

where r = |x |. Then, applying the Emden–Fowler change of variable et = r , Eq.
(2.1) reads

−v̈ + (n−2)2

4 v = (n−2)2

4 v
n+2
n−2 , v > 0.

This equation is easily integrated and the analysis of its phase portrait gives that all
bounded solutions must be periodic (see, for instance, the lecture notes [30]). More
precisely, the Hamiltonian

H1(v, v̇) := 1
2 v̇

2 + (n−2)2

4

(
(n−2)
2n v

2n
n−2 − 1

2v
2
)

is preserved along trajectories. Thus, looking at its level sets we conclude that there
exists a family of periodic solutions {vL} of periods L ∈ (L0,∞). Here

L0 = 2π√
n−2

is the minimal period and it can be calculated from the linearization at the equilibrium
solution v1 ≡ 1. These {vL} are known as the Fowler or Delaunay solutions for the
scalar curvature.

2.2 Formulation of the problem

We now consider the singular Yamabe problem

(−�)γ w = cn,γ wβ in R
n\{0}, w > 0 (2.2)
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602 A. DelaTorre et al.

for γ ∈ (0, 1), n > 2γ , β the critical exponent given by

β = n + 2γ

n − 2γ

and

(−�)γ w(x) = κn,γ P.V.
∫
Rn

w(x) − w(x + y)

|y|n+2γ dy,

where P.V . denotes the principal value, and the constant κn,γ (see [21]) is given by

κn,γ = π
− n
2 22γ

�
(
n
2+γ

)
�(1−γ )

γ .

Because of (1.4) we only consider radially symmetric solutions of the form

w(x) = |x |− n−2γ
2 v(|x |),

where v is some function 0 < c1 ≤ v ≤ c2. In radial coordinates (r = |x |, θ ∈ S
n−1

and s = |y|, σ ∈ S
n−1), we can express the fractional Laplacian as

(−�)γ u = κn,γ P.V .

∫ ∞

0

∫
Sn−1

r− n−2γ
2 v(r) − s− n−2γ

2 v(s)

|r2 + s2 − 2rs〈θ, σ 〉| n+2γ
2

sn−1dσds.

Inspired by the computations by Ferrari and Verbitsky in [17], we write

s = r s̄,

so the radial function v can be expressed as

v(r) =
(
1 − s̄− n−2γ

2

)
v(r) + s̄− n−2γ

2 v(r).

Thus the Eq. (2.2) for v becomes

κn,γ P.V .

∫ ∞

0

∫
Sn−1

s̄n−1− n−2γ
2 (v(r) − v(r s̄))

|1 + s̄2 − 2s̄〈θ, σ 〉| n+2γ
2

dσds̄ + Av = cn,γ vβ(r), (2.3)

where

A = κn,γ P.V .

∫ ∞

0

∫
Sn−1

(
1 − s̄− n−2γ

2

)
s̄n−1

|1 + s̄2 − 2s̄〈θ, σ 〉| n+2γ
2

dσds̄.

Remark 2.1 The constant A is strictly positive. Indeed, from (2.3) we have

A = cn,γ > 0,
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Delaunay-type singular solutions for the fractional Yamabe problem 603

since cn,γ is normalized such that v1 ≡ 1 is a solution for the singular Yamabe problem
(see Proposition 2.7 in [13]).

Finally we do the Emden–Fowler changes of variable r = et and s = eτ in (2.3)
to obtain

Lγ v = cn,γ vβ, (2.4)

where the operator Lγ is defined as

Lγ v = κn,γ P.V .

∫ ∞

−∞
(v(t) − v(τ))K (t − τ) dτ + cn,γ v, (2.5)

for a function v = v(t) and the kernel K is given by

K (ξ) = 2− n+2γ
2

∫
Sn−1

1

| cosh(ξ) − 〈θ, σ 〉| n+2γ
2

dσ =
∫
Sn−1

e− n+2γ
2 ξ

(1 + e−2ξ − 2e−ξ 〈θ, σ 〉) n+2γ
2

dσ.

(2.6)

Remark 2.2 K is rotationally invariant in the variable θ , thus we drop the dependence
on θ in the argument of K . Indeed if we identify e1 = (1, 0, . . . , 0) with a fixed point
in Sn−1 via the usual embedding S

n−1 ↪→ R
n and we define

J (θ) :=
∫
Sn−1

e− n+2γ
2 ξ

|1 + e−2ξ − 2e−ξ 〈θ, σ 〉| n+2γ
2

dσ,

it is easy to check that J (θ) = J (e1). The proof is trivial using equality (2.6) and the
change of variable σ̃ = Rσ , where R is any rotation such that R(e1) = θ .

The kernel also can be written using spherical coordinates as

K (ξ) = c̄ne
− n+2γ

2 ξ

∫ π

0

(sin φ1)
n−2

(1 + e−2ξ − 2e−ξ cosφ1)
n+2γ
2

dφ1

= c̄n2
− n+2γ

2

∫ π

0

(sin φ1)
n−2

(cosh(ξ) − cos(φ1))
n+2γ
2

dφ1, (2.7)

where φ1 is the angle between θ and σ , and c̄n is a positive dimensional constant that
only depends on the integral in the rest of the spherical coordinates.

Remark 2.3 The expression (2.7) implies that K (ξ) is an even function. Moreover,
since φ1 ∈ (0, π) and cosh(x) ≥ 1, ∀x ∈ R, K is strictly positive.

In the next paragraphs we will find a more explicit formula for K that will help us
calculate its asymptotic behavior.
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604 A. DelaTorre et al.

Lemma 2.4 [1,23,34] Let z ∈ C. The hypergeometric function is defined for |z| < 1
by the power series

2F1(ã, b̃; c̃; z) = �(c̃)

�(ã)�(b̃)

∞∑
n=0

�(ã + n)�(b̃ + n)

�(c̃ + n)

zn

n! .

It is undefined (or infinite) if c̃ equals a non-positive integer. Some properties of this
function are

(1) The hypergeometric function evaluated at z = 0 satisfies

2F1(ã + j, b̃ − j; c̃; 0) = 1; j = ±1,±2, . . . (2.8)

(2) If ã + b̃ < c̃, the following expansion holds

2F1(ã, b̃; c̃; z) = O(1), for z ∼ 1. (2.9)

(3) If Re b̃ > 0, |z| < 1,

2F1(ã, ã − b̃ + 1
2 ; b̃ + 1

2 ; z2) = �(b̃ + 1
2 )√

π�(b̃)

∫ π

0

(sin t)2b̃−1

(1 + 2z cos t + z2)ã
dt. (2.10)

(4) If ã − b̃ + 1 = c̃, the following identity holds

2F1(ã, b̃; ã − b̃ + 1; z) = (1 − z)1−2b̃(1 + z)2b̃−ã−1

· 2F1
(
ã+1
2 − b̃, ã

2 − b̃ + 1; ã − b̃ + 1; 4z
(z+1)2

)
. (2.11)

(5) The derivative of the hypergeometric function with respect to the last argument
is

d

dz
2F1(ã, b̃; c̃; z) = ãb̃

c̃
2F1(ã + 1, b̃ + 1; c̃ + 1; z). (2.12)

Lemma 2.5 The kernel K can be expressed in terms of a hypergeometric function as

K (ξ) = cn(sinh ξ)−1−2γ (cosh ξ)
2−n+2γ

2

2F1
(
a+1
2 − b, a

2 − b + 1; a − b + 1; (sech ξ)2
)

, (2.13)

where cn = c̄n2− n+2γ
2

√
π�( n−1

2 )

�( n2 )
, and 2F1 is the hypergeometric function defined in

Lemma 2.4.

Proof Because of the parity of the kernel K it is enough to study its behavior for
ξ > 0. Using property (2.10) given in Lemma 2.4, with t = φ1, b̃ = n−1

2 , ã = n+2γ
2

and z = −e−ξ , we can assert that, if ξ > 0,
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Delaunay-type singular solutions for the fractional Yamabe problem 605

K (ξ) = c̄n

√
π�

( n−1
2

)
�

( n
2

) e− n+2γ
2 ξ

2F1(a, b; c; e−2ξ ),

where

a = n+2γ
2 , b = 1 + γ, c = n

2 . (2.14)

An important observation is that

a − b + 1 = c,

which, from property (2.11) in Lemma 2.4, yields (2.13). ��
Lemma 2.6 The asymptotic expansion of the kernel K is given by

• K (ξ) ∼ |ξ |−1−2γ if |ξ | → 0,

• K (ξ) ∼ e−|ξ | n+2γ
2 if |ξ | → ∞.

Proof Note that K is an even function. Using property (2.9) to estimate expression
(2.13) for K (ξ), we obtain that, for |ξ | small enough,

K (ξ) ∼ | sinh ξ |−1−2γ ∼ |ξ |−1−2γ . (2.15)

Moreover, this expression (2.13), the behaviour of the hyperbolic secant function
at infinity and the hypergeometric function property (2.8) given in Lemma 2.4 show
the exponential decay of the kernel at infinity:

K (ξ) ∼ cn(sinh ξ)−1−2γ (cosh ξ)
2−n+2γ

2 ∼ ce−|ξ | n+2γ
2 , (2.16)

where c is a positive dimensional constant. ��
Remark 2.7 The asymptotic behaviour of this kernel near the origin and near infinity
given in Lemma 2.6 correspond to a tempered stable process.

2.3 Periodic solutions

We are looking for periodic solutions of (2.4). Assume that v(t + L) = v(t): in this
case Eq. (2.4) becomes

L L
γ v = κn,γ P.V .

∫ L

0
(v(t) − v(τ))KL (t − τ)dτ + cn,γ v = cn,γ vβ, where β = n + 2γ

n − 2γ
,

and

KL(t − τ) =
∑
j∈Z

K (t − τ − j L), (2.17)
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606 A. DelaTorre et al.

for K the kernel given in (2.7). Note that the argument in the integral above has a finite
number of poles, but KL is still well defined.

Lemma 2.8 The periodic kernel KL satisfies the following inequality:
L

L1
KL

(
L

L1
(t − τ)

)
< KL1(t − τ), ∀L > L1 > 0. (2.18)

Proof By evenness we just need to show that the function ξK (ξ) is decreasing for
ξ > 0. By (2.13), up to positive constant,

ξK (ξ) = ξ(sinh ξ)−1−2γ (cosh ξ)
2−n+2γ

2

× 2F1
(
a+1
2 − b, a

2 − b + 1; a − b + 1; (sech ξ)2
)

, (2.19)

where a, b, c are given in (2.14).
Observe that

2F1
(
a+1
2 − b, a

2 − b + 1; a − b + 1; (sech ξ)2
)

> 0, (2.20)

and

a+1
2 − b > 0, a − b + 1 = c > 0,

since n > 2 + 2γ . Property (2.12) yields that (2.20) is decreasing. Indeed,

d

dξ

[
2F1

(
a+1
2 − b, a

2 − b + 1; a − b + 1; (sech ξ)2
)]

= −2

(
a+1
2 −b

)(
a
2−b+1

)
c (sech ξ)2tanh ξ

× 2F1
(
a+1
2 − b + 1, a

2 − b + 2; a − b + 2; (sech ξ)2
)

< 0.

Thus we just need to show that the function ξ(sinh ξ)−1−2γ (cosh ξ)
2−n+2γ

2 in (2.19)
is decreasing in ξ . In fact by writing

ξ(sinh ξ)−1−2γ (cosh ξ)
2−n+2γ

2 = ξ
sinh ξ

(tanh ξ)−γ (sinh ξ)−γ (cosh ξ)
2−n
2 ,

we have that ξK (ξ) is a product of positive decreasing functions.
Finally, inequality (2.18) follows from the definition of KL(ξ) given in (2.17):

L

L1
KL

(
L

L1
(t − τ)

)
=

+∞∑
j=−∞

L

L1
K

(
L

L1
(t − τ − j L1)

)

<

+∞∑
j=−∞

K (t − τ − j L1) = KL1(t − τ).

��

123



Delaunay-type singular solutions for the fractional Yamabe problem 607

2.4 Extension problem

The boundary reaction problem given in (1.3) defines the conformal fractional Lapla-
cian in Rn for the Euclidean metric |dx |2 as

P |dx |2
γ w = −d̃γ lim

y→0
ya∂yW = (−�)γ w.

In the curved case one may define the conformal fractional Laplacian Pg
γ with respect

to a metric g on a n-dimensional manifold M . Pg
γ is a pseudo-differential operator of

order 2γ (see [8,9]). It satisfies that, for any conformal metric

gw := w
4

n−2γ g, w > 0,

we have
Pgw

γ f = w
− n+2γ

n−2γ Pg
γ (w f ), ∀ f ∈ C∞(M).

This conformal property allows to formulate an equivalent extension problem to
(1.3) for the function v defined as in (1.5). In particular, in [13] the authors consider the
geometric interpretation of problem (1.6). They chooseM = R×S

n−1 with themetric
g0 = dt2 + gSn−1 and they extend the problem with the new positive variable ρ, that
wewill call defining function, to an (n+1)-dimensional manifold Xn+1 = M×(0, 2),
with the extended metric

ḡ = dρ2 +
(
1 + ρ2

4

)2
dt2 +

(
1 − ρ2

4

)2
gSn−1,

for ρ ∈ (0, 2) and t ∈ R. Then (1.3) is equivalent to

⎧⎨
⎩

−divḡ(ρ1−2γ ∇ḡV ) + E(ρ)V = 0 in (Xn+1, ḡ),
V = v on {ρ = 0},
−d̃γ limρ→0 ρ1−2γ ∂ρV = cn,γ vβ on {ρ = 0},

(2.21)

Finally it is known (see [9]) that there exists a new defining function ρ∗ = ρ∗(ρ)

such that the problem (2.21) can be rewritten on the extension X∗ = M × (0, ρ∗
0 ), as⎧⎨

⎩
−divg∗((ρ∗)1−2γ ∇g∗V ) = 0 in (X∗, g∗),
V = v on {ρ∗ = 0},
−d̃γ limρ∗→0(ρ

∗)1−2γ ∂ρ∗V + cn,γ v = cn,γ vβ on {ρ∗ = 0},
(2.22)

where g∗ = (ρ∗)2
ρ2 ḡ. We look for radially symmetric solutions v = v(t), V = V (t, ρ)

of (2.22). For such solutions we have that Lγ is the Dirichlet-to-Neumann operator
for this problem, i.e.,

Lγ (v) = −d̃γ lim
ρ∗→0

(ρ∗)1−2γ ∂ρ∗V + cn,γ v.

123



608 A. DelaTorre et al.

3 Technical results

3.1 Function spaces

Definition 3.1 We shall work with the following function space

Hγ

L =
{
v : R → R; v(t + L) = v(t) and

∫ L

0

∫ L

0
(v(t) − v(τ))2KL(t − τ)dτdt +

∫ L

0
v(t)2dt < +∞

}

with the norm given by

‖v‖Hγ
L

=
(∫ L

0
v(t)2 dt +

∫ L

0

∫ L

0
|v(t) − v(τ)|2KL(t − τ) dt dτ

)1/2

.

Note that we will denote

W γ,p
L =

{
v : R → R; v(t + L) = v(t) and

‖v‖p
L p(0,L) +

∫ L

0

∫ L

0

|v(t) − v(τ)|p
|t − τ |1+γ p

dt dτ < ∞
}
,

with the norm given by

‖v‖W γ,p
L

=
(

‖v‖p
L p(0,L) +

∫ L

0

∫ L

0

|v(t) − v(τ)|p
|t − τ |1+γ p

dt dτ

)1/p

,

which is equivalent to the norm

‖v‖W̃ γ,p
L

=
(

‖v‖p
L p(0,L) +

∫ L

0

∫ L

0
|v(t) − v(τ)|pK (t − τ) dt dτ

)1/p

,

for the kernel K given in (2.7).

Now we are going to introduce some fractional inequalities, continuity and com-
pactness results whose proofs for an extension domain can be found in [14]. Here
we are working with periodic functions, which avoids the technicalities of extension
domains but the same proofs as in [14] are valid.

Proposition 3.2 (Fractional Sobolev inequalities) (Theorems 6.7 and 6.10, [14]) Let
γ ∈ (0, 1), p ∈ [1,+∞) such that γ p ≤ 1 and p∗ = np

n−γ p . Then there exists a

positive constant C = C(p, γ ) such that, for any v ∈ W γ,p
L , we have

‖v‖Lq (0,L) ≤ C‖v‖W γ,p
L

,
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for any q ∈ [1, p∗); i.e., the space W γ,p
L is continuously embedded in Lq(0, L) for

any q ∈ [1, p∗).

Proposition 3.3 (Compact embeddings) (Theorem 7.1 and Corollary 7.2, [14]) Let
γ ∈ (0, 1) and p ∈ [1,+∞), q ∈ [1, p], and J be a bounded subset of L p(0, L).
Suppose

sup
f ∈J

∫
[0,L]

∫
[0,L]

| f (x) − f (y)|p
|x − y|n+γ p

dx dy < +∞.

Then J is pre-compact in Lq(0, L). Moreover, if γ p < 1, then J is pre-compact in
Lq(0, L), for all q ∈ [1, p∗).

Remark 3.1 If γ = 1/2, we have the compact embedding

W 1/2,2
L ⊂⊂ Lq(0, L), for q ∈ (1,∞).

Indeed, a consequence of Proposition 3.2 is W 1/2,2
L ⊂ W γ,2

L , ∀γ < 1/2, thus Propo-
sition 3.3 provides

W 1/2,2
L ⊂ W γ,2

L ⊂⊂ Lq(0, L), ∀q ∈
(
1, 2

1−2γ

)
, γ < 1/2.

We conclude by letting γ → 1/2.

Proposition 3.4 (Hölder fractional regularity) (Theorem 8.2 in [14]) Let p ∈
[1,+∞), γ ∈ (0, 1) such that γ p > 1. Then there exists C > 0, depending on
γ and p, such that

‖v‖C0,α([0,L]) ≤ C

(
‖v‖p

L p(0,L) +
∫ L

0

∫ L

0

|v(t)−v(τ)|p
|t−τ |1+γ p dt dτ

)1/p

for any L-periodic function v ∈ L p(0, L), with α = γ − 1/p.

Note that with the equi-continuity given in Proposition 3.4 we can apply Arzelà–
Ascoli to show the compactness

W γ,2
L ⊂⊂ Lq(0, L) ∀q ∈ (1,∞) with γ > 1/2.

Remark 3.2 We have the compact embedding

Hγ

L ⊂⊂ Lq(0, L), ∀γ ∈ (0, 1),

where
q ∈

(
1, 2

1−2γ

)
if γ ≤ 1

2 and q ≥ 1 if γ > 1
2 . (3.1)

Indeed, Proposition 3.3, Remark 3.1 and Proposition 3.4 with provide W γ,2
L ⊂⊂

Lq(0, L) for all γ ∈ (0, 1) and q as in (3.1). But from the definition of KL given in
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(2.17) and the positivity of the function K , we have the following inequality between
norms

‖v‖
W γ,2

L
≤ ‖v‖Hγ

L
.

Proposition 3.5 (Poincare’s fractional inequality) Let v ∈ Hγ

L with zero average (i.e.∫ L
0 v(t) dt = 0), then there exists c > 0 such that

‖v‖2L2(0,L)
≤ c

∫ L

0

∫ L

0

(v(t) − v(τ))2

|t − τ |1+2γ dt dτ. (3.2)

Proof Inspired on the proof of the classical Poincare’s inequality given in Theorem
7.16 in [29], we prove (3.2). By contradiction assume that, ∀ j ≥ 1, there exists
v j ∈ Hγ

L satisfying

‖v j‖2L2(0,L)
> j

∫ L

0

∫ L

0

(v j (t) − v j (τ ))2

|t − τ |1+2γ dt dτ. (3.3)

On the one hand, we normalize v j in L2(0, L) by w j := v j
‖v j‖L2(0,L)

, so ‖w j‖L2(0,L) =
1. Because of (3.3) it follows that

∫ L

0

∫ L

0

(w j (t) − w j (τ ))2

|t − τ |1+2γ dt dτ < 1
j ≤ 1, (3.4)

that is, {w j } is bounded in the Hγ

L norm. By the compactness from Remark 3.2,
we obtain a subsequence {wi } that converges strongly in L2(0, L), i.e, there exists
w ∈ L2(0, L) such that wi → w in L2(0, L). Thus,

‖w‖L2(0,L) = lim
j→∞ ‖w j‖L2(0,L) = 1.

On the other hand, also by the compactness given in Remark 3.2, we have weak
semiconvergence in Hγ

L . Thus the following inequality follows

∫ L

0

∫ L

0

(w(t) − w(τ))2

|t − τ |1+2γ dt dτ ≤ lim inf
j→∞

∫ L

0

∫ L

0

(w j (t) − w j (τ ))2

|t − τ |1+2γ dt dτ.

Thanks to (3.4), this gives

∫ L

0

∫ L

0

(w(t) − w(τ))2

|t − τ |1+2γ dt dτ = 0,

that is,w must be constant and, since it has zero average, it has to be the zero function.
��
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3.2 Maximum principles

Proposition 3.6 (Strong maximum principle) Let v ∈ Hγ,2
L ∩ C0(R) with v ≥ 0 be a

solution of

Lγ v = f (v), in R,

where f satisfies f (v) ≥ 0 if v ≥ 0. Then v > 0 or v ≡ 0.

Proof Since v ≥ 0, we have that

Lγ v = f (v) ≥ 0. (3.5)

Suppose that there exists a point t0 ∈ R with v(t0) = 0, then

Lγ v(t0) = κn,γ P.V
∫ +∞

−∞
(v(t0) − v(τ))K (t0 − τ) dτ + cn,γ v(t0)

= κn,γ P.V
∫ +∞

−∞
(−v(τ))K (t0 − τ) dτ ≤ 0

satisfies (3.5) only in the case v ≡ 0. ��

3.3 Regularity

In the following Proposition 3.7 we concentrate on the local regularity, using the
equivalent characterization for Lγ as a Dirichlet-to-Neumann operator for problem
(2.22). First, we fix some notation that we will use here. Let 0 < R < ρ∗

0 , we denote

B+
R = {(t, ρ∗) ∈ R

2 : ρ∗ > 0, |(t, ρ∗)| < R},
�0
R = {(t, 0) ∈ ∂R2+ : |t | < R}.

Proposition 3.7 Fix γ < 1/2 and let V = V (t, ρ∗) be a solution of the extension
problem

{−divg∗((ρ∗)1−2γ ∇g∗V ) = 0 in (B+
2R, g∗),

−d̃γ limρ∗→0(ρ
∗)1−2γ ∂ρ∗V + cn,γ v = cn,γ vβ on �0

2R .
(3.6)

If

∫
�0
2R

|v|
2

1−2γ dt =: ζ < ∞,

then for each p > 1, there exists a constant Cp = C(p, ζ ) > 0 such that
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612 A. DelaTorre et al.

sup
B+
R

|V | + sup
�0
R

|v| ≤ Cp

[(
1

Rn+1+a

)1/p ‖V ‖L p(B+
2R) + ( 1

Rn

)1/p ‖v‖L p(�0
2R)

]
.

Proof This L∞ bound is proven for linear right hand side in Theorem 2.3.1 in [16].
A generalization for the nonlinear subcritical case is given in Theorem 3.4 in [18].
Here we can follow the same proof as in [18] because we have reduced our problem to
one-dimensional problem for t ∈ ∂R2+ and thus, β = n+2γ

n−2γ is a subcritical exponent.
��

The following two propositions could be also proved using the extension problem
(3.6). However, they can be phrased in terms of a general convolution kernel, as we
explain here. Thus we fix K : R → [0,∞) a measurable kernel satisfying:

(a) ν ≤ K (t)|t |1+
γ
2 ≤ ν−1 a.e t ∈ R with |t | ≤ 1,

(b) K (t) ≤ M |t |−n−η a.e. t ∈ R with |t | > 1,

for some γ ∈ (0, 1), ν ∈ (0, 1), η > 0, M ≥ 1. Consider the functional defined in
(2.5) by

(Lγ v)(t) = κn,γ P.V
∫ +∞

−∞
(v(t) − v(τ))K (t − τ) dτ + cn,γ v,

for v ∈ L p(R). We study the regularity of solutions to

Lγ v = f. (3.7)

Proposition 3.8 Let f ∈ Lq for some q > n and v solution of (3.7) in BR(x0), then
there exist constants c > 0 and α ∈ (0, 1) which depend on n, ν, M, η, γ , q and A,
and remain positive as γ → 1, such that for any R ∈ (0, 1),

|v(t) − v(τ)| ≤ c|t − τ |α (
R−α‖v‖L∞ + ‖ f ‖Lq

)
.

Proof Since our kernel corresponds to a tempered stable process, this regularity was
given by Kassmann in his article [20] (see Theorem 1.1 and Extension 5). We could
also follow the same steps as for Theorem 5.1 in [32] since Lemma 4.1 and Remark
4.3 in this paper [32] hold for our K (note the expansion in Lemma 2.6). ��
Proposition 3.9 Let α ∈ (0, 1). Assume f ∈ Cα(R), and let v ∈ L∞(R) be a solution
of (3.7) in Rn. Then there exists c > 0 depending on n, α, γ such that

‖v‖Cα+2γ ≤ c (‖v‖Cα + ‖ f ‖Cα ).

Proof Under our assumptions, on the one hand, Dong and Kim proved in Theorem
1.2 from [15] that (−�)γ v ∈ Cα and moreover the following estimate holds:

‖(−�)γ v‖Cα ≤ c (‖v‖Cα + ‖ f ‖Cα ). (3.8)

On the other hand, Silvestre in Proposition 2.8 in [33], showed that
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• If α + 2γ ≤ 1, then v ∈ Cα+2γ and

‖v‖Cα+2γ (R) ≤ c(‖v‖L∞ + ‖(−�)γ v‖Cα ). (3.9)

• If α + 2γ > 1, then v ∈ C1,α+2γ−1 and

‖v‖C1,α+2γ−1(R) ≤ c(‖v‖L∞ + ‖(−�)γ v‖Cα ). (3.10)

Thus, combining (3.8) with (3.9) and (3.10) we have the claimed regularity. ��

Remark 3.3 The previous Propositions 3.7, 3.8, 3.9 imply that for γ < 1/2 any
v ∈ Lβ+1 solution of equation (2.4) satisfies v ∈ C∞. A standard argument yields the
same conclusion for γ = 1/2 too. Finally, if γ > 1/2 Proposition 3.4 automatically
implies that any function v ∈ Hγ

L also satisfies v ∈ C∞.

3.4 Subcritical case

Note that the following Lemma 3.4 has been studied by different authors if N > 2γ ,
even for 1 < p <

N+2γ
N−2γ (see [10,11,22]), but in this paper we need this result also for

2γ ≥ N since we have reduced our problem to dimension N = 1 for any γ ∈ (0, 1).
We will use it for p = n+2γ

n−2γ .

Lemma 3.4 Let w be solution for

(−�)γ w = w p, 0 ≤ w ≤ 1, p > 1, (N − 2γ )p < N . (3.11)

Then w ≡ 0.

Proof Let η be a smooth function. In fact we may choose

η = (1 + |x |)−m, where m = N + 2γ. (3.12)

Then multiplying (3.11) by the test function η, integrating over RN and using integra-
tion by parts in the right hand side of (3.11) we obtain the following inequality

∣∣∣∣
∫
RN

w pη dx

∣∣∣∣ =
∣∣∣∣
∫
RN

(
w(x)

∫
RN

η(x) − η(y)

|x − y|N+2γ dy

)
dx

∣∣∣∣
≤

∣∣∣∣
∫
RN

(
(w(x)η1/p(x))η(x)−1/p

∫
RN

η(x) − η(y)

|x − y|N+2γ dy

)
dx

∣∣∣∣
≤

∣∣∣∣
∫
RN

w p(x)η(x) dx

∣∣∣∣
1/p (∫

RN

∣∣∣∣(η(x)−1/p(−�)γ η(x)
)p/(p−1)

∣∣∣∣ dx
)(p−1)/p

.

(3.13)
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We just need to compute the second term in the right hand side. Firstly we can check
that it is bounded. Since

η(x)−
1

p−1 |(−�)γ η(x)|
p

p−1 ≤ c(1+|x |)(N+2γ ) 1
p−1 (1+|x |)−

p
p−1 (N+2γ ) ≤ (1+|x |)−(N+2γ ),

(3.14)
we have ∫

RN
η(x)−

1
p−1 |(−�)γ η(x)| p

p−1 dx < ∞.

Note that for inequality (3.14) we have used the definition of the test function given
in (3.12) and the following bound

|(−�)γ η| ≤ c(1 + |x |)−(N+2γ ), for x large enough; (3.15)

which is proven at the end of the proof of this Lemma. Now we chose

ηR(x) = η(x/R).

Performing a similar analysis to that of (3.13), we obtain

∫
RN

w p(x)ηR(x) ≤
∫
RN

ηR(x)−1/(p−1)
∣∣∣∣
∫
RN

η(x) − η(y)

|x − y|N+2γ dy

∣∣∣∣
p/(p−1)

dx .

Then, by scaling,

∫
|x |≤R

w p(x) ≤ cRN− 2pγ
p−1

∫
RN

η(x)−1/(p−1)
∣∣∣∣
∫
RN

η(x) − η(y)

|x − y|N+2γ dy

∣∣∣∣
p/(p−1)

dx .

Note that N − 2pγ
p−1 < 0 by hypothesis. Then, letting R tend to infinity, we obtain

∫
|x |≤R

w p(x) dx → 0 as R → +∞.

Therefore, we have w ≡ 0.
In order to conclude we just need to check inequality (3.15) before. It follows from

standard potential analysis. In fact, for |x | ≥ 1 we have that

∣∣(−�)γ η(x)
∣∣ =

∣∣∣∣P.V.
∫
RN

η(x) − η(y)

|x − y|N+2γ dy

∣∣∣∣ ≤ |I1| + |I2| + |I3| + |I4|,
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where these integrals can be bounded as follows: for the first integral we use that
|x − y| is small enough to check that

|I1| =
∣∣∣∣P.V.

∫
|x−y|<1

η(x) − η(y)

|x − y|N+2γ dy

∣∣∣∣ =
∣∣∣∣
∫

|x−y|<1

η(x) − η(y) − η′(x)|x − y|
|x − y|N+2γ dy

∣∣∣∣
≤ C

∫
|x−y|<1

|η′′(x)||x − y|2
|x − y|N+2γ dy ≤ C

(1 + |x |)N+2γ .

For the second one, we have that |x − y| <
|x |
2 , then, we can use that

|η(x) − η(y)| ≤ |η′(ξ)||x − y| ≤ C(1 + |x |)−(N/2+2γ−1)|x − y|,

and bound the integral as follows

|I2| =
∣∣∣∣∣
∫
1<|x−y|< |x |

2

η(x) − η(y)

|x − y|N+2γ dy

∣∣∣∣∣
≤ C |x |1−2γ (1 + |x |)−(N/2+2γ−1) ≤ C

(1 + |x |)N+2γ ,

since x is large enough and |x | ∼ |y|, indeed |y| ≥ |x |− |x − y| ≥ |x |
2 and |y| ≤ 3

2 |x |.
The third one is directly bounded,

|I3| =
∣∣∣∣∣
∫

|x |
2 <|x−y|<2|x |

η(x) − η(y)

|x − y|N+2γ dy

∣∣∣∣∣≤ 2N+2γ

|x |N+2γ

∣∣∣∣∣
∫

|x |
2 <|x−y|<2|x |

(η(x)−η(y)) dy

∣∣∣∣∣
≤ 2N+2γ

|x |N+2γ

∣∣∣∣∣η(x)|x |−N −
∫

|x |
2 <|x−y|<2|x |

η(y) dy

∣∣∣∣∣ ≤ C

|x |N+2γ ∼ C

(1 + |x |)N+2γ ,

using that |x | is large enough.
For the fourth and last one, we use that |y| ≥ |x − y| − |x | ≥ |x |, then

|I4| =
∣∣∣∣
∫

|x−y|>2|x |

(
η(x) − η(y)

|x − y|N+2γ

)
dy

∣∣∣∣ ≤ C

(∫
|x−y|>2|x |

1

|x − y|N+2γ dy

)
(1 + |x |)−(N+2γ )

≤ C

(1 + |x |)(N+2γ )
.

��
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4 Proof of Theorem 1.1

4.1 Variational formulation

We consider the following minimization problem

c(L) = inf
v∈Hγ

L ,v �≡0
FL(v), (4.1)

where

FL(v) =
κn,γ

2

∫ L
0

∫ L
0 (v(t) − v(τ))2KL(t − τ) dt dτ + cn,γ

∫ L
0 v(t)2 dt(∫ L

0 v(t)β+1dt
) 2

β+1

. (4.2)

Our first lemma shows that

Lemma 4.1 For any L > 0, c(L) is achieved by a positive function vL ∈ C∞ which
solves

L L
γ v = κn,γ P.V .

∫ L

0
(v(t)−v(τ))KL(t−τ)dτ+cn,γ v = cn,γ vβ, where β = n+2γ

n−2γ .

(4.3)

Proof Considering that the value of multiplicative constants does not affect this proof,
we may assume that cn,γ = 1 and κn,γ = 1. Since c(L) is invariant by rescaling we
can assume that ∫ L

0
vβ+1 dt = 1; (4.4)

thus FL [v] = ‖v‖2
Hγ
L
. First note that if c(L) is achieved by a function vL , then this

function solves (4.3) because this is the Euler–Lagrange equation for the functional
(4.2).

By construction, the functional FL(v) is non-negative and therefore it is bounded
from below, so the infimum is finite. Next we show that a minimizer exists. Let {vi }
be a minimizing sequence normalized to satisfy (4.4), such that FL(vi ) ≤ c(L) + 1.
Because of Remark 3.2, for all γ ∈ (0, 1) we have the compact embedding of Hγ

L in
Lq , with q ∈ (1, 2

1−2γ ) if γ ≤ 1
2 and q ≥ 1 if γ > 1

2 so, in particular, for q = β + 1.

Moreover, there exists vL ∈ Hγ

L such that vi ⇀ vL . This implies

‖vL‖Hγ
L

≤ lim inf
j

‖v j‖Hγ
L
. (4.5)

Since {vi } is a minimizing sequence, lim inf ‖v j‖Hγ
L

= c(L), and (4.5) implies that

we have a minimizer vL ∈ Hγ

L . The compact embedding assures that convergence is
strong in Lβ+1, i.e.,

1 = lim
j

‖v j‖Lβ+1 = ‖vL‖Lβ+1 .
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Now we apply Remark 3.3 to obtain vL ∈ C∞.
Finally we observe that the minimizer vL ∈ Hγ

L must be positive. If vL is not
non-negative we take w = |vL | ∈ Hγ

L and the following inequality holds

FL(w) ≤ FL(vL), (4.6)

obtaining a contradiction. Indeed if sign(v(t)) = sign(v(τ )), equality holds in (4.6)
and if sign(v(t)) �= sign(v(τ )), (4.6) is also true because

(w(t) − w(τ))2 = (vL(t) + vL(τ ))2 ≤ max{(vL(t))2, (vL(τ ))2}
≤ (|vL(t)| + |vL(τ )|)2 = (vL(t) − vL(τ ))2.

Oncewe have the non-negativity of theminimizer, since ‖vL‖Lβ = 1, themaximum
principle given in Proposition 3.6 applied to Eq. (4.3) assures that vL > 0. Therefore
we conclude the proof of the Lemma 4.1. ��

We now introduce the weak formulation of the problem. We will say that v ∈ Hγ

L
is weak solution of (4.3) if it satisfies

〈L L
γ v, φ〉 = cn,γ

∫ L

0
vβ(t)φ(t) dt, ∀φ ∈ Hγ

L (4.7)

where 〈 , 〉 is defined by

〈L L
γ v, φ〉 = κn,γ

2
P.V .

∫ L

0

∫ L

0
(v(t) − v(τ))(φ(t) − φ(τ))KL(t − τ) dt dτ

+cn,γ

∫ L

0
v(t)φ(t) dt.

4.2 Proof of Theorem 1.1

At this moment it is unclear if the minimizer vL for (4.2) is the constant solution. Let

c∗(L) = cn,γ L
β−1
β+1

be the energy of the constant solution. The next key lemma provides a criteria:

Lemma 4.2 Assume that c(L1) is attained by a nonconstant function vL1 . Then
c(L) < c∗(L) for all L > L1.

Proof Let vL1 be the minimizer for L1, then vL1 is the solution to

L L1
γ (vL1) := κn,γ

∫ L1

0
(vL1(t) − vL1(τ ))KL1(t − τ)dτ + cn,γ vL1 = cn,γ v

β
L1

.
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By assumption vL1 �≡ 1. Now let

t = L1

L
t̄ and v(t̄) = vL1

(
L1

L
t̄

)
,

which is an L-periodic function. By definition it is clear that

c(L) ≤
κn,γ

2

∫ L
0

∫ L
0 (v(t̄) − v(τ̄ ))2KL (t̄ − τ̄ ) dt̄ d τ̄ + cn,γ

∫ L
0 v2(t̄) dt̄(∫ L

0 vβ+1(t̄) dt̄
) 2

β+1

=
(

L
L1

)1− 2
β+1

κn,γ

2

∫ L1
0

∫ L1
0 (vL1 (t) − vL1 (τ ))2 L

L1
KL

(
L
L1

(t − τ)
)
dt dτ + cn,γ

∫ L1
0 v2L1

(t) dt(∫ L1
0 v

β+1
L1

(t) dt
) 2

β+1

<
(

L
L1

)1− 2
β+1

κn,γ

2

∫ L1
0

∫ L1
0 (vL1 (t) − vL1 (τ ))2(KL1 (t − τ)) dt dτ + cn,γ

∫ L1
0 v2L1

(t) dt(∫ L1
0 v

β+1
L1

(t) dt
) 2

β+1

≤
(

L
L1

)1− 2
β+1

c(L1) ≤
(

L
L1

)1− 2
β+1

c∗(L1) = c∗(L).

The second inequality above follows from Lemma 2.8.
Thus we conclude that c(L) < c∗(L) for all L > L1 and hence c(L) is attained by

a nonconstant minimizer. ��
Lemma 4.3 If the period L is small enough, then c(L) is attained by the constant
only.

Proof First, we claim that, for L ≤ 1, the minimizer vL is uniformly bounded. This
follows from a standard Gidas–Spruck type blow-up argument. In fact, suppose not,
we may assume that there exist sequences {Li }, {vLi } and {ti } with ti ∈ [0, Li ] such
that

max
0≤t≤Li

vLi (t) = max
t∈R

vLi (t) = vLi (ti ) = Mi → +∞.

Note that vLi satisfies (4.3). Now rescale

t̃ = ε−1
i (t − ti ), ṽLi (t̃) = ε

2γ
β−1
i vLi (εi t̃),

where

Mi = ε

−2γ
β−1
i .

With this change of variable, (4.3) reads

κn,γ

∫
R

εi (ṽLi (t̃) − ṽLi (τ̃ ))K (εi (t̃ − τ̃ )) d τ̃ + cn,γ ṽLi (t̃) = ε
−2γ
i cn,γ v

β
Li

(t̃).
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Because of (2.15)

∫
R

εi (ṽLi (t̃) − ṽLi (τ̃ ))K (εi (t̃ − τ̃ )) d τ̃ ∼ 1

ε
2γ
i

∫
R

ṽLi (t̃) − ṽLi (τ̃ )

|t̃ − τ̃ |1+2γ d τ̃ ∼ 1

ε
2γ
i κn,γ

(−�)γ ṽLi .

Therefore ṽLi satisfies

(−�)γ ṽLi + cn,γ ε2γ ṽLi (t̃) = cn,γ ṽ
β
Li

(t̃) + o(1) as i → ∞.

Remark 3.3 assures that all the derivatives of vLi are equi-continuous functions, thus
we can apply Ascoli–Arzelá theorem to find v∞ ∈ C∞ such that ṽLi → v∞ as
i → +∞ and which satisfies

(−�)γ v∞ = cn,γ v
β∞ in R.

Note that v∞ is positive. By the result given in Lemma 3.4 we derive that v∞ ≡ 0,
which contradicts with the assumption that v∞(0) = 1.

Secondly, we use Poincare’s inequality given in (3.2) to show that vL ≡ Constant .
In fact we observe that φ = ∂vL

∂t satisfies

L L
γ φ − cn,γ βv

β−1
L φ = 0, (4.8)

where L L
γ is defined as in (1.7). The weak formulation for the problem from (4.7),

the fact that vL is bounded and Eq. (4.8) give

∫ L

0

∫ L

0
(φ(t) − φ(τ))2KL(t − τ)dtdτ ≤ C

∫ L

0
φ2.

Rescaling t = Lt̃, φ̃ = φ(Lt̃) and using (2.15), since L is small enough, we obtain
that

∫ 1

0

∫ 1

0

(φ̃(t̃) − φ̃(τ̃ ))2

|t̃ − τ̃ |1+2γ
dt̃d τ̃ ≤ CL2γ

∫ 1

0
φ̃2.

By Poincare’s inequality (3.2) (since φ has average zero) there exists C0 > 0 for
which

C0

∫ 1

0
φ̃2 ≤

∫ 1

0

∫ 1

0

(φ̃(t̃) − φ̃(τ̃ ))2

|t̃ − τ̃ |1+2γ
dt̃d τ̃ ≤ CL2γ

∫ 1

0
φ̃2,

which yields that

∫ 1

0
φ̃2 = 0
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for L small. ��
Lemma 4.4 If the period L is large enough, then

c(L) < c∗(L), (4.9)

and therefore, we have a non constant positive solution for (1.6).

Proof Let

b(t) :=
(

et

e2t + 1

) n−2γ
2

, (4.10)

which is a ground state solution for (1.6). This follows because the “bubble”

ω(x) =
(

1

|x |2 + 1

) n−2γ
2

, (4.11)

is a solution of (1.1) that is regular at the origin. Note that b(t) > 0 and b(±∞) = 0.
Now we take a cut-off function ηL which is identically 1 in the ball of radius L/4

and null outside the ball of radius L/2. We define a new function

vL(t) = b(t)ηL(t).

We will denote ṽL(t) ∈ Hγ

L the L-periodic extension of vL . The definitions of c(L)

and KL , given in (4.1) and (2.17) respectively, give us the following equality:

c(L) = inf
v∈Hγ

L ,v �≡0

κn,γ

2

∫ L
0

∫
R
(v(s + τ) − v(τ))2K (s) dsdτ + cn,γ

∫ L
0 v(t)2dt(∫ L

0 v(t)β+1 dt
) 2

β+1

= inf
v∈Hγ

L ,v �≡0

κn,γ

2

∫ L/2
−L/2

∫
R
(v(s + τ) − v(τ))2K (s) dsdτ + cn,γ

∫ L/2
−L/2 v(t)2 dt(∫ L/2

−L/2 v(t)β+1 dt
) 2

β+1

,

(4.12)

where s := t − τ and we have used the L-periodicity of any v ∈ Hγ

L . We use ṽL as a
test function in the functional (4.12). Taking the limit L → ∞,

lim
L→∞ c(L) ≤ lim

L→∞

κn,γ

2

∫ L/2
−L/2

∫
R

(ṽL (s + τ) − ṽL (τ ))2K (s) dsdτ + cn,γ

∫ L/2
−L/2 ṽL (t)2 dt(∫ L/2

−L/2 ṽL (t)β+1 dt
) 2

β+1

=
κn,γ

2

∫
R

∫
R

(b(t) − b(τ ))2K (t − τ) dtdτ + cn,γ

∫
R
b(t)2 dt(∫

R
b(t)β+1 dt

) 2
β+1

< ∞,
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since the “bubble” (4.11) has finite energy. Let us check that all the integrals above are
uniformly bounded in order to use the Dominated Convergence Theorem. First, both
integrals

∫ L/2
−L/2 ṽ2L(t) dt and

∫ L/2
−L/2 ṽ

β+1
L (t) dt are uniformly bounded since b(t) ∼

e− n−2γ
2 |t |. Finally, recalling that b(t), ηL ∈ L∞ and the behaviour of the kernel (2.16)

∫ L/2

−L/2

∫
R

(ṽL(s + τ) − ṽL(τ ))2K (s) dsdτ = I1 + I2,

where

I1 ∼
∫ L/2

−L/2

∫
R\[−ε,ε]

(ṽL (s + τ) − ṽL (τ ))2e−|s| n+2γ
2 dsdτ

∼
∫
R\[−ε,ε]

e−|s| n+2γ
2

∫ L/2

−L/2
ṽL (s + τ)2 dτds +

∫ L/2

−L/2
ṽL (τ )2 dτ

∫
R\[−ε,ε]

e−|s| n+2γ
2 ds < ∞.

I2 ∼
∫ L/2

−L/2

∫ ε

−ε

(ṽL (s + τ) − ṽL (τ ))2

|s|1+2γ dsdτ ∼
∫ L/2

−L/2

∫ ε

−ε

ṽ′
L (τ )2|s|1−2γ dsdτ < ∞.

In this second integral, we have used the Taylor expansion of ṽL .

On the other hand, c∗(L) = cn,γ L
β−1
β+1 → +∞ as L → +∞. This proves (4.9). ��

Remark 4.5 When L → ∞, theminimizer vL for the functional given in (4.2) satisfies
that

vL → v∞ ≡ b,

where b(t) is defined as in (4.10) up to multiplicative constant. The proof of this fact
will be postponed to the forthcoming article [2].

Let v be a L-periodic solution of Eq. (1.6), i.e.,

κn,γ P.V .

∫ L

0
(v(t) − v(τ))KL(t − τ) dτ + cn,γ v(t) = cn,γ v(t)β . (4.13)

The linearization of this equation around the constant solution v1 ≡ 1 is:

κn,γ

∫ L

0
(v(t) − v(τ))KL(t − τ) dτ − cn,γ (β − 1)v(t) = 0. (4.14)

We consider the eigenvalue problem for this linearized operator:

κn,γ

∫ L

0
(v(t) − v(τ))KL(t − τ) dτ − cn,γ (β − 1)v(t) = δLv(t). (4.15)

Lemma 4.6 There exists L̃0 > 0 such that

δL < 0 if L > L̃0, δL > 0 if L < L̃0, and δL̃0
= 0.
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Proof Following the computations in [13] we get that the first eigenvalue δL is given
by the implicit expression

∣∣∣� (
n
4 + γ

2 +
√

λ
2 i

)∣∣∣2∣∣∣� (
n
4 − γ

2 +
√

λ
2 i

)∣∣∣2 = n + 2γ

n − 2γ

∣∣� ( 1
2

( n
2 + γ

))∣∣2∣∣� ( 1
2

( n
2 − γ

))∣∣2 + δL .

Here λ is univocally related with the period by L = 2π√
λ
. δL is a strictly decreasing

function of L . We now define L̃0 as the period corresponding to the zero eigenvalue.
��

We are now ready to conclude the proof of Theorem 1.1. Let

L0 = sup{L | c(l) = c∗(l) for l ∈ (0, L)}. (4.16)

By Lemma 4.3 we see that L0 > 0. By Lemma 4.4, also L0 < +∞. Then we are
left to check that if L = L0 we just have the constant solution.

Proposition 4.1 If L = L̃0 the unique solution for (4.13) is the constant solution
v1 ≡ 1.

Proof Let v > 0 and v1 ≡ 1 be L̃0-periodic solutions of (4.13). We define

w = v − 1. (4.17)

On the one hand, using the weak formulation for the problem (4.13) given in (4.7),
we have

〈L L
γ v, φ〉 = 〈L̃ L

γ v, φ〉+cn,γ

∫ L

0
v(t)φ(t) dt = cn,γ

∫ L

0
vβ(t)φ(t) dt, ∀φ ∈ Hγ

L ,

(4.18)
where we have defined

〈L̃ L
γ v, φ〉 = κn,γ

2
P.V .

∫ L

0

∫ L

0
(v(t) − v(τ))(φ(t) − φ(τ))KL(t − τ) dt dτ.

Thus, in particular for v = w + 1, Eq. (4.18) reads

〈L̃ L
γ (w), φ〉+cn,γ

∫ L

0
(w(t)+1)φ(t) dt = cn,γ

∫ L

0
(w(t)+1)βφ(t) dt, ∀φ ∈ Hγ

L ,

which, interchanging φ and w in the first term, is equivalent to

〈L̃ L
γ (φ),w〉 + cn,γ

∫ L

0

(
(w(t) + 1) − (w(t) + 1)β

)
φ(t) dt = 0, ∀φ ∈ Hγ

L .

(4.19)
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On the other hand, if ϕ1 denotes the first eigenfunction for the linearized problem
around v ≡ 1, given in (4.15), for the period L̃0 (i.e. the corresponding to the zero
eigenvalue δL̃0

= 0), the following holds

〈L̃ L
γ ϕ1, φ〉 + cn,γ

∫ L

0
ϕ1(t)φ(t) dt = βcn,γ

∫ L

0
ϕ1(t)φ(t) dt, ∀φ ∈ Hγ

L .

Now we choose the test function here to be φ = w, the function defined in (4.17), and
the equality above becomes

〈L̃ L
γ ϕ1, w〉 = (β − 1)cn,γ

∫ L

0
ϕ1(t)w(t) dt. (4.20)

Coming back to Eq. (4.19) for the test function φ = ϕ1, then we have

〈L̃ L
γ (ϕ1), w〉 + cn,γ

∫ L

0

(
(w(t) + 1) − (w(t) + 1)β

)
ϕ1(t) dt = 0,

which using equality (4.20) reads

∫ L

0

(
βw(t) + 1 − (w(t) + 1)β

)
ϕ1(t) dt = 0. (4.21)

The positivity of the first eigenfunction ϕ1 and the convexity of the function f (w) =
βw(t) + 1− (w(t) + 1)β assure that the only possible solution for (4.21) is w ≡ 0. ��

Let v ∈ Hγ

L and EL , ẼL be the energy functionals for the non-linear and the linear
problems (4.13) and (4.14) defined by

EL(v) := κn,γ

4

∫ L

0

∫ L

0
(v(t) − v(τ))2KL(t − τ) dτ dt

+ cn,γ

2

∫ L

0
v2(t) − cn,γ

β+1

∫ L

0
vβ+1(t) dt, (4.22)

and

ẼL(v) := κn,γ

4

∫ L

0

∫ L

0
(v(t) − v(τ))2KL(t − τ) dτ dt − cn,γ

2 (β − 1)
∫ L

0
v2(t) dt,

(4.23)
respectively. The variational formulation of the first eigenvalue δL (Rayleygh quotient)
for (4.23) implies the following Poincaré inequality

κn,γ

2

∫ L

0

∫ L

0
(v(t) − v(τ))2KL(t − τ) dτ dt − cn,γ (β − 1)

∫ L

0
v2(t) dt

≥ δL

∫ L

0
v2(t) dt, ∀v ∈ Hγ

L .
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In particular, if ϕ1 denotes, as before, the first eigenfunction for the linearized
problem around v ≡ 1 at the period L̃0, we have the equality

κn,γ

2

∫ L̃0

0

∫ L̃0

0
(ϕ1(t) − ϕ1(τ ))2KL̃0

(t − τ) dτ dt − cn,γ (β − 1)
∫ L̃0

0
ϕ2
1(t) dt = 0.

(4.24)

Proposition 4.2 The period L0 defined in (4.16) coincides with the period L̃0 given
by the zero eigenvalue in Eq. (4.15).

Proof First, because of the definition of L0 given in (4.16) we can easily check that
L0 ≥ L̃0. Indeed, Proposition 4.1 asserts that c(L̃0) = c∗(L̃0) and Lemma 4.2 assures
that this is not possible if L̃0 > L0.

We now are going to check the opposite inequality. We have defined L̃0 as the
period where the constant solution v1 ≡ 1 loses stability. This is, if we define

Lε = L̃0 + ε (4.25)

with ε > 0, we have instability for the constant solution and thus c(Lε) < c∗(Lε).
To prove this, we compute the energy (4.22) for the function 1+ σφLε , where σ > 0
small enough and φLε ∈ Hγ

Lε
. We have

ELε (1 + σφLε ) = ELε (1)

+ σ 2
[
κn,γ

2

∫ Lε

0

∫ Lε

0
(φLε (t) − φLε (τ ))2KLε (t − τ) dτ dt

−cn,γ (β − 1)
∫ Lε

0
φ2
Lε

(t) dt

]
+ h.o.t.

Therefore, if we find φLε such that

κn,γ

2

∫ Lε

0

∫ Lε

0
(φLε (t)−φLε (τ ))2KLε (t−τ) dτ dt−cn,γ (β−1)

∫ Lε

0
φ2
Lε

(t) dt < 0,

(4.26)

the instability of v1 ∈ Hγ

Lε
is proved. Let φLε (t) = ϕ1(

L̃0
Lε
t), where ϕ1 is the first

eigenfunction defined in (4.24). Under the changes of variable t̄ = Lε

L̃0
t and τ̄ = Lε

L̃0
τ ,

equality (4.24) and Lemma 2.8 imply (4.26). Here we have also used that β = n+2γ
n−2γ >

1, and Lε > L̃0 (4.25).
The definition of L0 (4.16) and Lemma 4.2 imply that L0 ≤ L̃0 + ε. Taking limit

as ε goes to zero we have the claimed equality L0 = L̃0. ��
This completes the proof of Theorem 1.1. ��
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