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A B S T R A C T   

Brain-derived neurotrophic factor (BDNF) is one of the most studied neurotrophins in the mammalian brain, 
essential not only to the development of the central nervous system but also to synaptic plasticity. BDNF is 
present in various brain areas, but highest levels of expression are seen in the cerebellum and hippocampus. 

After birth, BDNF acts in the cerebellum as a mitogenic and chemotactic factor, stimulating the cerebellar 
granule cell precursors to proliferate, migrate and maturate, while in the hippocampus BDNF plays a funda-
mental role in synaptic transmission and plasticity, representing a key regulator for the long-term potentiation, 
learning and memory. Furthermore, the expression of BDNF is highly regulated and changes of its expression are 
associated with both physiological and pathological conditions. 

The purpose of this review is to provide an overview of the current state of knowledge on the BDNF biology 
and its neurotrophic role in the proper development and functioning of neurons and synapses in two important 
brain areas of postnatal neurogenesis, the cerebellum and hippocampus. 

Dysregulation of BDNF expression and signaling, resulting in alterations in neuronal maturation and plasticity 
in both systems, is a common hallmark of several neurodevelopmental diseases, such as autism spectrum dis-
order, suggesting that neuronal malfunction present in these disorders is the result of excessive or reduced of 
BDNF support. 

We believe that the more the relevance of the pathophysiological actions of BDNF, and its downstream signals, 
in early postnatal development will be highlighted, the more likely it is that new neuroprotective therapeutic 
strategies will be identified in the treatment of various neurodevelopmental disorders.   

1. Introduction 

Among the various neurotrophins, the brain-derived neurotrophic 
factor (BDNF) is the most studied and present in almost all brain regions 
(Devlin et al., 2021), although its role differs depending on the area and 
stage of developing and adult brain (Hofer et al., 1990; Cohen-Cory 
et al., 2010). BDNF plays a crucial role in the modulation of major 
neurodevelopmental processes—such as the survival and growth of 
neurons and synaptic efficiency and plasticity and, it is heavily involved 
in the cellular and molecular processes responsible for the formation and 
maintenance of memory (e.g., relational, spatial, and long-term mem-
ory) by promoting synaptic consolidation (Cirulli et al., 2004; Bramham 
and Messaoudi, 2005; Erickson, 2010; Erickson et al., 2010). Indeed, 
BDNF is a key mediator of neuronal plasticity within the central nervous 

system, acting on both pre-synaptic and post-synaptic sites and affecting 
dendritic spines and adult neurogenesis at different levels (Edelmann 
et al., 2014; Lin et al., 2018). 

The pleiotropic effects of BDNF depend on its ability to participate in 
a wide range of signal transduction cascades, which can be explained by 
the presence of variants and active isoforms interacting with two 
different receptors, i.e. the tropomyosin receptor kinase B (TrkB) and the 
low affinity p75 neurotrophin receptor (p75NTR) (Foltran and Diaz, 
2016). 

Compared to the neocortex, the prolonged developmental timeline of 
the cerebellum and hippocampus, wherein neurogenesis and synapto-
genesis occur extensively after birth (Walton, 2012), makes these brain 
regions highly sensitive to BDNF dysregulation and vulnerable to neu-
rodevelopmental anomalies. 
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It has become increasingly clear that changes of BDNF expression, 
particularly in the cerebellum and hippocampus (Ismail and Shapiro, 
2019; Neeper et al., 1996) are common to several neurodevelopmental 
disorders (NDDs). NDDs, often named “synaptopathies” because of 
structural and functional synaptic plasticity abnormalities, are a broad 
class of disorders that share motor and cognitive deficits (Ismail and 
Shapiro, 2019). 

A key question in this research field is: how important is the BDNF 
signal in cerebellar and hippocampal postnatal development and what 
are the direct implications of its alterations in the onset of synaptic 
deficits common to NDDs such as autism spectrum disorders? 

To answer this question, we critically review rodent and human 
studies that illustrate how BDNF is essential to coordinate cellular and 
molecular mechanisms involved in postnatal neurogenesis and syn-
aptogenesis under physiological conditions and how its dysregulation, 
in terms of expression and signaling, is commonly present in neuro-
developmental diseases. 

For this reason, we have chosen to focus on: i) postnatal cerebellar 
development where the development of cerebellar granule cells can be 
accurately monitored from progenitor to mature neurons, giving the 
possibility to clarify the role of BDNF in coordinating the close succes-
sion of molecular events that lead to the generation, migration, differ-
entiation of mature neurons and the development of excitatory and 
inhibitory synapses (Chen, 1999; Waterhouse, 2012; Chen et al., 2016); 
ii) the hippocampus, which due to its highly plastic and flexible nature 
in relation to learning and memory, represents a system of excellence for 
studying how BDNF controls neurogenesis, neuroprotection, synaptic 
plasticity and long-term potentiation (LTP), during development and in 
the adulthood (Leal et al., 2015; Sairanen, 2005; Leal et al., 2015). 

2. BDNF synthesis and activity 

The BDNF was discovered and isolated from pig brain samples by 
Barde and colleagues in 1982 (Barde et al., 1982). As a small dimeric 
protein, BDNF is structurally homologous with Nerve Grow Factor 
(NGF), having 50% amino acid identity with NGF, neurotrophin-3 (NT- 
3), and NT-4/5 (Bathina and Das, 2015). 

In humans, the BDNF gene has been mapped to chromosome 11 at 
position 14.1 (Maisonpierre et al., 1991) in a region involved in several 
mental disorders and genetic syndromes (Hanson et al., 1992; Rosier 
et al., 1994). The human BDNF gene contains 11 exons in the 5′ region 
and nine functional promoters, which are tissue and brain-region spe-
cifically activated and give rise to alternatively spliced transcripts 
(Pruunsild et al., 2007). The rodent BDNF gene has 5′ exons with mul-
tiple tissue-specific promoters and one 3′ exon encoding the mature form 
of the BDNF protein (Aid, 2007; Timmusk, 1993; Aid et al., 2007). 

BDNF expression levels are low during fetal development, increase 
significantly after birth, and then decrease during adulthood (Bathina 
and Das, 2015; Hohn et al., 1990). BDNF is expressed throughout the 
brain (Hohn et al., 1990; Chen et al., 2017), but its highest level of 
expression is found within hippocampal and cerebellar neurons (Wet-
more et al., 1990; Miranda et al., 2019). 

Like other secreted proteins, BDNF is synthesized in the endoplasmic 
reticulum (ER) as pre-pro-BDNF (Greenberg et al., 2009), which is 
cleaved in the Golgi apparatus to form a ~ 32 kDa protein called pro- 
BDNF (Mowla et al., 2001). The resulting precursor can be further 
processed by specific intracellular and/or extracellular proteases, 
generating the mature form of ~13 kDa, although pro-BDNF itself can 
act as an active ligand upon its release into the extracellular space 
(Mowla et al., 2001; Kolarow et al., 2007; Yang et al., 2014). Upon 
synthesis, BDNF is stored in secretory granules and, depending on the 
cell type, it is: i) delivered to dendrites, to modulate the architecture of 
spines and thus synaptic plasticity (Kellner et al., 2014); or, ii) trans-
ported along the axons in an antegrade manner (Altar et al., 1997) to 
coordinate the stabilization of the presynaptic site and the growth/ 
branching of the axon terminals (Hu et al., 2005; Cohen-Cory et al., 

2010). 
The opposite effects on cell survival of pro-BDNF and mature BDNF 

were clarified when these forms were shown to bind two different re-
ceptors (Je et al., 2013) (Fig. 1). 

The pro-BDNF preferentially interacts with a member of the tumor 
necrosis factor receptor family, known as the low-affinity neurotrophin 
receptor p75 (p75NTR) (Teng et al., 2005), while BDNF binds with high 
affinity to tropomyosin kinase receptor B (TrkB), favoring cell survival 
(Chao and Hempstead, 1995; Zaccaro et al., 2001). Nevertheless, pro- 
BDNF can also bind with low affinity to TrkB receptor, activating a 
cell survival signaling, named “extracellular signal-regulated kinases 
(ERKs)- related pathway” (Fayard et al., 2005). 

Mature BDNF binding to TrkB receptor leads to receptor dimeriza-
tion and autophosphorylation of its intracellular tyrosine residues 
(Chao, 2003; Philippidou et al., 2011). Phosphorylated receptor (pTrkB) 
and its ligand are then internalized via endosomes, activating three 
principal cytoplasmic signaling cascades, which are important for cell 
survival (Huang and Reichardt, 2003; Chen et al., 2005). This is unusual 
because the internalization of other growth factor receptors is necessary 
to inactivate the signaling processes (Sorkin and Waters, 1993). The 
internalized TrkB receptor remains phosphorylated and closely associ-
ated with a number of signaling molecules such as PI3 kinase, MAP ki-
nase and PLC-γ (Huang and Reichardt, 2003). 

The first pathway is the phosphatidylinositol 3-kinase (PI3K)–serine/ 
threonine kinase 1 (AKT), which suppresses cell death by inhibiting the 
activities of two forkhead transcription factors, Bax and BAD (the BCL2- 
associated agonist of cell death) (Cantley, 2002; Tsuruta et al., 2002; 
Huang and Reichardt, 2003). The second pathway is the Ras mitogen 
activated protein kinase (MAPK) signaling cascade (Skaper, 2008). Ras 
is a small protein that binds to GTP, a molecule upstream of several 
signaling pathways, including Raf/MEK/ERK (extracellular signal- 
regulated kinases), stimulating the expression of anti-apoptotic pro-
teins such as BCL2 and CREB (a cAMP-response element binding pro-
tein) (McCubrey et al., 2007). Thirdly, the phospholipase C-gamma 
(PLC-γ) pathway, with the activation of the inositol triphosphate re-
ceptor (IP3R), leads to the release of intracellular calcium deposits that 
start the activation of calmodulin kinase (CamK) and protein kinase C 
(PKC) and, consequently, the synaptic plasticity by the transcription 
factor CREB (Minichiello et al., 2002; Chao, 2003). It is important to 
point out that, the PLCγ-mediated response is responsible for fast, short- 
term effects and favors cell growth and differentiation, while MAPK and 
PI3K pathways generate long-term transcriptional effects (Yoshii and 
Constantine-Paton, 2010). 

In the developing and adult brain, the TrkB receptor can perform its 
functions even in the absence of the BDNF ligand, a mechanism known 
as “transactivation,” due to the activation of G protein-coupled receptors 
(GPRs) (Lee and Chao, 2001). Adenosine and pituitary adenylate 
cyclase-activating polypeptide (PACAP), two GPR ligands, can activate 
the TrkB receptor even without BDNF and improve neural cell survival 
via Akt signaling (Rajagopal et al., 2004). 

In contrast to TrkB receptor, which has a well-characterized trophic 
role, p75NTR functions are sometimes opposite. Indeed, by interacting 
with the TrkB receptor, p75NTR can potentiate and/or reduce TrkB re-
ceptor activity, otherwise, it can act with pro-BDNF triggering apoptotic 
cascades (MacPhee and Barker, 1997; Roux and Barker, 2002; Teng 
et al., 2005). This binding requires the formation of a complex with 
adaptor proteins, including sortilin (Nykjaer et al., 2004; Teng et al., 
2005). The p75NTR /sortilin receptor complex leads to various activators 
of apoptotic signaling pathways, such as the c-Jun N-terminal kinase 
(JNK) and caspase 3–9; while the Ras homolog gene family member A 
(RhoA), and the nuclear factor kappa B (NF-κB) can also trigger neuronal 
survival and growth cone development (Teng et al., 2005; Eggert et al., 
2021). Although the p75NTR receptor was discovered in 1986 (Johnson 
et al., 1986), and despite numerous structural and functional aspects 
studied in depth, its complex activation mechanisms remain elusive. 
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3. BDNF is a critical regulator of neuronal maturation and 
synaptic plasticity 

Brain development is orchestrated by cell-autonomous programs, 
environmental factors, and the formation and refinement of appropriate 
synaptic connections; in the rodent cerebellum these coordinated events 
also occur during the first three weeks of postnatal life, while in the 
hippocampus they persist throughout life (Jiang and Nardelli, 2016). 
Therefore, the cerebellum is among the first brain areas to initiate cell 
differentiation and one of the last to fully mature in postnatal life (Wang 
and Zoghbi, 2001; Marzban et al., 2015; Rahimi-Palaei et al., 2018), 
while the hippocampus remains structurally plastic throughout adult life 
(Bayer and Altman, 1974; Mallard et al., 2000). 

For these reasons, we have decided to focus our attention both on 
cerebellar development, as it provides an excellent model system to 
study how BDNF participates in the formation and modulation of brain 
circuits during postnatal development, and on the hippocampal brain 
region, which represents an elective structure to investigate dynamics 
concerning adult neurogenesis and the subsequent integration of 
newborn neurons into existing circuitry. 

The long-lasting developmental time sequence exposes these two 
brain structures to an extended window of vulnerability to dysfunctions 
(Altman and Bayer, 1997; Middleton and Strick, 1998; Lavezzi et al., 
2006; Fiorenza et al., 2021), which might contribute to neuro-
developmental disorders. 

3.1. Pleiotropic effect of BDNF on the postnatal cerebellum: role on cell 
survival, migration and synaptogenesis 

BDNF and its TrkB receptor are highly expressed in the postnatal 
cerebellum, with a spatiotemporal distribution that coincides with the 
main modifications characterizing the complex cerebellar maturation 
program (Lindholm et al., 1997; Bosman et al., 2006). 

As it is known, granule cells (GCs) represent the most abundant 
neuronal type in the cerebellar cortex. During the first week of postnatal 
life, GC precursors (GCPs) intensely proliferate in the cerebellar outer 
granular layer (EGL); subsequently, they exit the cell cycle, initiate to 
differentiate and migrate radially along Bergmann glial processes to-
wards their final destination, the inner granular layer (IGL), leaving 
their axons – named parallel fibers - in the molecular layer (ML) (Carletti 
and Rossi, 2008). In rodents, GC migration and maturation are 
completed at three weeks of age, which coincides with the disappear-
ance of EGL in the adult cerebellar cortex (Espinosa and Luo, 2008). 

The trophic effect of BDNF on GCs, both in vitro and in vivo, was 
described long time ago (Segal et al., 1992; Lindholm et al., 1993). In 
vitro studies showed that NMDA receptor activation on the GC mem-
brane induced the synthesis and release of BDNF, which in turn pro-
moted their survival and differentiation (Burgoyne et al., 1993). 

Preclinical studies over the past two decades have demonstrated that 
BDNF knockout mice show an increase of GCP death, causing a reduc-
tion of the number of mature GCs and IGL thickness (Minichiello and 
Klein, 1996). 

BDNF acts also as a chemotactic factor, stimulating GCs migration 
along Bergmann glia, in response to the BDNF concentration along the 
migratory path, from the EGL to IGL (Borghesani et al., 2002). In 
response to this gradient, phosphorylated TrkB is endocytosed in 
endosomes that accumulate in or near the main GCs process, orienting 
them to the source of BDNF in the IGL (Zhou et al., 2007). Furthermore, 
the activation of TrkB induces an autocrine release of BDNF from GCs 
that had already reached the IGL, which sustains the BDNF gradient 
itself (Sadakata et al., 2004; Zhou et al., 2007). Thus, paracrine/auto-
crine BDNF release and TrkB endocytosis promote polarized migration 
of GCs along the BDNF gradient. 

The pro-BDNF and its p75NTR receptor are also highly expressed in 
the cerebellum and have an opposite role on GCs migration compared to 
the mature BDNF (Carter et al., 2003). Indeed, pro-BDNF has been 

Fig. 1. The balance between pro-survival and pro-apoptotic signaling induced by BDNF receptors. 
Pro-survival effect: BDNF binding to full-length receptor TrkB, leads to receptor dimerization and autophosphorylation of intracellular tyrosine residues, triggering 
three different signaling pathways: MAPK/ERK crucial for neuronal proliferation, differentiation and survival; PI3K / Akt involved in survival and axonal/dendritic 
growth; and phospholipase C (PLC) to promote survival and synaptic plasticity. By binding to the low-affinity TrkB receptor, pro-BDNF activates signaling cascades 
involved in neuronal survival. Pro-apoptotic effect: pro-BDNF binds with high-affinity to p75NTR, whose activation requires the recruitment of sortilin to the receptor, 
leading to apoptotic cascade activation by c-Jun N-terminal kinase (JNK) or stress-activated protein kinase. 
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shown to inhibit GC migration, both in vivo and in vitro, by antagonizing 
the positive roles of BDNF/TrkB on GC migration. This function is 
mediated by its p75 NTR receptor, as indicated by the suppression of the 
pro-BDNF effect on cell migration observed in p75NTR - / - mice (Xu et al., 
2011). 

Contrary to the well-established role of BDNF in the survival/dif-
ferentiation of GCs (Segal et al., 1995; Zhou et al., 2007), controversial 
results have been reported on Purkinje cells (PCs). For example, a study 
has shown that BDNF expression levels do not affect PC survival during 
the first postnatal week (Rakotomamonjy and Ghoumari, 2019). Other 
reports have shown that BDNF promotes the survival of purified in vitro 
PCs, while apparently it has no neurotrophic effect on in vivo PCs 
(Morrison and Mason, 1998; Ghoumari et al., 2002). 

Furthermore, it has been demonstrated that BDNF secreted by GCs 
regulates, also, PC differentiation (Baptista et al., 1994), but even in this 
instance, the results are controversial. In fact, in BDNF- / - mouse models 
or in models of TrkB inactivation, some authors have reported an altered 
arborization of PCs (Minichiello and Klein, 1996; Schwartz et al., 1997; 
Carter et al., 2002), due to a strong reduction of the primary dendrite of 
these cells, which determines the consequent lack of the typical rami-
fications in the dendritic tree of adult PCs (Larkfors et al., 1996; 
Schwartz et al., 1997). Other authors found no irregularities in dendritic 
differentiation of PCs, both in BDNF and TrkB mutant mice (Jones et al., 
1994; Bosman et al., 2006). 

On the other hand, in vitro studies have shown that BDNF and TrkB 
modulate the dendritic development and spine density of PCs. However, 
BDNF treatment of primary culture of purified PCs did not elicit the 
generation of mature dendrites and spines, whereas chronic treatment 
with BDNF of GCs/PCs co-cultures increased the number of PC dendritic 
spines and synapses, suggesting a critical role of neuronal activity in 
mediating this BDNF response (Shimada et al., 1998; Tanaka et al., 
2008). 

BDNF and its downstream signaling pathway are also implicated in 
synapse pruning (Johnson et al., 2007) of supernumerary climbing fi-
bers (CFs) afferents, innervating PCs. CFs, originating in the inferior 
olive and providing the earliest glutamatergic inputs to cell body of PCs 
undergo significant structural remodeling during the first weeks of 
postnatal life (Llinàas and Sugimori, 1980). In rodents, around the third 
postnatal day (P3), the number of CFs innervating a PC is typically 5, 
while few days later CFs that have not grown on the apical dendrite are 
progressively lost and no longer elicit postsynaptic responses (Scelfo and 
Strata, 2005; Bosman et al., 2008). Thanks to this pruning remodeling, 
by the end of the third week, each PC is innervated by a single CF (Strata 
and Rossi, 1998; Scelfo et al., 2003; Hashimoto and Kano, 2005). 

Disruption of the pruning process in the developing cerebellum is 
associated with impaired motor coordination, as observed in BDNF 
knockout and hypomorphic or null mice for TrkB (Kashiwabuchi et al., 
1995; Riva-Depaty et al., 1998). Both these mouse models display ataxia 
and impaired pruning of CF–PC synapses, leaving PCs multi-innervated 
by CFs beyond the normal developmental time frame (Schwartz et al., 
1997; Choo et al., 2017). 

BDNF also plays an important role in the organization of synaptic 
connectivity within the glomerulus (Chen et al., 2016). It is well known 
that after migration into the IGL, GCs receive excitatory inputs from 
mossy fibers (MFs) (Rabacchi et al., 1999; Lackey et al., 2018), which 
project into the cerebellar cortex from a different set of sensory and 
motor structures throughout the brain stem and spinal cord (Kalinovsky 
et al., 2011; Delvendahl and Hallermann, 2016). After arriving at the 
IGL, MFs establish synaptic contacts with GC dendrites and axon ter-
minals of Golgi cells (Eccles et al., 1967; Balmer and Trussell, 2019). 
Thus, the cerebellar “glomerulus” is a complex synaptic area with two 
different axonal (mossy and Golgi) and dendritic (granule and Golgi) 
endings involved and represents the first “processing station” for 
afferent nerve fibers entering the cerebellum (Hàmori and Szentàgothai, 
1966). Within the glomerulus GABAergic and glutamatergic synapses 
exist between inhibitory Golgi cells-GCs and MFs-Golgi cells, 

respectively (Mapelli et al., 2014). 
Interestingly, some reports have highlighted that excitatory MFs 

express high BDNF levels and that the release of BDNF from their axons 
is necessary to promote the formation of GABAergic synapses and also 
control their own differentiation, in an autocrine manner (Chen et al., 
2011, 2016). BDNF and TrkB receptor are necessary not only for the 
assembly of GABAergic synapses, but also for their maintenance, regu-
lating the localization of important postsynaptic proteins (Chen et al., 
2011). Indeed, BDNF improves the localization and clustering on GC 
dendrites of postsynaptic scaffolding proteins, as gephyrin, but also cell 
adhesion molecules, as contactin-1. Accordingly, conditional mutants in 
which BDNF has been eliminated from the cerebellum after birth display 
a reduced localization of gephyrin on dendrites of GCs and a subsequent 
perturbation of the differentiation of GABAergic synapses in the post-
natal cerebellar glomeruli (Chen et al., 2016). Lastly, TrkB− /− mice 
show a reduction in the number of GABAergic boutons (Rico et al., 
2002), while a moderate reduction in the synaptic density of cerebellar 
glomeruli was observed only in conditional TrkB mutants (Carter et al., 
2002; Rico et al., 2002). 

These data indicate that BDNF is closely involved in the early 
development of GCs, as well as in the organization of connectivity within 
the cerebellar cortex and in the modulation of glutamatergic and 
GABAergic synapses (Chen et al., 2016). 

3.2. The interplay between BDNF and synaptic dynamics: focus on 
hippocampus 

The neural and functional changes that occur during development 
and in adulthood are crucial examples of plasticity or “ ability to adapt “ 
(Bishop, 1982), which is the most important and fascinating feature of 
the central nervous system (CNS). Synaptic plasticity specifically refers 
to the ability of synapses to change strength and efficacy over time, in 
response to extrinsic or intrinsic stimuli (Cramer et al., 2011). It is well 
established that long-term potentiation (LTP) is the major form of syn-
aptic plasticity and that it is associated with the formation of new syn-
apses, changes in the number and morphology of dendritic spines 
(Lynch, 2004; Holtmaat and Caroni, 2016), postsynaptic density (PSD) 
remodeling (Bourne and Harris, 2008) and learning and memory pro-
cesses (Muller et al., 2002). 

In the 1990s, several groups intensively studied the role of BDNF in 
synaptic plasticity, focusing primarily on the hippocampus (Kang and 
Schuman, 1995; Kang et al., 1997; Kafitz et al., 1999). BDNF was found 
to be a positive modulator of LTP (Chen et al., 1999), regulating both the 
induction and maintenance of LTP in excitatory glutamatergic synapses 
in the hippocampus and in different brain areas (Rex et al., 2006). 
Further demonstration that BDNF is involved in synaptic plasticity is 
provided by BDNF knockout mice, in which hippocampal LTP is 
compromised but recovered upon BDNF stimulation (Ernfors et al., 
1994; Korte et al., 1995; Patterson et al., 1996). 

Compared to the slow effect that BDNF exerts on neuronal survival/ 
differentiation, the modulatory activity it plays on synaptic transmission 
is very rapid (seconds or minutes), instead (Blum et al., 2002). 

In the hippocampus, BDNF released from pre- and postsynaptic 
sources regulates synaptic activity and plasticity through autocrine and 
paracrine mechanisms (Björkholm and Monteggia, 2016) (Fig. 2). The 
most remarkable outcome of BDNF is the increase of the frequency of 
miniature excitatory postsynaptic currents (mEPSCs) (Taniguchi et al., 
2000; Tyler and Pozzo-Miller, 2001), indicating an intensification of 
excitatory neurotransmission from presynaptic terminals. 

Regarding BDNF presynaptic release at the glutamatergic synapses, 
following its synthesis in the cell soma, the BDNF is transported in large 
dense core secretory vesicles to the presynaptic terminals, where 
activity-dependent exocytosis is regulated by the influx of Ca2 + through 
L-type voltage-gated calcium channels (Tyler and Pozzo-Miller, 2001). 
BDNF released into the synaptic cleft can simultaneously induce retro-
grade and anterograde signals (Fig. 2). 

S. Camuso et al.                                                                                                                                                                                                                                 



Neurobiology of Disease 163 (2022) 105606

5

Presynaptically, the BDNF binding to TrkB receptor activates the PLC 
pathway, which in turn increases the level of cytosolic Ca2 by the release 
from intracellular deposits, independent of voltage-gated calcium 
channels (Amaral and Pozzo-Miller, 2012). 

Postsynaptically, BDNF/TrkB signaling causes NMDA receptor 
phosphorylation by a member of the Src kinase family (Fyn-kinase) 
(Amaral et al., 2007), resulting in increased NMDA receptor responses 
and Ca2 influx (Carvalho et al., 2008; Edelmann et al., 2015). Further-
more, to increase the frequency and amplitude of the mEPSC, BDNF 
upregulates both the amount of AMPA receptor subunit glutamate re-
ceptor 1, 2 and 3 (GluR1; GluR2, GluR3) on postsynaptic membrane 
(Carvalho et al., 2008), and their rapid translocation to the cell surface 
in response to BDNF stimulation (Narisawa-Saito et al., 2002). 

Interestingly, the use of a virus-mediated approach to delete TrkB 
specifically in the CA1 and CA3 regions of the Schaffer collateral 
pathway, showed that TrkB at presynaptic terminals is necessary for the 
maintenance of LTP, while at the postsynaptic side it is required for both 
LTP induction and maintenance (Lin et al., 2018). Furthermore, in 
organotypic sections of developing hippocampus (postnatal day 12–14), 
tetanic stimulation can cause short-term potentiation but cannot 
generate LTP (Figurov et al., 1996). However, if the sections are treated 
with exogenous BDNF for a few hours, the same stimulation paradigm 
induces LTP, demonstrating how BDNF allows for greater responsive-
ness of synapses to stimulation patterns that typically induce synaptic 
plasticity (Kovalchuk et al., 2002). In addition, hippocampal slices from 
adult mice, treated two min before and two min after LTP induction with 
an antibody against BDNF, showed markedly reduced synaptic 
enhancement (Kossel et al., 2001). 

Pivotal mechanisms involved in LTP induction are the regulation and 
remodeling of the cytoskeleton and protein synthesis at spines (Lee 

et al., 2009; Nakahata and Yasuda, 2018). The effect of BDNF in regu-
lating LTP-related cytoskeletal changes is well documented (Matsuzaki 
et al., 2004; Bramham, 2008; Murakoshi and Yasuda, 2012). Although 
the initial characterization of mice harboring a null mutation of BDNF 
gene showed no effect on spine density (Korte et al., 1995), subsequent 
studies have demonstrated that BDNF can modify the structure of spines 
(Tanaka et al., 2008). Indeed, it was observed that primary culture of 
hippocampal neurons from rats, exposed to BDNF displayed an increase 
of dendritic spines positive to F-actin, indicating that actin polymeri-
zation is among the effects of BDNF exposure (Rex et al., 2007). The 
activation of the mTOR signaling upon BDNF binding to the TrkB re-
ceptor boosts protein synthesis at the level of dendritic spines, con-
firming the role of this neurotrophin in dendritic growth and spine 
formation (Danzer et al., 2004; Kellner et al., 2014). 

In vitro and in vivo studies have shown that, in pyramidal neurons in 
which SNARE-dependent vesicular release was inhibited by botulinum 
neurotoxin C, the addition of exogenous BDNF resulted in an increase in 
the number of immature spines (long and thin), demonstrating that 
BDNF is able to increase the density of spines, regardless of synaptic 
transmission (Tyler and Pozzo-Miller, 2003). Consistent with these data, 
the addition of exogenous BDNF to hippocampal neurons cultured in a 
medium containing a high level of magnesium, a condition that is known 
to enhance BDNF expression levels (Afsharfar et al., 2021), resulted in a 
significant increase of the proportion of mature spines (large heads) 
compared to immature ones (small heads) (Zagrebelsky et al., 2020). 

Finally, mice lacking BDNF die during the second postnatal week 
(Ernfors et al., 1994; Rios et al., 2001), showing a strong reduction of 
dendritic arborization of hippocampal neurons (Gao et al., 2009; Wu 
et al., 2019), while the abrogation of BNDF function by inactivating 
antibodies results in an inadequate mature phenotype of hippocampal 

Fig. 2. Schematic representation of BDNF/ 
TrkB signaling at the synapse. BDNF is a key 
regulator of LTP induction and maintenance, 
modulating synaptic strength through pre- 
and postsynaptic mechanisms. The influx of 
Ca2+ through L-type voltage-gated calcium 
channels triggers the exocytosis of BDNF that 
once released into the synaptic cleft can 
simultaneously induce retrograde and ante-
grade signals. In the presynaptic membrane, 
the binding of BDNF to the TrkB receptor 
increases the level of cytosolic Ca2+ by 
release from intracellular deposits, 
improving vesicular release of glutamate. In 
the postsynaptic membrane, the activation of 
TrkB receptor induces phosphorylation of 
NMDA and AMPA receptors leading to a 
potentiation of postsynaptic influx of Ca2+

and Na+, respectively. This results in an in-
crease in the frequency and amplitude of 
mEPSC and facilitates the induction and 
maintenance of LTP. Abbreviations: TrkB =
tyrosine kinase receptor B; ER: endoplasmic 
reticulum; NMDA = N-methyl-D-aspartate 
receptor; AMPA = α-amino-3-hydroxy-5- 
methyl-4- isoxazolepropionic acid receptor; 
P = Phosphorylation; Glu = glutamate; LTP 
= long-term potentiation; mEPSC = minia-
ture excitatory postsynaptic currents.   
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neurons, with a reduction of spine head diameter and an increase of 
spines length (Kellner et al., 2014). 

Therefore, BDNF is now considered the most critical factor regu-
lating the growth/branching of dendrites and axons (Suzuki et al., 2007) 
and its contribution depends on TrkB activation (Chakravarthy et al., 
2006; Tanaka et al., 2008; Burk et al., 2018). Accordingly, the inhibition 
of TrkB receptor prevents BDNF activity (Tyler and Pozzo-Miller, 2001) 
and spine growth (Kellner et al., 2014). The acute infusion of BDNF to 
hippocampal neurons results in TrkB activation and spine head 
enlargement, while gradual addition of BDNF is accompanied by spine 
neck lengthening, subsequent to ERK1/2 activation (Ji et al., 2010). It 
has been shown that exposure of mature pyramidal hippocampal neu-
rons to BDNF induces an increase in the density of dendritic spines 
(Gottmann et al., 2009) through activation and endocytosis of TrkB, 
which by axonal transport reaches the PSD region (Ji et al., 2005; 
Andreska et al., 2020). TrkB receptor together with the PSD95 scaffold 
protein anchor the AMPA and NMDA receptors to the postsynaptic 
membrane (Chen et al., 2015). 

While BDNF/TrkB signaling positively regulates dendritic spine 
structure and plasticity, pro-BDNF and its p75NTR receptor exert an 
opposite effect, inducing a significant reduction in dendritic spine den-
sity (Buhusi et al., 2017), which is associated with an increase in the 
number of immature spines, also known as stubby spines (Chapleau and 
Pozzo-Miller, 2012). Zagrebelsky and colleagues have shown that 
p75NTR activation negatively impacts on dendrite morphology and 
spines number of hippocampal neurons, contributing to spines retrac-
tion and reducing dendritic complexity (Zagrebelsky et al., 2005). 
Furthermore, the activated p75NTR receptor contributes to long-term 
depression (LTD) in several cerebral areas (Woo et al., 2005; Park and 
Poo, 2013) and induces NMDA and AMPA receptors endocytosis 
(Kojima and Mizui, 2017). 

In brief, in the mature hippocampus, BDNF/TrkB together with pro- 
BDNF/p75NTR generate a cloud of local BDNF, which acting at both pre/ 
post-synaptic sides, regulates synaptic turnover, plasticity and produces 
more stable synaptic connections. 

3.3. Misregulation of BDNF in neurodevelomental disorders 

The increasing prevalence of neurodevelopmental disorders, in 
particular autism spectrum disorders (ASD) and attention deficit hy-
peractivity disorder (ADHD), are an urgent concern for society and 
require more research on identifying etiological and predictive factors. 

As described above, a great deal of evidence has shown that BDNF 
plays a vital role in brain development favoring the growth and differ-
entiation of new neurons and synapses (Lee and Kim, 2010; Phillips, 
2017) and alterations in BDNF expression levels represent a shared risk 
of vulnerability to neurodevelopmental disorders (Autry and Monteggia, 
2012; Cattaneo et al., 2016). Therefore, it is not surprising that the 
therapeutic potential of BDNF has captured attention and the dysregu-
lation of its signaling cascades, in terms of increases or decreases, is 
commonly present in disorders, such as ADHD and ASD (Wang et al., 
2019) and autism spectrum disorder (ASD) (Campbell et al., 2006; 
Hashimoto et al., 2006). 

It has been proposed that BDNF is associated with the pathogenesis 
of ADHD (Tsai, 2003), one the most common behavioral/neuro-
developmental disorder present in adolescents and adults (Pastor et al., 
2015). This pathology is characterized by symptoms of inattention, 
impulsivity and locomotor hyperactivity and commonly treated using 
drugs that increase dopamine (DA) levels in the brain (Sharma and 
Couture, 2014; Nùῆez-Jaramillo et al., 2021). Altered serum levels of 
BDNF are present in both adolescents and adult patients with ADHD 
(Corominas-Roso et al., 2013) while treatments with psychostimulants 
and antidepressants, commonly used to increase DA levels, increase the 
expression levels of BDNF and its TrkB receptor, particularly in the 
hippocampus, amygdala, nucleus accumbens (NAc) and caudato- 
putamen (Fumagalli et al., 2010; Amiri et al., 2013). 

Based on this evidence, it has been proposed that the expression 
levels of BDNF may explain the altered homeostasis of the DA system 
observed in patients with ADHD (Galvez-Contreras et al., 2017). 

The BDNF regulates the survival and differentiation of midbrain DA 
neurons both in vivo and in vitro, modulating DA release through the 
activation of its TrkB receptors (Knϋsel et al., 1991; Guillin et al., 2001). 
As observed in retinal cells, the BDNF increases DA release within mi-
nutes upon binding to TrkB receptor (Neal et al., 2003). Subsequent 
events such as PLC-γ activation, IP3 production and calcium release 
from the ER, represent the trigger for BDNF-induced DA release (Neal 
et al., 2003). 

Preclinical studies in DA retrograde transporter knockout mice 
showed a decrease of the BDNF level in the frontal cortex (Fumagalli 
et al., 2003), which is detrimental for brain maturation and generates a 
persistent impairment in synaptic plasticity associated with cognitive 
impairment (Jeong et al., 2014), aggression, anxiety, and locomotor 
hyperactivity (Liu et al., 2015). These mice exhibit the behavioral 
characteristics typical of ADHD patients; moreover, mice with BDNF 
conditional deletion in the postnatal brain also displayed increased 
anxiety and hyperactivity (Rios et al., 2001). 

In rats and mice, the infusion of BDNF into the NAc or the ventral 
tegmental area has been shown to increase nigrostriatal dopaminergic 
activation, resulting in increased locomotor activity (Altar et al., 1992; 
Narita et al., 2003); furthermore, chronic treatment with BDNF (over 
two weeks) enhanced the reward response to cocaine through long-term 
adaptations within the mesolimbic DA system (Horger et al., 1999). Of 
note the increased response to cocaine in BDNF-treated animals per-
sisted for more than one month after discontinuation of BDNF infusions 
(Horger et al., 1999; Corominas- Roso et al., 2007), indicating that these 
BDNF-induced neurochemical changes contribute to the consolidation 
of lasting neuroplasticity, at the basis of sensitized responses to 
psychostimulants. 

Changes in BDNF levels have been reported in ADHD patients but the 
results were highly inconsistent; some studies reported elevated BDNF 
levels in serum or plasma of ADHD patients in comparison to healthy 
subjects (Shim et al., 2008; Li et al., 2014), while the exact opposite was 
reported by some studies (Corominas-Roso et al., 2013; Sahin et al., 
2014; Saadat et al., 2015), and no differences were observed by others 
(Sargin et al., 2012; Scassellati et al., 2014). 

The Val66Met polymorphism of the BDNF gene appears to be asso-
ciated with an increased risk of anxiety disorder and increased liability 
to ADHD (Kent et al., 2005; Sànchez-Mora et al., 2010). This poly-
morphism, observed in over 25% of the human population, causes a 
change from valine (Val) to methionine (Met) at position 66 of the pro- 
BDNF protein. The Val66Met pro-BDNF isoform associates with a 
reduced neuronal activity-dependent secretion of BDNF, due to the 
reduced ability of BDNF to be sorted from Golgi to secretory vesicles 
(Verhagen et al., 2010; Dincheva et al., 2012; Hajek et al., 2012). 
Although some studies identified the Val66Met polymorphism as a 
possible genetic marker of susceptibility to ADHD (Lanktree et al., 2008; 
Ozturk et al., 2016), such association is controversial (Kwon et al., 2015; 
Liu et al., 2015). 

Abnormalities in BDNF homeostasis are thought to contribute to a 
group of complex neurodevelopmental disorders, ASD, characterized by 
intellectual disability, severe delayed language development, impaired 
social interaction, and repetitive behaviors (Chaste and Leboyer, 2012; 
Skogstrand et al., 2019). Evidence from clinical studies suggest that 
abnormal activity of BDNF contributes to the pathogenesis of ASDs, 
identifying BDNF serum levels as prognostic or diagnostic markers of 
ASD (Bryn et al., 2015; Garcia Barbosa et al., 2020). Similarly to ADHD, 
studies analyzing systemic levels of BDNF in patients with ASD are 
conflicting; several reports detailed higher levels of BDNF in the blood 
(Nelson et al., 2001; Connolly et al., 2006; Kasarpalkar et al., 2014; Qin 
et al., 2016) and in the brains of children with ASD (Perry et al., 2001), 
while others have found reduced BDNF levels compared to healthy 
subjects (Hashimoto et al., 2006; Fuentealba et al., 2019; Skogstrand 
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et al., 2019). 
More consistent observations were made by using mouse models of 

ASD, in which BDNF expression was downregulated in various brain 
areas with consequences on cognitive and behavioral performances 
(Branchi et al., 2006; Gould et al., 2011). Among these mouse models, 
adult mice lacking the homeobox domain of engrailed-2 (En− /− ), land-
marked by social behaviour deficits, locomotor impairment, and cere-
bellar hypoplasia, exhibited marked downregulation of the mRNA and 
the mature protein of BDNF in the neocortex but not in the hippocam-
pus, compared to control mice (Zunino et al., 2016). Similarly, in pre-
natally valproate rats, which represent an established model of autism, 
BDNF transcription determined by in situ hybridization was found 
reduced in the hippocampus dentate gyrus and CA3 regions (Fuentealba 
et al., 2019). Conversely, a line of genetically modified mice that over-
express the BDNF transgene in forebrain neurons showed less obsessive- 
compulsive and anxious behaviors (Weidner et al., 2014). 

Accumulating evidence shows that the cerebellum is structurally and 
functionally abnormal in patients with autism (Fatemi et al., 2012; 
Rogers et al., 2013) and it has been demonstrated that mutations of 
genes involved in cerebellar development are associated with changes in 
BDNF levels and susceptibility to autism (Rylaarsdam and Guemez- 
Gamboa, 2019). Chief among these genes are secretion Ca2+-dependent 
activator protein for secretion 2 (CAPS2) and retinoic acid-related orphan 
receptor alpha (RORα) (Campbell et al., 2006; Wang et al., 2008; Sada-
kata and Furuichi, 2009; Sen et al., 2010). CAPS2 contributes to cere-
bellar development, by improving the expression levels of BDNF and 
neurotrophin-3 (NT-3) (Sadakata et al., 2007; Sadakata and Furuichi, 
2009), while cerebellar defects present in RORα mutant mice are in part 
induced by the altered expression of BDNF and NGF and NT-3 neuro-
trophins (Qiu et al., 2007). 

BDNF also plays an important role in the onset and progression of the 
neurological phenotype of the Rett syndrome (RTT). The RTT is a 
complex autism spectrum disorder caused by loss-of-function mutations 
of the methyl-CpG-binding protein 2 (MeCP2) gene and characterized by 
respiratory problems, ataxia, seizures, anxiety, cognitive and motor 
disorders (Rett, 1966; Amir et al., 1999). The MECP2 protein, thanks to 
its binding domain to methylated CpG-enriched DNA sequences, is 
involved in the silencing of several genes by epigenetic mechanisms 
(Jones et al., 1998; Nan and Bird, 2001). However, MeCP2 has been 
shown to be a chromatin architecture modulator that can also act as a 
transcriptional activator, binding to the co-activator CREB (cAMP 
response element binding protein) (Chahrour et al., 2008). Among 
target genes regulated by MeCP2, BDNF is the main target (Chahrour 
et al., 2008; Su et al., 2015), representing the major deregulated factor in 
the brains of RTT patients and MeCP2-deficient mice. 

Consistently, a growing body of evidence has demonstrated that 
BDNF mRNA and protein levels were reduced in several brain areas of 
MeCP2− /− mice, such as the brainstem and cerebellum (Wang et al., 
2006; Kline et al., 2010) and in postmortem RTT subject brain samples 
(Deng et al., 2007). In addition, Chahrour and colleagues reported 
increased levels of BDNF mRNA expression in the hypothalamus in mice 
overexpressing MeCP2 (Chahrour et al., 2008). Interestingly, double 
knockout mice in which both the Mecp2 and BDNF gene were deleted 
showed early disease onset RTT while conditional BDNF overexpression 
delayed disease onset (Chang et al., 2006). In addition to the dysregu-
lation of BDNF expression, the loss of MeCP2 appears to be also asso-
ciated with alterations in the axonal transport of BDNF (Li and Pozzo- 
Miller, 2014). In vitro cultured cortical neurons isolated from Mecp2 
knockout mice showed a reduced rate of axonal transport of BDNF- 
containing vesicles, a deficit that can be rescued by the re-expression 
of Mecp2. These results were also confirmed in vivo, in the cortico- 
striatal axonal projections of Mecp2-deficient animals (Roux et al., 
2012). 

Moreover, several studies on glutamatergic hippocampal neurons 
have demonstrated that loss of MeCP2 protein leads to reduced dendritic 

complexity and arborization associated with a decreased dendritic 
length (Belichenko et al., 2009; Jentarra et al., 2010); however, little is 
known about the mechanisms behind this defective differentiation 
program. According to the role of BDNF in the regulation of dendritic 
spine formation and synaptogenesis (Yoshii and Constantine-Paton, 
2010), the manipulation of BDNF-TrkB activity could represent a 
promising therapeutic strategy for ameliorating the progression of RTT 
disease. 

4. Conclusions 

For their genetic and phenotypic intricacy, neurodevelopmental 
disorders are challenging both in biological and medical terms. 

Although BDNF/TrkB signaling is a key molecular pathway in brain 
development, synaptic plasticity and learning/memory processes, the 
specific role of BDNF in the onset of neurodevelopmental deficits remain 
still unclear. In humans, the relationship between cognitive deficits and 
BDNF is still correlational, essentially because the available techniques 
do not allow the determination of brain expression of BDNF in vivo. 
Despite this difficulty, numerous rodent studies have established the 
causal relationship between BDNF and important cellular and molecular 
neurodevelopmental processes, under conditions that increase or 
decrease BDNF expression. 

Synaptic defects present in neurodevelopmental disorders such as 
ADHD and ASD could be rescued through the formation of new termi-
nals and/or dendritic spines; in this context, BDNF appears to be a potent 
synaptic repair molecule, as observed in the cerebellum and hippo-
campus, where the role of this neurotrophin is critical for the correct 
regulation of the development and maturation of glutamatergic and 
GABAergic neurons, classically involved in these disorders. 

Finally, BDNF expression is reduced in many neurodegenerative 
diseases, such as Spinocerebellar ataxia type 1 (SCA1) (Takahashi et al., 
2012). In particular, in SCA1 mouse models, the administration of 
exogenous BDNF during the pre or post-symptomatic phases is able to 
improve motor deficits and cerebellar neuropathology, demonstrating 
the potential therapeutic role of BDNF (Mellesmoen et al., 2019; Sheeler 
et al., 2021). 

However, in the future, we believe the crucial question will not be 
whether BDNF levels will be considered a diagnostic marker, but 
whether manipulating BDNF and its main intracellular signaling 
mechanisms will help to conceive new drugs and innovative strategies 
for these devastating diseases. 
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