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Abstract: Robotic Process Automation (RPA) tools are able to capture in
dedicated User Interface (UI) logs the execution of high volume routines previously
performed by a human user on the interface of a computer system, and then
emulate their enactment in place of the user by means of a software (SW) robot.
A UI log can record information about several routines, whose actions and events
are mixed in some order that reflects the particular order of their execution by the
user. In addition, the same user action may belong to different routines, making
its automated identification far from being trivial. The issue to automatically
understand which user actions contribute to a specific routine inside the UI log
is also known as segmentation. In this contribution, after discussing in detail
the issue of segmentation and all its potential variants, we present a novel
segmentation technique that leverages trace alignment in Process Mining for
automatically deriving the boundaries of a routine by analyzing the UI logs that
keep track of its execution, in order to cluster all user actions associated with
the routine itself in well bounded routine traces.
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1 Introduction
Robotic Process Automation (RPA) uses software robots (or simply SW robots)
to mimic and replicate the execution of highly routine tasks (in the following,
called routines) performed by humans in their application’s User Interface (UI).
SW robots encode, by means of executable scripts, sequences of fine-grained
interactions with a computer system such as: opening a file, selecting a field in a
form or a cell in a spreadsheet, copy and paste data across cells of a spreadsheet,
extract semi-structured data from documents, read and write from/to databases,
open emails and attachments, make calculations, etc. [Willcocks, 2016]. A typical
routine that can be automated by a SW robot using a RPA tool is transferring
data from one system to another via their respective UIs, e.g., copying records
from a spreadsheet application into a web-based enterprise information system
[Leno et al., 2020b].

Commercial RPA tools allow SW robots to automate a wide range of routines
in a record-and-replay fashion. The current practice for identifying the single steps
of a routine is by means of interviews, walk-throughs, and detailed observation
of workers conducting their daily work [Jimenez-Ramirez et al., 2019]. A recent
approach proposed by Bosco et al. [Bosco et al., 2019] makes this identification
less time-consuming and error-prone, as it enables to automatically extract from
a UI log, which records the UI interactions during a routine enactment, those
routine steps to be automated with a SW robot. While this approach is effective
in case of UI logs that keep track of single routine executions, i.e., there is an exact
1:1 mapping among a recorded user action and the specific routine it belongs to,
it becomes inadequate when the UI log records information about several routines
whose actions are mixed in some order that reflects the particular order of their
execution by the user. In addition, since the same user action may belong to
different routines, the automated identification of those user actions that belong
to a specific routine is far from being trivial. The challenge to automatically
understand which user actions contribute to which routines inside a UI log is
also known as segmentation [Agostinelli et al., 2019, Leno et al., 2020b].

In this chapter, after discussing in detail the issue of segmentation and all
its potential variants, we present a technique for automatically deriving the
boundaries of a routine by analyzing the UI log that keeps track of its execution,
in order to cluster all user actions associated with the routine itself in well
bounded routine traces. A routine trace represents an execution instance of a
routine within a UI log. To be more precise, as shown in Figure 1, starting from a
UI log previously recorded by a RPA tool and an interaction model representing
the expected behaviour of a routine performed during an interaction session with
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Fig. 1: Overview of the proposed segmentation technique

the UI, we propose a supervised algorithm that leverages trace alignment in
Process Mining [Adriansyah et al., 2011, de Leoni and Marrella, 2017, de Leoni
et al., 2018] to automatically identify and extract the routine traces by the UI
log. Such traces are finally stored in a dedicated routine-based log, which captures
exactly all the user actions happened during many different executions of the
routine, thus achieving the segmentation task. By identifying the routine traces,
we are also able to filter out those actions in the UI log that are not part of
the routine under observation and hence are redundant or represent noise. It is
worth noticing that a routine-based log obtained in this way can eventually be
employed by the commercial RPA tools to synthesize executable scripts in form
of SW robots that will emulate the routine behavior.

The rest of the chapter is organized as follows. Section 2 introduces a running
example that will be used to explain our technique. Section 3 describes the relevant
background on interaction models and UI logs. Section 4 illustrates the concept
of segmentation and all its peculiarities. Section 5 presents the details of our
technique to the automated segmentation of UI logs. Finally, Section 6 discusses
the related work, while Section 7 draws conclusions and outlines future works.

2 Running Example
Below, we describe a RPA use case inspired by a real-life scenario at Department of
Computer, Control and Management Engineering (DIAG) of Sapienza Universitá
di Roma. The scenario concerns the filling of the travel authorization request form
made by professors, researchers and PhD students of DIAG for travel requiring
prior approval. The request applicant must fill a well-structured Excel spreadsheet
(cf. Figure 2(a)) providing some personal information, such as her/his bio-data
and the email address, together with further information related to the travel,
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including the destination, the starting/ending date/time, the means of transport
to be used, the travel purpose, and the envisioned amount of travel expenses,
associated with the possibility to request an anticipation of the expenses already
incurred (e.g., to request in advance a visa). When ready, the spreadsheet is sent
via email to an employee of the Administration Office of DIAG, which is in charge
of approving and (only in this case) elaborating the request. Concretely, for each
row in the spreadsheet, the employee manually copies every cell in that row
and pastes that into the corresponding text field in a dedicated Google form (cf.
Figure 2(b)), accessible just by the Administration staff. Once the data transfer
for a given travel authorization request has been completed, the employee presses
the “Submit” button to submit the data into an internal database.
In addition, if the request applicant declares that s/he would like to use her/his
personal car as one of the means of transport for the travel, then s/he has to fill
a dedicated (simple) web form required for activating a special insurance for the
part of the travel that will be performed with the car. This further request will
be delivered to the Administration staff via email, and the employee in charge of
processing it can either approve or reject such request. At the end, the applicant
will be automatically notified via email of the approval/rejection of the request.

The above procedure, which involves two main routines (in the following,
we will denote them as R1 and R2), is performed manually by an employee of
the Administration Office of DIAG, and it should be repeated for any new travel
request. Routines such as these ones are good candidates to be encoded with
executable scripts and enacted by means of a SW robot within a commercial

(a) (b)

Fig. 2: UIs involved in the running example
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RPA tool. However, unless there is complete a-priori knowledge of the specific
routines that are enacted on the UI and of their concrete composition (this may
happen only if the exact sequence of user actions required to achieve the routines’
targets on the UI is recorded in the context of controlled training sessions), their
automated identification from an UI log is challenging, since the associated user
actions may be scattered across the log, interleaved with other actions that are
not part of the routine under analysis, and potentially shared by many routines.

3 Preliminaries
In this section, we present some preliminary concepts used throughout the chapter.
In Section 3.1, we describe the Petri net modeling language, which will be used
to formally specify the interaction models required to represent the structure of
the routines of interest, while in Section 3.2 we introduce the notion of UI log.

3.1 Interaction Models as Petri Nets

The research literature is rich of notations for expressing human-computer
dialogs as interaction models that allow to see at a glance the structure of a user
interaction with a UI [Paternò, 1999, Dix et al., 2004]. Existing notations can
be categorized in two main classes: diagrammatic and textual. Diagrammatic
notations include (among the others) various forms of state transition networks
(STNs) [Wasserman, 1985], Petri nets [Sy et al., 2000], Harel state charts [Harel,
1987], flow charts [Dix et al., 2004], JSD diagrams [Sutcliffe and Wang, 1991] and
ConcurTaskTrees (CTT) [Mori et al., 2002]. Textual notations include regular
expressions [Van Den Bos et al., 1983], Linear Temporal Logic (LTL) [Pnueli,
1977], Communicating Sequential Processes (CSPs) [Dignum, 2004], GOMS [John
and Kieras, 1996], modal action logic [Campos et al., 2016], BNF and production
rules [Feary, 2010].

While there are major differences in expressive power between different
notations, an increased expressive power is not always desirable as it may
suggest a harder to understand description, i.e., the dialog of a UI can become
unmanageable [Dix et al., 2004]. To guarantee a good trade-off between expressive
power and understandability of the models, we decided to use Petri nets for
their specification. Petri nets have proven to be adequate for defining interaction
models [Dix et al., 2004, Palanque and Bastide, 1995, Marrella and Catarci,
2018]. They may contain exclusive choices, parallel branches and loops, allowing
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Fig. 3: Interaction model for R1

Fig. 4: Interaction model for R2

the representation of extremely complex behaviours in a very compact way. Last
but not least, Petri nets provide a formal semantics, which allows to interpret
the meaning of an interaction model unambiguously.

From a formal point of view, a Petri net 𝑊 = (𝑃, 𝑇, 𝑆) is a directed graph
with a set 𝑃 of nodes called places and a set 𝑇 of transitions. The nodes are
connected via directed arcs 𝑆 ⊆ (𝑃 × 𝑇 ) ∪ (𝑇 × 𝑃 ) . Connections between
two nodes of the same type are not allowed. Places are represented by circles
and transitions by rectangles. Figures 3 and 4 illustrate the Petri nets used
to represent the interaction models of R1 and R2. Transitions are associated
with labels reflecting the user actions (e.g., system commands executed, buttons
clicked, etc.) required to accomplish a routine on the UI. For example, a proper
execution of R1 requires a path on the UI made by the following user actions:
– loginMail, to access the client email;
– accessMail, to access the specific email with the travel request;
– downloadAttachment, to download the Excel file including the travel request;
– openWorkbook, to open the Excel spreadsheet;
– openGoogleForm, to access the Google Form to be filled;
– getCell, to select the cell in the i-th row of the Excel spreadsheet;
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– copy, to copy the content of the selected cell;
– clickTextField, to select the specific text field of the Google form where the

content of the cell should be pasted;
– paste, to paste the content of the cell into the corresponding text field of the

Google form;
– formSubmit, to press the button to finally submit the Google form to the

internal database.

Note that, as shown in Figure 3, the user actions openWorkbook and openGoogleForm
can be performed in any order. Moreover, the sequence of actions ⟨getCell, copy,

clickTextField, paste⟩ will be repeated for any travel information to be moved
from the Excel spreadsheet to the Google form. On the other hand, the path of
user actions in the UI to properly enact R2 is as follows:
– loginMail, to access the client email;
– accessMail, to access the specific email with the request for travel insurance;
– clickLink, to click the link included in the email that opens the Google form

with the request to activate the travel insurance on a web browser;
– approveRequest, to press the button on the Google form that approves the

request;
– rejectRequest, to press the button on the Google form that rejects the request;

Note that the execution of approveRequest and rejectRequest is exclusive. Then,
in the interaction models of R1 and R2, there are transitions that do not represent
user actions but are needed to correctly represent the structure of such models.
These transitions, drawn with a black-filled rectangle, are said to be “invisible”,
and are not recorded in the UI logs (cf. Inv1, Inv2 and Inv3).

To understand our segmentation technique based on trace alignment in
Process Mining, we also need to briefly illustrate the dynamic behaviour of a
Petri net, i.e., its operational semantics. Given a transition 𝑡 ∈ 𝑇 , ∙𝑡 is used to
indicate the set of input places of 𝑡, which are the places 𝑝 with a directed arc
from 𝑝 to 𝑡 (i.e., such that (𝑝, 𝑡) ∈ 𝑆). Similarly, 𝑡∙ indicates the set of output
places, namely the places 𝑝 with a direct arc from 𝑡 to 𝑝. At any time, a place
can contain zero or more tokens, drawn as black dots. The state of a Petri net,
i.e., its marking, is determined by the number of tokens in places. Therefore, a
marking 𝑚 is a function 𝑚 : 𝑃 → N. In any run of a Petri net, the number of
tokens in places may change, i.e., the Petri net marking. A transition 𝑡 is enabled
at a marking 𝑚 iff each input place contains at least one token, i.e., ∀ 𝑝 ∈ ∙𝑡,
𝑚(𝑝) > 0. A transition 𝑡 can fire at a marking 𝑚 if and only if it is enabled. As
result of firing a transition 𝑡, one token is “consumed” from each input place
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and one is “produced” in each output place. This is denoted as 𝑚
𝑡−→ 𝑚′. In the

remainder, given a sequence of transition firing 𝜎 = ⟨𝑡1, . . . , 𝑡𝑛⟩ ∈ 𝑇 *, 𝑚0
𝜎−→ 𝑚𝑛

is used to indicate 𝑚0
𝑡1−→ 𝑚1

𝑡2−→ . . .
𝑡𝑛−→ 𝑚𝑛, i.e., 𝑚𝑛 is reachable from 𝑚0.

Since the executions of a routine have a start and a end, the interaction
models represented trough Petri nets need to be associated with an initial and
final marking. For example, in both routines of figures 3 and 4, the markings
with respectively one token in place start or in place end are the initial and
final marking (and no tokens in any other place). In the remainder of this paper,
we assume all Petri nets to be 1-bounded. A Petri net is 1-bounded if in any
reachable marking from the initial marking, no place ever contains more than
1 token. One-boundness is not a large limitation as the behavior allowed by
interaction models can be represented as 1-bounded Petri nets [Dix et al., 2004,
Marrella and Catarci, 2018].

3.2 UI Logs

A single UI log in its raw form consists of a long sequence of user actions recorded
during one user session.1 Such actions include all the steps required to accomplish
one or more relevant routines using the UI of one or many sw application/s. For
instance, in Figure 5, we show a snapshot of a UI log captured using a dedicated
action logger2 during the execution of R1 and R2. The employed action logger
enables to record the events happened on the UI, enriched with several data
fields describing their “anatomy”. For a given event, such fields are useful to keep
track the name and the timestamp of the user action performed on the UI, the
involved sw application, the human/sw resource that performed the action, etc.

For the sake of understandability, we assume here that any user action
associated to each event recorded in the UI log is mapped at most with one
(and only one) Petri net transition, and that the collection of labels associ-
ated to the Petri net transitions is defined over the same alphabet as the user
actions in the UI log,3 i.e., the alphabet of user actions in the UI log is a
superset of that used for defining the labels of Petri net transitions. In the
running example, we can recognize in R1 and R2 a universe of user actions of in-

1 We interpret a user session as a group of interactions that a single user takes within a
given time frame on the UI of a specific computer system.
2 The working of the action logger is described in [Agostinelli et al., 2020]. The tool is
available at:
https://github.com/bpm-diag/smartRPA
3 In [de Leoni and Marrella, 2017], it is shown how these assumptions can be removed.

https://github.com/bpm-diag/smartRPA
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terest 𝑍 = {𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺, 𝐻, 𝐼, 𝐿, 𝑀, 𝑁, 𝑂}, such that: 𝐴 = loginMail, 𝐵 =
accessMail, 𝐶 = downloadAttachment, 𝐷 = openWorkbook, 𝐸 = openGoogleForm,
𝐹 = getCell, 𝐺 = copy, 𝐻 = clickTextField, 𝐼 = paste, 𝐿 = formSubmit, 𝑀 =
clickLink, 𝑁 = approveRequest, 𝑂 = rejectRequest.

As shown in Figure 5, a UI log is not specifically recorded to capture pre-
identified routines. A UI log may contain multiple and interleaved executions
of one/many routine/s (cf. in Figure 5 the blue/red boxes that group the user
actions belonging to R1 and R2, respectively), as well as redundant behavior and
noise. We consider as redundant any user action that is unnecessary repeated
during the execution of a routine, e.g., a text value that is first pasted in a wrong
field by mistake and then is moved in the right place through a corrective action
on the UI. On the other hand, we consider as noise all those user actions that
do not contribute to the achievement of any routine target, e.g., a window that
is resized. In Figure 5, the sequences of user actions that are not surrounded by
a blue/red box can be safely labeled as noise.

Based on the foregoing, our segmentation technique aims at extracting
from the UI log all those user actions that match a distinguishable pattern
as represented by the interaction model of a generic routine R, filtering out
redundant actions and noise. To be more specific, any sequence of user actions
in the UI log that can be replayed from the initial to the final marking of the
Petri net-based interaction model of R is said to be a routine trace of R, i.e., a
complete execution instance of R within the UI log. For example, a valid routine
trace of R1 is ⟨𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹 , 𝐺, 𝐻, 𝐼, 𝐿⟩. The interaction model of R1
suggests that valid routine traces are also those ones where: (i) 𝐴 is skipped
(if the user is already logged in the client email); (ii) the pair of actions ⟨𝐷,

𝐸⟩ is performed in reverse order; (iii) the sequence of actions ⟨𝐹 , 𝐺, 𝐻, 𝐼⟩ is

Fig. 5: Snapshot of a UI log captured during the executions of R1 and R2
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executed several time before submitting the Google form. On the other hand,
two main routine traces can be extracted from R2: ⟨𝐴, 𝐵, 𝑀, 𝑁⟩ and ⟨𝐴, 𝐵, 𝑀,

𝑂⟩, again with the possibility to skip 𝐴, i.e., the access to the client email. Note
that, within a routine trace, the concept of time is usually defined in a way that
user actions in a trace are sorted according to the timestamp of their occurrence.

We conclude this section by introducing the concept of routine-based log as
a special container that stores all the routine traces extracted by a UI log and
associated to a generic routine R. Thus, the final outcome of our segmentation
technique will be a collection of as many routine-based logs as are the interaction
models of the routines of interest.

4 Segmentation
Given a UI log consisting of events including user actions having the same
granularity4 and potentially belonging to different routines, in the RPA domain
segmentation is the task of clustering parts of the log together which belong to
the same routine. In a nutshell, the challenge is to automatically understand
which user actions contribute to which routines, and organize such user actions
in well bounded routine traces Agostinelli et al. [2019], Leno et al. [2020b].

As shown in Section 3.2, in general a UI log stores information about
several routines enacted in an interleaved fashion, with the possibility that a
specific user action is shared by different routines. Furthermore, actions providing
redundant behavior or not belonging to any of the routine under observation
may be recorded in the log, generating noise that should be filtered out by a
segmentation technique. We can distinguish among three main forms of UI logs,
which can be categorized according to the fact that: (i) any user action in the
log exclusively belongs to a specific routine; (ii) the log records the execution of
many routines that do not have any user action in common; (iii) the log records
the execution of many routines, and the possibility exists that some performed
user actions are shared by many routines at the same time. In the following, we
analyze in detail case by case.
– Case 1: This is the case when a UI log captures many executions of the

same routine. Of course, in this scenario it is not possible to distinguish

4 The UI logs created by generic action loggers usually consist of low-level events associated
one-by-one to a recorded user action on the UI (e.g., mouse clicks, etc.). We will discuss
the abstraction issue in Section 6, where state-of-the-art techniques are shown that enable
to flatten the content of a log to a same granularity level.
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between shared and non-shared user actions by different routines, since the
UI log keeps track only of executions associated to a single routine.
Starting from our running example in Section 2, let us consider the simplest
case of a UI log 𝑈 that records a sequence of user actions resulting from
many non-interleaved executions of R1: 𝑈 = {𝐴11, 𝐵11, 𝐶11, 𝐷11, 𝐸11, 𝐹11,

𝐺11, 𝐻11, 𝐼11, 𝐿11, . . . , 𝐴12, 𝐵12, 𝐶12, 𝐷12, 𝐸12, 𝐹12, 𝐺12, 𝐻12, 𝐼12, 𝐿12}.
For the sake of understandability, we use a numerical subscript 𝑖𝑗 associated
to any user action to indicate that it belongs to the 𝑗 − 𝑡ℎ execution of the
𝑖− 𝑡ℎ routine under study. Of course, this information is not recorded in the
UI log, and discovering it (i.e., the identification of the subscripts) is one of
the “implicit” effects of segmentation when routine traces are built. Applying
a segmentation technique to the above UI log would trivially produce a
routine-based log 𝑈𝑅1 where the (already well bounded) executions of R1
are organized as different routine traces: 𝑈𝑅1 = {⟨𝐴11, 𝐵11, 𝐶11, 𝐷11, 𝐸11,

𝐹11, 𝐺11, 𝐻11, 𝐼11, 𝐿11, ⟩, . . . , ⟨𝐴12, 𝐵12, 𝐶12, 𝐷12, 𝐸12, 𝐹12, 𝐺12, 𝐻12, 𝐼12,

𝐿12⟩}.
The same routine-based log 𝑈𝑅1 would be obtained when the executions
of R1 are recorded in an interleaved fashion in the UI log, e.g., 𝑈 = {𝐴,
𝐵11, 𝐵12, 𝐶11, 𝐷11, 𝐶12, 𝐷12, 𝐸12, 𝐹12, 𝐺12, 𝐻12, 𝐼12, 𝐿12, 𝐸11, 𝐹11, 𝐺11,

𝐻11, 𝐼11, 𝐿11, . . .}. Here, the segmentation task becomes more challenging,
not only because the user actions of different executions of a same routine
are interleaved among each others, and it is not known a-priori to which
execution they belong to, but also for the presence of some user actions that
potentially belong at the same time to many executions of the routine itself.
This is the case of 𝐴 (that corresponds to loginMail), which can be performed
exactly once at the beginning of a user session and can be “shared” by many
executions of the same routine.
Another variant is when the execution of a routine is affected by noise or
redundant actions. For example, let us consider the following UI log recorded
after many execution of R1: 𝑈 = {𝐴11, 𝐵11, 𝐶11, 𝑌1, 𝐷11, 𝐸11, 𝐹11, 𝐺11,

𝐺11, 𝐺11, 𝐻11, 𝐼11, 𝐿11, . . . , 𝐴12, 𝑌𝑛−1, 𝐵12, 𝐶12, 𝐷12, 𝐸12, 𝑌𝑛, 𝐹12, 𝐺12,

𝐻12, 𝐼12, 𝐼12, 𝐼12, 𝐿12}. This log contains elements of noise, i.e., user actions
𝑌𝑘∈{1,𝑛} ∈ 𝑍 (remind that 𝑍 is the universe of user actions allowed by a UI
log, as introduced in Section 3.2) that are not allowed by R1, and redundant
actions like 𝐺11 (copy action) and 𝐼12 (paste action) that are unnecessary
repeated multiple times. Noise and redundant actions need to be filtered
out during the segmentation task because they do not contribute to the
achievement of the routine’s target.
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– Case 2: In this case, a UI log captures many executions of different routines,
with the assumption that the interaction models of such routines include
only transitions associated to user actions that are exclusive for that routines.
For example, let us suppose that in both interaction models of R1 and R2
the transitions 𝐴 and 𝐵 are not required, and the UI log is as follows: 𝑈

= {𝐶11, 𝐷11, 𝐸11, 𝐹11, 𝐺11, 𝐻11, 𝐼11, 𝐿11, 𝑀21, 𝑁21, . . . , 𝐶12, 𝐷12, 𝐸12,

𝐹12, 𝐺12, 𝐻12, 𝐼12, 𝐿12, 𝑀22, 𝑂22}. The output of the segmentation task
would consist of two routine-based logs, one per routine, which include the
following routine traces:
– 𝑈𝑅1 = {⟨𝐶11, 𝐷11, 𝐸11, 𝐹11, 𝐺11, 𝐻11, 𝐼11, 𝐿11⟩, . . . , ⟨𝐶12, 𝐷12, 𝐸12,

𝐹12, 𝐺12, 𝐻12, 𝐼12, 𝐿12⟩}
– 𝑈𝑅2 = {⟨𝑀21, 𝑁21⟩, . . . , ⟨𝑀22, 𝑂22⟩}

Similarly to what already seen in Case 1, it may happen that many executions
of the same routine (and, in this case, also of many different routines) are
interleaved among each other, and that noise and redundant actions are
also recorded in the log. Since we are assuming that there are no shared
actions among different routines, the complexity of the segmentation task in
presence of interleaved actions, noise and redundancy can be reduced to the
case of a single routine, cf. Case 1.

– Case 3: In this case, a UI log captures many executions of different routines,
and there exist user actions that are shared by such routines. This case
perfectly reflects what happens in the running example of Section 2. Let us
consider the following UI log: 𝑈 = {𝐴, 𝐵, 𝐶11, 𝐷11, 𝐸11, 𝐹11, 𝐺11, 𝐻11,

𝐼11, 𝐿11, 𝐵, 𝑀21, 𝑁21, . . . , 𝐵, 𝐶12, 𝐷12, 𝐸12, 𝐹12, 𝐺12, 𝐻12, 𝐼12, 𝐿12, 𝐵,
𝑀22, 𝑂22}. 𝐴 and 𝐵 are shared by R1 and R2, as they are included in
the interaction models of both routines. By analyzing the log, it can be
noted that: 𝐴 is potentially involved in the enactment of any execution of
R1 and R2, while 𝐵 is required by all executions of R1 and R2, but it is
not clear the association between the single executions of 𝐵 and the routine
executions they belong to. The complexity of the segmentation task here lies
in understanding to which routine traces the execution of 𝐴 and 𝐵 belong
to. The outcome of the segmentation task will be a pair of routine-based
logs generated as follows:

– 𝑈𝑅1 = {⟨𝐴, 𝐵11, 𝐶11, 𝐷11, 𝐸11, 𝐹11, 𝐺11, 𝐻11, 𝐼11, 𝐿11 ⟩, . . . , ⟨𝐴,

𝐵12, 𝐶12, 𝐷12, 𝐸12, 𝐹12, 𝐺12, 𝐻12, 𝐼12, 𝐿12 ⟩}
– 𝑈𝑅2 = {⟨𝐴, 𝐵21, 𝑀21, 𝑁21⟩, . . . , ⟨𝐴, 𝐵22, 𝑀22, 𝑂22⟩}

Consider that, while 𝐴 can belong to some routine executions and not to
others, making it not possible to understand to which exact routine execution
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it can be associated, in case of 𝐵 it is important to identify the association
between its i-th execution and the specific routine execution it belongs to.

The above cases have in common that all the user actions are stored within a
single UI log. It may happen that the same routine is spread across multiple
UI logs, in particular when there are multiple users that are involved in the
execution of the routine on different computer systems. This case can be tackled
by “merging” the UI logs where the routine execution is distributed into a single
UI log, reducing the segmentation issue to one of the already analyzed cases.

5 Segmentation Technique
In this section, we present our technique to tackle the segmentation issue of UI
logs that leverages trace alignment in Process Mining for deriving the boundaries
of a routine by analyzing the UI log that keeps track of its execution, in order to
cluster all user actions associated with the routine itself in well bounded routine
traces. Specifically, in Section 5.1, we first provide the relevant background on
trace alignment. Then, in Section 5.2, we present an overview of the general
approach underlying our segmentation technique depicting its main steps, and
we describe the technical details of the algorithm that implements the technique.

5.1 Alignment between UI Logs and Interaction Models as
Petri Nets

Trace alignment [Adriansyah et al., 2011, de Leoni and Marrella, 2017, de Leoni
et al., 2018] is a conformance checking technique within Process Mining that is
employed to replay the content of any trace of an event log against a process
model represented as a Petri net, one event at a time. For each trace in the log,
the technique identifies the closest corresponding trace that can be parsed by
the model, i.e., an alignment, together with a fitness value, which quantifies how
much the trace adheres to the process model. The fitness value can vary from 0
to 1. A fitness value equals to 1 means a perfect matching between the trace and
the model.

We perform trace alignment by constructing an alignment of a UI log 𝑈

(note that we can consider the entire content of the UI log as a single trace) and
an interaction model 𝑊 as a Petri net, which allows us to exactly pinpoint where
deviations occur. To this aim, the events in 𝑈 need to be related to transitions
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in the model, and vice versa. Building this alignment is far from trivial, since the
log may deviate from the model at an arbitrary number of places. To be more
specific, we need to relate “moves” in the log to “moves” in the model in order
to establish an alignment between an interaction model and a UI log. However,
it may be that some of the moves in the log cannot be mimicked by the model
and vice versa. We explicitly denote such “no moves” by ≫.

Definition 5.1 (Alignment Moves). Let 𝑊 = (𝑃, 𝑇, 𝑆) be a Petri net and 𝑈

be a UI log. A legal alignment move for 𝑊 and 𝑈 is represented by a pair (𝑞𝑈 ,

𝑞𝑊 ) ∈ (𝑇 ∪ {≫} × 𝑇 ∪ {≫}) ∖ {(≫,≫)} such that:
– (𝑞𝑈 , 𝑞𝑊 ) is a move in log if 𝑞𝑈 ̸= ≫ and 𝑞𝑊 = ≫,
– (𝑞𝑈 , 𝑞𝑊 ) is a move in model if 𝑞𝑈 =≫ and 𝑞𝑊 ∈ 𝑇 ,
– (𝑞𝑈 , 𝑞𝑊 ) is a synchronous move if 𝑞𝑈 = 𝑞𝑊 .

An alignment is a sequence of alignment moves:

Definition 5.2 (Alignment). Let 𝑊 = (𝑃, 𝑇, 𝑆) be a Petri net with an initial
marking and final marking denoted with 𝑚𝑖 and 𝑚𝑓 . Let also 𝑈 be a UI log. Let
Γ𝑊 be the universe of all alignment moves for 𝑊 and 𝑈 . Sequence 𝛾 ∈ Γ*

𝑊 is
an alignment of 𝑊 and 𝑈 if, ignoring all occurrences of ≫, the projection on
the first element yields 𝑈 and the projection on the second yields a sequence
𝜎′′ ∈ 𝑇 * such that 𝑚𝑖

𝜎′′
−−→ 𝑚𝑓 .

A move in log for a transition 𝑡 indicates that 𝑡 occurred when not allowed; a move
in model for a visible transition 𝑡 indicates that 𝑡 did not occur, when, conversely,
expected. Many alignments are possible for the same UI log and a Petri net.

𝛾1 = 𝐴 𝐵 𝑀 𝑁
𝐴 𝐵 𝑀 𝑁

𝛾2 = 𝐴 ≫ 𝐵 𝑀 𝑁
≫ 𝐼𝑛𝑣3 𝐵 𝑀 𝑁

Fig. 6: Alignments of ⟨𝐴,𝐵,𝑀,𝑁⟩
and the Petri net in Figure 4.

For example, Figure 6 shows two possible
alignments for a UI log consisting of the fol-
lowing sequence of user actions ⟨𝐴, 𝐵, 𝑀, 𝑁⟩
and the Petri net in Figure 4, representing the
interaction model of R2. Note how moves are
represented vertically. For example, as shown
in Figure 6, the first move of 𝛾1 is (𝐴, 𝐴), i.e.,
a synchronous move of 𝐴, while the first and

second move of 𝛾2 are a move in log and model, respectively. We aim at finding
a complete alignment of 𝑈 and 𝑊 with minimal number of deviations (i.e., of
moves in log/model) for visible transitions, also known in literature as optimal
alignments. With reference to the alignments in Figure 6, 𝛾1 have four synchron-
ous moves and 𝛾2 have one move in log for visible transitions and one move in
model for the invisible transition 𝐼𝑛𝑣3 (that does not count for the computation



14 Contents

in
pu

t
start t1 p1

t3

t2

p2 endt4

fil
te

rin
g

model-based 
filtered
UI log

tra
ce

 a
lig

nm
en

t

UI log

routine traces

interaction
models

for each model

ou
tp

ut

routine-based 
log

Fig. 7: Overview of the general approach underlying the proposed segmentation technique

of the fitness value). As a consequence, 𝛾1 is an optimal alignment and can be
returned. Note that its fitness value is exactly equal to 1, since it is consists only
of synchronous moves enabling 𝑈 to be completely replayed from the initial to
the final marking of 𝑊 . For the sake of simplicity, we are assuming here that all
the deviations have the same severity. However, the severity of a deviation can
be customized on a ad-hoc basis [de Leoni and Marrella, 2017].

5.2 The General Approach and the Segmentation
Algorithm

The general approach underlying our segmentation techniques consists of two
methodological phases, filtering and trace alignment, to be applied in sequence,
as shown in Figure 7. Algorithm 1 shows the technical details of the algorithm
that concretely implements such phases.

The algorithm takes in input a UI log 𝑈 , a set of interaction models 𝑊𝑠𝑒𝑡

and returns a set of routine-based logs 𝑈𝑠𝑒𝑡. For each interaction model 𝑤 ∈𝑊𝑠𝑒𝑡

(one for each routine of interest) represented as Petri nets, the algorithm performs
the following steps:
1. Filtering: The filtering phase is used to filter out noisy actions from the UI

log. Specifically, for each interaction model 𝑤 ∈𝑊𝑠𝑒𝑡, a local copy of the UI
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Algorithm 1: Algorithm implementing our segmentation technique
Parameters : a UI log 𝑈 , a set of interaction models 𝑊𝑠𝑒𝑡

Result: A set 𝑈𝑠𝑒𝑡 of routine-based logs
1 𝑈𝑠𝑒𝑡 ← ∅;
2 forall 𝑤 ∈ 𝑊𝑠𝑒𝑡 do
3 𝑈𝑤 ← duplicate(𝑈);
4 𝑈𝑤

𝜑 ← filter(𝑈𝑤);
5 𝑈𝑤

𝑅 ← ∅;
6 repeat
7 𝛾𝑜𝑝𝑡 ← trace alignment (𝑈𝑤

𝜑 ,𝑤);
8 𝛾𝑜𝑝𝑡

𝑠𝑚 ← extract(𝛾𝑜𝑝𝑡);
9 if 𝛾𝑜𝑝𝑡

𝑠𝑚 is not empty then
10 create a trace 𝜏𝑠𝑚 from 𝛾𝑜𝑝𝑡

𝑠𝑚 ;
11 create a temporary UI log 𝑈𝑤

𝑠𝑚 from 𝜏𝑠𝑚;
12 fitness ← compute fitness from trace alignment (𝑈𝑤

𝑠𝑚,𝑤);
13 if fitness is 1 then
14 add 𝜏𝑠𝑚 to 𝑈𝑤

𝑅 ;
15 else
16 discard 𝜏𝑠𝑚;
17 end
18 remove the events associated to 𝜏𝑠𝑚 from 𝑈𝑤

𝜑 ;
19 end
20 until 𝛾𝑜𝑝𝑡

𝑠𝑚 is not empty;
21 add 𝑈𝑤

𝑅 to 𝑈𝑠𝑒𝑡;
22 end
23 return 𝑈𝑠𝑒𝑡

log 𝑈𝑤 is created (line 3). Then, all user actions that appear in 𝑈𝑤 but
that can not be replayed by any transition of 𝑤 are removed from 𝑈𝑤. The
output of this step is a model-based filtered UI log 𝑈𝑤

𝜑 (line 4). Working
with 𝑈𝑤

𝜑 rather than with 𝑈𝑤 will allow us to apply the trace alignment
technique neglecting all the potential moves in log with user actions that
could never be replayed by 𝑤. As a consequence, this will drastically reduce
the number of alignment steps required to find optimal alignments, and at
the same time optimize the performance of the algorithm. Before moving to
the next step, a new routine-based log 𝑈𝑤

𝑅 is initialized (line 5).
2. Trace Alignment: The second step consists of applying the trace alignment

technique discussed in Section 5.1 for any interaction model 𝑤 ∈𝑊𝑠𝑒𝑡 and
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its associated model-based filtered UI log 𝑈𝑤
𝜑 . This enables to extract from

𝑈𝑤
𝜑 all those user actions that match a distinguishable pattern with 𝑤 in

the form of an optimal alignment 𝛾𝑜𝑝𝑡 (line 7). Trace alignment allows to
pinpoint the synchronous moves between 𝑈𝑤

𝜑 and 𝑤. If they exist, the user
actions involved in synchronous moves are extracted and stored into 𝛾𝑜𝑝𝑡

𝑠𝑚

(line 8). Note that focusing just on synchronous moves allows us to exclude
all redundant user actions from the analysis. Then, the algorithm:
(a) creates a trace 𝜏𝑠𝑚 consisting of the user actions associated with the

synchronous moves stored in 𝛾𝑜𝑝𝑡
𝑠𝑚 (line 10);

(b) creates a (temporary) UI log 𝑈𝑤
𝑠𝑚 containing only the trace 𝜏𝑠𝑚 (line

11), which is required to properly run (again) trace alignment;
(c) performs a new alignment between 𝑈𝑤

𝑠𝑚 and 𝑤 with the goal to compute
the fitness value (line 12).

In case the fitness value is equal to 1, this means that the 𝑈𝑤
𝑠𝑚 (and, con-

sequently, 𝜏𝑠𝑚) can be replayed from the start to the final marking of 𝑤,
making 𝜏𝑠𝑚 a valid routine trace of 𝑤. In such a case, 𝜏𝑠𝑚 is stored into 𝑈𝑤

𝑅

(line 14) and all the events associated to the synchronous moves in 𝜏𝑠𝑚

are removed by 𝑈𝑤
𝜑 (line 18). On the contrary, a fitness value lower than 1

indicates the presence of at least one move in the model in 𝜏𝑠𝑚 with respect
to 𝑤, i.e., 𝜏𝑠𝑚 can not be completely replayed by 𝑤 and is not a valid routine
trace, meaning that we can discard it (line 16).

The above two steps can be repeated until 𝛾𝑜𝑝𝑡
𝑠𝑚 is not empty (line 20), i.e.,

until there are synchronous moves in the computed alignment. At the end of
the iteration, the routine-based log 𝑈𝑤

𝑅 is stored into 𝑈𝑠𝑒𝑡 (line 21), and the
algorithm starts to analyze the next interaction model into 𝑊𝑠𝑒𝑡. In conclusion,
the algorithm computes a number of routine-based logs equal to the number of
interaction models under study.

It is worth to notice that: (i) for the computation of the trace alignment,
the algorithm relies on the highly-scalable planning-based alignment technique
implemented in our previous work [de Leoni and Marrella, 2017], which we
have properly customized for our purposes; and (ii) the algorithm is able to
achieve cases 1, 2 and 3 discussed in Section 4, except when there are interleaved
executions of shared user actions by different routines. In that case, the risk
exists that a shared user action is associated to a wrong routine execution, i.e.,
clustered in a wrong routine trace.
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5.2.1 An execution instance of the segmentation algorithm

We show now an execution instance of Algorithm 1 applied to the following UI
log 𝑈 = {𝐴, 𝐵, 𝐶, 𝑌1, 𝐷, 𝐸, 𝐹, 𝐺, 𝐺, 𝐺, 𝐻, 𝐼, 𝐿, 𝐵, 𝑀, 𝑁, . . . , 𝐵, 𝑌𝑛−1,

𝐶, 𝐷, 𝐸, 𝑌𝑛, 𝐹, 𝐺, 𝐻, 𝐼, 𝐼, 𝐼, 𝐿, 𝐵, 𝑀, 𝑂}. The log contains elements of noise,
i.e., user actions 𝑌𝑘∈{1,𝑛} that are not allowed by R1 and R2, and redundant
actions like 𝐺 and 𝐼 that are unnecessary repeated multiple times. In addition, 𝐴

and 𝐵 are shared by R1 and R2, as they are included in the interaction models
of both routines. In particular, 𝐴 is potentially involved in the enactment of any
execution of R1 and R2, while 𝐵 is required by all executions of R1 and R2.

The algorithm takes in input: (i) the UI log 𝑈 and (ii) the interaction models
of R1 and R2, and computes a set of routine-based logs 𝑈𝑠𝑒𝑡 by executing the
following steps:
– (line 1): initializes the set of interaction models 𝑈𝑠𝑒𝑡;
– (line 2): iterates on the interaction models of R1 and R2. For the sake of

space, we focus only on the steps computed in the case of R1;
– (line 3): creates a local copy of 𝑈 , namely 𝑈𝑤;
– (line 4): filters 𝑈𝑤 from noise, so 𝑈𝑤

𝜑 = {𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹 , 𝐺, 𝐺, 𝐺, 𝐻,

𝐼, 𝐿, 𝐵, . . . , 𝐵, 𝐶, 𝐷, 𝐸, 𝐹 , 𝐺, 𝐻, 𝐼, 𝐼, 𝐼, 𝐿, 𝐵}. In this step, the user
actions 𝑌𝑘∈{1,𝑛} and 𝑀, 𝑁, 𝑀 (being exclusively related to R2) are filtered
out by the log. On the other hand, redundant actions still remain in the log;

– (line 5): initializes the routine-based log 𝑈𝑤
𝑅 ;

– (line 7): computes the trace alignment between 𝑈𝑤
𝜑 and the interaction

model of R1, namely 𝑤.

𝛾𝑜𝑝𝑡 = 𝐴 𝐵 𝐶 𝐷 𝐸 𝐹 𝐺 𝐺 𝐺 𝐻 𝐼 𝐿 𝐵 ... 𝐵
𝐴 𝐵 𝐶 𝐷 𝐸 𝐹 𝐺 ≫ ≫ 𝐻 𝐼 𝐿 ≫ ... ≫

– (line 8): extracts the synchronous moves from 𝛾𝑜𝑝𝑡 into 𝛾𝑜𝑝𝑡
𝑠𝑚 .

– (line 9): evaluates to 𝑇𝑟𝑢𝑒, as 𝛾𝑜𝑝𝑡
𝑠𝑚 is not empty;

– (line 10): computes the trace 𝜏𝑠𝑚 starting from 𝛾𝑜𝑝𝑡
𝑠𝑚 . So 𝜏𝑠𝑚 = ⟨𝐴, 𝐵, 𝐶,

𝐷, 𝐸, 𝐹 , 𝐺, 𝐻, 𝐼, 𝐿⟩;
– (line 11): adds the trace 𝜏𝑠𝑚 in 𝑈𝑤

𝑠𝑚;
– (line 12): computes trace alignment between 𝑈𝑤

𝑠𝑚 and 𝑤.

𝐴 𝐵 𝐶 𝐷 𝐸 𝐹 𝐺 𝐻 𝐼 𝐿
𝐴 𝐵 𝐶 𝐷 𝐸 𝐹 𝐺 𝐻 𝐼 𝐿



18 Contents

𝑈𝑤
𝑠𝑚 can be replayed without deviations from the start to the final marking

of 𝑤, meaning a perfect fitness between the log and the interaction model;
– (line 13): evaluates to 𝑇𝑟𝑢𝑒, as the fitness of the alignment (cf. line 12)

is equal to 1;
– (line 14): adds 𝜏𝑠𝑚 in 𝑈𝑤

𝑅 , i.e., 𝜏𝑠𝑚 is recognized as a valid routine trace;
– (line 18): removes all the events associated with the synchronous moves

in 𝜏𝑠𝑚 from 𝑈𝑤
𝜑 . Thus, 𝑈𝑤

𝜑 = {𝐺, 𝐺, 𝐵, . . . , 𝐵, 𝐶, 𝐷, 𝐸, 𝐹 , 𝐺, 𝐻, 𝐼, 𝐼, 𝐼,

𝐿, 𝐵 };
– (line 20): Since 𝛾𝑜𝑝𝑡

𝑠𝑚 is not empty, the algorithm comes back to line 6.
After repeating the above steps from line 7 to line 14, the algorithm
discovers a second routine trace 𝜏𝑠𝑚 = ⟨𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺, 𝐻, 𝐼, 𝐿⟩ and
adds it in 𝑈𝑤

𝑅 . Like before, all the events associated with the synchronous
moves in 𝜏𝑠𝑚 are removed from 𝑈𝑤

𝜑 . Thus, 𝑈𝑤
𝜑 = {𝐺, 𝐺, 𝐵, . . . , 𝐼, 𝐼, 𝐵 }.

The subsequents iterations of the algorithm do not discover new routine
traces for R1, since the only synchronous moves extracted in the various
alignment steps between 𝑤 and 𝑈𝑤

𝜑 are the 𝐵𝑠, 𝐺𝑠 and 𝐼𝑠 that are discarded
(due to the fitness value of 𝛾𝑜𝑝𝑡

𝑠𝑚 that is < 1). It is worth to notice that
redundant user actions 𝐺 and 𝐼 are removed from 𝑈𝑤

𝜑 during these iterations.
The algorithm ends to iterate when 𝛾𝑜𝑝𝑡

𝑠𝑚 is empty, that is, when there are no
more synchronous moves to extract;

– (line 21): After the last iteration ends, the routine-based log 𝑈𝑤
𝑅 is stored

into 𝑈𝑠𝑒𝑡, and the algorithm starts to analyze the interaction model of R2.

The outcome of the segmentation task will be a set of routine-based logs (in this
case two, since the number of interaction models under study is two) generated
as follows: 𝑈𝑠𝑒𝑡 = {{⟨𝐴, 𝐵11, 𝐶11, 𝐷11, 𝐸11, 𝐹11, 𝐺11, 𝐻11, 𝐼11, 𝐿11 ⟩, . . . ,

⟨𝐵12, 𝐶12, 𝐷12, 𝐸12, 𝐹12, 𝐺12, 𝐻12, 𝐼12, 𝐿12 ⟩}, {⟨𝐴, 𝐵21, 𝑀21, 𝑁21⟩, . . . ,

⟨𝐵22, 𝑀22, 𝑂22⟩}}.

6 Related work
In the field of RPA, segmentation is an issue still not so explored, since the
current practice adopted by commercial RPA tools for identifying the routine
steps often consists of detailed observations of workers conducting their daily
work. Such observations are then “converted” in explicit flowchart diagrams
[Jimenez-Ramirez et al., 2019], which are manually modeled by expert RPA
analysts to depict all the potential behaviours (i.e., the traces) of a specific
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routine. In this setting, as the routine traces have been already (implicitly)
identified, segmentation can be neglected.

On the other hand, following a similar trend that has been occurring in the
Business Process Management (BPM) domain [Marrella et al., 2018, Marrella,
2019], the research on RPA is moving towards the application of intelligent
techniques to automate all the steps of a RPA project, as proven by many
recent works in this direction (see below). In this context, segmentation can be
considered as one of the “hot” key research effort to investigate [Agostinelli et al.,
2019, Leno et al., 2020b].

With regard to previous works, even if more focused on traditional business
processes in BPM rather than on RPA routines, [Fazzinga et al., 2018] comes
closest to our technique. This work proposes a probabilistic interpretation ap-
proach that employs predefined behavioural models to establish which process
activities (generated by an arbitrary number of process instances) belong to which
process model. Similarly to [Fazzinga et al., 2018], our segmentation technique
falls in the supervised category, as it can be applied only in presence of pre-defined
interaction models in input. On the other hand, differently by [Fazzinga et al.,
2018], our approach is not probabilistic, but is thoroughly quantitative, based on
the computation of fitness values.

In [Bosco et al., 2019], the authors provide a method to analyze UI logs in
order to discover routines that are fully deterministic and thus amenable for
automation. The method combines a technique for compressing a set of sequences
of user actions into an acyclic automaton using rule mining techniques and data
transformations. However, this approach is effective in case of UI logs that keep
track of well-bounded routine executions, and becomes inadequate when the
UI log records information about several routines whose actions are potentially
interleaved.

In [Leno et al., 2020a], the authors propose a technique to identify candidate
routines to be automated starting from an unsegmented UI log. The technique
is able to discover the execution traces of a specific routine relying on the
automated synthesis of a control-flow graph that describes the observed directly-
follow relations between the user actions. The technique in [Leno et al., 2020a]
is effective to tackle some simple variants of Case 1 and Case 2 (cf. Section 4),
while loses in accuracy in presence of recurrent noise and interleaved routine
executions.

In [Gao et al., 2019], the authors propose a self-learning approach to automat-
ically detect high-level RPA-rules from captured historical low-level behaviour
logs. An if-then-else deduction logic is used to infer rules from behaviour logs by
learning relations between the different routines performed in the past. Then,
such rules are employed to facilitate the SW robots instantiation. A similar ap-
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proach is adopted in [Le and Gulwani, 2014], where the FlashExtract framework
is presented. FlashExtract allows to extract relevant data from semi-structured
documents using input-output examples, from which one can derive some rela-
tions underlying the working of a routine. Differently from our segmentation
technique, which is able to extract the routine traces, i.e., the concrete behaviours
of a routine, the above works allow to discover partial views of the working of a
routine.

There exist other approaches that focus on learning the anatomy of routines
not analyzing UI logs but from natural language descriptions of the procedures
underlying such routines. In this direction, the work [Ito et al., 2020] defines a
new grammar for complex workflows with chaining machine-executable meaning
representations for semantic parsing. In [Leopold et al., 2018], the authors
provide an approach to learn activities from text documents employing supervised
machine learning techniques such as feature extraction and support vector
machine training. Similarly, in [Han et al., 2020] the authors adopt a deep
learning approach based on Long Short-Term Memory (LSTM) recurrent neural
networks to learn the relationship between user actions.

Moreover, even if the target is not to resolve the segmentation issue, many
research works exist that analyze UI logs at different levels of abstraction and
that can be potentially useful to realize segmentation techniques. With the
term “abstraction” we mean that groups of user actions to be interpreted as
executions of high-level activities. In [Baier et al., 2014], the authors present a
semi-automated approach for finding a set of candidate mappings between the
user actions stored in a UI log and instances of high-level activities. This scenario
requires a human-in-the-loop to be involved in the filtering phase to resolve the
ambiguities on the mapping between user actions and activities. The works [Baier
et al., 2015] proposes a method to find a global one-to-one mapping between
the user actions that appear in the UI log and the high-level activities of a
given interaction model. This method leverages constraint-satisfaction techniques
to reduce the set of candidate mappings. Similarly, in [Ferreira et al., 2014],
starting from a state-machine model describing the routine of interest in terms of
high-level activities, the authors employ heuristic techniques to find a mapping
from a “micro-sequence” of user actions to the “macro-sequence” of activities
in the state-machine model. Finally, in [Mannhardt et al., 2018], a technique is
presented that maps low-level event types to multiple high-level activities (while
the event instances, i.e., with a specific timestamp in the log, can be coupled
with a single high-level activity). However, segmentation techniques in RPA must
enable to associate low-level event instances (corresponding to our UI actions)
to multiple routines.
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In addition to the above supervised techniques, there are unsupervised
techniques [Günther et al., 2009, Bose and van der Aalst, 2009, Folino et al.,
2014, 2015] that try to convert each sequence of user actions into a sequence of
higher level activities without any background knowledge on the structure of the
routines whose execution generates the UI log. Starting from the UI log, such
works exploit clustering techniques to aggregate user actions into clusters, where
any cluster represents a high-level activity associated to a well-defined sequence
of user actions. The final outcome is an abstracted view of the UI log, obtained
by replacing each user action with a label identifying the cluster containing it.

7 Conclusion
To tackle the segmentation challenge, in this chapter we have presented a tech-
nique, coupled with a supervised algorithm, leveraging trace alignment in Process
Mining to identify sequences of user actions in a UI log that belong to specific
routine executions, clustering them in well bounded routine traces. Our work is
based on a supervised assumption since we know a-priori the structure of the
routines, namely the interaction models. Despite this limitation, we consider
this contribution as an important first step towards the development of a more
complete and unsupervised technique to the segmentation of UI logs.

In this direction, as a future work, we are going to perform a robust evaluation
of the algorithm on synthetic and real-world case studies with heterogeneous
UI logs. In addition, we aim at relaxing the supervised assumption in different
ways: (i) by employing declarative rules [Pesic et al., 2007] rather than Petri nets
to represent interaction models, allowing us to reason over a partial knowledge
of the working of the routines; (ii) by investigating sequential pattern mining
techniques [Dong, 2009] to examine frequent sequences of user actions having
common data attributes; (iii) by analyzing web log mining techniques [Mobasher
and Nasraoui, 2011], whose input is a set of clickstreams and the goal is to extract
sessions where a user engages with a web application to fulfill a goal; (iv) by
employing machine learning techniques to automatically identify sequences of
user actions associated with a routine execution without any previous knowledge
of the routines’ structure.
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