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The problem of time is one of the most relevant open issues in canonical quantum gravity. Although there
is a huge literature about this topic, a commonly accepted solution has not been found yet. Here, we focus on
the semiclassical approach to the problem of time, that has themain goal of reproducing quantum field theory
on a fixedWentzel-Kramers-Brillouin (WKB) background accounting also for quantum gravity corrections.
We analyze the different choices of the expansion parameter and discuss the problems arising in previous
proposals, where a nonunitary evolution emerges as an effect of quantum gravity corrections. In this work,
we develop a new approach to solve this problem by performing theWKBexpansionwith the introduction of
the so-called kinematical action as a clock for quantum matter, that allows to recover a unitary dynamics.
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I. INTRODUCTION

The application of canonical quantization procedures
to general relativity (GR) is the most traditional attempt
to derive a quantum theory of the gravitational field.
Canonical quantization—especially of gauge field theories—
has mathematical ambiguities, but can at least yield an
approximation of the real quantum theory and a good
framework to deal with its main issues [1].
One of the long-standing problems of canonical quantum

gravity is the so-called frozen formalism, i.e., the absence
of an evolution of the quantum gravitational field with
respect to an external clock [2].
Over the years, many approaches have been proposed to

address this question, based both on introducing time
through some matter source [3,4] or identifying it with
an internal source-time variable [5]; they can differ among
each other also for constructing time variables before or
after the canonical quantization procedure has been per-
formed. The common starting point of these works is the
concept of relational time [6]: by imposing suitable
boundary conditions, a chosen subsystem can be properly
adopted as a clock for the remaining part of the quantum
system. However, these approaches seem to be in contra-
diction with the fundamentals of quantum mechanics that
time is an external parameter and measurements are
performed by a classical observer. On the basis of a
relational time approach, it is not clear how to reproduce

the proper limit of quantum field theory on a curved
background, starting from the Wheeler-DeWitt (WDW)
equation [7].
In this respect, a different proposal has been investigated

in [8], where the situation considered is such that the
quantum system can be separated into a set of semiclassical
WKB variables and a “small,” fast, purely quantum
component. This scenario represents the quantum gravity
version of a Born-Oppenheimer (BO) approximation, with
the peculiar feature that now the dependence of the fast
quantum system on the semiclassical variables can be used
to reintroduce the notion of an external time for the fast
system component, essentially coinciding with the standard
label time of the space-time slicing. This approach, which
can be applied to any set of variables (see, e.g., [9]), is
particularly appropriate to reconstruct the limit of quantum
field theory on a classical curved background from quan-
tum gravity. For a discussion on the necessary conditions to
adopt the BO approximation and applications, see [10].
The study [8], which represents the starting point in this

path, is based on the WKB expansion of the gravity-matter
system, performed using the Planck constant as the natural
expansion parameter and cutting the dynamics up to first
order in ℏ. A similar proposal is implemented in [11], but
using an expansion parameterM proportional to the square
of the Planck mass (de facto the Newton constant) and
expanding the dynamics up to, in principle, any order of
approximation. This study has the merit to arrive to similar
results than the former [8], but without requiring the rapid
variation of the system wave function with respect to the
small, quantum subsystem variables.
The emerging problem in [11] is that, as far as the next

order of approximation is considered, which corresponds to
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quantum gravity corrections to quantum field theory, a
nonunitary character of the quantum dynamics emerges.
This result prevents the predictivity of the approach at such
order. Nonetheless in [12] the study of cosmological
perturbations on a classical isotropic Robertson-Walker
background is developed in the framework of the quantum
gravity corrections found above: the application shows the
modification of the inflationary spectrum of perturbations,
due to nonclassical effects of the gravitational field, and the
smallness of the nonunitary contributions.
Subsequently, two different proposals to solve the non-

unitary problem of the WKB theory, at the order of quantum
gravity corrections, have been developed in [13,14]. The
proposed solutions rely on two different points of view: one
aims to define a conserved probability density, disregarding
the details of the evolution quantum operator, with an
extended (gauge invariant) BO approximation; the other
aims to reconstruct a posteriori awell-behaving Schrödinger
evolution of the quantum subsystem, by altering the pure
WKB dynamics of the gravitational background.
In this study, we offer a critical analysis of these proposals

and outline how the fundamental problem of dealing with
nonunitary contributions in the quantum dynamics has not
been properly addressed yet. In fact, regarding the proposal
[13], apart from completing the analysis by properly rescal-
ing the background wave function (which implies an
important cancellation of the backreaction that quantum
matter exerts on the background), we clarify how the
evolution operator still presents the nonunitary features
outlined in [11] and we stress that no real Hilbert space is
constructed in this approach, since the scalar product of two
different states is not dynamically preserved.
On the other hand, the approach [14], based on using the

Hamiltonian and corrected Hamiltonian complex eigenval-
ues instead of the operators, manages to remove the
nonunitary terms via a phase redefinition of the quantum
wave function, using two problematic requirements: (i) the
spectrum of the time derivative of the corrected
Hamiltonian operator is constructed with the time deriv-
atives of the respective eigenvalues and (ii) the matter
Hamiltonian operator and its time derivative must com-
mute. These two features are here shown to be not valid in
general and therefore this procedure must be considered an
ad hoc solution valid in specific situations only. A more
subtle problem of this approach is the lack of gauge
invariance under the phase transformations performed on
the wave functions, a feature that is instead present in [13].
We here develop a proposal to solve the nonunitary

problem discussed above, based on a different construction
of the physical clock for the gravity-matter system in the
considered WKB separation of the dynamics. The main
concept of this proposal is the introduction of the so-called
kinematical action [15], see also [16], as a clock for
quantum matter, which modifies the results of the WKB
expansion performed in the parameter M related to the

Planck mass (as in [11]). This component consists of an
additional Hamiltonian term that reinstates the covariance
of the theory under Arnowitt-Deser-Misner (ADM) foli-
ation, thus recovering a covariant construction of the
parabolic constraints for quantum matter fields on a curved
classical background. In fact, by fixing the background
metric in a given reference frame, the lapse function and the
shift vector would be naturally fixed without the introduc-
tion of such term, so that the dynamics of a quantum field
on that space-time representation would no longer be
associated to the Dirac constraints from which a functional
Schrödinger dynamics would naturally emerge.
As a result of the implementation of the kinematical

action, the quantum dynamics of the field is characterized
by parabolic constraints, linear in the momentum canoni-
cally conjugate to the four-dimensional variables, thought
as fields depending on the slicing space-time variables.
Then, making use of the expression of the deformation
vector, the resulting Dirac implementation of these con-
straints turns out to coincide with a functional Schrödinger
equation.
Here, the kinematical action, which is in principle added

to the full quantum system of gravity and matter, is
regarded as a fast quantum component, on the same footing
of the real quantum matter field. Thus, in the present
context, the fluid associated to the kinematical action does
not appear in the Hamilton-Jacobi equation and the
standard Einsteinian dynamics of the gravitational back-
ground is unaffected, as viewed at the order M of the
considered perturbative expansion.
At the order zero in the parameter M, we are able to

recover a standard functional Schrödinger equation for the
quantum field, overlapping to standard quantum field
theory. Finally, at the order of expansion 1=M, we arrive
to write down a Schrödinger equation containing correc-
tions from the quantum nature of the gravitational field, as
viewed in a WKB expansion of the associated vacuum
Wheeler-DeWitt equation. The modification is linked to the
classical function which is solution of the Hamilton-Jacobi
equation and it is responsible for a term, whose morpho-
logy is clearly shown to be unitary.
The results of the approach here presented offer a new

investigation tool to evaluate the effect of a nonpurely
classical dynamics of quantum field theory, in the limit of
very small energies involved in the quantum dynamics with
respect to the Planckian scale.
The structure of the paper is as follows. In Sec. II, we

present the WKB approach to canonical quantum gravity,
starting in Sec. II A with the basic formalism of canonical
quantum gravity. In Sec. II B, the two WKB semiclassical
expansions [8,11] (i.e., in ℏ and in M related to the Planck
mass, respectively) are critically reviewed, with a com-
parison between the two approaches and extension of
the ℏ expansion to arbitrary orders. In Sec. II C, we
critically analyze the procedure used in [14] to cancel the
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non-Hermitian terms of the Hamiltonian operator and
obtain a unitary dynamics, arguing that the used assump-
tions are not true in general.
In Sec. III, we focus on the expansion based on the exact

decomposition of the wave function with BO approxima-
tion; the procedure of [13] is summarized in Sec. III A and
then completed in order not to break the gauge invariance
of the approach. In Sec. III B, we show the issues still
present within this procedure, concluding that it does not
resolve the nonunitarity problem, due to the requirements
which are not satisfied in the general case and the Hilbert
space which is truthfully constructed only with the scalar
product between the same states.
Section IV contains the proposal to bypass the problem

of nonunitarity by including the kinematical action. First,
we show in Sec. IVA the origin of nonunitary correction
terms arising in the previous proposals, due to the definition
of a WKB time parameter in terms of the dependence of the
quantum subsystem on the classical background variables.
In Sec. IV B, we introduce the kinematical action as
presented in [15], showing that it restores the covariance
of the theory under choice of ADM splitting for a fixed
gravitational background; in Sec. IV C, we then insert the
kinematical action in the theory of quantum matter on a
canonically quantized gravitational background and per-
form the WKB expansion in powers of the same parameter
M, related to the Planck mass, used in [11]. The results of
such expansion show that, with the definition of time
through the kinematical action variables, the classical limit
for gravity and the standard Schrödinger evolution for
quantum matter are correctly reproduced at the orders M
and M0; the expansion at order 1=M brings the corrections
to quantum matter dynamics caused by the quantum nature
of the gravitational background arising from the Wheeler-
DeWitt equation, which are shown in this paper to be
unitary, thus solving the problem emerging in the previous
proposals.
In Sec. V, the concluding remarks are presented.

Appendixes A and B contain discussions on some technical
aspects.

II. THE WKB EXPANSION OF QUANTUM
GRAVITY

After an introduction of the basic formalism of canonical
quantum gravity, we here analyze the two semiclassical
expansions [8] up to the quantum mechanical order, and
[11] up to the first quantum gravity corrections, expanded
in [14] to any desired order. We will unify these approaches
in a single expansion, showing that they both lead to
nonunitary dynamics.

A. Frozen formalism in canonical quantum gravity

Before applying the canonical quantization procedure,
we shall briefly recall the Hamiltonian formulation of GR.

In the general case, such approach leads to the concept of
superspace, i.e., the configuration space of all the geo-
metric and matter variables. It naturally follows that, since
the variables are fields defined over a curved space-time,
the full theory has a functional nature and requires some
renormalization procedure to yield finite predictions.
In some cases, when highly symmetric space-times are

involved, it is possible to reduce the dynamics to a finite-
dimensional scheme and replace the concept of superspace
by its finite-dimensional analogous, i.e., minisuperspace:
this procedure will be applied in the next section, as it is
implemented in the work [8], and implicitly assumed
in [11]. The reduced theory finds its main applications
in cosmology, where homogeneous space-times are consi-
dered, such as the previously mentioned [12].
Let us consider a universe filled by matter fields. We

write the Universe wave function as

Ψ ¼ Ψðfhijg;ϕaÞ; ð1Þ

which depends on the equivalence class of 3-geometries hij
and on the matter fields ϕa. Following [17], we start from
the WDW equation

HΨ ¼ HgΨþHmΨ ¼ 0; ð2aÞ

Hg ¼ −
2ℏ2κffiffiffi

h
p Gijkl

δ2

δhijðxÞδhklðxÞ
−

ffiffiffi
h

p ð3ÞR
2κ

; ð2bÞ

Hm ¼ −
ℏ2

2
ffiffiffi
h

p Gab
δ2

δϕaðxÞδϕbðxÞ
þ uðhij;ϕaÞ; ð2cÞ

where κ ¼ 8πG=c3 and (2b), (2c) are the super-
Hamiltonian functions of the gravitational field and matter
fields, respectively. We have assumed for simplicity the
matter component to consist in a set of self-interacting
scalar fields ϕa, minimally coupled with the geometry, and
with total potential energy,

uðhij;ϕaÞ ¼
X
a

uaðhij;ϕÞ: ð3Þ

However, the following analysis is more general and the
results hold for any choice of the matter component. We
will use natural units for the speed of light: c≡ 1.
The tensor

Gijkl ¼
1

2
ðhikhjl þ hilhjk − hijhklÞ ð4Þ

is the supermetric of the geometric subspace, while

Gab ¼ δab ð5Þ
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is the supermetric of the matter subspace, δab being the
Kronecker delta.
The spatial curvature ð3ÞR defines a geometric super-

potential

V ¼ −2
ffiffiffi
h

p ð3ÞR; ð6Þ

which can be modified through ð3ÞR → ð3ÞR − 2Λ to include
a cosmological constant term. Once the cosmological
constant is included, the model can be used to describe
the inflationary phase of the early Universe.
We stress that, in the general nonhomogeneous case,

there are additional constraints to be satisfied by the wave
function, containing the so-called supermomentum func-
tions of the geometric and matter sectors. Since they are not
present in the works analyzed in Secs. II and III, these terms
will be properly addressed and implemented in Sec. IV.
The dynamics of the model is fully encoded in the

super-Hamiltonian constraint (2a), which results in the
well-known frozen formalism problem: by applying
the canonical quantization procedure to the WDW equa-
tion (2a), it is immediately found that the Universe wave
function does not have an explicit dependence on time,

iℏ
∂
∂tΨ ¼ ĤΨ ¼ 0; ð7Þ

which is rather disturbing, and has encouraged physicists to
look for a new definition of time parameter, i.e., a relational
time [6] that describes a proper, nontrivial evolution of the
Universe. In fact, the WDW equation being satisfied by
time-independent quantum states does not mean that the
Universe is static: the condition is a direct consequence of
the fact that GR naturally has a parametrized Hamiltonian
formulation, due to time reparametrization invariance.
However, an external time label is an essential ingredient
for a quantum dynamical theory. Hence, one should look
for a meaningful definition of time among the minisuper-
space matter and geometric variables. A suitable construc-
tion of the time parameter can be performed by a
semiclassical separation and expansion of the components
of the Universe, resulting in promising effective theories; a
solution to the complete problem of quantum gravity, i.e., a
procedure valid at any scale, has not been found yet.
In this section, to simplify our discussion, we choose

normal ordering by placing the minisupermetric compo-
nents on the left of the derivative operators. Moreover, [11]
showed that, at least for the WKB expansion we are going
to perform here, such ordering ambiguities are absorbed in
the classical part of the expansion and do not influence the
quantum Schrödinger equation. The more general ordering
of the operators will be restored in Sec. IV.
In order to write the WDW equation in a more compact

and clear form, following [8], we decompose the variables
in two subsets: the classical and the quantum ones. We refer

generally as c ¼ fcαg to the subset of classical variables
and as q ¼ fqνg to the subset of quantum ones. Moreover,
we redefine the supermetric as a unique tensor as

Gab ¼
1ffiffiffi
h

p Gijkl; a; b ¼ fi; jg; fk; lg ð8Þ

for gravitational variables and as

G̃ab ¼
1ffiffiffi
h

p Gab ð9Þ

for matter ones, possibly including any necessary constant.
This way, we can write the Laplacian operators in a
compact way,

∇2
c ≡ Gab

δ2

δhaδhb
; ð10aÞ

∇2
q ≡ G̃ab

δ2

δϕaδϕb
: ð10bÞ

Then, the total Hamiltonian (2a) reads

HΨ ¼ ð−K∇2
c þUc þHqÞΨ ¼ 0; ð11Þ

where K is a constant dependent on the choice of the
expansion parameter,Uc is the classical potential, andHq is
the quantum Hamiltonian. We stress that this formalism
applies to the choice of ordering that provides general
covariance in the minisuperspace [8], when the second
order derivative operators ∇2

c and ∇2
q are considered no

more as Laplacians, but as Laplace-Beltrami operators.

B. WKB expansion in Planck constant and Planck mass

The semiclassical WKB approach is an attempt to define
a time label in the limit in which some of the variables in the
Universe can be treated classically.
Classical variables determine a fixed background over

which it is possible to define the time evolution of a
quantum subsystem. The presence of such variables is
needed to define a time label that ensures the positive
semidefiniteness of the Klein-Gordon-like scalar product
induced by the WDW equation and finds a conceptual
justification in the role played by classical devices in the
interpretation of quantum measurement [8].
The core idea of the semiclassical approach is that

Eq. (11) may be solved perturbatively in some quantum
parameter, e.g., the Planck constant ℏ [8] or some param-
eter depending on the gravitational constant G, such as the
Planck mass mP [11]. In both cases, the wave function is
decomposed in a WKB semiclassical wave function for the
background and in a wave function for the quantum
subsystem. This procedure was developed by [8] with
expansion parameter ℏ in a minisuperspace model, and by
[11] with the expansion parameter
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M ≡ 1

4c2κ
¼ cm2

P

4ℏ
; ð12Þ

where mP is the reduced Planck mass. Later, this same
procedure was extended by [14] up to arbitrary orders; for
further discussion on this approach see also [18,19]. We
shall underline that, even though it was stated by the author
in [11] that the latter expansion is performed in the generic
superspace, the supermomentum constraint is not imple-
mented in that theory. In review of [11], such contribution
is not added here; it will be reinstated for the sake of
generality in Sec IV, which is set in the superspace.
Besides some structural differences, mathematically

these expansions are very similar. Both of them make
use of an adiabatic approximation to separate the semi-
classical background from the quantum subsystem, resem-
bling a Born-Oppenheimer approximation which, however,
is mathematically realized in different ways. Here, we
present them in a critical way, while also extending the
formalism of [8] up to arbitrary orders of expansion,
leading to nonunitary corrective terms, and unifying the
procedure of [14] with the ℏ expansion.
In the ℏ → 0 expansion, Eq. (11) reads

ð−ℏ2∇2
c þUcðcÞ þHqÞΨðc; qÞ ¼ 0; ð13Þ

with

Hc ¼ −ℏ2∇2
c þUcðcÞ; ð14Þ

Hq ¼ −ℏ2∇2
q þUqðc; qÞ; ð15Þ

where the operator Hc is the part of the Hamiltonian
obtained neglecting all the quantum variables.
This decomposition in classical and quantum variables

requires some assumptions. First, we assert that the
quantum Hamiltonian is small with respect to the matter
one, expressed as

ĤqΨ
ĤcΨ

¼ OðℏÞ: ð16Þ

Second, we assume the classical and quantum subspaces to
be orthogonal and the supermetric of the classical subspace
to depend on classical variables only. This means

Gαβ ¼ GαβðcÞ; ð17aÞ

Gαν ¼ 0; ð17bÞ

where α, β are indices over classical variables and ν over
quantum ones. The last equation is a stronger form of one
of the core assumptions of [8], i.e., Gαν ¼ OðℏÞ: it is
needed to extend the expansion after the quantum mechani-
cal order OðℏÞ studied in the original paper.

On the other hand, in the M → ∞ expansion, Eq. (11)
becomes�

−
ℏ2

2M
∇2

g þMVðgÞ þHm

�
Ψðg;mÞ ¼ 0; ð18Þ

where the constant M ∝ 1=G defined in (12) will force the
gravitational variables to be classical and the matter ones to
be quantum, as will soon be clear. For this reason, we
identify the variables as c ¼ g and q ¼ m. This separation
is backed by the strong assumption given by the limit
M → ∞ corresponding toG → 0, which intuitively implies
a vacuum universe. For this reason, ad hoc procedures may
be needed to take into account a classical matter compo-
nent, such as a rescaling of the matter fields by M as
performed in [12]: this is more likely an attempt to work
around the problem, since redefining the fields through the
expansion parameter is not conceptually satisfying.
The obvious advantage of this choice of parameter is that

no further assumptions are needed: this one alone is enough
to decompose classical and quantum parts. SinceM has the
dimension of a mass over a length, this expansion is
expected to hold for particles with small mass over
Compton length ratio, which happens for particles whose
mass is much smaller than the Planck mass.
The nasty difference in the assumptions has a very

simple origin: Eq. (11) has a perfect symmetry between
geometric and matter terms with respect to the order of ℏ,
while with respect to M (i.e., κ) there is one order gap
between them. In the ℏ expansion, this gap is precisely
recovered with the additional hypothesis of smallness.
What is missing here with respect to a true BO

approximation is the procedure of averaging over the
quantum variables, that may allow for the introduction
of a backreaction; this feature is instead present in [13],
which we will deal with in Sec. III.
Let us now write the wave function as

Ψðc; qÞ ¼ eiSðc;qÞ=ℏ ð19Þ

and expand the complex phase S in powers of the
expansion parameter. We have

S ¼
X∞
n¼0

KnSn; ð20Þ

where for the ℏ expansion

Kn ¼ ℏn ð21Þ

and for the M expansion

Kn ¼ M1−n: ð22Þ
To obtain the factorized form of the wave function, we
assume that each order of the expansion of S after the first
can be separated as
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Sn ¼ σnðcÞ þ ηnðc; qÞ; n ≥ 1: ð23Þ

This way, we obtain

S ¼ K0S0 þ PþQ; ð24Þ

where we have defined

PðcÞ ¼
X∞
n¼1

Knσn; ð25aÞ

Qðc; qÞ ¼
X∞
n¼1

Knηn: ð25bÞ

We stress that the lowest order is slightly different in the
two expansions; in fact, it can be seen that in the ℏ
expansion the total action is S ¼ S0 þ PþQ, while in
the M expansion it takes the form S ¼ MS0 þ PþQ. The
wave function then takes the BO-like form

Ψðc; qÞ ¼ ψðcÞχðc; qÞ; ð26Þ

where for the ℏ expansion

ψðcÞ ¼ eiðS0þPÞ=ℏ; ð27aÞ

χðc; qÞ ¼ eiQ=ℏ; ð27bÞ

and for the M expansion

ψðcÞ ¼ eiðMS0þPÞ=ℏ; ð28aÞ

χðc; qÞ ¼ eiMQ=ℏ: ð28bÞ

The background wave function is assumed to satisfy the
WKB equation for the classical part alone, i.e., for the ℏ
case

ð−ℏ2∇2
c þ UcÞψðcÞ ¼ 0 ð29Þ

or for the M one

�
−

ℏ2

2M
∇2

g þMV

�
ψðgÞ ¼ 0: ð30Þ

Here, the difference on the background between the
expansions is evident: apart from numerical factors, the
M expansion automatically forces the gravitational part to
be exactly the classical one (limit of a vacuum universe).
By substituting to ψ its expansion (27), this equation

yields, order by order, the Hamilton-Jacobi equation for the
classical action S0 (which must be a real function in order to
give the correct classical limit, as discussed in [11]) and the

equations of the WKB expansion for each σn. We report the
first orders here: for the ℏ expansion, we have

ð∇cS0Þ2 þ Uc ¼ 0; ð31aÞ

2∇cS0 ·∇cσ1 − i∇2
cS0 ¼ 0; ð31bÞ

2∇cS0 ·∇cσ2 þ ð∇2
cσ1Þ2 − i∇2

cσ1 ¼ 0; ð31cÞ

2∇cS0 ·∇cσ3 þ 2∇cσ1 · ∇cσ2 − i∇2
cσ2 ¼ 0; ð31dÞ

while for the M expansion

1

2
ð∇gS0Þ2 þ V ¼ 0; ð32aÞ

∇gS0 ·∇gσ1 −
iℏ
2
∇2

cS0 ¼ 0; ð32bÞ

∇gS0 ·∇gσ2 þ
1

2
ð∇2

gσ1Þ2 −
iℏ
2
∇2

gσ1 ¼ 0; ð32cÞ

∇gS0 · ∇gσ3 þ∇gσ1 ·∇gσ2 −
iℏ
2
∇2

gσ2 ¼ 0; ð32dÞ

where in the scalar products the metric tensor is implied by
the dot.
The equation for the quantum subsystem is obtained by

plugging Eq. (26) into the WDWequation, using Eq. (31b)
or (32b) to remove the classical part and dividing by ψ. We
get, respectively,

2ℏ2∇c lnψ ·∇cχ ¼ Hqχ − ℏ2∇2
cχ ð33Þ

for the ℏ expansion, or

2
ℏ2

M
∇g lnψ ·∇gχ ¼ Hqχ −

ℏ2

2M
∇2

gχ ð34Þ

for the M expansion.
After substituting ψ with Eq. (27a) or (28a), respectively,

and defining time through the dependence on the classical
part as in [8,11], i.e.,

∂
∂τ ¼ 2∇cS0 · ∇c ð35Þ

in the ℏ expansion and

∂
∂τ ¼ ∇gS0 · ∇g ð36Þ

in the M one, Eqs. (33) and (34) yield the corrected
Schrödinger equation

iℏ
∂χ
∂τ ¼ Hqχ − k1iℏ∇cP · ∇cχ − k2∇2

cχ: ð37Þ
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Here, in the ℏ expansion k1 ¼ 2 and k2 ¼ ℏ2, while in the
M expansion k1 ¼ 1 and k2 ¼ −ℏ2=ð2MÞ. The different
numerical factors in the last equation and in the definition
of time are due to the additional factor 2 together withM in
the M expansion and not to any physical reason.
It is important to notice that at orders OðℏÞ and OðM0Þ,

Eq. (37) reduces to the exact Schrödinger equation for the
quantum wave functional χ1,

iℏ
∂χ1
∂τ ¼ Hqχ1: ð38Þ

At orders Oðℏ2Þ and Oð1=MÞ, the corrections to the
standard dynamics will emerge: it is easy to find

iℏ
∂χ2
∂τ ¼ Hqχ2 − ðik1∇cσ1 ·∇c þ k2∇2

cÞχ2; ð39Þ

where in the ℏ expansion k1 ¼ 2ℏ2 and k2 ¼ ℏ2, while in
the M expansion k1 ¼ ℏ=M and k2 ¼ ℏ2=ð2MÞ. The
corrective terms are of the same kind of those in [11],
i.e., they are not unitary. This result shows that, if we
restrict the classical subspace to the geometrical variables
only, the ℏ expansion yields precisely the same results of
the M expansion, also at the quantum gravity order.
Following a procedure described in [14], Eq. (37) can be

written in a nicer form. We assume the existence of a total
(in general not Hermitian) Hamiltonian operator H such
that

iℏ
∂χ
∂τ ¼ Hχ; ð40Þ

and we also assume that

∇cχ ¼ αðcÞ∇cS0; ð41Þ

which is some sort of adiabatic approximation. The
Hamilton-Jacobi (HJ) equations (31a) and (32a) give

α ¼ −
1

2kUc

∂χ
∂τ ¼

i
2ℏkUc

Hχ; ð42Þ

where in the ℏ expansion k ¼ 1, while in the M expansion
Uc ¼ MV and k ¼ 1=M, such that kUc ¼ V. Using
Eqs. (31b) and (32b), the corrected Schrödinger equa-
tion (37) becomes

iℏ
∂χ
∂τ ≡ Hχ

¼ Hqχ −
1

4k1Uc

�
H2 þ iℏ

∂H
∂τ − iℏKH

�
χ; ð43aÞ

K ¼ 1

Uc

∂Uc

∂τ −
ik2
ℏ

X∞
n¼2

kn3
∂σn
∂τ ; ð43bÞ

where in the ℏ expansion k1 ¼ k2 ¼ 1 and k3 ¼ ℏ, while in
the M expansion Uc ¼ MV, k1 ¼ 2, k2 ¼ 2M, and
k3 ¼ 1=M. We remark that H is an abstract Hamiltonian
operator containing Hq and all the corrections at every
order. These expressions show even more the equivalence
of the two expansions, except for the initial assumptions
discussed above.
The procedure we just performed is the generalization of

that used in [11] to derive its Eq. (42) and based on the
decomposition of contributions tangential and orthogonal
to the hypersurfaces S0 ¼ const. The use of Eqs. (31b) and
(32b) causes the sum in the expression of K used here to
begin from n ¼ 2. At the quantum gravity orderOðℏ2Þ and
Oð1=MÞ, Eq. (43a) yields the final equation of [11], i.e., its
Eq. (42). At higher orders, the quantum gravity corrections
not only arise from the ∇2

c term in Eq. (37), but also from
the term containing P. As noted in [14], the same result can
be obtained by considering σn, the classical potential V (or
Uc, in the ℏ expansion) and χ depending only on τ from the
beginning and dropping all the components of the super-
metric corresponding to the geometric subspace with the
exception of the Gττ component.
Let us now assess the situation. Both the ℏ and the M

expansions recover the already established theories through
a HJ equation for GR, that fixes a background, and a
Schrödinger equation in curved space-time for quantum
mechanics. The ℏ expansion is more general, since it
admits backgrounds generated by matter sources and
quantum geometry. At the quantum gravity order, both
expansions yield non-Hermitian corrections that break the
unitarity of the theory. A further common feature of the two
approaches is that the backreaction of the quantum sub-
system on the background is not present. The inclusion of
such a nonadiabatic effect would allow for quantum
gravitational effects on the semiclassical sector.

C. Nonunitarity in the revisited Planck mass expansion

The problem of nonunitarity is a huge drawback of the
model. Nonetheless, in [12], the resulting nonunitary
dynamics of the quantum matter components is applied
to compute the quantum-gravitational corrections to the
power spectra of gauge-invariant scalar and tensor pertur-
bations during the inflationary phase of the Universe. In
[14], working in the M expansion, the authors develop a
procedure to make the quantum gravity Hamiltonian a
Hermitian operator. We here show that such procedure is
based on wrong assumptions.
Let us briefly apply such procedure to the simple case

of one geometric variable, that we identify with the time τ
from the beginning. Once we use the ansatz Ψðτ; mÞ ¼
ψðτÞχðτ; mÞ, the WDW equation (2a) reads

ℏ2

M
Gττ∂τ lnψ∂τχ ¼ Hmχ −

ℏ2

2M
Gττ∂2

τ χ þ ρψχ; ð44Þ
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where the background term

ρψ ¼ 1

ψ

�
−

ℏ2

2M
Gττ∂2

τ þMV

�
ψ ð45Þ

corresponds to the quantity set to zero in Eq. (30).
Differently from [11], in [14], after writing ψ0 ¼

exp ðiMS0=ℏÞ, the background term ρψ0
is required to be

of order OðM0Þ. In order to satisfy this request, the HJ
equation

1

2
Gττð∂τS0Þ2 þ V ¼ 0 ð46Þ

has to hold at order OðMÞ. Hence, the expression of ρψ0
at

order OðM0Þ is

ρψ0
¼ −iℏ

∂τV
2V

: ð47Þ

Using Eq. (47) and assuming the existence of an abstract
Hamiltonian operator H similar to that defined in (43a), we
find

iℏ∂τχ0≡Hχ0

¼Hmχ0−
iℏ
2

∂τV
V

χ0−
1

4MV
½H2þ iℏ∂τH�χ0; ð48Þ

where χ0 is the quantum wave function, such that
Ψ ¼ ψ0χ0. This equation still exhibits non-Hermitian
corrections. To deal with them, in [14], the authors assume
the existence of two eigenvalue functions, EðτÞ (complex)
and ϵðτÞ (real), such that

Hχ0 ¼ EðτÞχ0; ð49aÞ

Hmχ0 ¼ ϵðτÞχ0 ð49bÞ

and expand them in powers of 1=M. Written in terms of
these expansions, the WDW equation (48) yields, at each
order, an expression for the eigenvalue of the abstract
Hamiltonian operator. Let us report the first two orders (M0

and 1=M),

Eð0Þ ¼ ϵð0Þ −
iℏ
2

∂τV
V

; ð50aÞ

Eð1Þ ¼ ϵð1Þ −
1

4V

�
ðϵð0ÞÞ2 − 3ℏ2

4

�∂τV
V

�
2

þ ℏ2
∂2
τV
2V

�
−
iℏ
4
∂τ

�
ϵð0Þ

V

�
: ð50bÞ

Defining

χ1 ¼ e−
1
ℏ

R
ImðEð0ÞÞdτχ0 ¼ e

R ∂τV
2V χ0 ð51Þ

and substituting into Eq. (48), we find

iℏ∂τχ1 ¼ Hmχ1: ð52Þ

The time derivative of the redefined quantum state con-
tributes with a term that exactly compensates the non-
Hermitian correction on the right-hand side of Eq. (48), due
to Eq. (47) at this orderOðM0Þ. The background term must
now be calculated for a ψ1 defined in such a way that
Ψ ¼ ψ1χ1, i.e.,

ψ1 ¼ e−
R ∂τV

2V ψ0 ¼ eiMS0=ℏþσ1 ; ð53Þ

where σ1 ¼ − lnV=2. By doing so, we find that ρψ1

vanishes at order OðM0Þ, yielding the continuity equation

∂2
τS0 þ ∂τS0∂τσ1 ¼ 0: ð54Þ

We can easily see that this equation vanishes naturally.
Thus, ρψ1

is of order Oð1=MÞ and is given by the
expression

ρψ1
¼ ℏ2

4MV

�
3

4

�∂τV
V

�
2

−
∂2
τV
2V

�
: ð55Þ

The same steps can be followed at order Oð1=MÞ,
including the term in Eq. (55) into Eq. (48) and redefining
the quantum state as

χ2 ¼ e−
1
Mℏ

R
ImðEð1ÞÞdτχ1: ð56Þ

The corrected Schrödinger equation will have only the
Hermitian part of the Hamiltonian operator H, exhibiting
unitary evolution. The background term calculated for a ψ2

such that Ψ ¼ ψ2χ2 will not vanish naturally at this order,
as an effect of the backreaction of the quantum subsystem.
This procedure is based on the nice idea that the non-

Hermitian part of the operator H may be eliminated from
the dynamical equation of the quantum subsystem by
suitable redefinitions of the wave functions in the product
Ψ ¼ ψχ. However, the H operator is unknown in general
and can only be constructed order by order; moreover, in
order to redefine the wave functions through phase factors,
one has to use the eigenvalues of H. The problem lies in
Eq. (49), which implies that the operators Hm and H
commute at every order and can be diagonalized simulta-
neously. Unfortunately, this is clearly not true at every
order, as one can see from the expression of Eð1Þ in Eq. (50).
Indeed, Eð1Þ contains ϵð0Þ and its time derivative ∂τϵ

ð0Þ,
meaning that the Hamiltonian H at the order Oð1=MÞ
contains the matter Hamiltonian Hm and its time derivative
_Hm, coherently with Eq. (43a) expressed at order Oð1=MÞ.
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In the general case, it is not true that Hm and _Hm commute:
the reason is that, in principle, the expression of _Hm
contains coordinate and conjugate momenta operators
not commuting with Hm.
To convince ourselves about this, let us consider a

Friedmann-Robertson-Walker (FRW) model with cosmo-
logical constant and a scalar field as matter component. The
Hamiltonian constraint reads

HFRW ¼ −
G

32c3πa
p2
a þ

c
4π2a3

p2
ϕ − V; ð57aÞ

Vða;ΛÞ ¼ 3πc3

4G

�
a −

Λ
3
a3
�
; ð57bÞ

where V is the FRW superpotential. An important remark is
that the conjugated momenta to the volume of the Universe
a is proportional to the time derivative of a,

pa ∼
a
N
da
dt

¼ a∂τa: ð58Þ

The matter Hamiltonian of this simple model is just

Hm ¼ c
4π2

a−3p2
ϕ; ð59Þ

and its time derivative yields

∂τHm ¼ −
3c
4π2

a−4∂τap2
ϕ ∼ a−5papϕ: ð60Þ

The appearance of pa in ∂τHm clearly leads to
½Hm; ∂τHm� ≠ 0.
A further issue of the procedure followed in [14]

concerns the absence of gauge invariance in this approach:
even if the total wave function Ψ is invariant under the
redefinitions performed on ψ and χ, the equations of
motion are not, differently from what happens in [13].
Thus, such redefinitions cannot be fully justified on
theoretical grounds.

III. EXACT DECOMPOSITION WITH EXTENDED
BO APPROACH

Another attempt to treat a quantum subsystem on aWKB
background is provided by [13,20]. In these works, the
authors develop a decomposition in classical and quantum
variables through an extended BO approach, that is more
accurate than the traditional one and is largely used in
chemistry [21–24], where it finds experimental verification.

A. BO decomposition and WKB expansion of the
matter-gravity problem

The approach of [13], set in the minisuperspace, is based
on the exact decomposition of the wave function,

Ψðc; qÞ ¼ ψðcÞχðq; cÞ; ð61aÞ

hχjχi ¼
Z

χ�ðq; cÞχðq; cÞdq ¼ 1; ð61bÞ

from which the equations for the background and for the
quantum subsystem are obtained, respectively, by averag-
ing the WDW equation (2a) over the quantum functional χ
and by subtracting the resulting equation to the initial
WDW equation,

�
−

ℏ2

2M
ðD2 þ hD̄2iÞ þMV þ hHqi

�
ψ ¼ 0 ð62aÞ

�
−

ℏ2

2M
ðD̄2 − hD̄2i þ 2D lnψD̄Þ þHq − hHqi

�
χ ¼ 0:

ð62bÞ

Here we have used the definitions

hOi ¼ hχjOjχi; ð63aÞ

A ¼ −iℏh∇ci; ð63bÞ

−iℏD ¼ −iℏ∇c þ A; ð63cÞ

−iℏD̄ ¼ −iℏ∇c − A; ð63dÞ

where the quantity A plays the role of a Berry connection
and D; D̄ are covariant derivatives.
This approach has some nice properties, for which it may

be preferred to the one analyzed in the previous section.
First of all, we note that, given the ansatz (61), if the total
wave function is normalized to unit then, as a bonus, it
follows straightforwardly that the background wave func-
tion is normalized as well. Moreover, Eq. (62) can be more
generally derived from a variational principle [21,22].
Another property of Eq. (61) is that they imply no freedom
to the decomposition of the total wave function into
classical and quantum components, except for a phase
factor depending on the classical variables only.
Equation (62) is invariant under such a phase change,
due to the covariant derivatives. Hence, the decomposition
(61) is gauge invariant. The covariant derivatives D; D̄ can
be absorbed in the wave functions through the redefinitions

ψ ¼ e−
i
ℏ

R
Adcψ̃ ; ð64aÞ

χ ¼ e
i
ℏ

R
Adcχ̃; ð64bÞ

leading to a second set of equations
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�
−

ℏ2

2M
ð∇2

c þ gh∇2
ciÞ þMV þ hHqi

�
ψ̃ ¼ 0; ð65aÞ

�
−

ℏ2

2M
ð∇2

c − gh∇2
ci þ 2∇c ln ψ̃ · ∇cÞ þHq − hHqi

�
χ̃ ¼ 0;

ð65bÞ

where we defined the average over the wave function χ̃ asghOi ¼ hχ̃jOjχ̃i and we used the property ghHqi ¼ hHqi,
since Hq acts only on the quantum variables.
Here our analysis will depart from that carried out in

[13], that is affected by a few evident issues. The authors
proceed performing the WKB expansion on the back-
ground function ψ̃ to define the semiclassical time as before
(36), obtaining the presence of backreaction in the HJ
equation; simultaneously, they perform the following
rescaling of the quantum wave function:

χ̃ ¼ e
i
ℏ

R
hHmidτχs; ð66Þ

in order to find the corrected Schrödinger equation

ðHq − iℏ∂τÞχs ¼ e−
i
ℏ

R
hHqidτ− i

ℏ

R
Adc

×
ℏ2

2M
½D̄2 − hD̄2i þ 2ðD lnNÞD̄�χ: ð67Þ

For further discussion on the phase transformations here
performed, see Appendix A.
Finally, they show the unitarity of the theory through

iℏ∂τhχsjχsi ¼ 0: ð68Þ

We now have to remark some critical points in the approach
just described. One evident problem with this procedure is
that the quantum wave function is given by χs and the
semiclassical wave function by ψ̃, while their product
should yield the total wave function: this implies a breaking
of the gauge symmetry of the theory, that was one of the
merits of this formalism.
However, the most serious issue is that the Schrödinger

equation (67) contains derivatives with respect to the
background variables, which in turn contain the WKB
time: these derivatives must be clearly expressed and
analyzed as suggested by [11] and discussed in Sec. II.
A further issue is that, even if it was correct, the

procedure followed in [13] would not really show the
unitarity of the theory: in fact, Eq. (68) vanishes only if one
takes the norm of the states, but the cancellation fails for
different quantum states. This means that a proper dynami-
cal Hilbert space cannot be built in this approach, since a
conserved scalar product cannot be defined for all the
states.

B. Enhancement and nonunitarity of the
BO decomposition

We will now improve this method in order to deal with
the open issues just discussed, and we will show that, even
when this formalism is used properly, nonunitarity still
affects the dynamics of the quantum subsystem at the
quantum gravity order.
First, we define the background wave functional ψ s

associated with χs through

ψ̃ ¼ e−
i
ℏ

R
hHqidτψ s; ð69Þ

in such a way that the total wave function reads

Ψ ¼ ψχ ¼ ψ̃ χ̃ ¼ ψsχs: ð70Þ

In order to ease the comparison with [14] and the original
results of [13], which is implemented in the minisuperspace,
we use the same formalism andwe perform the semiclassical
expansion of the background wave functional in M,

ψ s ¼ eiMðS0þPÞ=ℏ; ð71Þ

where

P ¼
X∞
n¼1

M−nσn: ð72Þ

We now decompose the quantity P in its real and imaginary
parts as P ¼ ζ − iρ, such that

ψs ¼ eMρ=ℏeiMðS0þζÞ=ℏ; ð73Þ

where

ReðPÞ≡ ζ ¼ 1

M
ζ1 þ

1

M2
ζ2 þ… ð74aÞ

−ImðPÞ≡ ρ ¼ 1

M
ρ1 þ

1

M2
ρ2 þ…: ð74bÞ

We define the WKB time as usual as

iℏ∂τ ¼ iℏ∇cS0 ·∇c; ð75Þ

and Eq. (67) at orderOðM0Þ yields the Schrödinger equation

ð−iℏ∂τ þHqÞχs ¼ 0; ð76Þ

as expected.
The first interesting difference from [13] is that the

backreaction cancels out from the equations of the back-
ground expansion: we find at order OðMÞ the usual HJ
equation
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1

2
ð∇cS0Þ2 þ V ¼ 0; ð77Þ

and at order OðM0Þ

−
iℏ
2
∇2

cS0 þ∇cS0 · ∇cζ1 − i∇cS0 ·∇cρ1

−∇cS0 ·∇c

Z
hHqidτ þ hHqi ¼ 0; ð78Þ

where the last two terms cancel because of the definition of
time. Thus, the backreaction has shifted from theHJ equation
to the continuity equation, where it is canceled out by our
redefinition of the background functional (69). The same
would have happened in the ℏ expansion, because of the
hypothesis of smallness of the quantum subsystem.
After separating the real and imaginary parts, Eq. (78)

yields

ℏ
2
∇2

cS0 þ∇cS0 ·∇cρ1 ¼ 0; ð79aÞ

∇cS0 · ∇cζ1 ¼ 0: ð79bÞ

The first equation corresponds exactly to Eq. (32b),
while the second points out that ζ1 has no dynamical
relevance: through Eq. (75), Eq. (79b) reads

∂τζ1 ¼ 0: ð80Þ

Until now, we recovered precisely the results of [11] (and
equivalently [8]), but with the adoption of the more
advanced formalism of [13].
To investigate the quantum gravity order Oð1=MÞ, we

restrict our analysis, for simplicity, to the case of a
cosmological model with a single gravitational degree of
freedom, which will be denoted as α. This will keep us from
dealing with the projection of the gradients in the geomet-
rical indices with respect to the S0 ¼ const hypersurfaces.
The procedure is valid only if ð3ÞR ≠ 0; otherwise, we
would have V ¼ 0 and this would give trouble in the next
steps. The detailed calculations at this order are summa-
rized in Appendix B.
The corrected Schrödinger equation up to order

Oð1=MÞ is

iℏ∂τχs ¼Hqχs −
1

4MV

�
ðH2

q− hH2
qiÞ

þ iℏð _Hq − h _HqiÞ− iℏ
_V
V
ðHq − hHqiÞ

�
χs: ð81Þ

The last equation is the equivalent of Eq. (43a) up to order
Oð1=MÞ, i.e., of Eq. (42) of [11], but in the framework
of [13].

The computation of the corresponding equation for the
background wave function ψ is reported in Appendix B.
We note in (81) that the non-Hermiticity of the quantum

gravity Hamiltonian is still a problem, unless one takes the
norm of a state, hence Eq. (68). In this case, differently
from [11], all quantum gravity corrections vanish and this
may be interpreted as a prediction of this approach.

IV. UNITARITY WITH USE OF THE
KINEMATICAL ACTION

In this section, we develop a proposal to solve the
nonunitarity problem, based on a WKB expansion in theM
parameter as in [11] but using a different construction of
time, meaning a different physical clock for the gravity-
matter system in the considered WKB separation of the
dynamics. The previous works here discussed are all based
on the definition of a classical time, i.e., constructed with
the dependence of the subsystem on the classical variables.
This choice seems to be the origin point of such nonunitary
corrections, as discussed in the next subsection.
For this reason, we here propose a model with intro-

duction of the so-called kinematical action [15]; see also
[16], which allows a covariant construction of parabolic
constraints for quantum matter fields on a curved classical
background. This term will be used to construct the time
parameter of the theory, resulting in a quantum matter
dynamics influenced by quantum-gravity corrections that
present a unitary character.

A. Origin of the nonunitary corrections

The critical analysis illustrated up to here is focused on
the emerging problem of nonunitarity of the dynamics for
quantum matter field on the WKB expanded gravitational
background. This characteristic is present in the model [8],
that is truthfully expanded only up to order ℏ, and in
the different proposal [11] emerging at order 1=M in the
expansion, as well as in the work [13] based on the
extended BO decomposition. All these approaches focus
on the use of semiclassical variables as a clock for quantum
matter: they construct the time derivative using the depend-
ence of the matter wave function in terms of the classical
generalized coordinates.
However, it appears from the previous analyses that the

most important term responsible for the nonunitarity of the
models is the classical Laplacian ∇2

c. Be it through some
adiabatic assumption on the quantum wave function, some
projection parallel and orthogonal to the hypersurfaces
S0 ¼ const, or simply by having time as the classical variable
from the beginning, at some point that Laplacian generates
∇2

τ χ. This is the crucial point that always generates non-
unitarity, because it holds

−ℏ2∇2
τ χ ¼ iℏ∂τðHχÞ ¼ iℏ _Hχ þH2χ; ð82Þ
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where the incriminated term arises. Thus, until time is
defined through ∇c, the model is probably doomed to find
non-Hermitian corrections to theHamiltonian at the quantum
gravity level.
For this reason, we propose here a different definition of

time by using the kinematical action.

B. The kinematical action

The kinematical action was first introduced in [15] as a
tool to maintain the constraint equations of a quantum
system by adding variables in the Lagrangian and
Hamiltonian formalisms. We will now see this procedure
applied to the case of scalar fields in a curved background.
The kinematical action in the ADM representation reads

Sk ¼
Z

d4xðpμ∂tyμ − NμpμÞ; ð83Þ

where the coordinates yμ are those defining the parametric
equations of the hypersurfaces in the ADM splitting, as in
yμ ¼ yμðxi; x0Þ, and pμ are the associated momenta. The
additional equations of motion, obtained by variations of
yμ, pμ, and Nμ, show that the momenta pμ are trivial (equal
to 0) and ensure that the physical meaning of the defor-
mation vector Nμ is recovered,

Nμ ¼ ∂tyμ ¼ Nnμ þ Nibμi : ð84Þ

This term also gives additional contributions to the total
super-Hamiltonian and supermomentum constraints of the
system,

Hk ¼ nμpμ; ð85aÞ

Hk
i ¼ bμi pμ; ð85bÞ

which are key elements to define a meaningful time
variable for the matter field dynamics, in a different way
than the works analyzed above.
To show this, let us consider a massive scalar field

immersed in a given gravitational background (assigned
metric tensor). By use of the ADM variables, the action can
be written as

Sϕ ¼
Z

dx0d3xðπ _ϕ − NHϕ − NiHϕ
i Þ; ð86Þ

where π is the momentum conjugated to the scalar field,

π ¼
�
−

1

N2
_ϕþ 2

Ni

N2
∂iϕ

�
N

ffiffiffi
h

p
: ð87Þ

The super-Hamiltonian of the scalar field reads

Hϕ ¼ 1

2
ffiffiffi
h

p π2 þ 1

2

ffiffiffi
h

p ∇ϕ ·∇ϕþ 1

2

ffiffiffi
h

p
m2ϕ2; ð88Þ

where in a short notation ∇ϕ · ∇ϕ≡ hij∂iϕ∂jϕ, and the
supermomentum of the scalar field takes the form

Hϕ
i ¼ ð∂iϕÞπ: ð89Þ

We notice that this way, the lapse function and shift
vector N and Ni are assigned functions up to a restriction of
the initial Cauchy problem: they are not to be varied; thus,
the physical definition of the ADM foliation on the back-
ground is lost.
However, by adding the term (83), independent from the

metric and matter field variables, we have

Stot ¼ Sϕ þ Sk ¼
Z

dx0d3x½pμ _yμ þ π _ϕ

− NðHϕ þHkÞ − NiðHϕ
i þHk

i Þ�: ð90Þ

Thus, the dynamics of the scalar field is left unchanged, but
the definition of the deformation vector is recovered, as
shown in (84), and the super-Hamiltonian and super-
momentum constraints become

Hϕ ¼ −Hk ¼ −pμnμ; ð91aÞ

Hϕ
i ¼ −Hk

i ¼ −pμb
μ
i : ð91bÞ

It is clear then that the addition of the kinematical action
allows to recover the definition of the deformation vector
and so the structure of the space-time foliation, which
would otherwise be lost in this case. As a matter of fact, the
kinematical action restores the geometrical meaning of the
lapse function and of the shift vector, de facto allowing
their variation during the implementation of the variational
principle.
It follows that the quantum dynamics of the field is

characterized by parabolic constraints, linear in the momen-
tum canonically conjugate to the four-dimensional (4D)
variables, thought as fields depending on the slicing space-
time variables. In the canonical quantization procedure, the
momenta pμ will be transformed into derivative operators,
and they will be crucial in the construction of the time
derivative. We will now show that this procedure can be
applied to the case of interest to obtain a quantum matter
field dynamics without nonunitary terms arising from the
previous proposals, which would prevent the predictability
of the theory.

C. Unitary evolution with use of the kinematical action

We now construct the physical clock for the quantum
subsystem with the kinematical action, showing that this
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allows to obtain a unitary matter dynamics with quantum-
gravity corrections.
We consider a theory consisting of a single scalar matter

field ϕ with potential Um, immersed in an assigned
quantum gravity background, with the addition of the
kinematical action. The generalization to the case of n
matter fields is straightforward by replacing ϕ with

P
a ϕa

and inserting the cross-interaction terms into Um.
For the sake of generality, we will consider here the total

superspace without assuming specific symmetries of the
problem. For this reason, differently from Sec. II, the
supermomentum contributions of all the components will
be present and the corresponding constraints (which were
automatically satisfied in the minisuperspace) will be
imposed. The total action of the system then reads

Stot ¼ Sg þ Sm þ Sk

¼
Z

dx0d3x½Πa
_ha þpμ _yμ þ π _ϕ

−NðHg þHm þHkÞ−NiðHg
i þHm

i þHk
i Þ�; ð92Þ

where the supermomentum of the gravity component can
be written in the compact form,

Hg
i ¼ −2hiD · Π≡ −2hijDkΠkj; ð93Þ

being D the three-dimensional covariant derivative on the
ADM hypersurfaces; the supermomentum of the matter
component is

Hm
i ¼ ð∂iϕÞπ; ð94Þ

and the super-Hamiltonian and supermomentum contribu-
tions associated to the kinematical action are those defined
in (85).
In the quantization procedure, writing the momentum pμ

in (91) as a derivative operator, the total super-Hamiltonian
and supermomentum constraints of the system become

ðĤg þ ĤmÞΨ ¼ −ĤkΨ → iℏnμ
δ

δyμ
Ψ; ð95aÞ

ðĤg
i þ Ĥm

i ÞΨ ¼ −Ĥk
iΨ → iℏbμi

δ

δyμ
Ψ: ð95bÞ

In this respect, the kinematical action is shown in [16] to
correspond in the classical limit to a physical fluid, to some
extent thought as the “materialization” of a reference frame.
This emerging fluid would suffer the same problem
discussed in [4], where its emergence is recovered via
the reference frame fixing procedure in the gravity-matter
action. Here, the kinematical action is, in principle, added
to the full quantum system of gravity and matter, but it is
regarded as a fast quantum component, on the same footing
of the real quantum matter field. Thus, in the present

context, the fluid associated to the kinematical action will
not appear in the Hamilton-Jacobi equation, not affecting
the standard Einsteinian dynamics of the gravitational
background.
Following the BO-like approximation as in (26), we

write the wave function as

Ψðha;ϕ; yμÞ ¼ ψðhaÞχðϕ; yμ; haÞ; ð96Þ

where the slow-varying semiclassical part depends only on
the induced 3D metric, while the “fast” quantum part
depends on the matter field and kinematical action and
parametrically on the 3D metrics. This separation is
justified by considering the different energy scales of the
two components, in a case where the scalar fields act as test
fields giving negligible contribution to the background and
with a fast dynamics that can be computed at nearly fixed
values of the 3D metric tensor. As discussed in [8], the
matter fields live on an energy scale far from the Planckian
one, so that it is reasonable to assume the WDW equation
for the background wave function only as in Eq. (29).
We now perform the WKB expansion of the system with

respect to the parameter M linked to the Planck mass as in
[11]; in the BO-like approximation, the ratio between the
two components of the wave function is

Ĥχðϕ; yμ; haÞ
ĤψðhaÞ

¼ O
�
1

M

�
; ð97Þ

which is analogous of (16). We also assume, as in [8], that
the fast χ function has a very small variation with respect to
this parameter, expressed by the magnitude of its deriva-
tives with respect to the background variables ha,

δ

δha
χðϕ; yμ; haÞ ≃O

�
1

M

�
: ð98Þ

Following the procedure in Sec. II B, we perform the WKB
expansion of the total wave function up toOð1=MÞ, which is
sufficient to compute the corrections to the functional
Schrödinger equation arising from the quantum-gravitational
background, obtaining

Ψðha;ϕ; yμÞ ¼ e
i
ℏðMS0þP1þ 1

MP2Þ · ei
ℏðQ1þ 1

MQ2Þ: ð99Þ

We stress that, due to the BO-like approximation, the
functions S0 and Pn depend only on the three-dimensional
metrics ha, while the functions Qn represent the fast
component dependent also on the matter and kinematical
variables.
The equations to solve are the constraints of the total

system and the constraints satisfied by the background
wave function ψðhaÞ, which can be written in the form
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�
−

ℏ2

2M
ð∇2

g þ g · ∇gÞ þMV

�
ψ ¼ 0; ð100aÞ

2iℏhiD ·∇gψ ¼ 0; ð100bÞ
�
−

ℏ2

2M
ð∇2

g þ g ·∇gÞ þMV − ℏ2∇2
m þUm

�
Ψ

¼ iℏnμ
δ

δyμ
Ψ; ð100cÞ

ð2hiD ·∇g − ∂iϕ ·∇mÞΨ ¼ iℏbμi
δ

δyμ
Ψ: ð100dÞ

Here, the additional term

g ·∇g ≡ ga
δ

δha
ð101Þ

accounts for a generic factor ordering for the derivative
operators (see discussion in [14]); thewave functionsψ andΨ
are of the form (96), meaning up to order 1=M given by (99).
The first order of expansion is clearly the order M;

writing explicitly the actions of the gradients on the
exponential wave functions, we obtain

1

2
∇gS0 · ∇gS0 þ V ¼ 0; ð102aÞ

− 2hkD ·∇gS0 ¼ 0: ð102bÞ

Here we recover the Hamilton-Jacobi equation for the
purely gravitational part of the wave function; hence, the
classical limit of gravity is ensured. The real, classical
action S0 can be computed from the first equation. The
second equation expresses its invariance under 3D diffeo-
morphisms, due to the hypothesis of the supermomentum
constraint for the gravitational part.
The next order of expansion, M0, brings

−
iℏ
2
∇2

gS0 þ∇gS0 ·∇gP1 −
iℏ
2
g ·∇gS0 ¼ 0; ð103aÞ

−2hkD · ∇gP1 ¼ 0; ð103bÞ

−
iℏ
2
∇2

gS0 þ∇gS0 ·∇gP1 −
iℏ
2
g ·∇gS0 þ Um

−iℏð∇2
mQ1Þ þ ð∇mQ1Þ2 ¼ −nμ

�
δQ1

δyμ

�
; ð103cÞ

−2hkD ·∇gP1 þ ð∂iϕÞð∇mQ1Þ ¼ −bμi

�
δQ1

δyμ

�
: ð103dÞ

Equation (103a) allows to compute the function P1, which
is also invariant under 3D diffeomorphisms due to (103b).
The wave function at this order can be rewritten as

Ψ0 ¼ fðha; yμ;ϕÞ ¼ e
i
ℏðMS0þP1þQ1Þ ¼ DðhÞe i

ℏQ1 : ð104Þ

By plugging (103a) into (103c), and using Eq. (104), it is
possible to rewrite Eq. (103c) in an interesting form,

ð−ℏ2∇2
m þ UmÞf ¼ Hmf ¼ iℏnμ

δ

δyμ
f; ð105Þ

where Hm is the matter super-Hamiltonian. This equation
can be combined with the analogous one obtained by
plugging (103b) into (103d), that gives

−iℏð∂iϕÞ∇mf ¼ Hm
i f ¼ iℏbμi

δ

δyμ
f; ð106Þ

whereHm
i is the matter supermomentum. It is now possible

to assemble (105) and (106) with the coefficients N and Ni,
in order to obtain the definition of the deformation vector
(84). Then, by integrating over the ADM hypersurfaces, the
derivative operator becomes independent from the spatial
coordinates and can be defined as the time derivative,

iℏ
δ

δτ
f ≡ iℏ

Z
Σ
d3xðNnμ þ Nibμi Þ

δ

δyμ
f ¼ Hf

¼ iℏ
Z
Σ
d3xNμ δ

δyμ
f

¼
Z
Σ
d3xðNHm þ NiHm

i Þf: ð107Þ

Here we have obtained, through the Dirac implementation
and using the definition of the deformation vector, a
functional Schrödinger equation for matter fields, over-
lapping with standard quantum field theory. This equation
expresses the quantum dynamics of the matter field
immersed in the gravitational background, with a time
parameter τ that clearly describes a nontrivial evolution.
We stress here the difference in the choice of the time

coordinate from the proposals [8,11], since the time is not
recovered from the dependence from the “slow” variables
∇c which was shown to be troublesome in Sec. IVA, but
from the kinematical action variables yμ. These variables
are present in the definition of the deformation vector, that
here has a geometrical connotation, since its values
correspond to choices of ADM foliation on the back-
ground. The use of its definition (84) allows to combine and
rewrite the momenta pμ as a single derivative operator, thus
constructing the time parameter for the matter subsystem
from the kinematical action itself. Nonetheless, the results
are formally the same as in [8,11], since the Schrödinger
equation is recovered in all cases. The main difference and
consequences of this approach will be visible in the next
order of expansion.
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The order M−1 gives

−
iℏ
2
∇2

gP1 þ
1

2
∇gP1 · ∇gP1 þ∇gS0 ·∇gP2 ð108aÞ

−
iℏ
2
g ·∇gP1 ¼ 0;

−2hkD ·∇gP2 ¼ 0; ð108bÞ

−
iℏ
2
∇2

gP1 þ
1

2
∇gP1 · ∇gP1 þ∇gS0 ·∇gP2

−
iℏ
2
g ·∇gP1 − iℏ∇2

mQ2; ð108cÞ

þ2ð∇mQ1Þð∇mQ2Þ ¼ −nμ
δQ2

δyμ

−2hkD ·∇gP2 þ ð∂iϕÞ∇mQ2 ¼ −bμi
δQ2

δyμ
: ð108dÞ

The first equation allows to compute the function P2, which
is invariant under 3D diffeomorphisms by Eq. (108b). The
total wave function can be written as

Ψ1 ¼ Θðha; yμ;ϕÞ ¼ e
i
ℏðMS0þP1þ 1

MP2þQ1þ 1
MQ2Þ

¼ AðhÞfe i
ℏMQ2 ; ð109Þ

where f is the function satisfying the Schrödinger equa-
tion (107). Now using Eq. (108a) together with the results
at the previous orders, after some manipulation, Eq. (108c)
becomes

iℏnμ
δ

δyμ
Θ ¼ HmΘþ ð∇gS0 ·∇gQ1ÞΘ; ð110Þ

where we have omitted the term

ℏ2

�
1

Θ
∇mΘ −

1

f
∇mf

�
2

Θ ¼ −
1

M2
ð∇mQ2Þ2Θ; ð111Þ

which is of the order 1=M2.
It is here evident that the corrections to the Schrödinger

equation emerge at this order. To recover the total
Hamiltonian, the supermomentum constraint must be used;
plugging (108b) into (108d) gives

iℏbμi
δΘ
δyμ

¼ Hm
i Θ − 2ðhkD ·∇gQ1ÞΘ; ð112Þ

and with the linear combination and integration over the
hypersurfaces, that reconstruct the total Hamiltonian of the
matter field H, we obtain

iℏ
δ

δτ
Θ ¼ HΘþ

Z
Σ
d3xðN∇gS0 ·∇gQ1

−2NkhkD ·∇gQ1ÞΘ: ð113Þ

Here, we remark that Θ is the total wave function of the
system up to order 1=M, as defined in (109).
We can now further modify this expression to describe

the matter field dynamics only.
In fact, even though the WKB approach allows to solve

the equations of the constraints order by order, and so the
functions S0 and Q1 present here are already defined by the
constraints at the previous orders, it is useful to rewrite
the Eq. (113) such that only the wave function relative to
the matter field χðϕ; yμ; hijÞ and the purely geometrical
functions S0; Pn appear. This because the explicit forms of
S0, P1 and P2 are defined by the purely gravitational
constraints which can be solved separately, obtaining the
expressions to substitute in the equation.
However, some attention is required to replace the total

wave function Θ with the matter wave function χ. Since by
assumption the functions S0; Pn do not depend on the
variables yμ nor ϕ, they can pass through the derivative
operators ∇m and δ=δyμ without changing the result. They
can also be taken outside the integral

R
Σ d

3x, present in the
definition of H and of the time derivative, since they are
functionals of the geometries hij (the supermomentum
constraint for the gravitational part at each order assures
that these functions are invariant under 3D diffeomor-
phisms, so they do not depend on the choice of variables xi

but only on the geometries hij).
To rewrite the corrections in the desired form, we can

make use of assumption (98). Then, the equation express-
ing the dynamics of the matter field, including the correc-
tions due to the quantum gravitational background,
becomes

iℏ
δ

δτ
χ ¼ Hχ þ

Z
Σ
d3x

�
N∇gS0 · ð−iℏ∇gχÞ

− 2NkhkD ·

�
1

χ
ð−iℏ∇gχÞ

�
χ

�
: ð114Þ

Thus, at order 1=M, we have arrived to write down a
functional Schrödinger equation containing corrections
from the quantum nature of the gravitational field.
We observe that the modification in (114) is indeed

Hermitian: the function∇gS0 is associated to the solution of
the classical Hamilton-Jacobi equation (102) and thus must
be real (as seen in Sec. II B recalling the original
assumption in [11]), while the remaining parts are the
conjugate momenta of the gravitational field −iℏ∇g. Thus,
these corrections contribute to a term whose morphology is
clearly unitary, overcoming the problems emerging in the
previously analyzed works.
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We stress that the corrections here computed are of order
1=M, whereM is the appointed parameter of expansion, so
they are of low magnitude due to the used approximation
and become relevant near the Planckian scale. Further
discussion on this result and possible applications are
presented in the following section.

V. CONCLUSIONS

Let us go through the steps of our analysis. In Sec. II, the
twoWKB expansions in ℏ and in the Planck mass proposed
in [8,11] have been carefully analyzed and compared. We
have offered a derivation of both expansions in a formalism
that is similar to that adopted in [14]. By doing so, we have
extended the ℏ expansion to arbitrary orders and found
quantum gravity corrections to the quantum sector of the
theory, starting from the second order in the expansion
parameter. This can be seen in the corrected Schrödinger
equation in curved space-time (39), that is valid both for the
ℏ expansion at order ℏ2 and the Planck mass expansion at
order 1=M, revealing that the corrections are of the
same kind.
The non-Hermitian nature of the corrections is better

highlighted once the derivatives of the wave function in the
classical indexes are expressed in terms of time, as reported
in Eq. (43a).
As for the background sector, the ℏ expansion has

yielded a HJ equation, corresponding to the Einstein’s
equations in the presence of a matter source, and the usual
equations of a WKB expansion; see Eqs. (29) and [25]. We
have discussed the fact that this feature is not completely
shared by the Planck mass expansion, since, even if the
background equations have the same form at each order, in
this case the classical limit of matter is excluded.
Though the ℏ model needs for the additional hypothesis

of smallness of the quantum subsystem to derive the
Schrödinger equation, it gains in generality: one may think
of the more elegant Planck mass expansion as the sub-case
of the ℏ case with a purely geometrical background.
Moreover, we have stressed that the origin of this difference
can be traced in the way the adiabatic separation between
slow and fast degrees of freedom is mathematically realized
in the two expansions. The Planck mass is the natural
adiabatic parameter to split quantum matter from classical
geometry and in this sense it does not admit the matter
component in the HJ equation. This is acceptable if one is
only interested in the recovery of quantum field theory on
curved space-time. However, the Planck mass expansion
cannot be applied to cosmology without manually rescaling
the matter fields with the Planck mass itself, when the theory
is applied to inflation, as discussed in the Introduction.
The rest of the paper has been focused on the problem of

unitarity breaking at the quantum gravity order. In Sec. II C,
we have shown that the solution proposed in [14] to solve
the nonunitarity problem within the framework of the
Planck mass expansion is based on very strong hypotheses,

and, thus, it solves the problem only for very peculiar
models. The central point of the procedure developed in
[14] is in the eigenvalue equations (49). Passing from the
Hamiltonian operators to their eigenvalues allows for the
absorption of the non-Hermitian corrections in the back-
ground wave function: this has been done through its
redefinition contemporaneously with the quantum wave
function made in Eqs. (51) and (56). We have argued that
the relations (49) cannot hold at the same time, since it is
not true, in general, that H andHm commute. The reason of
this statement is that H contains the time derivative of the
matter Hamiltonian and, in general, Hm and _Hm do not
commute.
As a counterexample to the procedure of [14], we have

shown the noncommutation of the matter Hamiltonian with
its time derivative for the toy model of inflation described
by Eq. (57). However, our procedure can be applied to all
the models where Hm depends on the background varia-
bles: indeed, in this case, _Hm contains the time derivatives
of such background variables that can be rewritten using
their conjugate momenta, so that a natural problem with the
commutation of the two operators can arise.
In Sec. III, after having reviewed the expansion based on

the exact decomposition of the wave function of the
Universe proposed in [13], we have completed the analysis
by addressing the two major issues of that study.
On one side, we have restored the gauge invariance of the

theory, that was clearly broken by the authors. This has
been done in Eq. (69), by defining the background wave
function ψ s corresponding to the purely quantum wave
function χs defined in [13]; as a consequence, the back-
reaction experiences a two order shift in the expansion
parameter from the order of the HJ equation, where it
appeared in [13]. The first shift is due to the absence of
smallness hypothesis of the quantum subsystem, i.e.,
Hm ∼ ℏ, in [13], that would have made the backreaction
appear in the continuity equation, at order ℏ. However, the
redefinition of the background wave function has led to a
term that exactly compensates the backreaction in the
continuity equation; see Eq. (78). Then, we have shown
that the first contribution of the backreaction in the back-
ground equations appears at the quantum gravity order,
accordingly to [14].
On the other side, we have made explicit the Laplacian

operators in the corrected Schrödinger equation (67) in
terms of time derivatives, for the single geometrical variable
model, in order to properly check the unitarity of the time
evolution at the quantum gravity order. The result of this
analysis is contained in Eq. (81), where the analogue of the
corrected Schrödinger equation obtained in [11] (see
Eq. (39) have been derived in the formalism of [13]. This
equation shows that, once the complete form of the time
evolution operator is made explicit, the problem of unitarity
breaking at the quantum gravity order affects also the
approach [13], as well as the others discussed in this paper.
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We argued that neither of the proposed solutions for the
nonunitarity problem is actually viable, because while in
[13] the real meaning of the Laplacian operator in the slow
variables is not properly addressed (the time evolution
operator is not unitary), in the proposal of [14] the removal
of the undesired terms is operated by assumptions
which are not valid in general, holding only for special
ad-hoc cases.
Summarizing, we have clarified how the problem of a

nonunitary evolution, emerging at the second order in the
expansion parameter, is independent of the specific nature
of such a parameter. This shortcoming of the WKB
formulation seems to be an intrinsic feature of the pro-
cedure of decomposing the quantum state into a slow-
varying and a fast-varying component in order to define
time from the slow classical variables, as shown in
Sec. IVA.
Finally, we concentrated on the principal issue of this

analysis, corresponding to a new proposal to introduce a
proper time evolution in this scheme, avoiding the non-
unitarity problem. We have shown in Sec. IVA that the
origin of the nonunitary terms lies in the definition of time
by the semiclassical variables, i.e., Eq. (36), that has been
implemented in the analyzed works. As seen in (82), the
construction of such a time parameter leads to a term that is
clearly not unitary, thus suggesting a different choice of the
evolution parameter. Such a proposal, based on the con-
struction of the physical clock by using the kinematical
action [15], has been shown to solve the basic difficulties of
the previous formulations, namely, the appearance of
second time derivatives of the quantum wave function
which are clearly nonunitary contributions.
The result obtained by introduction of this term (83) has

led to a satisfactory physical clock, associated in the
classical limit to a physical fluid, that can be retained as
the materialization of a reference frame. For further dis-
cussion on the role of such a fluid in quantum cosmology,
see [4]. The kinematical action has been here added as a fast
quantum component, allowing the desired classical limit,
i.e., the Hamilton-Jacobi equation (102) corresponding to
the standard Einsteinian dynamics in vacuum of the
gravitational background, as viewed in a WKB expansion
of the associated vacuum Wheeler-DeWitt equation. This
way, we have recovered a standard functional Schrödinger
equation for the quantum field at the order M0 (107),
overlapping to standard quantum field theory, and a func-
tional Schrödinger equation containing corrections from
the quantum nature of the gravitational field at order 1=M
(114). The associated time parameter, linked to the foliation
of the gravitational background and essentially the refer-
ence system, has allowed us to overcome the nonunitary
problem and it represents a promising construction to the
study of quantum gravitational corrections to quantum field
theory.

This result offers then a new investigation tool to
evaluate the effect of a nonpurely classical gravitational
dynamics on the quantum field theory, in the limit of very
small energies involved in the quantum dynamics with
respect to the Planckian scale, that allows the perturbative
approach. A suitable application of this procedure could be
in the inflationary sector (as done in [12] for scalar and
tensor perturbations of the inflationary field) or other
cosmological cases, where it would be possible to infer
the magnitude and consequences of such corrections.

APPENDIX A: REFORMATION OF PHASE
TRANSFORMATIONS IN BO DECOMPOSITION

We here express the phase transformations on the wave
functionals performed by [13] and in Sec. III in a more
clean and meaningful way.
Going from the initial functions ψ , χ to the final

functions ψ s, χs requires two transformations, one that
involves A ∼ h∇ci and one that involves hHqi ∼ h∂τi.
Hence, the total transformation is given by Eqs. (64),
(66), and (69),

ψ ¼ e−
i
ℏ

R
Adcψ̃ ¼ e−

i
ℏ

R
Adce−

i
ℏ

R
hHqidτψ s; ðA1aÞ

χ ¼ e
i
ℏ

R
Adcχ̃ ¼ e

i
ℏ

R
Adce

i
ℏ

R
hHqidτχs; ðA1bÞ

where, given the definition of A, the first phase resembles a
Berry phase. Here ∂τ and ∇c are related through the
definition of time (75). It is argued that such transforma-
tions cannot be taken individually, but form a unique
transformation on the system [26]. Moreover, we can write
the exponent as

i
ℏ

Z
ðAdcþ hHqidτÞ ¼

Z
ðh∇cidc − h∂τidτÞ; ðA2Þ

where we used Eqs. (63b) and (76) (or equivalently
Eq. (67), neglecting the fluctuations). If we choose the
classical variables to be fτ; hig from the beginning, where
the hi are the degrees of freedom orthogonal to time, the
last equation reads (a summation on index i is implied)Z

ðh∂tidτ þ h∂hiidhiÞ −
Z

h∂tidτ ¼
Z

h∂hiidhi: ðA3Þ

Now defining

Ai ¼ −iℏh∂hii; ðA4Þ

the full transformation reads

ψ ¼ e−
i
ℏ

R
Aidhiψ s; ðA5Þ
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χ ¼ e
i
ℏ

R
Aidhiχs: ðA6Þ

An interesting remark on this point is that such trans-
formation is clearly performed on the hyperplane orthogo-
nal to the time coordinate, a feature that was not evident
in (64).

APPENDIX B: DETAILED CALCULATION OF
THE EXACT BO DECOMPOSITION

Working with the assumption of a single gravitational
degree of freedom α, as stated in Sec. III B, we have

∂τ ¼ Gααð∂αS0Þ∂α; ðB1aÞ

∂τS0 ¼ −2V; ðB1bÞ

Gττ ¼ −
1

2V
; ðB1cÞ

∂α ¼
d
dα

¼ dS0
dα

1

dS0=dτ
d
dτ

¼ −
1

2V
ð∂αS0Þ∂τ: ðB1dÞ

We stress that, even with a single geometrical degree of
freedom, this procedure is valid only if ð3ÞR ≠ 0; otherwise,
we would have ∂τS0 ¼ V ¼ 0.
By using these relations and Eq. (76), it is easy to find

iℏ∂αχ̃ ¼ −
1

2V
ð∂αS0ÞðHq − hHqiÞχ̃; ðB2aÞ

Gααðiℏ∂αÞ2χ̃ ¼
�
iℏ _V
2V2

ðHq − hHqiÞ

−
iℏ
2V

Gααð∂2
αS0ÞðHq − hHqiÞ

−
iℏ
2V

ð _Hq − h _HqiÞ −
1

2V
ðHq − hHqiÞ2

�
χ̃;

ðB2bÞ

hGααðiℏ∂αÞ2i ¼ −
1

2V
ðhH2

qi − hHq
2iÞ; ðB2cÞ

where we expressed time derivatives with a dot and we used
the identity

∂τhHqi ¼ h∂τHqi; ðB3Þ

due once again to Eq. (76). Now we can make use of
Eqs. (B2), (79), and (66), substituting them in Eq. (65b);
after some cumbersome calculations, we obtain the cor-
rected Schrödinger equation up to order Oð1=MÞ as

iℏ∂τχs ¼ Hqχs −
1

4MV

�
ðH2

q − hH2
qiÞ

þ iℏð _Hq − h _HqiÞ − iℏ
_V
V
ðHq − hHqiÞ

�
χs: ðB4Þ

For completeness, we now turn our attention to the back-
ground wave function at order Oð1=MÞ. Rewriting ∂α

through Eq. (B1d), with the help of Eqs. (79) and (77), we
find

−
ℏ2

2
Gαα

∂2
αψ̃

ψ̃
¼ℏ2∂τζ2− iℏ2∂τρ2

−
1

4V
hHq

2iþ iℏ _V
4V2

hHqi−
iℏ
4V

h _Hqi

−
ℏ2

4V
ð∂τρ1Þ2−

ℏ2 _V
4V2

∂τρ1þ
ℏ2

4V
∂2
τρ1: ðB5Þ

Through the last equation and Eq. (B2c), one can rewrite
the background equation at the desired order. After sepa-
rating the real and imaginary parts, we find

∂τζ2 −
1

4V

�
ð∂τρ1Þ2 þ

_V
V
∂τρ1 − ∂2

τρ1

�
−

1

4V

hH2
qi

ℏ2
¼ 0;

ðB6aÞ

∂τρ2 −
_V

4V2

hHqi
ℏ

þ 1

4V

h _Hqi
ℏ

¼ 0: ðB6bÞ

This perturbative order clearly shows the backreaction of
the quantum subsystem, at the same order expected in [14],
although the solutions are different, as well as for the
corrected Schrödinger equation (B4). By writing the
equations in the time component from the beginning,
Eq. (79a) becomes

1

2
Gττ∂2

τS0 þ ∂τρ1 ¼ 0; ðB7Þ

and making use of Eq. (B1), we can write

∂τρ1 ¼ −
_V
2V

: ðB8Þ

With this result, we can simplify Eq. (B6a) and obtain

∂τζ2 −
1

4V

�
V̈
2V

−
3

4

ð _VÞ2
V2

�
−

1

4V
hH2

mi
ℏ2

¼ 0: ðB9Þ
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