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“Our dependence on fossil fuels amounts to global pyromania, and
the only fire extinguisher we have at our disposal is renewable

energy.”

Hermann Scheer (1944-2010)
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1 Introduction

On 4™ November 2016 the Paris Agreement went into force, acknowledging the necessity to limit
the increase in global average temperature below 2°C and pursuing efforts to keep it as close as
possible to 1.5°C to foster the global response towards climate change [1]. And to no surprise,

the energy sector is the great responsible for worldwide greenhouse gas (GHG) emissions.
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Figure 1. Global greenhouse gas emissions by sector, shown for the year 2016, where GHG emissions
were 49.4 billion tons CO2 eq. Source: OurWorldinData.org by the author Hannah Ritchie (2020)

Despite the fact that the burning of fossil fuels for energy purposes still accounts for 68% of the
world’s GHGs [2], emissions from the power sector are estimated to drop by more than 40% by
2030 [3] (see Figure 2). Furthermore, as a strong response to tackle the enormous electricity
demand by the ever-growing human population® and towards the decarbonisation of the global

energy system, more and bigger renewable energy power plants are being built worldwide.

1 World population reached 7,794,799 in 2020 (https://population.un.org



https://population.un.org/

Figure 2. Historical CO2 emissions and projected emissions from operating energy infrastructure as it was
used historically, 1900-2100. Source: IEA, last updated 12 May 2021
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As the world economy and in particular energy markets are going through difficult times due to

the COVID19 crisis and the strong wave of global restrictions, Photovoltaics (PV) is becoming

more competitive, more versatile and more robust, emerging as a key technology of the ongoing

energy transition. “Solar is the new king of the electricity markets” was one of the first key

statements of the International Energy Agency (IEA) when launching the most recent World

Energy Outlook in October 2020, acknowledging that PV electricity is becoming the cheapest

source of new electricity in many countries around the world and will therefore continue to grow

strongly over the decades to come [4].

PV is a mature technology and has
proven to be competitive even without
any kind of financial support, i.e., where
grid parity has been reached!. Leading
the way are utility-scale applications (see
Figure 3), which are more cost-effective
that fossil fuels in all unsubsidised
investment cases [5]. However, large-
scale solutions come with large-scale
challenges, one of these being their
long-term reliability and performance

assurance.

The ten largest solar power plants in the
world

1.

2
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10.

Tengger Desert Solar Park, China - 1,547MW

. Sweihan Photovoltaic Independent Power Project, UAE - 1,177MW
. Yanchi Ningxia Solar Park, China - 1,000MW

. Datong Solar Power Top Runner Base, China — 1,070MW

. Kurnool Ultra Mega Solar Park, India - 1,000MW

. Longyangxia Dam Solar Park, China — 850MW

. Enel Villanueva PV Plant, Mexico — 828MW

. Kamuthi Solar Power Station, India — 648MW

. Solar Star Projects, US — 579MW

Topaz Solar Farm [ Desert Sunlight Solar Farm, US - 550MW

Figure 3.Top 10 PV plants in the world. Source:/www.power-

technology.com

1 “Grid parity” means that solar electricity is as cheap as other grid connected sources of power (coal-fired and gas-fired power

plants, for example).



1.1 Abstract, motivation and goal
Abstract

PV modules are engineered to produce electricity for 30+ years and are being deployed worldwide
in ever more and ever bigger PV plants. Continuous quality assurance and performance analysis
are the cornerstone for long-term reliability to maximize financial and energy returns. In today’s
highly competitive Operation and Maintenance (O&M) market, employing and maintaining
extensive networks of on-site sensors for remote monitoring purposes, proves challenging. Within
this framework, data-driven solutions play a leading role to turn raw data from the field into reliable
actionable insights. PV plant’s data from SCADA and monitoring systems is constantly subject to
quality issues and the uncertainty related to it is directly reflected on the quality and reliability of
the performance metrics used. In this work, the impact of the quality of the most relevant input
parameters (i.e., output energy and irradiation) for the calculation key performance indicators
(KPIs) is evaluated and different data cleaning and imputation techniques are benchmarked.

The main objective of this work is to improve the quality of PV performance analysis by minimizing
the negative effects of using incomplete and/or corrupted time-series as input for the calculation
of PV plant KPIs (such as Performance Ratio and Availability). This objective is achieved through
the assessment of different data sources with different intrinsic quality. In chapter 2, the
methodology and data used are explained. Then, in chapter 3, as a pre-liminary data analysis,
raw data from on-site sensors was compared with satellite-derived data to define and validate its
uncertainty values. Special emphasis is given to irradiance sensors (pyranometers and reference
cells), being the plane of array (POA) irradiance one of the variables with the greatest impact on
performance evaluation. Later, in chapter 4, a consistent data quality analysis is proposed to
assess the sensors’ health status to proceed with the corresponding cleaning procedure. At this
stage, the concept of ‘virtual sensor’ is introduced, that solves the problem of having incomplete
raw data by generating time-series with no missing data that efficiently combine on-site
measurements with satellite data. Finally, in chapter 5, the advantage of performing data
imputation using Machine Learning (ML) techniques is demonstrated by applying three good-
performing algorithms (Random Forest, Bagging and Gradient Boosting Regressor) to replace
missing data with highly accurate predicted values.

Motivation

The data-driven solutions explored in this work take a step back from the mainstream application
areas of big data analysis, Al and Machine Learning (power forecast and failure analysis) and

take a closer look at the quality of the raw data which is later on used for performance analysis of

10



utility-scale PV plants. Using as starting point the concept of garbage-in, garbage out, that states
that the quality of the output is determined by the quality of the input, the results of this work will
not only improve the quality of the data used on a daily basis by O&M contractors and Asset
managers but also, and most importantly, will allow the consistent and comparable use of KPlIs
to assess PV plants performance at portfolio level. In this way, it will facilitate decision makers
prioritise maintenance activities and identify potential revamping/repowering interventions.
Furthermore, the ‘enhanced KPIs' output of this work could be integrated into the CPN

methodology for the assessment of the economic impact of failures [6-8].
Goal

This work aims at improving the quality of the most relevant PV plant KPIs in the industry by
increasing the integrity and reliability of the monitoring data available to the O&M contractors and

Asset Managers.

1.2 PV market outlook

The success of solar is due to many factors. A primary one is its cost leadership, which continues
to improve without an end in sight. Another is its versatility: solar covers an unmatched spectrum
of power applications from very small residential systems to very large utility-scale plants,
individual installations to building-integrated solutions in carports, apartment houses or
agricultural green houses. There are also mobile applications and off-grid systems for rural
electrification. Finally, no other power plant can be planned and built as rapidly as solar PV, while

at the same time involving the highest job intensity [4].

Despite the severe impact of the COVID-19 crisis across the world in 2020, the year still saw
138.2 GW of solar installed, representing an 18% growth compared to 2019, yet another global
annual installation record for the solar PV sector. This brings the global cumulative solar capacity
to 773.2 GW, a 22% increase, and marks a new milestone for the solar sector by exceeding three
quarters of a terawatt. Even though solar’s total power generation share increased by 0.5
percentage points to around 3.1%, nearly 70% still comes from fossil fuel and nuclear, highlighting

the need to rapidly accelerate solar deployments [5].

11
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Figure 4. Global Total Solar PV installed capacity 2000-2020. Source: SolarPower Europe 2021
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Figure 5. Global Total Solar PV Market Scenarios 2021-2025. Source: SolarPower Europe 2021
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Figure 6. Annual share of PV installations by type. Source: IEA-PVPS 2020
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EU members states installed 18.2 GW of solar power capacity in 2020, an 11% improvement over
the 16.2 GW deployed in the previous year. 2020 was the second-best year ever for solar in the
EU, only topped by 2011, when 21.4 GW was installed [9].

Figure 7. EU27 Cumulative Solar PV installed capacity 2000-2020. Source: SolarPower Europe 2021
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1.3 About BayWar.e.

BayWa r.e. delivers end-to-end project solutions involving planning, development, construction,
and ongoing operations management. Using innovation, creativity and expertise, it has
successfully brought over 4 GW of renewable energy online and manages over 10 GW of
renewable energy assets, ensuring they operate at peak efficiency. It is also an Independent
Power Producer with a growing portfolio and an expanding energy trading business.

' BayWare.

Turnover 2020 ] 2.5bn Euro
EBIT 2020 & 116M Euro
Employees (5] 2,750
Founded & 2009
Globally active @ 27 countries
(Hi— =i ()
‘\"«(1.;;- Projects o @ Operations U Solutions
4 N
Wind Projects Solar Projects Services Z:,rw Trading g‘::;bm Energy Solutions
4 GW installed capacity over 9 GW under management. 25 years of solar distribution
14 GW giobal project 7 GW direct marketing portfolio 11,000 installation and sales partners
New | PP portfolio; plans to 2.5 GW Energy Solutions for

commercial and industrial clients

Figure 8. BayWa r.e. overview

BayWa r.e. is working with businesses and organisations worldwide to provide tailored renewable
solutions that reduce carbon footprints and drive down energy costs. Operating 100% carbon
neutral, it is also committed to the global sustainability journey by driving forward multiple social,

environmental and economic initiatives.

As a leading global supplier to the solar distribution market, it provides a comprehensive range of
products and industry leading customer support. Through first in class training, logistical expertise

and online services, BayWa r.e. is a preferred partner for thousands of installers and contractors.

Based in 27 countries, with revenues of almost €2.5 billion and sustained growth throughout the
company’s history, BayWar.e. is a leading global renewable energy developer, service provider,

distributor and energy solutions provider. Operating throughout Europe, the Americas and Asia-

14



Pacific, it is strategically investing in emerging markets around the world, actively shaping the
future of energy and taking a stand against climate change.

Figure 9. BayWar.e. global presence

North America EMEA Asia-Pacific

BayWar.e. location (,‘ Active in the market

BayWar.e.’s shareholders are BayWa AG, a globally successful business with revenues of €17.2
billion, and Energy Infrastructure Partners, a market leader in energy infrastructure investment
that manages over €2.6 billion from global investors.

=20El BayWa AG

51% 49%

' BayWar.e. AG

Figure 10. BayWar.e. shareholders

This thesis was developed under the guidance and knowledge infrastructure of BayWa r.e.
Operation Services S.r.1., the Italian legal entity of BayWa r.e. With offices in Rome and Milan, it
is responsible for the supply of technical and commercial operation, management and
maintenance services for PV plants in Italy, with activities on over 500 sites (see Figure 11),
summing up almost one Gigawatt of installed capacity.

15



Figure 11. Italian PV portfolio managed by BayWa r.e. Operation Services S.r.l.

Data S|O, NOAA, UiS. Navy, NGA.GEBCO
Image Landsat fCopernicus

-

1.4 Operation & Maintenance of PV plants

Operation and Maintenance (O&M) has become a standalone segment within the solar industry
and it is widely acknowledged by all stakeholders that high-quality O&M services mitigate potential
risks, improve the Levelised Cost of Electricity (LCOE) and Power Purchase Agreement (PPA)

prices, and positively impact the return on investment (ROI).

Asset Owners, EPC companies and O&M providers are the key players involved in the funding,
design, construction and maintenance of PV plants, which may range from small rooftop arrays

to utility-scale plants.

16



The lifecycle of a PV project can be split up in six stages as illustrated in the figure below, being

the O&M phase the longest (30+ years).

Operation
Construction during EPC
(a few warrantee
months) (upto 3
years)

Repowering
or
dismantling

Project Development

Operation

Ideation (1-3 years) (30+ years)

Figure 12. Lifecycle of a PV plant. Source: own design

The O&M phase stretches for most of PV systems’ lifetime and the ability of O&M providers plays
a key role in maintaining high levels of technical and economic performance over the years,

mitigating risks and positively impacting the return of investment (ROI).

The scope of work of an O&M contractor falls under a wide umbrella of activities, that might
include and not limited to the following: asset management, operations, maintenance, spare parts

management, guarantees management and ancillary services (see Figure 13).

O&M contractor scope of Work

ASSET (o) GENERAL SITE ANCILLARY
PERATIONS GUARANTEES
MANAGEMENT MAINTENANCE SERVICES
 — r——
Ordinary - ; ) Plant
Commercial Plar_lt_ Preventive Slstﬁrsgﬁll;wge& PV Modules Reignogse (re)comr:igsioning
Management Supervision guarantee
\ J Corrective Water & Inverters Quality audit/
S inspections
Waste
Financial Plant Extraordinary management Transformator Awailability
Management Operation and Cells Guarantee Plant design
review
~— Road, Fences, Balance of N
—_—— Thermography Buildings Plant ﬁ"
Performance/ epowernng
Risk PE?_lmi’r:g‘;T';e Weed Security PR Guarantee Upgrades
Management Y 9 Abatement Components
Pest Control As-built design
— -]
e — Modules Monitoring documentation
Cleaning Components
. ] . Energy Yield
Other Services Back Office SCADA & Eg\élrl;?nlin;ﬁgteal Logistic and Guarantee SCADA
Sensors P Warehouses Install/retrofit
—_— e
~ @ ~ @@

Figure 13. O&M contractor scope of work. Source: own design
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Operations is about remote monitoring, supervision and control. Power plant operation also
involves coordination of the on-site maintenance team. A proper PV plant documentation
management system is crucial for Operations. A list of documents that should be included in the
as-built documentation set accompanying the solar PV plant (such as PV modules’ datasheets),
as well as a list of examples of input records that should be included in the record control (such
as alarms descriptions), can be found in [10]. Based on the data and analyses gained through
monitoring and supervision, the O&M contractor should always strive to improve PV power plant
performance. When performed according to the best practice guidelines laid by the industry,

predictive maintenance could be implemented.

Maintenance activities could be subdivided in preventive, corrective, predictive and extraordinary

and they are very comprehensively explained by [10] (see Figure 15).

Beside the above-mentioned basic maintenance activities, additional services, such as vegetation
control, modules cleaning, maintenance of buildings, etc., can be included in the O&M scope of
work.

General O&M activties PV components and BOS

EN 13306 FEhéSES()l?)ZSl(JS (alll parts)
IEC 62446-1: 2016 oo lte
IEC 624462

IEC 61557 (all parts)
IEC 61730 (alll parts)
IEC 62093

IEC 62109 (alll parts)
IEC TS 62804 (alll parts)
IECTS 62915

[ECTS 63126

IEC YS 63049: 2017
IEC 60364-7-712: 2017
System performance IEC 62548

and monitering
IEC 61724-1: 2017
IECTS 61724-2: 2016
IECTS 61724-3: 2016
IECTS 61724-4

IEC TS 63019: 2019
ISO 9847: 1992

Specialised technical
inspections

IEC TS 62446-3: 2017
IEC 61829: 2015

IEC TS 60904-13:2018

Other supporting
standards
IEC61836

IECTS 62738:2018
IECTR 63149:2018
IECTS 62548
IEC60891: 2009
IEC61853-1: 2011
IEC61853-2: 2016
IEC61853-3:2018
IEC61853-4:2018
IEC61853-5: 2011
IEC 60904-4

Figure 14. Applicable International standards for PV O&M, 2019 status. Source: SolarPower Europe
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Due to the fast-growing pace of the solar industry, it has been a big challenge to define standard
legal and technical frameworks for a smooth development of the market. Great efforts have been
done by the International Electrotechnical Commission (IEC) and a list of standards related to the
PV O&M sector is summarized in Figure 14. On the legal side, the International Renewable
Energy Agency (IRENA) and Terrawatt Initiative (TWI) have teamed up to support the rapid and
widespread scale-up of solar energy by providing simple and universally applicable legal
agreements that make contracting much faster and less costly, the so-called Open Solar

Contracts?.

Figure 15. Overview of different types of PV plant maintenance. Source: SPE O&M Best Practice Guidelines

Preventive Maintenance

Preventive Maintenance are the core elements of the maintenance services to a PV plant. It comprises of regular visual and
physical inspections, as well as verification activities on all the key components of the solar park. This maintenance is
carried out at predetermined regular intervals according to prescribed OEM & O&M manuals and are includad in the
“Annual Maintenance Plan”.

Corrective Maintenance corresponds to any activity performead to a PV plant system, equipment or component
to a functioning state, and occurs after a failure detection by remote monitoring or during an on-site inspection.
Corrective Maintenance includes Fault Diagnosis, Temporary Repair & Repair and can be divided into 3 levels of
intervention: Intervention the need of substitution, the need of substitution and with the need to
intervene on the of the device.

Predictive Maintenance

Predictive Maintenance Is a condition-based intervention carried out following a forecast derived from the analysis and
evaluation of the significant parameters of the degradation of an item. The site must have “intelligent” equipment and
an appropriate monitoring software system, allowing the Operations team to perform regular monitoring, supervision,
forecast and performance data analysis of the main equipment of the PV plant (DC array, transformer, inverter, combiner
box and/or string lavel).

INCLUDED IN ALL O&M CONTRACTS

Extraordinary Maintenance

Extraordinary Maintenance actions are necessary when major unpredictable events require substantial activities to
restore the previous plant conditions. These interventions are required for damages due to Force Majeure, damages
due to a theft or fire, endemic fallures of the equipment, modifications required by regulatory changes and equipment
wear or deterioration due to design faults.

Additional Services

The Q&M agreement can foresee services other than electrical and mechanical plant maintenance. Some ofthese
additional services are generally included in the scope of work and the O&M annual fixed fee and some are not.
Additional services include PV site maintenance activities such as panel cleaning and vegetation control, general
site maintenance tasks like waste disposal and maintenance of buildings and on-site measurements such as meter
readings or thermal inspections.

1 please refer to https://opensolarcontracts.org/
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1.4.1 Monitoring systems

Data acquisition and control is performed through monitoring systems, whose general
requirements, as stated in [11], include: “dataloggers capable of collecting data (such as energy
generated, irradiance, module temperature, etc.) of all relevant components (such as inverters,
energy meters, pyranometers, temperature sensors) and storing at least one month of data with
a recording granularity of up to 15 minutes; as well as a reliable Monitoring Portal (interface) for

the visualization of collected data and the calculation of KPIs”.
Monitoring systems have diverse purposes, which can include the following:

¢ Identification of performance trends in an individual PV system

e Localization of potential faults in a PV system

o Comparison of PV system performance to design expectations and guarantees
o Comparison of PV systems of different configurations

o Comparison of PV systems at different locations

The size of the PV plant and the needs of the users define the key components and configuration
of the monitoring system: according to the specific scope of work, different sensors and analysis
methods may be implemented as part of the system. For example, in order perform fault detection,
fine-grained data coming from all sub-levels of the system are required, while for comparing
performance to design expectations and guarantees coarser data are needed to perform plant-
level analyses. The International Standard IEC 61724-1:2017 [11] proposes a classification of

monitoring systems based on the desired application (see Table 1).

Table 1. Monitoring system classifications, suggested applications and recording interval requirements. Source:
International Electrotechnical Commission [11]

T Ty Class A Class B Class C
High accuracy Medium accuracy  Basic accuracy
Basic system performance assessment x X X
Documentation of a performance guarantee X X
System losses analysis X X
Electricity network interaction assessment x
Fault localization X
PV technology assessment X
Precise PV system degradation measurement X
Maximum recording interval 1 min 15 min 60 min
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1.4.2 Performance assessment and KPIs

PV plants’ performance assessment is carried out employing Key Performance Indicators (KPls),
metrics which allow the Asset Owner to have a near real-time overview of the systems’ status.
KPIs are divided into PV plant KPIs (quantitative indicators) and O&M Contractor KPIs (both
guantitative and qualitative). The latter are not a subject of this study, thus, in the rest of the

dissertation, when talking about KPIs reference is made to PV plant KPIs.

PV array Inverter Transformer

Gi Ea = Eout
Va Vout
Energy meter

Ia fout

GHI

n

Tmao‘, Tamb, ws Pa Pout

Reference yield DC specific yield AC specific yield
Lc L Bos
Array capture losses Balance of System losses

Figure 16. PV plant parameters and energy flow. Source: adapted from SolarPower Europe

KPIs can be calculated over different time periods, but often they are computed on a monthly or
annual basis. Since every plant and every contract are different from one another, the most
appropriate metric for a particular system has to be defined according to the system design, user
requirements and contractual agreements. Among the contractual KPIs currently used in the solar
industry, Performance Ratio (PR) is one of the most common (see Annex A: PV performance

metrics for a comprehensive review of the metrics used to assess PV plant performance).

1.5 Therole of Machine Learning

The distributed nature of PV plants leads to the generation of huge amounts of digital information:
while a 1 GW fossil or coal-based power plant generates on average around 10,000 data streams
and a similarly sized wind farm produces 51,000 data streams, when talking of PV, the figures
rise up at about 439,000 data streams [12].
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Figure 17. Sensors per asset class. Source: www.renewableenergyworld.com [12]

Each component of the system, from the individual panel to inverters and meters, produces
information about power production, temperature and many other parameters which flood the
monitoring systems with continuous streams of data. Without an infrastructure able to handle and
timely analyse this information, both Asset Owners and O&M contractors may be overwhelmed

by data, unable to exploit all the knowledge hidden in it.

This is a fertile ground for Machine Learning: ML is a method of data analysis based on the idea
that it is possible to build mathematical models based on sample data which can perform specific
tasks without being explicitly programmed for that purpose. These models can learn the relation
between past inputs and outputs of a system and, based on this, try to predict future outputs
based on future inputs. Thus, once big amounts of data become available, ML algorithms can be
exploited to systematically scan it, identify patterns and extract information which may be

completely hidden to human eyes.

Machine Learning applications have reached high levels of maturity in many sectors, with Deep
Learning currently paving the way for the introduction of Artificial Intelligence (Al) in our everyday

lives, but in the PV plant O&M sector ML applications are still far from common use.
Machine Learning systems can be grouped into four major categories [13]:

e Supervised learning: the training data fed to the algorithm includes the desired outputs
(labelled data)
e Unsupervised learning: the training data fed to the algorithm does not include the

desired outputs (unlabelled data)
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e Semi supervised learning: the training data fed to the algorithm includes both labelled
and unlabelled data
¢ Reinforcement learning: the system learns the best strategy by trial and error, getting

reward or penalties at every choice.

Supervised learning tasks are classified according to the nature of the target variable: when the
desired output is quantitative, the problem is defined as regression, while when the labels are
gualitative it is called classification.

Many ML applications in the PV field revolve around two major topics:
a) PV energy or power forecasting — regression task
b) Fault detection, diagnostics and prognostics - mainly classification task

The ML application which is going to be presented in this dissertation a regression problem

(supervised learning approach).
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Figure 18. Machine learning approaches
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2 Methodology and data

In this chapter, the tools, the methodology and data employed are explained. After introducing
the research objectives, the methodology and the limitations, the case study and the performance

metrics are presented.

2.1 Data science tools

All data handling, processing and computations described hereinafter have been performed

employing the programming language Python 3.7.3 (www.python.org) included in Anaconda

Distribution (www.anaconda.com), a renowned open-source development environment for data

science. Spyder 3.3.6 (www.spyder-ide.org) was used as programming interface and many

widely used scientific python libraries were employed, such as: Pandas, Numpy, Matplotlib, Scikit-

learn, Scipy and pvlib (pvlib-python.readthedocs.io).

pvlib python is a community supported tool that provides a set of functions and classes for
simulating the performance of photovoltaic energy systems. pvlib python was originally ported
from the PVLIB MATLAB toolbox developed at Sandia National Laboratories and it implements

many of the models and methods developed at the Labs (pvpmc.sandia.gov) [15].
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Figure 19. The data science toolkit
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2.2 Methodology overview

The main objective of this work is to improve the quality of PV performance analysis by minimizing
the negative effects of using incomplete and/or corrupted time-series as input for the calculation
of PV plant KPIs (such as Performance Ratio and Availability). This objective is achieved through

the assessment of different data sources with different intrinsic quality. First, raw data from on-
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site sensors is compared with satellite-derived data (three different sources are benchmarked).
Special emphasis is given to irradiance sensors (usually pyranometers), being the plane of array
(POA) irradiance one of the variables with the greatest impact on performance evaluation. Later,
a consistent data quality analysis is proposed to assess the sensors’ health status to proceed
with the corresponding cleaning procedure. At this stage, the concept of ‘virtual sensor’ is
introduced, that solves the problem of having incomplete raw data by generating time-series with
no missing data that efficiently combine on-site measurements with satellite data. Furthermore,
the advantage of performing data imputation using Machine Learning (ML) techniques is
demonstrated by applying three good-performing algorithms (Random Forest, Bagging and

Gradient Boosting Regressor) to replace missing data with highly accurate predicted values.

With the aim of improving the quality of PV performance analysis, this study investigates how
irradiance and power time-series coming from different sources and being processed in various
manners can affect the calculation of KPIs. For this work, one representative plant located in
central Italy was chosen. Figure 20 summarizes the methodology. First, before KPIs calculation

and benchmark, the following steps are performed:

a) Preliminary analysis: uncertainty of satellite data

The three available satellite sources are compared against the calibrated references for the
guantification of both, GHI and POA, percentage differences (errors) to validate and corroborate
their measurement uncertainty and therefore their usefulness and constraints when used for KPI

calculations.
b) Data Quality Check (DQC)

The available time-series, power at plant level (meter data) and inverter level (DC and AC side),
irradiance and ambient and module temperature (when available), are processed through the
DQC, which performs an integrity evaluation based on the number of missing values. A cleaning
process is then performed which identifies the most common types of anomalies (e.g., missing

values, missing logs, outliers, dead values, etc.)
c) Dataimputation with ML

The replacement of missing data with predicted values (so-called data imputation) is performed
by the application of three Machine Learning algorithms (Random Forest, Bagging and Gradient
Boosting Regressor) that, according to previous work [15], have already shown promising results

for such a task (i.e. high accuracy predictions using RMSE as performance metric).
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Figure 20. Methodology overview. Source: own design
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2.3 Limitations

One PV plant (one location) was selected as case study as the aim was to investigate irradiance

sensors in deep, rather than having a more superficial approach focusing on multiple PV plants.

Three satellite data services, two commercial and a free online database, were selected
beforehand. A calibrated (research grade) pyranometer was used as reference to retrieve low-

uncertainty irradiance time series.

Nine ML models (8 supervised + 1 unsupervised model) were selected with the aim to give an
overview of the relative performance of the methods as well as benchmarking them against a

consistent satellite-derived dataset rather than investigating a specific model in depth.

2.4 Case study

The plant selected for the case study is located in Lazio region, Italy. It was commissioned in
2013, while BayWa r.e. Operation Services has started the O&M activities in April 2015.

Figure 22. The case study: PV plant in central Italy. Source: Google Earth
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Table 2.1. Plant metadata

The main information on the plant is summarized in the following table:

General information

Plant area

205,200 m?

Type of plant

Ground-mounted fixed tilt

Installed capacity 9,019.53 kWp
Altitude 36 ma.s.l
PV modules

Modules tilt angle 20°
Modules azimuth 180°

PV module technology

micromorph Si (tandem)

Total number of modules 69,381
Module nominal power 130 Wy
Number of Modules per String 13
Number of Strings per Combiner Box 60
Total number of Strings 5,337
Total number of Combiner Boxes 91

Inverters

Type of inverter

Central Inverter

Inverter nominal AC power 500 kwW
Number of Inverters 17
Energy meters

Number of Energy meters before transformer 1
Number of Energy meters inverter level 17
Irradiance sensors

Number of Reference cells? 5

Pyranometer model DeltaOHM LP PYRA 10

Pyranometer type Secondary Standard

Number of Pyranometers 2

Plant’s operation is monitored through a platform developed in-source and owned by BayWar r.e.

Operation Services (named KCS).

1 Since the reference cells’ technology (crystalline silicon) differs from the one of the PV modules (thin-film) and the
measurement uncertainty of the device is higher than the one of Secondary standard pyranometers, reference cells
were considered an unreliable source and thus excluded from the analysis.
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Monitoring data coming from the plant have been retrieved through API calls to KCS monitoring

system. The maximum temporal resolution available for all the monitoring variables is 5 minutes.

The following table sums up the monitoring variables used.

Table 2.2. Monitoring variables retrieved through the plant’s monitoring system

o ) ] Temporal
Monitoring variable Source device(s) ]
resolution

POA Irradiance Pyranometers (Cabl, Cab4)

Active Power Inverters (n. 1 to 17)
POA Irradiance Pyranometers (Cabl, Cab4)

Active power

Day Consumed Energy

Consumed Energy

Day Produced Energy

Produced Energy 5 minutes

Freq
Meter (Cab 5 Meter 1)

Phase A Voltage

Phase B Voltage

Phase C Voltage

Phase A Current

Phase B Current

Phase C Current
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3 Uncertainty evaluation of satellite data

3.1 Measuring irradiance

The International Standard IEC 61724-1:2017 defines requirements on measurement
uncertainties, referring to “the combined uncertainties of the measurement sensors and any

signal-conditioning electronic” [11].

Performance indicators reflect the uncertainty deriving from field measurements, hence
employing and maintaining a high-level monitoring system guarantees the gathering of high-
guality data, which, once processed, enables a better understanding of the real behaviour of the

PV plant as well as reducing the final uncertainties in KPIs calculation.

The incoming solar radiation incident on the PV modules is the primary variable involved in PR

calculation and its uncertainty is dominated by the one that affects irradiance measurements [16].

The commercial instruments used to perform on-site irradiance measurements can be grouped

in three categories:

e Thermopile pyranometers
e Photodiode sensors
e PV reference devices (including reference cells and reference modules)

Figure 23. Irradiance sensors. Left: thermopile pyranometer (manufacturer: Hukseflux). Center:
photodiode pyranometer (manufacturer: LI-COR). Right: PV reference cell (manufacturer: NES)

The measurement uncertainty of a pyranometer can be described as the maximum expected
uncertainty over a defined reference period calculated with respect to a reference, regarded as
“absolute truth” [17]. The World Meteorological Organization defines “High Quality” pyranometers
as having a maximum uncertainty in the hourly and daily radiation totals respectively of 3% and
2%, with a 95% confidence level [18].
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The “Best Practice Guide on Uncertainty in PV Modelling” [19] reports the following typical
uncertainty values (95% confidence interval) for the different type of instruments for measuring

solar radiation:

Table 3. Typical uncertainty values for irradiance measurements

Typical uncertainty values

Secondary standard pyranometer + 2%
First class pyranometer + 5%
Silicon sensor + 5% - £ 8%
Second class pyranometer +10%

Secondary standard thermopile pyranometers can achieve measurement uncertainties of 1% for

daily totals and 2% for hourly totals [20], thus they are considered the best type of irradiance

sensor available on the market and they are recommended for most solar energy applications
[21]. Irradiance measurements can also be retrieved through satellite-derived data, even though

the use of on-site sensors is generally preferred [22]. See Table 5 for a detailed comparison.
Satellite-derived data

Satellite-derived irradiance data is retrieved through the application of radiative transfer models
to the measurements performed by on-board satellite optical instruments, which measure the
radiance reflected by the earth’s surface, filtered by the atmosphere. When choosing from

different sources on the market, the following parameters need to be considered:

o Measurement uncertainty reported

e Spatial and temporal resolution

e Geographical coverage

¢ Irradiance components and other weather data available

e Delay from real time to which data is made available

Table 5. Relevant features for PV application of Satellite data

Satellite-derived data

Irradiance components measured  GHI (POA can be modelled introducing large uncertainties)

Cleaning N/A

Calibration N/A

Measurement uncertainty 19 — 23% for hourly totals [22]

Response time N/A

Data availability Near real time

Data integrity Usually very high (depends on satellite data provider)
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Table 5. Comparative table of on-site irradiance sensors for PV applications

Thermopile pyranometers

Irradiance components

GHI, POA
measured
Cleaning At least once per week (High accuracy), Optional (Medium accuracy) [11]
o Once per year (High accuracy), Once every 2 years (Medium accuracy),
Calibration

As per manufacturer’s requirements (Basic accuracy) [11]

Measurement uncertainty

< 3% for hourly totals (High accuracy), < 8% for hourly totals (Medium

accuracy), Any (Basic accuracy) [11]

Response time

3 — 15 seconds [16]

Data availability

Real time

Data integrity

From very high to very low (depends on sensors, dataloggers, network

connection, etc.)

Photodiode sensors

Irradiance components

GHI, POA
measured
Cleaning At least once per week (High accuracy), Optional (Medium accuracy) [11]
Calibration Once per year (High accuracy), Once every 2 years (Medium accuracy),

As per manufacturer’s requirements (Basic accuracy) [11]

Measurement uncertainty

Not applicable (High accuracy), Not applicable (Medium accuracy), Any

(Basic accuracy) [11]

Response time

102 — 108 microseconds [16]

Data availability

Real time

Data integrity

From very high to very low (depends on sensors, dataloggers, network

connection, etc.)

PV reference devices

Irradiance components

GHI, POA
measured
Cleaning At least once per week (High accuracy), Optional (Medium accuracy) [11]
_ _ Once per year (High accuracy), Once every 2 years (Medium accuracy),
Calibration

As per manufacturer’s requirements (Basic accuracy) [11]

Measurement uncertainty

< 3% (High accuracy), < 8% (Medium accuracy), Any (Basic accuracy)
[11]

Response time

Considered to be zero for photovoltaic sensors even if not explicitly

reported by the manufacturer [16]

Data availability

Real time

Data integrity

From very high to very low (depends on sensors, dataloggers, network

connection, etc.)
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[22] proposed a comprehensive evaluation of satellite-based irradiation data carried out with
respect to pyranometer measurements from several meteorological stations, yielding, for the best

models, the following results:

Table 7. Uncertainty (nRMSE) of satellite-derived irradiation with respect to on-site sensors.

Uncertainty of satellite-derived irradiation
with respect to on-site sensors

Temporal
resolution
Min.
Monthly 3% 6% 5.4% 8.1%
Daily 9% 11% 10.1% 12.3%
Hourly 19% 23% 19.5% 23.6%

Pros and cons

On the one hand, on-site sensors have a well-defined precision and provide measurements
actually recorded at the plant location, being exposed at the exact same conditions as the PV
modules. They need regular cleaning, maintenance and calibration and they may be subject to
faults which can lead to data losses (introduction of missing data in irradiance time-series). Finally,
in some cases, small PV plants may not be equipped with irradiance sensors at all. For hourly
and daily POA irradiance, well-maintained and calibrated sensors are always to be preferred over
satellite-derived data. Same goes for secondary standard pyranometers used to retrieve monthly

irradiance measurements [22].

On the other hand, the precision of satellite-derived data may be comparable with the
measurements coming from first, second class pyranometers and reference cells and, due to their
constant availability, they may be particularly useful as backup measurements in case of

consistent data losses or as only data source for those plants that are not equipped with sensors.

While on-site irradiance sensors require regular maintenance and calibration, the use of satellite-
derived irradiance data does not require maintenance actions on the O&M contractor’s side, thus
removing the costs associated with on-site sensors maintenance. Nevertheless, satellite-derived
irradiance data present higher measurement uncertainties which are affected by many factors
involved in the process of derivation of irradiance from satellite images (terrain properties, state

of the atmosphere, cloud transmittance) and depend on the temporal resolution.
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3.2 Comparison methodology
Objective

Make a first attempt to choose the most appropriate satellite source to be used for Performance
Reporting purposes, whether it is used for yield forecasting, to replace missing or corrupted on-

site measurements and/or as reference to detect anomalous deviations of ground sensors.
Calculation steps

a) Comparison of irradiance data (GHI and POA) from three different satellite sources (3E
Data Services, Reuniwatt SunSat and ERA5-land), using as reference calibrated ground
pyranometers (maintained by EURAC research).

b) Calculation of error (deviation) metrics such as MBE, RMSE and nRMSE.

c) Validation of the measurement uncertainty figures reported in the literature and in the

marketing material.

Resampling

ﬁoun‘y, daily, monthly and yearly
metrics calculation:

* Basic filter to remove outliers and
negative values:

0 < Irradiance < 1300 W/m?
* Missing values removal

All the time-series were

brought to hourly values and additionally
resampled for daily, monthly and

yearly analysis

* Error calculation
(reference - satellite source)
* MBE and Error distribution
* RMSE

* nRMSE

Data cleaning

Deviation metrics

calculation

Figure 24. Methodology overview

Limitations

e This analysis was done using data only for the year 2018.

o The results presented here are limited to one location: Bolzano, Italy.

Table 8. Site metadata for satellite evaluation

Tilt angle 30°
Azimuth 188.5°
Latitude 46.46

Longitude 11.33
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Table 9. Measurement uncertainties as
reported in literature [22]

GHI POA
hour 19-23% 19,5 - 23,6%
day 9-11% 10,1-12,3%
month 3-6% 54 -8,1%

Figure 25. Meteosat satellites are spin-stabilised with
instruments designed to provide permanent visible and infrared
imaaina of the Earth. Source: eumetsat.int

3.3 Input data sources

Among the satellite-derived data sources available, two commercial services (3E Data Services!

and Reuniwatt SunSat 2) and one free dataset (ERA5-Land?3) were chosen.

EURAC P3E  — revniwatt — ((;pemicus

Europe’s eyes on Earth

Variables available

Data source Type of service Eratial LECeEL i i i i
YPp P I i § Global Horizontal = Plane of Array Diffuse Horizontal Direct Normal
Irradiance Irradiance Irradiance Irradiance
(GHI) (POA) (DHI) (DNI)
Ground measurements
EURAC research data NA 15 min v v v \'
Satellite-derived data
3E Data Services commercial 3x3km 15 min v vV v v
Reuniwatt SunSat commercial 15%1.3km 15 min Vv Vi v v
ERAS5-Land free database 9x9km 1h v X X X

Table 10. Data sources comparison

1 3E Data Services: https://solardata.3e.eu
2 Reuniwat SunSat: https:/reuniwatt.com/en/
3 Copernicus Climate Change Service: https://climate.copernicus.eu/climate-reanalysis
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ERAS5-Land is a replay of the land component of the ERA5 climate reanalysis, but with a series

of improvements making it more accurate for all types of land applications [23]. ERA5 is a climate
reanalysis dataset providing a numerical description of the recent climate by combining models
with observations, which is being developed through the Copernicus Climate Change Service.
ERAS5, which stands for “ECMWF ReAnalysis”, is the fifth major global reanalysis produced by
the European Centre for Medium-Range Weather Forecasts (ECMWF) [24-25].

The ERAS5-Land dataset contains fifty variables, available either as accumulations or
instantaneous parameters, which are divided into eight categories: Temperature; Lakes; Snow;
Soil Water; Radiation and Heat; Evaporation and Runoff, Wind, Pressure and Precipitation;
Vegetation. The variables retrieved from that dataset and used throughout the study are the

following:

o 2 Metre temperature [K]

o 2 Metre dewpoint temperature [K]

e Surface pressure [Pa]

e Surface solar radiation downwards - GHI [J/m?]

The maximum temporal resolution available is1 hour.
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Figure 26. ERA5-Land Source: cds.climate.copernicus.eu
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3E Data Services and Reuniwatt SunSat, on the other hand, offer products specifically designed
for the solar industry and, for the scope of this work, historical and near real-time solar resource

data were retrieved.
These services offer the retrieval of seven variables:

¢ Global Horizontal Irradiation — GHI [Wh/m?]
¢ Plane of array Irradiation — POA [Wh/m?]

¢ Diffuse Horizontal Irradiation — DHI [Wh/m?]
e Direct Normal Irradiation — DNI [Wh/m?]

o Ambient temperature (at 1.5 m) [°C]

e Wind speed (at 10 m) [m/s]

¢ Wind direction (at 10 m) [°]

The maximum temporal resolution available is 15 minutes.

Satellite-derived irradiance data is retrieved through the application of radiative transfer models
to the measurements performed by on-board satellite optical instruments, which measure the

radiance reflected by the earth’s surface, filtered by the atmosphere.

The main differences between the two data sources are the spatial resolution, the maximum
temporal resolution, the temporal coverage, the irradiance components retrievable and the delay

from real time to which data are made available to the user.

Cloud index: comparison
between actual and clear sky

Meteosat-9 raw image ))
for each pixel

)) GHLI: global horizontal
(June 6th, 2012, 12:00 UTC)

irradiance at ground level

Figure 27. Satellite data: from raw images to GHI. Source: Reuniwatt
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[0 Real time on demand

America Europe-Africa Middle East / Indian Western Pacific
Ocean Oceania
Spatial resolution 0.5-1 km 1-3 km 1-3 km 0.5-1 km
Finest time sampling 15 min. (5min. for USA) 15 min. 15 min. 10 min.

Measurement accuracy (nRMSE)
25%

20%

15%

10%

5%

0%
hourly daily

. SunSat TS site adaptation === Pyranometer (2nd standard)

Figure 29. Reuniwatt SunSat: Reported measurement uncertainty, geographical and temporal coverage
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3.4 The error as a measure of uncertainty

The ISO/IEC GUIDE 98-3 [18] defines the uncertainty of a measurement as “a measure of the
possible error in the estimated value of the measurand (particular quantity subject to
measurement) as provided by the result of a measurement”, thus linking the concept of error to

the concept of measurement uncertainty.

To evaluate how good a satellite-derived irradiance time-series is, it is a good practice to compare
it to the measurements recorded (over the same period and in the same location) by a secondary
standard pyranometer (properly calibrated and maintained). This comparison is carried out

subtracting the measurements vector (¥) from the reference vector (y).

The result of this operation is the vector of residuals, which contains information about how far
every single satellite-derived value is from the corresponding pyranometer value, i.e. quantifies
the magnitude of the error which the satellite service is doing in estimating the real irradiance from

satellite images.

® ® ® ® ® Reference (y)

® ® ® ® o Observation (y)
..o.o..
error=yj—3?j .. °
.. ¢
° eo®e, ¢
° ® o ©
° o’ .o .o
[ ] ®
o o .
o © .'.
e © e o
0.'
..o .o°
o ° o
o * Ly
o ° P
.o.' 0'
o’ ®e
L ®°e

Figure 30. Error as a measurement of uncertainty

In this analysis three metrics are employed in order to have a single figure representing the error,

instead of the vector of residuals.
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3.5 Error metrics applied
Mean Bias Error (MBE)

Quantifies the average magnitude of the errors, considering their direction (sign). It captures
therefore the average bias of the dataset. A positive bias represents an underestimation and
negative bias represents an overestimation. It expresses the error in units of the variable of
interest (in this case W/m?). It gives useful average information on the bias but should be

interpreted cautiously because positive and negative errors will cancel out.

MBE =

S|

>.0:-3)

Root Mean Square Error (RMSE)

It is a quadratic scoring rule that, as the MBE, also measures the average magnitude of the error,
but without considering their direction. It expresses the error in units of the variable of interest (in
this case W/m?). Taking the square root of the average squared errors has some interesting
implications: since the errors are squared before they are averaged, the RMSE gives a relatively
high weight to large errors. This means the RMSE is more useful when large errors are particularly

undesirable.

n
RMSE= |~ (y,-9,)

j=1

S

Normalized Root Mean Square Error (nRMSE)

It is a metric that normalizes (brings to the same scale) the RMSE. In this report we normalize
using the mean of the distribution. It is often expressed as a percentage (%). It facilitates the

comparison between datasets or models with different scales.

NRMSE = \/%27121 (v - ﬁj)z
y
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Where

n: number of observations
reference value of j-th observation

predicted value of j-th observation
mean of the reference distribution

S

1v 32
RMSE = EZ (v -7))
=
® @ ¢ @ Pyranometer (y)
Satellite data (V)
_ I o0 fe
error = y; — ¥, ° °
.. o'® 0 g [ ]
o o°"® ®e
] P L ® [ ]
o. o’ e e
oo’ “e®
.. .° °®
0.0. L
o, ®
..2.00‘0.‘ Poe

Figure 31. Example of RMSE calculation.

3.6 Clean data comparison

During this stage, the raw time series were loaded in the system and underwent the

transformations described below.

a) Timestamp alignment
The satellite sources are in UTC time zone (Greenwich Mean Time, UTC+00) and they were

converted to UTC+01 time zone in order to allow the execution of further modelling steps.

b) Measurement unit alignment
Among the variables retrieved from ERA5-Land dataset, 2 Metre temperature and 2 Metre
dewpoint temperature (retrieved as instantaneous values) were converted from Kelvin to

Celsius, while GHI irradiance (Surface solar radiation downwards, retrieved as accumulations)
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d)

was converted from J/m? to W/m? (considering that the accumulation period is 1 hour — 3,600
seconds) and subsequently converted to instantaneous values. 3E’s irradiation, expressed as

energy (Wh/m?), was converted to power (W/m?2).

Irradiance outliers filtering

In accordance with International Standard IEC 61724-1:2017, values recorded outside the
daylight hours (night values) were filtered out (replaced with zero) from both time series. For
this purpose, sunrise and sunset hours are calculated for each day (with pvlib) and night
values are detected by comparing the timestamps of the time series with calculated sunrise

and sunset time.

Resampling

ERA5-Land variables have a maximum temporal resolution of 1 hour, while 3E’s and
Reuniwatt’s irradiance time-series maximum data granularity is 15 minutes, thus the latter
were resampled to 1 hour: the mean of the values over 1 hour intervals were calculated,
rendering a timestamp denoting the beginning of the interval together with the mean value

(missing values are discarded from the process).

Calculation of deviation/error metrics

As explained in the previous section.

4 Resampling

/n;our.’y, daily, monthly and yearly
metrics calculation:

* Basic filter to remove outliers and
negative values:

0 < Irradiance < 1300 W/m?
* Missing values removal

All the time-series were

brought to hourly values and additionally
resampled for daily, monthly and

yearly analysis

* Error calculation
(reference - satellite source)
* MBE and Error distribution
* RMSE

* nRMSE

Data cleaning

Deviation metrics

calculation

Figure 32. Methodology overview
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Figure 33. Reference dataset: research-grade pyranometers
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3.6.1 Global Horizontal Irradiance
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Figure 34. Clean GHI data summary
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Irradiance [W/m?]

hourly GHI Irradiance
year of analysis: 2018

Figure 35. Clean GHI data: example of summer days
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Irradiance [W/m?]

hourly GHI Irradiance
year of analysis: 2018

Figure 36. GHI clean data — example of a clear summer day

48



Irradiance [W/m?]

hourly GHI Irradiance
year of analysis: 2018

Figure 37. GHI clean data: example of a cloudy day
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3.6.2 Plane of Array Irradiance
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Figure 38. Clean POA data summary
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Irradiance [W/m?2]

hourly POA Irradiance
year of analysis: 2018

Figure 39. Clean POA data: example of summer days



Irradiance [W/m?]

hourly POA Irradiance
year of analysis: 2018

Figure 40. Example of a clear summer day
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Figure 41. Example of a cloudy summer day
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3.7 Results and discussion

3.7.1 GHI and POA monthly data comparison
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Global Horizontal Irradiance (GHI) comparison - monthly values
Pyranometer vs. Satellite sources
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Global Horizontal Irradiance (poa) comparison - monthly values
Pyranometer vs. Satellite sources

Jan Feb Mar Apr May Jun Jul Aug Sep Oct

Figure 42. GHI and POA monthly data
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3.7.2 GHl error distribution
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Figure 43.GHlI error distribution: Reuniwatt SunSat
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Figure 44. GHI error distribution: 3E Data Services
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GHI comparison: Mean Bias Error (MBE) - Pyranometer vs. ERA5-land

Error Distribution - hourly data
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Figure 45. GHI error distribution: ERA5-land
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3.7.3 POA error distribution

POA comparison: Mean Bias Error (MBE) - Pyranometer vs. Reuniwatt

Error Distribution - hourly data
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Figure 46. POA error distribution: Reuniwatt SunSat
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Figure 47. POA error distribution: 3E Data Services
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3.7.4 MBE and RMSE

Mean Bias Error (MBE)

year (Wh/m2) | -100.95 2387 20.21
month (Wh/m?)| 918 217 1.84
GHI
day (Wh/m2) 035 0.08 0.07
hour (W/m?) 2521 506 5.04
year (Wh/m2) | -164.08 37.49 NA
month (\Wh/m?) 15 3.41 NA
POA
day (Wh/m2) 0.54 012 NA
hour (W/m?) 38.54 876 NA

A positive bias represents an underestimation (i.e. satellite < pyranometer)
A negative bias represents an overestimation (i.e. satellite > pyranometer)
It can be seen that in all cases both commercial datasets overestimate (in average) the

pyranometer’s values, whereas the free data set underestimates.

Root Mean Square Error (RMSE)

year (KWh/m?) 100.95 23.86 20.20

month (KWh/m2) 10.47 403 9.54

SHl day (KWh/m?2) 0.51 0.31 0.80
hour (W/m?2) 74.31 56.77 119.40

year (KWh/m?) 164.98 37.49 NA

poa | Month (KWhim?) 15.58 489 NA

day (KWh/m?2) 0.69 0.39 NA

hour (W/m?2) 92.04 65.23 NA

For most cases, it can be seen that 3E Data Services yielded the lowest error.
Especial attention is paid to POA monthly values because they are particularly useful for

Performance Reporting.
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3.7.5

nRMSE [%]
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normalized Root Mean Square Error (nRMSE)

year 7.59% 1.90% 1.67%
month 8.66% 3.54% 8.68%
day 11.35% 7.41% 19.44%
hour 22.37% 18.14% 39.56%
year 10.28% 2.54% NA
month 10.68% 3.64% NA
day 13.23% 8.20% NA
hour 24 56% 18.91% NA

Global Horizontal Irradiance (GHI) comparison - NRMSE

hour

day

Figure 48. GHI uncertainty summary

Pyranometer vs. Satellite sources

month

HEE Reuniwatt
mmm 3E Data Services
mmm ERA5-land

year

For most cases, 3E Data Services yielded the lowest uncertainty, with the exception of

yearly data, where ERA5-land had the lowest value.
For high granularity values (hour, day), ERA5-land resulted the less accurate of the 3

satellite sources analyzed.

For low granularity values (year), Reuniwatt resulted as the less accurate of the 3 satellite

sources analyzed.
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Plane of Array (POA) Irradiance comparison - nRMSE
Pyranometer vs. Satellite sources

25 Emm Reuniwatt

mmm 3E Data Services
day
Figure 49. POA uncertainty summary

NRMSE [%]

53]

month year

hour

= POA rradiance is not available in the ERA5-land dataset, so this comparison was possible
only for Reuniwatt and 3E.
= |n all the cases, 3E Data Services resulted the most accurate source.

Interpretation of results

= In all the cases, 3E Data Services resulted the most accurate source.

= The present analysis gives a general idea of how satellite sources deviate from on-site
measurements.

* |n 95% of the cases (19/20) satellite data overestimated on-site measurements.

= Satellite data deviates the most from ground measurements under cloudy conditions
(commercial solutions based their competitive advantage on how well they deal with this
issue).

= Of the three solutions analysed, in 87.5% of the cases (7/8), 3E Data Services resulted
the most accurate source.

» The free available dataset ERA5-land resulted the best only for GHI yearly data, but the
worst for daily and monthly data.
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= The uncertainty figures calculated in the present analysis in many cases are twice as big
as the reported uncertainties in the literature and in the marketing material of the service
providers. This might be mainly due to the fact this analysis was done only for one site for
one year (other possible causes might involve the methodology and metrics used).

= Validation should be done more extensively (more sites) to get more precise generic
figures, because satellite data is highly sensible to the geographic location and local
climates

= Finally, as previously explained, the temporal resolution offered by ERA5-Land (1 hour)
may be enough for monthly KPIs calculation, but it could be totally insufficient when a
higher granularity is needed, for example in case of fault detection. In this case, employing
3E Data Services is the most viable solution (maximum temporal resolution: 15 minutes),

despite the well-known uncertainties.
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4 Data Quality analysis

The analysis proposed in this chapter is a consistent data quality control procedure for the

assessment of raw measurements and consequently of the sensors’ health status.
The procedure consists of three stages:

a) Data pre-processing
b) Data Quality Check

c) The ‘virtual sensor’ concept

Once data have been pre-processed, anomalous records are detected through the execution of
multiple consecutive quality checks. Finally, virtual sensors are defined to lower the uncertainties

deriving from missing data, which may affect KPIs calculation.

Each step gets as input the time-series processed during the previous stage and outputs a
summary reporting on the transformations applied to the data and, when applicable, one or more
modified time-series, ready for evaluation. The only exception is the first stage, in which raw data

gets loaded and transformed in order to be ready for further processing.

This analysis has been programmed in Python and delivers a report-like document containing

valuable insights for technical managers and decision makers.

4.1 Terms and definitions

For ease of reading, terms and definitions used in the rest of the chapter are gathered in this

paragraph.

Resampling: modifying the temporal interval of a time series averaging the values over the
chosen temporal interval. For example, aggregation of 5-minutes data into 15-minutes data: in
this process the mean of the values over 15 minutes intervals are calculated, rendering a
timestamp denoting the beginning of the interval together with the mean value (missing values

are discarded from the process).
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POA

Timestamp
(W/m2) Timestamp POA (W/m?)
00 : 13:00:00+01:00
2018-01-01 1275 2018-01-01
13:05:00+01:00 oot

13:15:00+01:00

2018-01-01 $
142.8

13:10:00+01:00

2018-01-01

NaN
13:15:00+01:00
2018-01-01

71.4
13:20:00+01:00
2018-01-01

40.8

13:25:00+01:00

Missing value (NaN): no value available for a specific variable at a specific time. The timestamp
is present in the time series.

cab1 cab4

2018-03-19 23:55:00+01:00 0.0 4.0
2018-03-20 00:00:00+01:00 § NaN 4.0
2018-03-20 00:05:00+01:00 00 40

Missing log: no records are available for all the variables at a specific time. The timestamp is
absent from the time series.

2018-01-04 15:05:00+01:00 284.0

2018-01-04 15:10:00+01:00 268.0

15:15 missing =
2018-01-04 15:20:00+01:00 2460

Missing data: sum of missing values and missing logs
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Figure 50. Example of missing data in raw irradiance time-series (no distinction between missing values and logs)

Outlier: value which lies outside of reasonable bounds. Two different approaches are defined.

a) Filter IEC standard — irradiance specific: In accordance with IEC TS 61724-3 Photovoltaic

system performance: Part 3. Energy evaluation method [27], a following outlier filter is

defined:

—6 W/m? < measurement < 1500 W /m?

Table 11. IEC filtering criteria [27, table 3]

Suggested criteria for flag (15 min data)
B Wind
Flag _— Irradiance Temperature Power
type Description Wim?2 “C SEnEjzd (AC power rating)
< - = &0 =32 = 1,02 = rating
Yalue outside of reasonable
Range bounds or ar or or
=1 500 = =30 =0 = —0,01 = rating
Missing [Values are missing or duplicates nfa nia nia nia
“alues stuck at a single value = 0.0001 while value is
Dead over time. Detected using = 0,0001 ? ?
derivative. =5
Abrupt Yalues change unreasonably
chanpe between data poinis. Detecied = 800 =4 =10 = 80 % rating
g using derivative.
May be adjusted depending on the tilt of the system and the season of data acquisition.

66



POA [W/m?]

1200
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b) Filter adjusted to local conditions — empirical: to take into account local conditions, the

bounds for irradiance have been defined as follows:

0 W/m? < measurement < 1.3 - max(reference distribution) W /m?

The maximum irradiance value is increased by 30% in order to take into account the

uncertainty related to satellite data measurements as stated in literature (19-23%) for

hourly irradiation [22.]

................................... — Before DQC 22 .

—— After DQC 2.2

04:00 0500 0600 0700 08:00 09:00  10:00 11:00

12:00 1300 14:00 15:00 16:00 17:00  18:00

Figure 51. Example of outlying data detection (focus on a single day)

Dead value: data point which is stuck at a single value over time. Considering the granularity of
the dataset (5 minutes), the timespan of interest to identify anomalous data points has been fixed

to 15 minutes.

cab1 cabd
2018-01-01 00:05:00+01:00 0.0 4.0
2018-01-01 00:10:00+01:00 0.0 4.0
2018-01-01 00:15:00+01:00 0.0 4.0
2018-01-01 00:20:00+01:00 0.0 40
2018-01-01 00:25:00+01:00 0.0 4.0
2018-01-01 00:30:00+01:00 0.0 4.0
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POA [W/m?]

1000 —— Before DQC 2.3b
—— After DQC 2.3b
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200
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0400 0500 0600 0O7:00 08:00 09:00 10:00 11200 1200 1300 1400 15:00 1600 1700 18:00  19:00
Figure 52. Example of dead values detection (focus on a single day)
Night value: in accordance with International Standard IEC 61724-1:2017, a night value is
defined as a value recorded outside the daylight hours. For this purpose, sunrise and sunset
hours are calculated for each day and night values are detected by comparing the timestamps of
monitoring data with calculated sunrise and sunset time.
The calculation of sunrise and sunset hours is executed employing Python pvlib library, which
contains algorithms that, given the reference period and the coordinates of a location, can
compute sunrise and sunset time for each day included in the timespan of interest.
— Before DQC 2.4b
— After DQC 2.4b
]
~ 600
£
<
< ]
3 400 E
o 4]
200
0 —— 7

02:00 03:00 04:00 05:00 06:00 OV:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00

Figure 53. Example of night values detection (focus on a single day)
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Daytime zero: zero-value recorded during daylight hours. For this purpose, sunrise and sunset
hours are calculated for each day as well as the mean AC Power of all inverters for each
timestamp. A zero-value irradiance reading recorded in the timespan between sunrise and sunset

is labelled as daytime zero when, for the same timestamp, the mean AC Power is hon-zero.

cabl cab4 date
2818-12-31 15:28.:08+81:88 14,758235
2018-12-31 16:20:00+01:00 3.166667 11.0 2815-12-31 15:25:88+21 88 18,532353
2018-12-31 16:25:00+01:00 6 666667 2815-12-31 16:32:0@+2li@a  7.331353

2018-12-31 16:30:00+01:00 5.333333 0.0 ) )
AC Power time-series (mean of AC Power of all

inverters): the timestamp identified in (2018-12-31
16:25:00+01:00) reveals a non-zero AC Power value,

Irradiance time-series of the selected sensors thus the irradiance value identified above (Irradiance of
suspicious values are highlighted in red Pyranometer Cab 4) gets replaced by a missing value
hY
___ ACPower — Before DQC 2.6c
(mean of all invertars) —  After DQC 2.6c
a00- I~ N, -80
/ \
.
~
\\ E
% 300- - -60 X
= 3 g
< = o
S 200 - & -0 o
<
100 - -20
0- -0
14:00 15:00 16:00 17:00

Figure 54. Example of daytime zeros detection (focus on a single day)
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4.2 Methodology applied

Figure 55. Irradiance Analysis flowchart

raw irradiance time-series [

Data pre-processing ]

Data Quality Check I
reference time series

(w/out missing logs) - missing values (NaN) detection | ho - 4
g missing logs handling*
outliers handling* DQcC 2
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g dead values handling* DQC 3
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4.3 Input data

The analysis introduced in the present chapter made use of both monitoring and satellite-derived
data.

Two criteria were used in order to select the reference period of the analysis: the length of the
timespan and the number of missing data in the timespan. The length was chosen so to consider
the seasonal variability, while the year was selected in order to minimize the number of missing

data recorded by the selected pyranometers:

Temporal Reference period N. of logs
Data source ]
resolution Start End analysed
3E Data Services 15 minutes 35,040
KCS monitoring 01/01/2018  31/12/2018
5 minutes 105,120

system

Among the variables made available by 3E Data Services, only POA irradiation was employed in

the present analysis, while the following variables were retrieved from KCS monitoring system):

o ) ] Temporal
Data source Monitoring variable Source device(s) .
resolution
POA Irradiance Pyranometers (Cabl, Cab4)
KCS monitoring system . 5 minutes
Active Power Inverters (n. 1 to 17)

4.4 Data pre-processing

During this stage, raw time series coming from all available sources were loaded in the system

and underwent the transformations described below.

3E’s POA irradiation, expressed as energy (Wh/m?), was converted to power (W/m?) in order to
allow comparisons with pyranometers’ data, which are already expressed as irradiance in the
monitoring system. Monitoring data time series (both from pyranometers and inverters), retrieved
through KCS monitoring system, have a temporal resolution of 5 minutes, while 3E’'s POA

irradiance time-series have a temporal resolution of 15 minutes.

Most of the quality checks on irradiance sensors time-series were executed on five-minutes data

to allow the identification of anomalous records. Only in the final step of the procedure, which
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consists in the comparison between 3E and monitoring data, sensors’ time-series were resampled

from 5-minutes data into 15-minutes data.

Furthermore, monitoring data are in local time (Central European Time, UTC+01), while 3E time-
series are in UTC time zone (Greenwich Mean Time, UTC+00), thus the latter were converted to

UTC+01 time zone in order to allow the detection of night values and daytime zeros.

As final pre-processing step, a complete collection of timestamps (with no missing data) ranging
from start to end of the reference period was created for each data granularity (5 minutes, 15

minutes) to allow the identification of missing logs.

4.5 Data Quality Check

The Data Quality Check (DQC) procedure is composed of five consecutive steps:

DQC 1. Missing values detection and missing logs handling
DQC 2. Outlier’'s handling

DQC 3. Dead values handling

DQC 4. Night values handling

DQC 5. Daytime zeros handling

Each Data Quality Check step gets as input the irradiance time-series processed during the
previous stage and outputs a summary (composed of a table and two graphs) of the anomalies

detected in the individual step and, when applicable, a modified time-series.

4.5.1 DQC 1: Missing values detection and missing logs handling

DQC 1 gets as input the pre-processed data and quantifies the amount of missing data detected
in the reference period (year 2018) for the selected irradiance sensors (pyranometer Cabin 1 and
Cabin 4). When a missing log is detected, a new record containing only NaNs is inserted in the
time-series. DQC 1 outputs a modified-time series for each sensor (which will be used as input

for the next step) as well as a summary table and graphs, which are presented below:
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Table 12. Summary of missing data, missing values and missing logs detected after DQC 1.
Percentages are calculated with respect to the total number of logs analysed (105,120 logs)

Pyranometer Cab 1  Pyranometer Cab 4

Missing logs Count 6,121 1,654
[A] Percentage 5.82% 1.57%
Missing Count 1 0
values
[B] Percentage 0.00% 0.00%
Missing data Count 6,122 1,654
[A] + [B] Percentage 5.82% 1.57%

4.5.2 DQC 2: Outlier’s handling

DQC 2 acts identifying outlying data present in the time series of the selected sensors across the
reference period and replacing them with missing values. DQC 2 outputs a modified time series
for each sensor (which will be used as input for the next step) as well as a summary table and
graphs. The former is presented below, while output graphs are not shown because they are not

relevant in this specific case (basically no outliers were detected, the graphs would be empty):

Table 13. Summary of outlying data detected after DQC 2.
Percentages are calculated with respect to the total number of logs analysed (105,120 logs)

Pyranometer Pyranometer
Cab 1 Cab 4
Count 5 1
Outliers
Percentage 0.00% 0.00%

4.5.3 DQC 3: Dead values handling

DQC 3 acts identifying dead values present in the time series of the selected sensors across the
reference period and replacing them with missing values. DQC 3 outputs a modified time series
for each sensor (which will be used as input for the next step) as well as a summary table and

graphs, which are presented below:
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Table 14. Summary of dead values detected after DQC 3.
Percentages are calculated with respect to the total number of logs analysed (105,120 logs)

Pyranometer Pyranometer
Cab 1 Cab 4
Dead Count 52 13,061
values Percentage 0.05% 12.42%

4.5.4 DQC 4: Night values handling

DQC 4 acts identifying night values present in the time series of the selected sensors across the
reference period. Night values are replaced by missing values and subsequently substituted with
zeros. DQC 4 outputs a modified time series for each sensor (which will be used as input for the

next step) as well as a summary table and graphs, which are presented below:

Table 15. Summary of non-zero night values detected after DQC 4.
Percentages are calculated with respect to the total number of logs analysed (105,120 logs)

Pyranometer Pyranometer
Cab 1 Cab 4
Night Count 0 7.237
values Percentage 0.00% 6.88%

4.5.5 DQC 5: daytime zeros handling

DQC 5 acts identifying daytime zeros present in the time series of the selected sensors across
the reference period and replacing them with missing values.DQC 5 outputs a modified time
series for each sensor (which will be used as input for the next step) as well as a summary table

and graphs, which are presented below:

Table 16. Summary of daytime zeros detected after DQC 5.
Percentages are calculated with respect to the total number of logs analysed (105,120 logs)

Pyranometer Cab  Pyranometer Cab

1 4
Daytime Count 6,376 4,241
Zeros Percentage 6.07% 4.03%
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45.6 DQC summary

Once DQC 5 has been performed, the results of each step are presented together with an

overview of the whole process (Error! Reference source not found.).

Table 17. Data Quality Check summary

Pyranometer Cabin 1 Pyranometer Cabin 4

N. of Missing Data % of Missing Data  N. of Missing Data % of Missing Data

DQC 1 6,122 5.82 1,654 1.57
DQC 2 5 0.00 1 0.00
DQC 3 52 0.05 13,061 12.42
DQC 4 0 0.00 7,237 6.88
DQC S 6,376 6.07 4,241 4.03
Total 12,555 11.94 26,194 24.90

The following graphs summarize how missing data are distributed with respect to the above-

mentioned issues, enabling a preliminary assessment of sensors’ health status.
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Figure 56. Pyranometer Cabin 1: distribution of missing data with respect to the identified issues
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Figure 57. Pyranometer Cabin 4: distribution of missing data with respect to the identified issues
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4.6 The ‘virtual sensor’ concept

The idea which stands behind the concept of virtual sensor is to the make the most out of the
available data (on-site measurements and satellite data) to improve the data integrity by
minimizing the percentage of missing values. This is of great importance for the reliable
calculation of KPIs. Since on-site measurements are prone to be affected by a number of issues
(as discussed in the previous section), virtual sensors tackle this problem by blending on-site

sensors measurements and satellite data.
The available inputs for KPIs calculation are:

a) on-site sensors, which may bear uncertainties deriving from missing data (after being
processed through the Data Quality Check)
b) virtual sensors, which aim at lowering the uncertainties deriving from missing data by

blending on-site sensors measurements and satellite data
Within the framework of this thesis, two approaches were studied:

1) Virtual sensor 1: when 2 or more on-site sensors are available, but no satellite data
2) Virtual sensor 2: when 2 or more on-site sensors are available and also satellite data
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Missing Data (%)

Virtual sensor 2
~0% NaN
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Pyranometer Pyranometer
Cabin 1 Cabin 4

~14% NaN ~7% NaN

Virtual sensor 1
~6% NaN

Pyranometer Pyranometer
Cabin 1 Cabin 4
~14% NaN ~7% NaN

Satellite data
0% NaN

The virtual sensor 1 is created by comparing
the measurements of the sensors record by
record. If a sensor at a certain time shows a
missing value, then it gets discarded and the
measurement of the other sensor is taken. If
all readings are valid (no missing values),
then the mean of the measurements is
calculated. If all sensors show missing
values, then also the “virtual sensor 1" will

show the missing value.

The virtual sensor 2 is created by comparing
the measurements of the sensors record by
record. If a sensor at a certain time shows a
missing value, then it gets discarded and the
measurement of the other sensor is taken. If
all readings are valid (no missing values),
then the mean of the measurements is
calculated. If all sensors show missing
values, then 3E satellite data are employed
to fill in the gaps.

Figure 58. Missing data comparison: On-site sensors vs. virtual sensors

Pyranometer Cab 1 Pyranometer Cab 4
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4.7 Results and discussion

The Data Quality Check procedure presented enables the detection of anomalous records and
unlocks the possibility to compare on-site sensos between each other based on the identified

issues.

¢ While pyranometer Cabin 1 shows mainly raw data missing logs (5.82%) and daytime
zeros (6.07%), pyranometer Cabin 4 showcases a wider range of anomalies: raw data
missing logs (1.57%), dead values (12.42%), night values (6.88%) and daytime zeros
(4.03%).

o Comparing the total percentage of missing data after the DQC, pyranometer Cabin 1
seems to show a better general behaviour over the reference period (11.94% of missing
data) than pyranometer Cabin 4 (24.90% of missing data).

Furthermore, the application of the ‘virtual sensor’ concept has proven to bring down the
percentage of missing values to almost zero, but its effectiveness is clearly limited by and highly

dependent on the quality and availability of sensors on-site (the more sensors the better).
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5 Dataimputation with ML techniques

Supervised learning tasks are classified according to the nature of the target variable: when the
desired output is quantitative, the problem is defined as regression, while when the labels are
gualitative it is called classification.

Many of the articles concerning ML applications in the PV field revolve around two major topics:

o PV energy or power forecasting — regression task
o Fault detection, diagnostics and prognostics - mainly classification task

The ML application presented in this work is a regression problem. On previous research [15], a
literature was carried out to analyse the most relevant articles concerning PV energy/power
forecasting [28-30] to find out the best performing ML models applied (see Table 18).

Table 18. Literature review. ML application in the PV sector

Input Output Models Best performing
variables variables models
GHI, DHI, POA, ambient temperature, wind speed Power DBN, SVR, RFR DBN, RFR
GHI, ambient temperature, relative humidity, wind
o ] ) ] Power ANNs, SVR, RT FENN
direction, wind speed, solar azimuth and elevation
21 NWP variables, such as ambient temperature, Lasso regression,
total cloud cover, wind speed, wind direction, clear Energy ARIMA, KNN, GBR, GBR, ANN
sky radiation, etc. ANN

Despite the importance of having accurate and reliable irradiance measurements available, it is
very common for O&M operators to deal with plants which are not equipped with irradiance
sensors or which are equipped with unreliable ones. The lack of regular cleaning and calibration
may be responsible for sensor recording substantial deviations from the actual incoming solar
radiation incident on the panels (lowering the data quality), while sensor outages (even though
the root cause may not lie in the sensor itself, e.g. network connection error) may be responsible
for the introduction of missing data (lowering the data integrity), which may compromise the

correct interpretation of system’s performance.

In this framework, if there are no backup sensors available on site, measurements recorded in
nearby plants or weather stations may be used for KPIs calculation, paving the way for growing

uncertainties and misleading performance evaluation.
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As analysed in chapter 3, satellite-derived irradiance data may be used, when available, as
backup even though operators must be aware of the uncertainties which this approach may

introduce.

In this chapter an alternative approach based on MLL techniques is explored: additional
monitoring data coming from other on-site devices (in addition to irradiance sensors) are used as
input variables for several ML algorithms in order to perform POA irradiance missing values
imputation. This imputation issue is a typical regression problem that can be tackled with a
supervised learning approach, where the training set fed to the algorithm includes the desired
solutions (in this case, POA irradiance). Once the algorithm has been trained, its task is to predict
irradiance measurements (quantitative target variable) which were missing in the original time

series coming from field sensors.

This data-driven approach is particularly useful for plants which only have one irradiance sensor
(suspected to be unreliable) but there are other monitoring variables available (e.g. power,

voltage, current, energy, etc.).

The predictions obtained by the best performing algorithms analysed have been subsequently
evaluated against commercial satellite derived-irradiance data, resulting in 60 to 70% lower MAE
and RMSE.
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5.1 Methodology applied
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Figure 59. ML application workflow
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5.2 Input data

The analysis introduced in the present chapter made use of both raw monitoring (not processed

through DQC — section 4.5) and satellite-derived data.

The length of the reference period was extended so to exploit the biggest amount of monitoring
data retrievable through KCS monitoring system and subsequently allow the ML algorithms to be

trained on the largest available dataset.

Table 19. Key features of the analysed datasets

Temporal Reference period N. of logs
Data source )
resolution Start End analysed
3E Data ]
) 15 minutes 96,772
Services
S 08/11/2016 13/08/2019
KCS monitoring ]
15 minutes 96,772

system

Among the variables made available by 3E Data Services, only POA irradiation was employed in

the present analysis, while the following variables were retrieved from KCS monitoring system:

Table 20. Monitoring variables retrieved

Temporal

Data source Monitoring variable Source device(s) ]
resolution

POA Irradiance Pyranometers (Cabl, Cab4)

Active power

Day Consumed Energy

Consumed Energy

Day Produced Energy

Produced Energy

KCS monitoring system Freq 5 minutes
Meter (Cab 5 Meter 1)

Phase A Voltage

Phase B Voltage

Phase C Voltage
Phase A Current

Phase B Current
Phase C Current

82



5.3 Data preparation

Before entering in the details of the machine learning algorithms employed, data preparation steps

are briefly described.

5.3.1 Time-stamps alignment and resampling

Monitoring data time series (both from pyranometers and meters), retrieved through KCS
monitoring system, have a temporal resolution of 5 minutes, while 3E’s POA irradiance time series
have a temporal resolution of 15 minutes, thus monitoring time series were resampled to 15
minutes: the mean of the values over 15 minutes intervals are calculated, rendering a timestamp
denoting the beginning of the interval together with the mean value (missing values are discarded

from the process — see section 4.1).

Furthermore, 3E time-series are in UTC time zone (Greenwich Mean Time, UTC+00), while
monitoring data are in local time (Central European Time, UTC+01), so the latter were converted

to UTC time zone.

5.3.2 Reference distribution selection

The analysis has been restricted to one field pyranometer to take into account the worst conditions
experienced by the on-site sensors across the timespan of interest, so to benchmark the ML
algorithms with respect to the worst-case scenario faced by the available field instruments. The
selection of the pyranometer was made based on three criteria detected in the time-series: the
total number of missing data, the number of days without missing data and the number of

consecutive days with missing data (i.e. missing data distribution).

The following table sums up the first two criteria described above:

Pyranometer Cabin 1 Pyranometer Cabin 4

Count Percentage Count Percentage
Missing data 8,261 8% 1,451 1%
Days with no missing data 879 87% 941 93%

The following graphs display the missing data distribution for the two pyranometers:
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Daily Missing Data (%)

Daily Missing Data (%)

Figure 60. Missing data distribution of the field pyranometers across the reference period (raw data)
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Pyranometer Cabin 1 was selected both because of the highest rate of missing data and

because it includes the worst-case scenario of multiple consecutive days without valid data.

In this framework, a reference distribution coming from a calibrated pyranometer would serve as

gold standard, allowing for the correct evaluation of the predictions yielded by the ML algorithms

as well as of the satellite-derived irradiance data. Due to the lack of a dedicated pyranometer to

be used as gold standard, the pyranometer Cabin 1 was selected as reference by deleting from

the time-series all the logs corresponding to days containing at least one record with missing data,

increasing the percentage of missing data from 8% to about 13%.

POA Irradiance [W/m?2]
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Figure 61. Reference distribution: POA irradiance recorded by pyranometer Cabin 1 across the reference period,
deprived of the days with missing data
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POA Irradiance [W/m?]

5.3.3 Definition of target synthetic POA irradiance time-series

To simulate the anomalous behaviour of a virtual pyranometer based on the above-defined
reference distribution (real pyranometer Cab 1 readings across the reference period, containing
only days without missing data), two synthetic distributions, named “A” and “B”, were created by

mimicking the missing data distribution of pyranometer Cabin 1.

In synthetic distribution “A” were introduced about 9% of additional missing data (reaching a total

of about 22% of missing data), according to the following steps:

1) A copy of the reference distribution was created

2) The missing data distribution of pyranometer Cabin 1 was shifted onwards by 70 days
(“shifted distribution”)

3) Missing values were introduced in the copy of the reference distribution replicating the
above-mentioned “shifted distribution” and thus obtaining the synthetic distribution “A”

Figure 62. Reference distribution vs synthetic distribution “A”
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In synthetic distribution “B” were introduced about 20% of additional missing data, by replicating
the above-described steps and adding an additional 11% of missing data randomly (reaching a

total of about 33% of missing data).

Figure 63. Reference distribution vs synthetic distribution “B”
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The synthetic distributions, representing POA irradiance readings across the reference period,
will be used as target variable for the machine learning algorithms described in the following

sections.

5.4 Feature engineering and selection

5.4.1 Feature selection

The electrical parameters referring to a single meter (Active power, Day Consumed Energy,
Consumed Energy, Day Produced Energy, Produced Energy , Freq, Phase A Voltage, Phase B
Voltage, Phase C Voltage, Phase A Current, Phase B Current, Phase C Current) were used as

input variables.

After calculating the percentage of missing data of all the plant’'s meters, Cabin 5 Meter 1 was
selected as the meter which showed the lowest percentage on all the available variables

(electrical parameters).

5.4.2 Feature engineering
Once Cabin 5 Meter 1 was selected, its time series were pre-processed as follows:

a) Days having more than ten consecutive records with missing data (empirical threshold)
were discarded both in meter's and target synthetic time series (previously defined in
section 5.3.3) for aligning their timestamps

b) The gaps in the time series (maximum ten consecutive missing data) were filled by
employing linear interpolation to avoid potential issues in ML processing of time series

with missing data

Furthermore, exploiting the information contained in the time series index four additional features

were generated: “month”, “day”, “hour” and “minute”.

The full dataset is hence composed by sixteen input variables and one target variable, as

summarized in the following table:

86



Table 21. Input and target variables

N. Input variable Unit
1 Month -
2 Day -
3 Hour h
4  Minute min
5 Active power kw
6 Day Consumed Energy kWh
7 Consumed Energy kWh
8 Day Produced Energy kWh
9 Produced Energy kWh
10 Freq Hz
11 Phase A Voltage \
12 Phase B Voltage \
13 Phase C Voltage \
14 Phase A Current A
15 Phase B Current A
16 Phase C Current A
N. Target variable Unit
Plane of array irradiance W/m?

Once the reference period had been identified and input variables and target variable had been
pre-processed, the selected ML algorithms could be trained and subsequently run on the test set

to get POA irradiance predictions where the synthetic distributions presented missing data.

5.5 ML models training and testing
Eight ML algorithms were employed:

Linear Regression

Polynomial Regression — degree 2
Stochastic Gradient Descent Regressor
Linear Support Vector Regression
Decision Tree Regressor

Random Forest Regressor

Bagging Regressor

Gradient Boosting Regressor

ONOoO G~ WNE
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The models were applied both on the full dataset and on the dataset pre-processed through the

application of Principal Component Analysis (PCA).

Principal Component Analysis is a dimensionality reduction algorithm which is used for deriving
a low-dimensional set of features from a large set of variables. PCA identifies the hyperplane that
lies closest to the data (input variables) and then projects the data onto it, creating a new set of
input variables, smaller than the original one. The selection of the right hyperplane is done so that
the projection preserves the maximum amount of variance, which means losing less information
than other projections. It is possible to adjust the amount of information (variance) lost in the
process, so to find the optimal trade-off between information lost and algorithms performance
[13][38].

Each synthetic distribution was split in two subsets: all the observations without missing data were
placed in the first subgroup, which was subsequently divided into training set (80%) and
validation set (20%). The second subgroup, containing all the observations having a missing

value as target variable, was used as test set (see Figure 64 and Figure 65).

Full dataset / \ 4 )

TRAINING SET
0
80% ~73%
~91% Subset without - /
missing data 4 )
20% VALIDﬁ]-I;E/)N SET
Synthetic °
Distribution «A
«KA» \ / \ /
- ) 4 )
~9% Subset with 100% TESTOSET
missing data ~9%
o J o J

Figure 64. Synthetic distribution “A”: training-validation-test set flowchart
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Figure 65. Synthetic distribution “B”: training-validation-test set flowchart

Table 22. Training, validation and test sets split for synthetic distribution “A” and “B”

Synthetic distribution “A” Synthetic distribution “B”

Training Set
Validation set
Test set

Total

Observations
Count

61,360
15,341
7,395

84,096

Observations
Percentage

73%
18%
9%

100%

Observations

Count

53,988
13,497
16,611

84,096

Observations
Percentage

64%
16%
20%

100%

Before applying any ML model, the input variables belonging to the two subsets were brought to

common scale in order to allow for a better performance of the algorithms: the Scikit-learn class

StandardScaler was applied on the features in order to remove the mean and scale to unit

variance (StandardScaler was fit to the training input variables and subsequently used to

transform the training input variables as well as the validation and test input variables).

Models evaluation was executed by calculating both RMSE and MAE on the training, validation

and test set. Five-fold cross-validation was applied on the training set obtaining an array of five

evaluation scores, whose mean and standard deviation were subsequently analysed.
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Furthermore, 3E POA irradiance time series was evaluated against the reference distribution by
calculating RMSE and MAE over the timespan of interest defined by the test set. The results are

summarized in the following table:

3E POA irradiance MAE RMSE
Test set synthetic distribution “A” 43.44 91.04
Test set synthetic distribution “B” 49.12 96.78

In the end, the values of the performance metrics calculated on the test set for each algorithm

and each synthetic distribution were compared with the values shown here.

5.5.1 Models applied on the full dataset

For each synthetic distribution, performance metric and algorithm, Grid Search with five-fold
cross-validation was employed to search for the best combination of hyperparameters. A
selection of hyperparameters for each algorithm with a range of tentative values were passed to
Scikit-learn’s GridSearchCV class, which evaluates all the possible combinations of

hyperparameter values using cross-validation.

The collection of hyperparameters tested are presented in Annex B: Hyperparameters tuning.

The results obtained for the best performing models are shown in the following Tables 23-26.

Table 23. Models evaluation: synthetic distribution “A” — performance metric: RMSE (W/m?)

Tralnlng Validation Test
% Change
Model

RMSE RMSE RMSE RMSE ([A] - [B]) /

mean STD RMSE [A] [B] (B]
Linear Regression 73.52 1.64 73.62 46.44 -49%
Polynomial Regression — Degree 2 69.69 1.66 70.16 46.42 -49%
Stochastic Gradient Descent Regressor 74.22 1.49 73.89 46.03 -49%
Linear Support Vector Regression 80.96 2.21 80.29 48.68 -47%
Decision Tree Regressor 49.20 0.90 48.47 43.19 i -53%
Random Forest Regressor 42.84 0.98 42.00 33.92 -63%
Bagging Regressor 46.10 1.04 45.29 32.77 -64%
Gradient Boosting Regressor 42.21 1.24 41.02 33.71 -63%
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Table 24. Models evaluation: synthetic distribution “A” — performance metric: MAE (W/m?)

Tralnlng Validation Test
% Change
Model

MAE ([Al-[B])/
mean STD [A] [B] [B]
Linear Regression 30.72 0.36 30.76 24.73 -43%
Polynomial Regression — Degree 2 33.43 0.38 33.72 28.57 -34%
Stochastic Gradient Descent Regressor 31.44 0.57 31.67 23.72 -45%
Linear Support Vector Regression 25.89 0.44 25.41 17.96 -59%
Decision Tree Regressor 18.17 0.21 17.45 15.46 . -64%
Random Forest Regressor 14.89 0.35 14.21 12.34 -12%
Bagging Regressor 15.61 0.31 14.92 12.53 -71%
Gradient Boosting Regressor 14.79 0.35 14.09 11.84 -73%

Table 25. Models evaluation: synthetic distribution “B” — performance metric: RMSE (W/m?)

Tralnlng Validation Test
% Change
Model

RMSE RMSE RMSE RMSE ([A] - [B]) /

mean STD RMSE [A] (B] [B]
Linear Regression 75.64 2.63 73.85 53.85 -44%
Polynomial Regression — Degree 2 71.37 2.52 69.88 56.19 -42%
Stochastic Gradient Descent Regressor 76.07 2.79 74.19 53.99 -44%
Linear Support Vector Regression 83.03 3.15 80.02 60.01 -38%
Decision Tree Regressor 48.89 0.43 48.84 53.16 2078 -45%
Random Forest Regressor 42.98 0.28 43.26 47.16 -51%
Bagging Regressor 46.78 0.79 46.39 43.36 -55%
Gradient Boosting Regressor 41.96 0.74 41.42 47.10 -51%
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Table 26. Models evaluation: synthetic distribution “B” — performance metric: MAE (W/m?)

MAE ([A] - [B]) /

Training Validation Test
3E % Change
set set set
MAE MAE MAE
MAE

mean STD [A] [B] [B]
Linear Regression 32.14 0.65 31.63 22.42 -54%
Polynomial Regression — Degree 2 35.01 0.59 34.49 30.23 -38%
Stochastic Gradient Descent Regressor 32.39 0.45 32.79 23.26 -53%
Linear Support Vector Regression 26.97 0.74 26.04 18.36 -63%
Decision Tree Regressor 18.51 0.13 17.59 17.60 42 -64%
Random Forest Regressor 15.20 0.12 14.79 14.40 -71%
Bagging Regressor 18.40 0.36 17.76 13.83 -72%
Gradient Boosting Regressor 15.05 0.16 14.56 14.37 -71%

5.5.2 Models applied on the dataset pre-processed through PCA

On both datasets, referring to the synthetic distributions, was applied Principal Components
Analysis (PCA).

PCA was fit to the training set and the components with variance less than 1 were dropped (Kaiser
criterion), thus only six components were selected, summing up to a cumulative proportion of
explained variance of 80.9%. Afterwards, training, validation and test set data were projected onto
the selected components, obtaining the lower dimensional datasets on which ML models were

applied.

For each synthetic distribution, performance metric and algorithm, Grid Search with five-fold

cross-validation was employed to search for the best combination of hyperparameters.
The collection of hyperparameters tested are presented in the Annex A, section 8.2.

The results obtained for the best performing models are shown in the following tables.
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Table 27. Models evaluation: synthetic distribution “A” — performance metric: MAE (W/m?)

Tralnlng Validation Test
% Change
Model

MAE  ([A]-[B])/

mean STD [A] [B] [B]
Linear Regression 36.22 0.45 36.18 26.20 -40%
Polynomial Regression — Degree 2 31.36 0.39 31.44 22.25 -49%
Stochastic Gradient Descent Regressor 36.21 0.92 36.32 26.02 -40%
Linear Support Vector Regression 32.08 0.48 31.62 23.55 -46%
Decision Tree Regressor 22.69 0.34 22.36 17.13 o4l -61%
Random Forest Regressor 18.00 0.28 17.60 14.15 -67%
Bagging Regressor 19.09 0.30 18.58 15.31 -65%
Gradient Boosting Regressor 19.71 0.31 19.25 15.80 -64%

Table 28. Models evaluation: synthetic distribution “A” — performance metric: RMSE (W/m?)

Tralnlng Validation Test
% Change

RMSE RMSE RMSE RMSE ([A] - [B]) /

mean STD RMSE [A] (B] [B]
Linear Regression 75.03 1.70 75.10 47.96 -47%
Polynomial Regression — Degree 2 72.39 1.77 72.64 44.48 -51%
Stochastic Gradient Descent Regressor 75.50 1.49 75.16 47.88 -47%
Linear Support Vector Regression 80.91 2.12 80.30 50.71 -44%
Decision Tree Regressor 57.57 0.98 58.21 40.40 o104 -56%
Random Forest Regressor 49.71 1.28 49.89 36.43 -60%
Bagging Regressor 50.72 1.09 50.81 36.89 -59%
Gradient Boosting Regressor 52.13 0.91 52.07 39.44 -57%
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Table 29. Models evaluation: synthetic distribution “B” — performance metric: MAE (W/m?)

Tralnlng Validation Test
% Change
Model

MAE  ([A]-[B])/

mean STD [A] [B] [B]
Linear Regression 37.71 0.58 37.22 27.96 -43%
Polynomial Regression — Degree 2 32.76 0.56 32.32 24.77 -50%
Stochastic Gradient Descent Regressor 37.40 0.56 37.33 27.98 -43%
Linear Support Vector Regression 33.37 0.71 32.54 25.22 -49%
Decision Tree Regressor 23.50 0.57 22.61 20.84 2 -58%
Random Forest Regressor 18.61 0.28 18.26 18.09 -63%
Bagging Regressor 20.02 0.30 19.64 19.62 -60%
Gradient Boosting Regressor 20.41 0.35 19.96 20.39 -59%

Table 30. Models evaluation: synthetic distribution “B” — performance metric: RMSE (W/m?)

Tralnlng Validation Test
% Change

RMSE RMSE RMSE RMSE ([A] - [B]) /

mean STD RMSE [A] (B] [B]
Linear Regression 77.21 2.56 75.25 56.50 -42%
Polynomial Regression — Degree 2 74.35 2.53 72.53 54.61 -44%
Stochastic Gradient Descent Regressor 77.38 2.65 75.31 56.57 -42%
Linear Support Vector Regression 82.96 3.10 79.86 61.39 -37%
Decision Tree Regressor 58.14 1.70 57.04 55.44 2078 -43%
Random Forest Regressor 50.34 1.38 51.03 49.47 -49%
Bagging Regressor 51.23 1.43 51.83 50.05 -48%
Gradient Boosting Regressor 52.58 1.85 52.86 55.23 -43%
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5.6 Results and discussion

Table 31 provides an overview on the best and worst models for each synthetic distribution, input
dataset and performance metric. Percentage change is calculated with respect to 3E POA

irradiance error, which is in turn calculated with respect to the reference distribution.

Table 31. Best and worst models (percentage change is calculated with respect to 3E POA irradiance error).

Synthetic distribution “A” Synthetic distribution “B”
Worst Best Worst Best
% Change Model % Change Model % Change Model % Change Model
Eull MAE -34% PLR -73% GBR -38% PLR -72% BAG
dataset  RMsE -47% SVR -64% BAG -38% SVR -55% BAG
MAE -40% LR/SGD -67% RFR -43% LR/SGD -63% RFR
PeA RMSE -44% SVR -60% RFR -37% SVR -49% RFR

LR: Linear Regression

PLR: Polynomial Regression (degree 2)
SGD: Stochastic Gradient Descent Regressor
SVR: Linear Support Vector Regression

BAG: Bagging Regressor

RFR: Random Forest Regressor

GBR: Gradient Boosting Regressor

All machine learning algorithms employed provide an improvement over the satellite-derived
data for each of the analysed settings: through ML models it has been possible to obtain lower

errors, ranging from 34% to 73% less error than 3E POA irradiance data.

Among the algorithms applied, ensemble methods?! provided the best results, with Random

Forest, Bagging and Gradient Boosting Regressor yielding very similar scores.

As expected, the application of dimensionality reduction techniques (PCA) has led to slightly worst

performances, while halving the execution time of the algorithms.

Moving from synthetic distribution “A” to synthetic distribution “B”, both the dimensions and the

statistical properties of training, validation and test set change. These modifications did not

1 Once a group of predictors, called an ensemble (e.g. Decision Tree regressors), has been selected, each
one of them can be trained and tested on a random subset of the dataset. The predictions obtained from
the individual predictors are then aggregated (e.g. averaged) to form the most efficient predictor. Algorithms
that use this strategy are called ensemble methods.
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particularly affect MAE, while RMSE experienced remarkable variations (around 10%, maybe due

the presence of outlying predictions which are highlighted by RMSE).

Despite the fact that some algorithms result in larger percentage changes from 3E reference, from
an O&M perspective it is preferable to penalize large deviations in POA irradiance time series,
hence the preferred performance metrics to evaluate the ML imputation is the Root Mean Square
Error.

In the following graphs the best and worst performing algorithms applied on the full dataset for
synthetic distribution “A” are qualitatively compared to the reference distribution as well as to 3E
satellite-derived irradiance data over a 14-days Figures 67-70) and over a cloudy and a sunny
day (Figures 71 and 72).

Best and worst algorithms have been selected as the ones yielding the biggest and the smallest

percentage change, as defined at the beginning of this paragraph:

¢ Worst performing algorithms: Linear Support Vector Regression (RMSE) and Polynomial
Regression - degree 2 (MAE)

e Best performing algorithms: Bagging Regressor (RMSE) and Gradient Boosting
Regressor (MAE)
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Figure 67. Synthetic distribution “A”: reference distribution vs.3E satellite-derived irradiance data (RMSE: 91.04 W/m?, MAE: 43.44 W/m?)
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Figure 66. Synthetic distribution “A”: reference distribution vs. Linear Support Vector Regression (RMSE: 48.68 W/m?)
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Figure 68. Synthetic distribution “A”: reference distribution vs. Bagging Regressor (RMSE: 32.77 W/m?)
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Figure 69. Synthetic distribution “A”: reference distribution vs. Polynomial Regression Degree 2 (MAE: 28.57 W/m?)
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Figure 70. Synthetic distribution “A”: reference distribution vs.
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Figure 71. Comparison between reference distribution, best (Bagging Regressor) and worst (Linear Support
Vector Machine Regression) performing algorithms and 3E satellite-derived irradiance data on a cloudy day (left
column) and on a sunny day (right column) — performance metric: RMSE
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Figure 72. Comparison between reference distribution, best (Gradient Boosting Regressor) and worst (Polinomial
Regression — degree 2) performing algorithms and 3E satellite-derived irradiance data on a cloudy day (left column)
and on a sunny day (right column) — performance metric: MAE
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6 Conclusions

In this chapter the most relevant conclusions of this work are presented, organized according to

the corresponding chapters.

Chapter 3: Uncertainty evaluation of satellite data

Based on the results of this chapter, the use of a commercial satellite dataset (such as 3E Data

Services) is preferred over the free online database (ERA5-Land) because of its high temporal

resolution (15 minutes), its high spatial resolution (3x3 km) and because of its documented and

validated uncertainties. Furthermore, the use of reference time-series coming from a dedicated

calibrated field sensor (research-grade pyranometer) allowed the formulation of precise

statements regarding GHI and POA irradiance, limited to one location: Bolzano, Italy

Summary of conclusions (further details in section 3.7 Results and discussion):

In 95% of the cases (19/20) satellite data overestimated on-site measurements.

Satellite data deviates the most from ground measurements under cloudy conditions
(commercial solutions based their competitive advantage on how well they deal with this
issue).

The uncertainty figures calculated in the present analysis in many cases are twice as big
as the reported uncertainties in the literature and in the marketing material of the service
providers. This might be mainly due to the fact this analysis was done only for one site for
one year (other possible causes might involve the methodology and metrics used).
Validation should be done more extensively (more sites) to get more precise generic
figures, because satellite data is highly sensible to the geographic location and local
climates

The temporal resolution offered by ERAS5-Land (1 hour) may be enough for monthly KPls
calculation, but it could be totally insufficient when a higher granularity is needed, for
example in case of fault detection. In this case, employing 3E Data Services is the most
viable solution (maximum temporal resolution: 15 minutes), despite the well-known

uncertainties.

Chapter 4: Data Quality analysis

The Data Quality analysis proposed in this chapter pointed out the usefulness of
evaluating the sensors’ health status. The approach is based on a data-driven detection
algorithm that in 5 steps deals with the most common anomalies, in compliance with

international standards.
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= This consistent data cleaning procedure, if combined with expert-knowledge from the field,
could lead to targeted preventive or corrective maintenance actions (e.g. sensor cleaning
or replacement).

= Furthermore, the usefulness of satellite-derived data was proved (because of its high data
integrity and availability, being synthetic) when combined with field measurements to
improve the irradiance data integrity (for the detailed discussion see section 4.6 The

‘virtual sensor’ concept).

Chapter 5: Data imputation with ML technigues

A data imputation procedure with ML techniques was proposed. From an O&M perspective, the
Root Mean Square Error (RMSE) was considered the best metric to evaluate the performance of
the tested algorithms and ensemble methods (Random Forest, Bagging and Gradient Boosting

Regressor) yielded the best results over the set of ML methods employed.

= All machine learning algorithms employed provide an improvement over the satellite-
derived data for each of the analysed settings: through ML models it has been possible to
obtain lower errors, ranging from 34% to 73% less error than 3E POA irradiance data.

= Among the algorithms applied, ensemble methods! provided the best results, with
Random Forest, Bagging and Gradient Boosting Regressor yielding very similar scores.

= As expected, the application of dimensionality reduction techniques (PCA) has led to
slightly worst performances, while halving the execution time of the algorithms.

= This analysis showed that the use of Principal Components Analysis (PCA) did not bring
additional accuracy improvements, even though it could be a viable solution when it is

desirable to sacrifice some precision in favour of shortest running time.

In conclusion, based on this analysis, done on almost three years of data (15 minutes time series
of electrical variables), it is possible to state that the proposed data imputation technique can
avoid the use of a satellite-derived irradiance datasets, due to its higher accuracy. Finally, this
work is an example of how an in-house data-driven solution can generate value and save costs

to an O&M provider.

For the detailed discussion of results see section 5.6 Results and discussion.

1 Once a group of predictors, called an ensemble (e.g. Decision Tree regressors), has been selected, each
one of them can be trained and tested on a random subset of the dataset. The predictions obtained from
the individual predictors are then aggregated (e.g. averaged) to form the most efficient predictor. Algorithms
that use this strategy are called ensemble methods.
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Further work

= Review the analysis so to fine-tune the process, avoiding the introduction of additional
degrees of uncertainty (e.g. empirical thresholds)

= Experiment more on hyperparameter tuning to fine-tune the employed models (using both
Grid Search and Randomized Search)

= Try out additional machine learning algorithms (e.g. Neural Networks) and time -series
models

= Experiment with feature engineering

= Use not only meter-level data but also string and inverter-level to determine which level
leads to the best predictions

= Restrict the number of electrical parameters to be used as input variables to determine
which parameters are fundamental for missing values imputation

= Run again the analysis employing time series coming from a dedicated calibrated
pyranometer as reference distribution, thus reducing the uncertainties and obtaining more
consistent results

= Experiment on the same dataset both varying the dimension of the test set and using the
same dimensions (9% and 20% of the observations) but employing different missing data
frequency

= Reduce the quantity of input data so to determine the minimum amount of data (months
or years) at a certain granularity necessary to obtain good predictions

* Run the analysis on other plants
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7 Annex A: PV performance metrics

This annex provides a comprehensive review of the metrics used to assess PV plant performance.

The purposes of a performance monitoring system are diverse and can include the following:

e |dentification of performance trends in an individual PV system

e Localization of potential faults in a PV system

o Comparison of PV system performance to design expectations and guarantees

o Comparison of PV systems of different configurations

o Comparison of PV systems at different locations

These diverse purposes give rise to a diverse set of requirements, and different sensor and/or

analysis methods may be more or less suited depending on the specific objective.

For example, for comparing performance to design expectations and guarantees, the focus
should be on system-level data and consistency between prediction and test methods, while for
analysing performance trends and localizing faults, there may be a need for greater resolution at

sub-levels of the system and an emphasis on measurement repeatability and correlation metrics

rather than absolute accuracy.

7.1 Normative references

Norm/Standard Title

IEC 61724-1:2017

Photovoltaic system performance - Part 1: Monitoring

IEC TS 61724-2:2016

Photovoltaic system performance - Part 2: Capacity evaluation method

IEC TS 61724-3:2016

Photovoltaic system performance - Part 3: Energy evaluation method

IEC 61853-1:2011

Photovoltaic (PV) module performance testing and energy rating - Part 1:
Irradiance and temperature performance measurements and power rating

IEC 61853-2:2016

Photovoltaic (PV) module performance testing and energy rating - Part 2:
Spectral responsivity, incidence angle and module operating temperature
measurements

IEC 61853-3:2018

Photovoltaic (PV) module performance testing and energy rating - Part 3: Energy
rating of PV modules

IEC 61853-4:2018

Photovoltaic (PV) module performance testing and energy rating - Part 4:
Standard reference climatic profiles

IEC 62446-
1:2016+A1:2018

Photovoltaic (PV) systems - Requirements for testing, documentation and
maintenance - Part 1: Grid connected systems - Documentation, commissioning
tests and inspection

IEC TS 62446-3:2017

Photovoltaic (PV) systems - Requirements for testing, documentation and
maintenance - Part 3: Photovoltaic modules and plants - Outdoor infrared
thermography

IEC 61829:2015

Photovoltaic (PV) array - On-site measurement of current-voltage characteristics

IEC 60891:2009

Photovoltaic devices - Procedures for temperature and irradiance corrections to
measured |-V characteristics

IEC 60904-1:2006

Photovoltaic devices - Part 1: Measurement of photovoltaic current-voltage
characteristics
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IEC 60904-5:2011

Photovoltaic devices - Part 5: Determination of the equivalent cell temperature
(ECT) of photovoltaic (PV) devices by the open-circuit voltage method

IEC 60904-7:2008

Photovoltaic devices - Part 7: Computation of the spectral mismatch correction for
measurements of photovoltaic devices

IEC 60904-10:2009

Photovoltaic devices - Part 10: Methods of linearity measurement

7.2 Terms and definitions

For the purpose of this document, the terms given in IEC 61724-1:2017, as well as their respective

nomenclature and symbols are adopted.

Table 32. Terms and nomenclature

Term Symbol Units ‘ Description
. Generic term that refers to the incident flux of radiant power per unit area.
2
EUE G Wim If not specified otherwise, it usually refers to global irradiance.
The sum of direct, diffuse, and ground-reflected irradiance incident on a
Global Horizontal horizontal surface. Measured with a suitable irradiance sensor*
Irradiance GHI W/m2 (thermopile pyranometer or reference cell) installed horizontally (parallel
to the ground). It can also be estimated from the POA using a
decomposition and transposition model.
In-plane or Global irradiance incident on an inclined surface parallel to the plane of
P Gjor 2 the PV modules. Measured with a tilted irradiance sensor (thermopile
Plane of Array W/m :
(POA) Irradiance Groa pyranometer or reference cell). It can also be estimated from the GHI
using a decomposition and transposition model.
Irradiance emanating from the solar disk and from the circumsolar region
Direct Normal of the sky within a subtended full angle of 5° falling on a plane surface
Iradiance DNI W/m2 normal to the sun’s rays. Measured with a pyrheliometer on a two-axis
tracking stage which automatically tracks the sun (rarely used for
commercial PV plants).
Diffuse Horizontal Global horizontal irradiance excluding the direct portion. It is measured
Irradiance (DHI) Gy W/m? with a horizontally mounted irradiance sensor with a rotating shadow
band or tracked ball that blocks the direct normal irradiance.
Irradiation H kWh/m?2 | Irradiance integrated over a specified time interval.
::l-plane or H; or , | Global irradiation incident on an inclined surface parallel to the plane of
ane of Array kWh/m he PV modul
(POA,) Irradiation Hpoa the PV modules.
Ratio of the actual power output of the PV array under given soiling
Soiling ratio SR % conditions to the power that would be expected if the PV array were clean
and free of soiling.
Soiling level SL % Fractional power loss due to soiling, given by 1 - SR
Sample _ . Data acquired from a sensor or measuring device. Samples do not need

to be permanently stored.

Sampling interval

Time between samples.

1 For irradiance sensors requirements, see IEC 61724-1:2017, table 5, page 21
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Record

Data recorded and stored, based on acquired samples. A record is the
average, maximum, minimum, sum, or other function of the samples
acquired during the recording interval, as appropriate for the measured
guantity. The record can also include supplementary data such as
additional statistics of the samples, number of missing data points, error
codes, transients, and/or other data of special interest.

Time between records. The recording interval should be an integer

Recording interval T min multiple of the sampling interval, and an integer number of recording
intervals should fit within 1 h.
Module operation mode: open circuited
Standard Test Irradiance on module surface: 1000 W/m?
Conditions STC -- Cell Temperature: 25 °C
Solar Spectrum: air mass 1.5 (AM1.5)
Mounting: open rack
Defined in IEC 61215:2005 as the equilibrium mean solar cell junction
temperature within the following standard reference environment:
Module operation mode: open circuited
Nominal Irradiance on module surface: 800 W/m?
Operating Cell NOCT -- Ambient Temperature: 20 °C
Temperature! wind Speed: 1 m/s
Mounting: open rack, tilt angle 45° from the horizontal
It is usually reported in the PV module’s datasheet provided by the
manufacturer.
Defined in IEC 61215-2:2016 as the equilibrium mean solar cell junction
temperature within the following standard reference environment:
Module operation mode: Maximum Power Point (MPP)
Irradiance on module surface: 800 W/m?
Ambient Temperature: 20 °C
Mounting: open rack, tilt angle (37 = 5)° from the horizontal
NMOT is similar to the former NOCT except that it is measured with the
. module under maximum power rather than in open circuit. Under
Nominal Module . s . P
Operating NMOT . maximum power conditions (electric) energy is withdrawn from the
Temperature? module, therefore less thermal energy is dissipated throughout the

module than under open-circuit conditions. Therefore, NMOT is typically a
few degrees lower than the former NOCT. NMOT can be used by the
system designer as a guide to the temperature at which a module will
operate in the field, and it is therefore a useful parameter when
comparing the performance of different module designs. However, the
actual operating temperature at any particular time is affected by the
mounting structure, distance from ground, irradiance, wind speed,
ambient temperature, sky temperature and reflections and emissions
from the ground and nearby objects. For accurate performance
predictions, these factors shall be taken into account.

1 NOCT was replaced by NMOT in the new version of the standard, see IEC 61215-12:2016
2 See IEC 61853-2:2016 for the methodology for determining coefficients for calculating NMOT
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7.3 On-site measured parameters

In this section all the measurements coming from the PV plant via the SCADA system (raw data)
are described. For the purposes of this document, the classification given in IEC 61724-1:2017

of monitoring systems based on their accuracy level was adopted.

Table 33. Monitoring systems classification

Class A Class B Class C

Typical applications High Medium Basic
accuracy accuracy accuracy

Basic system performance assessment ° ° .

Documentation of a performance guarantee °
System losses analysis °
Electricity network interaction assessment o
Fault localization °
[ ]
[ ]
m

PV technology assessment
Precise PV system degradation measurement
Maximum recording interval 1

in 15 min 60 min

The most significant and direct impacts on PV performance are in-plane irradiance, the PV cell
temperature, and shading losses (due to soiling, self-shadowing, shadowing from the
surroundings or snow). Therefore, their accurate measurement (via the SCADA system) is of vital
importance.

In summary, an adequate monitoring system would allow the O&M contractor to perform the
following activities:

Identification of system design and maintenance problems

¢ Assessment of plant performance (KPIs calculation and other metrics)
e Detection of faults and root-cause analysis

¢ Quantification of system losses and degradation

e Assess grid interactions

e Energy yield predictions

Table 34 lists the parameters that are measured by monitoring systems of utility-scale PV plants.
The three columns on the right specify the requirements by the international standard IEC 61724-
1:2017.

The mark e indicates a required parameter to be measured on site, qualified. The symbol “E”
indicates a parameter that may be estimated based on local or regional meteorological data or
satellite data, rather than measured on site. Empty cells indicate optional (not required)

parameters that may be chosen for specific system requirements or to meet project specifications.
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Table 34. Measured parameters and requirements for each monitoring system class

Required by IEC 61724-1:20177?

Measured variable

Irradiance!
Solar resource
In-plane or
. Gi W/m? assessment, KPIs ° eorE eorE
Plane of Array (POA) Irradiance calculation

Solar resource
assessment, connection

1 H 2
Global Horizontal Irradiance GHI W/m to historical and satellite . eorE
data
. . 2 ° eorE
Direct Normal Irradiance DNI W/m for CPV for CPV
Solar resource
assessment, * eorE
Diffuse Irradiance Gy W/m? concentrator (CPV) for CPV with for CPV with
<20x <20x
concentration concentration
Environmental factors
Determining
PV module temperature? Tmod °C temperature-related ° eorE

losses, KPIs calculation

Connection to historical
Ambient air temperature Tamb °C data, estimation of PV ° eorE eorE
module temperature

Wind speed Wws m/s ° eorE
° Estimation of PV
(clockwise module temperature,
Wind direction . from warranty claims related °
geographical to wind driven damage
north)
i Estimation of soiling
Rainfall -- cm losses
P Estimate changes in
0
Humidity RH % incident spectrum
L]
. . Determining soiling- If soiling losses
0
Soiling Ratio SR % related losses are expected to
be >2%
Electrical parameters
Array Voltage Va \ *
DC Diagnostics and fault o
side | Array Current Ia A detection
Array Power Pa kW, i
Output Voltage Vout \Y b ° b
Energy output.,
Output Current lout A Diagnostics and fault b L4 °
detection
Output Active Power Pout kw b d b
AC Energy output, KPI
side Output Energy Eout kWh calculation . ° °
Output Apparent Power Sout kVA
_ Utility request
Output Reactive Power Qout kVAr Con{pngnce
Output Power Factor ® ° . .

e required E estimated

1 Thermopile pyranometers may be best for GHI measurement, while reference cells may be best for POA measurement.
Each irradiance sensor type has its benefits:

. Thermopile pyranometers are insensitive to typical spectral variations and therefore measure total solar irradiance. However, this can vary
from the PV-usable irradiance by 1 % to 3 % (monthly average) under typical conditions. In addition, thermopile pyranometers have long
response times compared to PV devices and photodiodes.

. Matched PV reference devices measure the PV-usable portion of the solar irradiance which correlates with the monitored PV system output.
However, this may deviate from historical or meteorological measurements of irradiance, depending on instrumentation used.

. Photodiode sensors have significantly lower cost than the other two types and are appropriate for smaller or lower cost systems but are
typically less accurate.

2 The module temperature measurement may also be performed with the Voc-based method described in section 7.1.1
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7.3.1 Soiling ratio

One factor hindering the performance of PV modules is soiling, defined as the accumulation of
dust, sand, snow or any other particles on the surface of the modules that reduce irradiation
collection. The soiling ratio is the ratio of the actual power output of the PV array under given
soiling conditions to the power that would be expected if the PV array were clean and free of
soiling.

Measurement devices required
e IV-curve tracer! (equipped with irradiance and module temperature sensors)
e Hand-held contact-less temperature sensor (for complementary or more accurate

measurements)

Measurement procedure

a) Choose a soiled PV module representative of the general soiling condition of the PV plant.

b) Measure the I-V curve of the soiled PV module following the minimum requirements
according to IEC 61829:2015 On-site measurement of current-voltage characteristics.
(e.g. minimum G; = 700 W/m?)

c) Clean the module, following the manufacturer's recommendations.

d) Repeat b) for the cleaned PV module.

e) Calculate SR as described Table 35.

Table 35. Calculation of the Soiling Ratio

- . Symbol Units
Soiling Ratio y
SR %
Symbol Units Description Source
Pgoited W Power at MPP under STC of soiled PV module Measured
Piean W Power at MPP under STC of clean PV module Measured
SR = Dsetted 4
clean

1 Commercially available I-V curve tracers are usually equipped with a reference cell and a module
temperature sensor to be able to automatically translate the measured values into STC. It is advised to
measure, additionally, the temperature in several other points of the module and then calculate the
average temperature, to be used then for the STC translation.
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7.4 Satellite-derived irradiance data

When permitted (see Table 34), irradiance quantities may be estimated from satellite remote
sensing. Such satellite-derived irradiances are extensively used for monitoring the performance
of distributed generation systems including non-instrumented class B and class C systems, in
order to avoid the cost and maintenance requirements of on-site measurements. Satellite remote
sensing is an indirect approach to reliably estimate site- and time-specific irradiance. The
approach is indirect because on-board satellite instruments measure the radiance
emitted/reflected by the earth’s surface through the filter of the atmosphere in a selected number
of visible and infrared spectral bands; irradiance is inferred from these on-board satellite
measurements via radiative transfer models. In-plane and other irradiance components are

further modelled from the radiative transfer model output.

Satellite-derived irradiances, including global horizontal, direct normal, diffuse, and in-plane
irradiances are typically available in real time from commercial services. Important considerations

when selecting satellite models are as follows:

o Satellite-derived data should be carefully selected after a review of their accuracy, e.g., by
reviewing application-pertinent (localized) validations associated with the data source;
e Good satellite models can be trained locally using short-term, regionally/environmentally

representative ground measurements.

Satellite-derived irradiances have both advantages and disadvantages compared to on-site

measured irradiances:

¢ The main advantage is their reliability and consistency in terms of calibration and
maintenance. With a single set of carefully monitored on-board sensors covering entire
continents at once, satellites remove the uncertainty and cost associated with on-site
maintenance, instrumentation soiling, calibration drifts and location-to-location mismatches.

¢ The main disadvantage is their intrinsic accuracy. Unlike ground-based instruments, the
accuracy of satellite models is not constant in relative terms over the entire range of

irradiances but tends to be constant in absolute terms.
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7.4.1 Accuracy

For GHI (the primary product of the radiative transfer models), well-trained satellite models
typically have an accuracy of better than 2 % at 1000 W/m?, but 20 % at 100 W/m?, i.e., a constant
~20 W/m? throughout the 100 - 1000 W/m? range. Note that this uncertainty is not defined in
absolute terms, but in relation to the ground-based instruments against which satellite models are
evaluated.

The best trained satellite models can deliver an accuracy of 1 % at 1000 W/m?, and 10 % at 100
W/m?, i.e., a constant ~10 W/m? throughout the 100 - 1000 W/m? range (relative to the
instrumentation used to train them). Quantities derived from GHI, including tilted in-plane
irradiance, direct normal irradiance, and diffuse irradiance, have a higher uncertainty due to
application of secondary models. Uncertainty for tilted, south-facing (northern hemisphere) or
north-facing (southern hemisphere) in-plane irradiances is typically 1.25 times larger than for
GHls, i.e. 2.5 % at 1 000 W/m?for an untrained model, and 1.25 % for a trained model, relative to
the training instrumentation. Direct normal irradiance uncertainty is of the order of 4 % at full range
(1000 W/m?) for an untrained model and 2 % for a trained model, relative to the training

instrumentation.

Table 36. Relative accuracy of satellite-derived irradiance data compared to on-site measurements

Accuracy
(at 100 - 1000 W/m?)

Type of parameter Parameter

~2% for an untrained model

Primary output of a radiative transfer model GHI 1% for a trained model

~2.5% for an untrained model

POA ~1.25% for a trained model

Derived from GHI (applying a secondary model)
~4% for an untrained model

DIN ~2% for a trained model

If satellite-derived data have not been trained for a local area, variations in the local terrain can
introduce substantial error on the order of 10 %. This is especially true in a desert with white sand,
which may be difficult to distinguish from white clouds in some situations. Satellite-derived data
may be less accurate for short periods but more accurate when averaged over long periods.
Therefore, satellite-derived data may be more appropriate, for example, for evaluating system

energy production over an extended period as compared to instantaneous power production.
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7.5 Calculated parameters

Table 37 presents the parameters calculated from the monitoring measurements already

described in section 7.2. All quantities in the table shall be reported with respect to the reporting

period (typically daily, monthly, or yearly).

In the formulas given below, involving summation, 7, denotes the duration of the k™ recording

interval within a reporting period and the symbol };, denotes summation over all recording

intervals in the reporting period. Note also that in formulas involving the product of power

guantities with the recording interval 7, , the power should be expressed in kW and the recording

interval in hours, in order to obtain energy in units of kwh.

PV array

GHI

Gi

Tmod, Tams, WS

Reference yield

Inverter Transformer
Ea
Va o~
fA J'aut
PA Pout

Lc

Array capture losses

DC specific yield

AC specific yield

L Bos

Balance of System losses

Grid

Energy meter

Figure 73. PV plant parameters and energy flow. Source: adapted from SolarPower Europe

Table 37. Calculated parameters

Parameter Symbol Units Comments Formula
Irradiation
Global Horizontal H Also known as insolation, it is the integral of _ G
Irradiation GHI over a certain period of time. H = HI X 7
KWh/m? ‘
In-plane or . . N
It is the integral of POA irradiance over a
plane of array (POA) H; certain period of time. H; = Z Gije X T
Irradiation A
Electrical energy
DC output energy These energy quantities are calculated from
(module, string or array E, kWh the integral of their corresponding measured E,= Z Piw X Tg
level) power parameters over the reporting period. T ’
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AC output energy

(inverter or system Eout Eoue = Z Poutk X Ti
level) k
Array power rating
PV plant nominal power (the total DC power
output of all installed PV modules at STC),
. calculated using the manufacturer’s datasheet _
DC powerrating PO KWhp or module labels or even from alternative Py = Z Pomoa
power measurements done on-site or by a
specialised laboratory.
It is the total rated AC power output of all
AC power rating PO,AC kW installed inverters at a specified operating Poac = Z Po,inv
temperature
Yields:
DC specific yield Itis thekweasure of tf:e'total gndergf);_gen?tre_ited E,
: per kW, over a certain period of time. It is _=A
I(rr\1/0(|1u|e, string or array Yy calculated for both DC and AC sides. It Ya P,
evel) KWh/KW normalises plant output over a chosen time
AC specific yield? frame and thus allows the comparison of the
(inverter or system Y, production of plants with different nominal _ Eout
| | f power or even different technologies (e.g. PV, f I
evel) wind, biomass etc).
It represents the energy obtainable under ideal H
‘143 conditions, with no losses, over a certain i
Reference yield Y period of time. Usually Gi e = Gstc= 1000 Y= Gsre
W/m?
It expresses what should have been produced
kWh/kw over a certain period of time. PR.,, is the
: Average Expected Performance Ratio of the Y.. = PR Y
Expected yield Yexp plant based on the output of a model exp exp T
(simulation), using the actual temperature,
irradiation and plant characteristics.
Yield losses+
It represents the losses due to array operation, _ _
Array capture losses LC including array temperature effects, soiling, etc. Le=Y =Y,
Balance of System kwh/kw It represents the losses in the BOS
L components, including the inverter and all Lgos = Y4 — Y,
losses BoS r
wiring and junction boxes
Efficiencies
. Py
Array (DC) efficiency Nao Nao =
! Gi,ref “Aq
Mean actual array (DC) B
efficiency Na A, is the total module area, corresponding to Na = H; - A,
- the sum of the areas of the front surfaces of
the PV modules as defined by their outer E
System (AC) efficiency s edges and PR is the performance ratio ny = - ou:1 = a0 PR
L a
BOS efficienc _ Eour
Yy NBos MBos = f

1 Yields are ratios of an energy quantity to the array power rating Po. They indicate actual array operation relative to its rated capacity. The ratio of units
is equivalent to hours, which indicates the equivalent amount of time during which the array would be required to operate at Po to provide the particular
energy quantity measured during the reporting period.

2 Calculating the specific yield on inverter level allows a direct comparison between inverters that may have different AC/DC conversion rates or different
nominal powers. Moreover, it is possible to detect whether an inverter is performing better than others.
3 The reference yield represents the number of hours during which the solar radiation would need to be at reference irradiance levels in order to contribute

the same incident solar energy as was monitored during the reporting period while the utility grid and/or local load were available. If the reporting period
is equal to one day, then Y would be, in effect, the equivalent number of sun hours at the reference irradiance per day, or peak sun-hours if STC values

are used.

4 Yield losses are calculated by subtracting yields. They represent the amount of time the array would be required to operate at its rated power PO to
provide for the respective losses during the reporting period
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7.6 Performance metrics

This section describes the metrics used to assess the performance of utility-scale PV plants.
Among these, the most used by industry are the so-called Key Performance Indicators (KPIs),
which provide the Asset Owner with a quick reference on the performance of the PV power plant.
The KPIs are divided into the following categories:

PV plant KPIs, which directly reflect the performance of the PV power plant. PV plant KPIs are
guantitative indicators.
O&M Contractor KPIs, which reflect the performance of the service provided by the O&M

Contractor. O&M Contractor KPIs are both quantitative and qualitative indicators.

7.6.1 PV plant KPIs

These KPIs can be calculated over different time periods, but often they are computed on an
annual basis. When comparing different KPIs or different PV power plants’ KPls, it is important to
keep consistency in the time period used in computation.

A number of metrics are defined here for quantifying system performance. These are listed in
Table 38 and are further defined in the subsequent sections. The maost appropriate metric for a

given system depends on the system design, user requirements and contractual agreements.

Table 38. Summary of PV plant KPIs

Key Performance Indicator Units Contractual?

Performance Ratios (rating-based)
1 Performance ratio PR yes
2 | Temperature-corrected performance ratio PR'grc % no
3 | Annual-temperature-equivalent performance ratio PR’annual_eq no
Performance Indices (model-based)
4 Power performance index PPI no
5 Energy performance index EPI % no
6 Baseline power performance index BPPI no
7 Baseline energy performance index BEPI no
Availabilities
8 | Technical Availability AV, no
9 | Contractual Availability AV % yes
10 | Energy-based Availability AV, no
Other
11 | Capacity Factor CF % no
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IMPORTANT: Performance ratios are based on the system name-plate rating, while a
performance index is based on a more detailed model of system performance. The
rating-based performance ratio metrics are relatively simple to calculate but may omit
known factors that cause system power output to deviate from expectations based on
the name-plate rating alone. For example, systems with high DC-to-AC ratio operate at
less than the DC nameplate rating during times of high irradiance, but this is an expected
attribute of the system design. Such effects are better treated by a performance index
based on a detailed system model.

7.6.1.1 Performance Ratio

The Performance Ratio (PR) is a contractual KPI defined as the ratio between the AC specific
yield (Yr) and the reference vyield (Y;). It captures the overall effect of losses of the PV system
when converting from nameplate DC rating to AC output. Typically, losses result from factors such
as module degradation, temperature, soiling, inverter losses, transformer losses, and system and
network downtime. The higher the PR is, the more energy efficient the plant is. PR, as defined in
this section, is usually used to report on long periods of time, such as monthly or yearly (PRannua)-
Based on it, the O&M contractor can provide recommendations to the plant owners on possible

investments or interventions.

Table 39. PR calculation

Symbol Units
Performance Ratio PR %
Symbol Units Description Source
Yr kWh/kW | AC specific yield
Y, kWh/kW | Reference yield Calculated,
see

E . KWh AC output energy Table 37

p W, PV plant nominal power (installed

0 P capacity)
H; kWh/m2 | In-plane (POA) irradiation
N ) Refence value,

Gsre W/m2 STC irradiance (1000 W/m?) see Table 32
P, KW AC output power Measured
Gix W/m2 In-plane (POA) irradiance Measured

T h Recording interval (granularity) Monitoring system
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Expanding the formula:

E
_ Out/Po _ Eout * Gsre
- H; ~ H;-P,
/GSTC

PR

If Po is given in kW and considering that Gstc = 1 kW/m?, the calculation is simplified as

follows:

Eout
PR= 2
POIHi

Expanding the formula even further:

PR = Gsre 'Zk(Pout,k " Tg) _ Gsrc Z (Pout,k * Tk) _ Gsrc Pout
Py Yk (Gik " Tx) Py - (Gik " Tx) Py - Gix

Careful attention needs to be paid when interpreting PR, because there are several cases where
it can provide misleading information about the status of the PV plant:

a) Seasonal variation of PR (lower PR in the hot months, higher in the colder)

The calculation of PR presented in this section neglects the effect of array temperature, using the
fixed value of array power rating, Po. Therefore, the performance ratio usually decreases with
increasing irradiation during a reporting period, even though energy production increases. This is
due to an increasing PV module temperature that results in lower efficiency. This gives a seasonal
variation, with higher PR values in winter and lower values in summer. It may also give geographic
variations between systems installed in different climates.

b) Interpretation of PR for overrated plants (misleading lower PR)

Special attention is needed when assessing the PR of overrated plants (DC/AC ratio higher than
1) where the output of the plant is limited by the inverter maximum AC output (Po > Pg, ac). In such
situations, when inverter derating takes place, PR will be lower than normal although there is no

technical problem with the plant. Stakeholders should be careful assessing PR values for
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overrated plants, although the amount of derating is normally statistically constant or with

negligible differences on a yearly basis.

c) Calculation of PR using GHI instead of G; (misleading higher PR)
Calculation of the performance ratio using GHI instead of in-plane (POA) irradiance G; is an
alternative in situations where GHI measurements are available, but Gi measurements are not. In

this case, the resulting formula is:

Gste \C Pout k
Py £ GHI,

The GHI performance ratio would typically show higher values which may even exceed unity.
These values cannot necessarily be used to compare one system to another but can be useful for
tracking performance of a system over time and could also be applied to compare a system’s
measured, expected, and predicted performance using a performance model that is based only
on GHI.

d) Soiled irradiance sensors (misleading higher PR)
Special attention is needed when assessing the PR using data from soiled irradiance sensors. In
this case, PR will present higher values and will give the false impression that the PV plant is

performing better than expected and even some underperformance issues could remain hidden.

7.6.1.2 Temperature-corrected Performance Ratios
The seasonal variation of the performance ratio PR can be significantly reduced by calculating a
temperature-corrected performance ratio PR’. While variations in average ambient temperature
are the most significant factor causing seasonal variations in measured performance ratio, other
factors, such as seasonally dependent shading, spectral effects, and metastabilities can also
contribute to the seasonal variation of PR.
There are two different approaches to perform temperature corrections, each with a different
scope:
e Temperature-corrected Performance Ratio (see Table 40): to reduce seasonal variations
e Annual-temperature-equivalent Performance Ratio (see Table 41): to compare with a

model
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Table 40. Temperature-corrected PR calculation

Temperature-corrected PR to STC

Symbol Units Description Source

Yr kWh/kW | AC specific yield Calculated,
see
Y, KWh/kW | Reference yield Table 37
Cy _ Power rating temperature adjustment factor for Calculated
interval k
y %/°C Maximum-power temperature coefficient Module datasheet
Tnoak °C Module temperature in recording interval k Measured/Estimated*
E kWh AC output energy
out Calculated,
Py Wp PV plant nominal power (installed capacity) see
Table 37
H; kWh/m2 | In-plane (POA) irradiation
Lo Refence value
2 2 )
Gsre kWh/m STC irradiance (1000 W/m?) see Table 32
Pout k kW AC output power in recording interval k Measured
Gix W/m2 In-plane irradiance in recording interval k Measured
T h Recordlr_]g interval (Monitoring system Monitoring system
granularity)

It is calculated by adjusting the power rating at each recording interval to compensate for
differences between the actual PV module temperature and the STC reference temperature of 25
°C. Therefore, an adjustment factor Cy is introduced:

Y
Y- Cy

PR,STC =

Where C, defined as the power rating temperature adjustment factor given by:

14 o
Ck=1+ (ﬁ)(’rmod,k — 25°C)
Expanding the formula:
Eout
PR’ _ Yf _ Py _ Eout " Gsrc
TG H o Hi (P C)
Gsre

If P is given in kW and considering that Gstc = 1 kW/m?, the calculation is simplified as follows:

Eout

PR = — 2
STC™ Hy- (Po- Cp)
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Expanding the formula even further:

Gsre " 2k(Pouek * Tk) _ Gsrc (Poutk * Tk)
Y (Po-C(Gix )  Po - (Gik " Tk) " Ci

PR’STC =

And finally, the complete formula is presented:

Gsre Pout k
Po 42 Gype- |1+ (75 Tmoa — 25°C)|

PR,STC =

Table 41. Annual-temperature-equivalent PR calculation

Symbol
Annual-temperature-equivalent PR )
PR annual—eq
Symbol Units Description Source
Pout k kw AC output power in recording interval k Measured
Gix W/m? | In-plane irradiance in recording interval k Measured
. . . Calculated, see
P, Wp PV plant nominal power (installed capacity) Table 37
. . Refence value, see
2 2 ’
Gsrc kWh/m? | STC irradiance (1000 W/m?) Table 32
h Recording interval (Monitoring system
Tk granularity)
y %/°C Maximum-power temperature coefficient Module datasheet
. . I Measured/
Tnodk C Module temperature in recording interval k Estimated*
T,
mod,avg °C Annual-average module temperature Calculated

It calculates the PR during the reporting period with the power rating at each recording interval
adjusted to compensate for differences between the actual PV module temperature and an
expected annual-average PV module temperature. While this reduces seasonal variation in the
metric, it does not remove the effect of annual-average temperature losses and leaves the
value of the metric comparable to the value of PRannual.

It is calculated in the same way as PRsrc with a slight change in Cj:

_ G (Poutk " Tk)

PR’ —eq =
annual—eq PO 4 (Gi,k . Tk) . Ck
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Where C}, is a power rating temperature adjustment factor given by:

Cp=1+ (y/loo)(Tmod,k - Tmod,avg)

Tmod,avg is chosen based on historical weather data for the site and an empirical relation for
the predicted module temperature as a function of ambient conditions and module construction.
It should be calculated by computing an irradiance-weighted average of the predicted
module temperature.

* The module temperature Tp,,4 x is the most important parameter to perform the above-
described calculations of PR. It can be either measured or estimated:

a) Measured: as a best practice, temperature should be registered with a granularity of up to
15 minutes and the average temperature for the reporting period should be weighted
according to the Specific Yield:

T _ Zk(Yf ’ Tmeas,k)
mod,k Zk Y}

b) Estimated: If the monitoring objective is to compare PR'¢y¢ to a target value associated
with a performance guarantee, T4, Should instead be estimated from the measured
meteorological data with the same heat transfer model used by the simulation that set the
performance guarantee value to avoid a bias error. See section 7.8.1 for details.

7.6.1.3 Performance Indices

A detailed performance model may be used to predict electrical output of the PV system as a
function of meteorological conditions, known attributes of the system components and materials,
and the system design. The performance model attempts to capture as precisely as possible all
factors that can affect electrical output. In evaluating the system performance, particularly with
respect to a performance guarantee, it is desired to compare the measured output with the

predicted and expected outputs, defined as follow:

Measured output is the actual output (power or energy) of the PV plant measured by the
monitoring and SCADA system.

Expected output is the output (power or energy) calculated by the performance model when
using measured weather data.

Predicted output is the output (power or energy) calculated by the performance model when

using historical weather data.
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The model is also used to calculate expected energy during times of unavailability. Typically, the
model is expected to be the same that was used to describe the plant before construction, but the
model may be updated to reflect changes in the plant design, or any model may be used if the

goal is to test the accuracy of the model.

A Performance Index (PI) is defined as follows:

measured output

Performance Index =
expected output

And a Baseline Performance Index (BPI) is defined as follows:

measured output
predicted output

Baseline Performance Index =

These performance indices may be evaluated either on the basis of power or energy, defining
therefore the following four different indices:

Generating the measured value

PV plant Output

(measured)

Generating the expected value

Variable model inputs Output
(MEASURED meteo data) > Model (expected)
Fixed model inputs
Setting the predicted value
Output
Variable model inputs Model > (p,-edigted)

(HISTORICAL meteo data)

Figure 74. Predicted, expected and measured outputs. Adapted from IEC TS 61724-3
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Table 42. Summary of Performance Indices

Baseline
Performance
. performance
indices o
indices
Output Expected Predicted
P P
B PP] = measured BPP] = measured
expected Ppredicted
E E
Energy EPI = measured BEP] = measured
expected Epredicted

For evaluation of a performance guarantee, the performance model used for calculation of
expected power or energy shall be identical to the performance model used for calculation of

predicted power or predicted energy used in the performance guarantee.

The energy performance index (EPI) may refer to all times or only times of availability as defined

by the all-in energy performance index or the in-service energy performance index, respectively:

o All-in EPI: electricity generation of a PV system relative to the total expected energy over
a specified time period, including times when the system is not functioning.

¢ In-service EPI: electricity generation of a PV system relative to the expected energy over
a specified time period during times when the system is functioning (excluding times when

inverters or other components are detected to be offline).

The advantage of using the EPI is that its expected value is 100% at project start-up and is
independent of climate or weather. This indicator relies on the accuracy of the expected model.
Unfortunately, there are more than one established model for the Expected Yield of PV systems
in operation and not all of them are transparent. Therefore, the use of EPIs is recommended

mainly for the identification of performance flaws and comparison of plants.
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Table 43. Calculation of the Energy Performance Index

Energy Performance Index

Symbol Units Description Source

Actual output energy of the PV plant measured

by the monitoring and SCADA system Measured

Eout kWh

Expected output energy calculated by the
Eexp kwh performance model when using measured Calculated
weather data

Eout

EPI = x 100

exp

7.6.1.4 Technical Availability or Uptime

Technical Availability (AV;), or also called Uptime, is the parameter that represents the time during
which the plant operates over the total possible time it can (should) operate, without taking any
exclusion factors into account. The total possible time is considered the time when the plant is
exposed to irradiation levels above the generator’'s Minimum Irradiance Threshold (MIT). Typical
MIT values are 50 or 70 W/mZ. It should be defined according to site and plant characteristics
(e.g. type of inverter, DC/AC ratio etc).

Table 44. Calculation of the Technical Availability

Technical Availability

Symbol | Units Description Source
Tyuserut h Period of time with in plane irradiation above MIT Measured
Period of time when the system is down (no
Taown h oroduction) Calculated
Py kW, | Installed DC power of the inverter k Nameplate
P, kW, | Total installed DC power of the PV plant Calculated
AV i % | Technical Availability of the inverter k Calculated

Tuseful - Tdown

x 100

AV, =
‘ Tuseful
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For systems with more than one inverter, it should be measured also at inverter level and it
should be weighted according to their respective installed DC power. In this case, the
Technical Availability of the total PV power plant can be defined as follows:

Py
AV, torar = 100 X ) (AVy -
% 0
Ttotal
Tuseful T(Gi( MIT)
Tdown
M

Figure 75. Periods of time for the Technical Availability calculation

7.6.1.5 Contractual Availability

Contractual Availability (AV) is a parameter that represents the time in which the plant operates
over the total possible time it can (should) operate, taking into account the number of hours the
plant is not operating for reasons contractually not attributable to the O&M contractor (exclusion
factors). For the European market, where there is no on-site personnel present at all times, a best
practice is a minimum guaranteed Contractual Availability of 98% over a year. For contractual

KPI reasons, it should be calculated at inverter level, on an annual basis and it can be translated

into bonus schemes or liquidated damages.

Table 45. Calculation of the Contractual Availability

Contractual Availability

Symbol Units Description Source
Tyserul h Period of time with in plane irradiation above MIT Measured
Taown h Period of time when the system is down (no production) Calculated
T h Period of T4own to be excluded because of presence of
excluded an exclusion factor
Py kWp | Installed DC power of the inverter k Nameplate
Py kWp | Total installed DC power of the PV plant Calculated
AV, % Availability of the inverter k Calculated
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Tuseful - Tdown + Texcluded

AV = x 100

Tuse ful

For systems with more than one inverter, it should be measured also at inverter level and it
should be weighted according to their respective installed DC power. In this case, the Technical
Availability of the total PV power plant can be defined as follows:

Py

AV, rorar = 100 X Z(AVk o

% 0

Ttotal
Tuseful T(Gi( MIT)
Tdown
M

Texcluded
-

Figure 76. Periods of time for the Technical Availability calculation

The Tqwn represents the whole downtime, before the exclusions are applied. Therefore, Texcluded
is a part of Tqown in the diagram. In practice you often first see that a plant is down (=
measurement of Tgown) @and only in the course of troubleshooting one gets the information

whether you can exclude part of the downtime.

Exclusion factors
The Asset Owner and the O&M Contractor should agree on certain failure situations that are not
taken into account in the calculation of Contractual Availability. Some good examples for

exclusion factors are:

o Force majeure

e Snow and ice on the PV modules
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Damage to the PV plant (including the cables up to the feed-in point) by the customer or
third parties who are not sub-contractors of O&M Contractor, including but not limited to
vandalism
Disconnection or reduction of energy generation by the customer or as a result of an order
issued to the customer by a court or public authority
Operational disruption by grid disconnections or disruptions in the grid of the grid operator
Disconnections or power regulation by the grid operator or his control devices
Downtimes resulting from failures of the inverter or MV voltage components (for example,
transformer, switchgear), if this requires

— Technical support of the manufacturer and/or

— Logistical support (for example supply of spare parts) by the manufacturer
Outages of the communication system. Any failure time only begins to run when the O&M
Contractor receives the error message. If the data connection to the site was not available,
failure time shall only begin after reestablishment of the link
Delays of approval by the customer to conduct necessary works
Downtimes for implementation of measures to improve the PV plant, if this is agreed
between the parties
Downtimes caused by the fact that the customer has commissioned third parties with the
implementation of technical work on the PV plant

Downtimes caused Serial Defects on Plant components

Bonus Schemes and Liquidated Damages

The availability guarantee provided by the O&M contractor can be translated into bonus schemes

and liquidated damages. These ensure that the asset owner is compensated for losses due to

lower-than-guaranteed availability and that the O&M contractor is motivated to improve its service

in order to achieve higher availability. Higher availability usually leads to higher energy generation

and an increase of revenues for the benefit of the plant owner. Hence the bonus scheme

agreements lead to a win-win situation for both parties and ensures that the O&M contractor is

highly motivated.

The following are examples of bonus schemes and liquidated damages:

Bonus Schemes: if the Minimum Guaranteed Availability is overachieved, the additional
revenue based on the base case scenario expected annual revenue will be equally divided
(50/50) between the asset owner and the O&M contractor.

Liguidated Damages: if the Minimum Guaranteed Availability is underachieved, 100% of

the lost revenue due to the availability shortfall based on the base case scenario expected
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annual revenue will be compensated by the O&M contractor. This is usually translated into
a reduction of the O&M annual fee.
¢ The amount of liquidated damages is capped at 100% of the O&M annual fee on a period

of 12 months. Reaching this cap usually results in contract termination rights.

7.6.1.6 Energy-based Availability

Energy-based Availability (AV,) takes into consideration that an hour in a period with high
irradiance is more valuable than in a period with low irradiance. Therefore, its calculation uses
energy instead of time. The exclusion factors defined for the Contractual Availability should be

also applied here.

Table 46. Calculation of the Energy-based Availability

Energy-based Availability

Symbol Units Description Source
Eout kWh | Plant energy AC production Measured
Eoss kWh | Calculated lost energy after applying exclusion factors Calculated

Eout
AV, = x 100
¢ Eout - Eloss

7.6.1.7 Capacity factor

The capacity factor (CF) is a metric commonly applied to power plants for comparison purposes.
It can be used, for example, to compare PV plants with conventional gas-fired power plants. Its
calculation is based on the AC rating of the plant (the sum of the inverter ratings in the system)
and defines the fraction of electrical energy that was generated compared with what the plant

would have generated if it operated at the AC rated power 100 % of the time.
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Table 47. Calculation of the Capacity factor

Capacity Factor

Symbol Units Description Source
Eout kWh Power at MPP under STC of soiled PV module Measured
Py ac KW _It is the total rated_ AC power output of all installed Calculated

, inverters at a specified operating temperature
days -- the number of days of the period of interest, typically 365 --
E
CF out 100

= X
PO,AC " (24 " dayS)

7.6.2 O&M contractor KPIs

As opposed to power plant KPIs described in the previous section, which provide the Asset Owner
with information about the performance of their asset, O&M Contractor KPIs assess the

performance of the O&M service. Four KPIs are then defined:

Table 48. Definition of the O&M contractor KPIs

Contractual

O&M contractor KPlI  Units Description .

It is the time between detecting the problem (receipt of

Acknowledgement the alarm or noticing a fault) and the acknowledgement
1 time of the fault by the O&M Contractor by dispatching a no
(Reaction time) technician. The Acknowledgement time reflects the

O&M Contractor’s operational ability.

Time to reach the plant by a service technician or a
subcontractor from the moment of acknowledgement. In
2 Intervention time certain cases, remote repair is possible. The no
Intervention time assesses the capacity of the O&M
Contractor to mobilise field personnel to the plant.

It is the Acknowledgement time plus the Intervention
time. Used for contractual purposes, minimum

3 Response time Response times are guaranteed based on fault classes yes
that consider the unavailable power, the consequent
energy loss and their relevance in terms of safety.

It is the time to resolve the fault starting from the
Resolution time moment of reaching the PV plant. It is generally not

(Repair time) guaranteed, because resolution often does not depend
totally on the O&M Contractor

not always
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When a failure occurs,

e.g. performance Acknowledgement of the fault The technician arrives Problem fixed and
deviation beyond allowed by the O&M Contractor. on-site with all the tools acknowledged by the
threshold or inverter error A maintenance ticket is and spare parts needed O&M Contractor.
code generated. An alarm opened to fix the problem The maintenance

is triggered ticket is closed

failure time acknowledgement time intervention time resolution time

Detection time Response time

Repair time

) . Time that it takes the technician(s) to fix the problem
Time that it takes to detect the

occurrence of a problem

Time that it takes to organise the
repair or substitution

+  The repair or substitution is done, and the PV
plant is restored to normal operating conditions
+ Theintervention should be validated by the

*  With a good monitoring system this time *  Trouble shooting process triggered
0&M’s control room personnel.

I
1
1
1
I
I
I
1
1
1
1
1
1
1
1
1
should be zero or just a few minutes | * Remote repair could be possible
*  For plants without monitoring, this could ! *  Dispatching of a technician to the field might be
take weeks or months, until the failure is : needed for a decisive diagnosis of the problem
detected during the next scheduled | * If asubstitution of a companent is needed, a
maintenance intervention ! spare parts management procedure is triggered
: (and in the worst-case scenario the
1 management of acquisition of the spare parts
: directly from the manufacturer, including the
1
1
I
I
1
1
1
1

Repair shutdown time

When an upper-level component

transport to the site) of the plant needs to be powered
*  Highly dependent on the availability of spare off in order to fix the problem
parts (e.g., a combiner box needs to be

switched off to replace a module)

repair switch-off repair switch-on

time time

Figure 77. O&M contractor KPIs. Source: own design
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7.6.2.1 Response Time guarantee

The O&M contractor should guarantee to react on alarms received from the plant through the
monitoring and supervision system within a certain period of time, 7 days a week. This translates
in a minimum guaranteed Response Time. When setting it, it is recommended to differentiate
between hours and periods with high and low irradiance levels as well as fault classes, based on
the (potential) loss of energy or relevance in terms of safety impact of the failure.

In the following table an example is provided:

Table 49. Example of Response time guarantees

Response time

Fault Class Description

guaranteed
Fault Class 1 The entire plant is off, 100% power loss 4 daytime hours
Fault Class 2 More than 30% power loss or more than 300 kWp down 24 hours
Fault Class 3 0%-30% power loss 36 hours

In case the replacement of equipment is needed, the O&M contractor should commit to make it
available on-site and replace it within 8 business hours from the end of the Response Time if the
spare part is included in the portfolio of minimum spare parts list. If the spare part is not included
in the minimum spare parts list, the O&M contractor should commit to order the spare part within
8 business hours from the end of the Response Time and to replace it in the fastest possible way

after receiving the related spare part from the equipment supplier.

In case the fault cannot be fixed by the O&M contractor and the equipment supplier's intervention

is required, the following actions are necessary:

o If the intervention requires spare parts up to the limit under the O&M cost responsibility, the
O&M contractor may proceed without separate approval (insurance aspects to be
considered);

o If the costs exceed the above budget limit, the O&M contractor should communicate the issue

in writing to the Asset Owner within 8 business hours from the end of the Response Time.

Force Majeure events are excluded from Response Time obligations.
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7.6.2.2 Resolution Time guarantee

Resolution Time can also be guaranteed in certain restricted situations. The O&M contractor is
able to guarantee the Resolution Time in situations where the problem has been assessed and
approved to be due to a faulty spare part that needs to be replaced and the spare part is available
in the warehouse or has just been delivered. Such a Resolution Time guarantee can incentivise
the O&M contractor to replace spare parts rapidly. Events beyond the O&M Contractor’s control,
such as a delay in spare part delivery, as well as Force Majeure events are excluded from

Resolution Time guarantees.

7.7 System Performance Evaluation

The performance of a PV system is dependent on the weather, seasonal effects, and other
intermittent issues, so demonstrating that a PV system is performing as predicted requires
determining that the system functions correctly under the full range of conditions relevant to the
deployment site.

The following table presents the existing standards that deal with system performance evaluation,

each with its specific scope and limitations:

Table 50. Current standards on System Performance Evaluation

Limitations

Norm/Standard

Photovoltaic (PV) systems -
Requirements for testing,
documentation and maintenance - Part
1: Grid connected systems -
Documentation, commissioning tests
and inspection

Describes a procedure for
ensuring that the plant is
constructed correctly and powered
on properly by verification through
incremental tests

Does not attempt to verify that
the output of the plant meets
the design specification

IEC 62446-1:2018

Defines the data that shall be
measured and collected to
calculate performance metrics (PR
and Performance indices)

Does not define how to analyse
that data in comparison to
predicted performance

IEC 61724-1:2017 Photovoltaic system performance -

Part 1: Monitoring

IEC TS 61724-2:2016*

Photovoltaic system performance -
Part 2: Capacity evaluation method

ASTM E2848-11**

Standard Test Method for Reporting
Photovoltaic Non-Concentrator
System Performance

Describe methods for determining
the power output of a photovoltaic
system and are intended to
document completion and system
turn on and report a short-term
power capacity measurement of a
PV system

Are not intended for quantifying
performance over all ranges of
weather or times of year, just
for a short period of time (some
days)

IEC TS 61724-3:2016

Photovoltaic system performance -
Part 3: Energy evaluation method

Describes a method for
determining the energy output of a
photovoltaic system for long-term
evaluation (1 year)

Does not attempt to describe
the method for predicting the
electrical energy production
(the prediction method and
assumptions are left to the
user)

IEC 62670-2:2015

Photovoltaic concentrators (CPV) -

Performance testing - Part 2: Energy

measurement

Describes how to measure the
energy from a CPV plant.

Does not describe how to
compare the measured energy
with a model

* non-regression-based method for determining power output
** regression-based method for determining power output
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As already explain in section 7.6.1.3, in evaluating the system performance, particularly with
respect to a performance guarantee, it is desired to compare the measured output with the

predicted and expected outputs, defined as follow:

Generating the measured value

. Qutput
PV plant | (measured)
Generating the expected value
Variable model inputs . Output
(MEASURED meteo data) > Model | (expected)
Fixed model inputs
Setting the predicted value
> . Output
Variable model inputs Model > (p,ediﬁted)
(HISTORICAL meteo data)

Figure 78. Predicted, expected and measured outputs. Adapted from IEC TS 61724-3

The model is also used to calculate expected energy during times of unavailability. Typically, the
model is expected to be the same that was used to describe the plant before construction, but the
model may be updated to reflect changes in the plant design, or any model may be used if the

goal is to test the accuracy of the model.

In the following sections, two evaluation methods to assess system performance are described:

a) Energy method: defined in IEC TS 61724-3:2016, describes a one-year test that evaluates
performance over the full range of operating conditions and is the preferred method for

evaluating system performance.

b) Capacity method: defined in IEC TS 61724-2:2016, describes a short-term method that
evaluates the power output of a photovoltaic system, usually before/after its completion,
commissioning, revamping or hand-over. As a capacity test, it measures power (not energy)
at a specified set of reference conditions (which can differ from standard test conditions that
have been designed to facilitate indoor measurements). This method is a non-regression-

based method for determining power output.
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7.7.1 Energy evaluation method

Scope

This method (based on IEC TS 61724-3), defines a procedure for measuring and analysing the
energy production of a specific photovoltaic system relative to the expected electrical energy
production for the same system from actual weather conditions. It is intended to address the full
range of relevant operating conditions and for a sustained time (generally a complete year) to
verify long-term expectations of energy production to capture all types of performance issues,
including outages or instances of reduced performance of the plant.

Multiple aspects of PV system performance are dependent on both the weather and the system
quality, so it is essential to have a clear understanding of the system being tested. For example,
the module temperature is primarily a function of irradiance, ambient temperature, and wind
speed; all of which are weather effects. However, the module-mounting configuration also affects

the module temperature, and the mounting is an aspect of the system design.

The performance of the system is characterized both by quantifying the energy lost when the
plant is not functioning (unavailable) and the extent to which the performance meets expectations
when it is functioning.

Inverter operation and other status indicators of the system are first analysed to find out whether
the system is operating. Times when inverters (or other components) are not operating are
characterized as times of unavailability and the associated energy loss is quantified according to
the expected energy production during those times. For times when the system is operating,
actual photovoltaic system energy produced is measured and compared to the expected energy
production for the observed environmental conditions, quantifying the energy performance index
(EPI), as defined in section 7.6.1.3:

Eout

EPI = x 100

exp

As a basis for this evaluation, expectations of energy production are developed using a model of
the PV system under test that will serve as the guarantee or basis for the evaluation. Typically,
the model is complex and includes effects of shading and variable efficiency of the array.

This procedure evaluates the quality of the PV system performance with the assumption and

expectation that the model used to predict performance accurately describes the system. If the

initial model is found to be inaccurate, the design of the system is changed, or it is desired to test

the accuracy of an unknown model, the model may be revised relative to one that was applied

earlier, but the model should be fixed throughout the completion of this procedure.
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Energy unavailability: metric that quantifies the energy lost when the system is not operating
(as judged by an automatic indication of functionality such as the inverter status flag indicating
that the inverter is actively converting DC to AC electricity or not). The energy unavailability is the
ratio of the expected energy (as calculated from the original model and the measured weather
data) that cannot be delivered because of inverters or other components being offline divided by

the total expected energy for the year.

E .
Energy unavailability = _notdelivered 100

total expected

Some possible reasons of energy unavailability are:

o Hardware failure

e Plant degradation

¢ Planned outage (maintenance interventions)

¢ Not expected weather conditions

e Grid requirements limiting the energy uptake (curtailment)
e Grid support events (e.g. deviation from unity power factor)
e Operational set points (inverter clipping?)

¢ Poor maintenance procedures

o Force majeure

Energy availability: metric of energy throughput capability that quantifies the expected energy
when the system is operating relative to the total expected energy. It is calculated from the energy

unavailability and may be expressed as a percentage or a fraction.

E delivered

Energy availability = 100 — Energy unavailability = x 100

total expected

In summary, this test procedure was created to:

a) Facilitate the documentation of a performance guarantee
b) Verify accuracy of a model

c) Track performance (e.g., degradation) of a system over the course of multiple years

1 When the inverter output is limited by the capability of the inverter rather than by the input power from the PV array
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d) Document system quality for any other purpose

Test applicability and duration
This test may be applied at one of several levels of granularity of a PV plant. The smallest level
to which the test may be applied is the smallest AC power generating assembly capable of

independent on-grid operation.

Some PV modules show measurable performance changes within hours or days of being installed
in the field, others do not. The start of the test should be negotiated between the stakeholders
using the manufacturer’s guidance for the number of days or the irradiance exposure needed for
the plant to reach the modelled performance along with the details of the actual installation and
interconnection dates. Any degradation assumptions should be agreed to by all stakeholders and
documented as part of the model description.

It is recommended that the test lasts 365 days. If the test is not continued for a full year, seasonal
variations (including shading, spectrum, temperature, and wind) may cause the performance to
deviate from what would be obtained over a full year.

The performance metric, in-service energy performance index, is reported only for times when
the inverters and other components are online. Expected energy for times when the inverters or
other components are offline is quantified in the energy unavailability metric. The energy
unavailability metric may be further divided into situations with internal and external causes, as

agreed to by the stakeholders.

Notes about data collection:

e Verification of accurate positioning of the sensors is accomplished through comparison of
data from a clear day with modelled irradiance for a clear day and the results included in
the documentation of the uncertainty of the application of the test.

¢ When irradiance sensors are deployed in the plane of the array, the ground albedo should
be measured to demonstrate consistency with that assumed in the model and the results
included in the documentation of the uncertainty of the application of the test.

e For Class A tests, because the irradiance measurement is so crucial to the test, the
calibrations should be independently verified either by using sensors calibrated at different

test locations or at different times so as to prevent a systematic bias to the calibration.
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Procedure

In the following table and diagram, a step-by-step description of the procedure is provided.

Step Description

. . a0 Calculation of the predicted energy (using historical weather data) and the method that will be used
Calculation of predicted energy to calculate the expected energy. Definition of test boundaries, meteorological inputs format, PV

1 and documentation of method system inputs and assumptions regarding soiling, shading, snow coverage, outages, etc. The
that will be used to calculate the predicted_ energy may assume 100 % availability or may be reduced to account for expected times
expected energy of unavailability.

The uncertainty defining the pass/fail criteria of the test results should be agreed at this stage.

Collect recorded data at the specified frequency and in the specified format with every effort made
2 | Collection of measured data to avoid gaps in data, to maintain sensor function and calibration through early detection of failures,
and to strictly adhere to agreed-upon procedures.

The data should be screened for times when any inverter is offline (not converting DC to AC
Identification of data associated electricity) or some other component is off line. The expected energy production associated with the
with unavailability unavailability is tabulated and aggregated to provide the expected energy for the times during the
year when the plant is unavailable.

Identification of erroneous data and replacement or adjustment of such data and preparation of

4 Data quality check model input dataset: filtering, cleaning, time interval consistency check, time stamp alignment, etc.

The expected energy generated by the facility is calculated by inputting the measured variable input
5 | Calculation of expected energy data during the test period into the performance model, paying attention to the acceptability of data,
Time interval consistency, Time stamp alignment

Input measured meteorological data into the performance model to calculate the expected energy
for times of unavailability during the test period. Document all times of unavailability and the
associated expected energy that was not realized during the test period, and, if desired, separate
these into energy associated with internally and externally caused unavailability, commenting on any
identified causes for unavailability.

Calculate expected energy during
times of unavailability

Input measured meteorological data into the performance model to calculate the expected energy
for times of availability during the test period. Both real and apparent expected energy should be
calculated.

Calculate expected energy during
times of availability

The total expected energy is calculated as the sum of the expected energies during the times of

Calculate total expected energy unavailability and availability. Both real and apparent expected energy should be calculated.

If the measured energy deviates from the expected energy significantly (by more than 10 %), then a
root cause diagnosis should be completed. For example, such a diagnosis might be that the weather

Analyse discrepancies for the year was unexpected, the simulation model is different than the as-built plant, or there was
unusual missing data. The test report should comment on whether the test should still be considered
valid.

The measured energy is the result of all energy generated by the facility as measured at the metering
location during the test period after subtracting out energy associated with parasitic power losses. If
substitutions were made for missing data, care should be taken that the measured energy production
is estimated in a way that is consistent with how the expected energy for that period was defined.

6 | Calculation of measured energy

Calculation of KPIs as defined in section 7.6.1 (PR, availability, energy performance indices and
capacity factor). The all-in energy performance index is calculated using the total expected energy.
The in-service energy performance index is calculated using the expected energy during times of
availability. The external-cause-excluded energy availability is calculated excluding the expected
energy during times of unavailability that were caused by circumstances outside of the control of the
plant.

The comparison of measured and expected energy includes a consideration of the uncertainties.

Calculation of performance
metrics from measured data

The uncertainty should be determined for the test result, not for the original prediction. Both
systematic (bias) and random (precision) uncertainties are included in the analysis. The contributions
to the uncertainty depend on the model that is used, but generally include uncertainty in the
measurements of the irradiance, temperature, and electricity generated. The uncertainties
associated with each sensor are taken from the manufacturer's specification and/or from the
calibration report provided by the calibration laboratory.

8 | Uncertainty analysis

1 Although the final comparison of expected and measured energy does not use the predicted energy directly, the predicted energy is usually required
for project planning.
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Data quality check: filtering and flagging criteria

Each data stream should be checked for data out of range, missing data, or unreasonable trends
as described in IEC 61724-1. An example procedure is given in more detail in Table 51.
Depending on the local conditions, the details of the plant design, and the addition of other data
streams, the filtering criteria may be modified, but all four types of filters (range, missing data,
dead value, and abrupt change) shall be applied and documented as part of the final report.
Flagged data are examined to determine the underlying cause and whether the flag should be
retained.

Table 51. Example of data filtering criteria, to be adjusted according to local conditions. Source: IEC TS 61724-
3:2016

Suggested criteria for flag (15 min data)
. Wind
Flag L Irradiance Temperature Power
type Description W/m?2 °C Sﬁqe!:d (AC power rating)
< -6 > 50 >32 > 1,02 x rating
Range Value outside of reasonable or or or or
9 bounds
>1 500 < =30 <0 < -0,01 x rating
Missing [Values are missing or duplicates n/a n/a n/a n/a
Values stuck at a single value < 0,0001 while value is
Dead over time. Detected using < 0,0001 ? ?
derivative. >5
Abrupt Values change unreasonably
P between data points. Detected > 800 >4 >10 > 80 % rating
change ) R
using derivative.
May be adjusted depending on the tilt of the system and the season of data acquisition.

As part of the data filtering, the data should be binned into times when inverters (or other system
parts if desired) were on line and off line. In the case where a single inverter is off line, but the
system output is measured at a single point for the entire system, the expected energy is
partitioned to reflect the expected energy from the functioning inverters (or other system parts, if
desired) and the expected energy from the offline inverters and aggregated separately. The
energy aggregated for times when the system was off line may be separated into two categories:

problems caused by internal and external reasons.

Irradiance sensors check

Because of the sensitivity of the test to the irradiance data, special attention should be given to
the irradiance data. Specifically, irradiance data that may result from accidental shading of a
sensor or sensor malfunction should be removed before taking the average of the data from the
remaining sensors. Accurate calibrations are needed for all sensors to provide a test result with

low uncertainty. In addition to confirming that the calibrations were completed as planned, the
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night-time data should be checked to confirm accurate zero-point calibration, noting that it is
common for a pyranometer to show a negative signal of 1 W/m? to 3 W/m?
A recommended procedure for identifying such data in the case where multiple sensors are being

used is:

Step 1: Identify a clear day.

Step 2: Compute the average irradiance value for each sensor during each time interval and
compare each individual value with the average value for all sensors. If this difference is
greater than the uncertainty of the sensors, inspect the data to identify a probable cause. (Note
that if the data are taken more frequently than once per minute, the data should be averaged
over a time period of at least 1 min.)

Step 3: Look for drifts of the calibrations of the sensors.

Step 4: Discard data that can be traced to malfunctioning of the sensor or data acquisition
system. Discard data from sensors that are out of calibration (this action should be done only
with mutual consent of the stakeholders).

Step 5: Discard individual data points that are compromised by sensor maintenance or
cleaning.

Step 6: If all data for some time periods are removed, this time period is treated as missing
data. The missing data, cause for removal of the data, and the impact of the removal of the
data are presented in the report (this action should be done only with mutual consent of the

stakeholders).

Using data from multiple sensors

The ambient temperature and irradiance used as input to the model should be the average of the
available measurements, except where a measurement is determined to be erroneous, in which
case the input to the model should be the average or median of the remaining measurements.
Temperature and irradiance data from nearby meteorological stations, from numerical weather
models, or from satellite data may be used when it is expected to improve the accuracy of the
test and with mutual consent of the stakeholders. The type of sensor, its mounting, maintenance,

accuracy, resolution and calibration status shall be consistent with the initial model definition.
Missing weather data
Missing or invalid data may be treated in one of the following ways according to IEC 61724-

1:2017:

e The invalid or missing data may be replaced by values estimated from the valid data

recorded before and/or after the invalid or missing data
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e The invalid or missing data may be replaced with an average value for the analysed

interval

Three scenarios may occur where no data is identified to replace missing weather data:

A.

If the inverter was not functioning during that period, the expected energy for the period is
modelled from the historical weather data and is aggregated with the expected energy for the

times of unavailability.

If the inverter is functioning, then the expected energy is taken to equal the measured energy
during that period.

If both the measured energy output and the weather data are missing, but the plant was known
to be functioning during that period, the predicted energy (calculated from the model using
the historical weather data) is used for both the expected and measured energy during that

period.

Missing measured weather data
(irradiance, temp, wind)

A

E

expected =

inverter
functioning?

E

predicted

[ Use historical weather data J

B

measured data

available? Eexpected = Emeasured

[ Use measured weather data}

Eexpected = Epredicted

Emeasured = Epredicted

[ Use historical weather data J
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If the missing data affect more than a week of performance out of a year, the bias introduced by
the above approach may become unacceptable and the parties to the test shall agree upon the
best way to handle the missing data, including the possibility that the test may be considered

invalid if too many data are missing.

Partially missing data or partial unavailability

When data is available for part of a period (e.g., if the model is using hourly averages and the
data are available only for part of the hour) if < 10 % of the electricity or irradiance data are
missing, the average of the available data for that time period may be used. For temperature and
wind data, this requirement is < 20 % and < 50 %, respectively. When the fraction of missing data
is small enough to use the data for that hour, the existing data are averaged for that hour. If the
fraction of missing data exceeds these guidelines, the data should be treated as missing data. In
any case, data for the same period are handled consistently between both the irradiance and PV
performance data.

Specifically, if data is substituted because of anomalies associated with inverter start up or shut
down, reliable data will be retained for the fraction of the hour when data are available in order to
reflect the state of the system as accurately as possible during these hours because the energy

generated during these hours typically differs significantly from the expected energy.

Table 52. Missing data tolerances

Maximum missing data

Parameter

tolerable
Energy output 10 %
Irradiance 10 %
Temperature 20%
wind 50%

7.7.2 Capacity evaluation method

Scope

This method (based on IEC TS 61724-2), measures power (not energy) at a specified set of
reference conditions (which can differ from standard test conditions that have been designed to
facilitate indoor measurements). It is a non-regression-based method for determining power
output. It uses the design parameters of the plant to quantify a correction factor for comparing the

plant’'s measured performance to the performance targeted under reference conditions. In other
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words, the measured performance, adjusted by the correction factor, is then compared with the
target plant performance to identify whether the plant operates above or below expectations at

the target reference conditions.

This test procedure was designed with the primary goal of facilitating the documentation of a
performance target, but it can also be used to verify a model, track performance (e.g.,
degradation) of a system over the course of multiple years, or to document system quality for any
other purpose. The intent of this document is to specify a framework procedure for comparing
the measured power produced against the expected power from a PV system on relatively sunny
days.

In this procedure, actual photovoltaic system power produced is measured and compared to the
power expected for the observed weather based on the design parameters of the system. The
expected power under reference and measured conditions are typically derived from the design
parameters that were used to derive the performance target for the plant as agreed to prior to the
commencement of the test. For cases when a power model was not developed during the plant
design, a simple model that increases transparency is presented in section 7.7.2.1 as a possible

approach.

It is to be noted that when the output of a PV system exceeds the capability of the inverter, the
output of the system is defined more by the inverter operation than by the PV modules. In this
case, the measurement of the capacity of the plant to generate electricity is complicated by the
need to differentiate situations in which the inverter is saturated (“constrained operation”) and
when the output of the PV system reflects the module performance (“unconstrained operation”).
For PV plants with high DC-to-AC power ratios, the operation of the plant can reflect the capability
of the inverters for most of the day, with the capability of the DC array only being measurable for
a short time in the morning and in the evening. In this case, it can be necessary to disconnect

parts of the DC array to reduce the DC-to-AC power ratio during the measurement period.

Test duration

It is recommended that the test include data from at least two days if enough stable data are
acquired. The test may be extended to seven or more days if desired to assess repeatability or if
weather is volatile. The filtering criteria for selecting relatively stable times are described later in
this section. The test may be completed at any time of year, though the deviation from reference

conditions and the effects of variable angle of incidence should be minimized.

Terms and definitions
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Constrained operation: condition when all inverters are limited by their capability (also referred
to as inverter saturation) rather than by the output from the PV array, as it is observed for a system
with high DC rating relative to the AC rating and when the irradiance is high.

Curtailed operation: when the output of the inverter(s) is limited due to external reasons such
as inability of the local grid to receive the power or contractual agreement.

Unconstrained operation: outputs of all inverters freely following the DC array’s capability to
respond to the solar insolation rather than being limited by the capability of the inverters or
curtailing influences.

Expected power: power of a PV system that is expected for actual weather data collected at the
site during operation of the system based on the design parameters of the system

Target reference conditions (TRC): reference conditions at which the expected power is the
target power, which include irradiance, ambient temperature, wind, and any other parameter used
to define the target performance.

Procedure

In the following table and flow diagram, a step-by-step description of the procedure is provided.

Description

The targeted system output is defined for unconstrained operation under the TRC and by a model
that defines how the power varies with irradiance, temperature, and wind using the design
parameters of the plant. The performance target under constrained operation is typically defined by

Definition of the performance
1 | target under “unconstrained” and

“constrained” operation the capability of the inverter.

. TRC should be chosen to result in unconstrained operation (i.e. within the inverter's capability).
Definition of the target reference Preferably, they should be chosen to reflect an ambient temperature and wind speed that are
conditions (TRC) for “unconstrained” frequently observed at the site and the highest irradiance that is unlikely to cause constrained
operation operation for the lowest temperature expected. The optimal choice of TRC may depend on the

weather during the test.

If a temperature model has not been defined, a possible model is provided in section 7.8.1. It is

Definition of the temperature preferable to use a temperature model based on ambient temperature and wind speed rather than
dependence of the plant output under measuring the back-of-module temperature because the assessment then includes some aspects
“unconstrained” operation of the module mounting that could cause the modules to run hot and because it avoids the

challenges of characterizing the module temperature, which may be highly variable across the field.

The power output, irradiance, temperature, wind speed, state of cleanliness of both the sensors and

2 Collect measurement data PV systems are collected over several days.

Data checks for each data Each data stream shall be checked for data out of range or unreasonable trends. Then it shall be

3 checked whether the number of valid data points is enough for a reasonable uncertainty value of the
stream test.

The correction factor is calculated to adjust the measured power to the conditions used for the

4 | Calculation of correction factor performance target.

Comparison of measured power Finally, the average measured corrected power and performance target are compared either as a
with the performance target simple difference, percent difference, or ratio calculation.

As part of the performance target or test plan, the agreement shall state how the uncertainty of the
measurement is considered. Thus, it can be essential to quantify the uncertainty of the measurement
6 Uncertainty analysis as part of determining whether the measured performance meets expectations. Regardless of
whether the uncertainty is used as part of determining the test result, uncertainty analysis should be
part of the assessment.
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Figure 80. Capacity Evaluation Method — procedure flow diagram. Source: own design
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Data checks for each data stream

A recommendation for application of this procedure for this application is given in more detail in
Table 53 . Depending on the local conditions, the details of the plant design, the addition of other
data streams and the frequency of data collection, the filtering criteria may be modified, but all

four types of filters (range, dead value, abrupt change/stability and inverter status) shall be applied

and documented as part of the final report.

Table 53. Capacity method: data validation and filtering criteria. Source: IEC TS 61724-2:2016

Suggested criteria for flagging rejected data (15-min data)

b

@ May be adjusted depending on the season of data acquisition.

Irradiance Ambient Wind speed Power (AC
Flag type Description (W/m?) temperature ("C) (mis) power rating)
Range Value outside of < 0,5 TRC >500r<-10°% >150r<0,5 > 1,02 -rating or
acceptable bounds irradiance < -0,01-rating
or>1,2-TRC®
Dead Values stuck at a Derivative < 0,0001 and < sensitivity of < 0,1 % change in
value single value over time. |< 0,0001 while sensor 3 readings
Detected using valug is > 5 > -0,0001
derivative.
Abrupt Values change Assuming 15 min |> 4 =10 Assuming 15 min
change unacceptably between |data derived from data derived from
and data points. Detected at least 1 min at least 1 min
stability using derivative for data, standard data, standard
temperature and wind |deviation > 5 % of deviation > 5 % of
speed. average average
Inverter The states of the Not applicable Not applicable Not applicable Not applicable
status inverters are
inconsistent (not all are
constrained - see text)
NOTE 1 The irradiance filtering may be adjusted to align with the range of linear system performance with

irradiance. Flagged data are considered for exclusion and documented in the test report regarding the rationale
for exclusion.

NOTE 2 Potential-induced degradation (PID) effects may start to reduce the power output at low irradiance
conditions remarkably, without a measurable effect at high irradiance. Early detection of evidence of PID is
outside the scope of this test.

The maximum irradiance included in the analysis may be adjusted to account for the possibility of cloud edge
effects, whereby light is scattered by a nearby cloud and can cause irradiance readings up to approximately
1500 Wim?, Far most systems, these conditions will cause saturation of the inverter, and will typically be
excluded from the evaluated data by the stability filter.

The inverter's self-reported output power or inverter's self-reported status flags are used to identify
when the inverter operation is constrained. If the status flags are not available, the data may be
screened for reporting values near the maximum capability of the inverter. Records are

categorized according to whether:

a) zero inverters are constrained: data records can be treated as unconstrained

b) all inverters are constrained: data records can be treated as constrained
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c) some, but not all, are constrained: data records cannot be used for evaluating system

performance

The stability filter recommended here calculates the average of at least 15 data points (measured
at least every minute during 15 min) and confirms that the standard deviation for those data points
is less than 5 % of the average of the same data points. Applying the stability filter to both the

irradiance and power data is recommended.

The number of data points identified as meeting the criteria in Table 53 will affect the uncertainty
of the test. As a guide to determining an adequate, yet reasonable, number of data points, the
following table may be used:

a

Table 54. Example guide for seasonal minimum stable irradiance requirements for flat-plate
application. Source: IEC TS 61724-2:2016

Seasor? (northern Dates ) Min_imum Pi:‘.hl\2 R_equirad number 01_15-

hemisphere) irradiance (W/m*) min average data points
Winter 22/11 to 2111 450 20
Spring 22/1 to 23/3 550 30
Summer 24/3 to 21/9 650 60
Autumn 22/9 to 22/11 550 40

The larger number of data points during the summer reflects the ease of collecting more data on
longer days and is expected to result in a higher accuracy measurement, depending on the local
weather. Locations that seldom experience clear, sunny days may require longer data collection
times or reduction of the targeted number of data points, resulting in higher test uncertainty. For
CPV applications, Table 54 is not directly relevant. For CPV, after filtering for stable conditions,
the data collected should include at least 30 data points (assuming 15 min averages) or at least

7.5 h of filtered data if averages for a different time period are used.

Calculation of the correction factor
The correction factor is calculated to adjust the measured power to the conditions used for the

performance target in four steps:

a) Calculation of correction factor for each data point

Input measured meteorological data into the system’s model and calculate the correction factor
needed to translate the measured data to the temperature, wind and irradiance conditions
specified by the TRC for all points measured during “unconstrained” stable operation.

Calculate the correction factor for each point using the power model:
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Ptarget

C =
factor Pexpected
Cractor is the correction factor
Prarget is the model’s output power at the target reference conditions (TRC)
Pexpected is the model’s output power at the measured conditions

The correction factor could be corrected for the operating temperature as follows:

C,factor =1+ y(Tce — Trre)

C 'factor is the operating temperature cell correction factor

Y is the temperature coefficient for power (taken from the module’s datasheet)
Teenr is the calculated cell temperature as described in section 7.8.1

Trre is the cell temperature associated with the Target Reference Conditions (TRC)

b) Correct measured power output for all points measured
Correct the measured power by the correction factor for all points measured during
“unconstrained” stable operation:

Peorr = Prmeasurea " Cfactor

c) Average all values of corrected power
Taking care to consider only the data that were included after data filtering, average all corrected
power output values taken under “unconstrained” operating conditions, and separately average

all power values measured during constrained operation.
1
Pcorravg = ; Pcorri

If an individual corrected power deviates from the average by more than 5 %, then a root-cause

d) Analyse discrepancies
diagnosis should be completed for the data point to see if any outlier situation was in effect and

not caught by the data filtering

Comparison of measured power with the performance target
The average measured corrected power and performance target can be compared either as a

simple difference, percent difference, or ratio calculation:
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Difference calculation [kKW]:

Apower = Peorr — Ptarget

Percent difference calculation [%]:

Pcorr - Ptarget

Apower = P x 100
target

Ratio (power performance index) [%]:

measured output P
PPI = DY 100 = =0

x 100
expected output target

Uncertainty analysis

The uncertainty is determined for P, Not for the performance target. Uncertainties associated
with the model are neglected. However, uncertainties associated with the measured weather data
will introduce uncertainty in Pcor.

Both systematic (bias) and random (precision) uncertainties should be included in the analysis.
The contributions to the uncertainty depend on the model that is used, but generally include
uncertainty in the measurements of the irradiance, temperature, wind speed, and electricity
generated as well as uncertainties in corrections of these.

All measurements and associated uncertainties are tabulated and combined using standard

propagation of errors as described in:

¢ ASME Performance Test Code 19.1
e [|SO 5725
e [SO/IEC Guide 98-1

The uncertainties associated with each sensor are taken from the manufacturer’s specification
and/or from the calibration report provided by the calibration laboratory. The uncertainty analysis
should also include systematic errors that may arise from misplacement or inappropriate

installation of the sensors including:

e Irradiance sensor placement (tilt, azimuth, and height)
o Positioning of temperature sensors relative to power model
e Positioning of wind sensor relative to power model

e Soiling that has not been addressed
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e Spatial variation when a subset of point measurements may not capture the true array

bulk values (e.g. wind speed).

Data acquisition device uncertainties should also be considered.

7.7.2.1 Simple model for system power
The model for the electrical power output of a system can be fairly simple or complex. A simple

example is given here:

Table 55. Model for system power. Source: IEC TS 61724-12:2016

System power model

Symbol Units Description Source
Ppreq w Predicted power Calculated
Prarget w Predicted power at targeted conditions Calculated
G W/m? | poA irradiance Measured
Grre WIm? | Rating irradiance used to specify the target power Defined by user
p (negative) intercept often observed when plotting the Calculated
zero w output power as a function of irradiance when inverters
reguire a minimum power input to function.
!
p pred W Temperature-corrected predicted power Calculated
14 %I°C | power temperature coefficient of the module Module’s datasheet
. Calculated
Tcell C Cell temperature calculated for each measurement point (see section 7.8.1)
Calculated
Trre °C Cell temperature calculated by the thermal model at the (see section 7.8.1)

Target Reference Conditions (TRC) conditions

As an example of implementation of a linear assumption, the plant power can be defined as follows:

G; G;
Ppred = Ptarget (G ) + Pero (1 - G >
TRC TRC

Adding a temperature correction and neglecting the P.er, term, results in the following relationship to predict
power from measured irradiance and cell temperatures:

P,p‘red = Ptarget (&) [1 + (ﬁ) (Tcell - TTRC)]
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7.8 Complementary calculations

7.8.1 Module and cell temperature calculations

Generally, there are two parts to defining the temperature dependence of the power output of a

PV system:

1) relating the weather conditions to the module temperature and

2) the power output as a function of module temperature
The module temperature can be measured directly using a sensor on the back of the module as
described in IEC 61829 or in Annex B of IEC 61724-1:2016, or an infrared camera that has been
carefully calibrated for the emissivity of the module, but the module temperature reflects both the
weather conditions and the quality of the installation or design, since improper installation of
modules or a poor mounting design may cause modules to operate at elevated temperatures
when compared to design expectations. To include module operating temperature within the test,
the ambient temperature and wind speed may be used to calculate an expected average module

temperature.

7.8.1.1 Heat transfer model to calculate expected cell operating temperature

This section presents a heat transfer model that has demonstrated good results. However, other
models exist, and practitioners should choose the model that best fits their situation. Of great
importance is using identical heat transfer models for setting the capacity performance target as

well as the target reference conditions.

Table 56. Model for module temperature

Thermal model for module and cell temperature

Symbol Units Description Source
Tmod °C Module temperature (at the back surface) Calculated
G; W/m? | poa irradiance Measured
T omp °C Ambient temperature Measured
ws m/s Wind speed corrected to a 10 m height or to the height that is Calculated
relevant to the power model
Defined empirically
a - Module glazing coefficient (see Table A.1)
Defined empirically
b - Forced convection glazing coefficient (see Table A.1)
WSmeas m/s Wwind speed Measured
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href m height used by performance model (for this model 10 m) Defined by user
hmeas m height of the anemometer Site characteristic
. - Defined empirically
a - Resistance coefficient for ground cover or the Hellmann (see Table A.2)
exponent
Teenr °C Cell temperature Calculated
. . . . Defined empirically
dT ;ona °C Conduction temperature coefficient to determine the difference (see Table A.1)
between module surface and cell centre

The module temperature (at the back surface) can be calculated as follows:

Thoa = G;- e(a+bws) 1 T ymb

If the measured and reference heights are different, the wind speed needs to be corrected as follows:

h
WS = WSppqs - —L -

meas

The temperature difference (Tmod - Tamb) iS largely independent of the ambient temperature and is
essentially linearly proportional to the irradiance at levels above 400 W/m?.

The cell temperature can be calculated as follows:

i

Teet = Tinoa + m dT cona

and therefore, the conductive temperature drop between the module's back surface and the PV cells can
be determined.

It is also possible to use IEC 60904-5 to determine the junction temperature (see 7.8.1), but this
is usually difficult when evaluating the performance of a continuously operating system because
IEC 60904-5 uses the measured open circuit voltage. It should be noted that junction temperature
calculated from measured open circuit voltage will reflect the rapid fluctuation of the cell
temperature during rapid changes of irradiance due to high wind and cloud speed in the sky that
is not in accordance with the directly measured temperature of the rear surface. Therefore, the
electrical output power evaluation of the system should be performed when the irradiation is stable

as required by the filtering described in Table 53.
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Table 57. Empirical coefficients for module temperature modelling. Source: IEC TS 61724-2:2016

Table A.1 — Empirically determined coefficients
used to predict module temperature

Module type Mount a b L -

(s/m) (°C)
Glass/cell/iglass Open rack -3.47 -0,0594 3
Glass/celliglass Close roof mount -2,98 =0,0471 1
Glass/cell/polymer sheet Open rack -3.,56 -0.0750 3
Glass/cell/polymer sheet Insulated back -2,81 -0,0455 0
Palymer/thin-film/steel Open rack -3,58 -0,113 3
22x linear concentrator Tracker -3,23 -0,130 13
NOTE Wind speed was measured at the standard meteorological height of 10 m.

Table A.2 — Hellmann coefficient, «, for correction of wind speed
according to measured height, if values in Table A.1 are used

Location or situation o
Unstable air above flat open coast 0,11
Meutral air above flat open coast 0,16
Unstable air above human inhabited areas 0,27
Neutral air above human inhabited areas 0,34
Stable air above flat open coast 0,40
Stable air above human inhabited areas 0,60

7.8.1.2 Equivalent Cell Temperature (ECT)

Here is described the preferred method (IEC 60904-5:2011) for determining the equivalent cell
temperature (ECT) of PV devices (cells, modules and arrays of one type of module), for the
purposes of comparing their thermal characteristics, determining NOCT (nominal operating cell
temperature) and translating measured I-V characteristics to other temperatures.

When temperature sensors, such as thermocouples, are used to determine the cell temperature

of PV devices under natural or simulated steady-state irradiance, some problems arise:

a) A considerable spread of temperature can be observed over the area of the module.
b) As the solar cells are usually not accessible, sensors are attached to the back of the
module and the measured temperature thus is influenced by the thermal conductivity of

the encapsulant and back materials.
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c) Problems when determining the equivalent cell temperature for on-site measurements of
array performance where all cells have slightly different temperatures and one cannot

easily determine the average cell temperature.

The equivalent cell temperature (ECT) is the average temperature at the electronic junctions of
the device (cells, modules, arrays of one type of module) which equates to the current operating

temperature if the entire device were operating uniformly at this junction temperature.

In summary, ECT can be used for:
e Calculating PV module temperature (Tmod)
o Comparing the thermal characteristics of different PV modules
o Determining NOCT (nominal operating cell temperature)

e Translating measured |-V characteristics to other temperatures

Measurement devices required
¢ Reference PV module
e |V-curve tracer

e Thermometer

Measurement procedure

This method is based on the fact that the open-circuit voltage (Voc) of a solar cell changes with
temperature in a predictable fashion. If the Voc of the device at standard test conditions (STC) is
known, together with its temperature coefficient (B), the equivalent temperature of all the cells in

the device can be determined.

NOTE: The Voc is also slightly affected by the irradiance, so an additional
correction may be required as outlined in IEC 60891. Experience shows that
the equivalent cell temperature can be determined more precisely by the
method described here than by any alternative technique. However, as the
temperature coefficient 8 drops rapidly at irradiances below 200 W/m?, this

method should only be used at irradiances above this threshold.

a) Take simultaneous readings of the open-circuit voltage Vocz, short-circuit current Isc2 and the
incident irradiance Ga.

b) Carry out a correction of Voc. to an irradiance equal to G;.

c¢) Calculate the ECT as described in Table 58.
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Table 58. Calculation of the Equivalent Cell Temperature

Equivalent Cell Temperature

Symbol Units Description Source
B %/°C Temperature coefficient of the open-circuit voltage Measured / Datasheet
Gu, Tu Wim?, °C Irradiance and module temperature of reference condition 1 Measured / Datasheet
G, T2 Wim?, °C Irradiance and module temperature of reference condition 2 Measured
Voct v Open-circuit voltage at a reference condition 1 (G, T1) Measured / Datasheet
Voc2 v Open-circuit voltage at a reference condition 2 (G2, T,) Measured
Isc2 Short-circuit current at a reference condition 2 (G, T») Measured
Vstc v Open-circuit voltage at STC (Gsrc=1000 W/m2, Tsrc=25°C) Datasheet
Istc A Short-circuit current at STC (Gsrc=1000 W/m?, Tstc=25°C) Datasheet
Irradiance correction factor for open circuit voltage which is linked with
- the diode thermal voltage D of the pn junction and the number of cells ns IEC 60891:2010

serially connected in the module D as defined in IEC 60891. A typical
value is 0.06

General formula:

1V, G
ETC=T, +— ﬂ—1—aln(—2)]
ﬂ VOCl

Variation 1
If the STC values are used as reference condition (Gstc=1000 W/m?, Tstc=25°C) and considering @ = 0.06, then

1lv G
ETC = 25°C +—=[-2%2 —1-0.06 In| —2*—

B |Vsrc 1000ﬂ
m2

Variation 2

Instead of the irradiances Gi and Gz, one can also use the ratio of short-circuit currents, which then is called self-
reference. This requires short circuit current to be linear according to IEC 60904-10. This simplifies the measurements
to be taken significantly as one essentially eliminates the requirement for measuring the irradiance and the
dependence on the spectrally matched devices.

1V, I
ETC = 25°C +=|-22 -1 -0.06 In (ﬂ)]
ﬁ VSTC STC
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8 Annex B: Hyperparameters tuning

8.1 Models applied on the full dataset

Hyperparameters values B_est _
tested combination
'‘penalty’ 7', '12', 'elasticnet’, 'none’ 1
‘alpha’ 0.01, 1, 5, 100 1
11_ratio' 0.01, 0.15, 0.5, 0.9 0.5
'C' 0.9, 1, 10 10
fit_intercept' True, False True
'intercept_scaling' 1,5,10 10
'min_samples_split' 2,5,6,7,10 5
'min_samples_leaf' 5,7, 8,10, 20 10
'max_depth' 20, 50, 70, 75, 100 50
'max_features' ‘auto', 'sqrt’, 'log2', 0.5, 0.9 ‘auto’
'n_estimators' 100, 150, 175, 200, 300 200
'max_features' ‘auto’, 'sqrt', 0.9 0.9
'max_depth' 20, 50, 100 50
'n_estimators' 100, 300, 500, 1000 1000
'max_samples' 0.25,0.5,0.7,0.9, 1 0.9
'max_features' 0.25,0.5,0.7,0.9,1 0.9
'max_depth' 10, 20, 100 10
'n_estimators' 10, 70, 100, 200 100
'learning_rate' 0.1,0.2,1.0 0.1

Table 8.1. Hyperparameters tuning: synthetic distribution “A” — performance metric: MAE
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Hyperparameters

Best

tested VEllliEs combination
'penalty’ 7', '12', 'elasticnet’, 'none' 1
‘alpha’ 0.01, 1, 5, 100 1
'I1_ratio' 0.01, 0.15,0.5, 0.9 0.5
'C' 0.9,0.95, 1, 10 10
fit_intercept’ True, False True
'intercept_scaling' 1, 10, 50 50
'min_samples_split' 2,5,6,7,10 5
'min_samples_leaf’ 5,7,8, 10, 20 10
'max_depth’ 20, 50, 70, 75, 100 50
'max_features' ‘auto’, 'sqrt', 'log2’, 0.5, 0.9 ‘auto’
'n_estimators' 100, 150, 175, 200, 300 150
'max_features' ‘auto’, 'sqrt', 0.9 0.9
'max_depth' 20, 50, 100 20
'n_estimators' 100, 300, 500, 1000 300
'max_samples' 0.25,0.5,0.7,0.9, 1 0.7
'max_features' 0.25,0.5,0.7,0.9,1 0.7
'max_depth' 10, 20, 100 10
'n_estimators' 10, 70, 100, 200 100
'learning_rate' 0.1,0.2,1.0 0.1
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Hyperparameters

Best

tested vEles combination
'penalty’ '11', 'I2', 'elasticnet’, 'none' ‘elasticnet’
‘alpha’ 0.01, 1, 5, 100 0.01
'I1_ratio' 0.01, 0.15,0.5, 0.9 0.9
'C' 0.9,0.95, 1, 10 10
fit_intercept’ True, False True
'intercept_scaling' 1, 10, 50 50
'min_samples_split' 2,5,6,7,10 5
'min_samples_leaf’ 5,7,8, 10, 20 10
'max_depth' 20, 50, 70, 75, 100 50
'max_features' ‘auto’, 'sqrt’, 'log2’, 0.5, 0.9 ‘auto’
'n_estimators' 100, 150, 175, 200, 300 200
'max_features' ‘auto’, 'sgrt’, 0.9 0.9
'max_depth’ 20, 50, 100 50
'n_estimators' 100, 300, 500, 1000 300
'max_samples' 0.25,0.5,0.7,0.9, 1 0.7
'max_features' 0.25,0.5,0.7,0.9, 1 0.7
'max_depth’ 10, 20, 100 10
'n_estimators' 10, 70, 100, 200 100
'learning_rate' 0.1,0.2,1.0 0.1
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i Values combination
'penalty’ 7', '12', 'elasticnet’, 'none' 1
‘alpha’ 0.01, 1, 5, 100 1
'11_ratio’ 0.01, 0.15, 0.5, 0.9 0.5
'C' 0.9,0.95, 1, 10 10
fit_intercept’ True, False True
'intercept_scaling' 1, 10, 50 50
'min_samples_split' 2,5,6,7,10 5
'min_samples_leaf’ 5,7,8, 10, 20 10
'max_depth' 20, 50, 70, 75, 100 50
'max_features' ‘auto’, 'sqrt', 'log2’, 0.5, 0.9 ‘auto’
'n_estimators' 100, 150, 175, 200, 300 175
'max_features' ‘auto’, 'sqrt', 0.9 0.9
'max_depth' 20, 50, 100 50
'n_estimators' 100, 300, 500, 1000 300
'max_samples' 0.25,0.5,0.7,0.9, 1 0.7
'max_features' 0.25,0.5,0.7,0.9,1 0.7
'max_depth' 10, 20, 100 10
'n_estimators' 10, 70, 100, 200 100
'learning_rate' 0.1,0.2,1.0 0.1
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8.2 Models applied on the dataset pre-processed through PCA

Hyperparameters values B(_est _
tested combination
'penalty’ 7', '12', 'elasticnet’, 'none' 1
‘alpha’ 0.01,0.1, 1,5, 100 1
'I1_ratio' 0.01, 0.15,0.5, 0.9 0.01
'C 0.5,0.9,1, 10 1
'fit_intercept' True, False True
'intercept_scaling' 1,5, 8, 10 1
'min_samples_split' 2,5,6,7,10 2
'min_samples_leaf’ 5,7, 8, 10, 20, 40 40
'max_depth’ 20, 50, 70, 75, 100 20
'max_features' ‘auto’, 'sqrt', 'log2’, 0.5, 0.9 '‘auto’
'n_estimators' 100, 200, 300, 400 400
'max_features' ‘auto’, 'sgrt’, 0.5, 0.9 0.5
'max_depth' 20, 50, 100 50
'n_estimators' 90, 100, 300, 500 300
'max_samples' 0.25,0.5,0.85, 1 0.85
'max_features' 0.25,0.5,0.85, 1 0.85
'max_depth' 10, 50, 100 10
'n_estimators' 10, 70, 100, 200 100
'learning_rate' 0.1,0.5, 1.0 0.1

Table 8.5. Hyperparameters tuning: synthetic distribution “A” — performance metric: MAE
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Hyperparameters

Values B.E}St :
tested combination
'‘penalty’ 7', '12', 'elasticnet’, 'none' 7'
‘alpha’ 0.01,0.1, 1,5, 100 0.01
'I1_ratio' 0.01, 0.15,0.5, 0.9 0.15
'C 0.5,0.8,09,1 0.9
fit_intercept’ True, False True
'intercept_scaling' 1, 8, 10, 50 10
'min_samples_split' 2,5,6,7,10 2
'min_samples_leaf' 5,7,8, 10, 20, 40 40
'max_depth' 20, 50, 70, 75, 100 20
'max_features' 'auto’, 'sqrt’, 'log2’', 0.5, 0.9 ‘auto’
'n_estimators' 100, 200, 300, 400 400
'max_features' ‘auto’, 'sqrt’, 0.5, 0.9 0.5
'max_depth’ 20, 50, 100 50
'n_estimators' 90, 100, 300, 500 90
'max_samples' 0.25,0.5,0.85, 1 0.85
'max_features' 0.25, 0.5,0.85, 1 0.85
'max_depth’ 10, 50, 100 10
'n_estimators' 10, 70, 100, 200 100
'learning_rate' 0.1,05,1.0 0.1
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Table 8.6. Hyperparameters tuning: synthetic distribution “A” — performance metric: RMSE



Hyperparameters

Best

tested VEllliEs combination
'‘penalty’ 7', '12', 'elasticnet’, 'none' 7'
‘alpha’ 0.01,0.1, 1,5, 100 0.01
'I1_ratio' 0.01, 0.15,0.5, 0.9 0.15
'C 0.5,0.8,09,1 0.8
fit_intercept’ True, False True
'intercept_scaling' 1, 8, 10, 50 50
'min_samples_split' 2,5,6,7,10 2
'min_samples_leaf' 5,7,8, 10, 20, 40 40
'max_depth' 20, 50, 70, 75, 100 20
'max_features' 'auto’, 'sqrt’, 'log2’', 0.5, 0.9 ‘auto’
'n_estimators' 100, 200, 300, 400 400
'max_features' ‘auto’, 'sqrt’, 0.5, 0.9 0.5
'max_depth’ 20, 50, 100 50
'n_estimators' 90, 100, 300, 500 300
'max_samples' 0.25,0.5,0.85, 1 0.85
'max_features' 0.25, 0.5,0.85, 1 0.85
'max_depth’ 10, 50, 100 10
'n_estimators' 10, 70, 100, 200 70
'learning_rate' 0.1,05,1.0 0.1
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Table 8.7. Hyperparameters tuning: synthetic distribution “B” — performance metric: MAE




Hyperparameters Best

tested VEllliEs combination
'‘penalty’ 7', '12', 'elasticnet’, 'none' 7'
‘alpha’ 0.01, 1, 5, 100 0.01
'I1_ratio' 0.01, 0.15,0.5, 0.9 0.15
'C 0.9,0.95, 1, 10 0.9
fit_intercept’ True, False True
'intercept_scaling' 1, 10, 50 10
'min_samples_split' 2,5,6,7,10 2
'min_samples_leaf' 5,7,8, 10, 20, 40 40
'max_depth' 20, 50, 70, 75, 100 20
'max_features' 'auto’, 'sqrt’, 'log2’', 0.5, 0.9 ‘auto’
'n_estimators' 100, 150, 175, 200, 300, 400 400
'max_features' ‘auto’, 'sqrt’, 0.9 'sqrt'
'max_depth’ 20, 50, 100 50
'n_estimators' 90, 100, 300, 500 300
'max_samples' 0.25,0.5,0.85, 1 0.85
'max_features' 0.25, 0.5,0.85, 1 0.85
'max_depth’ 10, 50, 100 10
'n_estimators' 10, 70, 100, 200 70
'learning_rate' 0.1,05,1.0 0.1

Table 8.8. Hyperparameters tuning: synthetic distribution “B” — performance metric: RMSE
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