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A B S T R A C T

We investigate the possible occurrence of field-effect induced superconductivity in the hydrogenated (111)
diamond surface by first-principles calculations. By computing the band alignment between bulk diamond and
the hydrogenated surface, we show that the electric field exfoliates the sample, separating the electronic states at
the valence band top from the bulk projected ones. At the hole doping values considered here, ranging from
n=2.84× 1013 cm−2 to n=6×1014 cm−2, the valence band top is composed of up to three electronic bands
hosting holes with different effective masses. These bands resemble those of the undoped surface, but they are
heavily modified by the electric field and differ substantially from a rigid doping picture. We calculate super-
conducting properties by including the effects of charging of the slab and of the electric field on the structural
properties, electronic structure, phonon dispersion and electron-phonon coupling. We find that at a doping level
as large as n=6×1014 cm−2, the electron-phonon interaction is λ=0.81 and superconductivity emerges with
TC ≈ 29–36 K. Superconductivity is mostly supported by in-plane diamond phonon vibrations and to a lesser
extent by some out-of-plane vibrations. The relevant electron-phonon scattering processes involve both intra and
interband scattering so that superconductivity is multiband in nature.

1. Introduction

The metallization of 3D covalent solids can be beneficial for su-
perconductivity, as the cases of MgB2 [1], H3S [2] and B-doped dia-
mond [3] clearly show. Indeed, covalent materials like diamond, boron
nitride, silicon carbide are ultrahard and have highly energetic phonon
frequencies, which is in principle beneficial for superconductivity, but
are mostly insulating due to the nature of their covalent bonding
(electrons are not mobile). Driving them to the superconducting state,
however, requires the introduction of a sizeable number of carriers
because of the slow increase of the density of states (DOS) as a function
of doping. An example is B-doped diamond that undergoes an insulator-
to-metal transition at a boron concentration nB ≈ 1020 cm−3 and then
becomes a superconductor at nB ≈ 4–5 ⋅ 1021 cm−3 with a transition
temperature TC= 4 K [4, 5]. The introduction of larger amount of do-
pants has proven to be problematic [6] because of the low solubility
limit. It is possible to overcome the problem via non-equilibrium
techniques as in Q-carbon [7] or Si [8].

An alternative route to bypass the slow increase of the DOS in bulk
samples is to dope 2D materials or surfaces where the density of states is
constant as a function of energy. These systems are also appealing be-
cause doping techniques alternative to the chemical ones can be ap-
plied. For example, one way to avoid the introduction of boron in
diamond samples is through the field effect, i.e. the induction of addi-
tional charges at the surface by means of a transverse electric field in a
FET-like configuration. In a conventional FET, however, the applied
electric field is limited by the breakdown field of the solid dielectric,
and by the fact that the thickness of the latter must be large enough to
ensure the absence of pinholes. Electrochemical gating allows over-
coming both these limitations. The technique consists in replacing the
solid dielectric with an electrolyte (usually an ionic liquid or a polymer-
electrolyte solution) as shown in Fig. 1 for the case of diamond. When
an electric voltage (for example, negative) is applied to the gate elec-
trode, ions are accumulated at the diamond surface forming a capacitor
with a very small inter-plate distance. This results in a much larger
density of induced charge carriers [9] (for example, holes) on the first
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few carbon layers.
Previous computations on the hydrogenated (110) diamond surface

in FET configuration [10, 11] suggested a possible superconductive
phase transition. However, in that case, the presence of the electric field
was taken into account in a self-consistent way only for the electronic
structure and not for vibrational properties. Actually, the natural crystal
facets of polycrystalline diamond films grown by chemical vapor de-
position (CVD) are the (100) and (111) surfaces [12]. Moreover, ex-
periments show that the surface capacitance of the hydrogenated (111)
diamond is 2.6–4.6 μF/ cm2 (Refs. [13, 14]), while that of hydrogenated

(100) diamond is 2.1–2.8 μF/ cm2 (Refs. [13, 15, 16]). Therefore, the
(111) orientation of diamond allows accumulating larger charge den-
sities at the surface and, consequently, obtaining a higher number of
carriers at the Fermi level.

In this work, we study the possibility of inducing superconductivity
in (111) hydrogenated diamond thin films by means of electrochemical
gating, using first-principles techniques. We consider the effect of hole
doping and of the FET geometry in a self-consistent way both on elec-
trons, phonons and on the electron-phonon interaction, by using a re-
cently developed theoretical approach [17].

The paper is organized as follow. In Section 2, we expose the
computational details used for ab-initio calculations. After that, in
Section 3, we move to the discussion of the results. In particular, in
Section 3.1, we analyze the effects of the electric field on the relaxation
of structural parameters, while in Section 3.2, we show that there is a
field-driven ‘exfoliation’ of the electronic bands. In Section 3.3, we in-
vestigate how the charge distribution is affected by the electrochemical
gating and in Section 3.4, we study the electronic structure of our
system by varying the amount of charge induced at the surface. In
Section 3.5, we investigate the effect of the electric field on vibrational
properties and compute the electron-phonon coupling constant and the
superconductive critical temperature as a function of the induced
charge density by using the Allen-Dynes/McMillan equation. In
Section 4, the critical temperature is calculated more accurately by
solving the isotropic linearized single-band Eliashberg equations. Fi-
nally, conclusions are given in Section 5.

2. Model and methods

We consider a slab structure made of 14 layers of C atoms, oriented
along the (111) direction, terminated on both sides by a layer of H
atoms (Fig. 2) for a total of 16 atoms per cell. The lattice parameter is
taken coincident with that computed for bulk diamond. We analyze
three different values of surface hole density, i.e. ndop,1= 2.84 ⋅
1013 cm−2, ndop,2= 1.96 ⋅ 1014 cm−2 and ndop,3= 6.00 ⋅ 1014 cm−2.
The first one corresponds to the experimental situation studied by Ya-
maguchi et al. [13], who found the hydrogenated (111) diamond sur-
face to be on the verge of an insulator-to-metal phase transition. The
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Fig. 1. Field effect transistor (FET) geometry for the electrochemical gating. G,
S and D are respectively the gate, source and drain electrodes. Vg is the gate
tension.

Fig. 2. Structure of the hydrogenated (111) diamond
surface: (a) side view, (b) top view. C atoms are the
brown spheres while H atoms are the pink ones. The
black dashed line in (b) identifies the unitary cell. ΘH

is the angle formed between H and C(2) atoms, while
ΘC is the angle between C(1) and C(3) atoms. (For
interpretation of the references to color in this figure
legend, the reader is referred to the web version of
this article.)
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other two doping regimes are studied in order to see what would
happen if higher values of the induced charge could be experimentally
reached.

All the ab-initio calculations are performed using density functional
theory with Quantum ESPRESSO package [17-19]. We use the Perdew-
Burke-Ernzerhof (PBE) functional for exchange correlation, and the
Brillouin zone integration is performed with a 24×24 electron mo-
menta (k-points) Monkhorst-Pack grid both for the neutral and charged
systems. For hydrogen atoms, we use ultrasoft pseudopotentials, while
for carbon, we use a norm-conserving pseudopotential.

The convergence criteria for the self-consistent solution of the Kohn-
Sham equations are set to 10−9 Ry (1Ry ≈ 13.6 eV) for the total energy
and to 10−3 Ry/a0 (a0 ≈ 0.529177 Å is the Bohr radius) for the max-
imum force acting on atoms. We also set the kinetic energy cut-off to
65 Ry for the valence electron wave function and to 600 Ry for the
density.

The starting geometry for the FET configuration is similar to that
described in Ref. [17]. Let z be the axis perpendicular to the surface of
the sample. We define a cell of length L such that the slab is symmetric
around z=0. The layer of accumulated ions at the surface is simulated
through a sheet of uniformly distributed charges placed at
zgate=−0.181 L. A potential barrier with a height of V0= 3.5 Ry is set
at zbarrier=−0.18 L in order to avoid spilling of charges towards the
metallic gate. Between two successive repeated images of the system ,
we put≈30 Å of vacuum. Ground state and linear response calculations
are performed with the appropriate boundary conditions by truncating
the Coulomb interaction in the non-periodic (z) direction.

We use Gaussian smearing of 0.004Ry(for ndop,1), 0.03Ry(for ndop,2)
and 0.006 Ry (for ndop,3). Their value is chosen in such a way that the
converged total energy per atom has a variation< 1mRy upon chan-
ging the value of the smearing. We also require that their magnitude is
less then the energy difference between the top of the valence band and
the Fermi level. When computing the electronic density of states (DOS),
we used a tetrahedra smearing with a k-point grid of 48×48, which
ensures better convergence of the results.

The convergence of phonon modes is checked at q= Γ.
Convergence is found using 24×24 uniformly distributed k-points and
widths of the Gaussian smearing of 0.003 Ry, 0.02 Ry and 0.004 Ry, for
the three doping values respectively. Also for linear response calcula-
tions the smearing is always smaller than the energy difference between
the top of the valence band and the Fermi level.

Electron-phonon computations are initially performed only at Γ for
all three doping regimes. For the highest surface charge densities, we
also perform an interpolation of the electron-phonon matrix elements
on the whole Brillouin zone through Wannier functions via the proce-
dure described in Ref. [20] . We can Wannier-interpolate the electronic
band structure [21] using a grid of 6×6 k-points for the non-self
consistent computation. We then interpolate the electron-phonon ma-
trix elements to 75× 75 k-points and phonon momenta (q-points)
grids, which ensures convergence of quantities of interests.

3. Results and discussion

An electric field applied at the surface of a material with free charge
carriers penetrates only few layers inside the material, because of
electronic screening. This kind of perturbation has different effects on
our system: it breaks the symmetry along the z direction (possibly
lifting degeneracies in the electronic spectrum); it changes the charge
distribution of electrons; and it modifies the relative positions of atoms
(and therefore structural and vibrational properties).

First of all, we analyze the effects of the applied electric field on the
structure parameters of our sample. Then, we study how the charge
distribution, the electronic structure and the phonon dispersion are
affected. Finally, we tackle the problem of electron-phonon interactions
and see if a superconductive phase can appear as a function of doping.

3.1. Structure relaxation in FET geometry

The most relevant structural changes induced by the electric field
occur in the first three layers of the slab, while the inner carbon atoms
are barely affected.

In the lowest doping regime (ndop,1), the modifications are very
subtle and only the distance between hydrogen atoms and the first
carbon layer (HeC(1)) is shortened by 0.14%, while other atomic dis-
tances vary by ∼ 0.03− 0.05%. Both the anglesHC C(1) (2) and
C C C(1) (2) (3) (that we will call ΘH and ΘC in the following, as shown in
Fig. 2) remain unaffected.

As we move from low to medium values of the induced charge
density (ndop,2), atomic distances further differ from equilibrium values.
The HeC(1) bond is reduced by 0.72% while the distance C(1) eC(2)
has an increment of 0.37%. As a consequence, also the angles ΘH and
ΘC increase by 0.57%. The C(2) eC(3) bond is the least affected, with a
reduction of only 0.25%.

Finally, at the highest doping (ndop,3,) all three layers suffer con-
siderable modifications. The HeC(1) bond is reduced by 0.97%, the
distance C(1)eC(2) is increased by 0.85% and the C(2)eC(3) separation
is shortened by 0.45%. The angles ΘH and ΘC are the most affected
ones, with an increment of 1.26%.

From this analysis, we can observe that variations of atomic dis-
tances get more substantial as we increase the amount of charges in-
duced at the surface and, consequently, the magnitude of the electric
field to which the sample is subjected. The structural modifications
primarily concern the hydrogen atoms and the first layer of carbon
atoms, as they directly face the metallic gate, but they also involve the
second and third carbon layers with smaller intensities since the electric
field is screened by the charge distribution inside the material.

The changes in the chemical bonds also suggest a redistribution of
the electronic density inside the material due to the electrochemical
gating, as it will be shown in the next subsection: indeed, as the mag-
nitude of the electric field is increased, electrons tend to accumulate in
certain spatial regions while depleting others, and this results in a
variation of atomic distances. The results are summarized in Table 1.

3.2. FET-driven exfoliation of surface states

In order to understand which are the surface and bulk electronic
states, we plot the band structure of the hydrogenated (111)-diamond
slab on top of the surface-projected bulk-diamond electronic bands. The
latter quantity has been obtained by taking diamond in its bulk form
oriented along the (111) direction and then computing its band diagram
by keeping fixed k|| =(kx,ky) along paths parallel to Γ-M-K-Γ while
varying kz between 0 and π/c (where c is the height of the primitive
cell). This procedure generates a continuum of bulk bands that, if
plotted altogether in the same graph, give rise to the grey-shaded re-
gions in Figs. 3 and 4. When the band structure of the slab is super-
imposed to this graph, the bands that fall outside the grey regions can
be identified as surface states, while the others are considered as bulk
states.

However, the two band diagrams (bulk and slab) have to be prop-
erly aligned in energy before being superimposed to each other. As a
matter of fact the surface, that is the interface between vacuum and the

Table 1
Structural parameters of the hydrogenated (111) diamond surface in FET geo-
metry at different doping levels. For angles and atom labelling see Fig. 2.

ndop (cm−2) 0 2.84 ⋅ 1013 1.96 ⋅ 1014 6 ⋅ 1014

H eC(1) 1.109 Å 1.107 Å 1.101 Å 1.098 Å
C(1) eC(2) 1.536 Å 1.537 Å 1.542 Å 1.549 Å
C(2) eC(3) 1.554 Å 1.555 Å 1.550 Å 1.547 Å
ΘH 108.55° 108.64° 109.18° 109.92°
ΘC 108.55° 108.64° 109.18° 109.92°
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material under investigation, perturbs the electronic charge distribution
and generates an electrostatic potential discontinuity. This is the same
problem as the band alignment [33] between two different semi-
conductors or at a metal/semiconductor interface: indeed in these cases
a Schottky barrier is formed, whose height measures the valence band
discontinuity across the interface. By lining up the electrostatic poten-
tial on the two sides of the surface, we can compute the band offset, that
is the difference between the top of the valence band of the surface and
that of the remaining bulk of the material.

We define the planar-averaged electrostatic potential as:

∫=V z V x y z dxdy( ) 1
Ω

( , , )
D

D||
2 Ω 3

D2 (1)

where V3D(x,y,z) is the 3D electrostatic potential and Ω2D is the area of
the primitive cell. Then, in order to extract only the relevant interface-
related phenomena, we compute the macroscopic average [34] of the
planar-averaged electrostatic potential:

∫=
−

+
V z

a
V s ds~ ( ) 1 ( )

z a

z a
|| /2

/2
|| (2)

that is an average of the local electrostatic potential performed inside a
window of width a, whose size depends on the system under study and
has to be big enough in order to filter-out the microscopic details of the
material.

The computational procedure goes as follows:

• We take the hydrogenated (111)-diamond slab and compute the
macroscopic average of the planar-averaged electrostatic potential.
Its value in the bulk-like region of the slab (ϵRS) will serve as the
reference energy for the surface system. Then we define
ΔϵS= ϵVB

S− ϵRS as the difference between the energy of the top of
the valence band (ϵVBS) and the reference energy of the slab;

• We take diamond in its bulk form and compute the macroscopic
average of the planar-averaged electrostatic potential. Its mean
value (ϵRB) will serve as the reference energy for the bulk system.
Then, we define ΔϵB= ϵVB

B− ϵRB as the difference between the
energy of the top of the valence band (ϵVBB) and the reference en-
ergy of the bulk;

• The energy shift between the band structure of the slab and that of
the bulk projected over the surface is given by ΔϵSB= ΔϵS −ΔϵB.
This is the quantity by which the surface bands have to be shifted
before being plotted on top of the bulk projected bands.

Fig. 3. Band structure of the undoped hydrogenated (111)-diamond surface
(black lines) on top of the surface-projected bulk-diamond electronic structure
(grey-shaded regions). Red (green) lines correspond to the bulk band structure
computed for kz=0.0 (kz=0.5) in crystal coordinates. (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 4. Band structure of the doped hydrogenated (111)-diamond surface (black
lines) on top of the surface-projected bulk-diamond electronic structure (grey-
shaded regions). The three doping regimes are: (a) ndop,1, (b) ndop,2 and (c)
ndop,3. Red (green) lines correspond to the bulk band structure computed for
kz=0.0 (kz=0.5) in crystal coordinates. The blue line represents the Fermi
level. The bands have been aligned as described in Section 3.2. (For inter-
pretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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This procedure has to be applied both for the undoped and doped
surface. It turns out that, when the surface is undoped (Fig. 3) the
electronic bands are all bulk states since they fall inside the grey-shaded
areas. Upon doping, the band shift increases, but for low values of the
induced charge (ndop,1), we still are in a bulk-like situation (Fig. 4 (a)).
As we will see in the next section (Fig. 5 (a)), the charge spreads well
inside the slab, meaning that the surface is still electronically indis-
tinguishable from the bulk. However, when we pass to medium and
high doping values (ndop,2 and ndop,3), the bands crossing the Fermi
level acquire a surface-like character, as clearly shown in Fig. 4 (b) and
(c). We will refer to this phenomenon as electric exfoliation. This will be

confirmed by our subsequent analysis of the planar-averaged charge
density (Fig. 5 (b) and (c)).

3.3. Charge distribution

In order to understand how many layers are affected by the elec-
trochemical gating, it is important to see how the charge density profile
evolves as we go from a low to a high doping regime.

In the lower panels of Fig. 5 (a), (b) and (c), we display the planar-
averaged induced charge density for all the three values of doping:

Fig. 5. Planar-averaged induced charge density (ρ||ind(z)) and normalized cumulative integral of the absolute value of the planar-averaged charge density (integrated
charge). The three cases correspond to (a) ndop,1, (b) ndop,2 and (c) ndop,3. The red lines indicate the location of the potential barrier which prevents charge spilling,
while the pink lines identify the position of the hydrogen layers which also show the beginning and the end of the diamond slab. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

D. Romanin, et al. Applied Surface Science 496 (2019) 143709

5



= −ρ z ρ z ρ z( ) ( ) ( )||
ind

||
h

||
0 (3)

Here, ρ||h(z) and ρ z( )||
0 are respectively the planar-averaged charge

densities for the hole-doped and undoped cases:

∫=ρ z ρ x y z dxdy( ) 1
Ω

( , , )
D

D||
i

2 Ω 3
i

D2 (4)

where Ω2D is the area of the unitary cell and ρ3Di(x,y,z) is the 3D charge
density for the hole-doped (i= h) and undoped (i= 0) cases. Both the
undoped and doped charge densities are computed from the slab with
atomic parameters obtained from the relaxation in the presence of the
electric field. The 3D charge density is given by:

∑ ∑=
∈ =

ρ x y z e
N

ψ x y z( , , ) | ( , , )| .D
σ n

E

n
σ

k k
k3

i

, FBZ 0
,

2
F

(5)

Here, e is the electron charge, Nk is the number of k points belonging
to the first Brillouin zone (FBZ), σ is the spin index, n is the band index,
EF is the Fermi energy and ψ x y z( , , )k n

σ
, is the Bloch wavefunction for

band n, spin σ and wavevector k.
These charge profiles contain information on both the amount of

carriers induced in the sample and on how pre-existing valence elec-
trons re-arrange themselves in order to screen the applied electric
field [22,38]. Regions in which holes are accumulated (i.e. electrons are
depleted) correspond to negative values of ρ||i, while regions enriched
with electrons are characterized by positive values of ρ||i. In the low-
doping regime (ndop,1), charge fluctuations are considerable up to the
sixth carbon layer, which indicates that we are still in a bulk-like si-
tuation with a poor localization of charges at the surface. As we induce
more charges at the surface (ndop,2), fluctuations become more peaked
around the first four carbon layers and, eventually, at the highest
doping regime (ndop,3), they are strongly localized in proximity of the
first two carbon layers, meaning that we are moving to a quasi-2D
system as the screening effect of charges on the electric field becomes
stronger.

We can also get information on where charges are localized in these
three cases by plotting the normalized cumulative integral of the ab-
solute value of the planar-averaged charge density:

∫
∫

⋅ ∈
ρ z dz

ρ z dz c L1
| ( )|

| ( )| for [0; ]L

c

0 ||
i

0
||
i

(6)

where L is the size of the cell. This quantity is shown in the upper panels
of Fig. 5 (a), (b) and (c): at the beginning, charges are more spread
inside the system, as 70% of the integrated charge is reached after three
atomic layers (i.e. 6 carbon layers) but, as we increase the doping, this
limit is attained in close proximity to the surface, i.e. in the region
containing the first two carbon layers.

3.4. Electronic properties

After the analysis of the charge distribution, we can study how
electronic properties are affected by the electrochemical gating. In
Fig. 6, we analyze the electronic band structure and density of states of
the diamond surface as a function of the induced charge density. In this
figure, we compare the bands computed in FET geometry (black solid
line) with the ones obtained by using a jellium model (blue dashed
line), where doping is modeled with charges uniformly spread inside
the slab and compensated by an oppositely charged background.

The Fermi level, EF (red line), appears crossing the valence bands: at
the lowest charge doping it is right below the top of the first two va-
lence bands (bands will be referred to according to the labelling of
Fig. 4 (c)) but, as the induced charge density gets higher, EF gets lower
and lower and it even crosses a third band. Moreover the presence of
the electric field breaks the symmetry along the z direction, lifting any
band degeneracy. It is possible to observe this effect on the third crossed
band (see Fig. 6 (c)), as its double degeneracy at the center of the FBZ is

Fig. 6. Electronic band structure and density of states (DOS) of the hydro-
genated (111) diamond surface with (a) ndop,1, (b) ndop,2 and (c) ndop,3. As a
reference (blue dashed lines), we also plot the uniform doping as obtained from
jellium. Black solid lines refer to the FET case, the red line is the Fermi Energy.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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lifted isolating the only band which is crossed at the highest doping.
This suggests the nature of the bands, i.e. a planar ([xy]) character for
the first two bands and an out-of-plane ([z]) behavior for the third
band. Finally, we can also observe that the energy gap (EG) is also af-
fected by the presence of the electric field: valence bands are shifted
upward in energy while conduction bands are shifted downward gra-
dually reducing the band gap as we increase the magnitude of the
electric field. Therefore, it is clear that the jellium model is not suitable
to describe the FET geometry: in fact, it would have led to a simple rigid
shift of the occupied energy bands preserving all possible degeneracies
of the eigenvalues. These results are summarized in Table 2.

The DOS shows the typical energy dependency of 2D systems (i.e.
DOS(ϵ) ∼const.). For the first doping value, we already have a rela-
tively high DOS at the Fermi level, due to two bands crossing, but it
nearly triples when the third band is crossed as well (Table 3). Since
this is a multiband system, we are also interested in the contribution to
the total density of states from each single energy band. This in-
formation will be important in the next subsection for understanding
the origin of the electron-phonon interactions, since they are directly
proportional to the density of states per spin per band. Band 1 con-
tributes to the total DOS ∼2–3 times more than band 2 for all three
doping values, while the contributions of bands 2 and 3 have a similar
value (Table 3). This is a preliminary clue that the most important
electron-phonon interactions will take place in the first band.

The projected density of states on atomic orbitals (PDOS) can give
us more details on the nature of the electronic bands. The central panels
of Fig. 7 show the density of states projected over the in-plane ([xy])
and out-of-plane ([z]) components, while the right panels display the
actual contribution to the DOS of the first three carbon layers (C(1),
C(2) and C(3)). First of all, the PDOS confirms that bands 1 and 2 have
an in-plane behavior while the out-of-plane contribution is present only
when band 3 is crossed. Another interesting aspect is that, at the Fermi
level, the value of the in-plane PDOS is always higher than the out-of-
plane one for low to medium doping values, while they become com-
parable at the highest doping: this will be important in the subsequent
analysis of the vibrational properties in order to understand the nature
of vibrational modes and of the electron-phonon interaction. Finally,
we can observe that the contribution of the C atom layers to the density
of states are in agreement with the evolution of the charge density
profile: indeed at the beginning the charge density oscillations are more
delocalized inside the material and, as a consequence, the C(3) com-
ponent is higher. When the induced charge density gets more and more
confined towards the sample surface the C(1) and C(2) contributions to
the DOS show a higher value at the Fermi level. The disappearance of
the C(3) character from the valence band top is another effect of the

electric exfoliation.
The FET doping also induces a change in the curvature of the bands

themselves that, obviously, indicates a change in the effective masses of
the carriers (as shown in Fig. 6).

Table 2
Energy gaps and positions of Fermi level with respect to the top of valence
bands, ΔEV,i i= I,III of the hydrogenated (111) surface in FET geometry.

ndop (cm−2) EG ΔEV,I ΔEV,II ΔEV,III

2.84 ⋅ 1013 3.516 eV 58.6meV 58.6meV Not crossed
1.96 ⋅ 1014 2.525 eV 331.7 meV 331.7 meV Not crossed
6 ⋅ 1014 1.717 eV 880.2 meV 880.2 meV 161.6 meV

Table 3
Total density of states Ntot(0) and band contributions to the total density of
states Ni(0) (i= 1,3) at the Fermi level (EF=0) for the hydrogenated (111)
diamond surface, in units of states/eV/16 atoms cell/spin. Bands are labelled
according to Fig. 4 (c).

ndop (cm−2) Ntot(0) N1(0) N2(0) N3(0)

2.84 ⋅ 1013 0.1319 0.0956 0.0363 None
1.96 ⋅ 1014 0.1427 0.1052 0.0375 None
6 ⋅ 1014 0.3930 0.1783 0.1088 0.1059

Fig. 7. Electronic band structure and projected density of states (PDOS) of the
hydrogenated (111) diamond surface with (a) ndop,1, (b) ndop,2 and (c) ndop,3.
The red line is the Fermi Energy. Central panel gives the PDOS along in-plane
([xy]) and out-of-plane ([z]) components. Right panel shows the C(1), C(2) and
C(3) actual contributions to the DOS. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this
article.)
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If we approximate our bands by simple parabolas:

⎜ ⎟= ⎛
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⎠
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k
m
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x

x

y
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2
2 2

(7)

the effective masses are proportional to the inverse of the band struc-
ture curvature:

= ∂
∂m

k
k k
E1

*
1
ℏ

( )
ij i j

2

2

(8)

From Table 4, we can see that the effective mass of band 1 decreases
along Γ-M and increases along Γ-K on going from zero doping to ndop,1,
and then remains stationary. The effective mass of band 2 first de-
creases (in both directions), but also in this case it doesn’t change
anymore after the intermediate doping value. Finally, the effective mass
of band 3 decreases along Γ-M and increases along Γ-K.

As for the band anisotropy, band 1 is initially quite anisotropic but
recovers a parabolic symmetry when we increment the amount of in-
duced charge density. Band 2 is symmetric already at the lowest
doping, and does not change its character throughout the various
doping regimes. Finally, band 3 is the one which has the highest ani-
sotropy and this is accentuated as ndop increases.

Let us finally discuss the evolution of the Fermi surface as a function
of the induced charge density (Fig. 8). The accumulation of carriers at
the surface of our sample leads the system to a metallization of the first
layers and, consequently, to the appearance of a Fermi surface whose
extension varies as the chemical potential is lowered. Fermi surfaces
labelling is depicted in Fig. 8 (c), where FS1 → blue line, FS2 → green
line and FS3 → aqua line.

In the first case (ndop,1), two small concentric hole pockets appear at
the center of the Brillouin zone (FS1 and FS2): the system has become a
“bad” metal, in the sense that there are very few free carriers available
for conduction. This corresponds to the situation observed by
Yamaguchi et al. [13], i.e. the sample is on the verge of an insulator-to-
metal phase transition [39]. By increasing the amount of holes at the
surface, the Fermi surfaces remain centered at Γ but grow in size, oc-
cupying a larger region of the Brillouin zone and signaling at least a
metallization of the surface. Finally, at ndop,3, the Fermi level crosses a
third band generating a third hole pocket centered at Γ (FS3). Another
important aspect, clearly shown in Fig. 8, is that the C3v hexagonal
symmetry of the Fermi surfaces is not broken down by the presence of
the strong electric field.

3.5. Vibrational and superconductive properties

In this section, we study how both the induced charge density and
the presence of the electric field modify the vibrational properties of
our system. First of all, we analyze the phonon dispersion relations and

density of states and then we move to the electron-phonon interactions
at Γ and, through Wannier interpolations, on the whole Brillouin zone
at the maximum doping. Finally, in order to compute the super-
conductive transition temperature, we use the Allen-Dynes/McMillan
formula [23, 24]:

= ⎧
⎨⎩

− +
− +

⎫
⎬⎭

T
ω λ

λ μ λ1.2
exp 1.04(1 )

* (1 0.62 )C
log

(9)

where λ is the electron phonon coupling constant, ωlog is the loga-
rithmic averaged frequency and μ* is the Morel-Anderson pseudopo-
tential [25]. The first two quantities will be computed ab-initio through

Table 4
Effective masses for the hydrogenated (111) diamond surface in units of the
electron mass me. Bands are labelled according to Fig. 4 (c).

−m m| * / |M eΓ −m m| * / |K eΓ

Undoped 0.186 0.116
ndop,1 0.145 0.117

Iband ndop,2 0.132 0.126
ndop,3 0.132 0.126

Undoped 0.057 0.059
ndop,1 0.049 0.053

IIband ndop,2 0.047 0.050
ndop,3 0.047 0.049

Undoped 0.181 0.126
ndop,1 0.142 0.126

IIIband ndop,2 0.140 0.157
ndop,3 0.140 0.199

Fig. 8. 2D Fermi surfaces of the hydrogenated (111) diamond surface with (a)
ndop,1, (b) ndop,2 and (c) ndop,3. FS1 → blue line, FS2 → green line and FS3 →
aqua line. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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the following expressions:

∫=λ dω α F ω
ω

2 ( )2

(10)
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dωexp 2 log( ) ( )
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2
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while μ* will be considered as a parameter ranging from 0.13 to 0.14
(which are the values used in boron-doped diamond [26]). The quantity
α2F(ω) is the Eliashberg spectral function and represents the spectral
decomposition of the electron-phonon coupling constant λ:

∑
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where Ntot(0) is the total density of states per spin, Nq and Nk are the
number of q- and k-points in the first Brillouin zone considered for the
computations, and the energy ϵ is measured from the Fermi level. The
electron-phonon matrix elements gk n,k+q m

ν between band n and m
(n,m=1,3 in our case, as labelled in Fig. 8) for phonon mode ν are
defined as:

∑= ++g
e
M ω

n δv
δu

mk k q
2n m

ν

Aα

ν
Aα

A ν Aα
k k q

q

q
q,

SCF

(13)

where |k n ⟩ is the Bloch-periodic part of the Kohn-Sham eigenfunction,
vSCF= e−i q⋅rVKS is the periodic part of the Kohn-Sham potential VKS.
Atoms in the unit cell are labelled by A and their cartesian coordinates
by α, while their mass is denoted by MA. The Fourier transformed dis-
placement of atom A along the cartesian direction α is denoted by uAα

q

and e ν
Aα

q is the phonon eigenvector normalized on the unit cell of
components Aα.

As we discussed above, on increasing the doping, the system evolves
towards a quasi-2D structure, where the use of Eq. (9) is not completely
justified. In fact, in the 2D limit, fluctuations are greatly re-
normalized [27] and the long-range order of electron-phonon interac-
tion might be destroyed leading to other coupling mechanisms [28].
However, we will still use Eq. (9) to estimate TC, keeping in mind that
the result should be considered as an upper bound for the actual su-
perconducting critical temperature.

3.5.1. Phonon dispersion relations and DOS
In Fig. 9, we plot the vibrational dispersion relations of our system

and the phonon density of states for the three doping values considered
in the paper. The in-plane and out-of-plane nature of the displacement
eigenvalues is indicated by red and blue dots respectively, whose size
varies according to the percentage of [xy] and [z] character at a specific
q point in the Brillouin zone for each mode ν. At ∼ 3000 cm−1, there
are the two out-of-plane optical branches of the hydrogen atoms which
are degenerate at low doping. On increasing the applied electric field,
the degeneracy is lifted giving rise to two distinct high-energy flat
modes with very peaked density of states. The in-plane hydrogen
modes, instead, are already greatly softened at the first doping ndop,1
(see Fig. 9a): indeed in this case there are two degenerate modes at ∼
1132.40 cm−1 and other two degenerate modes at 1136.69 cm−1.

Carbon atoms frequencies instead range from 0 to ∼ 1400 cm−1

and their eigenvalues arrange in very rich dispersion relations. For all
three doping values, the phonon DOS for the carbon atoms is very
concentrated around high-energy modes (where we have a majority of
nearly-flat bands) while the low energy ones are less populated.

From the phonon dispersion relation, it is also possible to observe
the softening of an optical in-plane mode, which is highlighted in
Fig. 10 by green circles. As one goes from low to high doping values, the
frequencies of this branch become lower and lower: the system de-
velops a Kohn anomaly [29], that is a renormalization of the phonon
modes due to the electron-phonon interaction, which occurs in a region

(caption on next page)
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of radius 2kF around Γ and has been observed in boron-doped diamond
[30, 31] and p-doped graphane [32]. In order to see this effect, we
make the approximation of circular Fermi surfaces of radius kF; in our
case there are up to three bands crossing the Fermi level and, conse-
quently, up to three Fermi momenta. In Fig. 10, the orange bands
highlight the region such that ∈ ∥ ∥ ∥ ∥q k k| | [2 , 2 ]F F,min ,max , where kF ,min
and kF ,max are the wavevectors corresponding to the smallest and lar-
gest Fermi surface, respectively. In principle, a change in slope of the
phonon branches due to the Kohn anomaly should be observed in
correspondence of each Fermi momentum, but this would require an
extremely fine discretization of the reciprocal space. However, even
with our choice of k-points, a slope change of the aforementioned mode
can be observed within the orange regions. It is very small for low
doping values, but becomes evident as the maximum doping regime is
reached (see Fig. 10 (c)). This clearly indicates a strong effect of the
electron-phonon interactions on the properties of this system.

3.5.2. Electron-phonon computation at q= Γ
Let us start with the calculation of electron-phonon interactions at

q= Γ, which is a computationally inexpensive task. This procedure
provides approximate results with the assumption that the electron-
phonon matrix elements (Eq. (13)) are constant, or nearly constant, in
the portion of reciprocal space delimited by the phonon vectors q that
give non-zero contributions to the nesting factor:

∑= +N
N

δ δq( ) 1 (ϵ ) (ϵ )f
k nm

n m
k

k k q
, (14)

The Dirac deltas appearing in Eq. (14) limit the summation over the
vectors q which can scatter an electron from the n-th to the m-th Fermi
surface (since we have set EF=0 in Eq. (14)). As a matter of fact, if we
define k ′= k+ q, the first Delta tells us that |k|= kFn while the
second one gives |k ′|= kFm. Therefore, since q= k ′−k, we have that:

= + ′ − ′ =

= + −

θ

k k k k θ

q k k k k| | | | | | 2| || | cos

2 cosFn Fm Fn Fm

2 2

2 2
(15)

where θ is the angle between k and k ′.
Then, assuming spherical Fermi surfaces, the electron-phonon ma-

trix elements computed at q= Γ are considered constant inside the
region delimited either by a circle of radius |q|= 2kFn if n=m (Fig. 11
(a)) or by an annulus of radii = + −k k k kq| | 2Fn Fm Fn Fm1

2 2 and

= + +k k k kq| | 2Fn Fm Fn Fm2
2 2 if n≠m (Fig. 11 (b)).

In order to see which are the strongest electron-phonon modes as a
function of the induced charge density, we compute the squared
average of the electron-phonon matrix elements for each phonon mode
ν:

∑⟨ ⟩ =g
g N N

N

| | (0) (0)

(0)ν
n m

n m
ν

n m

tot
Γ

Γ Γ2

,

,
2

2
(16)

where Nn(0) is the density of states of band n at the Fermi level,
n,m=1,2,3 are band indices (obtained from Fig. 8) and ν is the mode
index.

In the case of ndop,1, there are two degenerate in-plane modes at
ω∥=1176 cm−1 that have the strongest e-ph matrix elements, with
⟨ ⟩ =∥g 0.1672 eV2. These modes mainly contribute to intraband 1− 1
and interband 1− 2 scattering processes, while the 2− 2 channel is
negligible.

Fig. 9. Phonon dispersion relations and density of states (DOS) of the hydro-
genated (111) diamond surface with (a) ndop,1, (b) ndop,2 and (c) ndop,3. Red
(blue) dots correspond to in-plane (out-of-plane) vibrational modes. The size of
the dots correspond to the amount of [xy] or [z] nature of the phonon fre-
quency. For example, the size of the dots for the modes at Γ corresponds to a
100% character, either [xy] or [z]. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

(caption on next page)
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As for ndop,2, there are again two degenerate in-plane modes at
ω∥=959.25 cm−1 with ⟨ ⟩ =∥g 0.4412 eV2. In this case, the in-plane
mode contributes both to inter- and intra-band processes which are
relevant for the electron-phonon interaction, including the 2− 2 scat-
tering process. This is reasonable since at this doping level the size of
the second band is no longer negligible.

At the highest doping level, i.e. ndop,3, the largest ⟨ ⟩gν
2 are associated

to two degenerate in-plane modes at ω∥=626 cm−1 (with
⟨ ⟩ =∥g 1.1052 eV2) and a single out-of-plane mode at ω⊥=817 cm−1

(with ⟨ ⟩ =⊥g 0.2482 eV2). In this case, the only negligible process of the
in-plane mode is the intra-band scattering within the third Fermi sur-
face. On the other hand, the out-of-plane mode only favors the intra-
band processes of all the three bands.

The fact that also an out-of-plane mode becomes relevant in this last
case is not so obvious. However, the electronic projected density of
states of Fig. 7 clearly shows that the first two bands have only a planar
nature, and the out-of-plane character only appears when the third
band crosses the Fermi level. Moreover, the strongest in-plane mode is
actually the one which is being softened by the Kohn anomaly (Fig. 10)
discussed above: as the doping value increases, the average in-plane
electron-phonon interaction increases and this translates in a strong
renormalization of the phonon frequencies.

With these pieces of information, we can compute λ and ωlog

(Fig. 12) and then estimate the superconducting critical temperature
TC. The electron-phonon coupling constant λ is just an average of the
electron-phonon matrix elements g n m

ν
Γ Γ, over the Brillouin zone

weighted by the vibration eigenvalue ωΓν, i.e. the frequency of the
phonon of mode ν at q= Γ:
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The logarithmic averaged frequency ωlog is given instead by:
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In Fig. 12, we plot the evolution of these two quantities as a function
of doping. As we increase the amount of the induced charge, the
logarithmic averaged phonon frequency decreases while the electron-
phonon coupling constant increases. The increase in λ can be under-
stood as being due to the softening of the phonon modes with the
strongest matrix elements. As a matter of fact, in the calculation of λ
(see Eq. (10)) the e-ph interactions occurring at low frequencies are
enhanced with respect to those at high frequency. When the phonon
modes that give peaks in α2F(ω) move to lower frequencies, their
contribution to the coupling constant is amplified and λ increases from
≈ 0.06 (at ndop,1) to≈ 1.09 (at ndop,3). On the other hand, the averaged
logarithmic frequency (ωlog) decreases upon doping, since phonon
modes are being softened. Therefore, there is a trade-off between λ and
ωlog .

The calculated values of λ and ωlog can now be inserted in the Allen-
Dynes formula to determine TC. It turns out that, for the first two doping
values (ndop,1 and ndop,2) there is no superconducting transition.
However, at ndop,3, there is a superconductive phase with a critical
temperature in the range 63.14–57.20 K for μ*∈ [0.13,0.14]. The cor-
responding value of λ is almost three times the value found in boron-
doped diamond [26] (λB=0.43) and this is reasonable since the local
density of holes on the first two carbon layers exceeds by an order of
magnitude the boron concentration responsible for a TC= 4 K. The
increase in the electron-phonon interaction, with respect to the pre-
vious two doping values, can be related to the fact that, when the third
band crosses the Fermi level, the density of states doubles. However,
this may also be an artifact of the simple model at q= Γ and therefore

Fig. 10. Softening of phonon modes of the hydrogenated (111) diamond sur-
face with (a) ndop,1, (b) ndop,2 and (c) ndop,3. Green dots highlight the band
which is actually being renormalized. Orange regions indicate the momenta
interval ∈q k k[2 , 2 ]F F,min ,max , where k2 F ,min correspond to the smallest Fermi
surface while k2 F ,max correspond to the biggest one. (For interpretation of the
references to color in this figure legend, the reader is referred to the web ver-
sion of this article.)

Fig. 11. q-space portions of the Brillouin zone (blue
regions) over which the electron-phonon matrix
elements are considered to be constant (and thus can
be represented by their value at at q= Γ) in the case
of n=m (a) and n≠m (b). (For interpretation of the
references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 12. Superconductive parameters (ωlog and λ) for the hydrogenated (111)
diamond surface as a function of the induced charge density (ndop) computed in
the q= Γ approximation.
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more precise computations are required for this last case.

3.5.3. Electron-phonon computations through Wannier interpolation
Since the highest doping value (ndop,3) seems to show a super-

conductive phase transition with a sizable critical temperature, we try
to further investigate this phenomenon by a more accurate procedure.
This is accomplished by interpolating the electron-phonon matrix ele-
ments over the whole Brillouin zone by using the Wannier functions. In
this way, we do not consider the interactions only at q= Γ, but we
actually compute their value for every point in reciprocal space.

Since the atoms which contribute most to the DOS at the Fermi level
are the carbon atoms belonging to the first three layers of the samples,
in order to fit the bands which cross the Fermi energy, we use 3 sp3

orbitals centered on C(1), C(2) and C(3) for a total of 12 Wannier
functions. The resulting Wannier bands are quite satisfactory, since the
Fermi velocities (i.e. the derivative of the energy bands computed at the
Fermi level) of the Wannierized bands are in good agreement with
those of the original bands.

The calculation of the electron-phonon interaction performed by
using the Wannier functions gives an electron-phonon coupling con-
stant λ=0.81, which is ∼ 35% smaller than that computed at q= Γ.
However, the logarithmic averaged frequency obtained through
Wannierization is bigger than that obtained via the simplified ap-
proach, with a difference of ∼ 40 cm−1. This reduces the final critical
temperature leading to a Tc that falls between 34.93 K and 29.60 K for
μ*∈ [0.13,0.14], which is ∼ 30 K smaller than the one obtained by
diagonalization of the dynamical matrices computed only at the center
of the Brillouin zone. This means that, from a quantitative point of
view, the simple model we adopted before overestimates the critical
temperature, but qualitatively it seems to catch the main physics of this
system. A comparison of the quantities relevant for the super-
conductivity is reported in Table 5.

The Wannier interpolation can actually give us further details on the
nature of the phase transition. Fig. 13 reports the in-plane and out-of-
plane components of the phonon dispersion relation (left panel), the
Eliashberg spectral function α2F(ω) and the electron-phonon coupling
constant λ (right panel) resulting from the Wannierization of the bands.
The α2F(ω) has two main peaks in correspondence of an in-plane
phonon mode, which is the one that has been softened due to the Kohn
anomaly, and of an out-of-plane vibrational mode. These peaks are
responsible for the increase of the electron-phonon coupling constant
since λ has two clear jumps in correspondence of these modes. This is in
agreement with what we have seen before: these are the phonon modes
with the strongest interactions with electrons. However, from a quan-
titative point of view, the Wannier analysis shows that it is the out-of-
plane mode the one with the highest matrix elements, contrary to what
found with the simple q= Γ calculation.

Since the Eliashberg spectral function is inversely proportional to ω,
we can plot α2F(ω) ⋅ ω in order to get rid of its frequency dependence. In
Fig. 14, we plot both the normalized Eliashberg spectral function and its
normalized first momentum. We can see that the peak occurring at the
lowest frequency is actually unperturbed by the 1/ω behavior, while
the second peak is softened by this frequency dependence. Therefore,
their role in enhancing the electron-phonon interaction is comparable
and we remind that this happens when we cross the third band.

We can now see how the various intra- and inter-band processes
contributes to the final λ. This is obtained by computing the band-re-
solved Eliashberg spectral function (Fig. 15) and by decomposing the
electron-phonon coupling constant over the three Fermi surfaces:
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From this analysis, it is possible to observe that the relevant pro-
cesses are those concerning the first band. The intra-band scattering of
the first Fermi surface (which is clearly an in-plane process) gives the
highest contribution, while the other two intra-band processes are
negligible. The other important processes for the superconductive phase
transition are the inter-band scattering between the first and the second
band (which is due to an in-plane mode) and between the first and the
third bands (which is due to an out-of-plane mode). Indeed, the second
and the third Fermi surfaces have similar electronic densities of states at
the Fermi level and, since the electron-phonon interaction depends
linearly on the DOS, they will contribute in the same way.

Finally, as the Wannier interpolation gives information on the
electron-phonon matrix elements for each q-point in the Brillouin zone,
we can compute the following quantity:
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which is the q-dependent electron-phonon coupling constant normal-
ized by the nesting factor. In this way, we can investigate how the
electron-phonon interaction strength varies over the Brillouin zone.
Indeed, the actual λ is an average of λ q~ ( )nm over the q-points of the
FBZ:

∑ ∑= ⋅λ
N

λ Nq q1 ~ ( ) ( )
nm q

nm f
q (21)

In Fig. 16, we plot such quantity for each intra-band (n=m) and
inter-band (n≠m) process. First of all, even if the regions of variation of
the electron-phonon matrix elements are not circles due to the topology
of the Fermi surfaces, we can discern the circle-like and annulus-like
shapes which we have used in the simplified model. Nevertheless, the
main assumption of constant g| |nm

ν
,Γ

2 inside these portions of the Bril-

louin zone is actually wrong: indeed high values of λ~ can be reached,
even if they are limited to very small areas of the Brillouin zone and, as
a consequence, they are killed when we perform the average over the q-
points. This is a consequence of the topology of the electronic bands,
which limits the possible q that can nest the various parts of the Fermi
surfaces. Moreover, it is also interesting to notice that, in most cases, it
is |q|∼ 2kF (corresponding to the wave vector responsible of the Kohn
anomaly) that gives the highest values of λ~.

4. Isotropic linearized single-band Eliashberg computation

Allen-Dynes's equation (Eq. (9)) only gives a good qualitative esti-
mate of the superconductive critical temperature but it is not quanti-
tatively correct [35], therefore, we compute TC via the Eliashberg
equations [36, 37]. Since the electronic density of states is step-like, we
can assume it to be constant at the Fermi energy. Moreover the Fermi
surface shown in Fig. 8 (c) can be considered to be isotropic in k-space.
As a consequence, we numerically solve the two coupled isotropic lin-
earized single-band Eliashberg equations, which are given on the ima-
ginary axis [38] by:
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Table 5
Comparison between the electron-phonon coupling constant λ and the loga-
rithmic averaged phonon frequency computed only at Γ (first line) and ob-
tained by Wannier interpolation on the whole Brillouin zone (second line) for
the case at the highest doping.

λ ωlog (cm−1) TC (K)

Γ 1.09 629.94 63.14–57.20
Wannier 0.81 670.17 34.93–29.60
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where = +iω i n(2 1)n
π
β are the Matsubara frequencies (for fermions),

β=1/kBT is the inverse temperature (kB is the Boltzmann constant), μ *C
is the Coulomb pseudopotential, Z(iωn) is the mass renormalization
function, Δ(iωn) is the superconductive energy gap and

= +S iω ω iω( ) Δ( )n n n
2 2 . The superconducting critical temperature TC

is defined as the temperature where the energy gap closes, i.e. when
Δ(TC)= 0.

The electron-phonon coupling constant is defined as:

∫=
− +′λ iω iω ω

ω ω ω
α F ω dω( , ) 2

( )
( )n n

ω

n m0
2 2

2
max

(24)

which in our computations was evaluated using the Eliashberg spectral
function α2F(ω) obtained through the Wannier procedure described in
the previous section.

The sums in Eqs. (22) and 23 diverge unless one limits the number

of Matsubara frequencies (or, in other words, the energy range).
Usually, the energy range is upper-limited by a cutoff =ω ω4c max or

=ω ω10 ,c max where ωmax is the maximum phonon frequency after which
the α2F(ω) is equal to zero. In this case, the Coulomb pseudopotential is
different from zero only in an energy range [−ωc,ωc], i.e.

= ⋅ −μ μ θ ω ω* * ( | |)c c .
Instead of defining a cutoff energy, we compute the energy gap

Δ0= Δ(iω0) for increasing numbers of Matsubara frequencies, nmax
(which corresponds to increasing the energy range) and find the value
of nmax necessary to ensure the saturation of the gap value. Then, we
put to zero the Coulomb pseudopotential after a typical phonon fre-
quency taken to be proportional to the square-root of the second mo-
ment of the Eliashberg spectral function:

Fig. 13. Phonon dispersion relations, Eliashberg spectral
function α2F(ω) and the electron-phonon coupling constant λ
of the hydrogenated (111) diamond surface with ndop,3. Red
(blue) dots correspond to in-plane (out-of-plane) vibrational
modes. The size of the dots correspond to the amount of [xy]
or [z] nature of the phonon frequency. (For interpretation of
the references to color in this figure legend, the reader is re-
ferred to the web version of this article.)

Fig. 14. Comparison between the normalized Eliashberg spectral function α2F
(ω) and its normalized first momentum α2F(ω) ⋅ ω for the highest-doping case.

Fig. 15. Band resolved Eliashberg spectral function for the case at the highest
doping. The label FS1, FS2 and FS3 correspond the the first, second and third
crossed bands respectively as defined in Fig. 8.
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∫= ⋅ω ω α F ω dω8 ( ) .typ

ω

0

2 2
max

(25)

In our previous estimation of the superconducting critical tem-
perature through Allen-Dynes formula, we used typical values of the
Coulomb pseudopotential μ*∈ [0.13,0.14] for boron-doped diamond
(as discussed in the previous section). However, it is known [35] that if

we used the same μ* in solving the Eliashberg equations, we would get a
higher value for TC. Therefore, we need to find a suitable value for the
effective electron-electron potential which will be used for solving Eqs.
(22) and (23). In order to do so, we solve the Eliashberg equations for
boron-doped diamond at a boron concentration of 1.85%, where it is
known experimentally that TC ≈ 4 K. The relevant Eliashberg spectral
function α2F(ω) is taken from Ref. [26], where it was computed via

Fig. 16. q-dependent electron-phonon coupling constant normalized by the nesting factor, resolved per band as labelled by Fig. 8. This is a measure of how the
electron-phonon interaction strength varies over the Brillouin zone.

D. Romanin, et al. Applied Surface Science 496 (2019) 143709

14



density functional perturbation theory (DFPT) using a 3×3×3 su-
percell and one substitutional boron atom, with a corresponding elec-
tron-phonon coupling constant of λ=0.43. In order to obtain the ex-
perimental critical temperature TC= 4 K, we have to increase the value
of the Coulomb pseudopotential to μ*= 0.17, which we then assume to
be also representative of the hydrogenated (111)-diamond surface
doped via electrochemical gating.

When solving the Eliashberg equations for our slab at a doping value
ndop,3, the first thing we can notice is that, for each value of the
Coulomb pseudopotential, Δ converges at T=10 K when =n 192max ,
i.e. when ωc ≈ 1040meV. Since in our case

≈ω 3200max cm−1= 397meV, the cutoff energy used in the standard
approach would have been = =ω ω4 1588c max meV. As mentioned
above, the critical temperature we get if we solve the Eliashberg
equations using μ*∈ [0.13,0.14] is actually bigger than the one we
obtain via Allen-Dynes's formula: as a matter of fact, we get
TC(μ*= 0.13)= 44.9 K and TC(μ*=0.14)= 42.9 K instead of 34.93 K
and 29.60 K, respectively (see Table 5). If we use μ*=0.17, instead, the
superconducting phase transition occurs at TC=36.3 K. Moreover, the
estimated value of the gap as T→ 0 K is Δ(0)= 5.89meV and therefore:

=
k T

2Δ(0) 3.76
B C (26)

which is close to the BCS value 3.54.

5. Conclusions

In this work, we investigated the occurrence of field-effect induced
superconductivity in the hydrogenated (111) diamond surface by first-
principles calculations including the effects of charging and of the in-
tense electric field at all steps in the calculation (electronic structure,
structural and vibrational properties and electron-phonon coupling).
This has been possible due to the recent methodological developments
in Ref. [17]. Previous works [10, 11] studied the hydrogenated (110)
diamond surface, neglecting the effect of the electric field on vibra-
tional properties and on the electron-phonon coupling. Furthermore,
the electron-phonon interaction was calculated only at the zone center
and assumed to be constant throughout the Brillouin zone. We have
shown that this approximation overestimates by approximately 35%
the electron-phonon interaction. Finally, it is worth to recall that the
hydrogenated (110) orientation is not the stable termination in CVD-
grown polycrystalline films, which instead show (100) and (111) facets
[40]. The latter orientation has been experimentally observed [13, 14]
to have the higher surface capacitance (2.6–4.6 μF/ cm2). Thus, the
(111) orientation of diamond allows accumulating larger charge den-
sities at the surface and, consequently, obtaining a higher number of
carriers at the Fermi level.

Our calculations show that high-TC superconductivity emerges at
hole doping values of the order of n=6×1014 cm−2. The critical
temperature, calculated by using the Allen-Dynes/McMillan equation,
ranges between 29 and 35 K for values of μ* typical of boron-doped
diamond. The solution of the isotropic linearized single-band Eliashberg
equations gives TC ≃ 36 K. Superconductivity is mostly supported by
planar vibrations and to a lesser extent by out-of-plane vibrations. The
average electron-phonon coupling is λ=0.81 and the logarithmic
averaged frequency is ≈ω 670log cm−1. The coupling arises partly
from interband scattering, so that our values of TC may be an under-
estimation of the real TC, since superconductivity in this system is
multiband in nature. Our work demonstrates that achieving high-TC
superconductivity in field-effect doped hydrogenated diamond is pos-
sible, even though hole charge densities of the order of 6×1014 cm−2

are required.
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