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1. Introduction

Non-cuspidal rational points on modular curves parametrize elliptic curves over Q
with particular properties regarding the associated Galois representation modulo some 
positive integer N . Having equations for such modular curves helps to explicitly deter-
mine elliptic curves with a given Galois representation modulo N . When N = p is a 
prime number, modular curves associated to maximal subgroups of GL2(Fp) with sur-
jective determinant, such as normalizers of Cartan subgroups, play an important role 
in the framework of Serre’s uniformity problem, which concerns the determination of 
elliptic curves with surjective Galois representation modulo p.

Recent work has been done in determining equations of modular curves of Cartan type. 
An affine plane model for X0(169) ∼= Xs(13) is computed in [Ken80][Ken81]. An equation 
for X+

ns(13) and X+
s (13) is computed in [Bar14], while models of X+

ns(p) for p = 17, 19 can 
be found in [MS17]. An equation for Xns(11) and the double cover Xns(11) → X+

ns(11)
is computed in [DFGS14]. Furthermore, it is used in [FNS17] to solve the generalized 
Fermat equation with exponents 2, 3, 11 and in [Zyw15] to classify the possible images 
of Galois representations modulo 11 associated to elliptic curves.

In this paper we present a strategy to compute birational models of modular curves 
Xs(p) and Xns(p) obtained as double covers of their explicitly given quotients X+

s (p)
and X+

ns(p), associated respectively to the normalizer of a split and a non-split Cartan 
subgroup of GL2(Fp). As an application, we compute singular models in A3 for the 
genus 8 curves Xs(13) and Xns(13). For completeness and further check we also compute 
smooth equations of the canonical model of such curves in P7 using classical methods 
and give explicit maps between all the known models of Xs(13) and Xns(13).

In particular, in Section 3 we recall the method to compute equations of the canonical 
model, in Section 4 we describe the new strategy in general, and in Section 5 we apply 
the two methods to the level 13 case, obtaining the equations. Furthermore, in Section 6
we also compute a birational map between the two models found.

Acknowledgments. We would like to thank Prof. R. Schoof for an early review and useful 
comments on this paper. We would also like to thank Prof. M. Caboara for giving us 
access to computational resources at the University of Pisa, and M. Paganin for his 
bibliographic help.

2. Notation and basic facts

Let H = {τ ∈ C, Im(τ) > 0} be the complex upper half-plane and let H∗ = H ∪
{∞} ∪ Q, both endowed with the action of SL2(R) given by fractional linear transfor-
mation. Given a congruence subgroup Γ of SL2(Z), we can consider the modular curve 
X(Γ ) associated to Γ which is obtained by providing the orbit space Γ\H∗ with the 
structure of a compact Riemann surface. When Γ = SL2(Z) we denote the associated 
modular curve of genus 0 by X(1). The complex points of X(1) parametrize elliptic 
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curves over C up to isomorphism. There is a morphism from every modular curve X(Γ )
to the modular curve X(1) which is given by the group inclusion Γ ⊂ SL2(Z). This 
morphism is called the j-map of X(Γ ).

Let N be a positive integer and let H be a subgroup of GL2(Z/NZ). We can associate 

to H the congruence subgroup ΓH
def={x ∈ SL2(Z) such that x (mod N) ∈ H} and the 

modular curve XH
def= X(ΓH), which admits the structure of projective algebraic curve. 

When the determinant homomorphism det : H → (Z/NZ)× is surjective, XH can be 

defined over Q. Furthermore, if the matrix 
(
−1 0
0 −1

)
belongs to H, then, for any 

number field K, the K-rational points on XH parametrize the elliptic curves defined 
over K such that H contains the image of the associated Galois representation modulo 
N , given by the action of the Galois group Gal(Q/K) on N -torsion points.

If we take H to be a Borel subgroup of GL2(Z/NZ), we obtain the classical modular 
curve X0(N). This curve has an automorphism wN , the Atkin–Lehner involution, in-

duced by the action of the matrix 
(

0 − 1√
N√

N 0

)
∈ SL2(R) on H. This automorphism 

allows us to define the quotient curve X+
0 (N) def= X0(N)/〈wN 〉.

Let now N = p be a prime number. If we take H to be a split or non-split Car-
tan subgroup of GL2(Z/pZ) (see [Ser72, p. 278, Section 2.1]) we denote the associated 
modular curve by Xs(p) and Xns(p), respectively. Any Cartan subgroup of GL2(Z/pZ)
has index 2 in its normalizer. Thus we obtain involutions ws and wns and double covers 
Xs(p) → X+

s (p) and Xns(p) → X+
ns(p), where X+

s (p) and X+
ns(p) are the modular curves 

associated to the normalizer of a split and a non-split Cartan subgroup of GL2(Z/pZ), 
respectively. Moreover we have X+

s (p) = Xs(p)/〈ws〉 and X+
ns(p) = Xns(p)/〈wns〉. Since 

the congruence subgroup of SL2(Z) associated to a split Cartan subgroup of GL2(Z/pZ)
is conjugate to the congruence subgroup associated to a Borel subgroup of GL2(Z/p2Z), 
we get the isomorphism Xs(p) ∼= X0(p2). Furthermore, the involution ws of Xs(p) cor-
responds to the Atkin–Lehner involution of X0(p2), so that also X+

s (p) is isomorphic 
to X+

0 (p2).

3. Explicit equations of modular curves using the canonical embedding

In this section we briefly recall how to get explicit equations for the canonical model of 
modular curves when we know enough Fourier coefficients of a basis of the vector space 
of modular forms corresponding to the space of differentials of the curve (see [Mer17] for 
more details).

Let Γ be a congruence subgroup of SL2(Z), let S2(Γ ) be the C-vector space of the 
cusp forms of weight 2 with respect to Γ . We know that S2(Γ ) is isomorphic to the 
C-vector space of holomorphic differentials Ω1(X(Γ )) via the map f(τ) �→ f(τ)dτ (see 
[DS05, p. 81, Theorem 3.3.1]). Using this isomorphism when the genus g of X(Γ ) is 
greater than 2, we get the following realization of the canonical map
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ϕ : X(Γ ) → Pg−1(C)

Γτ �→ (f1(τ) : . . . : fg(τ)),

where τ ∈ H∗ and B = {f1, . . . , fg} is a C-basis of S2(Γ ). The Enriques–Petri Theorem 
(see [GH78, Chapter 4, Section 3, p. 535] or [SD73]), states that the canonical model 
of a complete non-singular non-hyperelliptic curve is entirely cut out by quadrics and 
cubics.

Though the Enriques–Petri Theorem is proved only over algebraically closed fields, 
when X(Γ ) can be defined over Q, we can try to look for quadratic and cubic equations 
over Q for the image of ϕ. Then we can check if the zero locus Z of such equations, 
which contains by construction the image of ϕ, is an algebraic curve with the same 
genus as X(Γ ). If this is the case, an application of the Riemann–Hurwitz formula tells 
us that the morphism ϕ : X(Γ ) → Z is an isomorphism.

We know that X0(N) is not hyperelliptic when N > 71 ([Ogg74, p. 451, Theorem 2]) 
while X+

0 (pr), with p prime and r a positive integer, is not hyperelliptic when its genus 
is bigger than 2 ([Has97, p. 370, Theorem B]). Furthermore, Xns(p) is not hyperelliptic 
when p � 11 and X+

ns(p) is not hyperelliptic when p � 13 ([Dos16, p. 76, Theorem 1.1]). 
Hence, in all these cases, we need to look only for equations of degree d = 2, 3 for the 
image of ϕ. This is done in the following way.

3.1. Algorithm description

Consider the basis B = {f1, . . . , fg} of S2(Γ ). We can think of the fi as power series 
in C[[q]] through their Fourier q-expansion. Let’s fix the degree d of the equations and 
suppose we know the first m coefficients of such power series, with m > d(2g − 2). This 
condition on m guarantees that if we have a polynomial F with rational coefficients 
and g unknowns such that F (f1, . . . , fg) ≡ 0 (mod qm+1), then F (f1, . . . , fg) = 0 (see 
[BGJGP05, Section 2.1, Lemma 2.2, p. 1329]). Now we evaluate all the monomials of 
degree d in the basis B, obtaining elements of C[[q]] of which we know the first m
coefficients. In this way we get m vectors generating a subspace S of Ck where k is the 
number of monomials of degree d with fixed coefficient. A basis of the space S⊥, the 
orthogonal space to S in Ck, gives the coefficients of the desired equations for the image 
of ϕ. These coefficients belong to a number field that depends on the choice of the basis 
B and it is not necessarily Q.

If the Fourier coefficients of the elements of B belong to Q, then the coefficients of 
the equations belong to Q too. This, for example, happens for the curves X0(p), Xs(p)
and X+

s (p). But in general we cannot obtain Fourier coefficients in Q if the modular 
curve X(Γ ) does not have a rational cusp. However, if the modular curve can be defined 
over Q, one can expect to obtain rational equations also in the case there is not any 
rational cusp. This, for example, can be done for the curves Xns(p) and X+

ns(p). We 
briefly explain the process in Section 5.2 with particular emphasis on the case p = 13, 
while more details can be found in [MS17].
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Once we have equations defined over Q we can assume that their coefficients belong 
to Z. In this case we are interested in reducing the size of the coefficients of these 
equations and minimizing the number of primes � such that the model has bad reduction 
modulo �. There is a number field K which contains all the coefficients of all the elements 
of B ([DS05, p. 234, Theorem 6.5.1]). We can assume that the Fourier coefficients of the 
basis B are algebraic integers, hence their coordinates with respect to a suitable chosen 
basis of K over Q belong to Z. To reduce the size of the coefficients of the equations 
we can apply the LLL algorithm, first to the Fourier coefficients of B and then to the 
Z-basis of the space S⊥. We know that if the elements of B are linearly dependent 
modulo a prime number �, then the canonical model of the curve that we find is singular 
modulo �. In [Mer17, Algorithm 2.1] there is a description of how to modify B such that 
the elements of B are linearly independent for each prime �.

4. Equations of modular double covers

Let π : X → Y be a double cover of modular curves of the type Xs(p) → X+
s (p) or 

Xns(p) → X+
ns(p) where p is a prime number. We have jX = jY ◦ π where jX and jY are 

the j-maps to X(1) ∼= P1 of respectively X and Y . In this section we describe a general 
strategy for determining equations for X and π starting from existing equations of Y
and jY . This is basically the same strategy used in [DFGS14] to find equations for the 
modular double cover Xns(11) → X+

ns(11) and we describe here how it can be applied in 
general. In section 5 we apply it successfully to the double covers Xs(13) → X+

s (13) and 
Xns(13) → X+

ns(13).
Let K be the function field over Q of Y and let p1 = 0, . . . , pk = 0 ∈ Q[x1, . . . , xh]

be affine equations for Y . We have K ∼= Q(x1, . . . , xh)/(p1, . . . , pk). Let now L be the 
function field of X over Q, and let K ⊂ L be the field inclusion given by the morphism π. 
We would like to express L in the form

L = K(√q)

where q is a square-free polynomial in K, so that equations for X, possibly singular, are 
p1 = 0, . . . , pk = 0, t2 − q = 0 in the variables x1, . . . , xh, t. We start by observing the 
following facts.

Proposition 4.1. Let L = K(√q) for some non-square element q in K. Then the points of 
Y over which the morphism π ramifies are exactly the zeros and poles of odd order for q.

Proof. This is a consequence of Kummer Theory ([Sti09, p. 122, Proposition 3.7.3(b)]). �
Proposition 4.2. Let q be a function in K such that L = K(√q) and let f be another 
function of K whose zeros and poles of odd order are the points of Y over which the 
morphism π ramifies. If the rational 2-torsion of the Jacobian of Y is trivial, then L =
K(

√
λf) for some constant λ ∈ Q.
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Proof. Proposition 4.1 implies that all the zeros and poles of odd order for both q and 
f are the points of Y over which the morphism π ramifies. This means that the function 
q/f has zeros and poles of even order, i.e. div(q/f) = 2D for some degree 0 divisor D
of Y . Since q and f have rational coefficients, the triviality of the rational 2-torsion in 
the Jacobian implies that div(q/f) = div(h2) for some h ∈ K. Thus q/f = λh2 for some 
constant λ ∈ Q, so that √q and 

√
λf generate the same field over K. �

Therefore, assuming the hypothesis of Proposition 4.2, if we find a function f on Y
whose zeros and poles of odd order are the points over which π ramifies, then we have 
determined the function field of X to be of the form L = K(

√
λf) for some constant 

λ ∈ Q. Note that in this situation, f and λ can be both multiplied by a square (of respec-
tively a rational function or a rational constant), and the field L would still be generated 
by 

√
λf over K. We can then suppose f to be a polynomial function.

4.1. Determining the ramification points

The points over which the morphism π ramifies could be determined if we have equa-
tions for the modular j-map jY : Y → X(1) ∼= P1. In fact π can ramify only over points 
in which the function jY has a pole, a zero or it is equal to 1728 (see [DS05, Chapter 2, 
Section 2.3]). In other words, π can ramify over a cusp or over those elliptic points of 
Y whose preimage by π does not contain elliptic points of X. Furthermore, in both our 
cases, the number of cusps in X is exactly the double of the number of cusps in Y (see 
[Ogg74, p. 454, Proposition 3], [Bar10, Proposition 7.10]).

Let p be a prime and r a positive integer. A study of the elliptic points of Xns(pr) and 
X+

ns(pr) can be found in [Bar10], while the analogous study for X0(N) is classical for 
any positive integer N ([DS05, p. 92, Section 3.7]) and therefore for Xs(pr) ∼= X0(p2r). 
In [Ogg74, Section 2] the author computes the number of ramification points of the map 
X0(N) → X+

0 (N) (and therefore of Xs(pr) → X+
s (pr)), but he does not determine the 

order of the elliptic points associated.

Remark 4.3. A direct computation with cosets representatives shows that the number of 
elliptic points e2 and e3 for the curve Xs(pr) is

e2 =
{

2 if p ≡ 1 (mod 4)
0 otherwise

e3 =
{

2 if p ≡ 1 (mod 3)
0 otherwise

while for the curve X+
s (pr) we have

e2 =

⎧⎪⎪⎨
⎪⎪⎩

1 + pr−1

2 (p− 1) if p ≡ 1 (mod 4)
pr−1

2 (p + 1) if p ≡ 3 (mod 4)
2r−1 if p = 2

e3 =
{

1 if p ≡ 1 (mod 3)
0 otherwise
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4.2. Determining f

Once we have determined the coordinates of the points P1, . . . , Pr of Y over which π
ramifies, one can try to find a rational function f on Y , whose zeros and poles of odd 
order are exactly P1, . . . , Pr. A procedure for doing this, which does not necessarily give 
a solution, but it has been successful for X+

ns(11), X+
ns(13) and X+

s (13) is the following.
Let D be the divisor on Y given by P1+· · ·+Pr. This divisor is defined over Q because π

is defined over Q. Furthermore r must be even because of the Riemann–Hurwitz formula. 
Let Q1, . . . , Qk be the expected rational points on Y , which are only the CM-points of 
class number one, when Y = X+

ns(p) or the CM-points of class number one plus the 
rational cusp, when Y = X+

s (p). Then we compute Riemann–Roch spaces of the type

B(n1, . . . , nk)
def= H0

(
−D +

k∑
i=1

niQi

)

where ni is even for every i and 
k∑

i=1
ni = r. Since the divisor −D+

k∑
i=1

niQi has degree 0

then B(n1, . . . , nk) has dimension 0 or 1. If we find such a space of dimension 1 and we 
can give a basis of rational functions of it, then we have found our function f .

4.3. Verifying the triviality of the rational 2-torsion in the Jacobian

Let A be an abelian variety over Q and let � �= 2 be a prime of good reduction for A. 
If A has a nontrivial rational point of 2-torsion, then the number of points of A over 
F� must be even because � �= 2 and the reduction modulo � is an isomorphism on the 
2-torsion points of A. Hence, in our case, to prove the triviality of the rational 2-torsion 
in the Jacobian Jac(Y ) of Y , it is enough to find a prime number � �= 2, p such that the 
quantity #Jac(Y )(F�) is odd.

Computing #Jac(Y )(F�) can be done recalling that the Jacobian of Y is isogenous 
to some factor of the Jacobian of X+

0 (p2), the whole Jacobian in the split case, and the 
new part in the non-split case. Therefore we need to compute the number of F�-rational 
points of such factor which can be done using the Eichler–Shimura relations that relate 
the characteristic polynomial of the �-th Frobenius endomorphism acting on the Jacobian 
of X0(p2) with the characteristic polynomial of the Hecke operator T� (for an example 
of this, see the proof of [Dos16, p. 76, Theorem 1.1]).

4.4. Determining λ

Once we have equations of X up to multiplication by a constant λ ∈ Q, we can 
determine λ by analyzing the field of definitions of special values of the function f .

Let Q ∈ Y be a rational CM-point, therefore of class number one. Then the two 
points in X over Q are defined over the CM-field of the elliptic curve associated to Q
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(see [Ser97, pp. 194–195]). This allows us to determine the constant λ because 
√
λf(Q)

must generate the CM-field.

5. Results for level 13

We recall that X+
s (13) and X+

ns(13) are both curves of genus 3. They are isomorphic, 
and an equation for both of them is the following quartic in P2

p(X,Y, Z) def=(−Y − Z)X3 + (2Y 2 + ZY )X2 + (−Y 3 + ZY 2 − 2Z2Y + Z3)X+ (5.1)

+(2Z2Y 2 − 3Z3Y ) = 0

Starting from this equation it is possible to obtain formulas for the different j-maps of 
both X+

s (13) and X+
ns(13) (see [Bar14] for details and explicit formulas) which we will 

call respectively js and jns.

5.1. Singular equations of Xs(13) and Xns(13) in A3

Here we apply the strategy described in Section 4 to obtain equations of Xs(13) and 
Xns(13) starting from the known same equation (5.1) of X+

s (13) and X+
ns(13).

We begin by looking for the coordinates (in the model given by equation (5.1)) 
of the points of X+

s (13) and X+
ns(13) over which the two modular double covers 

πs : Xs(13) → X+
s (13) and πns : Xns(13) → X+

ns(13) ramify. Remark 4.3 and [Bar10, 
p. 2768, Proposition 7.10] tell us that both these double covers ramify over six elliptic 
points of order 2. This implies that such points are among the simple zeros of the func-
tion j − 1728. In [Bar14, Appendix A], we can find explicit affine formulas for js and 
jns which are both in the form j(x, y) = h(x, y)/k(x, y), where h and k are polynomials 
with integer coefficients, x 

def= X/Z and y
def= Y/Z.

Then to find the simple zeros of j(x, y) − 1728 we compute the resultant with respect 
to x of the polynomial p(x, y, 1), defining the affine equation of the curve, and the 
polynomial h(x, y) − 1728k(x, y). This resultant has the form:

(x− 1)(43x6 − 194x5 − 115x4 + 692x3 + 85x2 − 498x + 243)ϕ(x)

for the split case and

(2888x6 + 12500x5 + 13443x4 + 24786x3 + 134781x2 + 230254x + 120131)ψ(x)

for the non-split case, where ϕ and ψ are a product of irreducible polynomials with 
multiplicity higher than one. Using MAGMA ([BCFS]) we can check that both the 
polynomials of degree 6, made explicit above, define functions on X+

s (13) ∼= X+
ns(13)

with 18 simple zeros, which are divided in two Galois orbits of cardinality 12 and 6. We 
call P1, . . . , P6 the simple zeros in the Galois orbit of cardinality 6. Since the modular 
double covers πs and πns are defined over Q, the set of points that ramify in one of them 
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must be composed of entire Galois orbits. This implies that such points are exactly the 
points P1, . . . , P6.

The Jacobian of X+
s (13) ∼= X+

ns(13) doesn’t have any rational torsion ([BPS16, p. 60, 
Example 12.9.3.]). Hence, Propositions 4.1 and 4.2 imply that we can determine the 
function fields of Xs(13) and Xns(13) up to a constant, by adding to the function field 
of X+

s (13) ∼= X+
ns(13) the square root of a function f whose zeros and poles of odd order 

are the points P1, . . . , P6. Following the procedure described in Section 4.2, and using 
MAGMA, we compute a basis of each Riemann–Roch space of type

H0

(
−(P1 + · · · + P6) +

7∑
i=1

niQi

)

with n1, . . . , n7 even integers such that −12 � n1, . . . , n7 � 12 and 
7∑

i=1
ni = 6, and where 

Q1, . . . , Q7 are the 7 rational points of X+
s (13) ∼= X+

ns(13) associated to the rational 
CM-points of class number one, or to the rational cusp in the case of X+

s (13) (see 
[Bar14, p. 275, Table 1.1]).

With these conditions on the coefficients, the divisors −(P1+ · · ·+P6) +
7∑

i=1
niQi have 

degree 0, hence the associated Riemann–Roch spaces have dimension 0 or 1. There are 
indeed a few of these spaces which are non-trivial. Among them, we choose one that is 
associated to a divisor of the lower degree for which the associated space is non-trivial. 
For the split case we choose the space generated by

fs(x, y) =6y5 + 18y4 − 17y3 − 37y2 − 5y + 3
y4 x2+

+−5y5 − y4 + 18y3 − 17y2 − y + 6
y3 x+

+10y5 − 6y4 − 38y3 + 28y2 + 14y − 3
y4 ,

which is a function of degree 10, and we choose for the non-split case the space generated 
by

fns(x, y) =−11y8 − 20y7 − 41y6 − 85y5 − 260y4 − 586y3 − 635y2 − 312y − 56
y4 x2+

+22y9 + 29y8 +51y7 + 109y6 + 372y5 + 866y4 + 1124y3 + 840y2 + 340y+ 56
y4 x+

+−11y9 + 2y8 − y7 + 8y6 − 70y5 − 68y4 − 453y3 − 1016y2 − 740y − 168
y3 ,
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which is a function of degree 12. We can get rid of denominators by multiplying fs and 
fns by y4 which is a square in the function field of X+

s (13) ∼= X+
ns(13). We obtain the 

polynomial functions

qs(x, y) =(6y5 + 18y4 − 17y3 − 37y2 − 5y + 3)x2+

+(−5y6 − y5 + 18y4 − 17y3 − y2 + 6y)x+

+10y5 − 6y4 − 38y3 + 28y2 + 14y − 3

qns(x, y) =(−11y8 − 20y7 − 41y6 − 85y5 − 260y4 − 586y3 − 635y2 − 312y − 56)x2+

+(22y9 +29y8 + 51y7 + 109y6 + 372y5 + 866y4 +1124y3 +840y2 +340y+56)x+

−11y10 + 2y9 − y8 + 8y7 − 70y6 − 68y5 − 453y4 − 1016y3 − 740y2 − 168y.

Now we can determine the constant λ of Section 4.4. Note that

qs(0, 0) = −3 qs(0, 3/2) = −33 · 2−4

qns(−1, 0) = −7 · 24 qns(0, 3/2) = −163 · 2−10 · 310

which is consistent with [Bar14, p. 275, Table 1.1]. We have thus obtained singular models 
in A3 for Xs(13) and Xns(13) given respectively by the equations{

p(x, y, 1) = 0
t2 − qs(x, y) = 0

and
{
p(x, y, 1) = 0
t2 − qns(x, y) = 0

For both curves, the double cover over X+
s (13) ∼= X+

ns(13) has equation (x, y, t) �→ (x, y).

5.2. Smooth equations of Xs(13) and Xns(13) in P7

To find equations describing Xs(13) it is enough to take a basis for S2(Γ0(169)) using 
the software MAGMA ([BCFS]) or William Stein’s tables ([Ste12]). Then operate as 
shown in the proof of Corollary 6.5.6 in [DS05, p. 238] to find a basis with rational 
integer Fourier coefficients. Finally, we apply the method explained in Section 3. The 
equations obtained are shown in the Appendix.

The equations for the map πs : Xs(13) → X+
s (13), using this model for Xs(13) are 

obtained in the following way. Let B = {f1, . . . , fg} be a basis of eigenforms for S2(Γ0(p2))
and we assume that the first g+ elements of B are invariant with respect of the action 
of wp2 . Hence, B+ = {f1, . . . , fg+} is a basis for Ω1(X+

s (p)). So, the canonical embedding 
gives a canonical model C in Pg−1 for Xs(p) using B and a canonical model C+ in Pg+−1

for X+
s (p) using B+, and we have the morphism

π : C −→ C+,

(x1 : . . . : xg+ : xg++1 : . . . : xg) �−→ (x1 : . . . : xg+).
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Let t and t+ be the compositions of all the invertible projective linear transformations 
of Pg−1 and Pg+−1 respectively, that we use in algorithm 3.1 to obtain better models of 
Xs(p) and X+

s (p). These transformations include the elimination of bad primes as well 
as the application of LLL algorithm to the Fourier coefficients of modular forms and to 
the coefficients of the equations. We have the following commutative diagram

C C1

C+ C+
1

t

π π1

t+

where π1 is just the composition t−1 ◦ π ◦ t+. In the case p = 13 we have that C+
1 is 

the model given by equation (5.1), C1 is the model for Xs(13) obtained in Section 3 and 
written in the Appendix, while the map π1 is πs.

Finding equations describing Xns(13) is more difficult because we don’t have the 
Fourier coefficients of a basis for S2(Γns(13)). To find these Fourier coefficients we use 
a basis of S2(Γ0(169))new and some representation theory of G := GL2(Z/pZ). We use 
the newforms because the jacobian of Xns(p) is isogenous over Q to the new part of the 
jacobian of X0(p2) (see [Che98], [dSE00]).

The irreducible complex representations of the finite group G are divided into three 
kinds: representations of dimension p − 1, representations of dimension p and repre-
sentations of dimension p + 1. The representations of dimension p − 1 are also called 
cuspidal representations and this kind of representation is parametrized by characters 
θ : F∗

p2 → C∗. The other two kinds of representations are called principal series represen-
tations and are parametrized by characters μ of the upper triangular matrices subgroup 
of G. We have a representation of dimension p if μ is the quadratic character, and we 
have a representation of dimension p + 1 otherwise.

Let Vf be the C[G]-span of an element f of a basis of eigenforms for S2(Γ0(p2))new. 
We know that Vf is a complex irreducible representation that is a principal series rep-
resentation if f is a twist of an eigenform h of S2(Γ1(p)). This means that the Fourier 
coefficient an of f is equal, for each n, to χ(n)bn, where χ is a character of Fp and bn is 
the n-th Fourier coefficient of h. The dimension of Vf is p if the form h is in S2(Γ0(p))
and is p + 1 otherwise. If f is not a twist of a lower level form, then Vf is a cuspidal 
representation. One can find elements invariant under the action of a non-split Cartan 
subgroup of G using the related trace 

∑
g gf , where the sum is taken over all elements 

g in the non-split Cartan subgroup considered. To get equations over Q we need to 
multiply this trace by a constant εf defined as follows:

εf :=
{

τ(χ)τ(χ2)
ap

if f is a twist of an eigenform h of S2(Γ1(p)) by a character χ,
1 otherwise.
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Here ap is the p-th Fourier coefficient of h and τ(χ) is the Gauss sum 
∑p−1

k=1 χ(k)ζkp , with 

ζp = e
2πi
p , and the same for τ(χ2).

Last step is to take the Galois trace for each conjugate of f . We mean the following. 
The Fourier coefficients of f are in a number field Kf that we identify with Q[x]/(p(x))
where p is a monic irreducible polynomial of degree s. Let α1, . . . , αs be the complex 
roots of p, which correspond to the embeddings of Kf in C. Let fi be the element in the 
conjugacy class of f corresponding to the embedding of Kf associated to αi and suppose 
f = f1. As we said we take the non-split Cartan trace f̂ := εf

∑
g gf . This form has 

Fourier coefficients in Kf (ζp)+. Now we take the traces f̃k := Tr(αk−1
1 f̂) =

∑s
i=1 α

k−1
i f̂i, 

for k = 1, . . . , s, where Tr is the usual trace map from Kf (ζp)+ to Q(ζp)+. The forms 
f̃1, . . . , f̃s have Fourier coefficients in Q(ζp)+ and collecting them for each conjugacy 
class of S2(Γ0(p2))new, we get a basis that gives equations over Q for the corresponding 
curve, for more details see [MS17] or, for the cuspidal case, see [Bar14].

We have that S2(Γ0(169))new has dimension 8 and let B = {f1, . . . , f8} be a basis of 
eigenforms of S2(Γ0(169))new. Three of the forms in B are conjugate with respect to the 
Galois action and form a basis for the wN -invariant forms in S2(Γ0(169))new; they are 
not twist of some lower level form, so the irreducible representations associated are all 
cuspidal. Two Galois conjugate forms in B are twists of a form of S2(Γ1(13))new, which 
is a complex vector space of dimension 2. The last three forms in B are conjugate with 
respect to the Galois action and they are not twists of some lower level form, so the 
associated irreducible representations are all cuspidal.

The equations obtained are written in the Appendix together with the equations for 
the map πns : Xns(13) → X+

ns(13) which are obtained analogously to the split case.

6. Maps from the canonical models to other models

To compute maps from the canonical model C to a different model C′, we use the 
reverse-mapping correspondence between curves and function fields. What we do is find-
ing an injective field homomorphism ι from the function field F ′ of C′ to the function 
field F of the canonical model C. To achieve this, we need a way to go from rational 
functions on the canonical model to their Laurent q-expansion and vice versa. One di-
rection is easy. Indeed, we know that the xi in the equations of the canonical models 
in Section 5.2 correspond to elements in a specific basis of cusp forms, that we found 
beforehand. On the other hand recognizing Laurent q-series as rational functions in the 
xi requires more work.

Let’s place ourselves in the affine chart of C where x8 �= 0. The function field of C is 
generated by the functions x1

x8
, . . . , x7

x8
which are all well defined in the affine chart we 

chose. Let hi be the Laurent q-expansion of xi

x8
for i = 1, . . . , 7. Let f be an element of 

F ′ and suppose we know the Laurent q-expansion of ι(f) ∈ F . We want to write ι(f) in 
the form

ι(f) = p(h1, . . . , h7)
,

q(h1, . . . , h7)
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where p and q are suitable polynomials. We write the previous equality as

p(h1, . . . , h7) − ι(f)q(h1, . . . , h7) = 0,

where the left hand side above can be seen as a linear combination of Laurent q-series, 
assuming we know the degree of the polynomials p and q.

Therefore, if we know the first m Laurent coefficients of ι(f), h1, . . . , h7, with m >
d(2g − 2) = 14d and d is the maximum of the degrees of p and q, it is easy to compute 
the coefficients of p and q in the same way explained in the algorithm 3.1 description for 
the coefficients of the polynomial F , i.e. we have m vectors generating a subspace S and 
we want a basis of S⊥. If we don’t know the degree of p and q, we make computations 
just trying sufficiently large degree of p and q until we find some non-trivial relations 
among Laurent coefficients.

6.1. Map to Kenku’s affine plane model of X0(169)

In [Ken80] and [Ken81], Kenku gives an explicit plane affine model of X0(169) which 
is naturally isomorphic to Xs(13). Let X and Y be the coordinates in the affine model of 
X0(169) described in Kenku’s paper. They correspond to Laurent q-series obtained by

X(τ) = 13η2(169τ)
η2(τ) , Y (τ) = η2(τ)

η2(13τ) ,

where η is the classical Dedekind eta function η(τ) = q
1
24

∏
n(1 − qn) and q = e2πiτ . We 

consider the affine model for Xs(13) as the affine chart where x8 �= 0 in the projective 
model described by equations in Section 5.2. Then we have the field isomorphism

ι : Q(X0(169)) −→ Q(Xs(13))

X �−→ U

Y �−→ V,

where

numerator(U) = 117x2
1 − 13x1x2 + 13x1x3 + 13x4x6 + 13x4x7+

+ 26x4x8 − 13x2
5 + 13x6x8 + 13x2

7,

denominator(U) = 238x2
3 + 215x3x4 + 215x3x5 + 429x3x6 − 419x3x7 + 36x3x8 − 89x2

4+

+ 185x4x5 + 130x4x6 − 505x4x7 − 313x4x8 + 305x2
5 + 217x5x6+

+ 145x5x7 − 46x5x8 +28x2
6 − 7x6x7 +352x6x8 + 351x2

7 − 3x7x8 − 2x2
8;

numerator(V ) = 4637022x2
1 + 4624659x4x6 − 5060016x4x7 + 14784393x4x8+

− 6782997x2
5 − 19275477x5x6 − 8559018x5x7 + 1545960x5x8+
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− 28694289x2
6 − 8134854x6x7 − 4473261x6x8 + 6858072x2

7+

+ 2366208x7x8 − 3989778x2
8,

denominator(V ) =−209376188x2
3 − 196485388x3x4 − 183091120x3x5 − 421799299x3x6+

+ 371436944x3x7 − 136573881x3x8 + 89731271x2
4 − 151182225x4x5+

− 140218639x4x6 + 488527387x4x7 + 280939604x4x8 − 277852129x2
5+

− 207933217x5x6 − 146929317x5x7 + 17764144x5x8 − 15033364x2
6+

+ 3885141x6x7 − 323708963x6x8 − 329322311x2
7 − 3989778x7x8.

6.2. Desingularization maps to the affine models of section 5.1

The function fields defined by the equations found in Section 5.2 and the function 
fields defined by the equations found in Section 5.1 are both isomorphic to the function 
field of the associated modular curve, which is Xs(13) or Xns(13). Here we give an explicit 
isomorphism between the function fields defined by the two models, in both the split and 
the non-split case.

Let C be the smooth projective model defined in Section 5.2 and let C′ be the singular 
affine model defined in Section 5.1. We have the following situation

C

π

ϕ
C′

π′

C+
p C+

a

where C+
p is the curve defined by equation (5.1), C+

a is the affine chart in which Z �= 0, 
the map π is πs or πns depending on whether we are dealing with the split or the 
non-split case, π′ is the double cover given by (x, y, t) �→ (x, y) and ϕ is a birational map 
that makes the diagram commute on some affine chart of C. The isomorphism from the 
function field of C′ generated by x, y, t to the function field of C is given in the form

ϕ∗ : Q(C′)
∼=−→Q(C)

x �−→ X/Z

y �−→ Y/Z

t �−→ t̃

where X, Y, Z are the one defined in Section 5.2 in the equations of πs and πns, and 

t̃
def= s · (Y/Z)2, with s being a square root of π∗

s fs or π∗
nsfns depending on whether we are 

dealing with the split or the non-split case. To determine s we take a square root of the 
Laurent q-expansion of π∗

s fs or π∗
nsfns and then we recognize it as a rational function in 

the xi, as explained in the beginning of Section 6. In the split case we get
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s = 4x1 − x2 − x3 + x4 − 3x5 − x6 − 2x7 + x8

−x2 + x3 + x4

and for the non-split case we get

numerator(s) = 78953974807x2
1 + 26x1x2 − 25x1x3 − x1x4 + 2x2

3+

+ 238115162692x4x7 + 209337250703x4x8 − 582346348536x2
5+

+ 727177285412x5x6 + 78542213920x5x7 − 563548816331x5x8+

+ 65380280758x2
6 − 244488381626x6x7 + 82647686352x6x8+

+ 136959277010x2
7 + 250609762421x7x8 − 257891423548x2

8,

denominator(s) = 33279035581x2
3 − 20440236060x3x4 + 161001990516x3x5+

+ 177481085270x3x6 − 284601313488x3x7 − 214125958084x3x8+

− 116902000189x2
4 + 103367036819x4x5 + 124067876928x4x6+

− 155405328616x4x7 − 193679032128x4x8 − 57688123584x2
5+

− 123976858837x5x6 − 194732784800x5x7 − 165341806053x5x8+

− 126114432327x2
6 + 524882113804x6x7 + 271440452599x6x8+

− 236487356215x2
7 − 365606104840x7x8 − 113208254802x2

8.

Appendix A. Equations for the canonical models of Xs(13) and Xns(13)

The curve Xs(13) of g = 8 can be explicitly given by the following 15 equations in P7.

x1x2 − x1x3 − x2
2 − x2x4 + x2x5 + x3x6 − x3x7 − x4x6 − x4x7 − x4x8 = 0

− x2
1 + 2x1x2 + x1x4 − x1x5 + x1x6 + x2

3 + x3x5 + x3x6 − x3x7 − x2
4 + x4x5 − x4x7+

− x5x8 + x2
6 + x6x8 + x2

7 = 0

x2
1 + x1x3 − x1x4 + x1x5 + x1x7 + x1x8 − x3x4 + x3x7 + x3x8 + x2

4 − 2x4x5 − x5x6+

+ x5x7 + x5x8 − x2
6 = 0

− x1x6 − 2x1x8 + x2
2 + x2x4 − x2x5 − x3x6 − x3x8 − x4x6 + x4x8 + x5x6 − x5x7+

− x5x8 + x2
6 = 0

− x1x2 + x1x3 − x1x4 − 2x1x6 + x2
2 − x2

3 − x3x5 − 2x2
4 + x4x6 + x2

5 + x5x6 = 0

x1x2 − x1x4 + x2
2 + 2x2x4 − x2x5 + x3x6 + x3x7 − x3x8 + x4x6 + x5x6 − x5x7 = 0

− x1x2 + x1x6 − x2
2 − x2x5 − x3x4 + x3x5 − x3x6 + x3x8 + x4x6 + x4x8 − x5x6+

+ x5x7 + x5x8 − x2
6 + x6x8 + x2

7 = 0

x1x2 − x1x3 + x2x3 + x2x4 + x2x5 + x3x7 − x3x8 + x2
4 − x4x6 + x4x8 − x2

5 − x5x7+

− x6x8 − x2
7 = 0
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− x1x3 − x1x4 − x1x6 − 2x2x4 + x2x6 + x3x8 − x4x7 − x5x6 = 0

x1x2 − x1x8 − x2x5 − x2x7 + x2x8 − x3x7 − x4x5 − x4x7 + x2
5 − x5x8 − x6x7 + x6x8+

+ x2
7 = 0

2x1x3 + x1x4 + x1x7 − x1x8 + x2
2 + x2x5 + x2x7 + x2

3 + x3x6 − x3x7 + x3x8 − x4x5+

− x4x6 − x4x7 + x5x6 + x5x7 + x2
6 + x6x8 + x2

7 = 0

x1x3 − x1x4 − x1x5 − x1x6 − x2x4 + x2x6 − x2x8 − 2x3x4 − x3x6 − x3x7 + x3x8 − x2
4+

− x4x5 + x6x7 = 0

x1x5 − x1x6 − x1x7 + x2x4 + x2x5 − x2x6 − x2x8 + x3x4 − x3x8 − x4x6 − x4x7+

− x4x8 + x2
5 + x5x6 + x6x7 − x6x8 − x2

7 = 0

− x2
1 − x1x2 − x1x4 + x1x6 + x2

2 + x2x4 − x2x8 + x3x4 − 2x3x5 + x3x7 + x2
4 + x4x6+

− x4x8 − x2
5 + x6x7 − x6x8 − x2

7 = 0

x2
1 − x1x2 − x1x3 + x1x7 + 2x1x8 + x2x3 − x2x7 + x2

3 + x3x4 + x3x5 + x2
4 + 2x4x5+

− x5x6 − x5x8 = 0.

This curve has only two rational points: the two cusps ([Ken80, p. 241, Theorem 1], 
[Ken81]). Using the previous equations, these rational points have the following coordi-
nates.

Rational points
(−2 : −1 : −4 : 3 : 6 : −3 : 1 : 4)

(0 : 0 : 0 : 0 : 0 : 0 : 0 : 1)

The map πs : Xs(13) → X+
s (13), using the previous model for Xs(13) and the model 

(5.1) for X+
s (13), is

⎧⎪⎨
⎪⎩
X = −x1 + x2 + 2x4 + x5 − x6 + x7 − x8
Y = −x2 − x3 + x4 + x5 − x6 − x8
Z = −x1 − x2 − 2x4 + x5 + x6.

The curve Xns(13) of g = 8 can be explicitly given by the following 15 equations in P7.

x2
1 − x1x3 − x1x4 − x1x7 + x1x8 + x2x4 + x2x5 + 2x3x4 − 2x3x5 − x3x8 + 2x4x5+

+ x4x7 + x5x8 − x2
7 + x7x8 = 0,

− x1x3 + 2x1x5 + x1x8 − 2x3x4 − x3x5 + x3x6 − x3x7 − x4x5 − x4x6 + x4x7+

+ x4x8 − x2
5 + x5x6 − 3x5x8 − x6x7 − 3x6x8 + x2

7 − x2
8 = 0,

− x1x3 + 2x1x4 + x1x5 − 2x1x6 + 4x1x8 + x2x4 + x2x5 − x3x4 + x3x6 − x3x7 − x2
4+

+ x4x5 − 2x4x8 + 2x5x7 + x5x8 − 2x6x8 + x7x8 − x2
8 = 0,
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x1x3 + x1x4 + x1x5 − 3x1x6 + x1x7 + 2x1x8 − x2x3 − x2x4 + x2x5 + x2x6 − x2
3+

− x3x4 − x3x5 + x3x6 − x3x8 − 2x4x5 − x4x8 + x5x6 + x5x7 + 2x2
6 − 2x6x7 + x2

7+

+ x7x8 − x2
8 = 0,

x1x2 − x1x3 + x1x5 + x1x6 − x1x7 + x1x8 + x2
2 + x2x3 − x2x4 − x2x5 − x2x6 + x2

3+

− x3x4 − x3x5 − x3x6 + x3x8 − x2
4 + x4x5 + 2x4x6 + x4x7 − 2x4x8 − x2

5 + 2x5x6+

+ x5x7 − 2x5x8 + x6x7 − x6x8 + x7x8 − x2
8 = 0,

2x1x2 + x1x3 − x1x4 + x1x6 − x1x7 − x1x8 + x2x3 − 2x2x4 − x2x5 − x2x6 + x2x7+

+ x2
3 − 2x3x4 − x3x6 − x3x7 + x4x5 + x4x6 + x4x7 + 2x4x8 + x5x6 − 2x5x8+

+ x6x7 − x6x8 = 0,

− x2
1 + x1x2 + 2x1x3 + x1x5 − x1x6 − x1x7 + 2x1x8 − x2

2 − x2x3 + x2x6 + x2x7+

+ x2x8 − x3x4 − x3x5 − x3x8 − x2
4 + x4x6 + x2

5 − x5x6 − x6x7 − x6x8 = 0,

− x2
1 − x1x2 + x1x5 + 2x1x6 + x1x7 + x1x8 + x2x3 − x2x4 − x2x5 + x2x7+

+ x2x8 − x3x5 + x3x6 − x3x7 + x4x5 − x4x6 + x4x7 − x2
5 + x5x6+

+ x5x7 − x5x8 − 2x6x8 + x7x8 − x2
8 = 0,

− 2x1x2 + 2x1x3 − x1x4 − x1x5 + x1x7 − x1x8 − x2x4 + 2x2x5 + 2x2x6 + x2x8 − x2
3+

+ x3x4 + x3x5 + x3x6 + x3x7 − x3x8 + x2
4 + x4x5 + x4x7 − x2

5 − 2x5x6 − x5x7+

+ x5x8 − x6x7 + x6x8 − x2
7 + x7x8 = 0,

− 2x1x3 − x1x4 + x1x5 − x1x7 + 2x1x8 + x2
2 + x2x3 − x2x4 − x2x7 + x3x4 + x3x5+

+ 2x3x6 − 2x3x7 + 2x3x8 − x2
4 + 2x4x5 + 2x4x7 − x4x8 − x2

5 + 2x5x7 − x5x8+

+ 2x6x7 − 2x6x8 + 2x7x8 − 2x2
8 = 0,

− x1x2 + 2x1x4 − x1x6 + x1x7 + x1x8 − x2
2 + 2x2x4 + x2x5 − x2x6 + 2x2x7+

+ 2x2x8 − x4x6 − x4x7 − x4x8 + x5x6 + x5x7 + x5x8 = 0,

x1x3 + 2x1x4 − x1x5 − x1x6 + x1x7 + x1x8 − x2
2 − x2x3 − x2x4 + x2x5 + x2x6+

+ x2x7 − 2x2x8 − x2
3 + 2x3x5 + x3x6 + x3x7 − x3x8 + x4x5 − x4x6 − x4x7 − x4x8+

− x5x6 + x5x7 + 2x5x8 − x6x7 + x6x8 − x2
7 + x7x8 = 0,

− x2
1 + x1x2 + 2x1x3 − x1x4 + x1x6 − x1x7 − x2x3 − 2x2x4 − 2x2x5 − x2x7 − x2x8+

− x2
3 − x3x5 + x3x7 − x3x8 + x2

4 + x4x5 + 2x4x7 + x4x8 + x5x6 + x5x7 − x5x8+

+ 2x6x8 + 2x2
7 + 2x7x8 − 2x2

8 = 0,

x2
1 + 2x1x2 − x1x3 − x1x4 + x1x6 − x1x8 − x2

2 + 2x2x3 − 2x2x5 + x2x7 + 3x2
3 − x3x4+

− 2x3x6 − x3x7 − x2
4 + 3x4x6 + 2x2

5 + x5x6 + x5x7 − 2x2
6 − x6x7 + x6x8 − x2

7+

− 2x7x8 + 2x2
8 = 0,
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2x2
1 − 2x1x2 + x1x4 + 3x1x5 − 2x1x6 − 2x1x7 − 2x1x8 + x2

2 − x2x3 − 3x2x5 − x2x7+

− 3x3x4 + x3x6 + x3x8 + x2
4 + 3x4x5 − 2x4x6 + x4x7 + x4x8 + 2x2

5 − 4x5x6+

− 2x5x8 + 2x6x7 + x2
7 − 2x7x8 + x2

8 = 0.

We know that this curve doesn’t have rational points. The map πns : Xns(13) →
X+

ns(13), using the previous model for Xns(13) and the model (5.1) for X+
ns(13), is

⎧⎪⎨
⎪⎩
X = −3x1 + 2x2
Y = −3x1 + x2 + 2x4 − 2x5
Z = x1 + x2 + x4 − x5.
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