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“Our dependence on fossil fuels amounts to global pyromania, and 

the only fire extinguisher we have at our disposal is renewable 

energy.” 

 
Hermann Scheer (1944-2010)  
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1 Introduction 

On 4th November 2016 the Paris Agreement went into force, acknowledging the necessity to limit 

the increase in global average temperature below 2°C and pursuing efforts to keep it as close as 

possible to 1.5°C to foster the global response towards climate change [1]. And to no surprise, 

the energy sector is the great responsible for worldwide greenhouse gas (GHG) emissions. 

 

 

Despite the fact that the burning of fossil fuels for energy purposes still accounts for 68% of the 

world’s GHGs [2], emissions from the power sector are estimated to drop by more than 40% by 

2030 [3] (see Figure 2). Furthermore, as a strong response to tackle the enormous electricity 

demand by the ever-growing human population1 and towards the decarbonisation of the global 

energy system, more and bigger renewable energy power plants are being built worldwide.  

 
1 World population reached 7,794,799 in 2020 (https://population.un.org 

 

Figure 1. Global greenhouse gas emissions by sector, shown for the year 2016, where GHG emissions 
were 49.4 billion tons CO2 eq. Source: OurWorldinData.org by the author Hannah Ritchie (2020) 

https://population.un.org/
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As the world economy and in particular energy markets are going through difficult times due to 

the COVID19 crisis and the strong wave of global restrictions, Photovoltaics (PV) is becoming 

more competitive, more versatile and more robust, emerging as a key technology of the ongoing 

energy transition.  “Solar is the new king of the electricity markets” was one of the first key 

statements of the International Energy Agency (IEA) when launching the most recent World 

Energy Outlook in October 2020, acknowledging that PV electricity is becoming the cheapest 

source of new electricity in many countries around the world and will therefore continue to grow 

strongly over the decades to come [4]. 

PV is a mature technology and has 

proven to be competitive even without 

any kind of financial support, i.e., where 

grid parity has been reached1. Leading 

the way are utility-scale applications (see 

Figure 3), which are more cost-effective 

that fossil fuels in all unsubsidised 

investment cases [5]. However, large-

scale solutions come with large-scale 

challenges, one of these being their 

long-term reliability and performance 

assurance. 

 
1 “Grid parity” means that solar electricity is as cheap as other grid connected sources of power (coal-fired and gas-fired power 

plants, for example).  

Figure 2. Historical CO2 emissions and projected emissions from operating energy infrastructure as it was 
used historically, 1900-2100. Source: IEA, last updated 12 May 2021 

Figure 3.Top 10 PV plants in the world. Source:/www.power-
technology.com 
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1.1 Abstract, motivation and goal 

Abstract 

PV modules are engineered to produce electricity for 30+ years and are being deployed worldwide 

in ever more and ever bigger PV plants. Continuous quality assurance and performance analysis 

are the cornerstone for long-term reliability to maximize financial and energy returns. In today’s 

highly competitive Operation and Maintenance (O&M) market, employing and maintaining 

extensive networks of on-site sensors for remote monitoring purposes, proves challenging. Within 

this framework, data-driven solutions play a leading role to turn raw data from the field into reliable 

actionable insights. PV plant’s data from SCADA and monitoring systems is constantly subject to 

quality issues and the uncertainty related to it is directly reflected on the quality and reliability of 

the performance metrics used.  In this work, the impact of the quality of the most relevant input 

parameters (i.e., output energy and irradiation) for the calculation key performance indicators 

(KPIs) is evaluated and different data cleaning and imputation techniques are benchmarked.   

 

The main objective of this work is to improve the quality of PV performance analysis by minimizing 

the negative effects of using incomplete and/or corrupted time-series as input for the calculation 

of PV plant KPIs (such as Performance Ratio and Availability). This objective is achieved through 

the assessment of different data sources with different intrinsic quality. In chapter 2, the 

methodology and data used are explained. Then, in chapter 3, as a pre-liminary data analysis, 

raw data from on-site sensors was compared with satellite-derived data to define and validate its 

uncertainty values. Special emphasis is given to irradiance sensors (pyranometers and reference 

cells), being the plane of array (POA) irradiance one of the variables with the greatest impact on 

performance evaluation. Later, in chapter 4, a consistent data quality analysis is proposed to 

assess the sensors’ health status to proceed with the corresponding cleaning procedure. At this 

stage, the concept of ‘virtual sensor’ is introduced, that solves the problem of having incomplete 

raw data by generating time-series with no missing data that efficiently combine on-site 

measurements with satellite data. Finally, in chapter 5, the advantage of performing data 

imputation using Machine Learning (ML) techniques is demonstrated by applying three good-

performing algorithms (Random Forest, Bagging and Gradient Boosting Regressor) to replace 

missing data with highly accurate predicted values.   

 

Motivation 

The data-driven solutions explored in this work take a step back from the mainstream application 

areas of big data analysis, AI and Machine Learning (power forecast and failure analysis) and 

take a closer look at the quality of the raw data which is later on used for performance analysis of 
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utility-scale PV plants. Using as starting point the concept of garbage-in, garbage out, that states 

that the quality of the output is determined by the quality of the input, the results of this work will 

not only improve the quality of the data used on a daily basis by O&M contractors and Asset 

managers but also, and most importantly, will allow the consistent and comparable use of KPIs 

to assess PV plants performance at portfolio level. In this way, it will facilitate decision makers 

prioritise maintenance activities and identify potential revamping/repowering interventions. 

Furthermore, the ‘enhanced KPIs’ output of this work could be integrated into the CPN 

methodology for the assessment of the economic impact of failures [6-8]. 

Goal 

This work aims at improving the quality of the most relevant PV plant KPIs in the industry by 

increasing the integrity and reliability of the monitoring data available to the O&M contractors and 

Asset Managers.  

 

1.2 PV market outlook 

The success of solar is due to many factors. A primary one is its cost leadership, which continues 

to improve without an end in sight. Another is its versatility: solar covers an unmatched spectrum 

of power applications from very small residential systems to very large utility-scale plants, 

individual installations to building-integrated solutions in carports, apartment houses or 

agricultural green houses. There are also mobile applications and off-grid systems for rural 

electrification. Finally, no other power plant can be planned and built as rapidly as solar PV, while 

at the same time involving the highest job intensity [4].  

Despite the severe impact of the COVID-19 crisis across the world in 2020, the year still saw 

138.2 GW of solar installed, representing an 18% growth compared to 2019, yet another global 

annual installation record for the solar PV sector. This brings the global cumulative solar capacity 

to 773.2 GW, a 22% increase, and marks a new milestone for the solar sector by exceeding three 

quarters of a terawatt. Even though solar’s total power generation share increased by 0.5 

percentage points to around 3.1%, nearly 70% still comes from fossil fuel and nuclear, highlighting 

the need to rapidly accelerate solar deployments [5]. 
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Figure 4. Global Total Solar PV installed capacity 2000-2020. Source: SolarPower Europe 2021 

Figure 5. Global Total Solar PV Market Scenarios 2021-2025. Source: SolarPower Europe 2021 
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EU members states installed 18.2 GW of solar power capacity in 2020, an 11% improvement over 

the 16.2 GW deployed in the previous year. 2020 was the second-best year ever for solar in the 

EU, only topped by 2011, when 21.4 GW was installed [9].  

 

Figure 7. EU27 Cumulative Solar PV installed capacity 2000-2020. Source: SolarPower Europe 2021 

Figure 6. Annual share of PV installations by type. Source: IEA-PVPS 2020 
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1.3 About BayWa r.e.  

BayWa r.e. delivers end-to-end project solutions involving planning, development, construction, 

and ongoing operations management. Using innovation, creativity and expertise, it has 

successfully brought over 4 GW of renewable energy online and manages over 10 GW of 

renewable energy assets, ensuring they operate at peak efficiency. It is also an Independent 

Power Producer with a growing portfolio and an expanding energy trading business.  

 

BayWa r.e. is working with businesses and organisations worldwide to provide tailored renewable 

solutions that reduce carbon footprints and drive down energy costs. Operating 100% carbon 

neutral, it is also committed to the global sustainability journey by driving forward multiple social, 

environmental and economic initiatives. 

As a leading global supplier to the solar distribution market, it provides a comprehensive range of 

products and industry leading customer support. Through first in class training, logistical expertise 

and online services, BayWa r.e. is a preferred partner for thousands of installers and contractors. 

Based in 27 countries, with revenues of almost €2.5 billion and sustained growth throughout the 

company’s history, BayWa r.e. is a leading global renewable energy developer, service provider, 

distributor and energy solutions provider. Operating throughout Europe, the Americas and Asia-

Figure 8. BayWa r.e. overview 
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Pacific, it is strategically investing in emerging markets around the world, actively shaping the 

future of energy and taking a stand against climate change. 

 

BayWa r.e.’s shareholders are BayWa AG, a globally successful business with revenues of €17.2 

billion, and Energy Infrastructure Partners, a market leader in energy infrastructure investment 

that manages over €2.6 billion from global investors.   

 

 

This thesis was developed under the guidance and knowledge infrastructure of BayWa r.e. 

Operation Services S.r.l., the Italian legal entity of BayWa r.e. With offices in Rome and Milan, it 

is responsible for the supply of technical and commercial operation, management and 

maintenance services for PV plants in Italy, with activities on over 500 sites (see Figure 11), 

summing up almost one Gigawatt of installed capacity. 

Figure 9. BayWa r.e.  global presence 

Figure 10. BayWa r.e. shareholders 
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1.4 Operation & Maintenance of PV plants 

Operation and Maintenance (O&M) has become a standalone segment within the solar industry 

and it is widely acknowledged by all stakeholders that high-quality O&M services mitigate potential 

risks, improve the Levelised Cost of Electricity (LCOE) and Power Purchase Agreement (PPA) 

prices, and positively impact the return on investment (ROI). 

Asset Owners, EPC companies and O&M providers are the key players involved in the funding, 

design, construction and maintenance of PV plants, which may range from small rooftop arrays 

to utility-scale plants. 

 

Figure 11. Italian PV portfolio managed by BayWa r.e. Operation Services S.r.l. 



 

17 

The lifecycle of a PV project can be split up in six stages as illustrated in the figure below, being 

the O&M phase the longest (30+ years). 

 

The O&M phase stretches for most of PV systems’ lifetime and the ability of O&M providers plays 

a key role in maintaining high levels of technical and economic performance over the years, 

mitigating risks and positively impacting the return of investment (ROI). 

The scope of work of an O&M contractor falls under a wide umbrella of activities, that might 

include and not limited to the following: asset management, operations, maintenance, spare parts 

management, guarantees management and ancillary services (see Figure 13). 

 

 

Repowering 
or 

dismantling

Operation 
(30+ years)

Operation 
during EPC 
warrantee 
(up to 3 
years)

Construction 
(a few 

months)

Development 
(1-3 years)

Project 
Ideation

Figure 12. Lifecycle of a PV plant. Source: own design 

Figure 13. O&M contractor scope of work. Source: own design 
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Operations is about remote monitoring, supervision and control. Power plant operation also 

involves coordination of the on-site maintenance team. A proper PV plant documentation 

management system is crucial for Operations. A list of documents that should be included in the 

as-built documentation set accompanying the solar PV plant (such as PV modules’ datasheets), 

as well as a list of examples of input records that should be included in the record control (such 

as alarms descriptions), can be found in [10]. Based on the data and analyses gained through 

monitoring and supervision, the O&M contractor should always strive to improve PV power plant 

performance. When performed according to the best practice guidelines laid by the industry, 

predictive maintenance could be implemented. 

Maintenance activities could be subdivided in preventive, corrective, predictive and extraordinary 

and they are very comprehensively explained by [10] (see Figure 15). 

Beside the above-mentioned basic maintenance activities, additional services, such as vegetation 

control, modules cleaning, maintenance of buildings, etc., can be included in the O&M scope of 

work.  

Figure 14. Applicable International standards for PV O&M, 2019 status. Source: SolarPower Europe 
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Due to the fast-growing pace of the solar industry, it has been a big challenge to define standard 

legal and technical frameworks for a smooth development of the market. Great efforts have been 

done by the International Electrotechnical Commission (IEC) and a list of standards related to the 

PV O&M sector is summarized in Figure 14. On the legal side, the International Renewable 

Energy Agency (IRENA) and Terrawatt Initiative (TWI) have teamed up to support the rapid and 

widespread scale-up of solar energy by providing simple and universally applicable legal 

agreements that make contracting much faster and less costly, the so-called Open Solar 

Contracts1. 

 

 
1 Please refer to https://opensolarcontracts.org/ 

Figure 15. Overview of different types of PV plant maintenance. Source: SPE O&M Best Practice Guidelines 

https://opensolarcontracts.org/
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1.4.1 Monitoring systems 

Data acquisition and control is performed through monitoring systems, whose general 

requirements, as stated in [11], include: “dataloggers capable of collecting data (such as energy 

generated, irradiance, module temperature, etc.) of all relevant components (such as inverters, 

energy meters, pyranometers, temperature sensors) and storing at least one month of data with 

a recording granularity of up to 15 minutes; as well as a reliable Monitoring Portal (interface) for 

the visualization of collected data and the calculation of KPIs”. 

Monitoring systems have diverse purposes, which can include the following: 

• Identification of performance trends in an individual PV system 

• Localization of potential faults in a PV system 

• Comparison of PV system performance to design expectations and guarantees 

• Comparison of PV systems of different configurations 

• Comparison of PV systems at different locations 

The size of the PV plant and the needs of the users define the key components and configuration 

of the monitoring system: according to the specific scope of work, different sensors and analysis 

methods may be implemented as part of the system. For example, in order perform fault detection, 

fine-grained data coming from all sub-levels of the system are required, while for comparing 

performance to design expectations and guarantees coarser data are needed to perform plant-

level analyses. The International Standard IEC 61724-1:2017 [11] proposes a classification of 

monitoring systems based on the desired application (see Table 1). 

 

Table 1. Monitoring system classifications, suggested applications and recording interval requirements. Source: 
International Electrotechnical Commission [11] 

Typical applications 
Class A 

High accuracy 

Class B 

Medium accuracy 

Class C 

Basic accuracy 

Basic system performance assessment × × × 

Documentation of a performance guarantee × ×  

System losses analysis × ×  

Electricity network interaction assessment ×   

Fault localization ×   

PV technology assessment ×   

Precise PV system degradation measurement ×   

Maximum recording interval 1 min 15 min 60 min 
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1.4.2 Performance assessment and KPIs 

PV plants’ performance assessment is carried out employing Key Performance Indicators (KPIs), 

metrics which allow the Asset Owner to have a near real-time overview of the systems’ status. 

KPIs are divided into PV plant KPIs (quantitative indicators) and O&M Contractor KPIs (both 

quantitative and qualitative). The latter are not a subject of this study, thus, in the rest of the 

dissertation, when talking about KPIs reference is made to PV plant KPIs. 

  

KPIs can be calculated over different time periods, but often they are computed on a monthly or 

annual basis. Since every plant and every contract are different from one another, the most 

appropriate metric for a particular system has to be defined according to the system design, user 

requirements and contractual agreements. Among the contractual KPIs currently used in the solar 

industry, Performance Ratio (PR) is one of the most common (see Annex A: PV performance 

metrics for a comprehensive review of the metrics used to assess PV plant performance). 

 

1.5 The role of Machine Learning 

The distributed nature of PV plants leads to the generation of huge amounts of digital information: 

while a 1 GW fossil or coal-based power plant generates on average around 10,000 data streams 

and a similarly sized wind farm produces 51,000 data streams, when talking of PV, the figures 

rise up at about 439,000 data streams [12]. 

Figure 16. PV plant parameters and energy flow. Source: adapted from SolarPower Europe  



 

22 

 

Each component of the system, from the individual panel to inverters and meters, produces 

information about power production, temperature and many other parameters which flood the 

monitoring systems with continuous streams of data. Without an infrastructure able to handle and 

timely analyse this information, both Asset Owners and O&M contractors may be overwhelmed 

by data, unable to exploit all the knowledge hidden in it. 

This is a fertile ground for Machine Learning: ML is a method of data analysis based on the idea 

that it is possible to build mathematical models based on sample data which can perform specific 

tasks without being explicitly programmed for that purpose. These models can learn the relation 

between past inputs and outputs of a system and, based on this, try to predict future outputs 

based on future inputs. Thus, once big amounts of data become available, ML algorithms can be 

exploited to systematically scan it, identify patterns and extract information which may be 

completely hidden to human eyes. 

Machine Learning applications have reached high levels of maturity in many sectors, with Deep 

Learning currently paving the way for the introduction of Artificial Intelligence (AI) in our everyday 

lives, but in the PV plant O&M sector ML applications are still far from common use. 

Machine Learning systems can be grouped into four major categories [13]: 

• Supervised learning: the training data fed to the algorithm includes the desired outputs 

(labelled data) 

• Unsupervised learning: the training data fed to the algorithm does not include the 

desired outputs (unlabelled data) 

Figure 17. Sensors per asset class. Source: www.renewableenergyworld.com [12] 

http://www.renewableenergyworld.com/


 

23 

• Semi supervised learning: the training data fed to the algorithm includes both labelled 

and unlabelled data 

• Reinforcement learning: the system learns the best strategy by trial and error, getting 

reward or penalties at every choice. 

Supervised learning tasks are classified according to the nature of the target variable: when the 

desired output is quantitative, the problem is defined as regression, while when the labels are 

qualitative it is called classification. 

Many ML applications in the PV field revolve around two major topics: 

a) PV energy or power forecasting – regression task 

b) Fault detection, diagnostics and prognostics - mainly classification task 

The ML application which is going to be presented in this dissertation a regression problem 

(supervised learning approach). 

  

Figure 18. Machine learning approaches 
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2 Methodology and data 

In this chapter, the tools, the methodology and data employed are explained. After introducing 

the research objectives, the methodology and the limitations, the case study and the performance 

metrics are presented. 

2.1 Data science tools 

All data handling, processing and computations described hereinafter have been performed 

employing the programming language Python 3.7.3 (www.python.org) included in Anaconda 

Distribution (www.anaconda.com), a renowned open-source development environment for data 

science. Spyder 3.3.6 (www.spyder-ide.org)  was used as programming interface and many 

widely used scientific python libraries were employed, such as: Pandas, Numpy, Matplotlib, Scikit-

learn, Scipy  and pvlib (pvlib-python.readthedocs.io). 

pvlib python is a community supported tool that provides a set of functions and classes for 

simulating the performance of photovoltaic energy systems. pvlib python was originally ported 

from the PVLIB MATLAB toolbox developed at Sandia National Laboratories and it implements 

many of the models and methods developed at the Labs (pvpmc.sandia.gov) [15]. 

 

2.2 Methodology overview 

The main objective of this work is to improve the quality of PV performance analysis by minimizing 

the negative effects of using incomplete and/or corrupted time-series as input for the calculation 

of PV plant KPIs (such as Performance Ratio and Availability). This objective is achieved through 

the assessment of different data sources with different intrinsic quality. First, raw data from on-

Figure 19. The data science toolkit 

http://www.python.org/
http://www.anaconda.com/
http://www.spyder-ide.org/
https://pvlib-python.readthedocs.io/
https://pvpmc.sandia.gov/
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site sensors is compared with satellite-derived data (three different sources are benchmarked). 

Special emphasis is given to irradiance sensors (usually pyranometers), being the plane of array 

(POA) irradiance one of the variables with the greatest impact on performance evaluation. Later, 

a consistent data quality analysis is proposed to assess the sensors’ health status to proceed 

with the corresponding cleaning procedure. At this stage, the concept of ‘virtual sensor’ is 

introduced, that solves the problem of having incomplete raw data by generating time-series with 

no missing data that efficiently combine on-site measurements with satellite data. Furthermore, 

the advantage of performing data imputation using Machine Learning (ML) techniques is 

demonstrated by applying three good-performing algorithms (Random Forest, Bagging and 

Gradient Boosting Regressor) to replace missing data with highly accurate predicted values.   

With the aim of improving the quality of PV performance analysis, this study investigates how 

irradiance and power time-series coming from different sources and being processed in various 

manners can affect the calculation of KPIs. For this work, one representative plant located in 

central Italy was chosen. Figure 20 summarizes the methodology. First, before KPIs calculation 

and benchmark, the following steps are performed: 

 

a) Preliminary analysis: uncertainty of satellite data 

The three available satellite sources are compared against the calibrated references for the 

quantification of both, GHI and POA, percentage differences (errors) to validate and corroborate 

their measurement uncertainty and therefore their usefulness and constraints when used for KPI 

calculations. 

b) Data Quality Check (DQC) 

The available time-series, power at plant level (meter data) and inverter level (DC and AC side), 

irradiance and ambient and module temperature (when available), are processed through the 

DQC, which performs an integrity evaluation based on the number of missing values. A cleaning 

process is then performed which identifies the most common types of anomalies (e.g., missing 

values, missing logs, outliers, dead values, etc.) 

c) Data imputation with ML 

The replacement of missing data with predicted values (so-called data imputation) is performed 

by the application of three Machine Learning algorithms (Random Forest, Bagging and Gradient 

Boosting Regressor) that, according to previous work [15], have already shown promising results 

for such a task (i.e. high accuracy predictions using RMSE as performance metric). 
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Figure 20. Methodology overview. Source: own design 
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Figure 21. Data collection and processing. Source: own design  
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2.3 Limitations 

One PV plant (one location) was selected as case study as the aim was to investigate irradiance 

sensors in deep, rather than having a more superficial approach focusing on multiple PV plants. 

Three satellite data services, two commercial and a free online database, were selected 

beforehand. A calibrated (research grade) pyranometer was used as reference to retrieve low-

uncertainty irradiance time series.  

Nine ML models (8 supervised + 1 unsupervised model) were selected with the aim to give an 

overview of the relative performance of the methods as well as benchmarking them against a 

consistent satellite-derived dataset rather than investigating a specific model in depth. 

2.4 Case study 

The plant selected for the case study is located in Lazio region, Italy. It was commissioned in 

2013, while BayWa r.e. Operation Services has started the O&M activities in April 2015. 

 

 

Figure 22. The case study: PV plant in central Italy. Source: Google Earth 
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The main information on the plant is summarized in the following table: 

Table 2.1. Plant metadata 

General information 

Plant area 205,200 m2 

Type of plant Ground-mounted fixed tilt 

Installed capacity 9,019.53 kWp 

Altitude 36 m a.s.l. 

PV modules 

Modules tilt angle 20° 

Modules azimuth 180° 

PV module technology micromorph Si (tandem) 

Total number of modules 69,381 

Module nominal power 130 Wp 

Number of Modules per String 13 

Number of Strings per Combiner Box 60 

Total number of Strings 5,337 

Total number of Combiner Boxes 91 

Inverters 

Type of inverter Central Inverter 

Inverter nominal AC power 500 kW 

Number of Inverters 17 

Energy meters 

Number of Energy meters before transformer 1 

Number of Energy meters inverter level 17 

Irradiance sensors 

Number of Reference cells1 5 

Pyranometer model DeltaOHM LP PYRA 10 

Pyranometer type Secondary Standard 

Number of Pyranometers 2 

 

Plant’s operation is monitored through a platform developed in-source and owned by BayWa r.e. 

Operation Services (named KCS). 

 
1 Since the reference cells’ technology (crystalline silicon) differs from the one of the PV modules (thin-film) and the 

measurement uncertainty of the device is higher than the one of Secondary standard pyranometers, reference cells 
were considered an unreliable source and thus excluded from the analysis. 
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Monitoring data coming from the plant have been retrieved through API calls to KCS monitoring 

system. The maximum temporal resolution available for all the monitoring variables is 5 minutes. 

The following table sums up the monitoring variables used. 

 

Table 2.2. Monitoring variables retrieved through the plant’s monitoring system 

Monitoring variable Source device(s) 
Temporal 

resolution 

POA Irradiance Pyranometers (Cab1, Cab4) 

5 minutes 

Active Power Inverters (n. 1 to 17) 

POA Irradiance Pyranometers (Cab1, Cab4) 

Active power 

Meter (Cab 5 Meter 1) 
 

Day Consumed Energy 

Consumed Energy 

Day Produced Energy 

Produced Energy 

Freq 

Phase A Voltage 

Phase B Voltage 

Phase C Voltage 

Phase A Current 

Phase B Current 

Phase C Current 
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3 Uncertainty evaluation of satellite data 

3.1 Measuring irradiance 

The International Standard IEC 61724-1:2017 defines requirements on measurement 

uncertainties, referring to “the combined uncertainties of the measurement sensors and any 

signal-conditioning electronic” [11]. 

Performance indicators reflect the uncertainty deriving from field measurements, hence 

employing and maintaining a high-level monitoring system guarantees the gathering of high-

quality data, which, once processed, enables a better understanding of the real behaviour of the 

PV plant as well as reducing the final uncertainties in KPIs calculation. 

The incoming solar radiation incident on the PV modules is the primary variable involved in PR 

calculation and its uncertainty is dominated by the one that affects irradiance measurements [16]. 

The commercial instruments used to perform on-site irradiance measurements can be grouped 

in three categories:  

• Thermopile pyranometers 

• Photodiode sensors  

• PV reference devices (including reference cells and reference modules) 

 

   

The measurement uncertainty of a pyranometer can be described as the maximum expected 

uncertainty over a defined reference period calculated with respect to a reference, regarded as 

“absolute truth” [17]. The World Meteorological Organization defines “High Quality” pyranometers 

as having a maximum uncertainty in the hourly and daily radiation totals respectively of 3% and 

2%, with a 95% confidence level [18]. 

Figure 23. Irradiance sensors. Left: thermopile pyranometer (manufacturer: Hukseflux). Center: 
photodiode pyranometer (manufacturer: LI-COR). Right: PV reference cell (manufacturer: NES) 
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The “Best Practice Guide on Uncertainty in PV Modelling” [19] reports the following typical 

uncertainty values (95% confidence interval) for the different type of instruments for measuring 

solar radiation: 

Table 3. Typical uncertainty values for irradiance measurements 

Typical uncertainty values 

Secondary standard pyranometer ± 2% 

First class pyranometer ± 5% 

Silicon sensor ± 5% - ± 8% 

Second class pyranometer ± 10% 

 

Secondary standard thermopile pyranometers can achieve measurement uncertainties of 1% for 

daily totals and 2% for hourly totals [20], thus they are considered the best type of irradiance 

sensor available on the market and they are recommended for most solar energy applications 

[21]. Irradiance measurements can also be retrieved through satellite-derived data, even though 

the use of on-site sensors is generally preferred [22]. See Table 5 for a detailed comparison. 

Satellite-derived data 

Satellite-derived irradiance data is retrieved through the application of radiative transfer models 

to the measurements performed by on-board satellite optical instruments, which measure the 

radiance reflected by the earth’s surface, filtered by the atmosphere. When choosing from 

different sources on the market, the following parameters need to be considered: 

• Measurement uncertainty reported 

• Spatial and temporal resolution 

• Geographical coverage 

• Irradiance components and other weather data available 

• Delay from real time to which data is made available  

Table 5. Relevant features for PV application of Satellite data 

Satellite-derived data 

Irradiance components measured GHI (POA can be modelled introducing large uncertainties) 

Cleaning N/A 

Calibration N/A 

Measurement uncertainty 19 – 23% for hourly totals [22] 

Response time N/A 

Data availability Near real time 

Data integrity Usually very high (depends on satellite data provider) 
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Table 5. Comparative table of on-site irradiance sensors for PV applications 

Thermopile pyranometers 

Irradiance components 

measured 
GHI, POA 

Cleaning  At least once per week (High accuracy), Optional (Medium accuracy) [11] 

Calibration 
Once per year (High accuracy), Once every 2 years (Medium accuracy), 

As per manufacturer’s requirements (Basic accuracy) [11] 

Measurement uncertainty 
≤ 3% for hourly totals (High accuracy), ≤ 8% for hourly totals (Medium 

accuracy), Any (Basic accuracy) [11] 

Response time 3 – 15 seconds [16] 

Data availability Real time 

Data integrity 
From very high to very low (depends on sensors, dataloggers, network 

connection, etc.) 

Photodiode sensors 

Irradiance components 

measured 
GHI, POA 

Cleaning  At least once per week (High accuracy), Optional (Medium accuracy) [11] 

Calibration Once per year (High accuracy), Once every 2 years (Medium accuracy), 

As per manufacturer’s requirements (Basic accuracy) [11] 

Measurement uncertainty Not applicable (High accuracy), Not applicable (Medium accuracy), Any 

(Basic accuracy) [11] 

Response time 10-2 – 103 microseconds [16] 

Data availability Real time 

Data integrity From very high to very low (depends on sensors, dataloggers, network 

connection, etc.) 

PV reference devices 

Irradiance components 

measured 
GHI, POA 

Cleaning At least once per week (High accuracy), Optional (Medium accuracy) [11] 

Calibration 
Once per year (High accuracy), Once every 2 years (Medium accuracy), 

As per manufacturer’s requirements (Basic accuracy) [11] 

Measurement uncertainty 
≤ 3% (High accuracy), ≤ 8% (Medium accuracy), Any (Basic accuracy) 

[11] 

Response time 
Considered to be zero for photovoltaic sensors even if not explicitly 

reported by the manufacturer [16] 

Data availability Real time 

Data integrity 
From very high to very low (depends on sensors, dataloggers, network 

connection, etc.) 
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[22] proposed a comprehensive evaluation of satellite-based irradiation data carried out with 

respect to pyranometer measurements from several meteorological stations, yielding, for the best 

models, the following results: 

Table 7. Uncertainty (nRMSE) of satellite-derived irradiation with respect to on-site sensors.  

Temporal 
resolution 

Uncertainty of satellite-derived irradiation 
with respect to on-site sensors 

GHI POA 

Min. Max. Min. Max. 

Monthly 3% 6% 5.4% 8.1% 

Daily 9% 11% 10.1% 12.3% 

Hourly 19% 23% 19.5% 23.6% 

 

 

Pros and cons 

On the one hand, on-site sensors have a well-defined precision and provide measurements 

actually recorded at the plant location, being exposed at the exact same conditions as the PV 

modules. They need regular cleaning, maintenance and calibration and they may be subject to 

faults which can lead to data losses (introduction of missing data in irradiance time-series). Finally, 

in some cases, small PV plants may not be equipped with irradiance sensors at all. For hourly 

and daily POA irradiance, well-maintained and calibrated sensors are always to be preferred over 

satellite-derived data. Same goes for secondary standard pyranometers used to retrieve monthly 

irradiance measurements [22]. 

On the other hand, the precision of satellite-derived data may be comparable with the 

measurements coming from first, second class pyranometers and reference cells and, due to their 

constant availability, they may be particularly useful as backup measurements in case of 

consistent data losses or as only data source for those plants that are not equipped with sensors. 

While on-site irradiance sensors require regular maintenance and calibration, the use of satellite-

derived irradiance data does not require maintenance actions on the O&M contractor’s side, thus 

removing the costs associated with on-site sensors maintenance. Nevertheless, satellite-derived 

irradiance data present higher measurement uncertainties which are affected by many factors 

involved in the process of derivation of irradiance from satellite images (terrain properties, state 

of the atmosphere, cloud transmittance) and depend on the temporal resolution. 
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3.2 Comparison methodology 

Objective 

Make a first attempt to choose the most appropriate satellite source to be used for Performance 

Reporting purposes, whether it is used for yield forecasting, to replace missing or corrupted on-

site measurements and/or as reference to detect anomalous deviations of ground sensors.  

Calculation steps 

a) Comparison of irradiance data (GHI and POA) from three different satellite sources (3E 

Data Services, Reuniwatt SunSat and ERA5-land), using as reference calibrated ground 

pyranometers (maintained by EURAC research). 

b) Calculation of error (deviation) metrics such as MBE, RMSE and nRMSE. 

c) Validation of the measurement uncertainty figures reported in the literature and in the 

marketing material. 

 

Limitations 

• This analysis was done using data only for the year 2018. 

• The results presented here are limited to one location: Bolzano, Italy.  

Table 8. Site metadata for satellite evaluation 

Tilt angle 30° 
Azimuth  188.5° 
Latitude 46.46 

Longitude 11.33 

Figure 24. Methodology overview 
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Table 9. Measurement uncertainties as 
reported in literature [22] 

 
GHI POA 

hour 19 - 23% 19,5 - 23,6% 

day 9 - 11% 10,1 - 12,3% 

month 3 - 6% 5,4 - 8,1% 

 
 
 
 
 
 

 
 
 

3.3 Input data sources 

Among the satellite-derived data sources available, two commercial services (3E Data Services1 

and Reuniwatt SunSat 2) and one free dataset (ERA5-Land3) were chosen. 

 

 

Table 10. Data sources comparison 

 

 
1 3E Data Services: https://solardata.3e.eu 
2 Reuniwat SunSat: https://reuniwatt.com/en/ 
3 Copernicus Climate Change Service: https://climate.copernicus.eu/climate-reanalysis 

Figure 25. Meteosat satellites are spin-stabilised with 
instruments designed to provide permanent visible and infrared 

imaging of the Earth. Source: eumetsat.int 

https://solardata.3e.eu/
https://reuniwatt.com/en/
https://climate.copernicus.eu/climate-reanalysis
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 ERA5-Land is a replay of the land component of the ERA5 climate reanalysis, but with a series 

of improvements making it more accurate for all types of land applications [23]. ERA5 is a climate 

reanalysis dataset providing a numerical description of the recent climate by combining models 

with observations, which is being developed through the Copernicus Climate Change Service. 

ERA5, which stands for “'ECMWF ReAnalysis”, is the fifth major global reanalysis produced by 

the European Centre for Medium-Range Weather Forecasts (ECMWF) [24-25]. 

The ERA5-Land dataset contains fifty variables, available either as accumulations or 

instantaneous parameters, which are divided into eight categories: Temperature; Lakes; Snow; 

Soil Water; Radiation and Heat; Evaporation and Runoff; Wind, Pressure and Precipitation; 

Vegetation. The variables retrieved from that dataset and used throughout the study are the 

following: 

• 2 Metre temperature [K] 

• 2 Metre dewpoint temperature [K] 

• Surface pressure [Pa] 

• Surface solar radiation downwards - GHI [J/m2] 

 

The maximum temporal resolution available is1 hour. 

 

Figure 26. ERA5-Land Source: cds.climate.copernicus.eu 
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3E Data Services and Reuniwatt SunSat, on the other hand, offer products specifically designed 

for the solar industry and, for the scope of this work, historical and near real-time solar resource 

data were retrieved. 

These services offer the retrieval of seven variables: 

• Global Horizontal Irradiation – GHI [Wh/m2] 

• Plane of array Irradiation – POA [Wh/m2] 

• Diffuse Horizontal Irradiation – DHI [Wh/m2] 

• Direct Normal Irradiation – DNI [Wh/m2] 

• Ambient temperature (at 1.5 m) [°C] 

• Wind speed (at 10 m) [m/s] 

• Wind direction (at 10 m) [°] 

The maximum temporal resolution available is 15 minutes. 

Satellite-derived irradiance data is retrieved through the application of radiative transfer models 

to the measurements performed by on-board satellite optical instruments, which measure the 

radiance reflected by the earth’s surface, filtered by the atmosphere. 

The main differences between the two data sources are the spatial resolution, the maximum 

temporal resolution, the temporal coverage, the irradiance components retrievable and the delay 

from real time to which data are made available to the user.  

 

Figure 27. Satellite data: from raw images to GHI. Source: Reuniwatt 
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Figure 28. 3E Data services: Reported ,measurement uncertainty, geographical and temporal coverage 
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Figure 29. Reuniwatt SunSat: Reported measurement uncertainty, geographical and temporal coverage 
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3.4 The error as a measure of uncertainty 

The ISO/IEC GUIDE 98-3 [18] defines the uncertainty of a measurement as “a measure of the 

possible error in the estimated value of the measurand (particular quantity subject to 

measurement) as provided by the result of a measurement”, thus linking the concept of error to 

the concept of measurement uncertainty. 

To evaluate how good a satellite-derived irradiance time-series is, it is a good practice to compare 

it to the measurements recorded (over the same period and in the same location) by a secondary 

standard pyranometer (properly calibrated and maintained). This comparison is carried out 

subtracting the measurements vector (𝒚̂) from the reference vector (𝑦). 

The result of this operation is the vector of residuals, which contains information about how far 

every single satellite-derived value is from the corresponding pyranometer value, i.e. quantifies 

the magnitude of the error which the satellite service is doing in estimating the real irradiance from 

satellite images. 

 

In this analysis three metrics are employed in order to have a single figure representing the error, 

instead of the vector of residuals. 

 

Figure 30. Error as a measurement of uncertainty 



 

42 

3.5 Error metrics applied 

Mean Bias Error (MBE) 

Quantifies the average magnitude of the errors, considering their direction (sign). It captures 

therefore the average bias of the dataset. A positive bias represents an underestimation and 

negative bias represents an overestimation. It expresses the error in units of the variable of 

interest (in this case W/m2). It gives useful average information on the bias but should be 

interpreted cautiously because positive and negative errors will cancel out. 

 

𝑀𝐵𝐸 =  
1

𝑛
∑(𝑦𝑗 − 𝑦 

𝑗
)

𝑛

𝑗=1

 

 

Root Mean Square Error (RMSE) 

It is a quadratic scoring rule that, as the MBE, also measures the average magnitude of the error, 

but without considering their direction. It expresses the error in units of the variable of interest (in 

this case W/m2). Taking the square root of the average squared errors has some interesting 

implications: since the errors are squared before they are averaged, the RMSE gives a relatively 

high weight to large errors. This means the RMSE is more useful when large errors are particularly 

undesirable. 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(𝑦𝑗 − 𝑦 

𝑗
)
2

𝑛

𝑗=1

 

 

Normalized Root Mean Square Error (nRMSE) 

It is a metric that normalizes (brings to the same scale) the RMSE. In this report we normalize 

using the mean of the distribution. It is often expressed as a percentage (%). It facilitates the 

comparison between datasets or models with different scales. 

 

𝑛𝑅𝑀𝑆𝐸 =  
√1
𝑛
∑ (𝑦𝑗 − 𝑦 

𝑗
)
2

𝑛
𝑗=1

𝑦 
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Where  

 
 

 

 

 

 

 

3.6 Clean data comparison  

During this stage, the raw time series were loaded in the system and underwent the 

transformations described below.  

a) Timestamp alignment 

The satellite sources are in UTC time zone (Greenwich Mean Time, UTC+00) and they were 

converted to UTC+01 time zone in order to allow the execution of further modelling steps. 

 

b) Measurement unit alignment 

Among the variables retrieved from ERA5-Land dataset, 2 Metre temperature and 2 Metre 

dewpoint temperature (retrieved as instantaneous values) were converted from Kelvin to 

Celsius, while GHI irradiance (Surface solar radiation downwards, retrieved as accumulations) 

𝑛: number of observations 

𝑦𝑗: reference value of 𝑗-th observation 

𝑦 𝑗: predicted value of 𝑗-th observation 

𝑦 : mean of the reference distribution 

Figure 31. Example of RMSE calculation. 
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was converted from J/m2 to W/m2 (considering that the accumulation period is 1 hour – 3,600 

seconds) and subsequently converted to instantaneous values. 3E’s irradiation, expressed as 

energy (Wh/m2), was converted to power (W/m2). 

 

c) Irradiance outliers filtering 

In accordance with International Standard IEC 61724-1:2017, values recorded outside the 

daylight hours (night values) were filtered out (replaced with zero) from both time series. For 

this purpose, sunrise and sunset hours are calculated for each day (with pvlib) and night 

values are detected by comparing the timestamps of the time series with calculated sunrise 

and sunset time. 

 

d) Resampling  

ERA5-Land variables have a maximum temporal resolution of 1 hour, while 3E’s and 

Reuniwatt’s irradiance time-series maximum data granularity is 15 minutes, thus the latter 

were resampled to 1 hour: the mean of the values over 1 hour intervals were calculated, 

rendering a timestamp denoting the beginning of the interval together with the mean value 

(missing values are discarded from the process). 

 

e) Calculation of deviation/error metrics 

As explained in the previous section. 

 

Figure 32. Methodology overview 
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Figure 33. Reference dataset: research-grade pyranometers 

Issue: missing values in the reference dataset  

Action taken: removal of all the days with at 

least 1 missing value (zero tolerance filter) 
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3.6.1 Global Horizontal Irradiance 

Figure 34. Clean GHI data summary 
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Figure 35. Clean GHI data: example of summer days 
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Figure 36. GHI clean data – example of a clear summer day 
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Figure 37. GHI clean data: example of a cloudy day 
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3.6.2 Plane of Array Irradiance  

Figure 38. Clean POA data summary 
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Figure 39. Clean POA data: example of summer days 
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Figure 40. Example of a clear summer day 
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Figure 41. Example of a cloudy summer day 
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3.7 Results and discussion  

3.7.1 GHI and POA monthly data comparison 

 

   

Figure 42. GHI and POA monthly data 
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3.7.2 GHI error distribution 

  

Figure 43.GHI error distribution: Reuniwatt SunSat 
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Figure 44. GHI error distribution: 3E Data Services 
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Figure 45. GHI error distribution: ERA5-land 
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3.7.3   POA error distribution 

 

Figure 46. POA error distribution: Reuniwatt SunSat 
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Figure 47. POA error distribution: 3E Data Services 
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3.7.4  MBE and RMSE 

 

 

▪ A positive bias represents an underestimation (i.e. satellite < pyranometer) 

▪ A negative bias represents an overestimation (i.e. satellite > pyranometer) 

▪ It can be seen that in all cases both commercial datasets overestimate (in average) the 

pyranometer’s values, whereas the free data set underestimates. 

 

▪ For most cases, it can be seen that 3E Data Services yielded the lowest error. 

▪ Especial attention is paid to POA monthly values because they are particularly useful for 

Performance Reporting. 
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3.7.5  nRMSE 

 

 

▪ For most cases, 3E Data Services yielded the lowest uncertainty, with the exception of 

yearly data, where ERA5-land had the lowest value. 

▪ For high granularity values (hour, day), ERA5-land resulted the less accurate of the 3 

satellite sources analyzed. 

▪ For low granularity values (year), Reuniwatt resulted as the less accurate of the 3 satellite 

sources analyzed. 

Figure 48. GHI uncertainty summary 
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▪ POA irradiance is not available in the ERA5-land dataset, so this comparison was possible 

only for Reuniwatt and 3E. 

▪ In all the cases, 3E Data Services resulted the most accurate source. 

 

Interpretation of results 

▪ In all the cases, 3E Data Services resulted the most accurate source. 

▪ The present analysis gives a general idea of how satellite sources deviate from on-site 

measurements. 

▪ In 95% of the cases (19/20) satellite data overestimated on-site measurements. 

▪ Satellite data deviates the most from ground measurements under cloudy conditions 

(commercial solutions based their competitive advantage on how well they deal with this 

issue). 

▪ Of the three solutions analysed, in 87.5% of the cases (7/8), 3E Data Services resulted 

the most accurate source. 

▪ The free available dataset ERA5-land resulted the best only for GHI yearly data, but the 

worst for daily and monthly data.  

Figure 49. POA uncertainty summary 
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▪ The uncertainty figures calculated in the present analysis in many cases are twice as big 

as the reported uncertainties in the literature and in the marketing material of the service 

providers. This might be mainly due to the fact this analysis was done only for one site for 

one year (other possible causes might involve the methodology and metrics used). 

▪ Validation should be done more extensively (more sites) to get more precise generic 

figures, because satellite data is highly sensible to the geographic location and local 

climates 

▪ Finally, as previously explained, the temporal resolution offered by ERA5-Land (1 hour) 

may be enough for monthly KPIs calculation, but it could be totally insufficient when a 

higher granularity is needed, for example in case of fault detection. In this case, employing 

3E Data Services is the most viable solution (maximum temporal resolution: 15 minutes), 

despite the well-known uncertainties. 
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4 Data Quality analysis  

The analysis proposed in this chapter is a consistent data quality control procedure for the 

assessment of raw measurements and consequently of the sensors’ health status.  

The procedure consists of three stages: 

a) Data pre-processing 

b) Data Quality Check 

c) The ‘virtual sensor’ concept 

Once data have been pre-processed, anomalous records are detected through the execution of 

multiple consecutive quality checks. Finally, virtual sensors are defined to lower the uncertainties 

deriving from missing data, which may affect KPIs calculation. 

Each step gets as input the time-series processed during the previous stage and outputs a 

summary reporting on the transformations applied to the data and, when applicable, one or more 

modified time-series, ready for evaluation. The only exception is the first stage, in which raw data 

gets loaded and transformed in order to be ready for further processing. 

This analysis has been programmed in Python and delivers a report-like document containing 

valuable insights for technical managers and decision makers. 

 

4.1 Terms and definitions 

For ease of reading, terms and definitions used in the rest of the chapter are gathered in this 

paragraph. 

 

Resampling: modifying the temporal interval of a time series averaging the values over the 

chosen temporal interval. For example, aggregation of 5-minutes data into 15-minutes data: in 

this process the mean of the values over 15 minutes intervals are calculated, rendering a 

timestamp denoting the beginning of the interval together with the mean value (missing values 

are discarded from the process). 
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Timestamp 
POA 

(W/m2) 

2018-01-01 

13:00:00+01:00 
158.1 

2018-01-01 

13:05:00+01:00 
127.5 

2018-01-01 

13:10:00+01:00 
142.8 

2018-01-01 

13:15:00+01:00 
NaN 

2018-01-01 

13:20:00+01:00 
71.4 

2018-01-01 

13:25:00+01:00 
40.8 

 

⇒ 

 

Timestamp POA (W/m2) 

2018-01-01 

13:00:00+01:00 
142.8 

2018-01-01 

13:15:00+01:00 
56.1 

 

 

Missing value (NaN): no value available for a specific variable at a specific time. The timestamp 

is present in the time series. 

 

Missing log: no records are available for all the variables at a specific time. The timestamp is 

absent from the time series. 

 

 

Missing data: sum of missing values and missing logs 

 

15:15 missing 
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Outlier: value which lies outside of reasonable bounds. Two different approaches are defined.  

a) Filter IEC standard – irradiance specific: In accordance with IEC TS 61724-3 Photovoltaic 

system performance: Part 3: Energy evaluation method [27], a following outlier filter is 

defined: 

−6 𝑊 𝑚2⁄ ≤ 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 ≤ 1500𝑊 𝑚2⁄  

 

 

         

Figure 50. Example of missing data in raw irradiance time-series (no distinction between missing values and logs) 

Table 11. IEC filtering criteria [27, table 3] 
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b) Filter adjusted to local conditions – empirical: to take into account local conditions, the 

bounds for irradiance have been defined as follows: 

         

0 𝑊 𝑚2⁄ ≤ 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 ≤ 1.3 ∙ 𝑚𝑎𝑥(𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛) 𝑊 𝑚2⁄  

              

          The maximum irradiance value is increased by 30% in order to take into account the 

 uncertainty related to satellite data measurements as stated in literature (19-23%) for 

 hourly irradiation [22.] 

 

 

Dead value: data point which is stuck at a single value over time. Considering the granularity of 

the dataset (5 minutes), the timespan of interest to identify anomalous data points has been fixed 

to 15 minutes. 

 

 

Before step 2 

After step 2 

Figure 51. Example of outlying data detection (focus on a single day) 



 

68 

 

 

Night value: in accordance with International Standard IEC 61724-1:2017, a night value is 

defined as a value recorded outside the daylight hours. For this purpose, sunrise and sunset 

hours are calculated for each day and night values are detected by comparing the timestamps of 

monitoring data with calculated sunrise and sunset time. 

The calculation of sunrise and sunset hours is executed employing Python pvlib library, which 

contains algorithms that, given the reference period and the coordinates of a location, can 

compute sunrise and sunset time for each day included in the timespan of interest. 

 

 

 

Before step 3 

After step 3 

Figure 52. Example of dead values detection (focus on a single day) 

 

Figure 53. Example of night values detection (focus on a single day) 
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Daytime zero: zero-value recorded during daylight hours. For this purpose, sunrise and sunset 

hours are calculated for each day as well as the mean AC Power of all inverters for each 

timestamp. A zero-value irradiance reading recorded in the timespan between sunrise and sunset 

is labelled as daytime zero when, for the same timestamp, the mean AC Power is non-zero. 

 

 

 

 

 

 

Irradiance time-series of the selected sensors 
suspicious values are highlighted in red 

 

 AC Power time-series (mean of AC Power of all 
inverters): the timestamp identified in (2018-12-31 
16:25:00+01:00) reveals a non-zero AC Power value, 
thus the irradiance value identified above (Irradiance of 
Pyranometer Cab 4) gets replaced by a missing value 

 

 

 

 

 

  

Figure 54. Example of daytime zeros detection (focus on a single day) 
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4.2 Methodology applied  

 
  

Figure 55. Irradiance Analysis flowchart 
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4.3 Input data 

The analysis introduced in the present chapter made use of both monitoring and satellite-derived 

data. 

Two criteria were used in order to select the reference period of the analysis: the length of the 

timespan and the number of missing data in the timespan. The length was chosen so to consider 

the seasonal variability, while the year was selected in order to minimize the number of missing 

data recorded by the selected pyranometers: 

Data source 
Temporal 

resolution 

Reference period N. of logs 

analysed Start End 

3E Data Services 15 minutes 

01/01/2018 31/12/2018 

35,040 

KCS monitoring 

system 
5 minutes 105,120 

 

Among the variables made available by 3E Data Services, only POA irradiation was employed in 

the present analysis, while the following variables were retrieved from KCS monitoring system): 

 

Data source Monitoring variable Source device(s) 
Temporal 

resolution 

KCS monitoring system 
POA Irradiance Pyranometers (Cab1, Cab4) 

5 minutes 
Active Power Inverters (n. 1 to 17) 

 

4.4 Data pre-processing 

During this stage, raw time series coming from all available sources were loaded in the system 

and underwent the transformations described below. 

3E’s POA irradiation, expressed as energy (Wh/m2), was converted to power (W/m2) in order to 

allow comparisons with pyranometers’ data, which are already expressed as irradiance in the 

monitoring system. Monitoring data time series (both from pyranometers and inverters), retrieved 

through KCS monitoring system, have a temporal resolution of 5 minutes, while 3E’s POA 

irradiance time-series have a temporal resolution of 15 minutes. 

Most of the quality checks on irradiance sensors time-series were executed on five-minutes data 

to allow the identification of anomalous records. Only in the final step of the procedure, which 
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consists in the comparison between 3E and monitoring data, sensors’ time-series were resampled 

from 5-minutes data into 15-minutes data. 

Furthermore, monitoring data are in local time (Central European Time, UTC+01), while 3E time-

series are in UTC time zone (Greenwich Mean Time, UTC+00), thus the latter were converted to 

UTC+01 time zone in order to allow the detection of night values and daytime zeros. 

As final pre-processing step, a complete collection of timestamps (with no missing data) ranging 

from start to end of the reference period was created for each data granularity (5 minutes, 15 

minutes) to allow the identification of missing logs. 

 

4.5 Data Quality Check 

The Data Quality Check (DQC) procedure is composed of five consecutive steps: 

DQC 1. Missing values detection and missing logs handling 

DQC 2. Outlier’s handling 

DQC 3. Dead values handling 

DQC 4. Night values handling 

DQC 5. Daytime zeros handling 

Each Data Quality Check step gets as input the irradiance time-series processed during the 

previous stage and outputs a summary (composed of a table and two graphs) of the anomalies 

detected in the individual step and, when applicable, a modified time-series. 

 

4.5.1 DQC 1: Missing values detection and missing logs handling 

DQC 1 gets as input the pre-processed data and quantifies the amount of missing data detected 

in the reference period (year 2018) for the selected irradiance sensors (pyranometer Cabin 1 and 

Cabin 4). When a missing log is detected, a new record containing only NaNs is inserted in the 

time-series. DQC 1 outputs a modified-time series for each sensor (which will be used as input 

for the next step) as well as a summary table and graphs, which are presented below: 
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Table 12. Summary of missing data, missing values and missing logs detected after DQC 1. 
Percentages are calculated with respect to the total number of logs analysed (105,120 logs) 

  Pyranometer Cab 1 Pyranometer Cab 4 

Missing logs 

[A] 

Count 6,121 1,654 

Percentage 5.82% 1.57% 

Missing 

values 

[B] 

Count 1 0 

Percentage 0.00% 0.00% 

Missing data 

[A] + [B] 

Count 6,122 1,654 

Percentage 5.82% 1.57% 

 

 

4.5.2 DQC 2: Outlier’s handling 

DQC 2 acts identifying outlying data present in the time series of the selected sensors across the 

reference period and replacing them with missing values. DQC 2 outputs a modified time series 

for each sensor (which will be used as input for the next step) as well as a summary table and 

graphs. The former is presented below, while output graphs are not shown because they are not 

relevant in this specific case (basically no outliers were detected, the graphs would be empty): 

 
Table 13. Summary of outlying data detected after DQC 2. 

Percentages are calculated with respect to the total number of logs analysed (105,120 logs) 
 

  
Pyranometer 

Cab 1 

Pyranometer 

Cab 4 

Outliers 
Count 5 1 

Percentage 0.00% 0.00% 

 

4.5.3 DQC 3: Dead values handling 

DQC 3 acts identifying dead values present in the time series of the selected sensors across the 

reference period and replacing them with missing values. DQC 3 outputs a modified time series 

for each sensor (which will be used as input for the next step) as well as a summary table and 

graphs, which are presented below: 
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Table 14. Summary of dead values detected after DQC 3. 

Percentages are calculated with respect to the total number of logs analysed (105,120 logs) 
 

  
Pyranometer 

Cab 1 

Pyranometer 

Cab 4 

Dead 

values 

Count 52 13,061 

Percentage 0.05% 12.42% 

 

4.5.4 DQC 4: Night values handling 

DQC 4 acts identifying night values present in the time series of the selected sensors across the 

reference period. Night values are replaced by missing values and subsequently substituted with 

zeros. DQC 4 outputs a modified time series for each sensor (which will be used as input for the 

next step) as well as a summary table and graphs, which are presented below: 

 
Table 15. Summary of non-zero night values detected after DQC 4. 

Percentages are calculated with respect to the total number of logs analysed (105,120 logs) 
 

  
Pyranometer 

Cab 1 

Pyranometer 

Cab 4 

Night 

values 

Count 0 7.237 

Percentage 0.00% 6.88% 

 

4.5.5 DQC 5: daytime zeros handling 

DQC 5 acts identifying daytime zeros present in the time series of the selected sensors across 

the reference period and replacing them with missing values.DQC 5 outputs a modified time 

series for each sensor (which will be used as input for the next step) as well as a summary table 

and graphs, which are presented below: 

 
Table 16. Summary of daytime zeros detected after DQC 5. 

Percentages are calculated with respect to the total number of logs analysed (105,120 logs) 
 

  
Pyranometer Cab 

1 

Pyranometer Cab 

4 

Daytime 

zeros 

Count 6,376 4,241 

Percentage 6.07% 4.03% 
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4.5.6 DQC summary 

Once DQC 5 has been performed, the results of each step are presented together with an 

overview of the whole process (Error! Reference source not found.). 

 
Table 17. Data Quality Check summary 

 Pyranometer Cabin 1 Pyranometer Cabin 4 

 N. of Missing Data % of Missing Data N. of Missing Data % of Missing Data 

DQC 1 6,122 5.82 1,654 1.57 

DQC 2 5 0.00 1 0.00 

DQC 3 52 0.05 13,061 12.42 

DQC 4 0 0.00 7,237 6.88 

DQC 5 6,376 6.07 4,241 4.03 

Total 12,555 11.94 26,194 24.90 

 

The following graphs summarize how missing data are distributed with respect to the above-

mentioned issues, enabling a preliminary assessment of sensors’ health status. 

 

Figure 56. Pyranometer Cabin 1: distribution of missing data with respect to the identified issues 
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4.6 The ‘virtual sensor’ concept 

The idea which stands behind the concept of virtual sensor is to the make the most out of the 

available data (on-site measurements and satellite data) to improve the data integrity by 

minimizing the percentage of missing values. This is of great importance for the reliable 

calculation of KPIs. Since on-site measurements are prone to be affected by a number of issues 

(as discussed in the previous section), virtual sensors tackle this problem by blending on-site 

sensors measurements and satellite data. 

The available inputs for KPIs calculation are: 

a) on-site sensors, which may bear uncertainties deriving from missing data (after being 

processed through the Data Quality Check) 

b) virtual sensors, which aim at lowering the uncertainties deriving from missing data by 

blending on-site sensors measurements and satellite data 

Within the framework of this thesis, two approaches were studied: 

1) Virtual sensor 1: when 2 or more on-site sensors are available, but no satellite data 

2) Virtual sensor 2: when 2 or more on-site sensors are available and also satellite data 

Figure 57. Pyranometer Cabin 4: distribution of missing data with respect to the identified issues 
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The virtual sensor 1 is created by comparing 

the measurements of the sensors record by 

record. If a sensor at a certain time shows a 

missing value, then it gets discarded and the 

measurement of the other sensor is taken. If 

all readings are valid (no missing values), 

then the mean of the measurements is 

calculated. If all sensors show missing 

values, then also the “virtual sensor 1" will 

show the missing value. 

 

The virtual sensor 2 is created by comparing 

the measurements of the sensors record by 

record. If a sensor at a certain time shows a 

missing value, then it gets discarded and the 

measurement of the other sensor is taken. If 

all readings are valid (no missing values), 

then the mean of the measurements is 

calculated. If all sensors show missing 

values, then 3E satellite data are employed 

to fill in the gaps. 

 

Pyranometer 

Cabin 1 

~14% NaN 

Pyranometer 

Cabin 4 
~7% NaN 

Virtual sensor 1 

~6% NaN 

 

Pyranometer 

Cabin 1 
~14% NaN 

Pyranometer 

Cabin 4 
~7% NaN 

Satellite data 
0% NaN Virtual sensor 2 

~0% NaN 

  

Figure 58. Missing data comparison: On-site sensors vs. virtual sensors 
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4.7 Results and discussion 

The Data Quality Check procedure presented enables the detection of anomalous records and 

unlocks the possibility to compare on-site sensos between each other based on the identified 

issues.  

• While pyranometer Cabin 1 shows mainly raw data missing logs (5.82%) and daytime 

zeros (6.07%), pyranometer Cabin 4 showcases a wider range of anomalies: raw data 

missing logs (1.57%), dead values (12.42%), night values (6.88%) and daytime zeros 

(4.03%). 

• Comparing the total percentage of missing data after the DQC, pyranometer Cabin 1 

seems to show a better general behaviour over the reference period (11.94% of missing 

data) than pyranometer Cabin 4 (24.90% of missing data). 

Furthermore, the application of the ‘virtual sensor’ concept has proven to bring down the 

percentage of missing values to almost zero, but its effectiveness is clearly limited by and highly 

dependent on the quality and availability of sensors on-site (the more sensors the better). 
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5 Data imputation with ML techniques 

 

Supervised learning tasks are classified according to the nature of the target variable: when the 

desired output is quantitative, the problem is defined as regression, while when the labels are 

qualitative it is called classification. 

Many of the articles concerning ML applications in the PV field revolve around two major topics: 

• PV energy or power forecasting – regression task 

• Fault detection, diagnostics and prognostics - mainly classification task 

 

The ML application presented in this work is a regression problem. On previous research [15], a 

literature was carried out to analyse the most relevant articles concerning PV energy/power 

forecasting [28-30] to find out the best performing ML models applied (see Table 18). 

 

Table 18. Literature review. ML application in the PV sector 

Input 

variables 

Output 

variables 

Models Best performing 

models 

GHI, DHI, POA, ambient temperature, wind speed Power DBN, SVR, RFR DBN, RFR 

GHI, ambient temperature, relative humidity, wind 

direction, wind speed, solar azimuth and elevation 
Power ANNs, SVR, RT FFNN 

21 NWP variables, such as ambient temperature, 

total cloud cover, wind speed, wind direction, clear 

sky radiation, etc. 

Energy 

Lasso regression, 

ARIMA, KNN, GBR, 

ANN 

GBR, ANN 

 

Despite the importance of having accurate and reliable irradiance measurements available, it is 

very common for O&M operators to deal with plants which are not equipped with irradiance 

sensors or which are equipped with unreliable ones. The lack of regular cleaning and calibration 

may be responsible for sensor recording substantial deviations from the actual incoming solar 

radiation incident on the panels (lowering the data quality), while sensor outages (even though 

the root cause may not lie in the sensor itself, e.g. network connection error) may be responsible 

for the introduction of missing data (lowering the data integrity), which may compromise the 

correct interpretation of system’s performance. 

In this framework, if there are no backup sensors available on site, measurements recorded in 

nearby plants or weather stations may be used for KPIs calculation, paving the way for growing 

uncertainties and misleading performance evaluation. 
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As analysed in chapter 3, satellite-derived irradiance data may be used, when available, as 

backup even though operators must be aware of the uncertainties which this approach may 

introduce. 

In this chapter an alternative approach based on MLL techniques is explored: additional 

monitoring data coming from other on-site devices (in addition to irradiance sensors) are used as 

input variables for several ML algorithms in order to perform POA irradiance missing values 

imputation. This imputation issue is a typical regression problem that can be tackled with a 

supervised learning approach, where the training set fed to the algorithm includes the desired 

solutions (in this case, POA irradiance). Once the algorithm has been trained, its task is to predict 

irradiance measurements (quantitative target variable) which were missing in the original time 

series coming from field sensors. 

This data-driven approach is particularly useful for plants which only have one irradiance sensor 

(suspected to be unreliable) but there are other monitoring variables available (e.g. power, 

voltage, current, energy, etc.). 

The predictions obtained by the best performing algorithms analysed have been subsequently 

evaluated against commercial satellite derived-irradiance data, resulting in 60 to 70% lower MAE 

and RMSE. 
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5.1 Methodology applied 

 

 

Figure 59. ML application workflow 
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5.2 Input data 

The analysis introduced in the present chapter made use of both raw monitoring (not processed 

through DQC – section 4.5) and satellite-derived data. 

The length of the reference period was extended so to exploit the biggest amount of monitoring 

data retrievable through KCS monitoring system and subsequently allow the ML algorithms to be 

trained on the largest available dataset. 

Table 19. Key features of the analysed datasets 

Data source 
Temporal 

resolution 

Reference period N. of logs 

analysed Start End 

3E Data 

Services 
15 minutes 

08/11/2016 13/08/2019 

96,772 

KCS monitoring 

system 
15 minutes 96,772 

 

Among the variables made available by 3E Data Services, only POA irradiation was employed in 

the present analysis, while the following variables were retrieved from KCS monitoring system: 

 

Table 20. Monitoring variables retrieved 

Data source Monitoring variable Source device(s) 
Temporal 

resolution 

KCS monitoring system 

POA Irradiance Pyranometers (Cab1, Cab4) 

5 minutes 

Active power 

Meter (Cab 5 Meter 1) 
 

Day Consumed Energy 

Consumed Energy 

Day Produced Energy 

Produced Energy 

Freq 

Phase A Voltage 

Phase B Voltage 

Phase C Voltage 

Phase A Current 

Phase B Current 

Phase C Current 
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5.3 Data preparation 

Before entering in the details of the machine learning algorithms employed, data preparation steps 

are briefly described. 

 

5.3.1 Time-stamps alignment and resampling 

Monitoring data time series (both from pyranometers and meters), retrieved through KCS 

monitoring system, have a temporal resolution of 5 minutes, while 3E’s POA irradiance time series 

have a temporal resolution of 15 minutes, thus monitoring time series were resampled to 15 

minutes: the mean of the values over 15 minutes intervals are calculated, rendering a timestamp 

denoting the beginning of the interval together with the mean value (missing values are discarded 

from the process – see section 4.1). 

Furthermore, 3E time-series are in UTC time zone (Greenwich Mean Time, UTC+00), while 

monitoring data are in local time (Central European Time, UTC+01), so the latter were converted 

to UTC time zone. 

 

5.3.2 Reference distribution selection 

The analysis has been restricted to one field pyranometer to take into account the worst conditions 

experienced by the on-site sensors across the timespan of interest, so to benchmark the ML 

algorithms with respect to the worst-case scenario faced by the available field instruments. The 

selection of the pyranometer was made based on three criteria detected in the time-series: the 

total number of missing data, the number of days without missing data and the number of 

consecutive days with missing data (i.e. missing data distribution). 

The following table sums up the first two criteria described above: 

 
Pyranometer Cabin 1 Pyranometer Cabin 4 

Count Percentage Count Percentage 

Missing data 8,261 8% 1,451 1% 

Days with no missing data 879 87% 941 93% 

 

The following graphs display the missing data distribution for the two pyranometers: 
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Pyranometer Cabin 1 was selected both because of the highest rate of missing data and 

because it includes the worst-case scenario of multiple consecutive days without valid data. 

In this framework, a reference distribution coming from a calibrated pyranometer would serve as 

gold standard, allowing for the correct evaluation of the predictions yielded by the ML algorithms 

as well as of the satellite-derived irradiance data. Due to the lack of a dedicated pyranometer to 

be used as gold standard, the pyranometer Cabin 1 was selected as reference by deleting from 

the time-series all the logs corresponding to days containing at least one record with missing data, 

increasing the percentage of missing data from 8% to about 13%. 

 

 

Figure 60. Missing data distribution of the field pyranometers across the reference period (raw data) 

Figure 61. Reference distribution: POA irradiance recorded by pyranometer Cabin 1 across the reference period, 

deprived of the days with missing data 
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5.3.3 Definition of target synthetic POA irradiance time-series 

To simulate the anomalous behaviour of a virtual pyranometer based on the above-defined 

reference distribution (real pyranometer Cab 1 readings across the reference period, containing 

only days without missing data), two synthetic distributions, named “A” and “B”, were created by 

mimicking the missing data distribution of pyranometer Cabin 1. 

In synthetic distribution “A” were introduced about 9% of additional missing data (reaching a total 

of about 22% of missing data), according to the following steps: 

1) A copy of the reference distribution was created 

2) The missing data distribution of pyranometer Cabin 1 was shifted onwards by 70 days 

(“shifted distribution”) 

3) Missing values were introduced in the copy of the reference distribution replicating the 

above-mentioned “shifted distribution” and thus obtaining the synthetic distribution “A” 

 

In synthetic distribution “B” were introduced about 20% of additional missing data, by replicating 

the above-described steps and adding an additional 11% of missing data randomly (reaching a 

total of about 33% of missing data). 

Figure 62. Reference distribution vs synthetic distribution “A” 

Figure 63. Reference distribution vs synthetic distribution “B” 
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The synthetic distributions, representing POA irradiance readings across the reference period, 

will be used as target variable for the machine learning algorithms described in the following 

sections. 

 

5.4 Feature engineering and selection 

5.4.1 Feature selection 

The electrical parameters referring to a single meter (Active power, Day Consumed Energy, 

Consumed Energy, Day Produced Energy, Produced Energy , Freq, Phase A Voltage, Phase B 

Voltage, Phase C Voltage, Phase A Current, Phase B Current, Phase C Current) were used as 

input variables. 

After calculating the percentage of missing data of all the plant’s meters, Cabin 5 Meter 1 was 

selected as the meter which showed the lowest percentage on all the available variables 

(electrical parameters).  

 

5.4.2 Feature engineering 

Once Cabin 5 Meter 1 was selected, its time series were pre-processed as follows: 

a) Days having more than ten consecutive records with missing data (empirical threshold) 

were discarded both in meter’s and target synthetic time series (previously defined in 

section 5.3.3) for aligning their timestamps 

b) The gaps in the time series (maximum ten consecutive missing data) were filled by 

employing linear interpolation to avoid potential issues in ML processing of time series 

with missing data 

Furthermore, exploiting the information contained in the time series index four additional features 

were generated: “month”, “day”, “hour” and “minute”. 

The full dataset is hence composed by sixteen input variables and one target variable, as 

summarized in the following table: 
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Table 21. Input and target variables 

N. Input variable Unit 

1 Month - 

2 Day - 

3 Hour h 

4 Minute min 

5 Active power kW 

6 Day Consumed Energy kWh 

7 Consumed Energy kWh 

8 Day Produced Energy kWh 

9 Produced Energy kWh 

10 Freq Hz 

11 Phase A Voltage V 

12 Phase B Voltage V 

13 Phase C Voltage V 

14 Phase A Current A 

15 Phase B Current A 

16 Phase C Current A 

N. Target variable Unit 

1 Plane of array irradiance W/m2 

 

Once the reference period had been identified and input variables and target variable had been 

pre-processed, the selected ML algorithms could be trained and subsequently run on the test set 

to get POA irradiance predictions where the synthetic distributions presented missing data. 

 

5.5 ML models training and testing 

Eight ML algorithms were employed: 

1. Linear Regression 
2. Polynomial Regression – degree 2 
3. Stochastic Gradient Descent Regressor 
4. Linear Support Vector Regression 
5. Decision Tree Regressor 
6. Random Forest Regressor 
7. Bagging Regressor 
8. Gradient Boosting Regressor 
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The models were applied both on the full dataset and on the dataset pre-processed through the 

application of Principal Component Analysis (PCA). 

Principal Component Analysis is a dimensionality reduction algorithm which is used for deriving 

a low-dimensional set of features from a large set of variables. PCA identifies the hyperplane that 

lies closest to the data (input variables) and then projects the data onto it, creating a new set of 

input variables, smaller than the original one. The selection of the right hyperplane is done so that 

the projection preserves the maximum amount of variance, which means losing less information 

than other projections. It is possible to adjust the amount of information (variance) lost in the 

process, so to find the optimal trade-off between information lost and algorithms performance 

[13][38]. 

Each synthetic distribution was split in two subsets: all the observations without missing data were 

placed in the first subgroup, which was subsequently divided into training set (80%) and 

validation set (20%). The second subgroup, containing all the observations having a missing 

value as target variable, was used as test set (see Figure 64 and Figure 65). 

 

 

 

 

Figure 64. Synthetic distribution “A”: training-validation-test set flowchart 
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Table 22. Training, validation and test sets split for synthetic distribution “A” and “B” 

 
Synthetic distribution “A” Synthetic distribution “B” 

Observations 
Count 

Observations 
Percentage 

Observations 
Count 

Observations 
Percentage 

Training Set 61,360 73% 53,988 64% 

Validation set 15,341 18% 13,497 16% 

Test set 7,395 9% 16,611 20% 

Total 84,096 100% 84,096 100% 

 

Before applying any ML model, the input variables belonging to the two subsets were brought to 

common scale in order to allow for a better performance of the algorithms: the Scikit-learn class 

StandardScaler was applied on the features in order to remove the mean and scale to unit 

variance (StandardScaler was fit to the training input variables and subsequently used to 

transform the training input variables as well as the validation and test input variables). 

Models evaluation was executed by calculating both RMSE and MAE on the training, validation 

and test set. Five-fold cross-validation was applied on the training set obtaining an array of five 

evaluation scores, whose mean and standard deviation were subsequently analysed. 

Figure 65. Synthetic distribution “B”: training-validation-test set flowchart 
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Furthermore, 3E POA irradiance time series was evaluated against the reference distribution by 

calculating RMSE and MAE over the timespan of interest defined by the test set. The results are 

summarized in the following table: 

3E POA irradiance MAE RMSE 

Test set synthetic distribution “A” 43.44 91.04 

Test set synthetic distribution “B” 49.12 96.78 

 

In the end, the values of the performance metrics calculated on the test set for each algorithm 

and each synthetic distribution were compared with the values shown here. 

 

5.5.1 Models applied on the full dataset 

For each synthetic distribution, performance metric and algorithm, Grid Search with five-fold 

cross-validation was employed to search for the best combination of hyperparameters. A 

selection of hyperparameters for each algorithm with a range of tentative values were passed to 

Scikit-learn’s GridSearchCV class, which evaluates all the possible combinations of 

hyperparameter values using cross-validation. 

The collection of hyperparameters tested are presented in Annex B: Hyperparameters tuning. 

The results obtained for the best performing models are shown in the following Tables 23-26. 

 

Table 23. Models evaluation: synthetic distribution “A” – performance metric: RMSE (W/m2) 

Model 

Training 

set 

Validation 

set 

Test 

set 
3E % Change 

RMSE 

mean 

RMSE 

STD 
RMSE 

RMSE 

[A] 

RMSE 

[B] 

([A] - [B]) / 

[B] 

Linear Regression 73.52 1.64 73.62 46.44 

91.04 

-49% 

Polynomial Regression – Degree 2 69.69 1.66 70.16 46.42 -49% 

Stochastic Gradient Descent Regressor 74.22 1.49 73.89 46.03 -49% 

Linear Support Vector Regression 80.96 2.21 80.29 48.68 -47% 

Decision Tree Regressor 49.20 0.90 48.47 43.19 -53% 

Random Forest Regressor 42.84 0.98 42.00 33.92 -63% 

Bagging Regressor 46.10 1.04 45.29 32.77 -64% 

Gradient Boosting Regressor 42.21 1.24 41.02 33.71 -63% 
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Table 24. Models evaluation: synthetic distribution “A” – performance metric: MAE (W/m2) 

Model 

Training 

set 

Validation 

set 

Test 

set 
3E % Change 

MAE 

mean 

MAE 

STD 
MAE 

MAE 

[A] 

MAE 

[B] 

([A] - [B]) / 

[B] 

Linear Regression 30.72 0.36 30.76 24.73 

43.44 

-43% 

Polynomial Regression – Degree 2 33.43 0.38 33.72 28.57 -34% 

Stochastic Gradient Descent Regressor 31.44 0.57 31.67 23.72 -45% 

Linear Support Vector Regression 25.89 0.44 25.41 17.96 -59% 

Decision Tree Regressor 18.17 0.21 17.45 15.46 -64% 

Random Forest Regressor 14.89 0.35 14.21 12.34 -72% 

Bagging Regressor 15.61 0.31 14.92 12.53 -71% 

Gradient Boosting Regressor 14.79 0.35 14.09 11.84 -73% 

 

 

 

Table 25. Models evaluation: synthetic distribution “B” – performance metric: RMSE (W/m2) 

Model 

Training 

set 

Validation 

set 

Test 

set 
3E % Change 

RMSE 

mean 

RMSE 

STD 
RMSE 

RMSE 

[A] 

RMSE 

[B] 

([A] - [B]) / 

[B] 

Linear Regression 75.64 2.63 73.85 53.85 

96.78 

-44% 

Polynomial Regression – Degree 2 71.37 2.52 69.88 56.19 -42% 

Stochastic Gradient Descent Regressor 76.07 2.79 74.19 53.99 -44% 

Linear Support Vector Regression 83.03 3.15 80.02 60.01 -38% 

Decision Tree Regressor 48.89 0.43 48.84 53.16 -45% 

Random Forest Regressor 42.98 0.28 43.26 47.16 -51% 

Bagging Regressor 46.78 0.79 46.39 43.36 -55% 

Gradient Boosting Regressor 41.96 0.74 41.42 47.10 -51% 
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Table 26. Models evaluation: synthetic distribution “B” – performance metric: MAE (W/m2) 

Model 

Training 

set 

Validation 

set 

Test 

set 
3E % Change 

MAE 

mean 

MAE 

STD 
MAE 

MAE 

[A] 

MAE 

[B] 

([A] - [B]) / 

[B] 

Linear Regression 32.14 0.65 31.63 22.42 

49.12 

-54% 

Polynomial Regression – Degree 2 35.01 0.59 34.49 30.23 -38% 

Stochastic Gradient Descent Regressor 32.39 0.45 32.79 23.26 -53% 

Linear Support Vector Regression 26.97 0.74 26.04 18.36 -63% 

Decision Tree Regressor 18.51 0.13 17.59 17.60 -64% 

Random Forest Regressor 15.20 0.12 14.79 14.40 -71% 

Bagging Regressor 18.40 0.36 17.76 13.83 -72% 

Gradient Boosting Regressor 15.05 0.16 14.56 14.37 -71% 

 

 

5.5.2 Models applied on the dataset pre-processed through PCA 

On both datasets, referring to the synthetic distributions, was applied Principal Components 

Analysis (PCA). 

PCA was fit to the training set and the components with variance less than 1 were dropped (Kaiser 

criterion), thus only six components were selected, summing up to a cumulative proportion of 

explained variance of 80.9%. Afterwards, training, validation and test set data were projected onto 

the selected components, obtaining the lower dimensional datasets on which ML models were 

applied. 

For each synthetic distribution, performance metric and algorithm, Grid Search with five-fold 

cross-validation was employed to search for the best combination of hyperparameters. 

The collection of hyperparameters tested are presented in the Annex A, section 8.2.  

The results obtained for the best performing models are shown in the following tables. 
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Table 27. Models evaluation: synthetic distribution “A” – performance metric: MAE (W/m2) 

Model 

Training 

set 

Validation 

set 

Test 

set 
3E % Change 

MAE 

mean 

MAE 

STD 
MAE 

MAE 

[A] 

MAE 

[B] 

([A] - [B]) / 

[B] 

Linear Regression 36.22 0.45 36.18 26.20 

43.44 

-40% 

Polynomial Regression – Degree 2 31.36 0.39 31.44 22.25 -49% 

Stochastic Gradient Descent Regressor 36.21 0.92 36.32 26.02 -40% 

Linear Support Vector Regression 32.08 0.48 31.62 23.55 -46% 

Decision Tree Regressor 22.69 0.34 22.36 17.13 -61% 

Random Forest Regressor 18.00 0.28 17.60 14.15 -67% 

Bagging Regressor 19.09 0.30 18.58 15.31 -65% 

Gradient Boosting Regressor 19.71 0.31 19.25 15.80 -64% 

 

 

 

Table 28. Models evaluation: synthetic distribution “A” – performance metric: RMSE (W/m2) 

Model 

Training 

set 

Validation 

set 

Test 

set 
3E % Change 

RMSE 

mean 

RMSE 

STD 
RMSE 

RMSE 

[A] 

RMSE 

[B] 

([A] - [B]) / 

[B] 

Linear Regression 75.03 1.70 75.10 47.96 

91.04 

-47% 

Polynomial Regression – Degree 2 72.39 1.77 72.64 44.48 -51% 

Stochastic Gradient Descent Regressor 75.50 1.49 75.16 47.88 -47% 

Linear Support Vector Regression 80.91 2.12 80.30 50.71 -44% 

Decision Tree Regressor 57.57 0.98 58.21 40.40 -56% 

Random Forest Regressor 49.71 1.28 49.89 36.43 -60% 

Bagging Regressor 50.72 1.09 50.81 36.89 -59% 

Gradient Boosting Regressor 52.13 0.91 52.07 39.44 -57% 
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Table 29. Models evaluation: synthetic distribution “B” – performance metric: MAE (W/m2) 

Model 

Training 

set 

Validation 

set 

Test 

set 
3E % Change 

MAE 

mean 

MAE 

STD 
MAE 

MAE 

[A] 

MAE 

[B] 

([A] - [B]) / 

[B] 

Linear Regression 37.71 0.58 37.22 27.96 

49.12 

-43% 

Polynomial Regression – Degree 2 32.76 0.56 32.32 24.77 -50% 

Stochastic Gradient Descent Regressor 37.40 0.56 37.33 27.98 -43% 

Linear Support Vector Regression 33.37 0.71 32.54 25.22 -49% 

Decision Tree Regressor 23.50 0.57 22.61 20.84 -58% 

Random Forest Regressor 18.61 0.28 18.26 18.09 -63% 

Bagging Regressor 20.02 0.30 19.64 19.62 -60% 

Gradient Boosting Regressor 20.41 0.35 19.96 20.39 -59% 

 

 

 

Table 30. Models evaluation: synthetic distribution “B” – performance metric: RMSE (W/m2) 

Model 

Training 

set 

Validation 

set 

Test 

set 
3E % Change 

RMSE 

mean 

RMSE 

STD 
RMSE 

RMSE 

[A] 

RMSE 

[B] 

([A] - [B]) / 

[B] 

Linear Regression 77.21 2.56 75.25 56.50 

96.78 

-42% 

Polynomial Regression – Degree 2 74.35 2.53 72.53 54.61 -44% 

Stochastic Gradient Descent Regressor 77.38 2.65 75.31 56.57 -42% 

Linear Support Vector Regression 82.96 3.10 79.86 61.39 -37% 

Decision Tree Regressor 58.14 1.70 57.04 55.44 -43% 

Random Forest Regressor 50.34 1.38 51.03 49.47 -49% 

Bagging Regressor 51.23 1.43 51.83 50.05 -48% 

Gradient Boosting Regressor 52.58 1.85 52.86 55.23 -43% 
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5.6 Results and discussion 

Table 31 provides an overview on the best and worst models for each synthetic distribution, input 

dataset and performance metric. Percentage change is calculated with respect to 3E POA 

irradiance error, which is in turn calculated with respect to the reference distribution. 

 

Table 31. Best and worst models (percentage change is calculated with respect to 3E POA irradiance error). 

 

Synthetic distribution “A” Synthetic distribution “B” 

Worst Best Worst Best 

% Change Model % Change Model % Change Model % Change Model 

Full 

dataset 

MAE -34% PLR -73% GBR -38% PLR -72% BAG 

RMSE -47% SVR -64% BAG -38% SVR -55% BAG 

PCA 

MAE -40% LR/SGD -67% RFR -43% LR/SGD -63% RFR 

RMSE -44% SVR -60% RFR -37% SVR -49% RFR 

 

LR: Linear Regression 
PLR: Polynomial Regression (degree 2) 
SGD: Stochastic Gradient Descent Regressor 
SVR: Linear Support Vector Regression 
BAG: Bagging Regressor 
RFR: Random Forest Regressor 
GBR: Gradient Boosting Regressor 

 

All machine learning algorithms employed provide an improvement over the satellite-derived 

data for each of the analysed settings: through ML models it has been possible to obtain lower 

errors, ranging from 34% to 73% less error than 3E POA irradiance data. 

Among the algorithms applied, ensemble methods1 provided the best results, with Random 

Forest, Bagging and Gradient Boosting Regressor yielding very similar scores. 

As expected, the application of dimensionality reduction techniques (PCA) has led to slightly worst 

performances, while halving the execution time of the algorithms. 

Moving from synthetic distribution “A” to synthetic distribution “B”, both the dimensions and the 

statistical properties of training, validation and test set change. These modifications did not 

 
1 Once a group of predictors, called an ensemble (e.g. Decision Tree regressors), has been selected, each 
one of them can be trained and tested on a random subset of the dataset. The predictions obtained from 
the individual predictors are then aggregated (e.g. averaged) to form the most efficient predictor. Algorithms 
that use this strategy are called ensemble methods. 
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particularly affect MAE, while RMSE experienced remarkable variations (around 10%, maybe due 

the presence of outlying predictions which are highlighted by RMSE). 

Despite the fact that some algorithms result in larger percentage changes from 3E reference, from 

an O&M perspective it is preferable to penalize large deviations in POA irradiance time series, 

hence the preferred performance metrics to evaluate the ML imputation is the Root Mean Square 

Error. 

In the following graphs the best and worst performing algorithms applied on the full dataset for 

synthetic distribution “A” are qualitatively compared to the reference distribution as well as to 3E 

satellite-derived irradiance data over a 14-days Figures 67-70) and over a cloudy and a sunny 

day (Figures 71 and 72). 

Best and worst algorithms have been selected as the ones yielding the biggest and the smallest 

percentage change, as defined at the beginning of this paragraph: 

• Worst performing algorithms: Linear Support Vector Regression (RMSE) and Polynomial 

Regression - degree 2 (MAE)  

• Best performing algorithms: Bagging Regressor (RMSE) and Gradient Boosting 

Regressor (MAE) 
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Figure 67. Synthetic distribution “A”: reference distribution vs.3E satellite-derived irradiance data (RMSE: 91.04 W/m2, MAE: 43.44 W/m2) 

Figure 66. Synthetic distribution “A”: reference distribution vs. Linear Support Vector Regression (RMSE: 48.68 W/m2) 
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Figure 68. Synthetic distribution “A”: reference distribution vs. Bagging Regressor (RMSE: 32.77 W/m2) 

Figure 69. Synthetic distribution “A”: reference distribution vs. Polynomial Regression Degree 2 (MAE: 28.57 W/m2) 



 

99 

 

Figure 70. Synthetic distribution “A”: reference distribution vs. Gradient Boosting Regressor (MAE: 11.84 W/m2) 
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Figure 71. Comparison between reference distribution, best (Bagging Regressor) and worst (Linear Support 
Vector Machine Regression) performing algorithms and 3E satellite-derived irradiance data on a cloudy day (left 

column) and on a sunny day (right column) – performance metric: RMSE 
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Figure 72. Comparison between reference distribution, best (Gradient Boosting Regressor) and worst (Polinomial 
Regression – degree 2) performing algorithms and 3E satellite-derived irradiance data on a cloudy day (left column) 
and on a sunny day (right column) – performance metric: MAE 
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6 Conclusions 

In this chapter the most relevant conclusions of this work are presented, organized according to 

the corresponding chapters. 

 
Chapter 3: Uncertainty evaluation of satellite data 

Based on the results of this chapter, the use of a commercial satellite dataset (such as 3E Data 

Services) is preferred over the free online database (ERA5-Land) because of its high temporal 

resolution (15 minutes), its high spatial resolution (3x3 km) and because of its documented and 

validated uncertainties. Furthermore, the use of reference time-series coming from a dedicated 

calibrated field sensor (research-grade pyranometer) allowed the formulation of precise 

statements regarding GHI and POA irradiance, limited to one location: Bolzano, Italy  

Summary of conclusions (further details in section 3.7 Results and discussion): 

▪ In 95% of the cases (19/20) satellite data overestimated on-site measurements. 

▪ Satellite data deviates the most from ground measurements under cloudy conditions 

(commercial solutions based their competitive advantage on how well they deal with this 

issue). 

▪ The uncertainty figures calculated in the present analysis in many cases are twice as big 

as the reported uncertainties in the literature and in the marketing material of the service 

providers. This might be mainly due to the fact this analysis was done only for one site for 

one year (other possible causes might involve the methodology and metrics used). 

▪ Validation should be done more extensively (more sites) to get more precise generic 

figures, because satellite data is highly sensible to the geographic location and local 

climates 

▪ The temporal resolution offered by ERA5-Land (1 hour) may be enough for monthly KPIs 

calculation, but it could be totally insufficient when a higher granularity is needed, for 

example in case of fault detection. In this case, employing 3E Data Services is the most 

viable solution (maximum temporal resolution: 15 minutes), despite the well-known 

uncertainties. 

 

Chapter 4: Data Quality analysis 

▪ The Data Quality analysis proposed in this chapter pointed out the usefulness of 

evaluating the sensors’ health status. The approach is based on a data-driven detection 

algorithm that in 5 steps deals with the most common anomalies, in compliance with 

international standards. 
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▪ This consistent data cleaning procedure, if combined with expert-knowledge from the field, 

could lead to targeted preventive or corrective maintenance actions (e.g. sensor cleaning 

or replacement).  

▪ Furthermore, the usefulness of satellite-derived data was proved (because of its high data 

integrity and availability, being synthetic) when combined with field measurements to 

improve the irradiance data integrity (for the detailed discussion see section 4.6 The 

‘virtual sensor’ concept). 

 

Chapter 5: Data imputation with ML techniques 

A data imputation procedure with ML techniques was proposed. From an O&M perspective, the 

Root Mean Square Error (RMSE) was considered the best metric to evaluate the performance of 

the tested algorithms and ensemble methods (Random Forest, Bagging and Gradient Boosting 

Regressor) yielded the best results over the set of ML methods employed. 

▪ All machine learning algorithms employed provide an improvement over the satellite-

derived data for each of the analysed settings: through ML models it has been possible to 

obtain lower errors, ranging from 34% to 73% less error than 3E POA irradiance data. 

▪ Among the algorithms applied, ensemble methods1 provided the best results, with 

Random Forest, Bagging and Gradient Boosting Regressor yielding very similar scores. 

▪ As expected, the application of dimensionality reduction techniques (PCA) has led to 

slightly worst performances, while halving the execution time of the algorithms. 

▪ This analysis showed that the use of Principal Components Analysis (PCA) did not bring 

additional accuracy improvements, even though it could be a viable solution when it is 

desirable to sacrifice some precision in favour of shortest running time. 

In conclusion, based on this analysis, done on almost three years of data (15 minutes time series 

of electrical variables), it is possible to state that the proposed data imputation technique can 

avoid the use of a satellite-derived irradiance datasets, due to its higher accuracy. Finally, this 

work is an example of how an in-house data-driven solution can generate value and save costs 

to an O&M provider. 

For the detailed discussion of results see section 5.6 Results and discussion. 

 

 
1 Once a group of predictors, called an ensemble (e.g. Decision Tree regressors), has been selected, each 
one of them can be trained and tested on a random subset of the dataset. The predictions obtained from 
the individual predictors are then aggregated (e.g. averaged) to form the most efficient predictor. Algorithms 
that use this strategy are called ensemble methods. 
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Further work 

▪ Review the analysis so to fine-tune the process, avoiding the introduction of additional 

degrees of uncertainty (e.g. empirical thresholds) 

▪ Experiment more on hyperparameter tuning to fine-tune the employed models (using both 

Grid Search and Randomized Search) 

▪ Try out additional machine learning algorithms (e.g. Neural Networks) and time -series 

models 

▪ Experiment with feature engineering 

▪ Use not only meter-level data but also string and inverter-level to determine which level 

leads to the best predictions 

▪ Restrict the number of electrical parameters to be used as input variables to determine 

which parameters are fundamental for missing values imputation 

▪ Run again the analysis employing time series coming from a dedicated calibrated 

pyranometer as reference distribution, thus reducing the uncertainties and obtaining more 

consistent results 

▪ Experiment on the same dataset both varying the dimension of the test set and using the 

same dimensions (9% and 20% of the observations) but employing different missing data 

frequency 

▪ Reduce the quantity of input data so to determine the minimum amount of data (months 

or years) at a certain granularity necessary to obtain good predictions 

▪ Run the analysis on other plants 
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7 Annex A: PV performance metrics 

This annex provides a comprehensive review of the metrics used to assess PV plant performance. 

The purposes of a performance monitoring system are diverse and can include the following: 

• Identification of performance trends in an individual PV system 

• Localization of potential faults in a PV system 

• Comparison of PV system performance to design expectations and guarantees 

• Comparison of PV systems of different configurations 

• Comparison of PV systems at different locations 

These diverse purposes give rise to a diverse set of requirements, and different sensor and/or 

analysis methods may be more or less suited depending on the specific objective.  

For example, for comparing performance to design expectations and guarantees, the focus 

should be on system-level data and consistency between prediction and test methods, while for 

analysing performance trends and localizing faults, there may be a need for greater resolution at 

sub-levels of the system and an emphasis on measurement repeatability and correlation metrics 

rather than absolute accuracy. 

 

7.1 Normative references 

Norm/Standard Title 

IEC 61724-1:2017 Photovoltaic system performance - Part 1: Monitoring 

IEC TS 61724-2:2016 Photovoltaic system performance - Part 2: Capacity evaluation method 

IEC TS 61724-3:2016 Photovoltaic system performance - Part 3: Energy evaluation method 

IEC 61853-1:2011 
Photovoltaic (PV) module performance testing and energy rating - Part 1: 
Irradiance and temperature performance measurements and power rating 

IEC 61853-2:2016 
Photovoltaic (PV) module performance testing and energy rating - Part 2: 
Spectral responsivity, incidence angle and module operating temperature 
measurements 

IEC 61853-3:2018 
Photovoltaic (PV) module performance testing and energy rating - Part 3: Energy 
rating of PV modules 

IEC 61853-4:2018 
Photovoltaic (PV) module performance testing and energy rating - Part 4: 
Standard reference climatic profiles 

IEC 62446-
1:2016+A1:2018  

Photovoltaic (PV) systems - Requirements for testing, documentation and 
maintenance - Part 1: Grid connected systems - Documentation, commissioning 
tests and inspection 

IEC TS 62446-3:2017 
Photovoltaic (PV) systems - Requirements for testing, documentation and 
maintenance - Part 3: Photovoltaic modules and plants - Outdoor infrared 
thermography 

IEC 61829:2015 Photovoltaic (PV) array - On-site measurement of current-voltage characteristics 

IEC 60891:2009 
Photovoltaic devices - Procedures for temperature and irradiance corrections to 
measured I-V characteristics 

IEC 60904-1:2006 
Photovoltaic devices - Part 1: Measurement of photovoltaic current-voltage 
characteristics 
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IEC 60904-5:2011 
Photovoltaic devices - Part 5: Determination of the equivalent cell temperature 
(ECT) of photovoltaic (PV) devices by the open-circuit voltage method 

IEC 60904-7:2008 
Photovoltaic devices - Part 7: Computation of the spectral mismatch correction for 
measurements of photovoltaic devices 

IEC 60904-10:2009 Photovoltaic devices - Part 10: Methods of linearity measurement 

 

7.2 Terms and definitions 

For the purpose of this document, the terms given in IEC 61724-1:2017, as well as their respective 

nomenclature and symbols are adopted. 

Table 32. Terms and nomenclature 

Term Symbol Units Description 

Irradiance G W/m2 
Generic term that refers to the incident flux of radiant power per unit area. 
If not specified otherwise, it usually refers to global irradiance. 

Global Horizontal 
Irradiance  

GHI W/m2 

The sum of direct, diffuse, and ground-reflected irradiance incident on a 
horizontal surface. Measured with a suitable irradiance sensor1 
(thermopile pyranometer or reference cell) installed horizontally (parallel 
to the ground). It can also be estimated from the POA using a 
decomposition and transposition model. 

In-plane or  
Plane of Array 
(POA) Irradiance  

Gi or 
GPOA 

W/m2 

Global irradiance incident on an inclined surface parallel to the plane of 
the PV modules. Measured with a tilted irradiance sensor (thermopile 
pyranometer or reference cell). It can also be estimated from the GHI 
using a decomposition and transposition model. 

Direct Normal 
Irradiance 

DNI W/m2 

Irradiance emanating from the solar disk and from the circumsolar region 
of the sky within a subtended full angle of 5° falling on a plane surface 
normal to the sun’s rays. Measured with a pyrheliometer on a two-axis 
tracking stage which automatically tracks the sun (rarely used for 
commercial PV plants). 

Diffuse Horizontal 
Irradiance (DHI) 

Gd W/m2 
Global horizontal irradiance excluding the direct portion. It is measured 
with a horizontally mounted irradiance sensor with a rotating shadow 
band or tracked ball that blocks the direct normal irradiance. 

Irradiation H kWh/m2 Irradiance integrated over a specified time interval. 

In-plane or  
Plane of Array 
(POA) Irradiation 

Hi or 
HPOA 

kWh/m2 
Global irradiation incident on an inclined surface parallel to the plane of 
the PV modules. 

Soiling ratio SR % 
Ratio of the actual power output of the PV array under given soiling 
conditions to the power that would be expected if the PV array were clean 
and free of soiling. 

Soiling level SL % Fractional power loss due to soiling, given by 1 − SR 

Sample -- -- 
Data acquired from a sensor or measuring device. Samples do not need 
to be permanently stored. 

Sampling interval -- -- Time between samples. 

 
1 For irradiance sensors requirements, see IEC 61724-1:2017, table 5, page 21 
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Record -- -- 

Data recorded and stored, based on acquired samples. A record is the 
average, maximum, minimum, sum, or other function of the samples 
acquired during the recording interval, as appropriate for the measured 
quantity. The record can also include supplementary data such as 
additional statistics of the samples, number of missing data points, error 
codes, transients, and/or other data of special interest. 

Recording interval τ min 
Time between records. The recording interval should be an integer 
multiple of the sampling interval, and an integer number of recording 
intervals should fit within 1 h. 

Standard Test 
Conditions 

STC -- 

   Module operation mode: open circuited 
   Irradiance on module surface: 1000 W/m2 
   Cell Temperature: 25 °C 
   Solar Spectrum: air mass 1.5 (AM1.5) 
   Mounting: open rack 

Nominal 
Operating Cell 
Temperature1 

NOCT -- 

Defined in IEC 61215:2005 as the equilibrium mean solar cell junction 
temperature within the following standard reference environment: 
 
   Module operation mode: open circuited 
   Irradiance on module surface: 800 W/m2 
   Ambient Temperature: 20 °C 
   Wind Speed: 1 m/s 
   Mounting: open rack, tilt angle 45° from the horizontal 
 
It is usually reported in the PV module’s datasheet provided by the 
manufacturer. 

Nominal Module 
Operating 
Temperature2 

NMOT -- 

Defined in IEC 61215-2:2016 as the equilibrium mean solar cell junction 
temperature within the following standard reference environment: 
 
   Module operation mode: Maximum Power Point (MPP) 
   Irradiance on module surface: 800 W/m2 
   Ambient Temperature: 20 °C 
   Mounting: open rack, tilt angle (37 ± 5)° from the horizontal 
 
NMOT is similar to the former NOCT except that it is measured with the 
module under maximum power rather than in open circuit. Under 
maximum power conditions (electric) energy is withdrawn from the 
module, therefore less thermal energy is dissipated throughout the 
module than under open-circuit conditions. Therefore, NMOT is typically a 
few degrees lower than the former NOCT. NMOT can be used by the 
system designer as a guide to the temperature at which a module will 
operate in the field, and it is therefore a useful parameter when 
comparing the performance of different module designs. However, the 
actual operating temperature at any particular time is affected by the 
mounting structure, distance from ground, irradiance, wind speed, 
ambient temperature, sky temperature and reflections and emissions 
from the ground and nearby objects. For accurate performance 
predictions, these factors shall be taken into account. 

 
  

 
1 NOCT was replaced by NMOT in the new version of the standard, see IEC 61215-12:2016 
2 See IEC 61853-2:2016 for the methodology for determining coefficients for calculating NMOT 
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7.3 On-site measured parameters 

In this section all the measurements coming from the PV plant via the SCADA system (raw data) 

are described.  For the purposes of this document, the classification given in IEC 61724-1:2017 

of monitoring systems based on their accuracy level was adopted. 

Table 33. Monitoring systems classification 

Typical applications 
Class A 

High 
accuracy 

Class B 
Medium 
accuracy 

Class C 
Basic 

accuracy 

Basic system performance assessment ● ● ● 

Documentation of a performance guarantee ● ●  

System losses analysis ● ●  

Electricity network interaction assessment ●   

Fault localization ●   

PV technology assessment ●   

Precise PV system degradation measurement ●   

Maximum recording interval 1 min 15 min 60 min 
 

 

The most significant and direct impacts on PV performance are in-plane irradiance, the PV cell 

temperature, and shading losses (due to soiling, self-shadowing, shadowing from the 

surroundings or snow). Therefore, their accurate measurement (via the SCADA system) is of vital 

importance.  

In summary, an adequate monitoring system would allow the O&M contractor to perform the 

following activities: 

 

•  Identification of system design and maintenance problems 

• Assessment of plant performance (KPIs calculation and other metrics) 

• Detection of faults and root-cause analysis 

• Quantification of system losses and degradation  

• Assess grid interactions  

• Energy yield predictions 

 

Table 34 lists the parameters that are measured by monitoring systems of utility-scale PV plants. 

The three columns on the right specify the requirements by the international standard IEC 61724-

1:2017.  

The mark ● indicates a required parameter to be measured on site, qualified. The symbol “E” 

indicates a parameter that may be estimated based on local or regional meteorological data or 

satellite data, rather than measured on site. Empty cells indicate optional (not required) 

parameters that may be chosen for specific system requirements or to meet project specifications. 
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Table 34. Measured parameters and requirements for each monitoring system class 

Measured variable Symbol Units Monitoring purpose 
Required by IEC 61724-1:2017? 

Class A Class B Class C 

Irradiance1 

In-plane or  
Plane of Array (POA) Irradiance  

Gi W/m2 
Solar resource 

assessment, KPIs 
calculation 

● ● or E ● or E 

Global Horizontal Irradiance  GHI W/m2 

Solar resource 
assessment, connection 
to historical and satellite 

data 

● ● or E  

Direct Normal Irradiance DNI W/m2 

Solar resource 
assessment, 

concentrator (CPV) 

● 
for CPV 

● or E 
for CPV 

 

Diffuse Irradiance Gd W/m2 

● 
for CPV with 

<20x 
concentration 

● or E 
for CPV with 

<20x 
concentration 

 

Environmental factors 

PV module temperature2 Tmod °C 
Determining 

temperature-related 
losses, KPIs calculation 

● ● or E  

Ambient air temperature Tamb °C 
Connection to historical 
data, estimation of PV 
module temperature 

● ● or E ● or E 

Wind speed WS m/s 
Estimation of PV 

module temperature, 
warranty claims related 
to wind driven damage 

● ● or E  

Wind direction -- 

° 
(clockwise 

from 
geographical 

north) 

●   

Rainfall -- cm 
Estimation of soiling 

losses 
   

Humidity RH % 
Estimate changes in 

incident spectrum 
   

Soiling Ratio SR % 
Determining soiling-

related losses 

● 
If soiling losses 
are expected to 

be >2% 

  

Electrical parameters 

DC 
side 

Array Voltage  VA V 

Diagnostics and fault 
detection 

●   

Array Current IA A ●   

Array Power PA kWp ●   

AC 
side 

Output Voltage Vout V 
Energy output., 

Diagnostics and fault 
detection 

● ● ● 

Output Current  Iout A ● ● ● 

Output Active Power  Pout kW ● ● ● 

Output Energy Eout kWh 
Energy output, KPI 

calculation 
● ● ● 

Output Apparent Power Sout kVA 

Utility request 
compliance 

   

Output Reactive Power Qout kVAr    

Output Power Factor Φ ° ● ●  

● required E estimated 

 
1 Thermopile pyranometers may be best for GHI measurement, while reference cells may be best for POA measurement.  

Each irradiance sensor type has its benefits: 

• Thermopile pyranometers are insensitive to typical spectral variations and therefore measure total solar irradiance. However, this can vary 
from the PV-usable irradiance by 1 % to 3 % (monthly average) under typical conditions. In addition, thermopile pyranometers have long 
response times compared to PV devices and photodiodes. 

• Matched PV reference devices measure the PV-usable portion of the solar irradiance which correlates with the monitored PV system output. 
However, this may deviate from historical or meteorological measurements of irradiance, depending on instrumentation used. 

• Photodiode sensors have significantly lower cost than the other two types and are appropriate for smaller or lower cost systems but are 
typically less accurate. 

2 The module temperature measurement may also be performed with the Voc-based method described in section 7.1.1 
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7.3.1 Soiling ratio 

One factor hindering the performance of PV modules is soiling, defined as the accumulation of 

dust, sand, snow or any other particles on the surface of the modules that reduce irradiation 

collection. The soiling ratio is the ratio of the actual power output of the PV array under given 

soiling conditions to the power that would be expected if the PV array were clean and free of 

soiling.  

 

Measurement devices required 

• IV-curve tracer1 (equipped with irradiance and module temperature sensors)  

• Hand-held contact-less temperature sensor (for complementary or more accurate 

measurements) 

 

Measurement procedure  

 

a) Choose a soiled PV module representative of the general soiling condition of the PV plant.  

b) Measure the I-V curve of the soiled PV module following the minimum requirements 

according to IEC 61829:2015 On-site measurement of current-voltage characteristics. 

(e.g. minimum Gi = 700 W/m2) 

c) Clean the module, following the manufacturer’s recommendations.  

d) Repeat b) for the cleaned PV module. 

e) Calculate SR as described Table 35. 

 

Table 35. Calculation of the Soiling Ratio 

Soiling Ratio 
Symbol Units 

SR % 

Symbol Units Description Source 

𝑃𝑠𝑜𝑖𝑙𝑒𝑑 W Power at MPP under STC of soiled PV module Measured 

𝑃𝑐𝑙𝑒𝑎𝑛 W Power at MPP under STC of clean PV module Measured 

 

𝑆𝑅 =
𝑃𝑠𝑜𝑖𝑙𝑒𝑑
𝑃𝑐𝑙𝑒𝑎𝑛

× 100 

 

 
1 Commercially available I-V curve tracers are usually equipped with a reference cell and a module 
temperature sensor to be able to automatically translate the measured values into STC. It is advised to 
measure, additionally, the temperature in several other points of the module and then calculate the 
average temperature, to be used then for the STC translation. 
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7.4 Satellite-derived irradiance data 

When permitted (see Table 34), irradiance quantities may be estimated from satellite remote 

sensing. Such satellite-derived irradiances are extensively used for monitoring the performance 

of distributed generation systems including non-instrumented class B and class C systems, in 

order to avoid the cost and maintenance requirements of on-site measurements. Satellite remote 

sensing is an indirect approach to reliably estimate site- and time-specific irradiance. The 

approach is indirect because on-board satellite instruments measure the radiance 

emitted/reflected by the earth’s surface through the filter of the atmosphere in a selected number 

of visible and infrared spectral bands; irradiance is inferred from these on-board satellite 

measurements via radiative transfer models. In-plane and other irradiance components are 

further modelled from the radiative transfer model output. 

 

Satellite-derived irradiances, including global horizontal, direct normal, diffuse, and in-plane 

irradiances are typically available in real time from commercial services.  Important considerations 

when selecting satellite models are as follows:  

 

• Satellite-derived data should be carefully selected after a review of their accuracy, e.g., by 

reviewing application-pertinent (localized) validations associated with the data source;  

• Good satellite models can be trained locally using short-term, regionally/environmentally 

representative ground measurements. 

 

Satellite-derived irradiances have both advantages and disadvantages compared to on-site 

measured irradiances: 

 

• The main advantage is their reliability and consistency in terms of calibration and 

maintenance. With a single set of carefully monitored on-board sensors covering entire 

continents at once, satellites remove the uncertainty and cost associated with on-site 

maintenance, instrumentation soiling, calibration drifts and location-to-location mismatches. 

• The main disadvantage is their intrinsic accuracy. Unlike ground-based instruments, the 

accuracy of satellite models is not constant in relative terms over the entire range of 

irradiances but tends to be constant in absolute terms. 
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7.4.1 Accuracy 

For GHI (the primary product of the radiative transfer models), well-trained satellite models 

typically have an accuracy of better than 2 % at 1000 W/m2, but 20 % at 100 W/m2, i.e., a constant 

~20 W/m2 throughout the 100 - 1000 W/m2 range. Note that this uncertainty is not defined in 

absolute terms, but in relation to the ground-based instruments against which satellite models are 

evaluated. 

The best trained satellite models can deliver an accuracy of 1 % at 1000 W/m2, and 10 % at 100 

W/m2, i.e., a constant ~10 W/m2 throughout the 100 - 1000 W/m2 range (relative to the 

instrumentation used to train them). Quantities derived from GHI, including tilted in-plane 

irradiance, direct normal irradiance, and diffuse irradiance, have a higher uncertainty due to 

application of secondary models. Uncertainty for tilted, south-facing (northern hemisphere) or 

north-facing (southern hemisphere) in-plane irradiances is typically 1.25 times larger than for 

GHIs, i.e. 2.5 % at 1 000 W/m2 for an untrained model, and 1.25 % for a trained model, relative to 

the training instrumentation. Direct normal irradiance uncertainty is of the order of 4 % at full range 

(1000 W/m2) for an untrained model and 2 % for a trained model, relative to the training 

instrumentation. 

 

Table 36. Relative accuracy of satellite-derived irradiance data compared to on-site measurements 

Type of parameter Parameter 
Accuracy 

(at 100 - 1000 W/m2) 

Primary output of a radiative transfer model GHI 
~2% for an untrained model 

~1% for a trained model 

Derived from GHI (applying a secondary model) 

POA 
~2.5% for an untrained model 
~1.25% for a trained model 

DIN 
~4% for an untrained model 

~2% for a trained model 

 

 

If satellite-derived data have not been trained for a local area, variations in the local terrain can 

introduce substantial error on the order of 10 %. This is especially true in a desert with white sand, 

which may be difficult to distinguish from white clouds in some situations. Satellite-derived data 

may be less accurate for short periods but more accurate when averaged over long periods. 

Therefore, satellite-derived data may be more appropriate, for example, for evaluating system 

energy production over an extended period as compared to instantaneous power production. 
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7.5 Calculated parameters 

 

Table 37 presents the parameters calculated from the monitoring measurements already 

described in section 7.2. All quantities in the table shall be reported with respect to the reporting 

period (typically daily, monthly, or yearly).  

In the formulas given below, involving summation, 𝜏𝑘 denotes the duration of the kth recording 

interval within a reporting period and the symbol  ∑ 11𝑘 denotes summation over all recording 

intervals in the reporting period. Note also that in formulas involving the product of power 

quantities with the recording interval 𝜏𝑘  , the power should be expressed in kW and the recording 

interval in hours, in order to obtain energy in units of kWh. 

 

Table 37. Calculated parameters 

Parameter Symbol Units Comments Formula 

Irradiation 

Global Horizontal 
Irradiation 

𝐻 

kWh/m2 

Also known as insolation, it is the integral of 
GHI over a certain period of time. 𝐻 =∑𝐺𝐻𝐼𝑘  ×

𝑘

 𝜏𝑘 

In-plane or 
plane of array (POA) 
Irradiation 

𝐻𝑖 
It is the integral of POA irradiance over a 

certain period of time. 𝐻𝑖 =∑𝐺𝑖,𝑘  ×

𝑘

 𝜏𝑘 

Electrical energy 

DC output energy  
(module, string or array 
level) 

𝐸𝐴 kWh 
These energy quantities are calculated from 
the integral of their corresponding measured 
power parameters over the reporting period. 

𝐸𝐴 =∑𝑃𝐴,𝑘  ×

𝑘

 𝜏𝑘  

Figure 73. PV plant parameters and energy flow. Source: adapted from SolarPower Europe 
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AC output energy  
(inverter or system 
level) 

𝐸𝑜𝑢𝑡 𝐸𝑜𝑢𝑡 =∑𝑃𝑜𝑢𝑡,𝑘  ×

𝑘

 𝜏𝑘 

Array power rating 

DC power rating 𝑃0 kWp 

PV plant nominal power (the total DC power 
output of all installed PV modules at STC), 

calculated using the manufacturer’s datasheet 
or module labels or even from alternative 

power measurements done on-site or by a 
specialised laboratory. 

𝑃0 =∑𝑃0,𝑚𝑜𝑑   

AC power rating 𝑃0,𝐴𝐶 kW 
It is the total rated AC power output of all 
installed inverters at a specified operating 

temperature 
𝑃0,𝐴𝐶 =∑𝑃0,𝑖𝑛𝑣   

Yields1 

DC specific yield 
(module, string or array 
level) 

𝑌𝐴 

kWh/kW 

It is the measure of the total energy generated 
per kWp over a certain period of time. It is 
calculated for both DC and AC sides. It 

normalises plant output over a chosen time 
frame and thus allows the comparison of the 

production of plants with different nominal 
power or even different technologies (e.g. PV, 

wind, biomass etc). 

𝑌𝐴 =
𝐸𝐴
𝑃0

 

AC specific yield2 
(inverter or system 
level) 

𝑌𝑓 𝑌𝑓 =
𝐸𝑜𝑢𝑡
𝑃0

 

Reference yield3 𝑌𝑟 

kWh/kW 

It represents the energy obtainable under ideal 
conditions, with no losses, over a certain 

period of time. Usually Gi,ref  = GSTC = 1000 
W/m2 

𝑌𝑟 =
𝐻𝑖

𝐺𝑆𝑇𝐶
 

Expected yield 𝑌𝑒𝑥𝑝 

It expresses what should have been produced 
over a certain period of time.  𝑃𝑅𝑒𝑥𝑝 is the 

Average Expected Performance Ratio of the 
plant based on the output of a model 

(simulation), using the actual temperature, 
irradiation and plant characteristics. 

𝑌𝑒𝑥𝑝 = 𝑃𝑅𝑒𝑥𝑝 ∙ 𝑌𝑟 

Yield losses4 

Array capture losses 𝐿𝐶 

kWh/kW 

It represents the losses due to array operation, 
including array temperature effects, soiling, etc. 

𝐿𝐶 =  𝑌𝑟 − 𝑌𝐴 

Balance of System 
losses 

𝐿𝐵𝑂𝑆 
It represents the losses in the BOS 

components, including the inverter and all 
wiring and junction boxes 

𝐿𝐵𝑂𝑆 = 𝑌𝐴 − 𝑌𝑓 

Efficiencies 

Array (DC) efficiency 𝜂𝐴,0 

-- 
 

Aa is the total module area, corresponding to 
the sum of the areas of the front surfaces of 
the PV modules as defined by their outer 
edges and PR is the performance ratio 

𝜂𝐴,0 =
𝑃0

𝐺𝑖,𝑟𝑒𝑓  ∙ 𝐴𝑎
 

Mean actual array (DC) 
efficiency 

𝜂𝐴 𝜂𝐴 =
𝐸𝐴

𝐻𝑖  ∙ 𝐴𝑎
 

System (AC) efficiency 𝜂𝑓 𝜂𝑓 =
𝐸𝑜𝑢𝑡

𝐻𝑖  ∙ 𝐴𝑎
= 𝜂𝐴,0 ∙ 𝑃𝑅 

BOS efficiency 𝜂𝐵𝑂𝑆 𝜂𝐵𝑂𝑆 =
𝐸𝑜𝑢𝑡
𝐸𝐴 

 

   

 
1 Yields are ratios of an energy quantity to the array power rating P0. They indicate actual array operation relative to its rated capacity. The ratio of units 

is equivalent to hours, which indicates the equivalent amount of time during which the array would be required to operate at P0 to provide the particular 
energy quantity measured during the reporting period. 
2 Calculating the specific yield on inverter level allows a direct comparison between inverters that may have different AC/DC conversion rates or different 

nominal powers. Moreover, it is possible to detect whether an inverter is performing better than others. 
3 The reference yield represents the number of hours during which the solar radiation would need to be at reference irradiance levels in order to contribute 

the same incident solar energy as was monitored during the reporting period while the utility grid and/or local load were available. If the reporting period 
is equal to one day, then Yr would be, in effect, the equivalent number of sun hours at the reference irradiance per day, or peak sun-hours if STC values 
are used. 
4 Yield losses are calculated by subtracting yields. They represent the amount of time the array would be required to operate at its rated power P0 to 

provide for the respective losses during the reporting period 
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7.6 Performance metrics 

This section describes the metrics used to assess the performance of utility-scale PV plants. 

Among these, the most used by industry are the so-called Key Performance Indicators (KPIs), 

which provide the Asset Owner with a quick reference on the performance of the PV power plant. 

The KPIs are divided into the following categories: 

 

PV plant KPIs, which directly reflect the performance of the PV power plant. PV plant KPIs are 

quantitative indicators. 

O&M Contractor KPIs, which reflect the performance of the service provided by the O&M 

Contractor. O&M Contractor KPIs are both quantitative and qualitative indicators. 

 

7.6.1 PV plant KPIs 

These KPIs can be calculated over different time periods, but often they are computed on an 

annual basis. When comparing different KPIs or different PV power plants’ KPIs, it is important to 

keep consistency in the time period used in computation. 

A number of metrics are defined here for quantifying system performance. These are listed in 

Table 38 and are further defined in the subsequent sections. The most appropriate metric for a 

given system depends on the system design, user requirements and contractual agreements. 

 

Table 38. Summary of PV plant KPIs 

Key Performance Indicator Symbol Units Contractual? 

Performance Ratios (rating-based) 

1 Performance ratio 𝑷𝑹 

% 

yes 

2 Temperature-corrected performance ratio 𝑃𝑅′𝑆𝑇𝐶  no 

3 Annual-temperature-equivalent performance ratio 𝑃𝑅′𝑎𝑛𝑛𝑢𝑎𝑙−𝑒𝑞 no 

Performance Indices (model-based) 

4 Power performance index 𝑃𝑃𝐼 

% 

no 

5 Energy performance index 𝐸𝑃𝐼 no 

6 Baseline power performance index 𝐵𝑃𝑃𝐼 no 

7 Baseline energy performance index 𝐵𝐸𝑃𝐼 no 

Availabilities 

8 Technical Availability 𝐴𝑉𝑡 

% 

no 

9 Contractual Availability 𝑨𝑽 yes 

10 Energy-based Availability 𝐴𝑉𝑒 no 

Other 

11 Capacity Factor 𝐶𝐹 % no 



 

116 

IMPORTANT: Performance ratios are based on the system name-plate rating, while a 

performance index is based on a more detailed model of system performance. The 

rating-based performance ratio metrics are relatively simple to calculate but may omit 

known factors that cause system power output to deviate from expectations based on 

the name-plate rating alone. For example, systems with high DC-to-AC ratio operate at 

less than the DC nameplate rating during times of high irradiance, but this is an expected 

attribute of the system design. Such effects are better treated by a performance index 

based on a detailed system model. 

 

7.6.1.1 Performance Ratio 

The Performance Ratio (PR) is a contractual KPI defined as the ratio between the AC specific 

yield (Yf) and the reference yield (Yr). It captures the overall effect of losses of the PV system 

when converting from nameplate DC rating to AC output. Typically, losses result from factors such 

as module degradation, temperature, soiling, inverter losses, transformer losses, and system and 

network downtime. The higher the PR is, the more energy efficient the plant is. PR, as defined in 

this section, is usually used to report on long periods of time, such as monthly or yearly (PRannual). 

Based on it, the O&M contractor can provide recommendations to the plant owners on possible 

investments or interventions. 

 

Table 39. PR calculation 

 
Performance Ratio 

Symbol Units 

PR % 

Symbol Units Description Source 

𝑌𝑓 kWh/kW AC specific yield 

Calculated,  
see  

Table 37 
 

𝑌𝑟 kWh/kW Reference yield 

𝐸𝑜𝑢𝑡 kWh AC output energy 

𝑃0 Wp 
PV plant nominal power (installed 
capacity) 

𝐻𝑖 kWh/m2 In-plane (POA) irradiation 

𝐺𝑆𝑇𝐶 W/m2 STC irradiance (1000 W/m2) 
Refence value,  
see Table 32 

𝑃𝑜𝑢𝑡 kW AC output power Measured 

𝐺𝑖,𝑘 W/m2 In-plane (POA) irradiance Measured 

𝜏𝑘 h Recording interval (granularity) Monitoring system 
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𝑃𝑅 = 
𝑌𝑓

𝑌𝑟
 

Expanding the formula: 

𝑃𝑅 = 

𝐸𝑜𝑢𝑡
𝑃0
⁄

𝐻𝑖
𝐺𝑆𝑇𝐶
⁄

 =
𝐸𝑜𝑢𝑡 ∙ 𝐺𝑆𝑇𝐶
𝐻𝑖 ∙ 𝑃0

 

 

If Po is given in kW and considering that GSTC = 1 kW/m2, the calculation is simplified as 

follows: 

𝑷𝑹 =  
𝑬𝒐𝒖𝒕

𝑷𝟎 ∙ 𝑯𝒊
 

 

Expanding the formula even further: 

 

𝑃𝑅 =
𝐺𝑆𝑇𝐶 ∙ ∑ (𝑃𝑜𝑢𝑡,𝑘 ∙ 𝜏𝑘)𝑘

𝑃0 ∙ ∑ (𝐺𝑖,𝑘 ∙ 𝜏𝑘)𝑘
= 

𝐺𝑆𝑇𝐶
𝑃0

∑
(𝑃𝑜𝑢𝑡,𝑘 ∙ 𝜏𝑘)

(𝐺𝑖,𝑘 ∙ 𝜏𝑘)
𝑘

=
𝐺𝑆𝑇𝐶
𝑃0

∑
𝑃𝑜𝑢𝑡,𝑘
𝐺𝑖,𝑘

𝑘

 

 

 

 

Careful attention needs to be paid when interpreting PR, because there are several cases where 

it can provide misleading information about the status of the PV plant: 

 

a) Seasonal variation of PR (lower PR in the hot months, higher in the colder) 

The calculation of PR presented in this section neglects the effect of array temperature, using the 

fixed value of array power rating, P0. Therefore, the performance ratio usually decreases with 

increasing irradiation during a reporting period, even though energy production increases. This is 

due to an increasing PV module temperature that results in lower efficiency. This gives a seasonal 

variation, with higher PR values in winter and lower values in summer. It may also give geographic 

variations between systems installed in different climates. 

 

b) Interpretation of PR for overrated plants (misleading lower PR) 

Special attention is needed when assessing the PR of overrated plants (DC/AC ratio higher than 

1) where the output of the plant is limited by the inverter maximum AC output (P0 > P0, AC). In such 

situations, when inverter derating takes place, PR will be lower than normal although there is no 

technical problem with the plant. Stakeholders should be careful assessing PR values for 
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overrated plants, although the amount of derating is normally statistically constant or with 

negligible differences on a yearly basis. 

 

c) Calculation of PR using GHI instead of Gi (misleading higher PR) 

Calculation of the performance ratio using GHI instead of in-plane (POA) irradiance Gi is an 

alternative in situations where GHI measurements are available, but Gi measurements are not. In 

this case, the resulting formula is:  

𝑃𝑅𝐺𝐻𝐼 =
𝐺𝑆𝑇𝐶
𝑃0

∑
𝑃𝑜𝑢𝑡,𝑘
𝐺𝐻𝐼𝑘

𝑘

  

 

The GHI performance ratio would typically show higher values which may even exceed unity. 

These values cannot necessarily be used to compare one system to another but can be useful for 

tracking performance of a system over time and could also be applied to compare a system’s 

measured, expected, and predicted performance using a performance model that is based only 

on GHI. 

 

d) Soiled irradiance sensors (misleading higher PR) 

Special attention is needed when assessing the PR using data from soiled irradiance sensors. In 

this case, PR will present higher values and will give the false impression that the PV plant is 

performing better than expected and even some underperformance issues could remain hidden. 

 

7.6.1.2 Temperature-corrected Performance Ratios 

The seasonal variation of the performance ratio PR can be significantly reduced by calculating a 

temperature-corrected performance ratio PR’. While variations in average ambient temperature 

are the most significant factor causing seasonal variations in measured performance ratio, other 

factors, such as seasonally dependent shading, spectral effects, and metastabilities can also 

contribute to the seasonal variation of PR. 

There are two different approaches to perform temperature corrections, each with a different 

scope: 

• Temperature-corrected Performance Ratio (see Table 40): to reduce seasonal variations 

• Annual-temperature-equivalent Performance Ratio (see Table 41): to compare with a 

model 
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Table 40. Temperature-corrected PR calculation 

Temperature-corrected PR to STC 

Symbol Units 

𝑷𝑹′𝑺𝑻𝑪 % 

Symbol Units Description Source 

𝑌𝑓 kWh/kW AC specific yield Calculated,  
see  

Table 37 𝑌𝑟 kWh/kW Reference yield 

𝐶𝑘 -- 
Power rating temperature adjustment factor for 
interval k  

Calculated 

𝛾 %/°C Maximum-power temperature coefficient Module datasheet 

𝑇𝑚𝑜𝑑,𝑘 °C Module temperature in recording interval k Measured/Estimated* 

𝐸𝑜𝑢𝑡 kWh AC output energy 
Calculated,  

see  

Table 37 
𝑃0 Wp PV plant nominal power (installed capacity) 

𝐻𝑖 kWh/m2 In-plane (POA) irradiation 

𝐺𝑆𝑇𝐶 kWh/m2 STC irradiance (1000 W/m2) 
Refence value, 
see Table 32 

𝑃𝑜𝑢𝑡,𝑘 kW AC output power in recording interval k Measured 

𝐺𝑖,𝑘 W/m2 In-plane irradiance in recording interval k Measured 

𝜏𝑘 h 
Recording interval (Monitoring system 
granularity) 

Monitoring system 

 

It is calculated by adjusting the power rating at each recording interval to compensate for 
differences between the actual PV module temperature and the STC reference temperature of 25 
°C. Therefore, an adjustment factor 𝐶𝑘 is introduced: 
 

𝑃𝑅′𝑆𝑇𝐶 = 
𝑌𝑓

𝑌𝑟 ∙ 𝑪𝒌
 

 

Where 𝐶𝑘 defined as the power rating temperature adjustment factor given by: 

 

𝑪𝒌 = 1 + (
𝛾

100
)(𝑇𝑚𝑜𝑑,𝑘 − 25°𝐶) 

Expanding the formula: 

𝑃𝑅′𝑆𝑇𝐶 = 
𝑌𝑓

𝑌𝑟 ∙ 𝑪𝒌
= 

𝐸𝑜𝑢𝑡
𝑃0

𝐻𝑖

𝐺𝑆𝑇𝐶
∙ 𝑪𝒌

 =
𝐸𝑜𝑢𝑡 ∙ 𝐺𝑆𝑇𝐶
𝐻𝑖 ∙ (𝑃0 ∙ 𝑪𝒌)

  

 

If Po is given in kW and considering that GSTC = 1 kW/m2, the calculation is simplified as follows: 

 

𝑷𝑹′𝑺𝑻𝑪 = 
𝑬𝒐𝒖𝒕

𝑯𝒊 ∙ (𝑷𝟎 ∙  𝑪𝒌)
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Expanding the formula even further: 

 

𝑃𝑅′
𝑆𝑇𝐶 =

𝐺𝑆𝑇𝐶 ∙ ∑ (𝑃𝑜𝑢𝑡,𝑘 ∙ 𝜏𝑘)𝑘

∑  (𝑃0 ∙ 𝑪𝒌)(𝐺𝑖,𝑘 ∙ 𝜏𝑘)𝑘

=
𝐺𝑆𝑇𝐶
𝑃0

∑
(𝑃𝑜𝑢𝑡,𝑘 ∙ 𝜏𝑘)

(𝐺𝑖,𝑘 ∙ 𝜏𝑘) ∙ 𝑪𝒌
𝑘

 

 

And finally, the complete formula is presented: 

 

𝑃𝑅′
𝑆𝑇𝐶 =

𝐺𝑆𝑇𝐶
𝑃0

∑
𝑃𝑜𝑢𝑡,𝑘

𝐺𝑖,𝑘 ∙ [1 + (
𝛾
100)(𝑇𝑚𝑜𝑑,𝑘 − 25°𝐶)]𝑘

 

 

 

 

Table 41. Annual-temperature-equivalent PR calculation 

Annual-temperature-equivalent PR 
Symbol Units 

𝑷𝑹′𝒂𝒏𝒏𝒖𝒂𝒍−𝒆𝒒 % 

Symbol Units Description Source 

𝑃𝑜𝑢𝑡,𝑘 kW AC output power in recording interval k Measured 

𝐺𝑖,𝑘 W/m2 In-plane irradiance in recording interval k Measured 

𝑃0 Wp PV plant nominal power (installed capacity) 
Calculated, see  

Table 37 

𝐺𝑆𝑇𝐶 kWh/m2 STC irradiance (1000 W/m2) 
Refence value, see 

Table 32 

𝜏𝑘 h 
Recording interval (Monitoring system 
granularity) 

 

𝛾 %/°C Maximum-power temperature coefficient Module datasheet 

𝑇𝑚𝑜𝑑,𝑘 °C Module temperature in recording interval k 
Measured/ 
Estimated* 

𝑇𝑚𝑜𝑑,𝑎𝑣𝑔 

 
°C Annual-average module temperature Calculated 

 

It calculates the PR during the reporting period with the power rating at each recording interval 
adjusted to compensate for differences between the actual PV module temperature and an 
expected annual-average PV module temperature. While this reduces seasonal variation in the 
metric, it does not remove the effect of annual-average temperature losses and leaves the 
value of the metric comparable to the value of PRannual.  

It is calculated in the same way as PRSTC with a slight change in 𝐶𝑘: 
 

𝑃𝑅′𝑎𝑛𝑛𝑢𝑎𝑙−𝑒𝑞 =
𝐺𝑆𝑇𝐶
𝑃0

∑
(𝑃𝑜𝑢𝑡,𝑘 ∙ 𝜏𝑘)

(𝐺𝑖,𝑘 ∙ 𝜏𝑘) ∙ 𝑪𝒌
𝑘
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Where 𝐶𝑘 is a power rating temperature adjustment factor given by: 

 

𝐶𝑘 = 1 + (𝛾/100)(𝑇𝑚𝑜𝑑,𝑘 − 𝑇𝑚𝑜𝑑,𝑎𝑣𝑔) 

 

Tmod,avg is chosen based on historical weather data for the site and an empirical relation for 

the predicted module temperature as a function of ambient conditions and module construction. 
It should be calculated by computing an irradiance-weighted average of the predicted 
module temperature. 
 

* The module temperature  𝑇𝑚𝑜𝑑,𝑘 is the most important parameter to perform the above-

described calculations of PR. It can be either measured or estimated: 
 
a) Measured: as a best practice, temperature should be registered with a granularity of up to 

15 minutes and the average temperature for the reporting period should be weighted 

according to the Specific Yield: 
 

𝑇𝑚𝑜𝑑,𝑘 = 
∑ (𝑌𝑓 ∙ 𝑇𝑚𝑒𝑎𝑠,𝑘)𝑘

∑ 𝑌𝑓𝑘
 

 
b) Estimated: If the monitoring objective is to compare 𝑃𝑅′𝑆𝑇𝐶   to a target value associated 

with a performance guarantee, 𝑇𝑚𝑜𝑑,𝑘 should instead be estimated from the measured 

meteorological data with the same heat transfer model used by the simulation that set the 
performance guarantee value to avoid a bias error. See section 7.8.1 for details. 

 
 

 

 

7.6.1.3 Performance Indices 

A detailed performance model may be used to predict electrical output of the PV system as a 

function of meteorological conditions, known attributes of the system components and materials, 

and the system design. The performance model attempts to capture as precisely as possible all 

factors that can affect electrical output. In evaluating the system performance, particularly with 

respect to a performance guarantee, it is desired to compare the measured output with the 

predicted and expected outputs, defined as follow: 

 

Measured output is the actual output (power or energy) of the PV plant measured by the 

monitoring and SCADA system. 

Expected output is the output (power or energy) calculated by the performance model when 

using measured weather data. 

Predicted output is the output (power or energy) calculated by the performance model when 

using historical weather data. 
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The model is also used to calculate expected energy during times of unavailability. Typically, the 

model is expected to be the same that was used to describe the plant before construction, but the 

model may be updated to reflect changes in the plant design, or any model may be used if the 

goal is to test the accuracy of the model.  

 

A Performance Index (PI) is defined as follows: 

 

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝐼𝑛𝑑𝑒𝑥 =  
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑜𝑢𝑡𝑝𝑢𝑡

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑  𝑜𝑢𝑡𝑝𝑢𝑡
 

 

And a Baseline Performance Index (BPI) is defined as follows: 

 

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝐼𝑛𝑑𝑒𝑥 =  
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑜𝑢𝑡𝑝𝑢𝑡

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑  𝑜𝑢𝑡𝑝𝑢𝑡
 

 

These performance indices may be evaluated either on the basis of power or energy, defining 

therefore the following four different indices: 

 

 

 

Figure 74. Predicted, expected and measured outputs. Adapted from IEC TS 61724-3 
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Table 42. Summary of Performance Indices 

 
Performance 

indices 

Baseline 
performance 

indices 

Output  Expected Predicted 

Power 𝑃𝑃𝐼 =
𝑃𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝑃𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑
 𝐵𝑃𝑃𝐼 =

𝑃𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
 

Energy 𝑬𝑷𝑰 =
𝑬𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒅

𝑬𝒆𝒙𝒑𝒆𝒄𝒕𝒆𝒅
 𝐵𝐸𝑃𝐼 =

𝐸𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝐸𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
 

 

 

For evaluation of a performance guarantee, the performance model used for calculation of 

expected power or energy shall be identical to the performance model used for calculation of 

predicted power or predicted energy used in the performance guarantee. 

 

The energy performance index (EPI) may refer to all times or only times of availability as defined 

by the all-in energy performance index or the in-service energy performance index, respectively: 

 

• All-in EPI: electricity generation of a PV system relative to the total expected energy over 

a specified time period, including times when the system is not functioning. 

• In-service EPI: electricity generation of a PV system relative to the expected energy over 

a specified time period during times when the system is functioning (excluding times when 

inverters or other components are detected to be offline). 

 

The advantage of using the EPI is that its expected value is 100% at project start-up and is 

independent of climate or weather. This indicator relies on the accuracy of the expected model. 

Unfortunately, there are more than one established model for the Expected Yield of PV systems 

in operation and not all of them are transparent. Therefore, the use of EPIs is recommended 

mainly for the identification of performance flaws and comparison of plants. 
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Table 43. Calculation of the Energy Performance Index 

Energy Performance Index 
Symbol Units 

EPI % 

Symbol Units Description Source 

𝐸𝑜𝑢𝑡 kWh 
Actual output energy of the PV plant measured 
by the monitoring and SCADA system 

Measured  

𝐸𝑒𝑥𝑝 kWh 
Expected output energy calculated by the 
performance model when using measured 
weather data 

Calculated 

 

𝐸𝑃𝐼 =
𝐸𝑜𝑢𝑡
𝐸𝑒𝑥𝑝

× 100 

 
 

7.6.1.4 Technical Availability or Uptime 

Technical Availability (𝐴𝑉𝑡), or also called Uptime, is the parameter that represents the time during 

which the plant operates over the total possible time it can (should) operate, without taking any 

exclusion factors into account. The total possible time is considered the time when the plant is 

exposed to irradiation levels above the generator’s Minimum Irradiance Threshold (MIT). Typical 

MIT values are 50 or 70 W/m2. It should be defined according to site and plant characteristics 

(e.g. type of inverter, DC/AC ratio etc). 

 

Table 44. Calculation of the Technical Availability 

Technical Availability 
Symbol Units 

𝑨𝑽𝒕 % 

Symbol Units Description Source 

𝑇𝑢𝑠𝑒𝑓𝑢𝑙 h Period of time with in plane irradiation above MIT Measured 

𝑇𝑑𝑜𝑤𝑛 h 
Period of time when the system is down (no 
production) 

Calculated 

𝑃𝑘 kWp Installed DC power of the inverter k Nameplate 

𝑃0 kWp Total installed DC power of the PV plant Calculated 

𝐴𝑉𝑡,𝑘 % Technical Availability of the inverter k Calculated 

 

𝐴𝑉𝑡 =
𝑇𝑢𝑠𝑒𝑓𝑢𝑙 − 𝑇𝑑𝑜𝑤𝑛

𝑇𝑢𝑠𝑒𝑓𝑢𝑙
 × 100 
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For systems with more than one inverter, it should be measured also at inverter level and it 
should be weighted according to their respective installed DC power. In this case, the 
Technical Availability of the total PV power plant can be defined as follows: 
 
 

𝐴𝑉𝑡_𝑡𝑜𝑡𝑎𝑙 = 100 ×∑(𝐴𝑉𝑡,𝑘 ∙
𝑃𝑘
𝑃0
)

𝑘

  

 

 

 

7.6.1.5 Contractual Availability 

Contractual Availability (𝐴𝑉) is a parameter that represents the time in which the plant operates 

over the total possible time it can (should) operate, taking into account the number of hours the 

plant is not operating for reasons contractually not attributable to the O&M contractor (exclusion 

factors). For the European market, where there is no on-site personnel present at all times, a best 

practice is a minimum guaranteed Contractual Availability of 98% over a year. For contractual 

KPI reasons, it should be calculated at inverter level, on an annual basis and it can be translated 

into bonus schemes or liquidated damages.  

 

Table 45. Calculation of the Contractual Availability 

Contractual Availability 
Symbol Units 

𝑨𝑽 % 

Symbol Units Description Source 

𝑇𝑢𝑠𝑒𝑓𝑢𝑙 h Period of time with in plane irradiation above MIT Measured 

𝑇𝑑𝑜𝑤𝑛 h Period of time when the system is down (no production) Calculated 

𝑇𝑒𝑥𝑐𝑙𝑢𝑑𝑒𝑑 h 
Period of Tdown to be excluded because of presence of 
an exclusion factor 

 

𝑃𝑘 kWp Installed DC power of the inverter k Nameplate 

𝑃0 kWp Total installed DC power of the PV plant Calculated 

𝐴𝑉𝑘 % Availability of the inverter k Calculated 

Figure 75. Periods of time for the Technical Availability calculation 
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𝐴𝑉 =
𝑇𝑢𝑠𝑒𝑓𝑢𝑙 − 𝑇𝑑𝑜𝑤𝑛 + 𝑇𝑒𝑥𝑐𝑙𝑢𝑑𝑒𝑑

𝑇𝑢𝑠𝑒𝑓𝑢𝑙
 × 100  

 
 
For systems with more than one inverter, it should be measured also at inverter level and it 
should be weighted according to their respective installed DC power. In this case, the Technical 
Availability of the total PV power plant can be defined as follows: 
 

 

𝐴𝑉𝑡_𝑡𝑜𝑡𝑎𝑙 = 100 ×∑(𝐴𝑉 𝑘 ∙
𝑃𝑘
𝑃0
)

𝑘

  

 

 

 

The Tdown represents the whole downtime, before the exclusions are applied. Therefore, Texcluded 

is a part of Tdown in the diagram. In practice you often first see that a plant is down (= 

measurement of Tdown) and only in the course of troubleshooting one gets the information 

whether you can exclude part of the downtime. 

 

Exclusion factors 

The Asset Owner and the O&M Contractor should agree on certain failure situations that are not 

taken into account in the calculation of Contractual Availability. Some good examples for 

exclusion factors are: 

 

• Force majeure 

• Snow and ice on the PV modules 

Figure 76. Periods of time for the Technical Availability calculation 
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• Damage to the PV plant (including the cables up to the feed-in point) by the customer or 

third parties who are not sub-contractors of O&M Contractor, including but not limited to 

vandalism 

• Disconnection or reduction of energy generation by the customer or as a result of an order 

issued to the customer by a court or public authority 

• Operational disruption by grid disconnections or disruptions in the grid of the grid operator 

• Disconnections or power regulation by the grid operator or his control devices 

• Downtimes resulting from failures of the inverter or MV voltage components (for example, 

transformer, switchgear), if this requires 

− Technical support of the manufacturer and/or 

− Logistical support (for example supply of spare parts) by the manufacturer 

• Outages of the communication system. Any failure time only begins to run when the O&M 

Contractor receives the error message. If the data connection to the site was not available, 

failure time shall only begin after reestablishment of the link 

• Delays of approval by the customer to conduct necessary works 

• Downtimes for implementation of measures to improve the PV plant, if this is agreed 

between the parties 

• Downtimes caused by the fact that the customer has commissioned third parties with the 

implementation of technical work on the PV plant 

• Downtimes caused Serial Defects on Plant components 

 

Bonus Schemes and Liquidated Damages 

The availability guarantee provided by the O&M contractor can be translated into bonus schemes 

and liquidated damages. These ensure that the asset owner is compensated for losses due to 

lower-than-guaranteed availability and that the O&M contractor is motivated to improve its service 

in order to achieve higher availability. Higher availability usually leads to higher energy generation 

and an increase of revenues for the benefit of the plant owner. Hence the bonus scheme 

agreements lead to a win-win situation for both parties and ensures that the O&M contractor is 

highly motivated. 

The following are examples of bonus schemes and liquidated damages: 

 

• Bonus Schemes: if the Minimum Guaranteed Availability is overachieved, the additional 

revenue based on the base case scenario expected annual revenue will be equally divided 

(50/50) between the asset owner and the O&M contractor.  

• Liquidated Damages: if the Minimum Guaranteed Availability is underachieved, 100% of 

the lost revenue due to the availability shortfall based on the base case scenario expected 
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annual revenue will be compensated by the O&M contractor. This is usually translated into 

a reduction of the O&M annual fee.  

• The amount of liquidated damages is capped at 100% of the O&M annual fee on a period 

of 12 months. Reaching this cap usually results in contract termination rights. 

 

7.6.1.6 Energy-based Availability 

Energy-based Availability (𝐴𝑉𝑒) takes into consideration that an hour in a period with high 

irradiance is more valuable than in a period with low irradiance. Therefore, its calculation uses 

energy instead of time. The exclusion factors defined for the Contractual Availability should be 

also applied here. 

Table 46. Calculation of the Energy-based Availability 

Energy-based Availability 

Symbol Units 

𝑨𝑽𝒆 % 

Symbol Units Description Source 

𝐸𝑜𝑢𝑡 kWh Plant energy AC production Measured 

𝐸𝑙𝑜𝑠𝑠 kWh Calculated lost energy after applying exclusion factors Calculated 

 

𝐴𝑉𝑒 =
𝐸𝑜𝑢𝑡

𝐸𝑜𝑢𝑡 − 𝐸𝑙𝑜𝑠𝑠
 × 100  

 

 

 

7.6.1.7 Capacity factor 

The capacity factor (CF) is a metric commonly applied to power plants for comparison purposes. 

It can be used, for example, to compare PV plants with conventional gas-fired power plants. Its 

calculation is based on the AC rating of the plant (the sum of the inverter ratings in the system) 

and defines the fraction of electrical energy that was generated compared with what the plant 

would have generated if it operated at the AC rated power 100 % of the time. 
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Table 47. Calculation of the Capacity factor 

Capacity Factor 
Symbol Units 

CF % 

Symbol Units Description Source 

𝐸𝑜𝑢𝑡 kWh Power at MPP under STC of soiled PV module Measured 

𝑃0,𝐴𝐶 kW 
 It is the total rated AC power output of all installed 
inverters at a specified operating temperature 

Calculated 

𝑑𝑎𝑦𝑠 -- the number of days of the period of interest, typically 365 -- 

 

𝐶𝐹 =
𝐸𝑜𝑢𝑡

𝑃0,𝐴𝐶 ∙ (24 ∙ 𝑑𝑎𝑦𝑠)
× 100 

 
 

 

7.6.2 O&M contractor KPIs 

As opposed to power plant KPIs described in the previous section, which provide the Asset Owner 

with information about the performance of their asset, O&M Contractor KPIs assess the 

performance of the O&M service. Four KPIs are then defined: 

 

Table 48. Definition of the O&M contractor KPIs 

O&M contractor KPI Units Description 
Contractual

? 

1 
Acknowledgement 

time 
(Reaction time) 

h 

It is the time between detecting the problem (receipt of 
the alarm or noticing a fault) and the acknowledgement 
of the fault by the O&M Contractor by dispatching a 
technician. The Acknowledgement time reflects the 
O&M Contractor’s operational ability. 

no 

2 Intervention time 

Time to reach the plant by a service technician or a 
subcontractor from the moment of acknowledgement. In 
certain cases, remote repair is possible. The 
Intervention time assesses the capacity of the O&M 
Contractor to mobilise field personnel to the plant. 

no 

3 Response time 

It is the Acknowledgement time plus the Intervention 
time. Used for contractual purposes, minimum 
Response times are guaranteed based on fault classes 
that consider the unavailable power, the consequent 
energy loss and their relevance in terms of safety. 

yes 

4 
Resolution time 

(Repair time) 

It is the time to resolve the fault starting from the 
moment of reaching the PV plant. It is generally not 
guaranteed, because resolution often does not depend 
totally on the O&M Contractor 

not always 
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Figure 77. O&M contractor KPIs. Source: own design 
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7.6.2.1 Response Time guarantee 

The O&M contractor should guarantee to react on alarms received from the plant through the 

monitoring and supervision system within a certain period of time, 7 days a week. This translates 

in a minimum guaranteed Response Time. When setting it, it is recommended to differentiate 

between hours and periods with high and low irradiance levels as well as fault classes, based on 

the (potential) loss of energy or relevance in terms of safety impact of the failure.  

In the following table an example is provided: 

 

Table 49. Example of Response time guarantees 

Fault Class Description  
Response time 

guaranteed 

Fault Class 1 The entire plant is off, 100% power loss 4 daytime hours 

Fault Class 2 More than 30% power loss or more than 300 kWp down 24 hours 

Fault Class 3 0%-30% power loss 36 hours 

 

In case the replacement of equipment is needed, the O&M contractor should commit to make it 

available on-site and replace it within 8 business hours from the end of the Response Time if the 

spare part is included in the portfolio of minimum spare parts list. If the spare part is not included 

in the minimum spare parts list, the O&M contractor should commit to order the spare part within 

8 business hours from the end of the Response Time and to replace it in the fastest possible way 

after receiving the related spare part from the equipment supplier.  

 

In case the fault cannot be fixed by the O&M contractor and the equipment supplier's intervention 

is required, the following actions are necessary:  

 

• If the intervention requires spare parts up to the limit under the O&M cost responsibility, the 

O&M contractor may proceed without separate approval (insurance aspects to be 

considered);  

• If the costs exceed the above budget limit, the O&M contractor should communicate the issue 

in writing to the Asset Owner within 8 business hours from the end of the Response Time. 

 

Force Majeure events are excluded from Response Time obligations. 
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7.6.2.2 Resolution Time guarantee 

Resolution Time can also be guaranteed in certain restricted situations. The O&M contractor is 

able to guarantee the Resolution Time in situations where the problem has been assessed and 

approved to be due to a faulty spare part that needs to be replaced and the spare part is available 

in the warehouse or has just been delivered. Such a Resolution Time guarantee can incentivise 

the O&M contractor to replace spare parts rapidly. Events beyond the O&M Contractor’s control, 

such as a delay in spare part delivery, as well as Force Majeure events are excluded from 

Resolution Time guarantees. 

 

7.7 System Performance Evaluation 

The performance of a PV system is dependent on the weather, seasonal effects, and other 

intermittent issues, so demonstrating that a PV system is performing as predicted requires 

determining that the system functions correctly under the full range of conditions relevant to the 

deployment site.  

The following table presents the existing standards that deal with system performance evaluation, 

each with its specific scope and limitations: 

 

 

 

Table 50. Current standards on System Performance Evaluation 

Norm/Standard Title Scope Limitations 

IEC 62446-1:2018 

Photovoltaic (PV) systems - 
Requirements for testing, 
documentation and maintenance - Part 
1: Grid connected systems - 
Documentation, commissioning tests 
and inspection 

Describes a procedure for 
ensuring that the plant is 
constructed correctly and powered 
on properly by verification through 
incremental tests 

Does not attempt to verify that 
the output of the plant meets 
the design specification 

IEC 61724-1:2017 Photovoltaic system performance - 
Part 1: Monitoring 

Defines the data that shall be 
measured and collected to 
calculate performance metrics (PR 
and Performance indices) 

Does not define how to analyse 
that data in comparison to 
predicted performance 

IEC TS 61724-2:2016* Photovoltaic system performance - 
Part 2: Capacity evaluation method 

Describe methods for determining 
the power output of a photovoltaic 
system and are intended to 
document completion and system 
turn on and report a short-term 
power capacity measurement of a 
PV system 

Are not intended for quantifying 
performance over all ranges of 
weather or times of year, just 
for a short period of time (some 
days) 

ASTM E2848-11** Standard Test Method for Reporting 
Photovoltaic Non-Concentrator 
System Performance 

IEC TS 61724-3:2016 Photovoltaic system performance - 
Part 3: Energy evaluation method 

Describes a method for 
determining the energy output of a 
photovoltaic system for long-term 
evaluation (1 year) 

Does not attempt to describe 
the method for predicting the 
electrical energy production 
(the prediction method and 
assumptions are left to the 
user) 

IEC 62670-2:2015 Photovoltaic concentrators (CPV) - 
Performance testing - Part 2: Energy 
measurement 

Describes how to measure the 
energy from a CPV plant. 

Does not describe how to 
compare the measured energy 
with a model 

  * non-regression-based method for determining power output 
  ** regression-based method for determining power output 
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As already explain in section 7.6.1.3, in evaluating the system performance, particularly with 

respect to a performance guarantee, it is desired to compare the measured output with the 

predicted and expected outputs, defined as follow: 

  

The model is also used to calculate expected energy during times of unavailability. Typically, the 

model is expected to be the same that was used to describe the plant before construction, but the 

model may be updated to reflect changes in the plant design, or any model may be used if the 

goal is to test the accuracy of the model.  

 

In the following sections, two evaluation methods to assess system performance are described: 

 

a) Energy method: defined in IEC TS 61724-3:2016, describes a one-year test that evaluates 

performance over the full range of operating conditions and is the preferred method for 

evaluating system performance. 

 

b) Capacity method: defined in IEC TS 61724-2:2016, describes a short-term method that 

evaluates the power output of a photovoltaic system, usually before/after its completion, 

commissioning, revamping or hand-over.  As a capacity test, it measures power (not energy) 

at a specified set of reference conditions (which can differ from standard test conditions that 

have been designed to facilitate indoor measurements). This method is a non-regression-

based method for determining power output. 

Figure 78. Predicted, expected and measured outputs. Adapted from IEC TS 61724-3 
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7.7.1 Energy evaluation method 

Scope 

This method (based on IEC TS 61724-3), defines a procedure for measuring and analysing the 

energy production of a specific photovoltaic system relative to the expected electrical energy 

production for the same system from actual weather conditions. It is intended to address the full 

range of relevant operating conditions and for a sustained time (generally a complete year) to 

verify long-term expectations of energy production to capture all types of performance issues, 

including outages or instances of reduced performance of the plant. 

Multiple aspects of PV system performance are dependent on both the weather and the system 

quality, so it is essential to have a clear understanding of the system being tested. For example, 

the module temperature is primarily a function of irradiance, ambient temperature, and wind 

speed; all of which are weather effects. However, the module-mounting configuration also affects 

the module temperature, and the mounting is an aspect of the system design. 

 

The performance of the system is characterized both by quantifying the energy lost when the 

plant is not functioning (unavailable) and the extent to which the performance meets expectations 

when it is functioning. 

Inverter operation and other status indicators of the system are first analysed to find out whether 

the system is operating. Times when inverters (or other components) are not operating are 

characterized as times of unavailability and the associated energy loss is quantified according to 

the expected energy production during those times. For times when the system is operating, 

actual photovoltaic system energy produced is measured and compared to the expected energy 

production for the observed environmental conditions, quantifying the energy performance index 

(EPI), as defined in section 7.6.1.3: 

 

𝐸𝑃𝐼 =
𝐸𝑜𝑢𝑡
𝐸𝑒𝑥𝑝

× 100 

 

As a basis for this evaluation, expectations of energy production are developed using a model of 

the PV system under test that will serve as the guarantee or basis for the evaluation. Typically, 

the model is complex and includes effects of shading and variable efficiency of the array. 

This procedure evaluates the quality of the PV system performance with the assumption and 

expectation that the model used to predict performance accurately describes the system. If the 

initial model is found to be inaccurate, the design of the system is changed, or it is desired to test 

the accuracy of an unknown model, the model may be revised relative to one that was applied 

earlier, but the model should be fixed throughout the completion of this procedure. 
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Energy unavailability: metric that quantifies the energy lost when the system is not operating 

(as judged by an automatic indication of functionality such as the inverter status flag indicating 

that the inverter is actively converting DC to AC electricity or not). The energy unavailability is the 

ratio of the expected energy (as calculated from the original model and the measured weather 

data) that cannot be delivered because of inverters or other components being offline divided by 

the total expected energy for the year. 

 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑢𝑛𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝐸𝑛𝑜𝑡 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑
𝐸𝑡𝑜𝑡𝑎𝑙 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 

× 100 

 

 

Some possible reasons of energy unavailability are: 

 

• Hardware failure 

• Plant degradation 

• Planned outage (maintenance interventions) 

• Not expected weather conditions 

• Grid requirements limiting the energy uptake (curtailment) 

• Grid support events (e.g. deviation from unity power factor)  

• Operational set points (inverter clipping1) 

• Poor maintenance procedures 

• Force majeure 

 

Energy availability: metric of energy throughput capability that quantifies the expected energy 

when the system is operating relative to the total expected energy. It is calculated from the energy 

unavailability and may be expressed as a percentage or a fraction. 

 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 100 − 𝐸𝑛𝑒𝑟𝑔𝑦 𝑢𝑛𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝐸𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑

𝐸𝑡𝑜𝑡𝑎𝑙 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 
× 100 

 

In summary, this test procedure was created to:  

 

a) Facilitate the documentation of a performance guarantee 

b) Verify accuracy of a model 

c) Track performance (e.g., degradation) of a system over the course of multiple years 

 
1 When the inverter output is limited by the capability of the inverter rather than by the input power from the PV array 
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d) Document system quality for any other purpose 

 

Test applicability and duration 

This test may be applied at one of several levels of granularity of a PV plant. The smallest level 

to which the test may be applied is the smallest AC power generating assembly capable of 

independent on-grid operation.  

 

Some PV modules show measurable performance changes within hours or days of being installed 

in the field, others do not. The start of the test should be negotiated between the stakeholders 

using the manufacturer’s guidance for the number of days or the irradiance exposure needed for 

the plant to reach the modelled performance along with the details of the actual installation and 

interconnection dates. Any degradation assumptions should be agreed to by all stakeholders and 

documented as part of the model description. 

 

It is recommended that the test lasts 365 days. If the test is not continued for a full year, seasonal 

variations (including shading, spectrum, temperature, and wind) may cause the performance to 

deviate from what would be obtained over a full year. 

The performance metric, in-service energy performance index, is reported only for times when 

the inverters and other components are online. Expected energy for times when the inverters or 

other components are offline is quantified in the energy unavailability metric. The energy 

unavailability metric may be further divided into situations with internal and external causes, as 

agreed to by the stakeholders. 

 

Notes about data collection:  

 

• Verification of accurate positioning of the sensors is accomplished through comparison of 

data from a clear day with modelled irradiance for a clear day and the results included in 

the documentation of the uncertainty of the application of the test. 

• When irradiance sensors are deployed in the plane of the array, the ground albedo should 

be measured to demonstrate consistency with that assumed in the model and the results 

included in the documentation of the uncertainty of the application of the test. 

• For Class A tests, because the irradiance measurement is so crucial to the test, the 

calibrations should be independently verified either by using sensors calibrated at different 

test locations or at different times so as to prevent a systematic bias to the calibration. 
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Procedure 

In the following table and diagram, a step-by-step description of the procedure is provided. 

 

Step Description 

1 

Calculation of predicted energy1 
and documentation of method 
that will be used to calculate the 
expected energy 

Calculation of the predicted energy (using historical weather data) and the method that will be used 
to calculate the expected energy. Definition of test boundaries, meteorological inputs format, PV 
system inputs and assumptions regarding soiling, shading, snow coverage, outages, etc. The 
predicted energy may assume 100 % availability or may be reduced to account for expected times 
of unavailability.  
The uncertainty defining the pass/fail criteria of the test results should be agreed at this stage. 

2 Collection of measured data 
Collect recorded data at the specified frequency and in the specified format with every effort made 
to avoid gaps in data, to maintain sensor function and calibration through early detection of failures, 
and to strictly adhere to agreed-upon procedures.  

3 
Identification of data associated 
with unavailability 

The data should be screened for times when any inverter is offline (not converting DC to AC 
electricity) or some other component is off line. The expected energy production associated with the 
unavailability is tabulated and aggregated to provide the expected energy for the times during the 
year when the plant is unavailable. 

4 Data quality check  
Identification of erroneous data and replacement or adjustment of such data and preparation of 
model input dataset: filtering, cleaning, time interval consistency check, time stamp alignment, etc. 

5 Calculation of expected energy 
The expected energy generated by the facility is calculated by inputting the measured variable input 
data during the test period into the performance model, paying attention to the acceptability of data, 
Time interval consistency, Time stamp alignment 

Calculate expected energy during 
times of unavailability 

Input measured meteorological data into the performance model to calculate the expected energy 
for times of unavailability during the test period. Document all times of unavailability and the 
associated expected energy that was not realized during the test period, and, if desired, separate 
these into energy associated with internally and externally caused unavailability, commenting on any 
identified causes for unavailability. 

Calculate expected energy during 
times of availability 

Input measured meteorological data into the performance model to calculate the expected energy 
for times of availability during the test period. Both real and apparent expected energy should be 
calculated. 

Calculate total expected energy 
The total expected energy is calculated as the sum of the expected energies during the times of 
unavailability and availability. Both real and apparent expected energy should be calculated. 

Analyse discrepancies 

If the measured energy deviates from the expected energy significantly (by more than 10 %), then a 
root cause diagnosis should be completed. For example, such a diagnosis might be that the weather 
for the year was unexpected, the simulation model is different than the as-built plant, or there was 
unusual missing data. The test report should comment on whether the test should still be considered 
valid. 

6 Calculation of measured energy 

The measured energy is the result of all energy generated by the facility as measured at the metering 
location during the test period after subtracting out energy associated with parasitic power losses. If 
substitutions were made for missing data, care should be taken that the measured energy production 
is estimated in a way that is consistent with how the expected energy for that period was defined. 

7 
Calculation of performance 
metrics from measured data 

Calculation of KPIs as defined in section 7.6.1 (PR, availability, energy performance indices and 
capacity factor). The all-in energy performance index is calculated using the total expected energy. 
The in-service energy performance index is calculated using the expected energy during times of 
availability. The external-cause-excluded energy availability is calculated excluding the expected 
energy during times of unavailability that were caused by circumstances outside of the control of the 
plant. 
The comparison of measured and expected energy includes a consideration of the uncertainties. 

8 Uncertainty analysis 

The uncertainty should be determined for the test result, not for the original prediction. Both 
systematic (bias) and random (precision) uncertainties are included in the analysis. The contributions 
to the uncertainty depend on the model that is used, but generally include uncertainty in the 
measurements of the irradiance, temperature, and electricity generated. The uncertainties 
associated with each sensor are taken from the manufacturer’s specification and/or from the 
calibration report provided by the calibration laboratory.  

  

 

 
1 Although the final comparison of expected and measured energy does not use the predicted energy directly, the predicted energy is usually required 

for project planning. 



 

138 

 

 

  

 

Figure 79.Energy Evaluation Method – procedure flow diagram. Source: own design 
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Data quality check: filtering and flagging criteria 

Each data stream should be checked for data out of range, missing data, or unreasonable trends 

as described in IEC 61724-1. An example procedure is given in more detail in Table 51. 

Depending on the local conditions, the details of the plant design, and the addition of other data 

streams, the filtering criteria may be modified, but all four types of filters (range, missing data, 

dead value, and abrupt change) shall be applied and documented as part of the final report. 

Flagged data are examined to determine the underlying cause and whether the flag should be 

retained. 

 

 

As part of the data filtering, the data should be binned into times when inverters (or other system 

parts if desired) were on line and off line. In the case where a single inverter is off line, but the 

system output is measured at a single point for the entire system, the expected energy is 

partitioned to reflect the expected energy from the functioning inverters (or other system parts, if 

desired) and the expected energy from the offline inverters and aggregated separately. The 

energy aggregated for times when the system was off line may be separated into two categories: 

problems caused by internal and external reasons. 

 

Irradiance sensors check 

Because of the sensitivity of the test to the irradiance data, special attention should be given to 

the irradiance data. Specifically, irradiance data that may result from accidental shading of a 

sensor or sensor malfunction should be removed before taking the average of the data from the 

remaining sensors. Accurate calibrations are needed for all sensors to provide a test result with 

low uncertainty. In addition to confirming that the calibrations were completed as planned, the 

Table 51. Example of data filtering criteria, to be adjusted according to local conditions. Source: IEC TS 61724-
3:2016 
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night-time data should be checked to confirm accurate zero-point calibration, noting that it is 

common for a pyranometer to show a negative signal of 1 W/m2 to 3 W/m2 

A recommended procedure for identifying such data in the case where multiple sensors are being 

used is: 

 

Step 1: Identify a clear day. 

Step 2: Compute the average irradiance value for each sensor during each time interval and 

compare each individual value with the average value for all sensors. If this difference is 

greater than the uncertainty of the sensors, inspect the data to identify a probable cause. (Note 

that if the data are taken more frequently than once per minute, the data should be averaged 

over a time period of at least 1 min.) 

Step 3: Look for drifts of the calibrations of the sensors. 

Step 4: Discard data that can be traced to malfunctioning of the sensor or data acquisition 

system. Discard data from sensors that are out of calibration (this action should be done only 

with mutual consent of the stakeholders). 

Step 5: Discard individual data points that are compromised by sensor maintenance or 

cleaning. 

Step 6: If all data for some time periods are removed, this time period is treated as missing 

data. The missing data, cause for removal of the data, and the impact of the removal of the 

data are presented in the report (this action should be done only with mutual consent of the 

stakeholders). 

 

Using data from multiple sensors  

The ambient temperature and irradiance used as input to the model should be the average of the 

available measurements, except where a measurement is determined to be erroneous, in which 

case the input to the model should be the average or median of the remaining measurements. 

Temperature and irradiance data from nearby meteorological stations, from numerical weather 

models, or from satellite data may be used when it is expected to improve the accuracy of the 

test and with mutual consent of the stakeholders. The type of sensor, its mounting, maintenance, 

accuracy, resolution and calibration status shall be consistent with the initial model definition. 

 

Missing weather data 

Missing or invalid data may be treated in one of the following ways according to IEC 61724-

1:2017: 

 

• The invalid or missing data may be replaced by values estimated from the valid data 

recorded before and/or after the invalid or missing data 
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• The invalid or missing data may be replaced with an average value for the analysed 

interval 

Three scenarios may occur where no data is identified to replace missing weather data: 

 

A. If the inverter was not functioning during that period, the expected energy for the period is 

modelled from the historical weather data and is aggregated with the expected energy for the 

times of unavailability.  

 

B. If the inverter is functioning, then the expected energy is taken to equal the measured energy 

during that period. 

 

C. If both the measured energy output and the weather data are missing, but the plant was known 

to be functioning during that period, the predicted energy (calculated from the model using 

the historical weather data) is used for both the expected and measured energy during that 

period. 
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If the missing data affect more than a week of performance out of a year, the bias introduced by 

the above approach may become unacceptable and the parties to the test shall agree upon the 

best way to handle the missing data, including the possibility that the test may be considered 

invalid if too many data are missing. 

 

Partially missing data or partial unavailability 

When data is available for part of a period (e.g., if the model is using hourly averages and the 

data are available only for part of the hour) if < 10 % of the electricity or irradiance data are 

missing, the average of the available data for that time period may be used. For temperature and 

wind data, this requirement is < 20 % and < 50 %, respectively. When the fraction of missing data 

is small enough to use the data for that hour, the existing data are averaged for that hour. If the 

fraction of missing data exceeds these guidelines, the data should be treated as missing data. In 

any case, data for the same period are handled consistently between both the irradiance and PV 

performance data. 

Specifically, if data is substituted because of anomalies associated with inverter start up or shut 

down, reliable data will be retained for the fraction of the hour when data are available in order to 

reflect the state of the system as accurately as possible during these hours because the energy 

generated during these hours typically differs significantly from the expected energy. 

 

Table 52. Missing data tolerances 

Parameter 
Maximum missing data 

tolerable 

Energy output 10 % 

Irradiance  10 % 

Temperature 20% 

Wind 50% 

 

 

 

7.7.2 Capacity evaluation method 

Scope 

This method (based on IEC TS 61724-2), measures power (not energy) at a specified set of 

reference conditions (which can differ from standard test conditions that have been designed to 

facilitate indoor measurements). It is a non-regression-based method for determining power 

output. It uses the design parameters of the plant to quantify a correction factor for comparing the 

plant’s measured performance to the performance targeted under reference conditions. In other 
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words, the measured performance, adjusted by the correction factor, is then compared with the 

target plant performance to identify whether the plant operates above or below expectations at 

the target reference conditions.  

 

This test procedure was designed with the primary goal of facilitating the documentation of a 

performance target, but it can also be used to verify a model, track performance (e.g., 

degradation) of a system over the course of multiple years, or to document system quality for any 

other purpose.  The intent of this document is to specify a framework procedure for comparing 

the measured power produced against the expected power from a PV system on relatively sunny 

days.  

In this procedure, actual photovoltaic system power produced is measured and compared to the 

power expected for the observed weather based on the design parameters of the system. The 

expected power under reference and measured conditions are typically derived from the design 

parameters that were used to derive the performance target for the plant as agreed to prior to the 

commencement of the test. For cases when a power model was not developed during the plant 

design, a simple model that increases transparency is presented in section 7.7.2.1 as a possible 

approach. 

 

It is to be noted that when the output of a PV system exceeds the capability of the inverter, the 

output of the system is defined more by the inverter operation than by the PV modules. In this 

case, the measurement of the capacity of the plant to generate electricity is complicated by the 

need to differentiate situations in which the inverter is saturated (“constrained operation”) and 

when the output of the PV system reflects the module performance (“unconstrained operation”). 

For PV plants with high DC-to-AC power ratios, the operation of the plant can reflect the capability 

of the inverters for most of the day, with the capability of the DC array only being measurable for 

a short time in the morning and in the evening. In this case, it can be necessary to disconnect 

parts of the DC array to reduce the DC-to-AC power ratio during the measurement period.  

 

Test duration 

It is recommended that the test include data from at least two days if enough stable data are 

acquired. The test may be extended to seven or more days if desired to assess repeatability or if 

weather is volatile. The filtering criteria for selecting relatively stable times are described later in 

this section. The test may be completed at any time of year, though the deviation from reference 

conditions and the effects of variable angle of incidence should be minimized. 

 

Terms and definitions 
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Constrained operation: condition when all inverters are limited by their capability (also referred 

to as inverter saturation) rather than by the output from the PV array, as it is observed for a system 

with high DC rating relative to the AC rating and when the irradiance is high. 

Curtailed operation: when the output of the inverter(s) is limited due to external reasons such 

as inability of the local grid to receive the power or contractual agreement. 

Unconstrained operation: outputs of all inverters freely following the DC array’s capability to 

respond to the solar insolation rather than being limited by the capability of the inverters or 

curtailing influences. 

Expected power: power of a PV system that is expected for actual weather data collected at the 

site during operation of the system based on the design parameters of the system 

Target reference conditions (TRC): reference conditions at which the expected power is the 

target power, which include irradiance, ambient temperature, wind, and any other parameter used 

to define the target performance. 

 

Procedure 

In the following table and flow diagram, a step-by-step description of the procedure is provided. 

 

Step Description 

1 
Definition of the performance 
target under “unconstrained” and 
“constrained” operation 

The targeted system output is defined for unconstrained operation under the TRC and by a model 
that defines how the power varies with irradiance, temperature, and wind using the design 
parameters of the plant. The performance target under constrained operation is typically defined by 
the capability of the inverter. 

Definition of the target reference 
conditions (TRC) for “unconstrained” 
operation 

TRC should be chosen to result in unconstrained operation (i.e. within the inverter’s capability). 
Preferably, they should be chosen to reflect an ambient temperature and wind speed that are 
frequently observed at the site and the highest irradiance that is unlikely to cause constrained 
operation for the lowest temperature expected. The optimal choice of TRC may depend on the 
weather during the test.  

Definition of the temperature 
dependence of the plant output under 
“unconstrained” operation 

If a temperature model has not been defined, a possible model is provided in section 7.8.1. It is 
preferable to use a temperature model based on ambient temperature and wind speed rather than 
measuring the back-of-module temperature because the assessment then includes some aspects 
of the module mounting that could cause the modules to run hot and because it avoids the 
challenges of characterizing the module temperature, which may be highly variable across the field.  

2 Collect measurement data 
The power output, irradiance, temperature, wind speed, state of cleanliness of both the sensors and 
PV systems are collected over several days. 

3 
Data checks for each data 
stream 

Each data stream shall be checked for data out of range or unreasonable trends. Then it shall be 
checked whether the number of valid data points is enough for a reasonable uncertainty value of the 
test. 

4 Calculation of correction factor 
The correction factor is calculated to adjust the measured power to the conditions used for the 
performance target. 

5 
Comparison of measured power 
with the performance target 

Finally, the average measured corrected power and performance target are compared either as a 
simple difference, percent difference, or ratio calculation. 

6 Uncertainty analysis 

As part of the performance target or test plan, the agreement shall state how the uncertainty of the 
measurement is considered. Thus, it can be essential to quantify the uncertainty of the measurement 
as part of determining whether the measured performance meets expectations. Regardless of 
whether the uncertainty is used as part of determining the test result, uncertainty analysis should be 
part of the assessment. 
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Figure 80. Capacity Evaluation Method – procedure flow diagram. Source: own design 
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Data checks for each data stream 

A recommendation for application of this procedure for this application is given in more detail in 

Table 53 . Depending on the local conditions, the details of the plant design, the addition of other 

data streams and the frequency of data collection, the filtering criteria may be modified, but all 

four types of filters (range, dead value, abrupt change/stability and inverter status) shall be applied 

and documented as part of the final report. 

 

 

 

 

The inverter's self-reported output power or inverter's self-reported status flags are used to identify 

when the inverter operation is constrained. If the status flags are not available, the data may be 

screened for reporting values near the maximum capability of the inverter. Records are 

categorized according to whether: 

 

a) zero inverters are constrained: data records can be treated as unconstrained 

b) all inverters are constrained: data records can be treated as constrained 

Table 53. Capacity method: data validation and filtering criteria. Source: IEC TS 61724-2:2016 
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c) some, but not all, are constrained: data records cannot be used for evaluating system 

performance 

 

The stability filter recommended here calculates the average of at least 15 data points (measured 

at least every minute during 15 min) and confirms that the standard deviation for those data points 

is less than 5 % of the average of the same data points. Applying the stability filter to both the 

irradiance and power data is recommended. 

 

The number of data points identified as meeting the criteria in Table 53 will affect the uncertainty 

of the test. As a guide to determining an adequate, yet reasonable, number of data points, the 

following table may be used: 

a 

 

The larger number of data points during the summer reflects the ease of collecting more data on 

longer days and is expected to result in a higher accuracy measurement, depending on the local 

weather. Locations that seldom experience clear, sunny days may require longer data collection 

times or reduction of the targeted number of data points, resulting in higher test uncertainty. For 

CPV applications, Table 54 is not directly relevant. For CPV, after filtering for stable conditions, 

the data collected should include at least 30 data points (assuming 15 min averages) or at least 

7.5 h of filtered data if averages for a different time period are used. 

 

Calculation of the correction factor  

The correction factor is calculated to adjust the measured power to the conditions used for the 

performance target in four steps: 

 

a) Calculation of correction factor for each data point 

Input measured meteorological data into the system’s model and calculate the correction factor 

needed to translate the measured data to the temperature, wind and irradiance conditions 

specified by the TRC for all points measured during “unconstrained” stable operation. 

Calculate the correction factor for each point using the power model: 

 

Table 54. Example guide for seasonal minimum stable irradiance requirements for flat-plate 
application. Source: IEC TS 61724-2:2016 
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𝐶𝑓𝑎𝑐𝑡𝑜𝑟 =
𝑃𝑡𝑎𝑟𝑔𝑒𝑡

𝑃𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑
 

 

𝐶𝑓𝑎𝑐𝑡𝑜𝑟     is the correction factor 

𝑃𝑡𝑎𝑟𝑔𝑒𝑡       is the model’s output power at the target reference conditions (TRC) 

𝑃𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑    is the model’s output power at the measured conditions  

 

The correction factor could be corrected for the operating temperature as follows: 

 

𝐶′𝑓𝑎𝑐𝑡𝑜𝑟 = 1 + 𝛾(𝑇𝑐𝑒𝑙𝑙 − 𝑇𝑇𝑅𝐶) 

 

𝐶′𝑓𝑎𝑐𝑡𝑜𝑟     is the operating temperature cell correction factor 

𝛾                is the temperature coefficient for power (taken from the module’s datasheet) 
𝑇𝑐𝑒𝑙𝑙           is the calculated cell temperature as described in section 7.8.1 

𝑇𝑇𝑅𝐶           is the cell temperature associated with the Target Reference Conditions (TRC) 

 

b) Correct measured power output for all points measured 

Correct the measured power by the correction factor for all points measured during 

“unconstrained” stable operation: 

 

𝑃𝑐𝑜𝑟𝑟 = 𝑃𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 ∙ 𝐶𝑓𝑎𝑐𝑡𝑜𝑟 

 

c) Average all values of corrected power 

Taking care to consider only the data that were included after data filtering, average all corrected 

power output values taken under “unconstrained” operating conditions, and separately average 

all power values measured during constrained operation. 

𝑃𝑐𝑜𝑟𝑟𝑎𝑣𝑔 =
1

𝑛
∑𝑃𝑐𝑜𝑟𝑟𝑖

𝑛

𝑖=1

 

d) Analyse discrepancies  

If an individual corrected power deviates from the average by more than 5 %, then a root-cause 

diagnosis should be completed for the data point to see if any outlier situation was in effect and 

not caught by the data filtering 

 

 

Comparison of measured power with the performance target 

The average measured corrected power and performance target can be compared either as a 

simple difference, percent difference, or ratio calculation: 
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Difference calculation [kW]: 

∆𝑝𝑜𝑤𝑒𝑟 = 𝑃𝑐𝑜𝑟𝑟 − 𝑃𝑡𝑎𝑟𝑔𝑒𝑡 

 

Percent difference calculation [%]: 

∆𝑝𝑜𝑤𝑒𝑟 =
𝑃𝑐𝑜𝑟𝑟 − 𝑃𝑡𝑎𝑟𝑔𝑒𝑡

𝑃𝑡𝑎𝑟𝑔𝑒𝑡
 × 100 

 

 Ratio (power performance index) [%]: 

 

𝑃𝑃𝐼 =  
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑜𝑢𝑡𝑝𝑢𝑡

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑  𝑜𝑢𝑡𝑝𝑢𝑡
× 100 =  

𝑃𝑐𝑜𝑟𝑟
𝑃𝑡𝑎𝑟𝑔𝑒𝑡

 × 100 

 

Uncertainty analysis 

The uncertainty is determined for Pcorr, not for the performance target. Uncertainties associated 

with the model are neglected. However, uncertainties associated with the measured weather data 

will introduce uncertainty in Pcorr. 

Both systematic (bias) and random (precision) uncertainties should be included in the analysis. 

The contributions to the uncertainty depend on the model that is used, but generally include 

uncertainty in the measurements of the irradiance, temperature, wind speed, and electricity 

generated as well as uncertainties in corrections of these. 

All measurements and associated uncertainties are tabulated and combined using standard 

propagation of errors as described in: 

 

• ASME Performance Test Code 19.1 

• ISO 5725 

• ISO/IEC Guide 98-1 

 

The uncertainties associated with each sensor are taken from the manufacturer’s specification 

and/or from the calibration report provided by the calibration laboratory. The uncertainty analysis 

should also include systematic errors that may arise from misplacement or inappropriate 

installation of the sensors including:  

 

• Irradiance sensor placement (tilt, azimuth, and height) 

• Positioning of temperature sensors relative to power model 

• Positioning of wind sensor relative to power model 

• Soiling that has not been addressed 
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• Spatial variation when a subset of point measurements may not capture the true array 

bulk values (e.g. wind speed). 

 

Data acquisition device uncertainties should also be considered. 

7.7.2.1 Simple model for system power 

The model for the electrical power output of a system can be fairly simple or complex. A simple 

example is given here: 

Table 55. Model for system power. Source: IEC TS 61724-12:2016 

System power model 

Symbol Units Description 
Source 

𝑃𝑝𝑟𝑒𝑑 W Predicted power 
Calculated 

𝑃𝑡𝑎𝑟𝑔𝑒𝑡 W Predicted power at targeted conditions 
Calculated 

𝐺𝑖 W/m2 POA irradiance 
Measured 

𝐺𝑇𝑅𝐶 W/m2 Rating irradiance used to specify the target power 
Defined by user 

𝑃𝑧𝑒𝑟𝑜 W 
(negative) intercept often observed when plotting the 
output power as a function of irradiance when inverters 
require a minimum power input to function. 

Calculated 

𝑃′𝑝𝑟𝑒𝑑 W Temperature-corrected predicted power 
Calculated 

𝛾 %/°C Power temperature coefficient of the module 
Module’s datasheet 

𝑇𝑐𝑒𝑙𝑙 °C Cell temperature calculated for each measurement point 

Calculated  
(see section 7.8.1) 

𝑇𝑇𝑅𝐶 °C Cell temperature calculated by the thermal model at the 
Target Reference Conditions (TRC) conditions 

Calculated  
(see section 7.8.1) 

 

As an example of implementation of a linear assumption, the plant power can be defined as follows: 

 

𝑃𝑝𝑟𝑒𝑑 = 𝑃𝑡𝑎𝑟𝑔𝑒𝑡 (
𝐺𝑖
𝐺𝑇𝑅𝐶

) + 𝑃𝑧𝑒𝑟𝑜 (1 −
𝐺𝑖
𝐺𝑇𝑅𝐶

) 

 
 
Adding a temperature correction and neglecting the Pzero term, results in the following relationship to predict 
power from measured irradiance and cell temperatures: 
 

 

𝑃′𝑝𝑟𝑒𝑑 = 𝑃𝑡𝑎𝑟𝑔𝑒𝑡 (
𝐺𝑖
𝐺𝑇𝑅𝐶

) [1 + (
𝛾

100
) (𝑇𝑐𝑒𝑙𝑙 − 𝑇𝑇𝑅𝐶)] 
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7.8 Complementary calculations  

7.8.1 Module and cell temperature calculations 

Generally, there are two parts to defining the temperature dependence of the power output of a 

PV system:  

1) relating the weather conditions to the module temperature and 

2) the power output as a function of module temperature 

The module temperature can be measured directly using a sensor on the back of the module as 

described in IEC 61829 or in Annex B of IEC 61724-1:2016, or an infrared camera that has been 

carefully calibrated for the emissivity of the module, but the module temperature reflects both the 

weather conditions and the quality of the installation or design, since improper installation of 

modules or a poor mounting design may cause modules to operate at elevated temperatures 

when compared to design expectations. To include module operating temperature within the test, 

the ambient temperature and wind speed may be used to calculate an expected average module 

temperature.  

 

7.8.1.1 Heat transfer model to calculate expected cell operating temperature 

This section presents a heat transfer model that has demonstrated good results. However, other 

models exist, and practitioners should choose the model that best fits their situation. Of great 

importance is using identical heat transfer models for setting the capacity performance target as 

well as the target reference conditions. 

 

Table 56. Model for module temperature 

Thermal model for module and cell temperature 

Symbol Units Description Source 

𝑇𝑚𝑜𝑑 °C Module temperature (at the back surface) 
Calculated 

𝐺𝑖 W/m2 POA irradiance 
Measured 

𝑇𝑎𝑚𝑏 °C Ambient temperature 
Measured 

𝑊𝑆 m/s Wind speed corrected to a 10 m height or to the height that is 
relevant to the power model 

Calculated 

a -- Module glazing coefficient 

Defined empirically  
(see Table A.1) 

𝑏 -- Forced convection glazing coefficient  

Defined empirically  
(see Table A.1) 

𝑊𝑆𝑚𝑒𝑎𝑠 m/s Wind speed 
Measured 
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ℎ𝑟𝑒𝑓 m height used by performance model (for this model 10 m) 
Defined by user 

ℎ𝑚𝑒𝑎𝑠 m height of the anemometer  
Site characteristic  

𝛼 -- Resistance coefficient for ground cover or the Hellmann 
exponent 

Defined empirically  
(see Table A.2) 

𝑇𝑐𝑒𝑙𝑙 °C Cell temperature 
Calculated 

𝑑𝑇𝑐𝑜𝑛𝑑 °C Conduction temperature coefficient to determine the difference 
between module surface and cell centre  

Defined empirically  
(see Table A.1) 

 

The module temperature (at the back surface) can be calculated as follows: 

 

𝑻𝒎𝒐𝒅 = 𝑮𝒊 ∙  𝒆
(𝒂+𝒃∙𝑾𝑺) + 𝑻𝒂𝒎𝒃 

 
If the measured and reference heights are different, the wind speed needs to be corrected as follows: 
 

𝑊𝑆 = 𝑊𝑆𝑚𝑒𝑎𝑠 ∙
ℎ𝑟𝑒𝑓

ℎ𝑚𝑒𝑎𝑠
∙ 𝛼  

 
 
 

The temperature difference (Tmod - Tamb) is largely independent of the ambient temperature and is 
essentially linearly proportional to the irradiance at levels above 400 W/m2. 

The cell temperature can be calculated as follows: 
 

𝑻𝒄𝒆𝒍𝒍 = 𝑻𝒎𝒐𝒅 +
𝑮𝒊

𝟏𝟎𝟎𝟎
∙  𝒅𝑻𝒄𝒐𝒏𝒅 

 

 

and therefore, the conductive temperature drop between the module's back surface and the PV cells can 
be determined. 

 

 

It is also possible to use IEC 60904-5 to determine the junction temperature (see 7.8.1), but this 

is usually difficult when evaluating the performance of a continuously operating system because 

IEC 60904-5 uses the measured open circuit voltage. It should be noted that junction temperature 

calculated from measured open circuit voltage will reflect the rapid fluctuation of the cell 

temperature during rapid changes of irradiance due to high wind and cloud speed in the sky that 

is not in accordance with the directly measured temperature of the rear surface. Therefore, the 

electrical output power evaluation of the system should be performed when the irradiation is stable 

as required by the filtering described in Table 53. 
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7.8.1.2 Equivalent Cell Temperature (ECT)  

Here is described the preferred method (IEC 60904-5:2011) for determining the equivalent cell 

temperature (ECT) of PV devices (cells, modules and arrays of one type of module), for the 

purposes of comparing their thermal characteristics, determining NOCT (nominal operating cell 

temperature) and translating measured I-V characteristics to other temperatures. 

 

When temperature sensors, such as thermocouples, are used to determine the cell temperature 

of PV devices under natural or simulated steady-state irradiance, some problems arise: 

 

a) A considerable spread of temperature can be observed over the area of the module.  

b) As the solar cells are usually not accessible, sensors are attached to the back of the 

module and the measured temperature thus is influenced by the thermal conductivity of 

the encapsulant and back materials. 

Table 57. Empirical coefficients for module temperature modelling. Source: IEC TS 61724-2:2016 
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c) Problems when determining the equivalent cell temperature for on-site measurements of 

array performance where all cells have slightly different temperatures and one cannot 

easily determine the average cell temperature. 

 

The equivalent cell temperature (ECT) is the average temperature at the electronic junctions of 

the device (cells, modules, arrays of one type of module) which equates to the current operating 

temperature if the entire device were operating uniformly at this junction temperature. 

 

In summary, ECT can be used for: 

• Calculating PV module temperature (Tmod) 

• Comparing the thermal characteristics of different PV modules 

• Determining NOCT (nominal operating cell temperature) 

• Translating measured I-V characteristics to other temperatures 

 

Measurement devices required 

• Reference PV module 

• IV-curve tracer 

• Thermometer 

 

Measurement procedure 

This method is based on the fact that the open-circuit voltage (VOC) of a solar cell changes with 

temperature in a predictable fashion. If the VOC of the device at standard test conditions (STC) is 

known, together with its temperature coefficient (β), the equivalent temperature of all the cells in 

the device can be determined.  

 

NOTE: The VOC is also slightly affected by the irradiance, so an additional 

correction may be required as outlined in IEC 60891. Experience shows that 

the equivalent cell temperature can be determined more precisely by the 

method described here than by any alternative technique. However, as the 

temperature coefficient β drops rapidly at irradiances below 200 W/m2, this 

method should only be used at irradiances above this threshold. 

 

a) Take simultaneous readings of the open-circuit voltage VOC2, short-circuit current ISC2 and the 

incident irradiance G2. 

b) Carry out a correction of VOC2 to an irradiance equal to G1. 

c) Calculate the ECT as described in Table 58. 
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Table 58. Calculation of the Equivalent Cell Temperature 

Equivalent Cell Temperature 
Symbol Units 

ECT °C 

Symbol Units Description Source 

β %/°C Temperature coefficient of the open-circuit voltage 
Measured / Datasheet 

G1, T1 W/m2, °C Irradiance and module temperature of reference condition 1 
Measured / Datasheet 

G2, T2 W/m2, °C Irradiance and module temperature of reference condition 2 
Measured 

VOC1 V Open-circuit voltage at a reference condition 1 (G1, T1) 
Measured / Datasheet 

VOC2 V Open-circuit voltage at a reference condition 2 (G2, T2) 
Measured  

ISC2 
A 

Short-circuit current at a reference condition 2 (G2, T2) Measured 

VSTC 
V 

Open-circuit voltage at STC (GSTC=1000 W/m2, TSTC=25°C) Datasheet 

ISTC 
A 

Short-circuit current at STC (GSTC=1000 W/m2, TSTC=25°C) Datasheet 

𝑎 
-- 

Irradiance correction factor for open circuit voltage which is linked with 

the diode thermal voltage D of the pn junction and the number of cells ns 

serially connected in the module D as defined in IEC 60891. A typical 

value is 0.06 

IEC 60891:2010 

 

General formula: 

𝐸𝑇𝐶 = 𝑇1  +
1

𝛽
[
𝑉𝑂𝐶2
𝑉𝑂𝐶1

− 1 − 𝑎 𝑙𝑛 (
𝐺2
𝐺1
)] 

 

 

Variation 1 

 If the STC values are used as reference condition (GSTC=1000 W/m2, TSTC=25°C) and considering 𝑎 = 0.06, then 

𝐸𝑇𝐶 = 25°𝐶 +
1

𝛽
[
𝑉𝑂𝐶2
𝑉𝑆𝑇𝐶

− 1 − 0.06 𝑙𝑛(
𝐺2

1000
𝑊
𝑚2

)] 

 

Variation 2 

Instead of the irradiances G1 and G2, one can also use the ratio of short-circuit currents, which then is called self-
reference. This requires short circuit current to be linear according to IEC 60904-10. This simplifies the measurements 
to be taken significantly as one essentially eliminates the requirement for measuring the irradiance and the 
dependence on the spectrally matched devices. 
 

𝐸𝑇𝐶 = 25°𝐶 +
1

𝛽
[
𝑉𝑂𝐶2
𝑉𝑆𝑇𝐶

− 1 − 0.06 𝑙𝑛 (
𝐼𝑆𝐶2
𝐼𝑆𝑇𝐶

)] 
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8 Annex B: Hyperparameters tuning 

8.1 Models applied on the full dataset 

Model 
Hyperparameters 

tested 
Values 

Best 
combination 

Linear Regression - - - 

Polynomial Regression 

– Degree 2 
- - - 

Stochastic Gradient 

Descent Regressor 

'penalty' 'l1', 'l2', 'elasticnet', 'none' 'l1' 

'alpha' 0.01, 1, 5, 100 1 

'l1_ratio' 0.01, 0.15, 0.5, 0.9 0.5 

Linear Support Vector 

Regression 

'C' 0.9, 1, 10 10 

'fit_intercept' True, False True 

'intercept_scaling' 1, 5, 10 10 

Decision Tree 

Regressor 

'min_samples_split' 2, 5, 6, 7, 10 5 

'min_samples_leaf' 5, 7, 8, 10, 20 10 

'max_depth' 20, 50, 70, 75, 100 50 

'max_features' 'auto', 'sqrt', 'log2', 0.5, 0.9 'auto' 

Random Forest 

Regressor 

'n_estimators' 100, 150, 175, 200, 300 200 

'max_features' 'auto', 'sqrt', 0.9 0.9 

'max_depth' 20, 50, 100 50 

Bagging Regressor 

'n_estimators' 100, 300, 500, 1000 1000 

'max_samples' 0.25, 0.5, 0.7, 0.9, 1 0.9 

'max_features' 0.25, 0.5, 0.7, 0.9, 1 0.9 

Gradient Boosting 

Regressor 

'max_depth' 10, 20, 100 10 

'n_estimators' 10, 70, 100, 200 100 

'learning_rate' 0.1, 0.2, 1.0 0.1 

 

Table 8.1. Hyperparameters tuning: synthetic distribution “A” – performance metric: MAE 
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Model 
Hyperparameters 

tested 
Values 

Best 
combination 

Linear Regression - - - 

Polynomial Regression 

– Degree 2 
- - - 

Stochastic Gradient 

Descent Regressor 

'penalty' 'l1', 'l2', 'elasticnet', 'none' 'l1' 

'alpha' 0.01, 1, 5, 100 1 

'l1_ratio' 0.01, 0.15, 0.5, 0.9 0.5 

Linear Support Vector 

Regression 

'C' 0.9, 0.95, 1, 10 10 

'fit_intercept' True, False True 

'intercept_scaling' 1, 10, 50 50 

Decision Tree 

Regressor 

'min_samples_split' 2, 5, 6, 7, 10 5 

'min_samples_leaf' 5, 7, 8, 10, 20 10 

'max_depth' 20, 50, 70, 75, 100 50 

'max_features' 'auto', 'sqrt', 'log2', 0.5, 0.9 'auto' 

Random Forest 

Regressor 

'n_estimators' 100, 150, 175, 200, 300 150 

'max_features' 'auto', 'sqrt', 0.9 0.9 

'max_depth' 20, 50, 100 20 

Bagging Regressor 

'n_estimators' 100, 300, 500, 1000 300 

'max_samples' 0.25, 0.5, 0.7, 0.9, 1 0.7 

'max_features' 0.25, 0.5, 0.7, 0.9, 1 0.7 

Gradient Boosting 

Regressor 

'max_depth' 10, 20, 100 10 

'n_estimators' 10, 70, 100, 200 100 

'learning_rate' 0.1, 0.2, 1.0 0.1 

 

Table 8.2. Hyperparameters tuning: synthetic distribution “A” – performance metric: RMSE 
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Model 
Hyperparameters 

tested 
Values 

Best 
combination 

Linear Regression - - - 

Polynomial Regression 

– Degree 2 
- - - 

Stochastic Gradient 

Descent Regressor 

'penalty' 'l1', 'l2', 'elasticnet', 'none' 'elasticnet' 

'alpha' 0.01, 1, 5, 100 0.01 

'l1_ratio' 0.01, 0.15, 0.5, 0.9 0.9 

Linear Support Vector 

Regression 

'C' 0.9, 0.95, 1, 10 10 

'fit_intercept' True, False True 

'intercept_scaling' 1, 10, 50 50 

Decision Tree 

Regressor 

'min_samples_split' 2, 5, 6, 7, 10 5 

'min_samples_leaf' 5, 7, 8, 10, 20 10 

'max_depth' 20, 50, 70, 75, 100 50 

'max_features' 'auto', 'sqrt', 'log2', 0.5, 0.9 'auto' 

Random Forest 

Regressor 

'n_estimators' 100, 150, 175, 200, 300 200 

'max_features' 'auto', 'sqrt', 0.9 0.9 

'max_depth' 20, 50, 100 50 

Bagging Regressor 

'n_estimators' 100, 300, 500, 1000 300 

'max_samples' 0.25, 0.5, 0.7, 0.9, 1 0.7 

'max_features' 0.25, 0.5, 0.7, 0.9, 1 0.7 

Gradient Boosting 

Regressor 

'max_depth' 10, 20, 100 10 

'n_estimators' 10, 70, 100, 200 100 

'learning_rate' 0.1, 0.2, 1.0 0.1 

 

Table 8.3. Hyperparameters tuning: synthetic distribution “B” – performance metric: MAE 
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Model 
Hyperparameters 

tested 
Values 

Best 
combination 

Linear Regression - - - 

Polynomial Regression 

– Degree 2 
- - - 

Stochastic Gradient 

Descent Regressor 

'penalty' 'l1', 'l2', 'elasticnet', 'none' 'l1' 

'alpha' 0.01, 1, 5, 100 1 

'l1_ratio' 0.01, 0.15, 0.5, 0.9 0.5 

Linear Support Vector 

Regression 

'C' 0.9, 0.95, 1, 10 10 

'fit_intercept' True, False True 

'intercept_scaling' 1, 10, 50 50 

Decision Tree 

Regressor 

'min_samples_split' 2, 5, 6, 7, 10 5 

'min_samples_leaf' 5, 7, 8, 10, 20 10 

'max_depth' 20, 50, 70, 75, 100 50 

'max_features' 'auto', 'sqrt', 'log2', 0.5, 0.9 'auto' 

Random Forest 

Regressor 

'n_estimators' 100, 150, 175, 200, 300 175 

'max_features' 'auto', 'sqrt', 0.9 0.9 

'max_depth' 20, 50, 100 50 

Bagging Regressor 

'n_estimators' 100, 300, 500, 1000 300 

'max_samples' 0.25, 0.5, 0.7, 0.9, 1 0.7 

'max_features' 0.25, 0.5, 0.7, 0.9, 1 0.7 

Gradient Boosting 

Regressor 

'max_depth' 10, 20, 100 10 

'n_estimators' 10, 70, 100, 200 100 

'learning_rate' 0.1, 0.2, 1.0 0.1 

 

Table 8.4. Hyperparameters tuning: synthetic distribution “B” – performance metric: RMSE 
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8.2 Models applied on the dataset pre-processed through PCA 

 

Model 
Hyperparameters 

tested 
Values 

Best 
combination 

Linear Regression - - - 

Polynomial Regression 

– Degree 2 
- - - 

Stochastic Gradient 

Descent Regressor 

'penalty' 'l1', 'l2', 'elasticnet', 'none' 'l1' 

'alpha' 0.01, 0.1, 1, 5, 100 1 

'l1_ratio' 0.01, 0.15, 0.5, 0.9 0.01 

Linear Support Vector 

Regression 

'C' 0.5, 0.9, 1, 10 1 

'fit_intercept' True, False True 

'intercept_scaling' 1, 5, 8, 10 1 

Decision Tree 

Regressor 

'min_samples_split' 2, 5, 6, 7, 10 2 

'min_samples_leaf' 5, 7, 8, 10, 20, 40 40 

'max_depth' 20, 50, 70, 75, 100 20 

'max_features' 'auto', 'sqrt', 'log2', 0.5, 0.9 'auto' 

Random Forest 

Regressor 

'n_estimators' 100, 200, 300, 400 400 

'max_features' 'auto', 'sqrt', 0.5, 0.9 0.5 

'max_depth' 20, 50, 100 50 

Bagging Regressor 

'n_estimators' 90, 100, 300, 500 300 

'max_samples' 0.25, 0.5, 0.85, 1 0.85 

'max_features' 0.25, 0.5, 0.85, 1 0.85 

Gradient Boosting 

Regressor 

'max_depth' 10, 50, 100 10 

'n_estimators' 10, 70, 100, 200 100 

'learning_rate' 0.1, 0.5, 1.0 0.1 

 

Table 8.5. Hyperparameters tuning: synthetic distribution “A” – performance metric: MAE 
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Model 
Hyperparameters 

tested 
Values 

Best 
combination 

Linear Regression - - - 

Polynomial Regression 

– Degree 2 
- - - 

Stochastic Gradient 

Descent Regressor 

'penalty' 'l1', 'l2', 'elasticnet', 'none' 'l1' 

'alpha' 0.01, 0.1, 1, 5, 100 0.01 

'l1_ratio' 0.01, 0.15, 0.5, 0.9 0.15 

Linear Support Vector 

Regression 

'C' 0.5, 0.8, 0.9, 1 0.9 

'fit_intercept' True, False True 

'intercept_scaling' 1, 8, 10, 50 10 

Decision Tree 

Regressor 

'min_samples_split' 2, 5, 6, 7, 10 2 

'min_samples_leaf' 5, 7, 8, 10, 20, 40 40 

'max_depth' 20, 50, 70, 75, 100 20 

'max_features' 'auto', 'sqrt', 'log2', 0.5, 0.9 'auto' 

Random Forest 

Regressor 

'n_estimators' 100, 200, 300, 400 400 

'max_features' 'auto', 'sqrt', 0.5, 0.9 0.5 

'max_depth' 20, 50, 100 50 

Bagging Regressor 

'n_estimators' 90, 100, 300, 500 90 

'max_samples' 0.25, 0.5, 0.85, 1 0.85 

'max_features' 0.25, 0.5, 0.85, 1 0.85 

Gradient Boosting 

Regressor 

'max_depth' 10, 50, 100 10 

'n_estimators' 10, 70, 100, 200 100 

'learning_rate' 0.1, 0.5, 1.0 0.1 

 

Table 8.6. Hyperparameters tuning: synthetic distribution “A” – performance metric: RMSE 
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Model 
Hyperparameters 

tested 
Values 

Best 
combination 

Linear Regression - - - 

Polynomial Regression 

– Degree 2 
- - - 

Stochastic Gradient 

Descent Regressor 

'penalty' 'l1', 'l2', 'elasticnet', 'none' 'l1' 

'alpha' 0.01, 0.1, 1, 5, 100 0.01 

'l1_ratio' 0.01, 0.15, 0.5, 0.9 0.15 

Linear Support Vector 

Regression 

'C' 0.5, 0.8, 0.9, 1 0.8 

'fit_intercept' True, False True 

'intercept_scaling' 1, 8, 10, 50 50 

Decision Tree 

Regressor 

'min_samples_split' 2, 5, 6, 7, 10 2 

'min_samples_leaf' 5, 7, 8, 10, 20, 40 40 

'max_depth' 20, 50, 70, 75, 100 20 

'max_features' 'auto', 'sqrt', 'log2', 0.5, 0.9 'auto' 

Random Forest 

Regressor 

'n_estimators' 100, 200, 300, 400 400 

'max_features' 'auto', 'sqrt', 0.5, 0.9 0.5 

'max_depth' 20, 50, 100 50 

Bagging Regressor 

'n_estimators' 90, 100, 300, 500 300 

'max_samples' 0.25, 0.5, 0.85, 1 0.85 

'max_features' 0.25, 0.5, 0.85, 1 0.85 

Gradient Boosting 

Regressor 

'max_depth' 10, 50, 100 10 

'n_estimators' 10, 70, 100, 200 70 

'learning_rate' 0.1, 0.5, 1.0 0.1 

 

Table 8.7. Hyperparameters tuning: synthetic distribution “B” – performance metric: MAE 
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Model 
Hyperparameters 

tested 
Values 

Best 
combination 

Linear Regression - - - 

Polynomial Regression 

– Degree 2 
- - - 

Stochastic Gradient 

Descent Regressor 

'penalty' 'l1', 'l2', 'elasticnet', 'none' 'l1' 

'alpha' 0.01, 1, 5, 100 0.01 

'l1_ratio' 0.01, 0.15, 0.5, 0.9 0.15 

Linear Support Vector 

Regression 

'C' 0.9, 0.95, 1, 10 0.9 

'fit_intercept' True, False True 

'intercept_scaling' 1, 10, 50 10 

Decision Tree 

Regressor 

'min_samples_split' 2, 5, 6, 7, 10 2 

'min_samples_leaf' 5, 7, 8, 10, 20, 40 40 

'max_depth' 20, 50, 70, 75, 100 20 

'max_features' 'auto', 'sqrt', 'log2', 0.5, 0.9 'auto' 

Random Forest 

Regressor 

'n_estimators' 100, 150, 175, 200, 300, 400 400 

'max_features' 'auto', 'sqrt', 0.9 'sqrt' 

'max_depth' 20, 50, 100 50 

Bagging Regressor 

'n_estimators' 90, 100, 300, 500 300 

'max_samples' 0.25, 0.5, 0.85, 1 0.85 

'max_features' 0.25, 0.5, 0.85, 1 0.85 

Gradient Boosting 

Regressor 

'max_depth' 10, 50, 100 10 

'n_estimators' 10, 70, 100, 200 70 

'learning_rate' 0.1, 0.5, 1.0 0.1 

 

Table 8.8. Hyperparameters tuning: synthetic distribution “B” – performance metric: RMSE 
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