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Preface

Macroscopic objects, as we see them all around us, are governed by a variety of forces,
derived from a variety of approximations to a variety of physical theories. In contrast, the
only elements in the construction of black holes are our basic concepts of space and time.
They are, thus, almost by definition, the most perfect macroscopic objects there are in the
universe. —Subrahmanyan Chandrasekhar

Radiation enhancement processes have a long history that can be traced back to the
dawn of quantum mechanics, when Klein showed that the Dirac equation allows
for electrons to be transmitted even in classically forbidden regions [1]. In 1954,
Dicke introduced the concept of superradiance, standing for a collective phenomena
whereby radiation is amplified by coherence of emitters [2]. In 1971 Zel’dovich
showed that scattering of radiation off rotating absorbing surfaces results, under
certain conditions, in waves with a larger amplitude [3, 4]. This phenomenon is
now widely known also as (rotational) superradiance and requires that the incident
radiation, assumed monochromatic of frequency ω, satisfies

ω < m� , (1)

with m the azimuthal number with respect to the rotation axis and � the angular
velocity of the body. Rotational superradiance belongs to a wider class of classical
problems displaying stimulated or spontaneous energy emission, such as the
Vavilov–Cherenkov effect, the anomalous Doppler effect, and other examples of
“superluminal motion.” When quantum effects were incorporated, it was argued
that rotational superradiance would become a spontaneous process and that rotating
bodies—including black holes (BHs)—would slow down by spontaneous emission
of photons satisfying (1). In parallel, similar conclusions were reached when
analyzing BH superradiance from a thermodynamic viewpoint [5, 6]. From a
historic perspective, the first studies of BH superradiance played a decisive role
in the discovery of BH evaporation [7, 8].

Interest in BH superradiance was recently revived in different areas, including
astrophysics and high-energy physics (via the gauge/gravity duality), and funda-
mental issues in General Relativity (GR). Superradiant instabilities can be used
to constrain the mass of ultralight degrees of freedom [9–12], with important
applications to dark-matter searches and to physics beyond the Standard Model.
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BH superradiance is also associated with the existence of new asymptotically flat,
hairy BH solutions [13] and with phase transitions between spinning and charged
black objects in asymptotically anti-de Sitter (AdS) spacetime [14–16] or in higher
dimensions [17]. Finally, superradiance is fundamental in deciding the stability of
BHs and the fate of the gravitational collapse in confining geometries. In fact, the
strong connection between some recent applications and the original phenomenon
of superradiance has not always been fully recognized. This is the case, for instance,
of holographic models of superfluids [18], which hinge on a spontaneous symmetry
breaking of charged BHs in AdS spacetime [19]. In global AdS, the associated
phase transition can be interpreted in terms of superradiant instability of a Reissner–
Nordstrom AdS BH triggered by a charged scalar field [15, 20].

With the exception of the outstanding—but focused—work by Bekenstein and
Schiffer [6], a proper overview on superradiance, including various aspects of wave
propagation in BH spacetimes, does not exist. We hope to fill this gap with the
current work. In view of the multifaceted nature of this subject, we wish to present
a unified treatment where various aspects of superradiance in flat spacetime are
connected to their counterparts in curved spacetime, with particular emphasis on
the superradiant amplification by BHs. In addition, we wish to review various
applications of BH superradiance which have been developed in the last decade.
These developments embrace different communities (e.g., gravity, particle physics,
string theorists, experimentalists), and our scope is to present a concise treatment
that can be fruitful for the reader who is not familiar with the specific area. As will
become clear throughout this work, some of these topics are far from being fully
explored. We hope this study will serve as a guide for the exciting developments
lying ahead.

As the first version of this work was being published, the field experienced a
phase transition. To name but a few, gravitational-wave (GW) observatories made
the first-ever direct detections of BH binaries; the numerical evolution of massive
fields around spinning BHs was reported; long-baseline interferometry produced
the first-ever images of supermassive BHs, and detected motion close to their
horizon. These novel observations made it possible to search for direct signatures
of superradiant instabilities around BHs. Furthermore, superradiance was measured
in the laboratory in BH-analog systems. The topic is more timely than ever and
urged us to write a second edition, where a number of typos and some wrong
statements were corrected. We hope that this updated revision reflects all the main
developments and the excitement of the last years.

Rome, Italy Richard Brito
Lisbon, Portugal Vitor Cardoso
Rome, Italy Paolo Pani
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Notation and Conventions

Unless otherwise and explicitly stated, we use geometrized units whereG = c = 1,
so that energy and time have units of length. We also adopt the (− + + + . . . )

convention for the metric. For reference, the following is a list of symbols that are
used often throughout the text.

ϕ Azimuthal coordinate.
ϑ Angular coordinate.
m Azimuthal number with respect to the axis of rotation, |m| ≤ l.
l Integer angular number, related to the eigenvalue Alm = l(l + 1) in four

spacetime dimensions.
s Spin of the field.
ω Fourier transform variable. The time dependence of any field is ∼ e−iωt .

For stable spacetimes, Im(ω) < 0.
ωR, ωI Real and imaginary parts of the quasinormal mode frequencies.
R,I Amplitude of reflected and incident waves, which characterize a wave-

function�.
Zslm Amplification factor of fluxes for a wave with spin s and harmonic indices

(l,m). For scalar fields, Z0lm = |R|2/|I|2 − 1 with the asymptotic
expansion at spatial infinity, � ∼ Reiωt + Ie−iωt . Occasionally, when
clear from the context, we will omit the indices s and l and simply write
Zm.

n Overtone numbers of the eigenfrequencies. We conventionally start
counting from a “fundamental mode” with n = 0.

D Total number of spacetime dimensions (we always consider one timelike
and D − 1 spacelike dimensions).

L Curvature radius of (A)dS spacetime, related to the negative cosmological
constant� in the Einstein equations (Gμν +�gμν = 0).

L2 = ∓(D−2)(D−1)/(2�) is the curvature radius of anti-de Sitter (- sign)
or de Sitter.

M Mass of the black hole spacetime.
r+ Radius of the black-hole event horizon in the chosen coordinates.
�H Angular velocity of a zero angular momentum observer at the black hole

horizon, as measured by a static observer at infinity.
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xx Notation and Conventions

μS, V, T Mass parameter of the (scalar, vector, or tensor) field. In geometric units,
the field mass is μS,V,T h̄, respectively.

a Kerr rotation parameter: a = J/M ∈ [0,M].
gαβ Spacetime metric; Greek indices run from 0 to D − 1.
Ylm Spherical harmonics, orthonormal with respect to the integral over the

2-sphere.
Sslm Spin-weighted spheroidal harmonics.
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LISA Laser Interferometer Space Antenna
ODE Ordinary Differential Equation
NS Neutron Star
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RN Reissner–Nordström
ZAMO Zero Angular Momentum Observer
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1Milestones

The term superradiance was coined by Dicke in 1954 [1], but studies on related
phenomena date back to at least 1947 with the pioneering work of Ginzburg and
Frank [2] on the “anomalous” Doppler effect. It is impossible to summarize all
the important work in the field in this work, but we think it is both useful and
pedagogical to have a chronogram of some of the most relevant milestones. We will
keep this list—necessarily incomplete and necessarily biased—confined mostly to
the realm of General Relativity (GR), although we cannot help making a reference
to some of the breakthrough work in other areas. A more complete set of references
can be found in the rest of this work.

1899 In his book “Electromagnetic Theory,” Oliver Heaviside discusses
the motion of a charged body moving faster than light in a medium.
Remarkably (since the electron had not been discovered yet), this was
a precursor of the Vavilov–Cherenkov effect.

1915 Einstein develops GR [3].
1916 Shortly afterwards, Schwarzschild [4] and Droste [5] derive the first

solution of Einstein’s equations, describing the gravitational field
generated by a point mass. Most of the subtleties and implications
of this solution will only be understood many years later.

1920s In order to unify electromagnetism with GR, Kaluza and Klein
propose a model in which the spacetime has five dimensions, one of
which is compactified on a circle [6, 7].

1929 In his studies of the Dirac equation, Klein finds that electrons can
“cross” a potential barrier without the exponential damping expected
from nonrelativistic quantum tunneling [8]. This process was soon
dubbed Klein paradox by Sauter. The expression was later used to
describe an incorrectly obtained phenomenon of fermion superradi-
ance (Klein’s original work correctly shows that no superradiance
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occurs for fermions). An interesting historical account of these events
is given by Manogue [9].

1931 Chandrasekhar derives an upper limit for white dwarf masses, above
which electron degeneracy pressure cannot sustain the star [10]. The
Chandrasekhar limit was subsequently extended to neutron stars (NS)
by Oppenheimer and Volkoff [11].

1934 Vavilov and Cherenkov discover spontaneous emission from a charge
moving uniformly and superluminally in a dielectric. The effect was
interpreted theoretically by Tamm and Frank in 1937 [12]. In 1958,
Tamm, Frank, and Cherenkov receive the Nobel prize in physics for
these studies.

1937 Kapitska discovers superfluidity in liquid helium.
1945 Ginzburg and Frank discuss transition radiation [13].
1947 Ginzburg and Frank discover an “anomalous Doppler effect” [2]:

the emission of radiation by a system moving faster than the phase
velocity of EM waves in a medium and followed by the excitation
(rather than by the standard de-excitation) to a higher energy level.

1947 Pierce describes a “traveling wave tube amplifier,” where an electron
beam extracts energy from an EM wave traveling at a speed less than
its vacuum value. The EM wave is forced to slow down using an helix
electrode, a spiral of wire around the electron beam (http://www.r-
type.org/articles/art-030.htm) [14].

1953 Smith and Purcell experimentally show that motion near finite-size
objects induces radiation emission, or “diffraction radiation” [15].

1954 Dicke coins the term “superradiance” in the context of coherent emis-
sion in quantum optics [1]. The first high-resolution measurement
of superradiance using coherent synchrotron radiation was recently
achieved [16].

1957 Regge and Wheeler [17] analyze a special class of gravitational
perturbations of the Schwarzschild geometry. This effectively marks
the birth of BH perturbation theory.

1958 Finkelstein understands that the r = 2M surface of the Schwarzschild
geometry is not a singularity but a horizon [18]. The so-called golden
age of GR begins: in a few years there would be an enormous progress
in the understanding of GR and of its solutions.

1962 Newman and Penrose [19] develop a formalism to study gravitational
radiation using spin coefficients.

1963 Kerr [20] discovers the mathematical solution of Einstein’s field equa-
tions describing rotating BHs. In the same year, Schmidt identifies the
first quasar [21]. Quasars are now believed to be supermassive BHs,
described by the Kerr solution.

1964 The UHURU orbiting X-ray observatory makes the first surveys of
the X-ray sky discovering over 300 X-ray “stars.” One of these X-ray
sources, Cygnus X-1, is soon accepted as the first plausible stellar-
mass BH candidate (see, e.g., Ref. [22]).

http://www.r-type.org/articles/art-030.htm
http://www.r-type.org/articles/art-030.htm
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1967 Wheeler [23, 24] coins the term black hole (see the April 2009 issue
of Physics Today, Ref. [25] for a fascinating, first-person historical
account, and a recent overview with new and interesting details [26]).

1969 Hawking’s singularity theorems imply that collapse of ordinary mat-
ter leads, under generic conditions, to spacetime singularities. In the
same year Penrose conjectures that these singularities, where quan-
tum gravitational effects become important, are generically contained
within BHs, the so-called Cosmic Censorship Conjecture [27, 28].

1969 Penrose shows that the existence of an ergoregion allows to extract
energy and angular momentum from a Kerr BH and to amplify energy
in particle collisions [27].

1970 Zerilli [29,30] extends the Regge–Wheeler analysis to general pertur-
bations of a Schwarzschild BH, reducing the problem to the study of
a pair of Schrödinger-like equations, and computing the gravitational
radiation emitted by infalling test particles.

1970 Vishveshwara [31] studies numerically the scattering of GWs by BHs:
at late times the waveform consists of damped sinusoids, now called
ringdown waves. The latter coincide with the BH quasinormal modes
(QNMs) [32–36].

1971 Zeldovich shows that dissipative rotating bodies amplify incident
waves [37,38]. In the same study, quantum spontaneous pair creation
by rotating bodies is also predicted, which effectively is a precursor
to Hawking’s result on BH evaporation. Misner explored some of
the physics associated with energy extraction [39]. Aspects of the
quantization procedure of test fields in the Kerr geometry were further
independently elaborated by Starobinski [40, 41] and Deruelle and
collaborators [42, 43].

1972–1974 Teukolsky [44] decouples and separates the equations for pertur-
bations in the Kerr geometry using the Newman–Penrose formal-
ism [19]. In the same year, Teukolsky and Press discuss quantitatively
the superradiant scattering from a spinning BH [45]. They predict
that, if confined, superradiance can give rise to BH bombs and
floating orbits around spinning BHs [46]. This work introduces the
term “superradiance” for the first time, in connection to Zel’dovich
classical process of energy amplification.

1973 Unruh independently separates the massless spin-1/2 equations on a
Kerr background and proves the absence of superradiance for mass-
less fermions [47, 48]. The result was later generalized to massive
fermions by Chandrasekhar and by Iyer and Kumar [49–51].

1975 Using quantum field theory in curved space and building on Zel-
dovich’s 1971 result, Hawking finds that BHs have a thermal emis-
sion [52]. This result is one of the most important links between
general relativity, quantum mechanics, and thermodynamics.
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1977 Blandford and Znajek propose a mechanism to extract energy from
rotating BHs immersed in force-free magnetic fields [53]. This is
thought to be one of the main mechanisms behind jet formation.

1976–1980 Damour, Deruelle, and Ruffini discover that superradiance triggers an
instability of the Kerr BH solution against massive scalar fields [54].
The study is then formalized by Detweiler [55] and by Zouros and
Eardley [56].

1978 Friedman [57] shows that horizonless spacetimes with ergoregions
are unstable. Similar result is shown simultaneously for quantum
fields [58].

1983 Chandrasekhar’s monograph [59] summarizes the state of the art in
BH perturbation theory, elucidating connections between different
formalisms.

1985 Leaver [60–62] provides the most accurate method to date to compute
BH QNMs using continued fraction representations of the relevant
wavefunctions. Recently, accurate spectral methods have been devel-
oped to handle partial differential equations (PDEs) [63].

1986 McClintock and Remillard [64] show that the X-ray nova A0620-00
contains a compact object of mass almost certainly larger than 3M�,
paving the way for the identification of many more stellar-mass BH
candidates.

1986 Myers and Perry construct higher-dimensional rotating, topologically
spherical, BH solutions [65].

1992 In a series of papers, Kojima develops the theory of linear perturba-
tions of a slowly rotating, relativistic star [66–68].

1998 Maldacena formulates the AdS/CFT duality conjecture [69]. Shortly
afterward, the papers by Gubser, Klebanov, Polyakov [70], and
Witten [71] establish a concrete quantitative recipe for the duality.
The AdS/CFT era begins. In the same year, the correspondence is
generalized to nonconformal theories in a variety of approaches. The
terms “gauge/string duality,” “gauge/gravity duality,” and “holog-
raphy” appear, referring to these generalized settings (we refer to
Ref. [72] for a review).

1999 Banks and Fischler [73] show that in braneworld scenarios BHs could
be produced in particle accelerators. Shortly after, it is proposed to
look for BH production in the LHC and in ultra-high-energy cosmic
rays [74, 75].

2001 Emparan and Reall provide the first example of a stationary asymp-
totically flat vacuum solution with an event horizon of nonspherical
topology: the “black ring” [76].

2003 In a series of papers [77–79], Kodama and Ishibashi extend the
Regge–Wheeler–Zerilli formalism to higher dimensions.

2004 Small, rapidly spinning Kerr-AdS BHs are found to be linearly unsta-
ble because of the AdS boundary providing a natural confinement



1 Milestones 5

mechanism for superradiant radiation [80]. Rigorous growth-rate
estimates for generic initial data are provided in Ref. [81].

2005–2009 The D1-D5 system is used as a toy model to understand the micro-
scopic origin of superradiant scattering [82, 83]. For horizonless
geometries, ergoregion instabilities lead precisely to Hawking radi-
ation [84, 85].

2008 Gubser proposes a spontaneous symmetry breaking mechanism, giv-
ing an effective mass to charged scalars in AdS [86]. Shortly after-
wards, Hartnoll, Herzog, and Horowitz provide a nonlinear real-
ization of the mechanism, building the holographic analog of a
superfluid [87]. Depending on the magnitude of the induced mass,
tachyonic or superradiant instabilities may be triggered in BH space-
times [88–91].

2009 The string-axiverse scenario is proposed, where a number of ultra-
light degrees of freedom—prone to superradiant instabilities around
spinning BHs—are conjectured to exist [92]. Precision measurements
of mass and spin of BHs, together with GW observations, may be
used to explore some of the consequences of this scenario [92, 93].
Such searches were later shown to provide constraints on the QCD
axion [94].

2011 Superradiant instabilities are shown to drive AdS BHs to hairy
configurations [90, 95].

2011 Floating orbits around Kerr BHs are predicted in scalar-tensor the-
ories as a generic outcome of superradiant amplification of scalar
waves [96].

2012 Rotating Kerr BHs are shown to be linearly unstable against massive
vector field perturbations [97–99] and massive tensor field perturba-
tions [100]. Competitive bounds on the photon and graviton mass are
derived from the observations of spinning BHs [101].

2013 Superradiance is shown to occur at full nonlinear level [102].
2014 Asymptotically flat, hairy BH solutions are constructed analyti-

cally [103] and numerically [104–106]. These are thought to be one
possible end-state of superradiant instabilities for complex scalar
or vector fields. The superradiance threshold of the standard Kerr
solution marks the onset of a phase transition towards a hairy BH.

2014 Reissner–Nordstrom de Sitter BHs are found to be unstable against
charged scalar perturbations [107]. The unstable modes satisfy the
superradiant condition [108].

2014 The adiabatic evolution of the superradiant instability of the Kerr
spacetime is simulated, in the presence of an accretion disk and
of GW emission [109]. Growth of a scalar cloud and subsequent
depletion through GW emission is reported.

2016 The LIGO-Virgo Collaboration announces the first direct detection of
GWs, generated by a pair of merging BHs [110]. This historical event
was followed by the detection of a binary NS merger, both in the GW
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and EM window [111]. An overview of the field and prospects for the
future can be found in Ref. [112].

2016 Post-merger continuous GW signals from merging BHs are proposed
as a smoking gun of ultralight fields [113].

2016 Superradiance from BHs is derived using effective field theory tech-
niques [114].

2016 The first observation of rotational superradiance in the laboratory is
reported [115].

2016 Superradiance from binaries or triple systems is shown to yield
observational signatures in GW signals [116].

2017 The nonlinear evolution of the superradiant instability of a massive
vector is reported. Mass extraction from the BH and growth of a
vector “cloud” are observed [117].

2017 Superradiance is reported for EM waves impinging on a rotating
conducting star [118]. The mechanism is used to constrain invisible,
massive vector fields.

2017 Superradiance around rotating BHs is computed for massive vector
fields using a large Compton-wavelength approximation [119].
Results are subsequently computed numerically, at linearized
level [120].

2017 The nonlinear growth, saturation of, and gravitational radiation from
the instability of a massive vector field around a spinning BH is
reported [121].

2018 First constraints on light fields from the absence of a GW stochastic
background [122–125], and null results for continuous searches [122,
123, 126–131].

2018 The nonlinear evolution of the superradiant instability of spinning
BHs in four-dimensional AdS space is reported [132].

2018 The equations of motion for a massive vector on a Kerr background
are shown to be separable [133].

2018 The GRAVITY instrument reports detection of an orbiting hotspot
close to the innermost stable orbit of the BH at the center of our
galaxy [134].

2018 The influence of a companion on superradiant clouds is studied.
Level mixing and resonances are reported analytically [135–137], and
verified numerically, including cloud disruption for large tides [138].
Cloud is shown to mediate angular momentum exchange, which can
lead to floating or sinking orbits [136, 137].

2019 The Event Horizon Telescope produces the first direct imaging of a
supermassive BH in M87 galaxy [139].

2019 Energy extraction from binaries [140,141] and isolated, moving [142]
BHs is reported.
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2Superradiance in Flat Spacetime

2.1 Klein Paradox: The First Example of Superradiance

The first treatment of what came to be known as the Klein paradox can be traced
back to the original paper by Klein [1], who pioneered studies of Dirac’s equation
in the presence of a step potential. He showed that an electron beam propagating in
a region with a large enough potential barrier V can emerge without the exponential
damping expected from nonrelativistic quantum tunneling processes. When trying
to understand if such a result was an artifact of the step potential used by Klein,
Sauter found that the essentials of the process were independent on the details of the
potential barrier, although the probability of transmission decreases with decreasing
slope [2]. This phenomenon was originally dubbed “Klein paradox” by Sauter1 in
1931 [2].

Further studies by Hund in 1941 [5], now dealing with a charged scalar field
and the Klein–Gordon equation, showed that the step potential could give rise to
the production of pairs of charged particles when the potential is sufficiently strong.
Hund tried—but failed—to derive the same result for fermions. It is quite interesting
to note that this result can be seen as a precursor of the modern quantum field
theory results of Schwinger [6] and Hawking [7] who showed that spontaneous pair
production is possible in the presence of strong EM and gravitational fields for both

1The Klein paradox as we understand it today has an interesting history. Few years after Klein’s
original study (written in German), the expression Klein paradox appeared in some British
literature in relation with fermionic superradiance: due to some confusion (and probably because
Klein’s paper did not have an English translation), some authors wrongly interpreted Klein’s results
as if the fermionic current reflected by the potential barrier could be greater than the incident
current. This result was due to an incorrect evaluation of the reflected and transmitted wave’s group
velocities, although Klein—following suggestions by Niels Bohr—had the correct calculation in
the original work [3]. Although not explicitly mentioned by Klein, this phenomenon can actually
happen for bosonic fields [4] and it goes under the name of superradiant scattering.

© The Editor(s) (if applicable) and The Author(s), under exclusive licence
to Springer Nature Switzerland AG 2020
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bosons and fermions. In fact we know today that the resolution of the “old” Klein
paradox is due to the creation of particle–antiparticle pairs at the barrier, which
explains the undamped transmitted part.

In the remaining of this section we present a simple treatment of bosonic and
fermionic scattering, to illustrate these phenomena.

2.1.1 Bosonic Scattering

Consider a massless scalar field � minimally coupled to an EM potential Aμ in
(1 + 1)–dimensions, governed by the Klein–Gordon equation

�
;μ

;μ = 0, (2.1)

where we defined �;μ ≡ (∂μ − ieAμ)� and e is the charge of the scalar field. For
simplicity we consider an external potential Aμ = {A0(x), 0}, with the asymptotic
behavior

A0 →
{

0 as x → −∞
V as x → +∞ . (2.2)

With the ansatz � = e−iωt f (x), Eq. (2.1) can be separated yielding the ordinary
differential equation (ODE)

d2f

dx2 + (ω − eA0)
2 f = 0. (2.3)

Consider a beam of particles coming from −∞ and scattering off the potential
with reflection and transmission amplitudes R and T , respectively. With these
boundary conditions, the solution to Eq. (2.1) behaves asymptotically as

fin(x) = Ieiωx + Re−iωx, as x → −∞,
fin(x) = T eikx, as x → +∞, (2.4)

where

k = ±(ω − eV ). (2.5)

To define the sign of ω and k we must look at the wave’s group velocity. We require
the incoming and the transmitted part of the waves to have positive group velocity,
∂ω/∂k > 0, so that they travel from the left to the right in the x–direction. Hence,
we take ω > 0 and the plus sign in (2.5).
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The reflection and transmission coefficients depend on the specific shape of the
potential A0. However, one can easily show that the Wronskian

W = f̃1
df̃2

dx
− f̃2

df̃1

dx
, (2.6)

between two independent solutions, f̃1 and f̃2, of (2.3) is conserved. From Eq. (2.3),
on the other hand, if f is a solution, then its complex conjugatef ∗ is another linearly
independent solution. Evaluating the Wronskian (2.6), or equivalently, the particle
current density, for the solution (2.4) and its complex conjugate we find

|R|2 = |I|2 − ω − eV
ω

|T |2 . (2.7)

Thus, for

0 < ω < eV, (2.8)

it is possible to have superradiant amplification of the reflected current, i.e, |R| >
|I|. There are other exactly solvable potentials which also display superradiance
explicitly, but we will not discuss them here [8].

2.1.2 Fermionic Scattering

Now let us consider the Dirac equation for a spin- 1
2 massless fermion� , minimally

coupled to the same EM potential Aμ as in Eq. (2.2),

γ μ�;μ = 0, (2.9)

where γ μ are the four Dirac matrices satisfying the anticommutation relation
{γ μ, γ ν} = 2gμν . The solution to (2.9) takes the form � = e−iωtχ(x), where
χ is a two-spinor given by

χ =
(
f1(x)

f2(x)

)
. (2.10)

Using the representation

γ 0 =
(
i 0
0 −i

)
, γ 1 =

(
0 i

−i 0

)
, (2.11)

the functions f1 and f2 satisfy the system of equations:

df1/dx − i(ω − eA0)f2 = 0,

df2/dx − i(ω − eA0)f1 = 0. (2.12)
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One set of solutions can be once more formed by the “in” modes, representing a
flux of particles coming from x → −∞ being partially reflected (with reflection
amplitude |R|2) and partially transmitted at the barrier

(
f in

1 , f
in
2

)
=
{(

Ieiωx − Re−iωx ,Ieiωx + Re−iωx
)

as x → −∞(
T eikx,T eikx

)
as x → +∞ . (2.13)

On the other hand, the conserved current associated with the Dirac equation (2.9)
is given by jμ = −e�†γ 0γ μ� and, by equating the latter at x → −∞ and x →
+∞, we find some general relations between the reflection and the transmission
coefficients, in particular,

|R|2 = |I|2 − |T |2 . (2.14)

Therefore, |R|2 ≤ |I|2 for any frequency, showing that there is no superradiance
for fermions. The same kind of relation can be found for massive fields [3].

The difference between fermions and bosons comes from the intrinsic properties
of these two kinds of particles. Fermions have positive definite current densities
and bounded transmission amplitudes 0 ≤ |T |2 ≤ |I|2, while for bosons the
current density can change its sign as it is partially transmitted and the transmission
amplitude can be negative, −∞ < ω−eV

ω
|T |2 ≤ |I|2. From the quantum

field theory point of view one can understand this process as a spontaneous pair
production phenomenon due to the presence of a strong EM field (see e.g. [3]). The
number of fermionic pairs produced spontaneously in a given state is limited by the
Pauli exclusion principle, while such limitation does not exist for bosons.

2.2 Superradiance and Pair Creation

To understand how pair creation is related to superradiance consider the potential
used in the Klein paradox. Take a superradiant mode obeying Eq. (2.8) and P ≤ 1 to
be the probability for spontaneous production of a single particle–antiparticle pair.
The average number n̄ of bosonic and fermionic pairs in a given state follows the
Bose–Einstein and the Fermi–Dirac distributions, respectively, [9]

n̄B,F = 1

1/P ∓ 1
, (2.15)

where the minus sign refers to bosons, whereas the plus sign in the equation above
is dictated by the Pauli exclusion principle, which allows only one fermionic pair to
be produced in the same state.
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Now, by using a second quantization procedure, the number of pairs produced in
a given state for bosons and fermions in the superradiant region (2.8) is [3]

n̄B =
∣∣∣∣ω − eV

ω

∣∣∣∣ |T |2 , n̄F = |T |2 . (2.16)

From Eq. (2.15) we see that 0 ≤ n̄F ≤ 1 while n̄B → ∞ when P → 1 and n̄B → 0
when P → 0. Equations (2.15), (2.16), and (2.7) show that |R|2 → |I|2 as P → 0,
so that superradiance is possible only when P �= 0, i.e. superradiance occurs due
to spontaneous pair creation. On the other hand, we also see that the bounded value
for the amplification factor in fermions is due to the Pauli exclusion principle.

Although superradiance and spontaneous pair production in strong fields are
related phenomena, they are nevertheless distinct. Indeed, pair production can occur
without superradiance and it can occur whenever is kinematically allowed. On
the other hand, superradiance is enough to ensure that bosonic spontaneous pair
emission will occur. This is a well known result in BH physics. For example, in
Sect. 3 we shall see that even nonrotating BHs do not allow for superradiance,
but nonetheless emit Hawking radiation [7], the latter can be considered as the
gravitational analogue of pair production in strong EM fields.

To examine the question of energy conservation in this process, let us follow the
following thought experiment [4]. Consider a battery connected to two boxes, such
that a potential V increase occurs between an outer grounded box and an inner box.
An absorber is placed at the end of the inner box, which absorbs all particles incident
on it. Let us consider an incident superradiant massless bosonic wave with charge e
and energy ω < eV . From (2.7) we see that

|R|2 − eV − ω
ω

|T |2 = |I|2. (2.17)

The minus sign in front of eV−ω
ω

|T |2 is a consequence of the fact that the current
for bosons is not positive definite, and “negatively” charged waves have a negative
current density. Since more particles are reflected than incident we can also picture
the process in the following way: all particles incident on the potential barrier are
reflected, however the incident beam stimulates pair creation at the barrier, which
emits particles and antiparticles. Particles join the reflected beam, while the negative
transmitted current can be interpreted as a flow of antiparticles with charge −e. All
the particles incident with energyω are reflected back with energyω and in addition,
because of pair creation, more particles with charge e and energy ω join the beam.
For each additional particle another one with charge −e is transmitted to the box and
transmits its energy to the absorber, delivering a kinetic energy eV −ω. To keep the
potential of the inner box at V , the battery loses an amount of stored energy equal
to eV . The total change of the system, battery plus boxes, is therefore Ediss = −ω,
for each particle with energy ω that is created to join the beam.
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Now, imagine exactly the same experiment but ω > eV , when superradiance
does not occur, and |R|2 ≤ |I|2. In this case the kinetic energy delivered to the
absorber is ω − eV . An amount of energy eV is given to the battery and the system
battery plus boxes gains a total energyω. By energy conservation the reflected beam
must have energy −ω, which we can interpret as being due to the fact that the
reflected beam is composed by antiparticles and the transmitted beam by particles.

Although the result might seem evident from the energetic point of view, we see
that superradiance is connected to dissipation within the system. As we will see in
the rest, this fact is a very generic feature of superradiance.

If we repeat the same experiment for fermions, we see from (2.14) that |R|2 +
|T |2 = |I|2. Since the current density for fermions is positive definite the flux
across the potential barrier must be positive and, therefore, the flux in the reflected
wave must be less than the incident wave. Since fewer particles are reflected than
transmitted, then by energy conservation the total energy given to the battery-boxes
system must be positive and given by ω. Thus the reflected beam has a negative
energy −ω, which can be interpreted as being due the production of antiparticles.
In this case the kinetic energy delivered to the absorber will always be |ω − eV |.

2.3 Superradiance and Spontaneous Emission by aMoving
Object

As counterintuitive as it can appear at first sight, in fact superradiance can be
understood purely kinematically in terms of Lorentz transformations. Consider
an object moving with velocity vi (with respect to the laboratory frame) and
emitting/absorbing a photon. Let the initial 4-momentum of the object be pμi =
(Ei,pi ) and the final one be pμf = (Ef ,pf ) with Ef = Ei∓ h̄ω and pf = pi∓ h̄k,
where (h̄ω, h̄k) is the 4-momentum of the emitted/absorbed photon, respectively.
The object’s rest mass can be computed by using Lorentz transformations to go to
the comoving frame,

Ei = γi(Ei − vi · pi ), (2.18)

and similarly for Ef , where γi = 1/
√

1 − v2
i . Assuming vf = vi + δv, to zeroth

order in the recoil term δv the increase of the rest mass reads

�E ≡ Ef − Ei = ∓γih̄(ω − vi · k)+ O(δv), (2.19)

where the minus and plus signs refer to emission and absorption of the photon,
respectively. Therefore, if the object is in its fundamental state (Ei < Ef ), the
emission of a photon can only occur when the Ginzburg–Frank condition is satisfied,
namely [10, 11]

ω(k)− vi · k < 0, (2.20)
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where k = |k| and ω(k) is given by the photon’s dispersion relation. In vacuum,
ω(k) = k so that the equation above can never be fulfilled. This reflects the obvious
fact that Lorentz invariance forbids a particle in its ground state to emit a photon in
vacuum. However, spontaneous emission can occur any time the dispersion relation
allows for ω < k. For example, suppose that the particle emits a massive wave
whose dispersion relation is ω = √

μ2 + k2, where μ is the mass of the emitted
radiation. For modes with μ� k, Eq. (2.20) reads

μ2

2k2
< vi cosϑ − 1 ≤ 0, (2.21)

where vi · k = vik cosϑ . Hence, only unphysical radiation with μ2 < 0 can be
spontaneously radiated, this fact being related to the so-called tachyonic instability
and it is relevant for those theories that predict radiation with an effective mass
μ through nonminimal couplings (e.g. this happens in scalar-tensor theories of
gravity [12] and it is associated to the so-called spontaneous scalarization [13]).

Another relevant example occurs when the object is travelling through an
isotropic dielectric that is transparent to radiation. In this case ω = k/n(ω) where
n(ω) = 1/vph is the medium’s refractive index and vph is the phase velocity of
radiation in the medium. In this case Eq. (2.20) reads

cosϑ >
vph

vi
. (2.22)

Therefore, if the object’s speed is smaller than the phase velocity of radiation,
no spontaneous emission can occur, whereas in the opposite case spontaneous
superradiance occurs when ϑ < ϑc = cos−1(vph/vi). This phenomenon was
dubbed anomalous Doppler effect [10, 11]. The angle ϑc defines the angle of
coherent scattering, i.e. a photon incident with an angle ϑc can be absorbed and
re-emitted along the same direction without changing the object motion, even when
the latter is structureless, i.e. when Ei = Ef .

As discussed in Ref. [14], spontaneous superradiance is not only a simple
consequence of Lorentz invariance, but it also follows from thermodynamical
arguments. Indeed, for a finite body that absorbs nearly monochromatic radiation,
the second law of thermodynamics implies

(ω − vi · k)a(ω) > 0, (2.23)

where a(ω) is the characteristic absorptivity of the body. Hence, the superradiance
condition is associated with a negative absorptivity, that is, superradiance is
intimately connected to dissipation within the system.



20 2 Superradiance in Flat Spacetime

2.3.1 Cherenkov Emission and Superradiance

The emission of radiation by a charge moving superluminally relative to the phase
velocity of radiation in a dielectric—also known as the Vavilov–Cherenkov effect—
has a simple interpretation in terms of spontaneous superradiance [15]. A point
charge has no internal structure, so �E = 0 in Eq. (2.19). Such condition can only
be fulfilled when the charge moves faster than the phase velocity of radiation in the
dielectric and it occurs when photons are emitted with an angle

ϑc = cos−1(vph/vi). (2.24)

In general, vph = vph(ω) and radiation at different frequencies will be emitted in
different directions. In case of a dielectric with zero dispersivity, the refraction index
is independent from ω and the front of the photons emitted during the charge’s
motion forms a cone with opening angle π − 2ϑc. Such cone is the EM counterpart
of the Mach cone that characterizes a shock wave produced by supersonic motion
as will be discussed in Sect. 2.4.

2.3.2 Cherenkov Radiation by Neutral Particles

In their seminal work, Ginzburg and Frank also studied the anomalous Doppler
effect occurring when a charge moves through a pipe drilled into a dielectric [10,11].
More recently, Bekenstein and Schiffer have generalized this effect to the case of
a neutral object which sources a large gravitational potential (e.g. a neutral BH)
moving through a dielectric [14]. As we now briefly discuss, this effect is similar to
Cherenkov emission, although it occurs even in presence of neutral particles.

Consider first a neutral massive object with mass M surrounded by a ionized,
two-component plasma of electrons and positively charged nuclei.2 It was realized
by Milne and Eddington that in hydrostatic and thermodynamic equilibrium, an
electric field necessarily develops to keep protons and electrons from separating
completely [16–18]. In equilibrium, the partial pressure Pe,N of electrons and nuclei
is, respectively,

∂ logPe,N

∂r
= −me,Ng

kT
− eE

kT
, (2.25)

where me,N is the mass of an electron and of the nucleon, k is the Boltzmann
constant, T is the temperature of the plasma, and g is the local gravitational
acceleration. Equality of the pressure gradient—achieved when electrons and

2 Because we want to use thermodynamic equilibrium at the same temperature T , it is physically
more transparent to work with a plasma than with a dielectric, as done instead in Ref. [14].
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protons are separated—happens for an electric field

eE = (mN −me)g

2
∼ mNg

2
. (2.26)

Consider now the same neutral massive object traveling through the ionized
plasma. As we saw, the gravitational pull of the object will polarize the plasma
because the positively charged nuclei are attracted more than the electrons. The
polarization cloud is associated with an electric dipole field E that balances the
gravitational force g and that acts as source of superradiant photons. This follows by
thermodynamical arguments, even neglecting the entropy increase due to possible
accretion [14]. The superradiant energy in this case comes from the massive object
kinetic energy. Thus, the effect predicts that the object slows down because of
superradiant emission of photons in the dielectric.

In fact, the effect can be mapped into a Cherenkov process by noting that, in order
to balance the gravitational pull, eE ∼ −mNg. Poisson equation then implies [14]

∇ · E = 4πG
MmN

e
δ(r − r0), (2.27)

where r0 is the massive object position and for clarity we have restored the factorG.
This equation is equivalent to that of an electric field sourced by a pointlike charge

Q = GmNM

e
∼ 5 × 104A

(
M

1017g

)
e, (2.28)

whereA is the mass number of the atoms. Assuming that the plasma relaxation time
is short enough, such effective charge will emit Cherenkov radiation whenever the
Ginzburg–Frank condition (2.20) is met. Note that, modulo accretion issues which
are not relevant to us here, the above derivation is equally valid for BHs. As already
noted in Ref. [14] a primordial BH withM ∼ 1017g moving fast through a dielectric
would Cherenkov radiate just like an elementary particle with chargeQ ∼ 5×104e.
In particular, the Frank–Tamm formula for the energy dE emitted per unit length
dx and per unit of frequency dω reads

dE = Q2

4π
ωμ(ω)

(
1 − 1

β2n2(ω)

)
dωdx, (2.29)

where μ and n are the permeability and the refraction index of the medium,
respectively, and β = v/c. Therefore, the total power reads

Ėrad = cQ2

4π

∫
dωμ(ω)ω

(
1 − 1

β2n2(ω)

)
� Q2

8πε0c
ω2
c , (2.30)
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where the integral is taken over the Cherenkov regime. In the last step we assumed
μ(ω) ≈ μ0 = 1/(ε0c2) and β ∼ 1. The upper limit is expressed in terms of a cutoff
frequency which depends solely on the plasma’s properties ωc � 2πc/a0, where a0
is Bohr’s radius. As a result of this energy emission, the BH slows down on a time
scale

τC ∼ M

Ėrad
∼ 2ε0
π

M2

Q2

a2
0

Mc
∼ 1012

(
1017g

M

)
yr, (2.31)

where we have used Eq. (2.28). Therefore, the effect is negligible for primordial
BHs [19] which were originally considered in Ref. [14], but it might be relevant
for more massive BHs travelling at relativistic velocities in a plasma with short
relaxation time.

2.3.3 Superradiance in Superfluids and Superconductors

Another example of linear superradiance in flat spacetime is related to superfluids3

[14]. Superfluids can flow through pipes with no friction when their speed is below a
critical value known as Landau critical speed [20]. If the fluid moves faster than the
Landau critical speed, quasiparticle production in the fluid becomes energetically
convenient at expenses of the fluid kinetic energy.

This process can be understood in terms of linear superradiance similarly to
the Cherenkov effect previously discussed. In the fluid rest frame, consider a
quasiparticle (e.g. a phonon) with frequencyω(k) and wavenumber k. In this frame,
the walls of the channel move with velocity v relative to the fluid. Therefore, the
quantity ω−v ·k is the analog of the Ginzburg–Frank condition (2.20) and becomes
negative when

v > vc ≡ min
ω(k)
|k| , (2.32)

where ω(k) gives the dispersion relation of the quasiparticle. As discussed above,
in this configuration it is energetically favorable to create a quasiparticle mode. This
quasiparticles formation contributes a component which is not superfluid because
its energy can be dissipated in various channels.

The same kind of reasoning can be used to predict the critical current flowing
through a superconductor above which superconductivity is disrupted. Supercur-
rents are carried by Cooper pairs that move through a solid lattice with no resistance.
However, whenever the kinetic energy of the current carriers exceeds the binding
energy of a Cooper pair, it is energetically more favorable for the electrons in a

3In the context of the gauge–gravity duality, the holographic dual of a superfluid is also a
superradiant state, cf. Sect. 4.5.2.
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pair to separate, with these broken pairs behaving as quasiparticles. Consider a
superconductor, taken to be at zero temperature for simplicity, with supercurrent
density J = nqvd , where n is the current carrier density, q is the carrier charge, and
vd is the drift velocity of the carriers measured in the frame of the solid lattice. In the
rest frame of the superconductor “fluid,” a quasiparticle created due to the scattering
of a current carrier with the solid lattice has minimum momentum given by 2h̄kF ,
where kF is the Fermi momentum of the electrons in the pair, and an energy 2�0
which is the minimum energy needed to broke a Cooper pair at zero temperature.
Landau arguments then predicts that to break a Cooper pair, i.e., to spontaneously
emit a quasiparticle, the drift velocity must be given by

vd > min
ω(k)
|k| ≡ �0

h̄kF
. (2.33)

This in turn can be used to estimate the critical magnetic field above which
superconductivity is broken. Take, for example, a circular superconductor with
radius R, carrying a current density J . The magnetic field at the surface of
the superconductor is then given by H = JR/2. The critical current density
Jc = nq�0/h̄kF , then predicts that the critical magnetic field strength is given
by Hc = JcR/2 (see e.g. Ref. [21]).

2.4 Sound Amplification by ShockWaves

2.4.1 Sonic “Booms”

Curiously, very familiar phenomena can be understood from the point of view of
superradiance. One of the most striking examples is the “sonic boom” originating
from the supersonic motion of objects in a fluid.

Imagine a structureless solid object traveling through a quiescent fluid with
speed vi > cs where cs is the speed of sound in the medium. Since the object is
structureless then�E = 0 in Eq. (2.19), and in analogy with the Vavilov–Cherenkov
effect we see that the object will emit phonons with dispersion relation ω = csk,
when their angle with respect to the object’s velocity satisfy

ϑM = cos−1(cs/vi). (2.34)

Due to the supersonic motion of the object the emitted phonons will form a shock
wave in the form of a cone, known as the Mach cone, with an opening angle π −
2ϑM [22].

If there is any sound wave present in the fluid which satisfy the Ginzburg–Frank
condition (2.20), it will be superradiantly amplified as the object overtakes them. In
the fluid’s rest frame the wave fronts will propagate with an angle

cosϑ > cs/vi , (2.35)
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which means that they are emitted inside the Mach cone and the cone surface
marks the transition between the superradiant and non-superradiant regions. Thus
the “sonic boom” associated with the supersonic motion in a fluid can be understood
as a superradiant amplification of sound waves.

Although very different in spirit, the effects we discussed can be all explained
in terms of spontaneous superradiance, and they just follow from energy and
momentum conservation and by considering the emission in the comoving frame.
As we shall discuss in Sect. 2.5, this guiding principle turns out to be extremely
useful also in the case of rotational superradiance.

2.4.2 Superradiant Amplification at Discontinuities

A second instructive example concerning superradiant amplification by shock
waves refers to sound waves at a discontinuity. Consider an ideal fluid, locally
irrotational (vorticity free), barotropic and inviscid. Focus now on small propagating
disturbances—i.e., sound waves—such that �v = �v0 + δ�v, where �v is the velocity of
the perturbed fluid. Then, by linearizing the Navier–Stokes equations around the
background flow, it can be shown that small irrotational perturbations δ�v = −∇�
are described by the Klein–Gordon equation [23, 24],4

�� = 0, (2.36)

where the box operator is defined in the effective spacetime

gμν ≡ 1

ρcs

⎡
⎢⎢⎣

−1
... −vj0

. . . . . . . . . . . . . . . .

−vi0
... (c2

s δij − vi0vj0 )

⎤
⎥⎥⎦ (2.37)

and where ρ(r) and cs(r) are the density of the fluid and the local speed of sound,
respectively. The effective geometry on which sound waves propagate is dictated
solely by the background velocity v0 and local speed of sound c. The (perturbed)
fluid velocity and pressure can be expressed in terms of the master field � as

δ�v = −�∇�, (2.38)

δP = ρ0

(
∂�

∂t
+ �v0 · �∇�

)
. (2.39)

We consider now a very simple example worked out by in Ref. [25] (and
reproduced also in Landau and Lifshitz monograph [22]), where the normal to the

4This formal equivalence will prove useful later on when discussing analogue BHs.
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discontinuity lies on the z = 0 plane. Suppose that the surface of discontinuity
separates a medium “2” at rest (z < 0) from a medium “1” moving with velocity
�v0 = vx ≡ v along the x−axis. The scattering of a sound wave in medium 2 gives
rise in medium 1 to a transmitted wave with the form5

�1 = ω

ω − kxv0
T eikx x+iky y+ik z−iω t . (2.40)

The equation of motion (2.36) forces the dispersion relation

(ω − v0kx)
2 = c2

s (k
2
x + k2

y + k2). (2.41)

In medium 2, the incident wave gets reflected, and has the general form

�2 = Ieikx x+iky y+ikz z−iω t + Reikx x+iky y−ikz z−iω t . (2.42)

There are two boundary conditions relevant for this problem. The pressure must
be continuous at the interface, yielding the condition

R + I = T . (2.43)

Finally, the vertical displacement ζ(x, t) of the fluid particles at the interface must
also be continuous. The derivative ∂ζ/∂t is the rate of change of the surface
coordinate ζ for a given x. Since the fluid velocity component normal to the surface
of discontinuity is equal to the rate of displacement of the surface itself, we have

∂ζ/∂t = δvz − v0∂ζ/∂x. (2.44)

Assuming for the displacement ζ the same harmonic dependence as we took for �,
we then have the second condition

k

(ω − v0kx)
2 T = kz

ω2 (I − R) . (2.45)

The sign of k is as yet undetermined, and it is fixed by the requirement that
the velocity of the refracted wave is away from the discontinuity, i.e., ∂ω/∂k =
c2
s k/(ω − v0kx) > 0. It can be verified that for v0 > 2cs superradiant amplification

of the reflected waves (R > I) is possible, provided that k < 0 and consequently
that ω − v0kx < 0 [22, 25]. The energy carried away is supposedly being drawn
from the whole of the medium “1” in motion, although a verification of this would
require nonlinearities to be taken into account. Such nonlinear results have not been
presented in the original work [22,25]; in the context of BH superradiance, we show

5The slightly unorthodox normalization of the transmitted wave was chosen so that the final result
for the amplification factor exactly matches Landau and Lifshitz’s result, in their formalism.
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in Sect. 3.6.2 that superradiance does result in mass (and charge) loss from the (BH)
medium, at nonlinear order in the fluctuation.

This example considers compressible fluids and sound waves, but it can be shown
that similar energy extraction mechanisms are at play for waves in incompressible
stratified fluids with shear flow [26–28]. An intuitive explanation in terms of
negative-energy states is given in Ref. [28].

2.5 Rotational Superradiance

2.5.1 Thermodynamics and Dissipation: Zel’dovich and
Bekenstein’s Argument

One important aspect of the previous examples is that the linear velocity of
the medium from which the energy is drawn exceeds the phase velocity of the
corresponding oscillations [29]. It is clearly impossible to extend such process to
waves in vacuum and in plane geometry, because it would require superluminal
velocities, as already pointed out. However, in a cylindrical or spherical geometry
the angular phase velocity of anm−pole wave (m is an azimuthal number, specified
in more detail below), is ω/m. If the body is assumed to rotate with angular velocity
�, then amplification is in principle possible for waves satisfying condition (1),
ω < m�, if the previous example is faithful.

It should be also clear from all the previous examples that rotating bodies with
internal degrees of freedom (where energy can be dumped into) display superradi-
ance. Two different arguments can be made in order to show this rigorously [14,29].

The first is of a thermodynamic origin. Consider an axi-symmetric macroscopic
body rotating rigidly with constant angular velocity about its symmetry axis.
Assume also the body has reached equilibrium, with well defined entropy S,
rest mass M and temperature T . Suppose now that a wavepacket with frequency
(ω, ω + dω) and azimuthal number m is incident upon this body, with a power
Pm(ω)dω. Radiation with a specific frequency and azimuthal number carries
angular momentum at a rate (m/ω)Pm(ω)dω (c.f. Appendix C). Neglecting any
spontaneous emission by the body (of thermal or any other origin), the latter will
absorb a fraction Zm of the incident energy and angular momentum,

dE

dt
= ZmPmdω, dJ

dt
= Zmm

ω
Pmdω. (2.46)

Notice that the assumption of axi-symmetry is crucial. No precession occurs during
the interaction, and no Doppler shifts are involved. This implies that both the
frequency and multipolarity of the incident and scattered wave are the same, as
assumed in the equations above. Now, in the frame co-rotating with the body, the
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change in energy is simply [20]

dE0 = dE −�dJ = dE
(

1 − m�

ω

)
, (2.47)

and thus the absorption process is followed by an increase in entropy, dS = dE0/T ,
of

dS

dt
= ω −m�

ωT
Zm Pm(ω)dω. (2.48)

Finally, the second law of thermodynamics demands that

(ω −m�)Zm > 0, (2.49)

and superradiance (Zm < 0) follows in the superradiant regime ω − m� < 0.
A similar argument within a quantum mechanics context also leads to the same
conclusion [30].

Next, consider Zel’dovich’s original “dynamical” argument, and take for definite-
ness a scalar field �, governed in vacuum by the Lorentz-invariant Klein–Gordon
equation, �� = 0. An absorbing medium breaks Lorentz invariance. Assume that,
in a coordinate system in which the medium is at rest, the absorption is characterized
by a parameter α as

��+ α∂�
∂t

= 0. (2.50)

The � term is Lorentz-invariant, but if the frequency in the accelerated frame is ω
and the field behaves as e−iωt+imϕ in the inertial frame the azimuthal coordinate
is ϕ = ϕ′ − �t , and hence the frequency is ω′ = ω − m�. In other words, the
effective damping parameter αω′ becomes negative in the superradiant regime and
the medium amplifies—rather than absorbing—radiation.

A very appealing classical example of rotational (EM) superradiance is worked
out in some detail for the original model by Zel’dovich [14, 29].

2.5.2 EFT Approach

The thermodynamic and dynamical “Lorentz-violating” construction of Sect. 2.5.1
can be re-stated in a language more familiar to quantum mechanics [31, 32]. In this
framework, one considers a spinning object (along the z-axis, say) interacting with
a particle (for definiteness we consider a spin-0 particle) of energy ω and with m as
eigenvalue of the angular momentum along the z direction. For a spinning object in
an initial state Xi , interaction with the particle will cause it to transition with some
probability to state Xf . The total probability P for absorption of this particle is a
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sum over all final states

Pabs =
∑
Xf

| 〈Xf ; 0|S|Xi;ω, l,m
〉

〈ω, l,m|ω, l,m〉 . (2.51)

Here, l,m define the angular states of the particle, the states of the object and of the
vacuum are normalized, and S encodes the interaction physics

S = T e−i
∫
dtHint(t), (2.52)

where T is the time-ordering operator.
The interaction Hamiltonian Hint(t) contains all possible composite operators

O, which encode all of the microscopic degrees of freedom of the spinning object.
As we noted previously, in the thermodynamic approach and in others, it is these
dissipative degrees of freedom which are ultimately responsible for superradiance.
The simplest possible composite operator OI results in an Hamiltonian which
involves rotation through the rotation matrix R

Hint = ∂IφRJI OJ , (2.53)

and gives rise to an absorption cross section which becomes negative in the superra-
diant regime [31, 32]. These general results should be thought of as complementing
the approach in Sect. 2.5.1, and a similar discussion of superradiance arising when
a quantum field interacts with a rotating heat bath can be found in Ref. [30].

Below, we present three examples, one of which can also potentially be imple-
mented in the laboratory. We end with a well-known Newtonian system where
energy transfer akin to superradiance is active.

2.5.3 Example 1. Scalar Waves

Let us work out explicitly the case of a rotating cylinder in (r, z, ϕ) spatial
coordinates with a dissipative surface at r = R. For simplicity the scalar is
assumed to be independent of z, � = φ(r)e−iωt+imϕ . From what we said, by using
Eq. (2.50), the problem can be modelled by

1

r

(
rφ′)′ +

(
ω2 − iα(ω −m�)δ(r − R)− m2

r2

)
φ = 0, (2.54)

which can be solved analytically in terms of Bessel functions,

φ =
{
C0Jm(ωr) r < R

C1Jm(ωr)+ C2Ym(ωr) r > R
. (2.55)
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Fig. 2.1 Amplification values Z0m = |R|2/|I|2 −1 of the scalar toy model form = 1,�R = 0.5
and αR = 0.1, 2

The constants C1, C2 can be determined by continuity at r = R along with the
jump implied by the delta function. At infinity the solution is a superposition of
ingoing and outgoing waves, φ → Ie−iωr /(rω)3/2 + Reiωr /(rω)3/2, where the
constants I and R can be expressed in terms of C1 and C2. Figure 2.1 shows a
typical amplification factor Z0m ≡ |R|2/|I|2 − 1 (in percentage) form = 1, �R =
0.5, and αR = 0.1, 2.

2.5.4 Example 2. Amplification of Sound and Surface Waves at the
Surface of a Spinning Cylinder

A second example concerns amplification of sound waves at the surface of a
rotating cylinder of radius R, but can also be directly used with surface gravity
waves [33]. As we discussed in Sect. 2.4.2, sound waves propagate in moving fluids
as a massless scalar field in curved spacetime, with an effective geometry dictated
by the background fluid flow (2.37).

We focus here on fluids at rest, so that the effective metric is Minkowskian,
ds2 = ρ

cs

(−c2
s dt

2 + dr2 + r2dϑ2 + dz2
)

in cylindrical coordinates. Coinciden-
tally, exactly the same equation of motion governs small gravity waves in a shallow
basin [34], thus the results below apply equally well to sound and gravity waves.6

Solutions to Eq. (2.36) are better studied using the cylindrical symmetry of the
effective background metric. In particular, we may decompose the field � in terms

6Notice that Ref. [34] always implicitly assumes a nontrivial background flow and the presence of
a horizon in the effective geometry. In contrast, in our setup this is not required. All that it needs is
a rotating boundary.
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of azimuthal modes,

�(t, r, ϑ, z) = φ(r)√
rρ(r)

e−iωt+imϑ+ikz, (2.56)

and we get

d2φ

dr2
+
[
ω2

c2
s

− k2 − m2 − 1/4

r2
− ρ′

2rρ
+ ρ′2

4ρ2
− ρ′′

2ρ

]
φ(r) = 0. (2.57)

For simplicity, let us focus on k = 0 modes and assume that the density and the
speed of sound are constant, so that the last three terms in the potential above
vanishes and the background metric can be cast in Minkowski form. In this case,
Eq. (2.57) admits the general solution φ = C1

√
rJm(ωr/cs) + C2

√
rYm(ωr/cs).

The constants C1 and C2 are related to the amplitude of the ingoing and outgoing
wave at infinity, i.e., asymptotically one has

φ ∼ Ie−iωr + Reiωr =
√
cs

2πω

(
(C1 − iC2)e

i(ωr/cs−mπ/2−π/4)

+(C1 + iC2)e
−i(ωr/cs−mπ/2−π/4)) . (2.58)

The ratio R/I can be computed by imposing appropriate boundary conditions. For
nonrotating cylinders the latter read [35]

(
r�′

�

)
r=R

= − iρωR
ϒ

, (2.59)

in terms of the original perturbation function, where ϒ is the impedance of the
cylinder material. As explained before, when the cylinder rotates uniformly with
angular velocity�, it is sufficient to transform to a new angular coordinateϑ ′ = ϑ+
�t which effectively amounts to the replacement of ω with ω−m� in the boundary
condition (2.59). An empirical impedance model for fibrous porous materials was
developed in Ref. [36], yielding a universal function of the flow resistance σ and
frequency of the waves,

ϒ = ρcs
[

1 + 0.0511
(

2πσ/ω kg−1m3
)0.75 − i0.0768

(
2πσ/ω kg−1m3

)0.73
]
.

(2.60)

Typical values at frequencies ω ∼ 1000s−1 are ϒ ∼ ρcs(1 − 0.2i) [36].
We will define the amplification factor Zm to be

Zm = |R|2/|I|2 − 1. (2.61)
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Notice that, from (2.39), the amplification factor measures the gain in pressure.
Using Eq. (2.59) and the exact solution of Eq. (2.57), the final result for the
amplification factor reads

Zm =
∣∣∣∣∣
iω̃ϒ̃Jm−1 − 2(ω̃ − 1)Jm − iω̃ϒ̃Jm+1 + ω̃ϒ̃Ym−1 + 2i(ω̃ − 1)Ym − ω̃ϒ̃Ym+1

ω̃ϒ̃Jm−1 + 2i(ω̃ − 1)Jm − ω̃ϒ̃Jm+1 + iω̃ϒ̃Ym−1 − 2(ω̃ − 1)Ym − iω̃ϒ̃Ym+1

∣∣∣∣∣
2

− 1,

(2.62)

where we have defined the dimensionless quantities ϒ̃ = ϒ/(ρcs), ω̃ = ω/(m�)

and we indicate Ji = Ji(ωR/cs) and Yi = Yi(ωR/cs) for short. Note that the
argument of the Bessel functions readsmω̃v/cs , where v is the linear velocity at the
cylinder’s surface. Therefore, the amplification factor does not depend on the fluid
density and it only depends on the dimensionless quantities v/cs and ω̃. Although
not evident from Eq. (2.62), Zm = 0 when ω̃ = 1 and it is positive (i.e. there is
superradiant amplification) for ω̃ < 1, for any v/cs .

As a point of principle, let us use a typical value for the impedance, ϒ̃ ≈ (1 −
0.2i), to compute the amplification of sound waves in air within this setup. We take
� = 1000, 2000 s−1 and a cylinder with radius R = 10 cm, corresponding to linear
velocities at the cylinder surface of the order of v = 100, 200 m s−1, but below
the sound speed. The (percentage) results are shown in Fig. 2.2, and can be close to
100% amplification for large enough cylinder angular velocity. Note the result only
depends on the combination �R/cs , which can be tweaked to obtain the optimal
experimental configuration.

Another interesting application is to build an “acoustic bomb,” similar in spirit
with the “BH bombs” that we discuss in Sect. 4. In other words, by confining
the superradiant modes near the rotating cylinder we can amplify the superradiant
extraction of energy and trigger an instability. In this simple setup, confinement can
be achieved by placing a cylindrical reflecting surface at some distance R2 (note
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Fig. 2.2 Left panel: Amplification values Zm of acoustic waves for m = 1, R = 10 cm, and
� = 1000, 2000 s−1. Right panel: fundamental unstable mode for the “acoustic bomb,” a rotating
cylinder with radius R enclosed in a cylindrical cavity at distance R2. In this example we set
m = 1 and v/cs ≈ 0.147. Note that the mode becomes unstable (ωI > 0) precisely when the
superradiance condition ωR < � is fulfilled
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that this configuration is akin to the “perfect mirror” used by Press and Teukolsky
to create what they called a BH bomb [37]). The details of the instability depend
quantitatively on the outer boundary, specifically on its acoustic impedance. We will
not perform a thorough parameter search, but focus on two extreme cases: Dirichlet
and Neumann conditions. Imposing the boundary conditions at r = R2, we obtain
the equation that defines the (complex) eigenfrequencies of the problem analytically,

ω̃ϒ̃
[
Ĵm(Ym−1 − Ym+1)+ Ŷm(Jm+1 − Jm−1)

]

+2i(ω̃− 1)
[
ĴmYm − JmŶm

]
= 0, (2.63)

ω̃ϒ̃
[
(Jm−1 − Jm+1)

(
Ŷm+1 − Ŷm−1

)
+ Ĵm−1 (Ym−1 − Ym+1)

+Ĵm+1 (Ym+1 − Ym−1)

]

+2i(ω̃− 1)
[
Jm

(
Ŷm+1 − Ŷm−1

)
+ Ĵm−1Ym − Ĵm+1Ym

]
= 0, (2.64)

for Dirichlet (�(r = R2) = 0) and Neumann (�′(r = R2) = 0) conditions,
respectively. In the equations above, we have further defined Ĵi = Ji(ωR2/cs) and
Ŷi = Yi(ωR2/cs) for short. In both cases the eigenmode equation only depends on
the ratio R2/R, ω̃, and v/cs . Neumann conditions, �′(r = R2) = 0, mimic rigid
outer boundaries. The fundamental eigenfrequencies ω = ωR + iωI for these two
cases are shown in the right panel of Fig. 2.2 as functions of the mirror position
R2/R. Within our conventions, the modes are unstable when the imaginary part is
positive (because of the time dependence e−iωt ). As expected, the modes become
unstable when ωR < m�, i.e. when the superradiance condition is satisfied. In
the example shown in Fig. 2.2, the maximum instability occurs for R2 ∼ 30R and
corresponds to a very short instability time scale,

τ ≡ 1

ωI
∼ 10

(
1000 Hz

�

)
s. (2.65)

Although our model is extremely simple, these results suggest the interesting
prospect of detecting sound wave superradiance amplification and “acoustic bomb”
instabilities in the laboratory. Complementary results can be found in Ref. [33].

Finally, note that an alternative to make the system unstable is to have the fluid
confined within a single, rotating absorbing cylinder. We find, however, that in this
particular setup the instability only sets in for supersonic cylinder surface velocities,
presumably harder to achieve experimentally.
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Fig. 2.3 Tides on the Earth caused by our moon (as seen by a frame anchored on the Moon).
The tidal forces create a bulge on Earth’s ocean surface, which leads Moon’s orbital position by
a constant angle φ. Earth rotates faster than the Moon in its orbit, thus a point A on the surface
of the Earth will differentially rotate with respect to the oceans, causing dissipation of energy and
decrease of Earth’s rotation period

2.5.5 Example 3. Tidal Heating and Acceleration

Although the processes we have discussed so far all involve radiation, it is possible
to extract energy away from rotating bodies even in the absence of waves.7 A prime
example concerns “tidal heating” and consequent tidal acceleration, which is most
commonly known to occur in the Earth–Moon system.

As explained by George Darwin back in 1880 [39] (see also Refs. [40,41] which
are excellent overviews of the topic), tides are caused by differential forces on the
oceans, which raise tidal bulges on them, as depicted in Fig. 2.3. Because Earth
rotates with angular velocity �Earth, these bulges are not exactly aligned with the
Earth–Moon direction. In fact, because Earth rotates faster than the Moon’s orbital
motion (�Earth > �), the bulges lead the Earth–Moon direction by a constant angle.
This angle would be zero if friction were absent, and the magnitude of the angle
depends on the amount of friction. Friction between the ocean and the Earth’s crust
slows down Earth’s rotation by roughly �̇Earth ∼ −5.6 × 10−22/s2, about 0.002 s
per century. Conservation of angular momentum of the entire system lifts the Moon
into a higher orbit with a longer period and larger semi-major axis. Lunar ranging
experiments have measured the magnitude of this tidal acceleration to be about ȧ =
3.82 cm/yr [42].

7This statement can be disputed, however, since the phenomenon we discuss in the following does
involve time retardation effects and is therefore intimately associated with wave phenomena. For
further arguments that tides are in fact GWs, see Ref. [38].
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Tidal Acceleration and Superradiance in the “Newtonian”
Approximation
Let us consider a generic power-law interaction between a central body of gravi-
tational mass M and radius R and its moon with mass mp at a distance r0. The
magnitude is (in this section we re-insert factors of G and c for clarity)

F = GMmp

rn0
, (2.66)

and Newton’s law is recovered for n = 2. The tidal acceleration inM is given by

atidal = nGmp

Rn

(
R

r0

)n+1

= ngM
(
R

r0

)n+1 mp

M
, (2.67)

where gM is the surface gravity onM . This acceleration causes tidal bulges of height
h and mass μ to be raised on M . These can be estimated by equating the specific
energy of the tidal field, Etidal ∼ atidalR, with the specific gravitational energy,
EG ∼ gMh, needed to lift a unit mass from the surface ofM to a distance h. We get

h

R
= n

(
R

r0

)n+1 mp

M
, (2.68)

which corresponds to a bulge mass of approximately μ = κ
4nmp (R/r0)

n+1, where
κ is a constant of order 1, which encodes the details of Earth’s internal structure.
Without dissipation, the position angle φ in Fig. 2.3 is φ = 0, while the tidal bulge
is aligned with moon’s motion. Dissipation contributes a constant, small, time lag τ
such that the lag angle is φ = (�Earth −�)τ .

With these preliminaries, a trivial extension of the results of Ref. [40] yields a
tangential tidal force onM , assuming a circular orbit for the moon,

Fϑ ∼ n(n+ 1)Gκ

2
m2
p

Rn+3

r2n+3
0

(�Earth −�)τ. (2.69)

The change in orbital energy over one orbit is related to the torque r0Fϑ and reads∫ 2π
0 r0Fϑ�/2πdϑ = �r0Fϑ . Thus, we get

Ėorbital = n(n+ 1)Gκm2
p

2

Rn+3

r2n+2
0

�(�Earth −�)τ, (2.70)

and, for gravitational forces obeying Gauss’s law (n = 2), the latter reduces to

Ėorbital = 3Gκm2
p

R5

r6
0

�(�Earth −�)τ. (2.71)
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Summarizing, tidal heating extracts energy and angular momentum from the
Earth. Conservation of both these quantities then requires the moon to slowly spiral
outwards. It can be shown that tidal acceleration works in any number of spacetime
dimensions and with other fields (scalar or EM) [43, 44].

This and the previous examples make it clear that any rotating object should be
prone to energy extraction and superradiance, provided that some negative-energy
states are available, which usually mean that some dissipation mechanism of any
sort is at work when the system is nonrotating. When the tidally distorted object is a
BH, negative energies are naturally provided by the ergoregion. The event horizon—
as we discuss in the next section—behaves in many respects as a viscous one-way
membrane [45], providing the dissipation in the nonrotating limit, and stabilizing
the rotating system [46]. Interestingly, by substituting �Earth → �H in Eq. (2.71),
setting κ ∼ 1/3 ≈ O(1), and with the simple argument that the only relevant
dissipation time scale in the BH case is the light-crossing time τ ∼ M , Eq. (2.71)
was found to agree [43] with the exact result for BH tidal heating obtained through
BH perturbation theory [47–51].
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3Superradiance in Black-Hole Physics

As discussed in the previous section, superradiance requires dissipation. The latter
can emerge in various forms, e.g. viscosity, friction, turbulence, radiative cooling,
etc. All these forms of dissipation are associated with some medium or some matter
field that provides the arena for superradiance. It is thus truly remarkable that—
when spacetime is curved—superradiance can also occur in vacuum, even at the
classical level. In this section we discuss in detail BH superradiance, which is the
main topic of this work.

BHs are classical vacuum solutions of essentially any relativistic (metric) theory
of gravity, including Einstein General Theory of Relativity. Despite their simplicity,
BHs are probably the most fascinating predictions of GR and enjoy some extremely
nontrivial properties. The most important property (which also defines the very
concept of BH) is the existence of an event horizon, a boundary in spacetime which
causally disconnects the interior from the exterior. Among the various properties of
BH event horizons, the one that is most relevant for the present discussion is that
BHs behave in many respects as a viscous one-way membrane in flat spacetime. This
is the so-called BH membrane paradigm [1]. Thus, the existence of an event horizon
provides vacuum with an intrinsic dissipative mechanism. Perhaps the second most
relevant property of BHs is the existence of ergoregions, regions close to the horizon
where timelike particles can have negative energies. Further details are given below
in Sect. 3.1.4. As we shall see, the very existence of ergoregions allows to extract
energy from the vacuum, basically in any relativistic theory of gravity, while the
horizon works to stabilize the system.

While most of our discussion is largely model- and theory-independent, for
calculation purposes we will be dealing with the Kerr–Newman family of BHs [2],
which describes the most general stationary electrovacuum solution of the Einstein–
Maxwell theory [3]. We will be especially interested in two different spacetimes
which display superradiance of different nature, the uncharged Kerr and the
nonrotating charged BH geometry.
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3.1 Action, Equations of Motion, and Black-Hole Spacetimes

We consider a generic action involving one complex, charged massive scalar � and
a massive vector field Aμ with mass mS = μSh̄ and mV = μV h̄, respectively,

S =
∫
d4x

√−g
(
R − 2�

κ
− 1

4
FμνFμν − μ2

V

2
AνA

ν

−1

2
gμν�∗

,μ�,ν − μ2
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2
�∗�

)

+
∫
d4x

√−g
(
i
q

2
Aμ
(
�∇μ�∗ − �∗∇μ�)− q2

2
AμA

μ��∗
)

+ SM (3.1)

where κ = 16π , � is the cosmological constant, Fμν ≡ ∇μAν − ∇νAμ is the
Maxwell tensor, and SM is the standard matter action that we neglect henceforth.
More generic actions could include a coupling between the scalar and vector sector,
and also higher-order self-interaction terms. However, most of the work on BH
superradiance is framed in the above theory and we therefore restrict our discussion
to this scenario. The resulting equations of motion are
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These equations describe the fully nonlinear evolution of the system. For the
most part of our work, we will specialize to perturbation theory, i.e. we consider
Aμ and � to be small—say of order O(ε)—and include their backreaction on
the metric only perturbatively. Because the stress–energy tensor is quadratic in the
fields, to order O(ε) the gravitational sector is described by the standard Einstein
equations in vacuum, Rμν = 0, so that the scalar and Maxwell field propagate on
a Kerr–Newman geometry. Backreaction on the metric appears at order O(ε2) in
the fields. We consider two particular cases and focus on the following background
geometries:
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3.1.1 Static, Charged Backgrounds

For static backgrounds, the uniqueness theorem [3] guarantees that the only regular,
asymptotically flat solution necessarily has ψ = 0 and belongs to the Reissner–
Nordström (RN) family of charged BHs. In the presence of a cosmological constant,
� �= 0, other solutions exist, some of them are in fact allowed by superradiant
mechanisms, as we shall discuss. For definiteness, we focus for the most part of our
work on the fundamental family of RN-(A)dS solution, described by the metric

ds2 = −f dt2 + f dr2 + r2dϑ2 + r2 sin2 ϑdϕ2 , (3.3)

where

f (r) = 1 − 2M

r
+ Q2

r2 − �

3
r2 , (3.4)

and the background vector potential Aμ = (Q/r, 0, 0, 0), where M and Q are
the mass and the charge of the BH, respectively. When � = 0 the spacetime is
asymptotically flat and the roots of f (r) determine the event horizon, located at
r+ = M + √

M2 −Q2, and a Cauchy horizon at r− = M − √
M2 −Q2. In

this case the electrostatic potential at the horizon is �H = Q/r+. When � > 0,
the spacetime is asymptotically de Sitter (dS) and the function f (r) has a further
positive root which defines the cosmological horizon rc, whereas when � < 0 the
spacetime is asymptotically anti-de Sitter (AdS) and the function f (r) has only two
positive roots.

Fluctuations of order O(ε) in the scalar field in this background induce changes
in the spacetime geometry and in the vector potential which are of order O(ε2), and
therefore to leading order can be studied on a fixed RN-(A)dS geometry. This is
done in Sect. 3.6 below.

3.1.2 Spinning, Neutral Backgrounds

For neutral backgrounds Aμ = 0 to zeroth order, and the uniqueness theorems
guarantee that the scalar field is trivial and the only regular, asymptotically flat
solution to the background equations is given by the Kerr family of spinning BHs.
Because we also wish to consider the effect of a cosmological constant, we will
enlarge it to the Kerr-(A)dS family of spinning BHs, which in standard Boyer–
Lindquist coordinates reads (for details on the Kerr spacetime, we refer the reader
to the monograph [4])

ds2 = −�r
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(
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�
sin2 ϑ dϕ

)2 + ρ2

�r
dr2 + ρ2

�ϑ
dϑ2

+�ϑ
ρ2 sin2 ϑ

(
a dt − r2 + a2

�
dϕ

)2

, (3.5)
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with

�r =
(
r2 + a2

)(
1 − �

3
r2
)

− 2Mr , � = 1 + �

3
a2 ,

�ϑ = 1 + �

3
a2 cos2 ϑ , ρ2 = r2 + a2 cos2 ϑ . (3.6)

This metric describes the gravitational field of a spinning BH with mass M/�2

and angular momentum J = aM/�2. When � = 0, the roots of � determine the
event horizon, located at r+ = M + √

M2 − a2, and a Cauchy horizon at r− =
M − √

M2 − a2. The static surface gtt = 0 defines the ergosphere given by rergo =
M + √

M2 − a2 cos2 ϑ . As in the static case, when� > 0 the spacetime possesses
also a cosmological horizon.

A fundamental parameter of a spinning BH is the angular velocity of its event
horizon, which for the Kerr-(A)dS solution is given by

�H = a

r2+ + a2

(
1 + �

3
a2
)
. (3.7)

The area and the temperature of the BH event horizon, respectively, read

AH = 4π(r2+ + a2)

�
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4π(r2+ + a2)
. (3.8)

3.1.3 Geodesics and Frame Dragging in the Kerr Geometry

The motion of free pointlike particles in the equatorial plane of this geometry is
described by the following geodesic equations [5, 6],

ṫ = 1
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r2 + a2 + 2a2M

r
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E − 2aM

r
L

]
, (3.9)

ϕ̇ = 1
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r
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r

)
L

]
, (3.10)

r2ṙ2 = r2E2 + 2M

r
(aE − L)2 +

(
a2E2 − L2

)
− δ1� , (3.11)

where δ1 = 1, 0 for timelike and null geodesics, respectively, and the dot denotes
differentiation with respect to the geodesics affine parameter. The first two equations
follow from the symmetry of the Kerr background under time translations and
rotations, while the last equation is simply the defining relation for timelike and null
geodesics. A more thorough analysis of the geodesics of the Kerr geometry can be
found in the classic work by Bardeen et al. [5] or in Chandrasekhar’s book [6]. The
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Fig. 3.1 Frame dragging
effects: sketch of the
trajectory of a
zero-angular-momentum
observer as it falls into a BH.
The BH is either static (upper
panel) or rotating clockwise
(lower panel). The infall into
a rotating BH is drag along
the BH’s sense of rotation

a=0.9, clockwise

a=0.0

conserved quantities E, L are, respectively, the energy and angular momentum per
unit rest mass of the object undergoing geodesic motion (or the energy and angular
momentum for massless particles).

Consider an observer with timelike four-velocity which falls into the BH with
zero angular momentum. This observer is known as the ZAMO (Zero Angular
Momentum Observer). From Eqs. (3.9) and (3.10) with L = 0, we get the following
angular velocity, as measured at infinity,

� ≡ ϕ̇

ṫ
= − gtϕ

gϕϕ
= 2Mar

r4 + r2a2 + 2a2Mr
. (3.12)

At infinity � = 0 consistent with the fact that these are zero angular momentum
observers. However,� �= 0 at any finite distance and at the horizon one finds

�ZAMO
H = a

2Mr+
. (3.13)

Thus, observers are frame-dragged and forced to co-rotate with the geometry. This
phenomenon is depicted in Fig. 3.1, where we sketch the trajectory of a ZAMO in a
nonrotating and rotating BH background.

3.1.4 The Ergoregion

The Kerr geometry is also endowed with an infinite-redshift surface outside the
horizon. These points define the ergosurface and are the roots of gtt = 0. The
ergosurface exterior to the event horizon is located at

rergo = M +
√
M2 − a2 cos2 ϑ . (3.14)
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Fig. 3.2 The ergosphere of a Kerr BH is shown together with the horizon for a nearly extremal
BH with a ∼ 0.999M . The coordinates (x, y, z) are similar to standard Cartesian-coordinate but
obtained from the Boyer–Lindquist coordinates

In particular, it is defined by r = 2M at the equator and r = r+ at the poles.
The region between the event horizon and the ergosurface is the ergoregion. The
ergosurface is an infinite-redshift surface, in the sense that any light ray emitted
from the ergosurface will be infinitely redshifted when observed at infinity. The
ergosphere of a Kerr BH is shown in Fig. 3.2.

The ergosurface is also the static limit, as no static observer is allowed inside the
ergoregion. Indeed, the Killing vector ξμ = (1, 0, 0, 0) becomes spacelike in the
ergoregion ξμξμgμν = gtt > 0. We define a static observer as an observer (i.e., a
timelike curve) with tangent vector proportional to ξμ. The coordinates (r, ϑ, φ) are
constant along this wordline. Such an observer cannot exist inside the ergoregion,
because ξμ is spacelike there. In other words, an observer cannot stay still, but is
forced to rotate with the BH.

Let us consider this in more detail, taking a stationary observer at constant (r, ϑ),
with four-velocity

vμ = (ṫ , 0, 0, ϕ̇) = ṫ (1, 0, 0,�) . (3.15)
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This observer can exist provided its orbit is timelike, which implies v2 < 0. This
translates in a necessary condition for an existence of a stationary observer, which
reads

gtt + 2�gtϕ +�2gϕϕ < 0 . (3.16)

Let us consider the zeroes of the above. We have

�± =
−gtϕ ±

√
g2
tϕ − gttgϕϕ
gϕϕ

= −gtϕ ± √
� sinϑ

gϕϕ
. (3.17)

Thus, a stationary observer cannot exist when r− < r < r+. In general, the allowed
range of � is �− ≤ � ≤ �+. On the outer horizon, we have �− = �+ and the
only possible stationary observer on the horizon has

� = − gtϕ
gϕϕ

= �H , (3.18)

which coincides with the angular velocity of a ZAMO at the event horizon. Note
also that a static observer is a stationary observer with � = 0. Indeed, it is easy to
check that �− changes sign at the static limit, i.e. � = 0 is not allowed within the
ergoregion.

3.1.5 Intermezzo: Stationary and Axisymmetric Black Holes Have
an Ergoregion

At this point it is instructive to take one step back and try to understand what are the
minimal ingredients for the existence of an ergoregion in a BH spacetime. Indeed,
in many applications it would be useful to disentangle the role of the ergoregion
from that of the horizon. Unfortunately, this cannot be done because, as we now
prove, the existence of an event horizon in a stationary and axisymmetric spacetime
automatically implies the existence of an ergoregion [7].

Let us consider the most general stationary and axisymmetric metric:1

ds2 = gttdt2 + grrdr2 + 2gtϕdtdϕ + gϕϕdϕ2 + gϑϑdϑ2 , (3.19)

where gij are functions of r and ϑ only. The event horizon is the locus r+ = r+(ϑ)
defined as the largest root of the lapse function:

Nr=r+ ≡
(
g2
tϕ − gϕϕgtt

)
r=r+

= 0 . (3.20)

1We also require the spacetime to be invariant under the “circularity condition,” t → −t and
ϕ → −ϕ, which implies gtϑ = gtϕ = grϑ = grϕ = 0 [6]. While the circularity condition follows
from Einstein and Maxwell equations in electrovacuum, it might not hold true in modified gravities
or for exotic matter fields.
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In a region outside the horizon N > 0, whereas N < 0 inside the horizon. As
we discussed, the boundary of the ergoregion, rergo = rergo(ϑ), is defined by
gtt |r=rergo

= 0, and gtt < 0 in a region outside the ergoregion, whereas gtt > 0
inside the ergoregion. From Eq. (3.20) we get, at the horizon,

gtt |r=r+ = g2
tϕ

gϕϕ

∣∣∣∣∣
r=r+

≥ 0 , (3.21)

where, in the last inequality, we assumed no closed timelike curves outside the
horizon, i.e. gϕϕ > 0. The inequality is saturated only when the gyromagnetic
term vanishes, gtϕ

∣∣
r=r+ = 0. On the other hand, at asymptotic infinity gtt → −1.

Therefore, by continuity, there must exist a region rergo(ϑ) such that r+ ≤ rergo <

∞ and where the function gtt vanishes. This proves that an ergoregion necessarily
exists in the spacetime of a stationary and axisymmetric BH. As a by-product, we
showed that the boundaries of the ergoregion (i.e., the ergosphere) must lay outside
the horizon or coincide with it, rergo ≥ r+. In the case of a static and spherically
symmetric spacetime, gtϕ ≡ 0 and the ergosphere coincides with the horizon.

3.2 Area Theorem Implies Superradiance

It was realized by Bekenstein that BH superradiance can be naturally understood
using the classical laws of BH mechanics [8]. In fact, given these laws, the argument
in Sect. 2.5 can be applied ipsis verbis. The first law relates the changes in massM ,
angular momentum J , horizon area AH , and charge Q, of a stationary BH when
it is perturbed. To first order, the variations of these quantities in the vacuum case
satisfy

δM = k

8π
δAH +�HδJ +�HδQ , (3.22)

with k ≡ 2πTH the BH surface gravity, �H the angular velocity of the
horizon (3.7), and �H is the electrostatic potential at the horizon [9]. The
first law can be shown to be quite generic, holding for a class of field
equations derived from a diffeomorphism covariant Lagrangian with the form
L(gab; Rabcd; ∇aRbcde, . . . ; ψ, ∇aψ, . . . . . . .). The second law of BH mechanics
states that, if matter obeys the weak energy condition [6, 8, 10] (see also the
discussion in Sect. 3.7.4 for a counterexample with fermions), then δAH ≥ 0.
Whether or not the second law can be generalized to arbitrary theories is an open
question, but it seems to hinge on energy conditions [11, 12].

For the sake of the argument, let us consider a neutral BH, � = 0. The ratio of
angular momentum flux L to energy E of a wave with frequency ω and azimuthal
number m is L/E = m/ω (see Appendix C). Thus, interaction with the BH causes
it to change its angular momentum as

δJ/δM = m/ω . (3.23)
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Substitution in the first law of BH mechanics (3.22) yields

δM = ωk

8π

δAH

ω −m�H
. (3.24)

Finally, the second law of BH thermodynamics, δAH ≥ 0, implies that waves with
ω < m�H extract energy from the horizon, δM < 0.

Likewise, the interaction between a static charged BH and a wave with charge q
causes a change in the BH charge as

δQ/δM = q/ω , (3.25)

and therefore in this case Eq. (3.24) reads

δM = ωk

8π

δAH

ω − q�H . (3.26)

This argument holds in GR in various circumstances, but note that it assumes
that the wave is initially ingoing at infinity and that the matter fields obey the weak
energy condition. The latter condition is violated for fermions in asymptotically flat
spacetimes (cf. Sect. 3.7.4 below), while the former needs to be carefully analyzed
in asymptotically de Sitter spacetimes where a subtlety arises at the cosmological
horizon [13].

These results can be generalized to any test field, possibly charged, propagating
on a Kerr–Newman or Kerr–Newman–AdS spacetime, with a stress–energy tensor
satisfying the null energy condition at the event horizon and appropriate boundary
conditions at infinity [14]. Under those assumptions it was shown that BH thermo-
dynamics does not allow to overspin/overcharge an extremal Kerr–Newman BH, nor
to violate the weak cosmic censorship [14].

3.3 Energy Extraction from Black Holes: The Penrose Process

Despite being classically perfect absorbers, BHs can be used as a “catalyst” to
extract the rest energy of a particle or even as an energy reservoir themselves, if
they are spinning or charged.

Classical energy extraction with BHs works in exactly the same way as in New-
tonian mechanics, by converting into useful work the binding energy of an object
orbiting around another. Let us take for simplicity a point particle of mass μ around
a much more massive body of mass M . In Newtonian mechanics, the maximum
energy that can be converted in this way is given by the potential difference between
infinity and the surface of the planet, Work/(μc2) = GM/(c2R), where R is the
planet’s radius. A similar result holds true when the planet is replaced by a BH; for a
nonrotating BH, all the object’s mass energy can be extracted as useful work as the
particle is lowered towards the BH, as the Newtonian calculation suggests! Notice
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Fig. 3.3 Cartoon of a BH-powered circuit. Two shafts are rigidly attached to a ring, which is
inside the ergoregion. The ring and therefore the shafts are forced to rotate with the BH, turning
the magnet at the other end of the shafts end over end, thereby producing a current in any closed
circuit. Adapted from a diagram by Dan Watson (http://www.pas.rochester.edu/~dmw/ast102/)

that in the previous example, what one accomplished was to trade binding energy
with useful work, no energy was extracted from the BH itself.

Ways to extract energy from BHs make use of the existence of the ergoregion
whose boundary is also a static limit: all observers are dragged along with
the spacetime and cannot remain at rest with respect to distant observers. The
ergoregion is the chief responsible for allowing energy extraction from vacuum,
spinning BHs. Just like in the spinning cylinder example of Sect. 2.5, it provides
a “contact surface” with the impinging object. A cartoonish application of this
property to extract energy is depicted in Fig. 3.3. Quantitative estimates of energy
extraction from BHs were first made in a simpler context, which we now discuss.

3.3.1 The Original Penrose Process

The possibility to extract energy from a spinning BH was first quantified by
Roger Penrose [15] some years before the discovery of BH superradiance, and
it is related to the fact that the energy of a particle within the ergoregion, as
perceived by an observer at infinity, can be negative. Penrose conceived the

http://www.pas.rochester.edu/~dmw/ast102/
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following gedankenexperiment. Consider the Kerr geometry (3.5) with vanishing
cosmological constant. Penrose’s thought experiment consists on a particle of rest
mass μ0, at rest at infinity, decaying into two identical particles each with rest mass
μfin (Penrose considered these two to be photons, we will keep it generic) at a
turning point in its (geodesic) trajectory. Because the particle is initially at rest, the
conserved dimensionless energy parameter is E(0) = E (0)/μ0 = 1, and we denote
the conserved energy and angular momentum parameters of the two decay-products
by (E(1), L(1)) = (E (1)/μfin,L(1)/μfin) and (E(2), L(2)) = (E (2)/μfin,L(2)/μfin).
Here E, L are the physical dimensionful energy and angular momentum of the
particles. From (3.11), the turning point condition, ṙ(r = r0) = 0, immediately
gives

L(0) = 1

r0 − 2M

(
−2aM +√2Mr0�

)
, (3.27)

L(1), (2) =
−2aM E(1), (2) ±

√
r0�

(
2M + r((E(1), (2))2 − 1)

)

r0 − 2M
. (3.28)

Imposing conservation of energy and angular momentum,

E (1) + E (2) = E (0) = μ0 , L(1) + L(2) = L(0) , (3.29)

one gets finally,

E (1) = μ0

2

⎛
⎝1 ±

√
2M(1 − 4μ2

fin/μ
2
0)

r0

⎞
⎠ ,

E (2) = μ0

2

⎛
⎝1 ∓

√
2M(1 − 4μ2

fin/μ
2
0)

r0

⎞
⎠ . (3.30)

It is thus clear that one of the decay products will have an energy larger than
the incoming particle. This is schematically shown in Fig. 3.4. How much larger,
depends on the details of the breakup process and is encoded in the quantity
0 < 1 − 4μ2

fin/μ
2
0 < 1. That is, there will be a gain in energy at infinity provided

that the turning point satisfies r0 < 2M(1 − 4μ2
fin/μ

2
0) < 2M or, in other words,

provided that the decay takes place between the ergosurface and the event horizon.
The maximum gain of energy is obtained when the decay takes place at the

horizon and reads

ηmax = E (1)

E (0)
= 1

2

⎛
⎝
√

2M(1 − 4μ2
fin/μ

2
0)

r+
+ 1

⎞
⎠ . (3.31)
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Fig. 3.4 Pictorial view of the
original Penrose processes. A
particle with energy E0
decays inside the ergosphere
into two particles, one with
negative energy E2 < 0
which falls into the BH, while
the second particle escapes to
infinity with an energy higher
than the original particle,
E1 > E0

As we noted, the efficiency depends on the details of the process. The maximum
efficiency occurs for conversion into photons, such that μ2

fin/μ
2
0 = 0, and for which

we recover Penrose’s result 2E (1)/E (0) = (√2M/r+ + 1
)
.

In this latter case, it is possible to show that the negative-energy photon is doomed
to fall into the horizon [16], decreasing the BH mass and angular momentum
by δE and δL but in such a way that the irreducible mass, Mirr = √

Mr+/2,
actually increases [6]. Furthermore, a generic condition on the energy and angular
momentum of the infalling particle can be computed as follows. In the ZAMO frame
the energy flux across the horizon is given by

δEH = −
∫
r+
d�μT

μ
ν n

ν ∝ δE −�HδL , (3.32)

where Tμν is a generic stress–energy tensor of the matter/radiation crossing the
horizon, nμ = ξ

μ
(t) + �Hξ

μ
(ϕ), ξ

μ
(t) ≡ ∂μt is the time Killing vector, ξμ(ϕ) ≡ ∂μϕ

is the axial Killing vector (see Appendix C), while E and L are the (conserved)
specific energy and angular momentum of the particle crossing the horizon. Since
the locally measured energy must be positive, assuming δE and δL are small, it
follows that

EH ∝ E −�HL > 0 �⇒ �HL < E . (3.33)

The result above applies to any form of energy and angular momentum crossing
the horizon and is related to the area theorem. In addition, if the infalling particle
has a negative energy, the bound above implies that J < 0, i.e. the negative-
energy particle must be counter-rotating. The original process conceived by Penrose
makes use of pointlike particles, but energy extraction is also possible with extended
objects, namely rigidly rotating string around a Kerr BH [17].

3.3.2 The Newtonian Carousel Analogy

A simple Newtonian, nonrelativistic analog of the Penrose process is the “carousel
process” depicted in Fig. 3.5. The process consists of two steps. In the first step
a point particle collides with a rotating thin cylinder with a “sticky” surface and
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Fig. 3.5 The carousel analogy of the Penrose process. A body falls nearly from rest into a rotating
cylinder, whose surface is sprayed with glue. At the surface the body is forced to co-rotate with the
cylinder (analog therefore of the BH ergosphere, the surface beyond which no observer can remain
stationary with respect to infinity). The negative energy states of the ergoregion are played by the
potential energy associated with the sticky surface. If now half the object (in reddish) is detached
from the first half (yellowish), it will reach infinity with more (kinetic) energy than it had initially,
extracting rotational energy out of the system

angular velocity �i . The calculations will be done in the inertial frame centered at
the cylinder’s original axis. For simplicity, we assume the collision to be completely
inelastic and we take the particle’s mass m to be much smaller than the mass M of
the cylinder so that, to first approximation, after the collision the particle is absorbed
by the cylinder without changing its shape. Furthermore, consider the particle to
have a velocity vin perpendicular to the axis of rotation of the cylinder and with a
zero impact parameter. Because of the sticky surface, after the collision the particle
is forced to co-rotate with the cylinder. In the second step a fraction ε of the initial
mass is ejected from the surface of the cylinder. We want to understand under which
conditions the ejected particle has an energy larger than the initial one.

Conservation of angular and linear momenta implies that, after the collision with
the cylinder, the linear and angular velocities of the cylinder, respectively, are

vf = m

M +mvin , �f = M

M +m�i . (3.34)

Because in this example the impact parameter vanishes, the particle has zero angular
momentum and the angular velocity of the cylinder decreases. After the collision,
the particle is stuck to the surface. Let a fraction ε of the initial mass be ejected at
the radial direction forming an angle ϑ with the initial direction of the particle (and
in the same direction of the angular velocity of the disk). Then, the components of
the particle’s velocity in the collision plane, vout = (vx, vy), read

vx = −�fR cosϑ , vy = vf +�fR sinϑ , (3.35)
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where R is the radius of the cylinder. Finally, we can compare the final energy of
the ejected particle,Kout = εmv2

out/2, with the initial energyKin = mv2
in/2. To first

order in the mass ratio m/M , the efficiency reads

η ≡ Kout

Kin
= 1 +

(
ε
R2�2

i

v2
in

− 1

)
+ 2ε

R�i

vin

(
sinϑ − R�i

vin

)
m

M
+ O

[(m
M

)2
]
.

(3.36)

Interestingly, the efficiency does not depend on the angle ϑ to lowest order in the
mass ratio. When m� M the energy of the ejected particle is larger than the initial
kinetic energy provided

�i >
vin√
εR
. (3.37)

Thus, the rotating “sticky” surface plays the same role as the BH ergosphere. The
perfectly inelastic collision is the analog of the frame-dragging effect according
to which no observer within the ergoregion can remain stationary with respect to
infinity. The negative energy states of the ergoregion are played by the potential
energy associated with the sticky surface.

3.3.3 Penrose’s Process: Energy Limits

We have seen already that the energy gain provided by the Penrose mechanism is
modest, at least for equal-rest-mass fragments. Still open however, is the possibility
that the efficiency, or that the Lorentz factor of one of the fragments, is large
for some situations.2 Strong limits on the energy that can be extracted from the
Penrose process can be obtained [5, 18]: consider a particle with four-velocity Uμ

and conserved energy parameter E that breaks up and emits a fragment with energy
E′ and four-velocity uμ. We want to impose limits on E′, given the three-velocity
of the fragment �v as measured in the rest frame of the incident body. Suppose that
the breakup occurs in a spacetime with a Killing vector ξμ = ∂μt which is timelike
at infinity. In the laboratory frame we define an orthonormal tetrad, eμ(α), where

e
μ

(0) = Uμ. The four-velocity of the fragment in the locally flat space is given by

u(α) = dx(α)

dτ
= γ dx

(α)

dx(0)
, (3.38)

2This possibility was at some stage considered of potential interest for the physics of jets emitted
by quasars.
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where γ = dx(0)/dτ = (
1 − v2

)−1/2
and v2 = v(i)v(i). In the frame defined by

e
μ

(α) we can write uμ = e
μ

(α)u
(α) = γ (Uμ + v(i)eμ(i)) and ξμ = ξ(0)Uμ + ξ(i)eμ(i)

(with i = 1, 2, 3). We then have

E = −ξμUμ = −ξ(0) = −ξμUμ = −ξ(0) , gtt = ξμξμ = −E2+ξ2 , (3.39)

where ξ2 = ξ(i)ξ(i). The energy of the ejected particle reads

E′ = −ξμuμ = γ
(
E + v(i)ξ(i)

)
= γ (E + vξ cosϑ) , (3.40)

where ϑ is the angle between the fragment velocity v(i) and ξ(i). Using (3.39) we
can write

E′ = γE + γ v
(
E2 + gtt

)1/2
cosϑ, (3.41)

which implies the inequality

γE − γ v
(
E2 + gtt

)1/2 ≤ E′ ≤ γE + γ v
(
E2 + gtt

)1/2
. (3.42)

In the Kerr metric (3.5), gtt is always less than 1 outside the horizon; furthermore,
realistic configurations of matter outside BHs are likely to be well approximated
with circular geodesics, for which the maximum possible energy is E = 1/

√
3 [5].

Thus, for E′ to be negative, or equivalently, for the Penrose process to be possible,
it is necessary that

v >
E√
E2 + 1

= 1

2
. (3.43)

This means that the disintegration process must convert most of the rest mass
energy of the initial body into kinetic energy for any extraction of energy to become
possible. In other words, the breakup process itself is relativistic. Such conclusion
might be avoided if one is willing to accept the existence of naked singularities or
wormholes, where gtt can in principle become very large.

It is interesting to note that the inequality (3.42) applies also in flat space, where
gtt = −1. In this case the bound reads

γE − γ v
(
E2 − 1

)1/2 ≤ E′ ≤ γE + γ v
(
E2 − 1

)1/2
. (3.44)

We conclude that (i) there is no great gain compared to what could be achieved from
a breakup process in flat space and (ii) the left-hand side can never become negative,
as expected.
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Bardeen et al. also showed that similar limits can be derived by the following
two particles which collide at some point inside the ergoregion [5]. Following
similar steps to the ones we discussed above, they computed a lower bound on the
magnitude of the relative three-velocity w between them, obtaining w ≥ 1/2, in
agreement with Ref. [18]. This leads to the conclusion that for the Penrose process
to be possible, the particles must first acquire relativistic energies through some
other mechanism.

In its simplest incarnation, energy extraction from spinning BHs in vacuum is
not efficient enough to explain highly energetic phenomena such as the emission of
relativistic jets from quasars. However, in the presence of magnetic fields the limits
discussed above can be lowered significantly for charged particles [19–21], or as we
discuss in Sect. 3.3.5, the situation can change completely by considering a variant
of the Penrose process known as the collisional Penrose process.

3.3.4 The Penrose Process in Generic Spacetimes

The overall picture discussed above for the Penrose’s extraction of energy from a
Kerr BH can be actually generalized to any stationary and axisymmetric spacetime
with an ergoregion. Consider a massive particle with specific energyE(0) at infinity,
falling along the equatorial plane and finally decaying into two photons within the
ergoregion. In such circumstances, one photon can have negative energy, E(1) < 0,
so that by energy conservation the second photon must have E(2) > E(0). In the
case of a Kerr BH the negative-energy photon is forced to fall into the horizon [16],
whereas the other can escape to infinity with an energy excess compensated by the
BH angular momentum. In fact, as shown by Chandrasekhar [6], the process can be
also understood in terms of the BH area theorem, i.e. energy extraction is related to
the property that the surface area of a BH never decreases in a continuous process.

Let us start by repeating the essentials of the Penrose process in a generic station-
ary, axisymmetric spacetime. Focusing on equatorial motion, the line element (E.1)
can be simplified as

ds2 = gtt (r)dt2 + grr(r)dr2 + gϕϕ(r)dϕ2 + 2gtϕ(r)dtdϕ , (3.45)

where all metric coefficients are evaluated at ϑ = π/2. Generalizing the geodesics
analysis presented in Sect. 3.3.1, it is easy to show that a massive particle in this
spacetime has a negative energy if and only if it is counter-rotating (i.e., its angular
momentum along the rotation axis is negative, L < 0) and

gtt

(
1 + gϕϕ

L2

)
<
g2
tϕ

L2 . (3.46)

Because the right-hand side of the equation above is positive and regularity of the
spacetime requires gϕϕ > 0, the condition above implies gtt > 0, i.e. that the
negative-energy particle is confined within the ergoregion. Likewise, for a particle
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with specific energy E(0) = 1 decaying into two particles with specific energies
E(1) and E(2) at its turning point and rest masses μfin each, we obtain

E (1) = μ0

2

(
1 ±

√
(1 + gtt )(1 − 4μ2

fin/μ
2
0)

)
,

E (2) = μ0

2

(
1 ∓

√
(1 + gtt )(1 − 4μ2

fin/μ
2
0)

)
. (3.47)

The efficiency reads

η = E (1)
E (0)

= 1

2

[√
(1 + gtt )(1 − 4μ2

fin/μ
2
0)+ 1

]
, (3.48)

and is limited by the maximum value of |gtt |. The latter must be finite to ensure
regularity of the geometry3 and this limits the efficiency of Penrose’s process, in
addition to the bounds discussed above for the case of a Kerr BH. Crucially, this
derivation does not assume the existence of an event horizon and is valid for any
stationary and axisymmetric spacetime. This is analogous to what happens with
superradiance [22].

While in the case of a Kerr BH the negative-energy particle is doomed to fall into
the BH [16], if the spacetime does not possess an event horizon Eq. (3.46) requires
that the negative-energy particle be confined within the ergoregion. In this case there
are two possibilities: (1) the particle does not interact with the rotating object and
it remains in orbital motion in the region gtt > 0 or (2) the particle is absorbed by
the object and transfers its negative energy and angular momentum through other
(nongravitational) mechanisms. As we will see in Sect. 4.14 the former possibility
is related to the so-called ergoregion instability.

We showed that the Penrose mechanism extends trivially to generic axisymmetric
stationary spacetimes. Specifically, it has been studied for rotating wormholes [23],
BHs in other theories of gravity such as the “Horava–Lifshitz” gravity BH [24],
Kerr-NUT BHs [25], BHs with a global monopole [26], charged rotating BHs in
Einstein–Maxwell axion-dilaton coupled gravity [27], and to arbitrarily “deformed”
Kerr BHs [28], where it was shown that the maximum energy gain can be several
times larger than for a Kerr BH.

The efficiency of the Penrose mechanism was also studied in the context of
higher-dimensional physics, for higher-dimensional BHs and black rings [29], to
the five-dimensional supergravity rotating BH [30], and even to arbitrarily deformed
BHs [31]. Finally, the astrophysically more relevant Penrose process for a Kerr BH

3Interestingly, in the case of a naked singularity large-curvature regions become accessible to
outside observers and gtt can be arbitrarily large. This suggests that the Penrose effects around
spinning naked singularities can be very efficient. It is also possible that rotating wormholes
are prone to efficient Penrose-like processes, although to the best of our knowledge a detailed
investigation has not been performed.
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immersed in a magnetic field was studied in Refs. [20,21,32,33] where it was shown
that the maximum efficiency could be up to ten times larger than in a vacuum Kerr
BH.

3.3.5 The Collisional Penrose Process: Ultra-High-EnergyDebris

A variant of the Penrose process which might be astrophysically more promising is
the collisional Penrose process, first proposed in 1975 [34] and studied in detail in
Ref. [35]. The process consists of two particles 1 and 2 colliding with four-momenta
p
μ
1 and pμ2 at some Boyer–Lindquist coordinate position r , and resulting in the

emission of two bodies 3 and 4 with four-momenta pμ3 and pμ4 . This process was
mostly studied in the equatorial plane where the geodesic equations are given by
Eqs. (3.9)–(3.11). In the local “lab” reference frame, the four-momentum is pμ =
ẋμ for massless particles, while for massive particles we can choose the geodesics
affine parameter to be τ/μ (τ being the proper time and μ the particle rest mass),
so that pμpμ = −μ2. Using (3.9)–(3.11) and imposing the local conservation of
four-momentum

p
μ
1 + pμ2 = pμ3 + pμ4 , (3.49)

it is possible to numerically compute the ratio η between the energy of the post-
collision escaping particle 3 and the energy of the colliding particles, η ≡ E3/(E1 +
E2). Imposing that the initial particles have ingoing radial momentum (pr1 < 0 and
pr2 < 0) and that particle 3 can escape and reach an observer at infinity, it was
shown that the process would result in modest maximum efficiencies (η � 1.5)
for the escaping particle, where the precise upper bound depends on the nature
of the colliding particles [35–38]. However, recently, Schnittman [39] found the
surprising result that one could achieve much higher energy gains (η � 15) by
allowing one of the colliding particles (say, particle 1) to rebound at a turning
point, so it has outgoing radial momentum (pr1 > 0) when it collides with the
incoming particle 2. This outgoing momentum favors ejection of a high-energy
particle after the collision. A schematic view of the two processes is shown in
Fig. 3.6. This was further extended in Ref. [40], with the striking conclusion that
particle collisions in the vicinity of rapidly rotating BHs could, in principle, reach
arbitrarily high efficiencies. They allowed for one of the particles to have outgoing
radial momentum but with angular momentum L1 < 2E1M , such that this particle
cannot come from infinity but is still kinematically allowed to be created inside
the ergosphere by previous scattering events (however see Ref. [41] for a particular
case where there is no energy amplification taking into account multiple scattering).
These results are summarized in Fig. 3.7.

In principle multiple scattering events can also be used to increase the efficiency
of any possible collisional Penrose process. The energy of particles that cannot
escape to infinity may be substantially larger than the energy of those that can,
and even if these particles are unable to escape themselves, they may collide with
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Fig. 3.6 Pictorial view of the different collisional Penrose processes. Left: initial particles with
ingoing radial momentum (pr1 < 0 and pr2 < 0). Particle 3 has initial ingoing radial momentum,
but eventually finds a turning point and escapes to infinity. The maximum efficiency for this was
shown to be quite modest η ∼ 1.5 [35–38]. Right: initial particles with pr1 > 0 and pr2 < 0. In
this case particle 1 must have pr1 > 0 inside the ergosphere. For this process the efficiency can be
unbound for extremal BHs [39, 40]
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Fig. 3.7 Left: Maximum efficiency ηmax for the collision of equal-energy particles as a function
of the radius at which the reaction occurs, for pr1 < 0, pr2 < 0, L1/E1 ≡ b1 = 2M , and an
extremal BH (a = M). The case b1 = b2 = 2M corresponds to the decay of a single particle
into two photons discussed in Sect. 3.3.1. The maximum efficiency for this case is ηmax ∼ 1.3, as
shown in Ref. [37]. Right: same, but for pr1 > 0, pr2 < 0 and b2 = −2(1 + √

2)M . The curves
for b1 > 2M terminate at the turning point of particle 1. The process considered in Ref. [39]
corresponds to the case b1 ≥ 2M , while Ref. [40] extended these results to the case b1 < 2M .
From [40]

other particles and give rise to high-energy collision products that may escape and
be detected at infinity. This may lead to very large efficiencies, even away from
a = M [39, 40], which can even increase further when the particles involved in
the collision are spinning [42]. However, whether these processes play a role in the
production of observable gamma rays or ultra-high-energy cosmic rays is still an
open problem.
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3.4 The ABC of Black-Hole Superradiance

In this section we introduce the theory of superradiant scattering of test fields on
a BH background. Fluctuations of order O(ε) in the scalar or vector field in a
given background induce changes in the spacetime geometry of order O(ε2), and
therefore to leading order can be studied on a fixed BH geometry. Before entering
in the details of the problem, it is instructive to consider a model that captures the
basic ingredients of superradiant scattering in curved spacetime. For simplicity, we
assume asymptotic flatness.

Let us assume that the spacetime is stationary and axisymmetric.4 As we shall
see, in this case various types of perturbations propagating on fixed BH metrics can
be expressed in terms of a single master variable ψ , after a Fourier-decomposition
and harmonic expansion of the time-domain fields. For example, the Klein–Gordon
equation for a minimally coupled charged scalar field in this curved spacetime was
given in Eq. (3.2a). Using the ansatz

�(t, r, ϑ, ϕ) =
∫
dω
∑
lm

e−iωtYlm(ϑ, ϕ)
ψ(r)

r
, (3.50)

the Klein–Gordon equation above can be written in the Schroedinger-like form

d2ψ

dr2∗
+ Veffψ = 0 , (3.51)

where the potential Veff(r) is model dependent and encodes the curvature of the
background and the properties of the test fields. The coordinate r∗ maps the region
r ∈ [r+,∞[ to the entire real axis. Given the symmetries of the background,
we consider a scattering experiment of a monochromatic wave with frequency ω
and azimuthal and time dependence e−iωt+imϕ . Assuming Veff is constant at the
boundaries, Eq. (3.51) has the following asymptotic behavior

ψ ∼
{
T e−ikH r∗ + OeikH r∗ as r → r+ ,
Reik∞r∗ + Ie−ik∞r∗ as r → ∞ (3.52)

where r+ is the horizon radius in some chosen coordinates, k2
H = Veff(r → r+) and

k2∞ = Veff(r → ∞). These boundary conditions correspond to an incident wave of
amplitude I from spatial infinity giving rise to a reflected wave of amplitude R and
a transmitted wave of amplitude T at the horizon. The O term describes a putative
outgoing flux across the surface at r = r+. Although the presence of a horizon and
a well-posed Cauchy problem would imply O ≡ 0, here we shall generically keep

4A special feature of vacuum stationary GR solutions is their axisymmetry [43]. This simplifies
considerably the treatment of superradiant instabilities in GR, as it excludes mixing between modes
with different azimuthal number m.
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this term, in order to allow for a nonvanishing outgoing flux in absence of an event
horizon.

Let us assume that the potential is real5 . Then, since the background is stationary,
the field equations are invariant under the transformations t → −t and ω → −ω.
Thus, there exists another solution ψ̄ to Eq. (3.51) which satisfies the complex
conjugate boundary conditions. The solutionsψ and ψ̄ are linearly independent and
standard theory of ODEs tells us that their Wronskian is independent of r∗. Thus,
the Wronskian evaluated near the horizon,W = −2ikH

(|T |2 − |O|2), must equal
the one evaluated at infinity,W = 2ik∞(|R|2 − |I|2), so that

|R|2 = |I|2 − kH

k∞

(
|T |2 − |O|2

)
, (3.53)

independently from the details of the potential in the wave equation.
In the case of a one-way membrane boundary conditions at the horizon, i.e. O =

0, one gets |R|2 < |I|2 when kH/k∞ > 0, as is to be expected for scattering off
perfect absorbers. However, for kH/k∞ < 0, the wave is superradiantly amplified,
|R|2 > |I|2 [46].

3.5 Horizons are Unrelated to Superradiance

Boundary conditions are important for any problem. One might be tempted to
conclude, as has been done in the past, that without ingoing boundary conditions
at the horizon, no superradiant scattering can occur [7,8,47–49]. In fact, in absence
of a horizon (for example, in the case of rotating perfect-fluid stars), regularity
boundary conditions must be imposed at the center of the object. By applying
the same argument as above, the Wronskian at the center vanishes, which implies
|R|2 = |I|2. One could conclude (erroneously) that superradiance is absent. It is
thus generally believed (erroneously) that replacing an horizon by a hard surface
would lead to no superradiance in BH geometries.

Such conclusions are wrong and could be anticipated with pure causality
arguments: since waves take an infinite (coordinate) time to reach the horizon, it has
no causal contact with the region where “dynamics is happening.” Thus, boundary
conditions should be irrelevant for the occurrence of superradiance [22]. Pulses of
waves can be amplified with or without horizons, as can be easily shown with time-
domain evolutions [22]; these results are supported also by a formal study of the
Cauchy problem with highly oscillatory initial data, with some initial energy [50]. It
can be shown that the time evolution splits the solution into two parts: one with the

5As we shall discuss, this condition holds for scalar perturbations of spinning and charged BHs,
but it does not hold in other cases of interest, for example, for EM and gravitational perturbations
satisfying the Teukolsky equation for a Kerr BH. In the latter cases, it is convenient to make a
change of variables by introducing the Detweiler’s function, which can be chosen such that the
effective potential is real [44, 45].
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negative energy traveling inwards (towards the event horizon if there is one), and
the second part, with positive energy escaping, under some conditions, to infinity.
In summary, there is strong evidence that horizons are unrelated to the phenomenon
of superradiance.

The two results are compatible by noting that the Fourier-decomposition assumes
a stationary profile for the incoming and scattered waves, and requires integrable
functions. To arrive at expressions like (3.52) and (3.53), the Fourier decomposition
(3.50) was used, but it describes only stable solutions �(t, r, ϑ, ϕ). In fact, as we
discuss in Sect. 5.7.2 below, when the boundary conditions are those of regularity
at the center, but ergoregions exist, then an instability is triggered. The initial
development is precisely that of superradiant amplification, but the field grows
exponentially with time, and is not captured by a Fourier analysis.

To summarize, superradiance requires friction, which for BHs is provided by the
ergoregion. When ergoregions are present without horizons, superradiance exists,
but comes hand in hand with an instability.

3.6 Superradiance from Charged Static Black Holes

From the discussion of the previous section, it is clear that BH superradiance also
occurs for electrically charged waves scattered by a static, charged BHs whenever
(cf. Eq. (3.26))

ω − q�H < 0 . (3.54)

Because the background is spherically symmetric, this type of superradiance is
simpler to treat and in this section we start our analysis with this simpler case.

3.6.1 Linearized Analysis: Amplification Factors

The problem can be investigated at linearized level by considering a charged scalar
field� propagating on a RN background, which is defined by Eq. (3.4) with� = 0.
Using the harmonic expansion and Fourier-decomposition of Eq. (3.50), the Klein–
Gordon equation for a minimally coupled scalar can be written in the Schroedinger-
like form (3.51) with the potential

Veff(r) = ω2 − f
(
l(l + 1)

r2 + f ′(r)
r

+ μ2
S

)
− 2qQω

r
+ q2Q2

r2 , (3.55)

where r is defined in terms of r∗ through dr/dr∗ = f = (r − r+)(r − r−)/r2. We
can compute the reflectivity of a scattering experiment as done at the beginning of
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Sect. 3.4. In this specific case kH = ω−q�H = ω−qQ/r+ and k∞ =
√
ω2 − μ2

S .
Equation (3.53) then reduces to

|R|2 = |I|2 − ω − qQ/r+√
ω2 − μ2

S

|T |2 . (3.56)

This equation shows that only waves with ω > μS propagate to infinity and
that superradiant scattering occurs, |R|2 > |I|2, whenever ω < qQ/r+, which
coincides with the condition (3.54) derived from thermodynamical arguments.

The amplification factor for each frequency can be computed by integrat-
ing numerically the wave equation (cf. available MATHEMATICA® notebook in
Appendix A). Figure 3.8 shows the amplification factor as a function of the
frequency for monopole, l = 0, waves and different BH Q and field q charge
parameters. The amplification factor can be as high as 40% for nearly extreme
BHs, substantially larger than the amplification factors of scalar fields in Kerr
backgrounds, as we will see. Note also that the critical threshold for superradiance
to occur, Z000 > 0, is to numerical accuracy described by condition (3.54). The
amplification factor is proportional toQq at intermediate values, but tends to 100%
at large values of q . We find that at large qM , the amplification factor satisfies

Z000 ∼ 100 − 80

Qq
(%) . (3.57)

A detailed analysis in the time-domain has also recently been performed
in Ref. [51]. Their results agree with the frequency-domain computation here
presented and show indications that the maximum energy gain is always finite,
independently of the initial conditions, in accord with the linear stability of the
(sub-extremal) RN geometry. These results, in particular (3.57), are fully consistent
with an analytical, small-frequency expansion for the amplification factors [52]. An
interesting result concerning charge relates to the possibility of attaining a negative

Fig. 3.8 Amplification factor
Z000 = |R|2/|I|2 − 1 as a
function of the frequency for
a massless bosonic wave with
l = 0 and charge q scattered
off a RN BH with charge Q
and massM . The threshold of
superradiance, Z000 > 0,
occurs when ω = qQ/r+
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total absorption cross-section, which implies in particular planar scalar waves can
be superradiantly amplified by BHs [53, 54].

As we shall see in the next sections, the existence of superradiance for static
charged BHs is a crucial ingredient for interesting applications in the context of the
gauge/gravity duality. For example, the spontaneous symmetry breaking mechanism
near a RN-AdS BH [55], and applications therein related to holographic models of
superconductors [56], all hinge on this superradiant phenomenon.

3.6.2 Backreaction on the Geometry: Mass and Charge Loss

Superradiant scattering seems to imply that energy is being extracted from the
background which—at linearized order where superradiance is observed—is kept
fixed. This is not a particularity of superradiant scattering from BHs, but rather
a very generic property. We will now show that when backreaction effects are
included, both the mass and charge of the BH decrease.

Take a spherically symmetric, linearized charged scalar field

� = ε ψ(t, r)
r

, (3.58)

where now we explicitly introduced a bookkeeping parameter ε to help keep track
of the expansion order. When allowed to propagate in a RN background, such field
introduces backreactions in both the geometry and vector potential which are both
of order ε2,

Aμ =
(
Q

r
+ ε2Qt(t, r)

r
, ε2

∫
dtQr(t, r)

r2 , 0, 0

)
, (3.59)

where the form of the perturbation quantitiesQt(t, r), Qr (t, r) at order O(ε2) was
chosen so that the radial electric field Er at large distances is

r2Er = Q+ ε2 (Qr(t, r)− rQ′
t (t, r)+Qt(t, r)

)
, (3.60)

and therefore the charge flux can be obtained via Gauss’s law to be

Q̇tot = ε2 (Q̇r − rQ̇′
t + Q̇t

)
. (3.61)

Likewise, the metric gets O(ε2) corrections of the form

ds2 = −
(
f − ε2 2μ(t, r)

r

)
dt2 +

(
f − ε2 2μ(t, r)

r
− ε2X(t, r)

r

)−1

dr2

+ r2d�2 , (3.62)
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with μ the mass loss (or gain) induced by the scalar field. At large distances, we
know from the previous analysis of the scalar field equation at order O(ε) that the
solutions are oscillatory. Let the solutions at large distances be

ψ ∼ f (t − r)+ g(t + r) , (3.63)

where the first term represents an outgoing wave and the second an ingoing wave.
The field equations yield a vanishing Ẋ(t, r) at large distances, whereas the (t, r)
component of Einstein’s equations yields

2
r

f
μ̇ = r

[(
ψ∗)′ ψ̇ + ψ ′ψ̇∗]−ψψ̇∗−ψ∗ψ̇−iqQ

[
ψ
(
ψ∗)′ − ψ∗ψ ′] , (3.64)

where the first term on the r.h.s dominates at large distance. Because (ψ∗)′ ψ̇ +
ψ ′ψ̇∗ = 2g′(g∗)′ − 2f ′(f ∗)′, we obtain

μ̇ ∼ g′(g∗)′ − f ′(f ∗)′ , (3.65)

where now primes stand for derivative with respect to the argument ((t − r) and
(t + r) for f and g, respectively). In other words, for f ′ > g′—which can be
seen to be the condition for superradiance at order O(ε)—the mass of the BH does
decrease at order O(ε2). From the scalar field stress-tensor, which can be read off
from (3.2c), the energy flux at infinity can be computed using only the linearized
result and reads

Ė∞ = − (g′(g∗)′ − f ′(f ∗)′
)
. (3.66)

In other words, Eq. (3.65) tells us that the BH looses or gains mass at a rate which
matches exactly the energy dissipated or ingoing at infinity, respectively, and which
is evaluated using only the linearized quantities. This is an important consistency
result and shows that the energy for superradiant amplification does come—at the
nonlinear level—from the medium, in this case the BH. For monochromatic scalar
waves, ψ ∼ Ie−iω(t+r) + Re−iω(t−r) at large distances, one gets

μ̇ = −ω2
(
|R|2 − |I|2

)
, (3.67)

indicating that superradiance extracts mass.
Finally, the r component of Maxwell’s equations (3.2b) yields

qf
[
ψ∗ψ ′ − ψ(ψ∗)′

]+ 2i
[
Q̇r − rQ̇′

t + Q̇t
] = 0 . (3.68)

From (3.61) this can be re-written as

2Q̇tot = iqf [ψ∗ψ ′ − ψ(ψ∗)′
]
, (3.69)
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which leads to loss of charge at order O(ε2) whenever the superradiance condition
for the scalar field is satisfied at order O(ε2). For monochromatic scalar waves,
ψ ∼ Ie−iω(t+r) + Re−iω(t−r) at large distances, one finds

Q̇tot = −ωq
(
|R|2 − |I|2

)
. (3.70)

One can now use the first law of BH mechanics (3.22) to find

ȦH = 8π

k

(
Ṁ −�HQ̇

) = −8π

k
ω (ω − q�H)

(
|R|2 − |I|2

)
. (3.71)

In the superradiant regime, |R|2 − |I|2 > 0 but a necessary condition is that ω −
q�H < 0 thus yielding a positive area increase. Outside the superradiant regime
ω− q�H > 0 but there is no amplification and |R|2 − |I|2 < 0. In conclusion, the
area always increases in agreement with the second law of BH mechanics.

These conclusions agree with fully nonlinear studies of the superradiant scat-
tering of charged scalar fields around charged BHs. This was first studied in
Ref. [57] where numerical simulations of massless and massive charged scalar
fields scattering off a charged BH were performed. The authors considered initial
data representing an ingoing spherically symmetric scalar wave packet scattering
off a charged BH and found that superradiance indeed occurs at the full nonlinear
level leading to a decrease of mass and charge of the BH. Their simulation also
confirms that the BH area always increases during the process. An example of such
superradiant mass and charge extraction is shown in Fig. 3.9, for an initially nearly
extremal charged BH. In those simulations more than 10% of the BH mass is lost in
the process, whereas the horizon charge decreases by more than 40%. Thus, charged
superradiance occurs at the full nonlinear level.

Fig. 3.9 Time evolution of the BH mass and charge for the superradiant scattering of a massless
scalar field around a BH with initial charge Q = 0.987M . The charge of the scalar field and the
initial data for the simulation are chosen in such a way that superradiant scattering is expected
to occur. Left: evolution of the BH mass (solid red), Bondi mass (dashed blue), and irreducible
mass (dotted green). Right: evolution of the BH charge at the horizon (solid red) and total charge
measured at future null infinity (dashed blue). From [57]
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3.7 Superradiance from Rotating Black Holes

Here we introduce the superradiant scattering of rotating BHs. We focus on the
asymptotically flat case and consider the geometry (3.5) with � = 0.

3.7.1 Bosonic and Fermionic Fields in the Kerr Geometry

The wave equation for linearized fluctuations around the Kerr geometry was studied
by Teukolsky, Press, and collaborators in great detail [46,58–60]. Following Carter’s
unexpected result on the separability of the Hamilton–Jacobi equation for the
geodesics in a Kerr geometry [61], he also noted that the analogue scalar field
equation was separable [62], as was explicitly shown in Ref. [63]. In a breakthrough
work (see Ref. [64] for a first-person historical account), it was shown that linearized
perturbations of the Kerr geometry could be described with a single master equation,
describing “probe” scalar (s = 0), massless Dirac (s = ±1/2), EM (s = ±1), and
gravitational (s = ±2) fields in a Kerr background [58]. The master equation reads

[(
r2 + a2

)2
�

− a2 sin2 ϑ

]
∂ψ2

∂t2
+ 4Mar

�

∂ψ2

∂t∂ϕ
+
[
a2

�
− 1

sin2 ϑ

]
∂ψ2

∂ϕ2

−�−s ∂
∂r

(
�s+1 ∂ψ

∂r

)
− 1

sinϑ

∂

∂ϑ

(
sinϑ

∂ψ

∂ϑ

)

−2s

[
a(r −M)
�

+ i cosϑ

sin2 ϑ

]
∂ψ

∂ϕ

−2s

[
M(r2 − a2)

�
− r − ia cosϑ

]
∂ψ

∂t
+
(
s2 cot2 ϑ − s

)
ψ = 0 , (3.72)

where s is the field’s spin weight, and the field quantity ψ is directly related
to Newman–Penrose quantities as shown in Table 3.1. By Fourier transforming
ψ(t, r, ϑ, ϕ) and using the ansatz

ψ = 1

2π

∫
dωe−iωt eimϕS(ϑ)R(r) . (3.73)

Teukolsky found separated ODEs for the radial and angular part, which read,
respectively

�−s d
dr

(
�s+1 dR

dr

)
+
(
K2 − 2is(r −M)K

�
+ 4isωr − λ

)
R = 0 , (3.74)
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Table 3.1 Wavefunction ψ
for each value of the spin
weight-s

s 0 (1/2, −1/2) (1, −1) (2, −2)

ψ � (χ0,ρ−1χ1) (φ0,ρ−2φ2) (�0,ρ−4�4)

The spin coefficient is given by ρ ≡ −1/(r − ia cos ϑ).
The quantities φ0, φ2, �0, and �4 are Newman–Penrose
scalars [67] describing EM and gravitational perturbations,
respectively. The quantities χ0 and χ1 denote components of
the Dirac spinor along dyad legs

and

1

sinϑ

d

dϑ

(
sinϑ

dS

dϑ

)
+
(
a2ω2 cos2 ϑ − m2

sin2 ϑ
− 2aωs cosϑ

−2ms cosϑ

sin2 ϑ
− s2 cot2 ϑ + s + Aslm

)
S = 0 , (3.75)

where K ≡ (r2 + a2)ω − am and λ ≡ Aslm + a2ω2 − 2amω. Together with the
orthonormality condition

∫ 2π

0

∫ π

0
|S|2 sinϑdϑdϕ = 1 , (3.76)

the solutions to the angular equation (3.75) are known as spin-weighted spheroidal
harmonics eimϕS ≡ Sslm(aω, ϑ, ϕ). When aω = 0 they reduce to the spin-weighted
spherical harmonics Yslm(ϑ, ϕ) [65]. For small aω the angular eigenvalues are (cf.
Ref. [66] for higher-order terms)

Aslm = l(l + 1)− s(s + 1)+ O(a2ω2) . (3.77)

The computation of the eigenvalues for generic spin can only be done numeri-
cally [66].

Besides these equations, to have complete information about the gravitational
and EM fluctuations, we need to find the relative normalization between φ0 and φ2
for EM fields and between�0 and�4 for gravitational perturbations. This was done
in Refs. [46, 68, 69] assuming the normalization condition (3.76) and using what is
now known as the Teukolsky–Starobinsky identities (see also [6] for details).

Defining the tortoise coordinate r∗ as dr/dr∗ = �/(r2 + a2), Eq. (3.74) has the
following asymptotic solutions

Rslm ∼ T �−se−ikH r∗ + OeikH r∗ , as r → r+ ,

Rslm ∼ I e
−iωr

r
+ R eiωr

r2s+1 , as r → ∞ , (3.78)
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where kH = ω − m�H and �H = a/(2Mr+) is the angular velocity of the BH
horizon. Regularity at the horizon requires purely ingoing boundary conditions, i.e.
O = 0 (see Section 3 in Ref. [70] for a careful discussion of boundary conditions).

3.7.2 Energy Fluxes of Bosonic Fields at Infinity and on the Horizon

The perturbation equations (3.74) and (3.75) and their asymptotic behavior (3.78)
can be used to define the energy fluxes that the fields carry through the horizon and
to infinity. The expressions for the energy fluxes were computed in Ref. [46], to
which we refer the reader for further details. The total energy fluxes at infinity per
unit solid angle for scalar s = 0 and EM s = ±1 are given by (see Appendix C):

d2E

dtd�
= lim
r→+∞ r

2T rt , (3.79)

where Tμν is the stress–energy tensor of the test field. For the scalar case s = 0, one
has

dEout

dt
= ω2

2
|R|2 , dEin

dt
= ω2

2
|I|2 , (3.80)

whereas, for the EM case s ± 1,

d2Eout

dtd�
= lim
r→+∞

r2

2π
|φ2|2 , d2Ein

dtd�
= lim
r→+∞

r2

8π
|φ0|2 . (3.81)

From these definitions it can be shown that the fluxes, valid for s = 1, are given by

dEout

dt
= 4ω4

B2
|R|2 , dEin

dt
= 1

4
|I|2 , (3.82)

where B2 = Q2 + 4maω− 4a2ω2 andQ = λ+ s(s+ 1). The corresponding fluxes
for s = −1 can be found using the Teukolsky–Starobinsky identities and can be
obtained from the above relations by doing the transformation: I → −(8ω2/B)I
and R → −B/(2ω2)R. Finally, for gravitational perturbations s ± 2 the fluxes can
be computed using the effective stress–energy tensor for linearized GWs [71]. In
terms of the Weyl scalars they are given by

d2Eout

dtd�
= lim
r→+∞

r2

4πω2
|�4|2 , d2Ein

dtd�
= lim
r→+∞

r2

64πω2
|�0|2 , (3.83)

which can be shown to give for s = 2,

dEout

dt
= 8ω6

|C|2 |R|2 , dEin

dt
= 1

32ω2
|I|2 , (3.84)
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where |C|2 = B2
[
(Q− 2)2 + 36aωm− 36a2ω2)

]+(2Q−1)(96a2ω2−48aωm)+
144ω2(M2 − a2). For s = −2 the fluxes can be found once again using the
Teukolsky–Starobinsky identities and can be obtained from the above relations by
doing the transformation: I → (64ω4/C)I and R → C∗/(4ω4)R.

The flux at the horizon for s = 0,±1 can be computed evaluating the change in
energy of the hole. As showed in Appendix C it is given by

d2Ehole

dtd�
= ω

kH
2Mr+T μνnμnν , (3.85)

where nμ is an inward unit vector, normal to the horizon surface.
Using (3.78), one finds for the scalar case

d2Ehole

dtd�
= Mr+ωkH S

2
0lm(ϑ)

2π
|T |2 , (3.86)

whereas, the EM case for s = 1 gives

d2Ehole

dtd�
= ω

8Mr+kH
S2

1lm(ϑ)

2π
|T |2 . (3.87)

The case s = −1 can be obtained doing the transformation BT →
−32ikHM2r2+(−ikH + 2ε) T , where ε = √

M2 − a2/(4Mr+).
For gravitational perturbations one can use the first law of BH mechanics (3.22)

to find the flux at the horizon [72]. The rate of change of the area can be found from
Eq. (3.24). Since δM = δEhole we find

d2A

dtd�
= 16πr+kH
(M2 − a2)1/2ω

d2Ehole

dtd�
. (3.88)

We can also show that [72]

d2A

dtd�
= 2Mr+�4

16(r2 + a2)4ε(k2
H + 4ε2)

|�0|2 . (3.89)

Equating (3.88) with (3.89) at the horizon, we find for s = 2

d2Ehole

dtd�
= S2

2lm(ϑ)

2π

ω

32kH(k2
H + 4ε2)(2Mr+)3

|T |2 . (3.90)

whereas the corresponding for s = −2 can be found doing the transformation
CT → 64(2Mr+)4ikH (k2

H + 4ε2)(−ikH + 4ε) T .
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From Eqs. (3.86), (3.87), and (3.90) one can see that if the superradiance
condition is met, kH < 0, the energy flux at the horizon is negative, i.e. energy
(and angular momentum) are extracted from the BH.

3.7.3 Amplification Factors

For any scattering process experiment, energy conservation implies that

dEin

dt
− dEout

dt
= dEhole

dt
. (3.91)

This equation relates the asymptotic coefficients R, I, and T , which can be
used to check the consistency of numerical computations a posteriori. Using
Eqs. (3.86), (3.87), and (3.90), it is also clear that when energy is extracted from
the BH, kH < 0 �⇒ dEhole

dt
< 0, there is superradiance, dEin

dt
< dEout

dt
, as it should

by energy conservation. Finally, from the energy fluxes at infinity one can define the
quantity

Zslm = dEout

dEin
− 1 , (3.92)

which, depending on whether the superradiance condition is met or not, provides
the amplification or the absorption factor for a bosonic wave of generic spin s
and quantum numbers (l,m) scattered off a Kerr BH. Using Eqs. (3.80), (3.82),
and (3.84) we find

Zslm =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|R|2
|I|2 − 1 , if s = 0 ,

|R|2
|I|2

(
16ω4

B2

)±1 − 1 , if s = ±1 ,

|R|2
|I|2

(
256ω8

|C|2
)±1 − 1 , if s = ±2 .

(3.93)

From the symmetries of the differential equations (3.74) and (3.75), one can prove
the following relation

Zslm(ω) = Zsl−m(−ω) . (3.94)

This symmetry relation can be used to fix the sign of ω. In other words, if the
full dependence on m is known for a given (s, l) and ω > 0, the corresponding
amplification factor for −ω follows immediately from Eq. (3.94). Thus, the
amplification factor Zslm in the entire real ω-axis can be obtained by only looking
at ω > 0. In the following we will exploit these symmetries when computing
superradiant amplification factors numerically.
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3.7.4 Dirac Fields on the Kerr Geometry

The absence of superradiance for massless Dirac fields was proved in 1973, through
the separation of the massless spin-1/2 equations on a Kerr background [10]. In
1976, the separation of variables was extended to massive Dirac particles [73],
a result soon generalized to the Kerr–Newman geometry [74, 75]. In 1978, these
results were used to show that generic massive Dirac fields do not exhibit super-
radiant scattering in the Kerr BH background geometry [76] (thereby correcting a
previous analysis [77]). The Dirac equation in curved spacetime is

γ μ∇μψ + iμeψ = 0 , (3.95)

where [γ μ, γ ν] = 2gμν , ∇μψ = ∂μψ − �μψ , ∇μψ̄ = ∂μψ̄ + ψ̄�μ, ψ̄ = ψ†γ 0 is
the Dirac adjoint, �μ is the spinor affine connection [6], and μe is the fermion mass.
The Dirac equation can be separated on a Kerr background using the ansatz

ψ =
(
R−S−√

2ρ∗ ,
R+S+√
�
,−R+S−√

�
,−R−S+√

2ρ

)T
e−iωt eimϕ , (3.96)

where ρ = r + ia cosϑ . The functions R±(r) and S±(ϑ) satisfy a system of first-
order differential equations, which can be reduced to the following second-order
form [74]

√
�
d

dr

(√
�
dR−
dr

)
− iμe�√

λ+ iμer
dR−
dr

+
[
K2 + i(r −M)K

�
− 2iωr − μeK√

λ+ iμer
− μ2

er
2 − λ

]
R− = 0 , (3.97)

× 1

sinϑ

d

dϑ

(
sinϑ
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dϑ

)
+ aμe sinϑ√

λ+ aμe cosϑ

dS−
dϑ

+
[
a2ω2 cos2 ϑ − m2

sin2 ϑ
+ aω cosϑ + m cosϑ

sin2 ϑ
− cot2 ϑ

4
− 1

2
+ λ

−2amω − a2ω2 + aμe(1/2 cosϑ + aω sin2 ϑ −m)√
λ+ aμe cosϑ

− a2μ2
e cos2 ϑ

]
S− = 0 , (3.98)

and R+ and S+ can be obtained once R− and S− are known [73]. The equations
above were extended by Page to the case of Kerr–Newman metric and they reduce
to Teukolsky’s equations (3.74) and (3.75) when μe = 0 and setting s = −1/2.
Near the horizon, the radial functions behave as

R±(r)→ A±�
1∓1

4 e−ikH r∗ , (3.99)
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so that R− is vanishing at the horizon. Although the asymptotic solution exhibits
the usual kH term that appears due to the BH rotation relative to the reference frame
(cf. Eq. (3.78)), in this case superradiance is forbidden to occur, as we now discuss.

Absence of superradiance is a direct consequence of the properties of the stress–
energy tensor for fermions. Dirac’s equation (3.95) is associated with a conserved
current

Jμ = ψ̄γ μψ , (3.100)

whose conservation, ∇μJμ = 0, implies that the net number current flowing down
the horizon is always positive

dN

dt
= −

∫
dϑdϕ

√−gJ r = π
∑
lm

|A+|2
∫
dϑ sinϑ(|S+|2 +|S−|2) , (3.101)

where the last step follows from the representation (3.96) and the orthonormality
of the eigenfunctions, Eq. (3.76) [76]. From the equation above, it is clear that
dN/dt > 0, i.e. there is no net flux coming from the horizon, for any frequency.
Indeed, using the stress–energy tensor for a Dirac field, it is easy to show that the
net energy flows across the horizon per unit time and solid angle is ∼ ωdN/dt ,
signaling the absence of energy and angular momentum extraction for fermions.

The same conclusion can be obtained by studying the reflection and transmission
coefficients in the scattering of a fermionic wave off a Kerr BH. Chandrasekhar
showed that Eq. (3.97) can be written as a Schroedinger-like equation in modified
tortoise coordinates [6]. Using the homogeneity of the Wronskian, the same analysis
performed at the beginning of Sect. 3.4 allows to relate the reflection coefficient R
and the transmission coefficient T as

|R|2 = |I|2 − ω√
ω2 − μ2

e/2
|T |2 . (3.102)

The reflection coefficient is always less than unity, showing that superradiance
cannot occur.

As discussed in Sect. 3.2, at the classical level superradiant amplification is a
consequence of Hawking’s area theorem [8, 78]. It might appear that the absence
of superradiance for fermions is at odds with this fact. However, as already pointed
out in the original analysis [10] and later generalized to generic charged massive
fermions interacting with Kerr–Newman BHs [79], the stress–energy tensor for
fermions does not satisfy the weak energy condition, Tμνtμtν > 0 for any timelike
vector tμ, which is one of the assumptions behind Hawking’s theorem.

3.7.5 Linearized Analysis: Analytic vs Numerics

The amplification factors Zslm for a bosonic wave of generic spin s and quantum
numbers (l,m) (cf. Eq. (3.93)) scattered off a Kerr BH can be computed by
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integrating numerically the Teukolsky equations presented in Sect. 3.7.1. When
the superradiance condition is not fulfilled, the same computation provides the
absorption cross-section of a spinning BH. Remarkably, the problem was also solved
analytically in the low-frequency regime [80, 81]. Using matching-asymptotic
techniques (see Appendix B), the authors showed that in the low-frequency regime

Zslm = Z0lm

[
(l − s)!(l + s)!

(l!)2
]2

, (3.103)

Z0lm = −8Mr+(ω −m�H)ω
2l+1 (r+ − r−)2l

×
[

(l!)2
(2l)!(2l + 1)!!

]2 l∏
k=1

[
1 + M2

k2

(
ω −m�H

πr+TH

)2
]
,

(3.104)

where TH = (r+ − r−)/(4πr2+) is the BH temperature and Z0lm is the amplification
factor for scalar waves. The formulas above are valid for any spin a ≤ M provided
ωM � 1. The superradiant condition is independent of the spin of the field and
Zslm > 0 whenever ω < m�H for any l and s. In addition, Eq. (3.103) shows that:
(i) the amplification factor is independent of the spin of the field when l � 2s2 and
(ii) in the low-frequency limit the amplification of EM waves is only a factor 4 larger
than that of scalar waves (this maximum is obtained when l = m = 1), whereas the
amplification of GWs is a factor 36 larger than that of scalar waves for l = m = 2.

Defining α = 1 − ω/(m�H), the equations above predict Zslm ∝ α when |α| �
(r+ − r−)/(am), and the exact coefficient can be extracted from Eqs. (3.103) and
(3.104). Thus, in this regime Zslm is linear and continuous in ω − m�H near the
threshold. Furthermore, the amplification is largest at ωmax ∼ (2l+1)/(2l+2)m�H,
independently of s.

With the further assumption ω � m�H, Eq. (3.103) reduces to

Zslm = 8r2+THω2l+1(r+ − r−)2l
[
�(1 + l − s)�(1 + l + s)
(2l + 1)!!�(l + 1)�(2l + 1)

]2

× sinh

(
m�H

r+TH

)
�

(
l − im�H

πr+TH
+ 1

)
�

(
l + im�H

πr+TH
+ 1

)
. (3.105)

which, although not reproducing the threshold behavior Zslm → 0 as ω →
m�H, reproduces well the exact numerical results even at moderately large fre-
quencies, whereas the full equation (3.103) breaks down before. A comparison
between the low-frequency analytical result (3.105) and the exact result obtained
by solving the Teukolsky equation numerically (the MATHEMATICA® notebook to
compute this factor and data tables are publicly available at http://blackholes.ist.
utl.pt/?page=Files, https://web.uniroma1.it/gmunu,and https://www.darkgra.org, cf.
Appendix A) is presented in the left panel of Fig. 3.10 for scalar, EM and GWs

http://blackholes.ist.utl.pt/?page=Files
http://blackholes.ist.utl.pt/?page=Files
https://web.uniroma1.it/gmunu
https://www.darkgra.org
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Fig. 3.10 Left: amplification factor Zslm as a function of the frequency ω of a wave scattered off a
Kerr BH with spin parameter a = 0.99M obtained by solving numerically the Teukolsky equations
and compared to the analytical result in the low-frequency limit. We consider scalar and EM waves
with l = m = 1 and GWs with l = m = 2. Superradiance, Zslm > 0, occurs when 0 < ω < m�H
in all cases. Right: the amplification factor for GWs and for different values of the BH spin

scattered off a nearly extremal BH with a = 0.99M . In this figure we only focus on
the superradiant regime, 0 < ω < m�H. Data files of the amplification factors in
the entire parameter spaces are provided in a supplementary file (cf. Appendix A).

Equations (3.103) and (3.105) break down when ωM ∼ 1, a condition which is
generically fulfilled near the superradiant threshold ω ∼ m�H (equivalently α ∼ 0)
and in the quasi-extremal limit, even at low m. In fact, it is clear from Fig. 3.10 that
the low-frequency limit (3.105) generically overestimates the amplification factors.
The behavior near the threshold has been also studied analytically using a different
matching asymptotic technique [80]. In the extremal case, a = M , defining δ2 =
2m2 − Aslm − (s + 1/2)2 [we recall that Aslm are the eigenvalues of the spin-s
spheroidal harmonics which satisfy Eq. (3.75)], when δ2 < 0 one finds [81]

Zslm = 4 Sα|δ|2
(

2m2|α|
)2|δ|

× |�(1/2 + s + |δ| + im)|2|�(1/2 − s + |δ| + im)|2
�(1 + 2|δ|)4 eπn[1−Sα ] ,

(3.106)

where Sα = sgn(α), and

Z−1
slm = Sαe

πm[Sα−1]

sinh(2πδ)2

{
cosh[π(m− δ)]2eπδ[Sα−1] + cosh[π(m+ δ)]2e−πδ[Sα−1]

−2 cosh[π(m− δ)] cosh[π(m+ δ)] cos[γ0 − 2δ log(2m2|α|)]
}
, (3.107)



74 3 Superradiance in Black-Hole Physics

for δ2 > 0 and |α| � m−4 max(1, |α|2). In the equation above

γ0 = 4 arg[�(1 + 2iδ)] + 2 arg[�(1/2 + s + im− iδ)]
+ 2 arg[�(1/2 + s − im− iδ)] . (3.108)

Note that the condition δ2 > 0 is satisfied by almost all modes [82], for example
it is satisfied for s = 1 for any l = m ≥ 1 and for s = 2 for any l = m ≥ 2, i.e.
for the cases that correspond to the largest amplification. The behaviors described
by Eqs. (3.106) and (3.107) are quite different. When δ2 < 0, Zslm is continuous
and monotonic near α ∼ 0, whereas when δ2 > 0 it displays an infinite number of
oscillations as α → 0 in the region |α| � 1/m2 (provided δ � 1). Remarkably,
as understood already in Ref. [80], these oscillations are related to the existence of
quasi-stationary bound states near the event horizon of a nearly extremal Kerr BH.
These quasi-bound states have been computed in Refs. [83–85].

When δ2 > 0, the oscillations have a small amplitude and—except for the
exceptional case m = 1 and πδ � 1—can be ignored. In such case, for α > 0
one finds

Zslm ∼ e2π(δ−m) , (3.109)

and the amplification factor is discontinuous near the superradiant threshold. Finally,
when α < 0 we have min(Zslm) = −1, i.e. there are regions of the parameter space
in which the reflectivity is zero and the BH is totally transparent [80, 81].

Equations (3.106) and (3.107) are also valid in the quasi-extremal limit, a ∼ M ,
provided m <

√
M/(M − a) and (r+ − r−)/(am) � |α| � 1/m2. Since when

|α| � (r+ − r−)/(am) the amplification factor is described by Eq. (3.103), near the
threshold Zslm ∝ α and it is continuous for any a < M . Note however that there
exists a regime which is not captured by the formulas above, namely when a ∼ M

and ω ∼ m�H such that α � (r+ − r−)/(am). Describing this regime analytically
requires more sophisticated matching techniques. Various analytical treatments of
the Teukolsky’s equation can be found in Refs. [86–90] and they are in agreement
with the exact results. A representative example of the dependence of Zslm with the
BH spin is presented in the right panel of Fig. 3.10.

The maximum amplification factors are about 0.4, 4.4, and 138% for scattering
of massless scalar, EM and GWs, respectively, and for the minimum value of l = m
allowed (namely l = m = 1 for scalar and EM waves and l = m = 2 for GWs).
As evident from Fig. 3.10, the maximum amplification occurs for BHs with a ≈ M
and very close to the superradiant threshold, ω ∼ m�H. Indeed, near the threshold
the curve becomes very steep (with a steepness that increases with the BH spin) and
it attains a maximum right before reaching ω = m�H where superradiance stops.
Detailed tables of the amplification factors for scalar, EM and GWs for various
parameters are provided in accompanying data files (cf. Appendix A).

The previous analysis concerns massless fields, but the extension to massive
fields is, in principle, straightforward. As an example, we show in Fig. 3.11 the
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Fig. 3.11 Amplification
factor Z0lm = |R|2/|I|2 − 1
as a function of the frequency
for a massive scalar field with
l = m = 1 and mass μS
scattered off a Kerr BH with
angular momentum parameter
a = 0.99M . Superradiance,
Z0lm > 0, occurs when
μS < ω < m�H
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amplification factors of a massive scalar field—with mass μSh̄ –in the background
of a Kerr BH. It is clear from Eq. (3.2a) that no propagation is possible for energies
ω < μS . Thus, superradiance can also occur for massive waves as long as the
condition μS < ω < m�H is satisfied. Waves with ω < μS are trapped near
the horizon and are exponentially suppressed at infinity. Figure 3.11 shows that
superradiance is less pronounced for massive fields; the larger the field mass μS , the
smaller the amplification factors are.

3.7.6 Scattering of PlaneWaves

Generically, the field scattering off a BH is a superposition of multipoles. Of partic-
ular interest for a variety of applications is a field which is a plane wave at infinity.
The multipolar expansion of a plane wave is straightforward to perform [91].

Scalar Waves
Let us focus on a massless scalar field, and assume without loss of generality
that there is an incoming monochromatic plane wave propagating along the
(sin γ, 0, cos γ )-direction. The absorption cross-section σ of a spinning BH can then
be computed as [91, 92]

σ = 4π2

ω2

∑
lm

σlm ≡
∑
lm

|S0lm(γ )|2
(

1 − |R|2
|I|2

)
= −4π2

ω2

∑
lm

|S0lm(γ )|2 Z0lm ,

(3.110)

where we used the asymptotic behavior as defined in (3.78). In other words, once
the amplification factors have been computed for any l and m, the cross-section is
trivial to obtain.

The results for two extreme cases—incidence along the equatorial (γ = π/2)
and axial (γ = 0) directions—are summarized in Fig. 3.12 for a rapidly spinning
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Fig. 3.12 Absorption cross-section of a scalar plane wave incident on a rotating Kerr BH (a/M =
0.99) along the axis and equator. The left panel shows that the absorption cross-section is always
positive, i.e. plane waves are never superradiantly amplified. However, as expected some partial
waves are indeed subjected to superradiance, as the right panel shows

BH with a/M = 0.99. Because S0lm(0) = 0 unless m = 0, the cross-section for
waves incident along the axial direction simplifies as

σ(γ = 0) = −4π2

ω2

∞∑
l=0

|S0l0(0)|2 Z0l0 . (3.111)

For generic incidence angles, the total cross-section is symmetric along the ω =
0 axis, as could be anticipated from the general symmetry properties of the wave
equation, cf. Eq. (3.94). The first important conclusion is that plane scalar waves
are never superradiantly amplified, or in other words, the absorption cross-section
is positive for all values of frequency ω. As might be expected from the general
equation (3.110), because the amplification factor can become positive, some of
the partial cross-sections σlm can become negative, as shown in the right panel of
Fig. 3.12 for the l = |m| = 1 modes [92]. This result is true for neutral fields in a
rotating BH background; it can be shown, however, that the scattering of a charged
scalar by a charged BH can give rise to negative total absorption cross-section, and
that therefore planar scalar waves can be superradiantly amplified by BH [53, 54].

Electromagnetic Waves
Scattering of monochromatic EM plane waves off a Kerr BH was studied in detail
in Ref. [93]. The numerical results agree with previous analytical approximations in
the low- and high-frequency regimes. For incidence along the axis of symmetry of
a Kerr BH [93],

σ(γ = 0) = 4π2

ω2

∞∑
l=1

|S1l1(0)|2 Z1l1 , (3.112)

where the Z1l1 are the amplification factors studied previously (see also Eq. (3.114)
below for the gravitational case.)



3.7 Superradiance from Rotating Black Holes 77

At variance with the scalar case, there exists a narrow parameter window (at low
frequencies and moderate incidence angles) in which superradiant emission in the
l = 1 mode can exceed absorption in the nonsuperradiant modes. In other words, a
planar EM wave can be superradiantly amplified by a spinning BH. This effect might
have observational consequences, for example, in binary pulsar systems [94, 95].

Gravitational Waves
The scattering of plane GWs off rotating BHs is an important, decades-old
problem [96–100]. One of the important differences with respect to scalar waves
is that the symmetry along the ω = 0 axis is lost. In fact, for scattering along the
symmetry axis of a Kerr BH, the low-frequency differential scattering cross reads

M−2 dσ

d�
≈ cos8(ϑ/2)

sin4(ϑ/2)

(
1 − 4aω sin2(ϑ/2)

)
+ sin8(ϑ/2)

sin4(ϑ/2)

(
1 + 4aω sin2(ϑ/2)

)
.

(3.113)

Thus, waves of different sign of ω are scattered differently from a rotating BH,
generically inducing nontrivial polarization on the scattered field.

The absorption cross-section of GWs off rotating BHs can be obtained in a
similar fashion to those of scalar waves. One finds, for incidence along the axis
of symmetry of a Kerr BH [96–100],

σ(γ = 0) = 4π2

ω2

∞∑
l=2

|S2l2(0)|2 Z2l2 , (3.114)

where again Z2l2 are the amplification factors studied previously6 (see Fig. 3.10).
Because the amplification of GWs can be two orders of magnitude larger than that
of scalars, the cross-section for scattering of plane waves can now become negative.
Thus, similarly to the EM case, plane GWs can be superradiantly amplified. This is
shown in Fig. 3.13, from which two features stand out: negative-frequency waves—
or waves counter-rotating with respect to the BH—are always absorbed. On the
other hand, positive-frequency waves (which co-rotate with the BH) are amplified
in the superradiant regime.

Generically, a plane wave is a superposition of positive and negative-frequencies.
For linearly polarized waves, for example, one can easily show that the net effect
always results in absorption [100].

Recently, the scattering of plane waves off a Kerr BH has been analyzed in the
context of superradiant amplification of the radiation from a BH-pulsar system [94].

6Note that a planar tensor wave along γ = 0 in Cartesian coordinates will have a sin 2ϕ modulation
when transformed to spherical coordinates, in which the multipolar decomposition is performed.
This explains why Eq. (3.114) depends only on |m| = 2 and on a sum over all multipolar indices
l ≤ 2. Likewise, an EM wave along γ = 0 would be modulated by sinϕ and its cross-section
would only depend on |m| = 1, whereas the cross-section (3.111) for a scalar wave along γ = 0
only depends on m = 0.
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Fig. 3.13 Absorption cross-section of a gravitational plane wave incident on a rotating Kerr BH
(a/M = 0.99) along the rotation axis. The figure shows that counter-rotating (ω < 0) plane waves
are more absorbed than co-rotating waves (ω > 0), and that in the superradiant regime plane waves
are amplified

In this case, the pulsar’s GW and EM luminosities show a characteristic modulation,
which is due to superradiant scattering and depends on the pulsar position relative
to the BH.

Acoustic Geometries
The scattering of sounds waves off acoustic BH geometries, in particular the one
discussed in Sect. 3.9 was studied recently [101, 102]. Clear hints of superradiance
were found, manifested as negative partial absorption “lengths” (as this is a (2 + 1)-
dimensional geometry) for co-rotating modes at low frequencies.

3.7.7 Nonlinear Superradiant Scattering from Spinning Black
Holes

In Sect. 3.6.2 we showed that when backreaction effects are taken into account then
superradiance of charged fields does indeed extract mass and charge away from
the BH. Fully nonlinear studies of superradiance are extremely scarce, with the
notable exceptions of Ref. [57] for charged BHs and Ref. [103] for spinning BHs.
The authors of Ref. [103] performed nonlinear scattering experiments, constructing
initial data representing a BH with dimensionless spin a/M = 0.99, and an incom-
ing quadrupolar GW packet. Their results are summarized in Fig. 3.14, for three
different wavepacket frequencies,Mω = 0.75, 0.87, 1 (note that only the first is in
the superradiant regime (1)). The wavepackets carry roughly 10% of the spacetime’s
total mass. These results confirm that low frequency radiation does extract mass
and spin from the BH (both the mass MBH and spin JBH of the BH decrease for
the superradiant wavepacket with Mω = 0.75), and that nonlinear results agree
quantitatively with linear predictions for small wavepacket amplitudes [46]. To
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Fig. 3.14 Evolution of a highly spinning BH (a/M = 0.99) during interaction with different
frequency GW packets, each with initial mass ≈ 0.1M . Shown (in units where M = 1) are the
mass, irreducible mass, and angular momentum of the BH as inferred from AH properties. From
Ref. [103]

summarize, although further studies would certainly be interesting, superradiance
is confirmed at full nonlinear level for rotating BHs.

3.8 Superradiance from Stars

As is clear from the entire discussion and from the classical examples of Sect. 2,
rotation and a dissipation channel are enough to trigger superradiance. As such,
ordinary stars are also prone to superradiant amplification. A formal proof of this
was recently produced for stars in GR [104].

Explicit calculations require a modeling of dissipation. Reference [105] devel-
oped a toy model similar to that adopted by Zeldovich in his original study (see also
Ref. [106] who studied the correspondence between superradiance and tidal friction
on viscous Newtonian anisotropic stars). The toy model assumes the modified
Klein–Gordon equation (2.50) inside the star and in a co-rotating frame [107].
The term proportional to α in Eq. (2.50) is added to break Lorentz invariance,
and describes absorption on a time scale τ ∼ 1/α. Following Zeldovich, if the
frequency in the accelerated frame is ω and the field behaves as e−iωt+imϕ , then in
the inertial frame the azimuthal coordinate is ϕ = ϕ′ −�t , and hence the frequency
is ω′ = ω−m� (see also Sect. 2.5). In other words, the effective damping parameter
αω′ becomes negative in the superradiant regime and the medium amplifies—rather
than absorbing– radiation [47, 48].

The constant α appearing in Eq. (2.50) can be related to more physical parameters
describing the microscopic details of the absorption process [105]. Indeed, this toy
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model was recently used to model the dissipation of weakly interacting scalar fields
within a pulsar, where the role of the dissipation is played by the interaction between
these fields and neutrons [108].

Going beyond the above toy model, Ref. [109] studied superradiant scattering
from conducting spinning compact stars and the superradiant instability in a model
of massive vector fields with kinetic mixing terms with ordinary photons. They
considered the theory

S =
∫
d4x

√−g
(
R

16π
− 1

4
FμνFμν − μ2

V

2
AνA

ν + 4πjμAμ

)
+ Smatter ,

(3.115)

which is a particular case of Eq. (3.1), with an extra term accounting for the standard
coupling between the vector field Aμ and the current jμ, and with Smatter describing
the action for the conducting fluid of the star.

The field equations were solved in the linearized regime, assuming a small vector
field. The background Einstein’s equations describe a spinning uncharged, rotating
star made of material with conductivity σ and proper charge density ρEM. The star
is characterized by a mass M , radius R, and angular velocity � � �K , where
�K = √M/R3 is the Keplerian frequency. To linear order in the spin, an ansatz for
the metric is

ds2 = −F(r)dt2 + dr2

B(r)
− 2r2ζ(r) sin2 ϑdtdϕ + r2d�2 , (3.116)

where the radial coefficients B, F , and ζ are obtained by solving the background
Einstein’s equations.

The coupling between the vector and the material is given by the constitutive
Ohm’s law, which in covariant form reads [110],

jα = σFαβuβ + ρEMu
α , (3.117)

where all quantities are computed in the frame of the material whose 4-velocity is
uα.

The linearized Maxwell/Proca equations are solved to linear order in the star’s
spin, i.e. to O(�/�K). The result for the axial sector of the perturbations is
particularly simple and can be written as a single, second-order, differential equation

d2a

dr2∗
+
(
ω2 − 2mωζ(r)− V

)
a = 0 , (3.118)

V = F
(
l(l + 1)

r2
+ μ2

V − 4iπσ(ω−m�)√
F

)
(3.119)

where dr/dr∗ = √
BF . Note the combination ω−m� in the last term of the above

effective potential, which arises naturally from the field equations.
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Fig. 3.15 Left: amplification factor for axial vector l = m = 1 modes as a function of the
frequency, for a moderately spinning star (� = 0.3�K ) with compactness M/R = 0.15 and
for different values of the conductivity σ . Right: the prefactor in square brackets of Eq. (4.84) as
a function of σM and for different values of the compactness at fixed �/�K = 0.9. A fit of the
numerical data is consistent with Eq. (4.84) with (α1, α2) ∼ (39, 0.13), (429, 11) and (4.2, 0.48)
forM/R = 0.1, 0.15, 0.2, respectively. From Ref. [109]

The superradiant scattering factor computed in Ref. [109] is shown in the left
panel of Fig. 3.15. As expected, Z > 0 when the superradiant condition is satisfied,
ω < m�. The amplification factor grows with σ , until it saturates in the large-σ
limit displaying a sharp maximum at ω � m�. The amplification grows with the
compactness and with the spin of the object.

An analytical approximation of the amplification factor in the Newtonian limit
and for small conductivity reads [109]

Z ≡ − 21−2lπ2

�[l + 3/2]�[l + 5/2]σR
2 (ω −m�) (ωR)2l+1 . (3.120)

The above expression agrees remarkably well with the exact numerical result up to
M/R ∼ 0.2 and for σM � 1. Furthermore, it agrees exactly [109] with the results
that can be obtained in flat space by invoking the membrane paradigm [1], where
horizons are endowed with a surface conductivity of 1/4π .

For large conductivities, in the Newtonian limit the numerical results are well
approximated by

Z = kl (ωR)2l+1√
σR2 (m�− ω)+ cl

[
1 + 1

2σR2 (m�− ω)
]−1

, (3.121)

in the superradiant regime, with k1 ∼ 0.78, k2 ∼ 0.09 and c1 ∼ 2, c2 ∼ 25. The
amplification factor is peaked at ω − m� ∼ 1/(σR), and bounded. The analytical
expression above is not very accurate close to the peak of the amplification factor.
For σM � 1, the l = m = 1 peak is well described by

Zmax ∼ (0.48 − 0.78M/R)(�R)3 , (3.122)

where, interestingly, the prefactor decreases at large compactness.
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It can be shown that a finite bulk conductivity results in an effective resistivity in
the stellar magnetosphere of neutron stars. In the context of axionic fields, the axion
can mix with photon modes which superradiantly scatter off the magnetosphere,
extracting rotational energy [111]. Thus, superradiance in stars also arises naturally
in other standard model extensions.

3.9 Superradiance in Analogue Black-Hole Geometries

The construction outlined in Sect. 2.4 established a formal equivalence between the
propagation of sound waves and the Klein Gordon equation in an effective, curved
spacetime. Under certain conditions, a horizon in the effective metric is present,
when the local fluid velocity surpasses the local sound speed. This object is usually
called an acoustic BH or “dumb hole” (cf. Ref. [112] for a review). Superradiance in
acoustic BH geometries was studied in some detail for the two-dimensional draining
geometry (“draining bathtub vortex”), described by a two-dimensional fluid flow

�v = −A�r + C �φ
r

, (3.123)

in polar coordinates, where �r and �φ are orthogonal unit basis vectors. The flow above
is that of an ideal fluid, which is locally irrotational (vorticity free), barotropic, and
inviscid. The quantity A thus measures the flow radial speed and the circulation C
measures its angular speed. In these setups the notion of horizon and ergospheres is
very intuitive: the effective spacetime has an acoustic horizon at the point where the
radial speed is equal to the local sound speed, r+ = Ac−1 and an ergosurface at the
location where the total speed equals the speed of sound, r2

ergo = c−2(A2 + C2).
With the following coordinate transformation [113],

dt → dt̃ = dt − Ar

r2c2 − A2 dr (3.124)

dφ → dφ̃ = dφ − CA

r(r2c2 − A2)
dr , (3.125)

the effective metric (2.37) takes the form

ds2 = −
(

1 − A2 + C2

c2r2

)
c2dt̃2 +

(
1 − A2

c2r2

)−1

dr2 − 2Cdφ̃dt̃ + r2dφ̃2 .

(3.126)
Superradiance was studied in this effective acoustic spacetime in the frequency

domain, by studying the amplification factors [113]. For an incident wave of
amplitude I, the reflection coefficients are shown in Fig. 3.16, the amplification
factors for fluxes are Zm = |R|2 − |I|2; the reflection coefficient depends only
on the dimensionless parameter C/A [113] and therefore without loss of generality
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Fig. 3.16 Amplification factor Zm for the draining vortex as a function of ω for m = 1 (left
panel) and m = 2 (right panel), for a unit-amplitude incident wave. Results are normalized by
the effective horizon r+. Each curve corresponds to a different value of rotation C, as indicated.
Adapted from Ref. [113]

one can set A = c = 1. the amplification factor grows with rotation parameter
C, albeit slowly (the numerics indicate a logarithmic growth at large C). At a
moderately large value of C = 1, the peak amplification factor for m = 1 modes
is 21.2%. Amplification factors higher that 100% are extremely hard to achieve,
which might be connected to entropy bounds, see Sect. 3.17 for a further discussion
on this. Superradiant wave scattering for the same geometry was analyzed in the
time-domain in Ref. [114]. These studies were complemented by a low-frequency
analysis [115] and by an energy flux analysis [116].

Recently, Ref. [117] considered a similar, but slightly more realistic draining
geometry taking into account the varying depth of water. Superradiance in this
analog system depends now on two parameters, and can be as large as 60% or higher.

Analogue geometries can be realized outside acoustic setups, and include Bose–
Einstein condensates for instance [112]. Superradiant scattering of sound wave
fluctuations from vortex excitations of Bose–Einstein condensates was considered
in Refs. [118,119]. Bose–Einstein condensates are also interesting models for dark-
matter halos and boson stars self-gravitating scalar fields [120]; in this context, a
gravitational analogue description also displays superradiant scattering [121].

It has also been realized that effective photon–photon interactions of a monochro-
matic laser beam propagating in a nonlinear medium lead to a collective behavior of
the many photon system, leading to a superfluid behavior [122,123]. These fluids are
naturally prone to mimic curved spacetimes as we described. Kerr-like geometries
and superradiance in such setups have been reported recently [124, 125].

3.10 The Experimental Observation of Superradiance

The example above concerned sound or surface waves on a background fluid at rest.
The energy was being transferred from a spinning cylinder to the waves through
local interactions between these two media. One can do away with the material
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Fig. 3.17 Reflection coefficients of surface waves in a tank where water was made to rotate in
a “vortex”. The results are shown for various frequencies and various azimuthal number m. The
purple line (star points) shows the reflection coefficients of a plane wave in standing water of the
same height. There is a significant damping for frequencies above 3 Hz. There is statistical evidence
for amplification of positive m modes at frequencies 3.5–4 Hz. Taken from Ref. [126]

cylinder if the fluid is made to rotate at a speed faster than the local sound speed. This
will force the sound to co-rotate with the fluid, providing an interaction mechanism.
Such situation is equivalent to the appearance of ergoregions in curved spacetime,
which are the essential ingredient for superradiance. If an inner core is made where
the fluid is dumped into, then such apparatus can be made to mimic a rotating BH
spacetime. Such a simple experimental setup was realized recently [126].

Surface waves were setup on a water tank, wherein water was pumped continu-
ously at the corners, and made to drain through a hole. This established a stationary,
rotating draining flow that satisfied the conditions above. The free-surface waves
were measured with a high speed sensor. These waves were subsequently decom-
posed in the basis eimφ (as in the previous section), with m an integer number. The
results are summarized in Fig. 3.17 and clearly indicate superradiance of co-rotating
(positive m) modes in a certain frequency range. This is the first experimental
support for the existence of rotational superradiance.



3.11 Superradiance in Higher-Dimensional Spacetimes 85

3.11 Superradiance in Higher-Dimensional Spacetimes

With the exception of the boosted black string just discussed, we have so far only
considered BH superradiance in four-dimensional spacetimes. Generalization to
higher dimensions can be done along the same lines.7 The multitude of black
objects in higher dimensions makes this an interesting and relatively unexplored
subject (for a review on BHs in higher dimensions see Ref. [129]).

From the rigidity theorem, a stationary D–dimensional BH must be axisym-
metric [43, 130], meaning that it must have D − 3 rotational Killing vectors in
addition to the time translation Killing vector. Thus, to study superradiance in
higher-dimensions, one must take into account that there exist at mostD−3 rotation
axis. The condition for superradiance in the background of a five-dimensional,
topologically spherical BH was computed in Ref. [131]; using the area theorem
this condition was generalized to arbitrary dimensions for Myers–Perry BHs with
a single angular momentum parameter [132] and finally with multiple angular
momentum parameters in Ref. [133]. More recently the condition was computed
for asymptotically flat rotating BHs with generic spacetime dimension and horizon
topology using a Wronskian approach [134]. The generalized superradiance condi-
tion (1) is given by

ω <

i≤D−3∑
i=1

mi�
i
H , (3.127)

wheremi is a set of integers, corresponding to the azimuthal numbers with respect to
the different rotation axis, and �iH represents the multi-component angular velocity
of the horizon.

Amplification factors for a scalar field were computed for Myers–Perry BH
with a single angular momentum parameter in Refs. [135–137]. They showed
that the superradiant amplification is less efficient in higher dimensions and the
maximum amplification factor decreases with the dimension of the spacetime; for a
doubly spinning Myer-Perry BH in 5D, the amplification factors were computed in
Ref. [138]. Motivated by extra dimensional models which predicted the possibility
of creating micro BHs in particle accelerators such as the LHC, amplification
factors for a singly spinning higher-dimensional Myers–Perry BH induced on an
asymptotically flat four-dimensional brane were also computed. This was done for
spin-0 particles [139–141] and spin-1 fields [142]. Superradiant amplification on
the brane was shown to be much larger than in the D–dimensional bulk and to be
greatly enhanced compared to the four-dimensional Kerr BH case.

7There are no gravitational degrees of freedom in less than 4 dimensions, and a BH solution only
exists for a negative cosmological constant, the so-called BTZ solution [127]. This solution has
some similarities with the Kerr-AdS metric and, as we shall discuss in Sect. 3.12, superradiance
does not occur when reflective boundary conditions at infinity are imposed [128].
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Interesting tidal effects related to the superradiant energy extraction in higher-
dimensions were shown to occur in Refs. [7,143]. As first suggested in Ref. [7] and
later confirmed [143], the energy extracted by superradiant scalar waves generated
by the circular motion of a point particle around a singly spinning Myers–Perry
BH could be higher than the energy lost to infinity through the emission of scalar
waves, in contrast to the four-dimensional case, where the BH energy absorption (or
extraction) is negligible compared to the energy emitted to infinity [144].

3.12 Superradiance in Nonasymptotically Flat Spacetimes

The literature on superradiance amplification from BHs in Einstein’s theory with a
cosmological constant is limited. The dS and the AdS cases behave in a completely
different way: when the cosmological constant � > 0 new effects related to the
presence of a dS cosmological horizon can occur, whereas when � < 0 the AdS
boundary can effectively confine superradiantly amplified waves thus providing the
arena for BH bomb instabilities. The latter effect is discussed at length in Sect. 4 so
in this section we focus only on the superradiant amplification, neglecting possible
instabilities that it might trigger.

Extracting Energy from dS BHs Superradiance of Kerr-dS BHs has also been
studied [13]. Extending the analysis of Sect. 3.4, the radial Teukolsky equation can
be solved in the asymptotic regions and the solution reads as in Eq. (3.52) with

kH = ω −m�H , k∞ = ω −m�c , (3.128)

where �c is the angular velocity of the cosmological horizon at r = rc. Imposing
O = 0 at the event horizon, Eq. (3.53) takes the form

|R|2 = |I|2 − ω −m�H

ω −m�c |T |2 , (3.129)

and therefore superradiance occurs only when

m�c < ω < m�H . (3.130)

Although the range of superradiant frequencies is smaller than in the asymptotically
flat case, the maximum superradiance amplification is slightly larger for positive
values of � [13].

On a more formal account, Ref. [145] has proved asymptotic completeness for
a class of Klein–Gordon equations which allow for superradiance, including the
scalar equation on a Kerr-dS BH (see also references in Ref. [145] for recent formal
development on the local energy for the wave equation on the Kerr-dS metric).
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Finally, an interesting effect related to dS superradiance was recently discovered
in Ref. [146]. There, it was shown that RN-dS BHs are linearly unstable to
spherical, charged scalar perturbations. The unstable modes were subsequently
found to satisfy a superradiance condition analog to Eq. (3.130) for static charged
dS BHs [147].

Extracting Energy from Black Holes in AdS Backgrounds AdS spacetime
is not globally hyperbolic, so fields which satisfy a hyperbolic wave equation
on AdS might not have a well-defined dynamics. Nonetheless scalar, vector and
GWs propagating on AdS can be shown to possess some conserved energy, and
their dynamics correspond to that defined by choosing some positive, self-adjoint
wave operator [148]. Such formal analysis also determines all possible boundary
conditions that can be imposed at AdS infinity.

These boundary conditions are indeed crucial for superradiance. It was shown
that, using “reflective” boundary conditions (i.e., either Dirichlet or Neumann)
at timelike infinity, all modes of a scalar field on a Kerr–Newman–AdS BH are
not superradiant, whereas for “transparent” boundary conditions, the presence of
superradiance depends on the definition of positive frequencies, which is subtle
in AdS [149]. For those BHs having a globally timelike Killing vector, a natural
definition of positive frequency implies absence of superradiance. This is to be
contrasted with the situation in asymptotically flat space previously discussed,
where superradiance occurs regardless of the definition of positive frequency. This
result has important implications for constructing a quantum field theory on a BH
background in AdS.

Nonetheless, even at the classical level, the issue of boundary conditions in
rotating AdS spacetimes is subtle. Imposing that the perturbations conserve the
symmetries of asymptotically global AdS, a set of Robin boundary conditions for
the Teukolsky equation of a Kerr-AdS BH was found [150] (cf. also Ref. [151]
for some applications). Furthermore, in a scattering experiment the boundary
conditions at infinity should allow for a nonvanishing flux, thus corresponding to
the “transparent” case discussed above. A thorough analysis of this problem was
recently performed in [152], where it was shown that superradiance occurs for AdS
BHs in any spacetime dimension whenever transmittive boundary conditions are
allowed at the AdS boundaries.

3.13 Superradiance BeyondGeneral Relativity

From our previous discussion, it is clear that superradiance is not a prerogative of
BHs in GR but it would occur in any gravitational theory that admits BH solutions.
Indeed, the analysis of Sect. 3.4 only requires the presence of an event horizon and
an asymptotically flat spacetime. Clearly, the details of the superradiance amplifica-
tion would depend on the specific BH geometry and on the wave dynamics in the
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modified theory and an interesting problem is to understand whether superradiance
can be stronger in modified theories of gravity.

Extended theories of gravity usually predict novel BH solutions which reduce
to the Kerr metric in the GR limit (see e.g. Refs. [153–155] for reviews). On the
other hand, constructing rotating metrics in closed form is usually very challenging
and most solutions are known analytically only in the slow-rotation limit [156] or
fully numerically [157]. To the best of our knowledge, no studies of superradiance
amplification in these spacetimes is available to date. However, at least for the
slowly rotating BH solutions predicted in quadratic gravity [156], the deformations
from the Kerr geometry tend to decrease the proper volume of the ergoregion. This
suggests that at least the background geometry would contribute to decrease the
amplification factor. A simpler analysis is to focus on theories which admit the same
BH solutions as GR [155,158] but for which wave propagation is different. In some
of these theories the superradiance amplification has been shown to lead to “BH-
bomb instabilities” [159, 160] analog to those discussed in Sect. 4 below. Theories
where the background BH spacetime is identical to GR will generically lead to
superradiance; such is the case for a neutral scalar in “MOG” theory [161]. As a toy
model for non-local gravitational theories, the superradiant scattering of a non-local
scalar field interacting with a rotating cylinder, in analogy with Zel’dovich’s original
thought experiment [47, 48], was studied in Ref. [162].

Another strategy consists in considering phenomenological nonKerr geometries
which are not necessarily solutions of any specific theory [163, 164]. However, the
lack of an underlying theory prevents to study the dynamics of GWs and only test
fields propagating in a fixed background can be analyzed. Even in this case, the
separability properties of the Kerr metric are generically lost and even the Klein–
Gordon equation might not be separable. Probably because of these technicalities,
superradiance in such geometries has not been studied to date. On the other hand,
the Penrose process in a restricted class of such metrics was studied in Ref. [28],
showing that the maximum energy gain can be several times larger than for a Kerr
BH.

Finally, superradiance amplification of test fields propagating on some exact
solutions of Einstein’s equations which represent spinning geometries other than
Kerr were analyzed in [165–167]. Although strictly speaking these geometries are
GR solutions, they possess peculiar matter fields and they might be considered as
modified BH solutions. Exceptions concern rotating dilatonic BHs [168]. These are
truly new geometries arising from the compactication of higher dimensions, and
lead to strong superradiant effects.

Superradiance of Black Holes Surrounded byMatter in Scalar–Tensor
Theories
In the context of scalar–tensor theories, superradiance amplification from spinning
BHs has been investigated in Refs. [169–171], which showed that the presence of
matter may drastically affect the amplification of scalar waves. In these theories
the Klein–Gordon equation on a Kerr BH surrounded by matter takes the form [�−
μ2

eff]� = 0, where the effective mass term μeff depends on the specific scalar-tensor
theory and it is proportional to the trace of the stress–energy tensor.
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Fig. 3.18 Percentage superradiant amplification factor, Z0lm = 102
(|R|2 − |I|2), for a scalar

wave scattered off a Kerr BH with a = 0.99M in a matter profile (3.131) with G = β [r −
r0](r − r0)/r3 as a function of the wave frequency ω in a generic scalar tensor theory (where β
parametrizes the scalar–tensor coupling [170]). As a reference, the horizontal line corresponds to
the maximum amplification for scalar waves in vacuum, Zmax

0lm ≈ 0.4%. This example refers to
r0 = 5.7M , but similar results hold for other choices of r0 and for different matter profiles. The
resonances correspond to the excitation of a new class of stable QNMs

Figure 3.18 shows a representative example of superradiance amplification for a
specific matter profile, namely

μ2
eff(r, ϑ) = 2G(r)

a2 + 2r2 + a2 cos 2ϑ
. (3.131)

This choice simplifies the treatment significantly because the corresponding Teukol-
sky equation is separable and the problem can be solved with standard methods.
More general mass distributions can be handled with spectral methods [171].
For small coupling, the standard GR results are recovered, with a maximum
amplification of about 0.4%. On the other hand, as the scalar–tensor coupling to
matter increases, the amplification factor can exceed the standard value by orders of
magnitude. This is due to the appearance of resonances at specific frequencies ω =
ωres that depend on the parameters of the model. In some cases, the amplification
factor can increase by six orders of magnitude or more, even in regions of the
parameter space which are phenomenologically allowed [170]. Understanding the
astrophysical implications of such huge amplification may be used to constrain the
parameter space of scalar–tensor theories.

The presence of Breit–Wigner resonances [172] in the amplification factor has
been interpreted in terms of very long-lived QNMs with ωR ∼ ωres and ωI �
ωR [169, 170]. Such long-lived modes are associated with trapping by potential
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barriers (see also Sect. 4.14.2 for a related problem) and they also exist in the case
of massive scalar perturbations of Kerr BHs [173], but in that case the potential
well extends to infinity, so that waves whose frequency is larger than the mass are
exponentially suppressed and no superradiant amplification can occur, as previously
discussed. Nonminimal scalar–matter interactions in scalar–tensor gravity produce
an effective scalar mass which is localized near the BH and vanishes at large
distances. This effective mass can trap long-lived modes and, nonetheless, allows
for propagation of scalar waves to infinity. This allows for a new class of long-lived
QNMs of Kerr BHs surrounded by matter. Correspondingly to the excitation of these
modes, the superradiant gain factor is resonantly amplified.8

3.14 Microscopic Description of Superradiance and the
Kerr/CFT Duality

It was shown by Hawking that when quantum effects are taken into account BHs
emit thermal radiation with the expected number of emitted particles given by [174]

〈N〉 = − Zslm

e(ω−m�H)/TH ± 1
, (3.132)

where the minus sign is for bosons and the plus sign for fermions and Zslm is the
absorption/amplification factor given by Eq. (3.103), whereas the same factor for
fermions can be found in Ref. [175] (in this case, as discussed in Sect. 3.7.4, we
always have Zslm < 0). In the extremal limit TH → 0 there is only emission
in the superradiant regime ω < m�H with a rate ∓Zslm, where here the minus
and the plus signs are for fermions and bosons, respectively. This clearly shows
that when the BH temperature is different from zero, thermal Hawking radiation
and spontaneous superradiant emission are strongly mixed. In fact, as discussed
in detail in Ref. [176], the power spectrum of Hawking radiation comprises two
terms: a black body term and a graybody term. The former is associated with the
probability that a certain particle is thermally produced near the horizon, whereas
the latter term modifies the thermal radiation due to the existence of the potential
barrier created by the BH. While the probability of Hawking emission (for both
bosons and fermions) can be greatly amplified by spin–spin interactions [176], one
can show that superradiance affects only the graybody term. Therefore, Hawking
fermion emission can also be amplified by the BH rotation even if fermions do not
experience superradiance amplification.

In the extremal limit, the only modes that are spontaneously emitted are superra-
diant. This was used in Refs. [177, 178] to investigate the microscopic description

8It would be interesting to understand the large amplification of the superradiance energy in terms
of violation of some energy condition due to the effective coupling that appears in scalar–tensor
theories.
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of superradiance within a string theory and gauge/gravity duality context. These
studies—which are closely related to the program aiming to account for the
microscopic degrees of freedom of BHs—have been met with a moderate degree
of success.

In Ref. [177] the authors were able to account for superradiant effects in a
certain extremal BH background (more specifically the D1-D5-P BH solutions
of type IIB supergravity), where the AdS3/CFT2 duality applies. In their picture
the superradiant spontaneous emission was modeled as being due to the weak
interaction between left and right-moving modes in the CFT. From this picture
they argued that the superradiant bound (1) follows directly from the Fermi–Dirac
statistics of the spin-carrying degrees of freedom in the dual CFT. More importantly,
they showed that the superradiant emission rates agree in both sides of the duality. In
the future it would be interesting to extend this study to other systems, and recover
completely the superradiant amplification factors from the microscopic description.

Another important step was done within the so-called Kerr/CFT duality [179]
(see also Ref. [180] for a recent review). The Kerr/CFT duality conjectures that
the near-horizon extremal Kerr BH is holographically dual to a chiral left-moving
(half of a) two-dimensional CFT with central charge c = 12J/h̄, where J is the
angular momentum of the extremal Kerr BH. In this picture the asymptotically flat
region is removed from the spacetime and the CFT lives in the timelike boundary
of the resulting spacetime.9 In Ref. [178] the authors attempted to reproduce the
superradiant scattering of a scalar field in a near-extremal Kerr geometry in terms
of a dual two-dimensional CFT in which the BH corresponds to a thermal state
while the scalar field is dual to a specific operator. They successfully showed that
the amplification factor (3.103) could be reproduced by the two point function of
the operator dual to the scalar field. The analysis and results should however be
taken with caution, as the boundary conditions –fundamental for the analysis—were
shown to be inconsistent with the field equations [182, 183].

3.15 Boosted Black Holes: Energy ExtractionWithout
Ergoregions

We have so far been focusing exclusively on spinning BHs, and studying energy
extraction from vacuum by using the effective coupling to the ergoregion. It is
easy to see that energy can also be extracted from moving BHs, even if non-
spinning [184, 185]. Consider a BH of mass M and a high-frequency photon,
described by null geodesics in the BH spacetime, with a large impact parameter
b � M and moving in the −z direction. The photon’s incoming energy is Ei

9The geometry used in the original Kerr/CFT duality is the so-called near-horizon extreme Kerr
“NHEK” geometry found by Bardeen and Horowitz [181] which is not asymptotically flat but
resembles AdS3. That this geometry could have a dual CFT description was first pointed out in
Ref. [181].
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in the frame where the BH is moving in the +z direction with velocity v. A
boost in the +z direction brings us to the BH frame, and blueshifts the wave
to E1 = √

(1 + v/c)/(1 − v/c)Ei . In this frame, the photon is deflected by the
Einstein angle α = 4GM/(bc2). Now boost back to the −z direction, where due
to relativistic aberration the angle with the z−axis is α′ ∼ α√(1 + v/c)/(1 − v/c),
and the frequency is now Ef = E1/(γ (1 + v cosα′/c)). One finds the weak field
energy amplification for such photons

Eweak
f =

(
1 + 8M2v

b2c4(c − v)
)
Ei . (3.133)

If a plane wave is passing through, one can see that the 1/r nature of the gravita-
tional potential causes the total extracted energy to diverge; this phenomenon is akin
to the divergence of the scattering cross-section of the Coulomb potential [186]. For
a body of size Rmin moving in a plane wave of density ρ and extent Rmax, we find
the total energy loss per second

dE/dt = −16πM2v2ρ

c2(c − v) log (Rmax/Rmin) . (3.134)

This is a generic result: moving objects will slow-down. In strong-field regions,
photons can even turnaround. In this case, a trivial change of frames and consequent
blueshift yields

E
peak
f = 1 + v/c

1 − v/c Ei , (3.135)

for the energy gained by the photon during the process. This is also the blueshift by
photons reflecting off a mirror moving with velocity v.

The large amplification for strongly deflected photons implies that a rapidly
moving BH looks peculiar. Downstream photons are deflected and blueshifted
upstream. Thus a rapidly moving BH in a cold gas of radiation will be surrounded
by a bright ring of thickness ∼M . A possible image of a moving BH is shown
in Fig. 3.19. For a stellar-mass BH moving at velocities v ∼ 0.9996 through the
universe, the ambient microwave cosmic background will produce a kilometer-sized
ring (locally ∼5000 times hotter and brighter than the CMB) in the visible spectrum.

The overall result of energy transfer to external radiation echoes that of the
inverse Compton scattering for fast-moving electrons in a radiation field (https://eud.
gsfc.nasa.gov/Volker.Beckmann/school/download/Longair_Radiation3.pdf) [185].
In this process, a nearly isotropic radiation field is seen as extremely anisotropic to
the individual ultrarelativistic electrons. Relativistic aberration causes the ambient
photons to approach nearly head-on; Thomson scattering of this highly anisotropic
radiation reduces the electron’s kinetic energy and converts it into inverse-Compton
radiation by upscattering radio photons into optical or X-ray photons. BHs are

https://eud.gsfc.nasa.gov/Volker.Beckmann/school/download/Longair_Radiation3.pdf
https://eud.gsfc.nasa.gov/Volker.Beckmann/school/download/Longair_Radiation3.pdf
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Fig. 3.19 Appearance of a BH moving in a bath of cold (and counter-moving) radiation. The BH
is moving along the z-axis towards us at a speed v = 0.9. The colors denote energy flux intensity
on a screen placed a short distance away from the BH. The peak energy flux is ten times larger
than that of the environment. The bright ring has width ∼M for all boost velocities v. For very
large v even a randomly moving gas of photons will leave a similar observational imprint, since
counter-moving photons will be red-shifted away. From Ref. [185]

natural absorbers, but the universal—and strong, close to the horizon—pull of
gravity can turn them also into overall amplifiers.

It is a question of nomenclature, or semantics, whether or not this process
is superradiant. We note that neither horizons nor ergoregions play a role. It is
not a constant-frequency process either, and it does not entail mass-loss from the
intervening objects, merely kinetic energy.

Finally, we note that energy extraction from moving BHs may also be achieved
using particles in non-geodesic motion or external magnetic fields [187].

3.16 Boosted Black Strings: Ergoregions Without
Superradiance

In the previous sections, we saw that superradiance is generically caused by a
medium moving faster than the speed of the interaction in the medium (for exam-
ple, the Cherenkov effect of Sect. 2.3.1 or sound amplification at discontinuities
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explained in Sect. 2.4.2), or when the “angular velocity of the medium” is larger than
the angular phase velocity of the interaction (an example was discussed in Sect. 2.5,
another is provided by the topic of this work, rotating BHs). These considerations
seem to forbid gravitational superradiance for linear motion. However, there are
simple gravitational systems with ergoregions whose only motion is linear: consider
a black string in five-dimensional spacetime,10

ds2 = −f (r)dt2 + dr2

f (r)
+ r2d�2

2 + dz2 , (3.136)

where f (r) = 1 − 2M/r . Now boost the spacetime along the z-direction with boost
v = tanhβ and get [188]

ds2 = −dt2 + dr2

f (r)
+ r2d�2

2 + dz2 + (1 − f (r)) cosh2 β (dt + tanhβdz)2 ,

(3.137)

It is easy to check that this solution has an event horizon at r = 2M and a
“momentum” ergosurface at r = 2M cosh2 β.11 Since this solution is just a non-
boosted black string as seen by a boosted observer, it is clear that no superradiant
amplification nor Penrose processes are possible. Let us show how this comes about.

Superradiance Consider perturbations of the metric (3.137) due to a scalar field
� . Using the ansatz

� = ψ(r)

r
Y (ϑ, ϕ)e−i(ωt+kz) , (3.138)

where Y (ϑ, ϕ) are the spherical harmonics, the radial function ψ follows a
Schroedinger-type equation of the form (3.51). The solution ψ has the asymptotic
behavior given by (3.52) with kH = ω coshβ− k sinh β and k∞ = √

ω2 − k2, from
which condition (3.53) follows. Now, at first sight one could be led to think that
superradiance is possible whenever the following condition is met:

kH < 0 �⇒ ω < kv . (3.139)

However the boundary condition at infinity also implies |ω| > |k|. Since −1 < v <
1 we can see that the condition (3.139) is never met and, as expected, superradiance
does not occur in this geometry. In other words, the potentially dangerous modes
are redshifted away.

10This example was suggested to us by Luis Lehner and Frans Pretorius.
11We follow the terminology of Dias, Emparan and Maccarrone who, in a completely different
context, arrived at conclusions very similar to ours, see Section 2.4 in Ref. [177].
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Penrose Process To understand why the Penrose process is not possible consider
the negative energy particle that falls into the BH with energy and total linear
momentum given by E < 0 and p, respectively. Denoting the particle’s linear
momentum along the z-direction by pz, from arguments similar to those leading
to Eq. (3.33) it follows that (note that vH = −v is the velocity of a zero linear
momentum observer at the horizon)

E + pzv ≥ 0 �⇒ |E | ≤ |pzv| . (3.140)

The first condition also implies that, for negative energy particles and 0 < v < 1,
pz > 0. Moreover, since 0 < v < 1, we have

|E | < pz . (3.141)

On the other hand, any particle must satisfy the relation

E2 = p2 +m2 ≥ p2
z �⇒ |E | ≥ |pz| . (3.142)

Therefore, energy extraction is impossible because the inequality (3.141) is never
satisfied for a negative energy particle.12

The absence of the Penrose process can also be understood through an analysis of
geodesic motion. Let us focus on zero angular momentum trajectories for simplicity.
Geodesics in the spacetime (3.137) are then described by the equations of motion,

ṫ − (1 − f (r)) cosh2 β(ṫ + tanhβż) = E , (3.143)

ż+ (1 − f (r)) cosh2 β(ṫ + tanhβż) tanhβ = P , (3.144)

ṙ2 = (E2 − P 2)
(
1 − M

r

)− f (r)δ1 + M
[(
E2+P 2) cosh 2β+2EP sinh 2β

]
r

, (3.145)

where E,P are the (conserved) energy and linear momentum per unit rest mass. In
the Penrose process, the breakup occurs at a turning point inside the ergoregion
and with negative energy, E < 0. From (3.145), the turning point condition,
ṙ(r = r0) = 0, gives

E =
−PM sinh 2β +

√
f (r0)r0

[
δ1(r0 + 2M(cosh2 β − 1))+ P 2r0

]
r0 + 2M(cosh2 β − 1)

, (3.146)

P =
EM sinh 2β ±

√
f (r0)r0

[
δ1(2M cosh2 β − r0)+ E2r0

]
r0 − 2M cosh2 β

, (3.147)

12This simple proof was suggested to us by Roberto Emparan.
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where E has been chosen such that when r0 → ∞ we have E > 0. It is clear from
(3.146) that for E < 0 we need P tanhβ > 0 and

PM sinh 2β >
√
f (r0)r0

[
δ1(r0 + 2M(cosh2 β − 1))+ P 2r0

] �⇒

P 2M2 sinh2 2β > f (r0)r0
[
δ1(r0 + 2M(cosh2 β − 1))+ P 2r0

]
�⇒

P 2(r − 2M cosh2 β) < (2M − r)δ1 < 0 �⇒ r − 2M cosh2 β < 0 . (3.148)

Thus the particle needs to be inside the ergosphere to have a negative energy. For
the Penrose process to occur we also need the positive energy fragment to be able
to travel back to infinity. When r → ∞ we have

ṙ2 = E2 − P 2 − δ1 , r → ∞ . (3.149)

This means that only when E2 −P 2 − δ1 > 0 is motion from r0 to infinity allowed.
Eq. (3.145) however says that there is only one turning point satisfying ṙ(r = r0) =
0, given by

r0 = 2M
[
(P coshβ + E sinhβ)2 + δ1

]
P 2 + δ1 − E2 . (3.150)

The condition that r0 > 0 implies that the particles are not allowed to escape to
infinity since E2 − P 2 − δ1 < 0. In fact since there is only one turning point and at
the horizon we have

ṙ2 = (E coshβ + P sinhβ)2 , r → 2M , (3.151)

which is always positive, both particles are forced to fall into the horizon and there
is no extraction of energy from the BH.

3.17 Open Issues

The following is an incomplete list of the issues that are, in our opinion, not
completely understood and which would merit further study.

• Superradiance in a BH-pulsar system has been recently discussed in Refs. [94,
95], showing that superradiance of GWs from the pulsar can produce a peculiar
modulation of the pulsar’s GW luminosity at the percent level. Whether or not
such effect is observationally important clearly deserves further study.

• Is there a fundamental bound on superradiant amplification? All the examples
we have dealt with so far share a common denominator: the amplification factors
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Zslm � 100%.13 There are in fact suggestions that such bound also holds in
some acoustic BH geometries [116]. Such relatively small amplification factors
may be a consequence of a more fundamental principle at play. Hints of such
principle can be found with the following reasoning. Recall that the area law
for rotating BHs can be written as (3.22) or, in terms of Bekenstein–Hawking
entropy SH , as δM = ωk

2π
δSH

ω−m�H
. We can write this explicitly in terms of the

amplification factor, by considering that a wavepacket of energy δE was thrown
into the BH,

Zm ≡ −δM
δE

= ωk

2π

δSH /δE

m�H − ω . (3.152)

It is clear that the BH mass decreases in the superradiant regime simply because
the BH entropy must increase. This version of the first law does not immediately
impose upper limits on the amplification factors, but that one should exist follows
from Bekenstein’s entropy bound for any infalling matter [189],

δS ≤ 2πR δ E , (3.153)

where R is the size of the object and E its energy. This implies that

Zm ≤ kr+ ω

m�H − ω , (3.154)

leading to a competitive bound on the amplification factor for small frequencies.
Such bound becomes weaker close to the superradiant threshold. It is possible
that a more refined argument can strengthen the bound in this regime as well.

This analysis is over-simplified.14 In particular, the Bekenstein entropy bound
(3.153) is valid only for systems with a fixed radius; in general, there will be
charge-dependent corrections. These may be important, as the bound (3.154)
predicts that Zm → 0 when ω → 0, in conflict with Fig. 3.8 (see, in particular,
the purple curve).

• The scattering of massive Dirac waves off a Kerr BH has some connection with
the original Klein paradox. Indeed, Chandrasekhar suggested that the effective
potential for the Schroedinger-like problem can display some singularities
outside the horizon in a certain region of the parameter space and in the case of
rotation [6]. If the potential is discontinuous, the transmission coefficient would
be prone to the Klein paradox, as discussed in Sect. 2.1. To the best of our
knowledge a quantitative analysis of this phenomenon has not been performed
yet.

13The only exception to this rule concerns BHs surrounded by matter coupled to scalar fields,
where the amplification factors can become unbounded (see Sect. 3.13). Because the laws of BH
mechanics will be different, these fall outside the scope of this discussion.
14We thank Shahar Hod for drawing our attention to this point.
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• An outstanding open issue is the systematic calculation of the absorption
cross-section of rotating BHs for generic angles of incidence. In particular, a
generalization of the low-frequency formulas available for GWs [100] to lower
spin-fields would certainly be of interest, as well as thorough numerical studies.
A generic computation for monochromatic EM plane waves scattered off a Kerr
BH was recently done in Ref. [93].

• Nonlinear effects and induced superradiance. The effect of nonlinear couplings
have practically been ignored in all existing literature on BH superradiance.
Interesting effects could include induced superradiant-like effects in fermions
when coupled to bosonic fields, or mass-like effects when higher-order self-
interaction terms are taken into account for boson fields. The backreaction of
superradiant waves on the metric has been investigated only very recently, see
Sect. 3.7.7.

• Sound waves in matter outside gravitational BHs can feel an effective geometry
with sonic horizons and ergoregions (differing from the true gravitational event
horizon or ergoregions, which may be generically absent) and be subjected to
superradiant effects. Although this is one more example of superradiance in ana-
logue models, it is one with potentially important applications in astrophysical
environments and may even lead to superradiant instabilities, c.f. Sect. 4 and
Refs. [190, 191]) (see also Ref. [192] for a recent related realization in the case
of nonspinning BHs).

• Superradiance from BHs in modified theories of gravity has been studied only in
a few cases [161, 162, 167]. At linearized level this requires having a stationary,
axisymmetric BH solution and solving the modified wave dynamics in this
background. Catalogs of interesting gravity theories and corresponding BH
solutions can be found in the review [155].

• Superradiance and non-axisymmetric spacetimes. All vacuum stationary solu-
tions of Einstein’s equations are also axisymmetric. This simplifies the treat-
ment of superradiance considerably, because mode-mixing between different
azimuthal numbers are avoided. However, this property can be broken in other
theories, in non-stationary configurations, or by the presence of matter. Whether
or not mode mixing would quench or favor superradiance is an interesting
open problem. A specially relevant system is a binary of compact objects: does
it superradiate or amplify incoming radiation? Preliminary results suggest a
positive answer [184, 193], but further work is necessary to clarify this issue.
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4Black Holes and Superradiant Instabilities

Superradiant amplification lends itself to extraction of energy from BHs, but can
also be looked at as the chief cause of a number of important instabilities in BH
spacetimes. Some of these instabilities lead to hairy BH solutions, whereas others
extract rotational energy from the BH, spinning it down.

4.1 No Black Hole Fission Processes

One intriguing way of de-stabilizing a BH cluster using superradiance is akin to
more familiar fission processes. These however can be shown—as we now do—not
to occur for BH clusters. Take a cluster of rotating BHs, as in Fig. 4.1, and send in
a low-frequency photon. If the cluster is appropriately built, it would seem possible
in principle that the photon is successively amplified as it scatters off, leading to
an exponential cascade. This kind of process is identical to the way fission bombs
work, where neutrons play the role of our wave.

It was pointed out by Press and Teukolsky [1] that such a process could not
occur for Kerr BHs, as the entire cluster would have to be contained in its own
Schwarzschild radius. Let us see how this works in a genericD-dimensional setting.
We take a cluster of N rotating BHs of size L, and total mass NMBH , whereMBH
is the mass of each individual BH. Assuming all the conditions are ideal, the process
can only work if the mean free path l of a photon (or any other boson field) is smaller
than the size of the cluster,

l < L . (4.1)

Now, the mean free path is l = 1
nσ

, where n is the BH number density in the cluster
and σ is an absorption cross section. The absorption cross section could be negative
if a plane wave is amplified upon incidence on a rotating BH (this happens for
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Fig. 4.1 Scheme of the hypothetical chain reaction in a cluster of rotating BHs. The incident
arrow denotes an incident wave on the rotating BH, which is then amplified and exits with larger
amplitude, before interacting with other BHs. The superradiantly scattered wave interacts with
other BHs, in an exponential cascade

certain polarizations and angles of incidence only, see Sect. 3.7.6). Even in such
case, it is at most of order the BH area. These two properties are very important. That
the cross section scales with the area can be seen on purely dimensional arguments
and it holds true for all BH spacetimes we know of. A negative total cross section
is necessary to guarantee that whatever way the boson is scattered it will on the
average be superradiantly amplified. In other words, we require that a plane wave is
subjected to superradiance.1 To summarize

σ ∼ VD−2r
D−2+ , (4.2)

where VD−2 = πD/2−1/�[D/2] is the volume of a unit (D−3) sphere. Thus, up to
factors of order unity, the condition for fission would amount to LD−2/(NrD−2+ ) <

1Note that say, an l = m = 1 mode is a sum of modes with respect to some other coordinate frame,
where the following BH scatterer is sitting.
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1 or equivalently

NMBH

LD−3 >
L

r+
. (4.3)

This last condition is stating that the cluster lies within its own Schwarzschild radius,
making the fission process impossible even in the most idealized scenario.

4.2 Spinning Black Holes in Confining Geometries Are
Unstable

Fission-like processes do not work, but it was recognized early on that confinement
will generically turn superradiant amplification into an instability mechanism. The
idea is very simple and is depicted in Fig. 4.2: superradiance amplifies any incoming
pulse, and the amplification process occurs near the ergoregion. If the pulse is now
confined (say, by a perfectly reflecting mirror at some distance), it is “forced”
to interact—and be amplified—numerous times, giving rise to an exponentially
increasing amplitude, i.e., to an instability.

The details of the confinement are irrelevant and a simple picture in terms of a
small perfect absorber immersed in a confining box can predict a number of features.
A confining box supports stationary, normal modes. Once a small BH is placed
inside, one expects that the normal modes will become quasinormal and acquire a
small imaginary part, describing absorption—or amplification—at the horizon of
the small BH. Thus, it seems that one can separate the two scales—BH and box
size—and describe quantitatively the system in this way [2].

Fig. 4.2 Scheme of a confined rotating BH, and how an initially small fluctuation—the single red
arrow—grows by successive reflections at the confining wall and amplifications by superradiance
in the ergoregion
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Normal modes supported by a box have a wavelength comparable to the box
size, in other words a frequency ωR ∼ 1/r0. For small BHs, M/r0 � 1, we then
have Mω � 1, i.e., we are in the low-frequency limit. In this limit, the equation
for wave propagation can be solved via matched asymptotics [3], similar to what is
discussed in Appendix B. Let A denote the absorption probability at the horizon of a
rotating BH (which can be computed analytically in the small frequency regime [3–
7]). By definition, a wave with initial amplitudeA0 is scattered with amplitudeA =
A0
(
1 − |A|2) after one interaction with the BH. In the superradiant regime |A|2 <

0. Consider now a wave trapped inside the box and undergoing a large number of
reflections. After a time t the wave interacted N = t/r0 times with the BH, and its

amplitude changed to A = A0
(
1 − |A|2)N ∼ A0

(
1 −N |A|2). We then get

A(t) = A0

(
1 − t|A|2/r0

)
. (4.4)

The net effect of this small absorption at the event horizon is to add a small
imaginary part to the frequency, ω = ωR + iωI (with |ωI | � ωR). In this limit,
A(t) ∼ A0e

−|ωI |t ∼ A0(1 − |ωI |t). Thus we immediately get that

ωI = |A|2/r0 . (4.5)

For example, for a nonrotating BH [3]

|A|2 = 4π

(
MωR

2

)2+2l
�2[1 + l + s]�2[1 + l − s]
�2[1 + 2l]�2[l + 3/2] (4.6)

∼ (M/r0)2l+2 � 1 (4.7)

where s = 0, 2 for scalar and gravitational fields. Comparing with Eq. (4.5), we
obtain

MωI ∼ −(M/r0)2l+3 . (4.8)

When the BH is rotating, the arguments leading to Eq. (2.47) indicate that
rotation can be taken into account by multiplying the previous result by the
superradiant factor 1−m�/ω. In fact, low-frequency waves co-rotating with the BH
are amplified by superradiance. Starobinsky has shown that, at least for moderate
spin, the result in Eq. (4.6) still holds with the substitution [4–7]

ω2l+2 → (ω −m�H)ω
2l+1 , (4.9)

where we recall that �H is the horizon angular velocity.
In other words, this intuitive picture immediately predicts that confined rotating

BHs are generically unstable and estimates the growth rate. The dependence of
the growth rate on the confining radius r0 is estimated to be independent on the
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spin of the field, and this behavior is observed in a variety of systems. The details
need, of course, a careful consideration of the corresponding perturbation equations;
nevertheless such conclusions hold for several different scenarios [2, 8–11], as we
discuss in more detail in the next sections.

4.3 Superradiant Instabilities: Time-Domain Evolutions
Versus an Eigenvalue Search

At linearized level BH superradiant instabilities are associated with perturbations of
a fixed BH background which grow exponentially in time. Because the background
is typically stationary, a Fourier-domain analysis proves to be very convenient. In a
stationary and axisymmetric background, a given perturbation �(t, r, ϑ, ϕ) can be
Fourier transformed as

�(t, r, ϑ, ϕ) = 1

2π

∑
m

∫
dω�̃m(ω, r, ϑ)e

−iωt eimϕ , (4.10)

and the perturbation function �̃m will satisfy a set of PDEs in the variables r and
ϑ . For the special case of a Kerr BH and for most types of fields, such PDEs can be
miraculously separated using spheroidal harmonics (cf. Sect. 3.7.1 and Ref. [12] for
a proof of separability using Killing-Yano tensors), whereas in more generic settings
other methods have to be used [13].

In any case, the system of equations for �̃m together with suitable boundary
conditions at the BH horizon (discussed already in Sect. 3.7.1, and more thoroughly
in Section 3 in Ref. [14]) and at spatial infinity define an eigenvalue problem for
the frequency ω. Due to the boundary conditions at the BH horizon and at spatial
infinity, the eigenfrequencies (or quasinormal modes) are generically complex, ω =
ωR + iωI [14].

In the rest of this section we discuss various superradiant instabilities obtained
by solving the corresponding perturbation equations in the frequency domain and
finding the complex eigenspectrum. Through Eq. (4.10), an instability corresponds
to an eigenfrequency with ωI > 0 and the instability time scale is τ ≡ 1/ωI . In the
case of superradiant modes this always occurs when the real part of the frequency
satisfies the superradiant condition, e.g., ωR < m�H for a spinning BH. Although
QNMs do not form a complete basis, they correspond to poles of the corresponding
Green’s function, and play an important part in the time-domain problem [14], as
they arise in the contour-integration of (4.10). A complementary approach consists
in solving the perturbation equations directly in the time-domain, by evolving an
initially small field and monitoring its energy density as a function of time. As we
will discuss, this approach has been used recently to study BH superradiance and
its development. When both time-domain and frequency-domain computations are
available, they yield consistent results [15, 16].



112 4 Black Holes and Superradiant Instabilities

4.4 Black Holes Enclosed in aMirror

4.4.1 Rotating Black-Hole Bombs

Closed Mirrors One of the first conceptual experiments related to BH superradi-
ance concerns a spinning BH surrounded by a perfectly reflecting mirror [8,17,18].
As discussed in the previous section, confinement turns this system unstable against
superradiant modes.2 A perfectly reflecting wall is an artificial way of confining
fluctuations, but is a useful guide to other more realistic and complex systems.

For scalars, the relevant equation (3.74) can be solved imposing suitable in-going
or regularity boundary conditions at the horizon (discussed in Sect. 3.7.1) and a no-
flux condition at the mirror boundary r = rm in Boyer–Lindquist coordinates. The
latter can be realized in two different ways: either with Dirichlet R(rm) = 0 (see
Ref. [8] for a full analysis of this case) or Neumann R′(rm) = 0 conditions for the
corresponding Teukolsky master wavefunction. Generic Robin boundary conditions
can also be considered [19].

The more realistic situation of EM waves trapped by a conducting spherical
surface is also slightly more involved and is explained in Appendix D. The
appropriate boundary conditions are that the electric field is tangent to the conductor
and that the magnetic field is orthogonal to it in the mirror’s frame [20,21]. We find
that the relevant boundary conditions at r = rm are

∂rR−1 = −i� [±B + A−1lm + ω (a2ω − 2am+ 2ir
)]

2�
(
a2ω − am+ r2ω

) R−1

+
(
a2ω − am+ r2ω

) (
2ia2ω − 2iam+ 2M + 2ir2ω + ∂r�− 2r

)
2�
(
a2ω − am+ r2ω

) R−1 , (4.11)

where we have defined B = √
(A−1lm + a2ω2 − 2amω)2 + 4maω − 4a2ω2 and

R−1 is a radial Teukolsky function defined in Appendix D. The perturbations can be
written in terms of two Newman–Penrose scalars, φ2 and φ0, which are two linearly
dependent complex functions. This explains the existence of two different boundary
conditions, as would have been expected given the two degrees of freedom of EM
fields. For a = 0 we recover the condition (D.18) when using the minus sign, while
for the plus sign we recover the condition (D.19); accordingly, we label these modes
as axial and polar modes, respectively.

The boundary conditions described above are only satisfied for a discrete number
of QNM eigenfrequenciesω. Our results for the characteristic frequencies are shown

2Any initial fluctuation grows exponentially, as we argued previously, leading to an ever increasing
field density and pressure inside the mirror. The exponentially increasing pressure eventually
disrupts the confining mirror, leading to an “explosion,” and to this system being termed a black-
hole bomb [18].
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Fig. 4.3 Fundamental (n = 0) QNM frequency for scalar and EM perturbations of a confined
Kerr BH as a function of the mirror’s location rm, for l = m = 1 and a = 0.8M . For rm
larger than a critical value the modes are unstable. We show the two different polarizations for
the EM BH bomb compared to the modes of a scalar field for Dirichlet and Neumann boundary
conditions at the boundary. For comparison we also show the flat space transverse electric (TE) and
transverse magnetic (TM) modes inside a resonant cavity, as computed in Eqs. (D.14) and (D.16)
of Appendix D

in Fig. 4.3 for l = m = 1 and a = 0.8M . As the generic argument of the
previous Sect. 4.2 anticipated, confined BHs develop an instability, i.e., some of
the characteristic frequencies satisfy ωI > 0.3 Figure 4.3 (left panel) shows that
the time scale dependence on rm is the same for EM and scalar fluctuations, as
predicted in Sect. 4.2. Note that the EM growth rates 1/ωI are about one order of
magnitude smaller than those of scalar fields. This is consistent with the fact that
the maximum superradiant amplification factor for vector fields is approximately
one order of magnitude larger than those of scalars, as shown in Fig. 3.10.

As also anticipated with the heuristic argument in the previous section, the
instability time scale grows with r2l+2

m and the oscillation frequency ωR is inversely
proportional to the mirror position and reduces to the flat space result when rm �
M . Thus, for very small rm the superradiant condition ω < m�H is violated and
the superradiant instability is quenched. An analytic understanding of the onset of
the instability is provided in Ref. [22]; generic analytic studies can be found in
Refs. [8, 23–25]. In the limit of very large cavity radius rm/M our results reduce to
the TE and TM modes of a spherical cavity in flat space [20] (see also Appendix D).

These findings are fully corroborated by a time-domain analysis, summarized
in Fig. 4.4 for the case of a scalar field with Dirichlet conditions at r = rm [15].
The exponential growth of the scalar field for rapidly spinning BHs is apparent. A
full nonlinear evolution of the Einstein–Klein–Gordon system in a confining mirror
was recently performed [26]; the results were promising but numerically unstable

3We recall that the time dependence of the field is ∼ e−iωt , and a positive imaginary component
of the frequency signals an instability.
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Fig. 4.4 Left: time evolution of a scalar field � obeying Dirichlet conditions at some boundary,
on a logarithmic scale, up to t = 105M . The envelope of the Kerr (Schwarzschild) field grows
(decays) exponentially. Right: the growth rate MωI of the first few exponentially growing modes,
as a function of mirror radius rm. The points show the growth rates calculated from time-domain
data, using runs up to t = 105M . The lines show the growth rates found in the frequency-domain
analysis [8]. From Ref. [15]

on time scales too short to observe superradiant-induced growth of the scalar, or to
probe the end-state of the instability. This remains an open issue to date.

The original investigation on BH bombs suggested that the setup could be used
by advanced civilizations as an energy source [18]. The idea is simple, and amounts
to cutting small holes in the mirror (or making it semipermeable in some other
way) such that one can extract (say) electromagnetic energy in a nearly stationary
regime. More recently, the functional dependence of such flux on the mirror radius
and BH spin was observed to be parallel that of the Blandford–Znajek mechanism
(see Sect. 5.8.1 below) for extraction of energy via magnetic fields [27].

Rotating BHs surrounded by artificial mirrors were studied also in the context
of higher-dimensional BHs, with similar conclusions [28, 29]. Finally, as discussed
in Sects. 2.4.2 and 2.5.4, realizations of effective BH metrics in the laboratory are
possible through the use of acoustic setups. In this context, BH bombs were shown
to be unstable on short, and possibly experimentally accessible, time scales [30]. A
possible end-state of the instability are “distorted geometries,” which were recently
discussed at the linearized level [31]. Note however, that the boundary conditions
used in both these references are very special and correspond to a highly absorbing
boundary. A discussion of general boundary conditions for acoustic geometries can
be found elsewhere [32].

Accretion Disks: Open Mirrors The BH bomb scenario discussed previously
can serve as a model to describe astrophysical BHs surrounded by plasmas or
accretion disks. Ionized matter is a good low-frequency EM waves reflector (see
Sect. 4.8.3 below) and can thus play the role of the mirror (this was first realized
by Teukolsky [33] and it is discussed in more detail in Sects. 4.8.3 and 5.5.). A
very important question which still needs clarification concerns the effectiveness
of the instability in these realistic situations. The matter surrounding the BH comes
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under the form of thin or thick accretion disks and not as spherically shaped mirrors.
Confining the field along some angular direction means forbidding low angular
eigenvalue modes, implying that only higher-angular eigenvalue modes (with longer
time scales, cf. Eq. (4.9)) are unstable [34, 35].

Although the geometrical constraint imposed by accretion disks does not com-
pletely quench the instability, it can be argued that absorption effects at the mirror
could [35]. Consider an optimistic setup for which the EM wave is amplified by
∼ 1% each time that it interacts with the BH [1]. A positive net gain only ensues
if the wall has a reflection coefficient of 99% or higher. On the other hand, this
argument assumes that the mirror itself does not amplify the waves. But if it is
rotating, it may too contribute to further amplification (an interesting example of
amplification induced by a rotating cylinder is discussed in Ref. [36]). Clearly,
further and more realistic studies need to be made before any conclusion is reached
about the effectiveness of “BH bomb” mechanisms in astrophysical settings.

4.4.2 Charged Black-Hole Bombs

As shown in Sect. 3.6, charged fields can also be amplified through superradiance
in a charged BH background. In complete analogy with the rotating BH bomb, one
may also consider building a charged BH bomb. Numerical studies of charged BH
bombs, at linear level in the field amplitude, were done in Refs. [37–39], both in the
frequency- and time-domain whereas analytic studies were done in Refs. [40,41]. It
was shown that in the limit qQ → ∞ and for a mirror in the near-horizon region,
the characteristic frequency follows a linear scaling ωI ∝ qQ/r+, implying that the
instability growth time scale τins ≡ 1/ωI can be made arbitrarily small by increasing
q . In Refs. [42, 43] these results were extended to a charged massless scalar field in
the background of a charged stringy BH with mirror-like boundary conditions.

Although astrophysical BHs are thought to be neutral due to quantum effects and
plasma neutralization, this system is interesting from a conceptual point of view: the
very short instability time scale (as compared to the very long time scales involved
in the rotating case) makes it a very promising testbed for fully nonlinear studies
following the development of the instability of BHs in a cavity. Such nonlinear
evolutions were recently accomplished [44, 45]. The setup mimics the original
BH bomb, and consists on an asymptotically flat, spherically symmetric spacetime
with a surface at some (fixed coordinate) distance where the charged scalar obeys
Dirichlet conditions [44, 45]. The framework allows the linearized instability to be
followed through the nonlinear stage, and there is strong evidence in favor of a final
state where a BH is surrounded by a charged condensate. These are in fact static,
nonlinear solutions of the field equations which are entropically preferred [46].
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4.5 Black Holes in AdS Backgrounds

Black holes in anti-de Sitter backgrounds behave as BHs in a box, as the AdS
boundary is timelike and is may confine fluctuations. One way to see this is through
the analysis of timelike geodesics: no timelike particle is able to reach spatial
infinity, and, therefore, AdS backgrounds can be looked at as really a confining
system. Another intuition into these spacetimes is brought about by following radial
null geodesics in the geometry (3.5) with a negative cosmological constant and zero
mass. According to (3.9)–(3.11), these are governed by

dr/dt = (r2/L2 + 1) , (4.12)

where L is the curvature radius of AdS spacetime, related to the negative cosmolog-
ical constant in the Einstein equations through

L2 = −3/� . (4.13)

In other words, an observer at the origin measures a finite time t = πL/2 for a light
ray to travel from the origin to the AdS boundary at r = ∞. This short result teaches
us that boundary conditions at spatial infinity are crucial to determine the evolution
of the system.

In view of the above, rotating or charged BHs in anti-de Sitter are expected to
behave as the “BH bombs” previously described: for small BH size—relative to the
AdS curvature radius—one expects superradiant instabilities, whereas for “large”
BHs the resonant frequencies are too large and outside the superradiant threshold.
Alternatively, slowly rotating BHs with�HL < 1 are expected to be stable, whereas
rapidly spinning BHs are expected to be unstable [47].

4.5.1 Instability of Small Kerr-AdS Black Holes and New Black-Hole
Solutions

The previous arguments were shown to be correct in a series of works, starting
with the proof that “large” Kerr-AdS BHs are stable [47]. Small Kerr-AdS BHs
were subsequently shown to be mode-unstable against scalar field fluctuations [9,
48, 49]. For small BHs, i.e., for r+/L � 1, the characteristic frequencies will be a
deformation of the pure-AdS spectrumLω = l+3+2n [50]. A matched asymptotic
expansion method yields the eigenfrequencies [9, 49],

Lω = l + 3 + 2n− iσ
(
l + 3 + 2n

L
−m�H

)
(r2+ + a2)(r+ − r−)2l

πL2(l+1)
, (4.14)
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where

σ = (l!)2(l + 2 + n)!
(2l + 1)!(2l)!n!

2l+3(2l + 1 + 2n)!!
(2l − 1)!!(2l + 1)!!(2n+ 3)!!

l∏
k=1

(k2 + 4! 2) , (4.15)

and

! =
(
l + 3 + 2n

L
−m�H

)
r2+ + a2

r+ − r− . (4.16)

Here, r− is the smallest root of � in (3.6) and �H was defined in (3.7). The
numerical solution of the eigenvalue problem was first considered in Ref. [49] and
agrees remarkably well with the analytical result (4.14). As an example we used
a direct integration, shooting method to determine numerically the eigenvalues for
r+/L = 0.005, the results are summarized in Fig. 4.5, where we also show the
analytical prediction. At low rotations the imaginary component of the fundamental
eigenfrequency is negative, ωI < 0, signaling a stable spacetime. As soon as
the superradiance condition is satisfied, i.e., when ωR < m�H, the superradiant
mechanism sets in and the spacetime is unstable, ωI > 0, with an instability time
scale given by τ ≡ 1/ωI .

A numerical search of the parameter space shows that the peak growth rate for
the instability is around ωI ∼ 3 × 10−4 at r+/L ∼ 0.07 for a nearly extremal BH.
For r+/L > 0.15 there are no signs of unstable modes.
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Fig. 4.5 Details of the superradiant instability against dipole (l = m = 1) scalar fields. We
consider a spinning Kerr-AdS BH with r+/L = 0.005 (in Boyer–Lindquist coordinates). The
red dashed-dotted line represents numerical data points for the growth rate ωI , and the solid blue
curve is the analytical prediction (4.14). Note that for rotation rates smaller than a/L ∼ 10−4

the perturbations become stable; as the dashed black line shows, this is also the critical point for
superradiance, at which ωR = m�H
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Gravitational [10] and EM perturbations [51, 52] can be handled in a similar
way;4 these perturbations have two degrees of freedom which have traditionally
been termed gravitational vector (or Regge–Wheeler or odd) perturbations and grav-
itational scalar (or Zerilli or even) perturbations, and similarly for EM perturbations.
For small r+/L, a similar matched asymptotic expansion technique can be used [10].
For the lowest gravitational harmonic l = 2, the characteristic frequencies satisfy

i(−1)Lω̃+1L−5

(
r+ − a

r2+

)5

Lω̃
(
L2ω̃2 − 1

) (
L2ω̃2 − 4

)
�(5 − 2i!)

+5400
[
ε + (−1)Lω̃

]
�(−2i!) = 0 , (4.17)

where ε = 1 describes gravitational scalar modes while ε = −1 represents
gravitational vector modes (both with the boundary conditions corresponding to
a non-deformed AdS boundary [10]). Note also that Ref. [10] uses a slightly
different coordinate system with time coordinate t̃ and characteristic frequency ω̃.
In the Boyer–Lindquist coordinates we adopt here, the characteristic frequencies are
ω = �ω̃, where � was defined in Eq. (3.6).

An approximate analytic solution (valid in the limit a/L � r+/L � 1) of the
transcendental equations above is

1) Scalar modes: ω̃I L � 16

15π

[
−3r6+
L6

+ ma r4+
L5

(
1 + 15(5γ − 7)

r2+
L2

)]
+ · · · , (4.18)

2) Vector modes: ω̃I L � 96

15π

[
−4r6+
L6

+ ma r4+
L5

(
1 + 80(5γ − 7)

3

r2+
L2

)]
+ · · · , (4.19)

where γ � 0.577216 is the Euler–Mascheroni constant. The overall behavior is
identical to that of scalar fields. For both scalar and vector modes the imaginary
part of the frequency is negative at a = 0, consistent with the fact that QNMs
of Schwarzschild-AdS are always damped [14, 55]. However, as a/L increases,
ωI increases. As in the previous cases, at the critical rotation where the crossover
occurs, i.e., ωI = 0, one has ωR −m�H � 0 to within 0.01%. For smaller rotations
one has ωR − m�H > 0 and for higher rotations one has ωR − m�H < 0 and
ωI > 0. Therefore, the instability which is triggered at large rotation rates has a
superradiant origin since the superradiant factor becomes negative precisely when
the QNMs go from damped to unstable. These analytical matching results provide
also a good testbed check to our numerics. Indeed we find that our analytical and
numerical results have a very good agreement in the regime of validity of the
matching analysis. This is demonstrated in Fig. 4.6 where we plot the numerical
and analytical results for the fundamental l = 2 scalar and vector modes.

4A comprehensive discussion of the acceptable boundary conditions for gravitational fluctuations
is presented in Refs. [10, 53, 54].
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Fig. 4.6 Imaginary part of the QNM frequency as a function of the rotation parameter a/L, for
fixed horizon radius r+/L = 0.005, for l = 2 gravitational scalar (Right Panel) and vector
modes (Left Panel). Here ω = �ω̃. The red dots are numerical points. The green curve is the
numerical solution of the matching transcendental equation (4.17), while the dashed black curve
is the approximated analytical solution (4.18) or (4.19) of (4.17). In both figures there is a critical
rotation where ωI = 0 and ωR − m�H � 0 to within 0.01%. For lower rotations the QNMs are
damped and with ωR −m�H > 0, while for higher rotations we have unstable superradiant modes
with ωR −m�H < 0. From Ref. [10]

Finally, note that the strength of the scalar or vector gravitational instabilities can
be orders of magnitude higher than the strength of the same superradiant instability
sourced by a scalar field perturbation [9, 49, 54]. The maximum growth rate for
the scalar and vector superradiant instability is of order LωI ∼ 0.032, 0.058,
respectively, at (r+/L, a/L) ∼ (0.445, 0.589), (0.32, 0.386) (for further details see
Ref. [10]); the peak growth rates are, therefore, substantially larger than those for
scalar field fluctuations, as might be anticipated. Indeed the maximum growth rates
are two orders of magnitude larger than in the scalar case, as might be expected from
the corresponding two orders of magnitude difference in superradiant amplification
factors.

Direct evolutions in the time-domain were recently reported for scalar fields
yielding instability time scales consistent with the frequency-domain analysis [56].
Finally, rigorous growth-rate estimates for generic initial data are provided in
Ref. [57].

This mechanism is likely to render other rotating black objects in asymptot-
ically AdS spacetimes unstable. One example of such objects is rotating black
rings, recently discussed in Ref. [58]. The above results were generalized to
scalar and Maxwell perturbations with generic boundary conditions [19, 51], and
also to higher-dimensional spacetimes [59, 60]; mirror-like conditions in higher-
dimensional and asymptotically AdS spacetimes were studied in Ref. [61].

Three-Dimensional BHs in AdS The only exception to this rule are (2 + 1)-
dimensional BHs, whose spectra shares some similarities to those of Kerr BHs.
Studies of the so-called rotating BTZ BH spacetime or “squashed” versions
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present in modified theories of gravity thereof show that these geometries are
stable for the restricted set of boundary conditions [62, 63]. Note that in three-
dimensional GR there are no gravitational degrees of freedom, and that stability
results refer only to scalar or EM fluctuations. Notwithstanding, it is possible to
show that superradiance and associated instabilities are present for other, more
general boundary conditions [64, 65]; for Robin boundary conditions it is possible
to construct BH solutions surrounded by scalar clouds [66].

The End-State of the Instability and New BH Solutions Small, rapidly spinning
BHs in AdS are unstable. Where does the instability drives the system to? For
such confining geometries, the final state cannot be a Kerr-AdS BH: energy and
angular momentum conservation guarantee that the BH would have exactly the same
parameters as the initial state, hence it would be unstable. Furthermore, the BH is
amplifying low-frequency radiation which can not penetrate the horizon. We are
thus led to the conclusion that the final state of the instability must be a rotating BH
surrounded by a bosonic “cloud,” generically a very dynamic spacetime due to GW
emission induced by the cloud.

In certain cases, it is possible to suppress GW emission by considering contrived
matter content, as it was done in Ref. [67] where the authors have explicitly
constructed an AdS BH with scalar hair, albeit in five-dimensional spacetimes. The
action considered includes 2 complex scalar fields in five dimensions,

S =
∫
d5x

√−g
[
R + 12

L2 − 2
∣∣∣∇ �#

∣∣∣2
]
, (4.20)

with

�# = #e−iωt+iψ
{

sin (θ/2)e−iφ/2
cos (θ/2)e−iφ/2

}
. (4.21)

With the ansatz

ds2= − fgdt2 + dr2/f+r2

[
h

(
dψ + cos θ

2
dφ −�dt

)2

+ dθ2 + sin2 θdφ2

4

]
,

(4.22)

then all metric coefficients f, g, h,� and the field � are real functions of a radial
coordinate r . Notice that such ansatz is special in the sense that even though the
scalars are dynamical, the stress-tensor

Tab = ∂a �#∗∂b �#+ ∂a �#∂b �#∗ − gab∂c �#∂c �#∗ , (4.23)
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has the same symmetry as the metric. It is then possible to find five-dimensional
AdS BHs with scalar hair by simply solving a set of coupled ODEs [67]. The BHs
are neither stationary nor axisymmetric, but are invariant under a single Killing field
which is tangent to the null generators of the horizon. These solutions can then be
viewed either as the end-state of the superradiant instability, or as interpolations
between (equal angular momenta) Myers–Perry-AdS BHs and rotating boson stars
in AdS. In a phase diagram, these solutions bifurcate from the threshold of the
superradiant instability of the original Myers–Perry BH.

More general solutions representing the end-point of superradiant instabilities,
without the assumptions above, are thought to exist [48, 68]; in fact, two such
solutions have recently been studied [64, 69] and they underline the role of
superradiance in a vast set of physical phenomena including in the construction
of novel BH solutions.

The nonlinear evolution of the superradiant instability of spinning BHs in four-
dimensional AdS space was recently investigated in Ref. [70]. Evidence for the
formation of a solution with a single helical Killing vector was reported. The
evolution displays a multi-stage process with distinct superradiant instabilities. To
ascertain the final fate of the system, longer duration simulations must be performed.

4.5.2 Instabilities of Charged AdS Black Holes: Superradiance,
Spontaneous Symmetry Breaking, and Holographic
Superconductors

As might be anticipated, charged BHs in AdS are also unstable through superra-
diance, in line with what we discussed in Sect. 4.4.2 for charged BHs in a cavity.
The setup describing a spherically symmetric, charged BH and a charged scalar—
generalizing to AdS asymptotics the charged BH bomb discussed in Sect. 4.4.2,
was also studied nonlinearly [71, 72]. The results show strong evidence of a final
stationary spacetime where a BH is in equilibrium with a charged condensate in
its exterior, in line with the asymptotically flat case [44, 45]. Together with the
follow-up of the instability of spinning BHs discussed above, these studies show
that the instability exists and that there is a rich structure in its development and
final state. Superradiant instabilities arise also in other spacetimes with AdS or dS
asymptotics [73, 74].

In fact, instabilities had been studied extensively in the context of the gauge-
gravity duality and prompted a flurry of activity on the so-called holographic
superconductors and superfluids [75, 76]. Curiously, the connection of this phe-
nomenon to superradiance was initially almost unnoticed, and has been realized
only some years after the original proposal (see Refs. [72,77–79]). We present here
a unified picture of this problem.

Instabilities of charged BHs in AdS have been studied in Ref. [80] under a
different guise, namely with the aim to provide a holographic dual description
of a spontaneous symmetry-breaking mechanism at finite temperature. Ref. [80]
considered an Abelian Higgs theory in four-dimensional curved spacetime, which is
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given by action (3.1) with a massless Maxwell field. A solution of the theory above is
a RN-AdS BH (cf. Eq. (3.4)) endowed with an electric potential5 � = Q/r−Q/r+
and a vanishing scalar field. A small scalar fluctuation on this background is
governed by the Klein–Gordon equation with an effective mass term given by

m2
eff = −q

2�2

f (r)
, (4.24)

where f (r) is given in Eq. (3.4) and for simplicity we have neglected the actual
mass term μS of the scalar field, whose role is not crucial in this analysis. Thus, the
effective mass squared is negative outside the horizon. If q is sufficiently large,
the negative potential well can produce unstable modes. Such modes only exist
when the spacetime is asymptotically AdS and have no analog in flat space.6 In
fact, there are two different mechanisms at play [39, 72, 78, 83], only one of which
is associated with superradiance. One (nonsuperradiant) mechanism is related to
the near-horizon geometry of the extremal RN BH which is described by AdS2.
When m2

eff < m2
BL (where mBL is the Breitenlohner–Freedman bound of the

near-horizon AdS2 geometry), the mode is effectively space-like and produces a
tachyonic instability. Such instability also exists for non-extremal BHs although it
requires larger values of q . On the other hand, the second, superradiant, mechanism
is related to the fact that charged scalar perturbations can be superradiantly amplified
by the RN BH, the energy being trapped by the AdS boundary, which provides the
arena for the instability. In fact, the linearized analysis is equivalent to that presented
in Sect. 3.6. This mechanism is akin to the BH bomb and requires confinement due
to the AdS boundary. Therefore, it only exists in global AdS and not for planar
RN-AdS black branes [78, 79].

Spontaneous Symmetry Breaking and Holographic Superconductors In the
context of the gauge-gravity duality, this instability has far-reaching consequences,
as it signals the onset of a phase transition towards a hairy BH configuration that
breaks theU(1) symmetry of the initial RN-AdS solution. In a quantum field theory,
such spontaneous symmetry breaking (akin to the Higgs mechanism) is associated
with superfluidity and the scalar condensate is associated with Cooper pairs [76,77].
This same mechanism is at play in the Abelian Higgs model as was demonstrated
in the seminal work [75] where a “holographic superconductor” was constructed
as the nonlinear end-state of the superradiant instability. At small temperatures, the
RN-AdS BH becomes unstable through superradiance and spontaneously develops

5As discussed in Ref. [80], the electric potential at the horizon should vanish to ensure regularity
of the one-form �dt .
6A similar mechanism occurs also for neutral fields with nonminimal couplings [81]. However,
in that case the instability occurs also in asymptotically flat spacetime [82] and does not have a
holographic interpretation in terms of spontaneous symmetric breaking. In fact, this mechanism is
akin to superradiant instabilities triggered by nonminimal couplings, as those discussed in Sect. 4.9.
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a spherically symmetric scalar hair. This is in agreement with our previous analysis,
and only small BHs are unstable through this mechanism; in addition, planar RN-
AdS black branes are stable [78]. The scalarized phase is energetically favored at
low temperatures and corresponds to a nonvanishing expectation value of a scalar
operator O2 living on the boundary, as shown in the left panel of Fig. 4.7.

The behavior of the scalar condensate near the critical temperature signals
a second-order phase transition. Other properties of the dual phase such as the
existence of a gap in the conductivity, infinite DC conductivity, the existence of
Cooper-like pairs and a Meissner-like effect can all be studied by solving the linear
response of the hairy BH solutions to scalar and EM perturbations [76]. An example
is presented in the right panel of Fig. 4.7, showing the conductivity of the superfluid
phase.

The results in Ref. [75] triggered a flurry of activity in this field that goes well
beyond the scope of this work (for a somehow outdated review, see [85]). Relevant
to our discussion is the analysis of Ref. [86], in which nonequilibrium processes in
the holographic superfluid phase and the energy extraction from the normal phase
described by the (planar, in contrast to Ref. [71] which studied spherical topology
BHs) RN-AdS BH have been investigated through time evolutions. An example of
such evolution is described in Fig. 4.8.

It is also interesting to mention the case of a charged massive fermion coupled to
Einstein–Maxwell theory in AdS. As previously discussed, Pauli exclusion principle
implies that fermions cannot condensate and, in turn, superradiance does not occur.
From the holographic perspective, the quantum state will not have a coherent phase
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Fig. 4.7 Left panel: the scalar operator of the boundary theory dual to the Abelian Higgs
model (3.1) (with massless Maxwell field) which is related to the asymptotic behavior of the scalar
hair through the AdS/CFT dictionary. A hairy BH geometry branches off the RN-AdS solution
and exists only below a certain critical temperature Tc ∼ √

ρ, where ρ is the charge density. The
behavior at T ∼ Tc shows that the phase transition is of second order. Different curves correspond
to various values of the scalar charge q. Right panel: the electric conductivity of the dual theory
in the superfluid phase at various temperatures (decreasing from left to the right). A Dirac delta
function appears at ω = 0 and there is a frequency gap at small temperatures. From Ref. [84]
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Fig. 4.8 Example of the evolution of the scalar field on (t, z)-plane starting with a perturbed
RN-AdS solution in the theory. Left panel: the time interval 0 ≤ tTc ≤ 14 is shown, where Tc
is the critical temperature for the phase transition. Because of the instability of the RN-AdS BH,
the scalar density grows exponentially for tTc � 6 and for tTc � 6, the scalar density approaches
a stationary configuration. Right panel: the same evolution at initial times, 0 ≤ tTc ≤ 0.08. The
wave packet is reflected by the AdS boundary at t � 0.04 and most of it is absorbed at the BH
horizon within tTc � 0.06. From Ref. [86]

and the U(1) symmetry is unbroken (cf. Ref. [77] for a review). While classical
fermionic instabilities are prevented, Schwinger pair production of fermions can
occur for sufficiently light fermions, in analogy to the bosonic case. The result of
this process is the population of a Fermi sea delimited by a Fermi surface outside
the BH, giving rise to the so-called “electron stars” [87] which are the (planar, AdS)
cousins of astrophysical NSs.

4.6 Massive Bosonic Fields

So far we have discussed two classes of BH-bomb systems: BHs enclosed in
a reflecting cavity and BHs in asymptotically AdS spacetimes. The former are
highly idealized and unrealistic configurations, whereas the latter—although of
great theoretical interest especially in the context of the gauge-gravity duality—are
of little relevance for astrophysical BHs.

Fortunately, sometimes “nature provides its own mirrors” [8, 18]. A massive
bosonic field naturally confines low-frequency radiation due to a Yukawa-like
suppression ∼ e−μr/r , where μ is the mass term. Thus, it was suspected since the
1970s [18, 88] that superradiance triggers instabilities in spinning BH geometries.

This section is devoted to the superradiant instability of spinning BHs triggered
by massive bosonic fields in asymptotically flat spacetime, a topic that has recently
flourished with numerous developments in the last few years. The busy reader
will find a unified discussion of such instabilities in Sect. 4.6.5. We anticipate that
superradiant instabilities triggered by massive bosons are relevant (i.e., their time
scale is sufficiently short) only when the gravitational couplingMμi � 1. We recall
that the physical mass of the fields ismi = μih̄, where i = S, V, T for scalar, vector,
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and tensor fields, respectively. In Planck units (G = c = h̄ = 1), the following
conversions are useful

1 eV ≈ 7.5 × 109M−1� ≈ 5.1 × 109 km−1 ≈ 1.5 × 1015 s−1 . (4.25)

so thatμiM ∼ 0.75 whenM ∼M� andμi ∼ 10−10eV, i.e., for a ultralight bosonic
field.

4.6.1 The Zoo of Light Bosonic Fields in Extensions of the Standard
Model

All observed elementary particles are either fermions or bosons, according to the
statistics they obey, which in turn determines whether they have half-integer or
integer spin, respectively. Because superradiance does not occur for fermionic fields,
here we are interested in massive bosons. All observed elementary bosons are all
either massless or very massive, such as the W and Z bosons and the recently
discovered Higgs boson, whose masses are of the order m ∼ 100 GeV. As we
discuss below, the condition μiM � 1 sets the range of mass h̄μi which is
phenomenologically relevant for a given BH mass M . A hypothetical boson with
mass in the electronvolt range would trigger a sufficiently strong instability only
for light BHs with masses M ∼ 1020g. Although the latter could be formed in the
early universe as “primordial” BHs [89–91] (see Ref. [92] for a review) and are also
promising dark-matter candidates [93], here we focus mostly on massive BHs, i.e.,
those with masses ranging from a few solar masses to billions of solar masses.

Superradiant instabilities of such massive BHs require ultralight bosonic fields
in order to have astrophysically relevant time scales. Such bosons are almost
ubiquitous in extensions of the Standard Model of particle physics and in various
extensions of GR. The prototypical example of a light boson is the Peccei–Quinn
axion [94] introduced as a possible resolution for the strong CP problem in QCD,
i.e., the observed suppression of CP violations in the Standard Model despite the
fact that, in principle, the nontrivial vacuum structure of QCD allows for large CP
violations. The Peccei–Quinn mechanism is based on a global symmetry, whose
spontaneous breaking is associated with a new particle, the axion [95,96]. The axion
should acquire a small mass due to nonlinear instanton effects in QCD and its mass
is theoretically predicted to be below the electronvolt scale. For a massive BH with
M ∼ 5M�, axions with mass of the order of 10−11eV would have a superradiant
coupling μSM ∼ 0.4, so that superradiant instabilities are potentially important. In
addition to solve the strong CP problem, light axions are also interesting candidates
for cold dark matter [97–101]. For example, using a fundamental discrete symmetry,
two-axion models have been constructed where the QCD axion solves the strong CP
problem, and an ultralight axion provides the dominant form of dark matter [102].

Other light bosons, such as familions [103] and Majorons [104], emerge from the
spontaneous breaking of the family and lepton-number symmetries, respectively. A
common characteristic of these light bosons is that their coupling to Standard Model
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particles is suppressed by the energy scale that characterizes the symmetry breaking,
so that it is extremely challenging to detect these fields in the laboratory. Thus,
massive BHs are probably the best candidates to investigate the putative effects of
light bosons in a range which is complementary to searches using cosmological
observations [105].

Furthermore, a plenitude of ultralight bosons might arise from moduli compact-
ification in string theory. In the “axiverse” scenario, multiples of light axion-like
fields can populate the mass spectrum down to the Planck mass, mP ∼ 10−33 eV,
and can provide interesting phenomenology at astrophysical and cosmological
scales [106].

Light bosonic fields with spin are also a generic feature of extensions of the
Standard Model. For example, massive vector fields (“dark photons” [107, 108])
arise in the so-called hidden U(1) sector [109–113]. On the other hand, coupling
massive spin-2 fields to gravity is a much more involved problem from a theoretical
standpoint, but progress in this direction has been recently done in the context of
nonlinear massive gravity and bimetric theories (cf. Refs. [114,115] for reviews). A
light massive graviton modifies the gravitational interaction at long distances and is
a natural alternative to explain the accelerating expansion of the Universe.

In addition to fundamental bosonic fields, effective scalar degrees of freedom
arise naturally due to nonminimal couplings or in several modified theories of
gravity [116]. For example, in the so-called scalar-tensor theories, the gravitational
interaction is mediated by a scalar field in addition to the standard massless
graviton. The no-hair theorems of GR extend to scalar-tensor gravity under certain
conditions [117] so that GR BHs are also the unique vacuum, stationary solution of
these theories. However, if the scalar field is massive such BHs would be unstable
due to the superradiant instability. Due to a correspondence between scalar-tensor
theories and theories which replace the Einstein–Hilbert term by a generic function
of the Ricci curvature (the so-called f (R) gravity [116]), effective massive scalar
degrees of freedom are also present in these theories and trigger superradiant
instabilities [118].7

The phenomenological implications of superradiant instabilities triggered by
light bosons are discussed in Sect. 5.2, here we simply consider the mass of the
boson (either mS , mV , or mT for spin-0, -1, and -2 particles, respectively) to be a
free parameter of the model.

7Interestingly, in the context of f (R) gravity the effective scalar field is related to the scalar
curvature of the metric, which grows exponentially through superradiance. This suggests that, at
variance with the case of real massive fields in which the final state is likely a Kerr BH with lower
spin (as discussed in the rest), the end-state of superradiant instabilities in f (R) gravity might
be different from a Kerr BH [118]. If such theories are to satisfy the no-hair theorem [117], the
end-state of the instability should be a non-stationary solution.



4.6 Massive Bosonic Fields 127

4.6.2 Massive Scalar Fields

The simplest and best understood case of superradiant instability triggered by
massive bosons is the case of a massive probe scalar field propagating on a fixed
Kerr geometry. The existence of this instability was originally suggested by Damour,
Deruelle, and Ruffini [88] and has been thoroughly investigated by several authors
since then.

The linearized dynamics is governed by the massive Klein–Gordon equation

[� − μ2
S]� = 0 , (4.26)

where the D’Alembertian operator is written on the Kerr metric and μS is the scalar
mass term (we recall that we use Planck units henceforth; the physical mass mS
of the field reads mS = μSh̄). In the Teukolsky formalism [119, 120], Eq. (4.26)
can be separated by use of spin-0 spheroidal wavefunctions [121] as discussed in
Sect. 3.7.1 for the massless case. The ODE for the angular part is identical to the
massless case after the redefinition ω2 → ω2 − μ2

S , whereas the potential of the
radial equation gets a further contribution proportional to μ2

S�r
2.

Analytical Results The crucial parameter regulating the interaction between the
geometry and the massive scalar is the gravitational coupling MμS , which is just
the ratio between the gravitational radius of the BH and the Compton wavelength
of the field. In the scalar case analytical results are available in the MμS � 1 and
MμS � 1 limits.

For small MμS , it can be shown that the eigenvalue problem admits a
hydrogenic-like solution8 [24, 124, 125] with λ ∼ l(l + 1) and

ω ∼ μS − μS

2

(
MμS

l + n+ 1

)2

+ i

γnlmM

(am
M

− 2μSr+
)
(MμS)

4l+5 , MμS � 1 ,

(4.27)

where n = 0, 1, 2 . . . is analog to the principal quantum number in the hydrogen
atom and γnlm is a coefficient that depends on (n, l,m); γ011 = 48 for the
dominant unstable mode [125] (this result corrects the prefactor found in the original
reference, for further details we refer the reader to the appendix of Ref. [125]). Note
that the QNMs are complex, ω = ωR + iωI , unless the superradiant condition is
saturated. This happens when

a = acrit ≈ 2μSMr+
m

. (4.28)

8Higher-order corrections to this formula have been computed in Ref. [122]. The eikonal, large l
limit is shown in Ref. [123] for arbitrary MμS .



128 4 Black Holes and Superradiant Instabilities

Because of the time dependence of the field, when a > acrit the imaginary part of
the modes is positive and the instability time scale can be defined as τ ≡ 1/ωI .
In this case, the field grows exponentially in time, � ∼ et/τ . The instability time
scale depends on the coupling μSM , on the spin a/M , and on the mode numbers
(l,m, n). The strongest instability occurs for l = m = 1, n = 0 and for highly
spinning BHs.

In the same limit, MμS � 1, the eigenfunctions can be written in terms of
Laguerre polynomials [124, 126]

ψ(μS, a,M, r) ∝ r̃ le−r̃/2L2l+1
n (r̃) , (4.29)

and ψ becomes a universal function of the dimensionless quantity r̃ =
2rMμS2/(l + n + 1) [127]. For the single most unstable mode, l = m = 1
and n = 0, the eigenfunctions simplify to ψ ∝ r̃e−r̃/2.

In the opposite regime, MμS � 1, the instability is exponentially suppressed.
By using a WKB analysis, Zouros and Eardley found that the shortest time scale
reads [128]

τ ∼ 107Me1.84MμS MμS � 1 . (4.30)

It can be shown that the superradiant instability regime is bounded by the relation

μS <
√

2m� , (4.31)

and that the upper bound can be approached arbitrarily close in the eikonal regime,
Mμ� 1 [129].

Note that for a solar mass BH and a field of mass mS ∼ 1 eV, the parameter
MμS ∼ 1010 and the instability time scale is much larger than the age of the
universe. Therefore, the case MμS � 1 has little phenomenological relevance.
Below we discuss a more interesting case, when the gravitational coupling is of
order unity,MμS � 1.

Numerical Results Exact results for any value of MμS and a/M can be obtained
by solving the problem numerically. This was originally done in Ref. [11] and a
very complete analysis of the instability can be found in Ref. [130] which used an
extension of the continued-fraction method [14] to compute the unstable modes.9

Some representative results are displayed in Fig. 4.9, which shows ωI as a
function of the gravitational couplings for various parameters. The instability
corresponds to ωI > 0, which occurs when ωR < m�H, i.e., when the mode

9The spectrum of massive scalar perturbations of the Kerr metric contains both stable QNMs and
quasibound states, which are localized near the BH [125,130,131]. The quasibound states are those
that become unstable in the superradiant regime.
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Fig. 4.9 Left: Superradiant instability for the fundamental (n = 0) l = m = 1 modes as
a function of the gravitational coupling MμS and for various BH spin [see publicly available
MATHEMATICA® notebook in Appendix A]. The dotted lines shows Detweiler’s approxima-
tion (4.27) [124] (with the coefficient corrected as in Ref. [125]), valid in the limit MμS � 1.
Although not shown, the instability terminates (i.e., ωI → 0) when the superradiance condition is
not satisfied. Right: The same for the fundamental l = m = 1, l = m = 2, and l = m = 3 modes.
The fastest growth occurs for the l = m = 1 state at MμS ≈ 0.42, with a = 0.999M . The dotted
line shows Zouros and Eardley’s approximation [128], valid when Mμ� 1 (cf. Eq. (4.30))

satisfies the superradiance condition (1). As expected, faster rotation leads to shorter
growth time scales. Furthermore, for a given l, the mode with the faster growth rate
has m = l, and clearly the axisymmetric mode with m = 0 is stable. As in the
analytical case, the dominant unstable mode has l = m = 1 and n = 0. For this
mode the shortest instability time scale is approximately

τS ≡ τ ∼ 6.7 × 106M ∼
(

M

106M�

)
yr , (4.32)

and occurs whenMμS ∼ 0.42, corresponding to a light scalar field of mass

μS ∼ 0.42M−1 ∼ 5.6 × 10−17
(

106M�
M

)
eV . (4.33)

The exact numerical results can be used to check the validity of the analytical
approximation when μSM � 1. It turns out that the spectrum (4.27) and the
eigenfunctions (4.29) are a valid approximation of the exact results even for
moderately large coupling (roughly up to μSM � 0.2) and even at large BH spin.

More recently, massive Klein–Gordon perturbations of Kerr BHs were also
investigated through a time-domain analysis. This was done in Ref. [16] by
adapting a 3 + 1 code, whereas subsequently an elegant decomposition in spherical
harmonics was used to reduce the Klein–Gordon equation to an infinite set of
hyperbolic partial differential equations for perturbations with different harmonic
indices, which can then be solved with a 1 + 1 code [15]. The results of these
works are in remarkably good agreement with the frequency-domain analysis.
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Furthermore, Ref. [16] provides an explanation for an apparent discrepancy between
time and frequency domain calculations of the instability growth rates as obtained
in Ref. [132]. This is related to an interference effect between different overtones
that will be discussed in the context of massive vector fields below (cf. Fig. 4.10).

The End-State of the Instability and New BH Solutions Unlike the AdS case
discussed in Sect. 4.5, massive fields can confine only low-frequency radiation.
The issue of the final state of the instability is discussed in detail in Sects. 4.6.6
and 4.6.7. We anticipate here that—because of the no-hair theorems ensuring
that axisymmetric vacuum solutions of GR in asymptotically flat spacetime are
described by the Kerr geometry [117, 133–135]—the final state of the superradiant
instability of a Kerr BH will still be a Kerr BH with smaller mass and spin. An
important counterexample is provided by the hairy BHs discussed in Sect. 4.6.8.
In that case, similarly to the AdS case, the metric remains stationary even if the
scalar field oscillates in time [136, 137]. This time dependence in the matter sector
circumvents the hypothesis of the no-hair theorem and, at the same time, prevents
GW emission.

Massive Charged Scalars Massive charged scalars propagating on a Kerr–
Newman background were studied (both analytically and numerically) in Ref. [138],
which found that the instability growth rate also depends on the coupling qQ, where
q and Q are the charges of the field and of the BH, respectively. For a given value
of the BH spin the shortest instability time scale is comparable to that of the neutral
case, although it occurs for different values of μSM and with qQ �= 0.

Because the BH-bomb effect occurs also for minimally coupled, charged scalar
perturbations of a static, charged BH in a cavity (cf. Sect. 4.4.2), one might be
tempted to conclude that a similar instability exists also when the cavity’s surface
is replaced by a massive perturbation. However, unlike their rotating counterpart,
asymptotically flat charged BHs were shown to be stable against massive charged
scalar perturbations. This is due to the fact that the conditions required in order
to trigger the superradiant instability (existence of bound states in the superradiant
regime) are incompatible [139, 140], and rotation is a necessary ingredient [141].
The same absence of superradiant instability was recently proven for charged
BHs in low-energy effective string theory [142]; rotation seems to be a necessary
ingredient [143]. Exceptions to this rule may arise when new couplings are present,
changing the equations of motion and effectively a potential well for an instability
to set in [144].

Superradiance and Effective Mass in More Generic Theories A particularly
important aspect of modified theories of gravity, is that some couplings can either
mimic a mass term, or include features which are able to trap and amplify massless
fields. A generic theory of scalar fields is “Horndeski” theory [116,145]. It displays
at least two important features: i. it gives rise to instability of charged spacetimes,
even in the absence of rotation [144]; ii. some of the couplings are equivalent to
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an effective mass term, thus leading to the possibility of studying such theories
based almost exclusively on what one learns from minimally coupled scalars on Kerr
geometries [146]. Finally, we should mention that there are superradiant instabilities
which do not require a mass term to confine the field and make it grow. For example,
even massless and charged scalar fields are unstable around a charged BH in de
Sitter spacetime [147–149]; the precise mechanism is not well understood, but
it seems that the cosmological constant is responsible for creating the necessary
potential well, where the superradiant mode can grow.

4.6.3 Massive Vector Fields

While superradiant instabilities of spinning BHs against massive scalar perturba-
tions have a relatively long history [8, 11, 18, 24, 88, 130, 150], the case of massive
bosonic fields with nonvanishing spin (i.e., massive vector and tensor fields) has
been investigated much more recently. This is due to technical difficulties that were
only recently overcome, as we now discuss.

The Issue of the Separability of Proca Equations The equation governing
massive vector (spin-1) fields is the Proca equation

∇σF σν = μ2
V A

ν , (4.34)

where Fμν = ∂μAν − ∂νAμ, Aμ is the vector potential and we will focus again
on the case in which the differential operator is written on the Kerr background.
Maxwell’s equations are recovered when μV = mV /h̄ = 0, where mV is the mass
of the vector field. Note that, as a consequence of Eq. (4.34), the Lorenz condition
∇μAμ = 0 is automatically satisfied, i.e., in the massive case there is no gauge
freedom and the field Aμ propagates 2s + 1 = 3 degrees of freedom [131].

Initial studies of Proca fields on a BH geometry were restricted to the nonrotating
case [131, 151–153] and clearly fail to describe the superradiant regime. The main
reason is that the Proca equation (4.34) does not seem to be separable in the Kerr
background by using the standard Teukolsky approach. Recently, the problem has
been solved by various complementary approaches (in chronological order):

• Through semi-analytical techniques in the slow-rotation limit [125, 154] (briefly
discussed in Appendix E, cf. Ref. [13] for a review on the slow-rotation
approximation);

• Through a fully numerical time evolution of the Proca system, both in a fixed
Kerr background [16] and fully nonlinearly [155, 156] (see also Sect. 4.6.6);

• Through a fully numerical frequency-domain computation, solving a system of
elliptic partial differential equations [157, 158];

• Through a novel technique [159] to separate the Proca equations on a Kerr
background [160], resulting in system of coupled ordinary differential equations
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that can be solved with standard methods [161]. This method was extended to
include Kerr–Newman and Kerr–Sen backgrounds [162].

The latter (and most recent) approach is the optimal one to compute the instability
spectrum accurately.

Analytical Results Even before proving separability of the Proca equation on a
Kerr background, analytical results were obtained in the small-coupling (or “New-
tonian”) regime, μVM � 1 using matched-asymptotics techniques [158, 163, 164].
To the leading order, the spectrum of unstable modes is

ω2
R ∼ μ2

V

[
1 −

(
MμV

l + n+ S + 1

)2
]
, (4.35)

MωI ∼ 2γSlr+ (m�H − ωR) (MμV )4l+5+2S , (4.36)

where n ≥ 0 is the overtone number, l is the total angular momentum number,m is
the azimuthal number, and S is the polarization; S = 0 for axial modes and S = ±1
for the two classes of polar modes,10 and the coefficient γSl depends on S and
l [158, 164]. The most unstable mode is S = −1, l = 1 and yields γ−11 = 4 [164].
Interestingly, Eq. (4.35) predicts a degeneracy for modes with the same value of
l + n + S whenMμV � 1, which is akin to the degeneracy in the spectrum of the
hydrogen atom.

Massive vector perturbations of rotating BHs are expected to induce a stronger
superradiant instability than in the scalar case because, as previously discussed,
superradiance is stronger for EM waves. This is confirmed by Eq. (4.36) which
shows that for the dominant unstable mode (with l = m = 1, n = 0, and even parity
with S = −1) the strongest instability should occur on a time scale

τ ≡ τV ∼ M(MμV )
−7

4(a/M − 2μV r+)
, (4.37)

10 Note that different harmonic decompositions have been used in the literature. In the one used in
Refs. [163, 164], the angular harmonics Y %,jm are described by three quantum numbers j , %, and
m. The quantum number j specifies the total angular momentum of the perturbation (that is here
denoted with l), % describes the orbital angular momentum (that in our notation is l + S), and m is
the azimuthal number. Regularity of these harmonics requires that the integer m must be such that
|m| ≤ j and that % is a nonnegative integer that is constrained to take one of three values, namely
% ∈ {j − 1, j, j + 1}. Each one of these three %’s represents one of the 3 families of perturbations
that we call here S = 0 and S = ±1. The above decomposition is valid in the static case. For a
spinning background, this separation ansatz and associated harmonic decomposition are no longer
valid. However, we still have three sectors of perturbations that are continuously connected to the
three “polarizations” families in the static limit. Accordingly, if we wish so, we can designate these
three families by the % = j − 1, % = j , and % = j + 1 families, respectively, for S = −1, S = 0,
and S = 1.
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to be compared with the scalar case, τS ∼ 48M(MμV )−9

a/M−2μV r+ , cf. Eq. (4.27). Roughly
speaking, the shortest instability time scale against vector polar perturbations is of
order τV ∼ 0.0025(M/M�) s, i.e., some orders of magnitude shorter than in the
scalar case.

Numerical Results As previously mentioned, early numerical results on the Proca
instability of Kerr BHs include a slow-rotation approximation up to second order in
the spin [125, 154] and a fully numerical analysis of the Proca equation on a fixed
Kerr geometry [16]. In the latter case it was also shown that generic initial date
excites several overtones (i.e., modes with different principal quantum number n).
Because these modes all have similar frequencies ωR (see Eq. (4.35)) and very long
time scales, the overall waveform shows beating patterns [16]. An example of this
effect is shown in Fig. 4.10.

More recently, numerical results have been extended both in the time
domain [156] and in the frequency domain [157, 158]. A breakthrough occurred
in 2018 when the Proca equation was shown to be separable [160], reducing the
problem to one of the same complexity of the scalar case.

Figure 4.11 shows results obtained by solving the separable equations [161]. The
results agree perfectly [160] with those obtained without separability [157]. A useful
fit for the most unstable (−S = m = 1 and n = 0) mode as a function of the
dimensionless spin χ = a/M and coupling μVM is given by [157]

MωR � MμV
(

1 + α1MμV + α2(MμV )
2 + α3(MμV )

3
)
, (4.38)

MωI � β0 (MμV )
7
(

1 + β1MμV + β2(MμV )
2
)
(χ − 2ωRr+) , (4.39)

where

αi =
4∑
p=0

A(i)p (1 − χ2)p/2 , βi =
4∑
p=1

B(i)p (1 − χ2)p/2 +
4∑
p=0

C(i)p χ
p , (4.40)

and the coefficients A(i)p , B(i)p , and C(i)p are given in Table 4.1. In a large region
of the parameter space the precision of the fit is at least 0.2% (50%) for the real
(imaginary) part of the frequency.

4.6.4 Massive Tensor Fields

Massive tensor fields cannot be trivially coupled to gravity. The development of a
consistent theory of massive spin-2 fields has an interesting history on its own and
we refer the reader to the recent reviews [114, 115].
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Fig. 4.11 Growth rate of the fundamental m = 1 modes of the Proca field, for the three
polarizations S = −1 (solid), S = 0 (dashed), and S = +1 (dotted), and for various BH spins. The
vertical axis shows MωI on a logarithmic scale, whereas the horizontal axis shows MμV . Taken
from [161]

Table 4.1 Fitting
parameters appearing in
Eq. (4.40). See [157] for
details of the fit and for a
comparison with numerical
results

p = 0 p = 1 p = 2 p = 3 p = 4

A
(1)
p +0.142 −1.170 +3.024 −3.234 +1.244

A
(2)
p −1.298 +6.601 −15.21 +14.47 −5.070

A
(3)
p +0.726 −8.516 +15.43 −11.15 +3.277

B
(1)
p – −27.76 +114.9 −311.1 +177.2

B
(2)
p – −14.05 +20.78 −36.84 +58.37

B
(3)
p – +14.78 −4.574 −248.5 +108.1

C
(1)
p +48.86 −8.430 +45.66 −132.8 +52.48

C
(2)
p −31.20 +32.52 −73.50 +161.0 −91.27

C
(3)
p +189.1 −85.32 +388.6 −1057 +566.1

At the linear level it is known, since the works of Fierz and Pauli, that there is
a unique ghost- and tachyon-free mass term that preserves Lorentz invariance and
describes the five polarizations of a massive spin-2 field on a flat background [165].
On a curved spacetime the most general linearized field equations describing a
massive spin-2 field read

⎧⎨
⎩
�̄hμν + 2R̄αμβνhαβ − μ2

T hμν = 0 ,
μ2
T ∇̄μhμν = 0 ,(
μ2
T − 2�/3

)
h = 0 .

(4.41)
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At the linear level these equations are only consistent if we assume the background
to be a vacuum solution of Einstein’s equations with a cosmological constant �,
so that R̄ = 4�, R̄μν = �ḡμν , and barred quantities refer to the background.
Interestingly, the same equations can also describe the propagation of a massive
graviton in nonlinear massive gravity and in bimetric gravity in some special con-
figurations [166]. These equations were shown to lead to a superradiant instability
of Kerr BHs in these theories [166–168].11

Around a Kerr BH there exist long-lived bound states which follow the same
kind of hydrogenic-like scaling (4.35) and (4.36) observed for massive bosons with
lower spin [166, 168]. In addition to these modes, a new polar dipole mode was
found [166]. This mode was shown to be isolated, does not follow the same small
mass behavior, and does not have any overtone. For this mode, the real part is smaller
than the mass of the spin-2 field, and in the regionMμT � 0.4 is very well fitted by

ωR/μT ≈ 0.72(1 −MμT ) . (4.42)

In the limitMμT � 1, and for the static case, the imaginary part was found to scale
as [166]

ωI/μT ≈ −(MμT )3 . (4.43)

This mode has the largest binding energy (ωR/μT − 1) among all couplingsMμT ,
much higher than the ground states of the scalar, Dirac, and vector fields.

Since no separable ansatz of the system of equations (4.41) in a Kerr background
has been found so far, to investigate the superradiant instability, Ref. [166] adopted
a slow-rotation approximation to first order in the spin, whereas Ref. [168] showed
that in the MμT � 1 limit the unstable hydrogenic modes can be computed
analytically for any spin. A representative example of the unstable modes is
presented in Fig. 4.12, where it is shown that the growth time scale of the dipole

11In fact, even the Schwarzschild spacetime is unstable against a spherically symmetric mode in
these theories. The instability of the Schwarzschild metric against massive spin-2 perturbations was
first discovered in Ref. [169], where it was shown that the mass term for a massive spin-2 field can
be interpreted as a Kaluza–Klein momentum of a four-dimensional Schwarzschild BH extended
into a flat higher-dimensional spacetime. Such “black string” spacetimes are known to be unstable
against long-wavelength perturbations, a mechanism known as the Gregory–Laflamme instability
[170,171], which in turn is the analog of a Rayleigh–Plateau instability of fluids [172,173]. Based
on these results, Ref. [169] pointed out that massive tensor perturbations on a Schwarzschild BH
in massive gravity and bimetric theories would generically give rise to a (spherically symmetric)
instability. The unstable mode is absent in partially massless gravity [167] and in solutions of
bimetric theories other than the bi-Schwarzschild solution [174]. The former case corresponds to
the Higuchi bound μ2

T = 2�/3, so that the scalar equation in (4.41) becomes an identity and the
scalar modes does not propagate.
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Fig. 4.12 Absolute value of the imaginary part of the polar quasibound modes as a function of
the BH rotation rate a/M for different values of l and m and different values of the mass coupling
μTM . Left panel: polar dipole mode for l = m = 1, computed numerically using an expansion to
first order in the dimensionless spin a/M , valid for any value of the mass coupling μTM [166].
Right panel: polar mode l = m = 2, S = −2, comparing the numerical results (solid lines) of
Ref. [166], which are valid for a/M � 1 and any value of μTM , with the analytical estimates
(dashed lines) of Ref. [168], which are valid for μTM � 1 and any value of the spin. For any
mode withm ≥ 0, the imaginary part crosses the axis and become unstable when the superradiance
condition ωR < m�H is met

polar mode is very small even for small couplingsMμT . Indeed, the time scale for
this unstable mode is [166]

τT ∼ M(MμT )
−3

γpolar(a/M − 2r+ωR)
, (4.44)

where γpolar ∼ O(1). This time scale is four orders of magnitude shorter than the
corresponding Proca field instability and, in fact, it is the shortest instability time
scale of a four-dimensional, asymptotically flat GR BH known to date.

4.6.5 A Unified Picture of the Linearized Superradiant Instability
of Massive Bosonic Fields

The results presented in the previous sections for spin-0, spin-1, and spin-2 fields
suggest the following unified picture describing the superradiant instability of
massive bosonic fields, of mass μ, around a spinning BH. For any bosonic field
propagating on a spinning BH, there exists a set of quasibound states whose
frequency satisfies the superradiance condition ωR < m�H. These modes are
localized at a distance from the BH which is governed by the Compton wavelength
1/μ and decay exponentially at large distances. In the small gravitational coupling
limit,Mμ� 1 (whereμ denotes the mass of the field), the spectrum of these modes
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resembles that of the hydrogen atom:

ωR/μ ∼ 1 − (Mμ)2

2(l + S + 1 + n)2 , (4.45)

where l is the total angular momentum of the state with spin projections S =
−s,−s + 1, . . . , s − 1, s, s being the spin of the field.

Again in the small gravitational coupling limit, to leading order in α, a detailed
matched-asymptotic calculation yields [124, 158, 164, 168]

ωI = −1

2
C
(s)
lS

Plm(χ)
Plm(0)

α4l+2S+5(ωR −m�H) , (4.46)

where

Plm(χ) = (1 +�)�2l
l∏
q=1

(
1 + 4M2

(
ωR −m�H

qκ

)2
)

(4.47)

is proportional to the BH absorption probability [175, 176] (see Sect. 3.7.5), � =√
1 − χ2, and κ = �

1+� . The constants C(s)lS are given in Table 4.2.
In the nonspinning case (�H = 0), the decay rate of these modes is ωI/μ ∝

−(Mμ)4l+2S+5. For spinning geometries, ωI changes sign in the superradiant
regime. Indeed, when ωR < m�H the imaginary part becomes positive and ωI
corresponds to the growth rate of the field (τ ≡ ω−1

I being the instability time
scale). According to Eq. (4.46), the shortest instability time scale occurs for l = 1,
S = −1 and for l = 2, S = −2. The only exception to the scaling (4.45) and
(4.46) is given by the (non-hydrogenic) dipole polar mode of a spin-2 field, whose
frequency is given by Eq. (4.42) and the scaling of the imaginary part is similar to
Eq. (4.46), but with ωI ∝ (m�H − ωR)(Mμ)3.

Analytical results in the small-coupling limit are in good agreement with the
exact numerical results in the scalar and vector case, where the linearized problem

Table 4.2 Coefficients
appearing in Eq. (4.46) for the
imaginary part of the most
relevant massive spin-s
bosonic unstable modes of a
Kerr BH. In our notation l is
the total angular momentum
of the state with spin
projections
S = −s,−s + 1, . . . , s − 1, s,
s being the spin of the field
(In the notation of
Refs. [163, 164], j = l and
% = l + S, see footnote 10)

s l S C
(s)
lS

0 1 0 1/6

2 0 128/885735

3 0 1/32256000
1 1 −1 16

2 −1 1/54

3 −1 128/22143375
2 2 −2 128/45

1 0 10/9

3 −2 4/4725

1 1 640/19683



4.6 Massive Bosonic Fields 139

has been fully solved [124, 130, 158, 161, 164]. The case of spin-2 perturbations is
less explored but—when a comparison between analytical and numerical results is
available—the agreement turns out to be very good [166, 168].

4.6.6 Superradiant Instabilities of Massive Bosonic Fields:
Nonlinear Evolutions

Although the instability of massive bosonic fields around rotating BHs is very
well understood at the linear level, the nonlinear development of the instability
has received much less attention and successful simulations of its first stages have
only recently been performed [155, 156]. These simulations are in fact extremely
challenging, mainly due to the large separation of scales between the instability time
scale 1/ωI and the oscillation period of the field 1/ωR . In addition, the problem
must, in general, be solved using full (3+1)-simulations, further increasing the
required computational cost [155, 156, 177, 178].

As we just saw, the instability time scale can be significantly shorter for vector
fields when compared to scalar fields. With this is mind, Ref. [155] reported the first
successful numerical study of the nonlinear evolution of the instability for a Proca
field. They simulated the time evolution of a BH with initial massM0 and initial spin
a = 0.99M0 surrounded by a complex Proca field with initial energy ∼ 10−3M0
and an azimuthal dependence of the form eiϕ for which the stress-energy tensor is
axisymmetric, allowing them to use a (2 + 1) numerical domain.

Figure 4.13 shows the evolution of the energy and angular momentum of the
Proca field as a function of time for different values of the boson mass. Initially, the
field energy and angular momentum undergo an exponential growth, as predicted by
the linear analysis, with the corresponding changes in the BH mass and spin closely
tracking this growth, suggesting that all the mass and spin extracted from the BH

Fig. 4.13 The evolution of the energy (left) and angular momentum (right) of the Proca field as a
function of time (blue solid lines) for a BH with initial mass M0 and initial spin a = 0.99M0, for
different values of the boson mass μ̃ ≡ M0μ. For comparison the mass and angular momentum
lost by the BH is also shown (black dashed lines). The curves overlap perfectly showing that the
energy lost by the BH is entirely transferred to the Proca field. From [155]
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Fig. 4.14 Evolution of the BH’s horizon angular frequency �H along with the ratio between the
Proca energy and angular momentum flux at the event horizon. For a field dominated by a single
mode with frequency ωR , one has ĖH /J̇ H ∼ ωR/m (c.f. Appendix C). For m = 1 these results
show that the instability saturates when �BH approaches the frequency ωR of the most unstable
mode. From [155]

is transferred to the Proca field. However, at late times the instability growth rate
slowly decreases until the energy and angular momentum saturate to a given value.

As shown in Fig. 4.14, the instability saturates when the ratio between the energy
and angular momentum flux of the field at the event horizon ĖH /J̇ H approaches the
horizon’s angular frequency ĖH /J̇ H ∼ �H. This is consistent with the field being
dominated by a single mode with frequency ωR and azimuthal quantum number
m = 1 (cf. Appendix C). In fact, as expected from Eq. (4.36), when ĖH /J̇ H < �H
the Proca field is unstable and extracts energy and angular momentum from the BH.
Due to the BH’s spin loss, �H decreases up to the point where ĖH /J̇ H ∼ �H, at
which point superradiance stops and the instability saturates.

These simulations show that the superradiant instability leads to the formation
of a long-lived boson cloud around the BH. In the process, up to ∼ 10% of the
BH mass can be extracted by the boson field [137, 155]. The solutions found at the
end of these simulation were shown to match very well [137] the stationary hairy
BH solutions constructed in Ref. [179], consisting of a rotating BH surrounded by
a complex Proca hair oscillating with a frequency ω = m�H but with a stationary
stress-energy tensor (see Sect. 4.6.8 for more details).

These results were extended to real Proca fields in Ref. [156] with no restrictions
on the symmetries of the problem. It was shown that, just like the axisymmetric
simulations discussed above, the initial unstable growth and saturation agrees with
the linear analysis predictions. However, unlike the axisymmetric case, due to the
oscillations of the Proca field and the non-axisymmetric profile of the field, GWs
are emitted in the process. As can be seen in Fig. 4.15 after the superradiant growth
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Fig. 4.15 Left: The time derivative of the energy carried by the Proca field (black line) and the
GW power (red lines) emitted to infinity. Right: Leading-order spherical harmonic components of
the real part of �4 emitted by a Proca field with mass μ = 0.4/M0 around a BH with initial mass
M0 and initial spin a = 0.99M0. The 2 ≤ % ≤ 4, m = 2 components are shown. The left-hand
inset shows that the signal is predominantly at twice the frequency of the most unstable mode,
while the right-hand inset shows the variation in the amplitude due to the beating between the first
and second most unstable modes. From [156]

saturates, the field energy and angular momentum steadily decrease on a time scale
tGW ∼ 105M0.

During the exponential growth of the cloud, GW emission is suppressed and
therefore does not hinder the superradiant growth, as can be seen in the left panel
of Fig. 4.15. However, after the instability saturates, the cloud steadily dissipates by
emitting GWs. As we will discuss in more detail in Sect. 5, this GW signal can be
understood as due to the annihilation of Proca particles in the cloud. The right panel
of Fig. 4.15 shows that the GW signal emitted is predominantly quadrupolar and the
dominant frequency is given by twice the frequency of the dominant unstable mode
of the Proca field ωGW ≈ 2ωR . In addition, on top of the GW signal with frequency
ωGW ≈ 2ωR , small modulations in the GW amplitude can also be observed. These
modulations have a smaller frequency than the signal coming from annihilation and
can be attributed to the interference of the dominant unstable mode (l = m =
1, S = −1, n = 0) with a smaller amplitude overtone (n = 1).

These numerical simulations provide a very simple picture for the evolution
of the instability (to be discussed in detail later): a nonspherical bosonic cloud
grows near the BH on a instability time scale, extracting energy and angular
momentum until superradiance stops and on much larger time scales the cloud
is slowly dissipated through GW emission. These simulations only explored the
m = 1 mode instability. As we already discussed, higherm modes are also unstable
whenever �H > ωR/m. Therefore, modes with m > 1 are expected to further spin
down the BH even after the m = 1 mode instability saturates. However, the much
longer instability time scales for these modes (cf. Eq. (4.36)) make it challenging to
simulate their evolution. Further work is needed to fully understand the final state
of the instability.
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Although these results were obtained by performing fully nonlinear simulations
of the Einstein–Proca equations, the results are in excellent agreement with the
predictions made through an adiabatic evolution of the instability [127] that we
discuss in more detail in below. We will also see in Sect. 5.2 that the formation
of a boson cloud around spinning BHs and subsequent dissipation through GW
emission leads to several observational consequences that can be used to either
detect ultralight bosons or constrain their existence.

4.6.7 Anatomy of Scalar Clouds Around Spinning Black Holes

The linear and nonlinear results discussed above can be summarized as follows.

The Superradiant Stage As the superradiant instability develops, two time scales
are important: the superradiant time scale and the GW emission time scale.
Neglect first GW emission. Then the system asymptotes to a stationary state where
superradiance “shuts-off,” and a cloud forms outside the BH. Focus on scalar fields
for simplicity. As we mentioned, in the non-relativistic limit, the scalar cloud is
governed by an equation which is formally equivalent to Schrödinger’s equation
with a Coulomb potential, controlled by a single parameter

α ≡ MμS . (4.48)

This can be seen by making the standard ansatz for the dynamical evolution of
� [122, 181]

�(t, r) = 1√
2μS

(
ψ (t, r) e−iμS t + ψ∗ (t, r) eiμt

)
, (4.49)

where ψ varies on time scales much larger than 1/μS . Then, one can re-write
Eq. (3.2a) as

i
∂

∂t
ψ =

(
− 1

2μS
∇2 − α

r

)
ψ , (4.50)

where we kept only terms of order O
(
r−1
)

and linear in α.

The eigenstates of the system are hydrogenic-like, with an adapted “fine structure
constant” α and “reduced Bohr radius” a0 [122, 124, 182]. They were shown in
Eq. (4.29) and can be normalized as

ψnlm = e−i(ωnlm−μ)t Rnl (r) Ylm (θ, φ) , (4.51)

Rnl (r) = C
(

2r

ña0

)l
L2l+1
n

(
2r

ña0

)
e
− r
ña0 ,
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ñ ≡ l + n+ 1 , a0 = 1/ (μSα) , C =
√(

2

ña0

)3
(n)!

2ñ (ñ+ l)! , (4.52)

where L2l+1
n is a generalized Laguerre polynomial. To lowest order in MμS , the

eigenvalues are given by Eq. (4.27). Up to terms of order α5 one finds [158]

ωnlm = μS
(

1 − α2

2ñ2 − α4

8ñ4 + (2l − 3ñ+ 1) α4

ñ4 (l + 1/2)

)
. (4.53)

One estimate for the “size” of the scalar cloud is the expectation value of the
radial coordinate for a given state,

〈r〉 =
∫∞

0 dr r3R2
nl (r)∫∞

0 dr r2R2
nl (r)

= a0

2

(
3ñ2 − l(l + 1)

)
. (4.54)

Thus, for most couplings the cloud extends well beyond the horizon, where rotation
effects can be neglected and where a flat-space approximation is justified.

If a light fundamental bosonic field exists in the universe, any small fluctuation
will grow around a spinning BH. For scalars, the dominant mode is dipolar. This
state will grow linearly in the way we described previously, and will extract
rotational energy away from the BH and deposit it in such a state. At leading order,
the geometry is described by the Kerr spacetime and the scalar evolves in this fixed
background: the size of the cloud is large and the backreaction in the geometry is
mostly negligible [127]. In the quasi-adiabatic approximation (and focusing on the
l = m = 1 fundamental mode), the cloud is stationary and described by

R = A0r̃e
−r̃/2 cos (ϕ − ωRt) sinϑ , (4.55)

r̃ ≡ 2Mμ2
S

ñ
r , (4.56)

where the amplitude A0 can be expressed in terms of the mass MS of the scalar
cloud through [127]

A2
0 = 1

32π

(
MS

M

)
α4 . (4.57)

The spatial distribution of such a field and the corresponding energy density is
shown in Fig. 4.16.

The amount of energy in the cloud depends on the initial BH spin ai and on
the field mass μS . In an ideal process for energy extraction, the process develops
adiabatically with constant BH area, and the final spin is related to the initial one via

2Mi(Mi +
√
M2
i − a2

i ) = 2Mf (Mf +
√
M2
f − a2

f ). For the most extreme example

of an initially extremal BH being spun down by a very light field such that af ∼ 0,
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Fig. 4.16 Field (left) and energy density (right) distribution along the equatorial plane for a
coupling Mμ = 0.1 and a dipolar configuration around a non-spinning BH. The initial data is
of the form (4.52), in particular it is described by (4.55). The field is dipolar, as expected, whereas
the energy density at the equator is almost—but not exactly—symmetric along the rotation axis.
The length scale of these images is of order 100M . From Ref. [180]

one findsMf = √
2Mi/2. Thus, the cloud can contain up to 29% of the BH energy,

within a factor 3 of what has so far been seen numerically.
Following the development of the instability in a fully nonlinear evolution is

extremely challenging because of the time scales involved: τBH ∼ M is the light-
crossing time, τS ∼ 1/μS is the typical oscillation period of the scalar cloud, and
τ ∼ M/(MμS)

9 is the dominant instability time scale in the small-MμS limit. As
previously discussed, in the most favorable case for the instability, τ ∼ 106τS is
the minimum evolution time scale required for the superradiant effects to become
noticeable in the scalar case. Thus, current nonlinear evolutions (which typically
last at most ∼ 103τS [177]) have not yet probed the development of the instability,
nor the impact of GW emission. However, as we mentioned, nonlinear evolutions of
complex vector fields have been done and confirm the above description [156].

The GW Emission Stage A nonspherical monochromatic cloud as in Eq. (4.55)
will emit GWs with frequency 2π/λ ∼ 2ωR ∼ 2μS , the wavelength λ being in
general smaller than the size of the source, rcloud ∼ 〈r〉. Thus, even though the
cloud is nonrelativistic, the quadrupole formula does not apply because the emission
is incoherent [126,127,182,183]. However, due to the separation of scales between
the size of the cloud and the BH size for μSM � 1, the GW emission can be
analyzed taking the source to lie in a nonrotating (or even flat [126]) background.

By performing a fully relativistic analysis within the Teukolsky formalism,
Refs. [127,184] found that the energy and angular momentum fluxes of gravitational
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Fig. 4.17 Fully relativistic
GW flux for a dipolar
l = m = 1 scalar mode (black
solid line) as a function of the
couplingMμS , computed at
the threshold at which this
mode is marginally stable
�H = ωR . For comparison
we also show the curve
predicted by the analytical
formula [cf. Eq. (4.58)] valid
in the smallMμS (dashed red
line). Adapted from
Ref. [184]

radiation emitted by a dipolar l = m = 1 scalar cloud read

ĖGW = 484 + 9π2

23040

(
M2
S

M2

)
(MμS)

14 , (4.58)

J̇GW = 1

ωR
ĖGW . (4.59)

This result has been obtained for small values of the coupling MμS and by
neglecting spin effects, i.e., by considering a Schwarzschild background. The latter
is a well-motivated assumption, because the cloud is localized away from the
horizon, when spin effects are negligible. The energy flux above is in agreement
with a previous analysis [126] except for a different prefactor in Eq. (4.58) due to
the fact that Ref. [127] considered a Schwarzschild background, whereas Ref. [126]
considered a flat-metric approximation. This analytical result is an upper bound
relative to the exact numerical flux, as we show in Fig. 4.17, the latter being valid for
any μS and any BH spin [126]. Therefore, using Eq. (4.58) to estimate the energy
loss in GWs is a very conservative assumption, since the GW flux is generically
smaller.

Multiple Modes The evolution discussed above considered the case of a single
(l = m = 1) mode. Multiple modes were discussed in detail in Ref. [185]. The
evolution of multimode data is much richer and depends strongly on the initial
“seed” energy of the perturbation, on the relative amplitude between modes, and
on the gravitational coupling. If the seed energy is smaller than a few percent of the
BH mass—as in most realistic cases including an instability triggered by quantum
fluctuations—the effect of nonsuperradiant modes is negligible and the effect of
higher multipoles (l > 1) can be easily included independently of the l = m = 1. As
discussed in Sect. 5.1.2, although modes with l > 1 are typically much less unstable
than the dipole, owing to the superradiant condition ωR < m� modes with higher
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values of m might exist when the dipole mode l = m = 1 is not superradiantly
unstable (see Fig. 5.4 below). On the other hand, if the seed energy is a few percent
of the BH mass, a BH surrounded by a mixture of superradiant and nonsuperradiant
modes with comparable amplitudes might not undergo a superradiant unstable
phase, depending on the value of the boson mass. This case is relevant only when the
BH is initially surrounded by a non-negligible scalar environment, or if it is formed
out of the coalescence of two BHs merging with their own scalar clouds. Finally,
multiple-mode initial data are useful to make a quantitative comparison between the
quasi-adiabatic evolution (to be discussed in more detail in Sect. 5.1.1 below) and
numerical-relativity simulations, since the latter often make use of multimode initial
data [156, 177, 186].

4.6.8 Circumventing the No-Hair Theoremwith Superradiance

A series of works established what is now known as uniqueness theorems in
GR: regular, stationary BHs in Einstein–Maxwell theory are extremely simple
objects, being characterized by three parameters only: mass, angular momentum,
and electric charge [187–192]. Because of quantum and classical discharge effects,
astrophysical BHs are thought to be neutral to a very good approximation [193–
198]. Therefore the geometry of astrophysical BHs in GR is simply described by
the two-parameter Kerr metric (3.5). On the other hand, NSs—the most compact,
nonvacuum objects that exist—cannot be more massive than ∼ 3M� [199]; taken
together, these two results imply that any observation of a compact object with
mass larger than ∼ 3M� must belong to the Kerr family. Therefore tests of strong-
field gravity targeting BH systems aim at verifying the “Kerr hypothesis” in various
ways [116, 192].

We just saw that when (electro-vacuum) GR is enlarged to include minimally
coupled, massive scalar fields, Kerr BHs may become superradiantly unstable. For
real scalars, such phenomenon leads to a bosonic cloud around the BH, whose
nonzero quadrupole moment results in periodic GW emission, described above.
Thus, the end-state is thought to be a Kerr BH with lower spin [16, 177, 200], as
dictated by the uniqueness theorems. All the linear and nonlinear results available
confirm this picture.

However, there is a subtle way of circumventing the hypothesis of the uniqueness
theorem. Namely, the scalar field could be time dependent but in such a way that
the geometry remains stationary. This requires that the stress-energy tensor of the
scalar field shares the same symmetries of the metric, similarly to the AdS case
discussed in Sect. 4.5.1. Having such stationary configuration is impossible for a
single real scalar field, but for a complex scalar field with time dependence�(t, x) =
e−iωtψ(x), it is possible precisely when the frequency saturates the superradiant
condition (1), i.e., when

ω = m�H . (4.60)
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This is easily seen from the analytic formula (4.27) together with the flux
result (3.80). Consequently, there is no scalar field flux through the horizon as
long as (4.60) is obeyed and the field is allowed to be complex.

This argument suggests the existence of asymptotically flat rotating BHs with
complex scalar hair. In fact, the argument parallels the discussion of hairy solutions
in asymptotically AdS spacetimes, discussed in Sect. 4.5.1. Such solutions in
asymptotically flat spacetimes were indeed found and studied in the limit that the
BH is extremal [201, 202]. The solutions in full generality were found numerically
in Ref. [136], and formally shown to exist later [203]; a detailed discussion
on their construction and physical properties can be found in Ref. [204]. The
ultimate physical reason for the existence of a stationary geometry endowed with
an oscillating scalar field is that GW emission is halted due to cancellations in
the stress-energy tensor, which becomes independent on the time and azimuthal
variables, thus avoiding GW emission and consequent angular momentum losses.

The fact that the condition (4.60) for the existence of hairy BHs lies precisely at
the threshold of the superradiant condition (1) arises from the fact that real frequency
bound states are possible if and only if Eq. (4.60) is satisfied. The hairy BHs found
in Ref. [136] can be thought of as nonlinear extensions of the linear bound states,
when the backreaction of the scalar condensate on the metric is included (see also
Ref. [205]).

The minimally coupled hairy solutions are described by the following
ansatz [136]

ds2 = e2F1

(
dR2

N
+ R2dθ2

)
+ e2F2R2 sin2 ϑ(dϕ −Wdt)2 − e2F0Ndt2 ,

� = φ(r, ϑ)ei(mϕ−ωt) , (4.61)

where N ≡ 1 − RH/R, the parameter RH being the location of the event horizon.
The five functions of (R, ϑ), F0, F1, F2, N, φ, are obtained by solving numerically
a system of nonlinear, coupled PDEs, with appropriate boundary conditions that
ensure both asymptotic flatness and regularity at the horizon; the latter requirement
implies condition (4.60).

The solutions form a five-parameter family described by the ADM mass M , the
ADM angular momentum J , the Noether scalar chargeQ (which roughly measures
the amount of scalar hair outside the horizon), and by two discrete parameters: the
azimuthal harmonic index m and the node number n of the scalar field [136]. One
may regard n = 0 as the fundamental configuration and n ≥ 1 as excited states.
Remarkably, these solutions interpolate between a Kerr BH when q ≡ Q/2J =
0 and a rotating boson stars [206, 207] when q = 1. The latter are (horizonless)
gravitating solitons that are discussed in Sect. 5.7.2 in the context of the so-called
“BH mimickers.” Because the scalar charge Q is a free parameter, the solutions
found in Ref. [136] corresponds to hairy spinning BHs with primary hair (in contrast
to BH solutions with secondary hair, in which the scalar charge is fixed in terms of
other parameters, such as the mass [116]).
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Fig. 4.18 The M-ω parameter space of hairy BHs with a complex scalar field for n = 0 and
m = 1. These solutions exist in the shaded blue region. The black solid curve corresponds to
extremal Kerr BHs and nonextremal Kerr BHs exist below it. For q ≡ Q/2J = 0, the domain of
existence connects to Kerr solutions (dotted blue line). For q = 1, hairy BHs reduce to boson stars
(red solid line). The final line that delimits the domain of existence of the hairy BHs (dashed green
line) corresponds to extremal BHs, i.e. with BHs with zero temperature. The inset shows the boson
star curves for m = 1, 2. Units in the axes are normalized to the scalar field mass μ. Adapted from
Ref. [136]

Figure 4.18 shows the parameter space for the ground-state (n = 0) solutions
with m = 1 [136]. Interestingly, uniqueness in the (M, J ) subspace is broken
because there is a region in which hairy BHs and the Kerr solution coexist with
the same values of mass and angular momentum. However, no two solutions were
found with the same (M, J, q) [136]. In the region of nonuniqueness, hairy BHs
have larger entropy than the corresponding Kerr BHs. Therefore, the former cannot
decay into the latter adiabatically.

As found in Ref. [136], the quadrupole moment and the angular frequency at
the ISCO can differ significantly for hairy BHs, as compared to the standard Kerr
values. This is shown in Fig. 4.19.

In fact, in one corner of the parameter space these solutions can be interpreted as
Kerr BHs perturbed by a small scalar field (and whose quadrupole moment is close
to that of Kerr), whereas in the opposite corner they describe a small BH within a
large boson star. In the latter case the properties of the solutions resemble those of a
stellar configuration rather than those of a BH.

Since these solutions also possess an ergoregion they are expected to be unstable
against the superradiant instability. Indeed it was shown in Ref. [208] that solutions
with azimuthal number m = 1 are unstable against small perturbations with
azimuthal number m > 1. For small scalar hair the time scale of the instability
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Fig. 4.19 Quadrupole moment of a hairy BH normalized by its Kerr value for the same mass and
angular momentum and as a function of the dimensionless spin J/M2. Several lines of constant
�H (dashed black) and q ≡ Q/2J are displayed. From Ref. [136]

was shown to be almost identical to those of a massive scalar field on a fixed
Kerr background, as should be expected. Nonlinear hairy solutions with m > 1
were studied in detail in Ref. [209] showing that consecutive m families can share
solutions with the same global mass and spin, and when this occurs higher m are
always entropically favored, therefore, suggesting that the superradiant instability
can trigger the migration of solutions with lower m to the ones with larger m, in an
approximately adiabatic way. It should be noted however, that such instability has a
time scale which can be extremely large [210].

Finally, hairy BHs have a richer structure of ergoregions than Kerr. For example,
besides the ergosphere of Kerr-like configurations (cf. Fig. 3.2) also ergosaturn can
form in a certain region of parameter space [211].

Nonlinear, hairy solutions were also extended to encompass rotating, charged
geometries [212,213], whereas in Refs. [214,215] these solutions were constructed
and analyzed analytically at linear level. Solutions with complex Proca hair were
also constructed and shown to share very similar properties to the solutions
presented above [179,216]. These solutions also emerge as metastable states during
the numerical evolution of complex Proca fields [156].

Other Hairy Solutions and the Role of Tidal Dissipation Generalizations were
soon found that encompass hairy BHs with self-interacting scalar fields. For
example, in Ref. [217] the authors studied a complex massive scalar field with
quartic plus hexic self-interactions, dubbed nonlinear Q-clouds. Without the self-
interactions, it reduces to the hairy solutions just described and corresponds to zero
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modes of the superradiant instability. Non-linear Q-clouds, on the other hand, are
also in synchronous rotation with the BH horizon; but they exist on a 2-dimensional
subspace, delimited by a minimal horizon angular velocity and by an appropriate
existence line, wherein the nonlinear terms become irrelevant and the Q-cloud
reduces to a linear cloud. Thus, Q-clouds provide an example of scalar bound
states around Kerr BHs which, generically, are not zero modes of the superradiant
instability. Note that self-interaction terms only become important in the nonlinear
regime: accordingly, it could be anticipated that nonlinear solutions exist (where the
nonlinear terms play the role of an effective mass term) despite not corresponding
to any superradiant bound state in the linear regime. Indeed, Ref. [218] constructed
fully non-linear hairy solutions for a complex massive scalar field with a quartic
potential, showing that solutions exist even for very large self-interactions.

Other hairy solutions were also found in higher-dimensional, asymptotically flat
spacetime [219]; the construction parallels that of AdS spacetime (see Sect. 4.5.1
and Ref. [67]) and consists on finding rotating BHs with scalar hair and a regular
horizon, within five-dimensional Einstein’s gravity minimally coupled to a complex,
massive scalar field doublet. They are described by their mass M , two equal
angular momenta, and a conserved Noether charge Q, measuring the scalar hair.
For vanishing horizon size the solutions reduce to five-dimensional boson stars.
In the limit of vanishing Noether charge density, the scalar field becomes point-
wise arbitrarily small and the geometry becomes, locally, arbitrarily close to that
of a specific set of Myers–Perry BHs (the higher-dimensional versions of the
Kerr solution [220]); but there remains a global difference with respect to the
latter, manifest in a finite mass gap. Thus, the scalar hair never becomes a linear
perturbation of the Myers–Perry geometry. This is a qualitative difference when
compared to Kerr BHs with scalar hair [136]. Whereas the existence of the latter can
be anticipated in linear theory, from the existence of scalar bound states on the Kerr
geometry (i.e., scalar clouds), the hair of these Myers–Perry BHs is intrinsically
nonlinear.

An aspect that deserves to be highlighted is condition (4.60) for stationary
solutions, which holds even when the hairy solution cannot easily be mapped onto
a linearly, superradiantly unstable spacetime. This condition is tightly connected
to tidal dissipation, in turn associated with superradiance, as we explained in
Sect. 2.5.5 (see also Refs. [221, 222]). In summary, if the scalar “cloud” does not
obey Eq. (4.60), tidal forces (of gravitational or other nature) will act and the system
cannot possibly be in equilibrium. This fact is reminiscent of the phenomenon of
“tidal locking” that occurs, for instance, in the Earth–Moon system [221].

Formation of Hairy Solutions and Bounds on Bosonic Fields In parallel with the
open problem of stability of the hairy BHs discussed above, a relevant question is the
mechanism of formation of such solutions. Formation scenarios based on collapse
or Jeans-like instability arguments are hard to devise. Indeed, if the collapsing
matter does not possess any scalar charge, it is reasonable to expect that collapse
would form a Kerr BH, which might eventually migrate towards a hairy BH
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solution through superradiant amplification of a scalar field fluctuation. However,
should these solutions arise from a superradiant instability of the Kerr metric, the
energy density of the scalar field is negligible and the geometry would be very
well described by the Kerr solution [127]. In other words, superradiant instabilities
require a Kerr BH to start with, and they can at most produce “light” scalar clouds,
i.e., condensates which backreact very weakly on the geometry. The physical reason
is that superradiance can only extract a finite amount of mass from the BH (at most
29% of the initial BH mass [223]), and, therefore, the scalar cloud can only grow to
a limited value. Although it is unlikely that configurations that deviate considerably
from Kerr can arise from the evolution of initially isolated Kerr BHs, they may arise
as the end-state of some other initial conditions, most likely involving a large scalar
field environment; for instance, they could arise from the collapse of ordinary stars
inside a large boson-star environment.

Finally, the putative existence of hairy BH solutions as the end-state of the
superradiant instability does not invalidate any of the results related to BH spin
down, which will be discussed in detail in Sects. 5.1 and 5.2. The reason is that
hairy BHs lie along the ω = m� ∼ μ line. In other words, for a Kerr BH to evolve
towards a hairy BH it will necessarily loose angular momentum, in the same way as
Kerr BHs do, as discussed in Sect. 5.

4.7 Tidal Effects Induced by a Companion Star or Black Hole

The presence of a companion affects the growth and development of superradiant
instabilities since it destroys the axisymmetry of the problem. This loss of symmetry
leads to mode-mixing and to a wealth of new effects [122]. The effects of the
companion can been modeled as follows. Take a Kerr BH surrounded by a superra-
diant cloud, and assumed it to cause negligible backreaction in the spacetime. The
geometry is, therefore, kept fixed, in the sense that the scalar field never backreacts
on the geometry. This working hypothesis holds true for most of the situations of
interest [127]. A companion of massMc is now present, at a distance R, and located
at θ = θc, φ = φc in the BH sky. The companion induces a change δds2

tidal in the
geometry. Thus, the spacetime geometry is described by

ds2 = ds2
Kerr + δds2

tidal . (4.62)

For the tidal perturbation induced by the companion, the literature as focused so far
only on the leading-term nonspinning approximation [224]

δds2 =
∑
m

r2E2mY2m(θ, φ)(f
2dt2 + dr2 + (r2 − 2M2)d�2)

E2m = 8π

5

Mc

R3 Y
∗
2m(θc, φc) ,O

(v
c

)
, (4.63)
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where f = 1 − 2M/r . This expression deals only with electric-type tides, since
they dominate over magnetic type terms. This approximation is not accurate close
to the BH horizon, where spin effects change the tidal description. However, for all
the parameters considered here the cloud is localized sufficiently far away that such
effects ought to be very small.

The tidally corrected geometry above is now ready to be used in the equation
of motion for the scalar field. As a result, one finds a wave-like equation similar to
(3.74), which can be put in the form d2R/dr2∗ + (ω2 − V )R = 0, with an effective
potential V = V0 + δV , where V0 is the potential in pure Kerr. This form is apt for
a perturbative treatment, familiar from quantum mechanics [225].

In particular, the companion will cause transition between levels to an extent
which can easily be computed. A thorough study of this problem and associated
level transitions was done in Refs. [122,180,226]. There are two important effects on
the cloud itself, generically: the presence of a companion excites higher overtones,
causing the cloud to “puff up,” since overtones have a larger spatial distribution.
Tidal effects also cause mixing between angular modes, causing octupolar and
higher modes to be excited and leading to a different cloud spatial profile.

The tidally distorted cloud also backreacts on the companion, in a way very
similar to that of Earth tides acting on the moon, described in detail in Sect. 2.5.5:
transferal of angular momentum from the cloud to the companion occurs via the
gravitational interaction only and may lead to companions stalled (“floating”) at
some critical radius where tides are resonantly excited [150, 227, 228]. The mecha-
nism in fact transfers angular momentum from the BH to the companion, using the
cloud as intermediary; there is a one-to-one correspondence with the Earth–Moon
system of Sect. 2.5.5, where the cloud plays the role of oceans. Such floating orbits
are described in more detail below, in the context of a charged companion. For
purely gravitational interactions, we refer the reader to Ref. [227] for a Newtonian
analysis and to Refs. [150,228,229] for a full relativistic and thorough analysis. For
example, for angular momentum exchanged via the l = 1,m = ±1 mode, floating
occurs at at an orbital frequencyM� = aμS(MμS)

5/12 [228, 229].
For large tidal fields, one expects the scalar configuration to be disrupted. A star

of massM∗, radius R∗, in the presence of a companion of massMc at distance R is
on the verge of disruption if—up to numerical factors of order unity,

2Mc/R
3 = M∗/R3∗ . (4.64)

For configurations where the mass in the scalar cloud is a fraction of that of the BH,
M∗ = M and its radius is of the order of R∗ = 5/(MBHμ

2
S) (for the fundamental

dipolar mode, see Sect. 4.6.7). As such, one finds the critical moment

(
Mc

R3

)
crit

≈ (Mμ)6

250M2 . (4.65)
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Fig. 4.20 Snapshot of a tidally disrupting cloud. The snapshot depicts the energy density along
the equator of a scalar cloud which was set initially around a non-spinning BH. In the absence of a
companion mass, the energy density is almost spherical and remains so for thousands of dynamical
time scales. Here, the simulation starts with one symmetric initial scalar energy distribution, but
in the presence of a star of mass Mc = 0.1 at a distance R = 100. The gravitational coupling
MμS = 0.1. The snapshot is taken after 7000M and is leading to disruption of the cloud. Taken
from Ref. [180]

Numerical simulations are consistent with this behavior. Figure 4.20 shows the
equatorial distribution of energy density for a cloud with a mass couplingMμS =
0.1 in the neighborhood of a star with mass 0.1M at a distance R = 100M . The
result is compatible with disruption of the cloud, which quickly looses mass to
asymptotic infinity. The scaling with the parameters of the system is consistent with
the previous predictions.

Note that, at the verge of tidal disruption by a companion, the binary itself is
emitting GWs at a rate

Ėbinary = 32

5

M2
cM

3

R5 , (4.66)

where we assume the companion to be much lighter than the BH. The GW flux
emitted by the cloud-BH system scales as Eq. (4.58) [126, 127, 184]

Ėcloud ∼ 1

50

(
MS

M

)2

(Mμ)14 . (4.67)

Thus, GW emission by the binary dominates the signal whenever

Mc

MS
� (MS/M)5(5Mμ/2)12 , (4.68)
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with MS the mass in the scalar cloud [126, 127, 184]. Therefore, in the context of
GW emission and detection, for all practical purposes disruption will not affect our
ability to probe the system: if it was visible via monochromatic emission by the
cloud before disruption, it will be seen after disruption as a binary.

4.8 Superradiant Instabilities and Other Absorption Channels

4.8.1 Axionic Couplings and Bursts of Light

We have given a complete description of how minimally coupled, massive fields
evolve in the spacetime containing a spinning BH, but otherwise isolated. Gener-
ically, an instability ensues through extraction of energy from the spinning BH,
and deposition onto the bosonic field, which “condensates” outside the horizon.
However, it is likely that such fundamental fields are coupled to other, possibly
standard model, fields.

As a simple example, consider the theory described by a charged massive scalar
coupled to the Maxwell sector, Eq. (3.1). A vacuum Kerr spacetime with vanishing
scalar and vector �,Aμ solves the equations of motion. Thus, a neutral spinning
BH will trigger a scalar instability. As the scalar grows, and as is clear from the
equations of motion, it induces a non-vanishing vector field, potentially affecting
the development and growth of the scalar condensate.

An example of interest to particle physics and where new effects appear concerns
axionic couplings [230]. Consider the theory where a massive, real scalar � with
possible axionic couplings to a vector (through the coupling constant ka) and scalar
couplings to the Maxwell invariant through a coupling constant ks,

L = R

k
− 1

4
FμνFμν − 1

2
gμν∂μ�∂ν� − μ2

S

2
�� − ka

2
� ∗FμνFμν − (ks�)

p

4
FμνFμν , (4.69)

with p = 1, 2 popular choices [231, 232]. Again, the mass of the scalar � is given
bymS = μSh̄, Fμν ≡ ∇μAν−∇νAμ is the Maxwell tensor. Here, the dual ∗Fμν ≡
1
2ε
μνρσFρσ and we use the definition εμνρσ ≡ 1√−gE

μνρσ , where Eμνρσ is the

totally anti-symmetric Levi-Civita symbol with E0123 = 1. The quantities ka, ks are
constants. Depending on the parity transformation of the (pseudo)scalar, coupling
to the Maxwell sector is realized through E · B (pseudo-scalar, setting ks = 0) or
E2 − B2 (scalar, setting ka = 0) invariant. We set ks = 0, but the extension is
trivial [233–235]. We get the following equations of motion for the theory above:

(
∇μ∇μ − μ2

S

)
� = ka

2
∗FμνFμν , (4.70a)

∇νFμν = −2ka
∗Fμν∇ν� . (4.70b)
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For any astrophysically interesting scenario, the matter content around BHs is not
significant, and as we explained one can take the background Kerr geometry as a
good approximation.

It is important to note that the equations of motion are solved by Aμ = 0,� = 0
but also by Aμ = 0 and � described by a superradiant state around Kerr. Thus,
one expects that small scalar fluctuations initially grow through the superradiant
instability. Although Aμ = 0 is always a solution, it is an unstable one. This can be
seen most easily in a Minkowski background and for a uniform, coherent oscillating
background axion state of amplitude�0. A simple analysis shows that the equation
of motion for the vector is of Mathieu type, and that Aμ = 0 is an unstable state.
There are unstable modes at frequency ω = nμS/2, with n ∈ N. At the lowest
frequency, the vector grows at a rate Aμ ∼ eλt with λ = kaμS�0/2.

Consider now a scalar cloud of finite extent around a spinning BH. The flat space
analysis may be expected to hold, provided that the photon produced through the
instability interacts before exiting the cloud. Thus, the cloud length scale 1/(Mμ2

S)

(Sect. 4.6.7) now controls the process and introduces a cutoff coupling kcrit
a below

which no instability develops. The threshold coupling constant was found to be [233,
234]

kcrit
a � 2

(
M

MS

)1/2

(MμS)
−2 , (4.71)

whereMS is the total mass in the scalar cloud andM the BH mass.
These predictions describe well the numerical simulations. As an example,

Fig. 4.21 shows the evolution of a small vector fluctuation around a scalar cloud.
For different initial disturbances, the growth rate is very similar, and agrees with the
simple estimate above.

The vector instability occurs as a burst of radiation, that decreases the axion
amplitude, lowering it to sub-critical values. On a long, superradiant time scale,
the scalar is replenished and further, periodic bursts occur. In other words, the
coupling between the axion and the Maxwell sector effectively limits the maximum
amount of mass in the scalar cloud. For sufficiently large coupling constants, cloud
growth can be enormously suppressed. This is a generic consequence of couplings
to other channels, as we will see below. For effects of plasma on this mechanism,
see Refs. [234, 235].

4.8.2 Nonlinear Self-Interactions and “bosenova” Explosions

In the same way that the field� interacts with the Maxwell field through an axionic
coupling, non-perturbative effects can also produce self-interaction terms. A widely
used theory considers QCD axions with periodic potential

L = R

k
− 1

2
gμν∂μ�∂ν� − U(�) , (4.72)
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Fig. 4.21 Time evolution of a small vectorial fluctuation around an axionic cloud of amplitude
A0 (the overall amplitude in (4.29)). Here, �1 (upper panel) is the dipolar component of the axion,
FF0 (middle panel) is the monopolar component of the Maxwell invariant FμνFμνat r = 20M .
We also show the energy flux (bottom panel) for an axion with mass MμS = 0.2 around a BH
with a = 0.5M . The coupling constant is super-critical with kaA0 = 0.3. The initial EM profile
is described by an amplitude and width (E0/A0, w/M) = (10−3, 5), (10−3, 20), (10−4, 5) for run
7, 8, 9 respectively, and r0 = 40. The overall behavior and growth rate of the instability at large
time scales are insensitive to the initial conditions. Taken from Ref. [233]

U(�) = f 2
a μ

2
[

1 − cos

(
�

fa

)]
, (4.73)

parameterized by a mass μ and coupling fa , the axion decay constant [99,236,237].
The axion decay constant depends on the model, in some models it is of the order
of the GUT scale, fa ≈ 1016GeV. Note that at small amplitudes, U ∼ μ2�2/2 and
one recovers the theory of a simple minimally coupled massive field.

The equation of motion for the scalar is

∇μ∇μ� − μ2fa sin (�/fa) = 0 . (4.74)

When the scalar is small, the superradiant instability proceeds as it does for a
minimally coupled massive field. However, when �2 ∼ 6f 2

a , the next term in
the Taylor expansion of the sin becomes comparable to the mass term, and new
effects appear. In particular, modes carrying angular momentum down the horizon
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and off the cloud become relevant. At the level of the equation of motion, such
phenomenology is similar to the previous discussion on couplings to the Maxwell
sector: new physics appears each time one term in the equations of motion becomes
comparable to the others. Thus, one can anticipate that nonlinear effects become
important whenever the mass in the cloudMS (see Sect. 4.6.7) is of order

MS ∼ 192πM
f 2
a

(Mμ)4
. (4.75)

Here, one assumes starting with fundamental l = m = 1 mode and evaluates
the field at its peak, according to Eq. (4.57). This prediction should be compared
with simulations done for Mμ = 0.4 around a highly spinning BH [236, 237],
which indicate a dependence MS ≈ 1600(fa/mP)

2M , with mP being the Planck
mass [236–238]. The dependence on the coupling parameter Mμ is untested thus
far. This process was dubbed “bosenova” in analogy with a similar phenomenon
occurring in condensed-matter systems. For sufficiently strong self-interactions
(fa � mP) bosenovae can happen during the superradiant growth and before
extracting all the BH spin as allowed by the superradiant condition. For example,
if fa corresponds to the GUT scale, fa ≈ 1016GeV, the bosenova occurs when
MS � 0.16M . As shown in the evolutions presented Sect. 5.1, the scalar cloud can
typically attain such fraction of the BH mass under conservative assumptions (cf.
Fig. 5.2 and Ref. [127]), and, therefore, the effects of bosenovae can have interesting
phenomenological applications. During the bosenova, a fraction of the cloud energy
is absorbed by the BH, whereas the rest is emitted in a GW burst (see Sect. 5.2.2),
leaving just a small fraction of the cloud bound to the BH [182, 236–238]. This
reduces the size of the cloud and the effects of nonlinearities. After the first collapse,
the cloud is replenished through superradiance until the next bosenova possibly
occurs (assuming the conditions are such that nonlinearities can become important
before superradiant extraction is exhausted). This superradiance-bosenova cycle
repeats until all available BH spin is exhausted. Thus, at variance with annihilation
and level transition, the signal from bosenova explosions is a periodic emission
of bursts, whose separation depends on the fraction of the cloud which remains
bound to the BH after each subsequent collapse. Finally, Ref. [239] have modeled
the dynamics of the axion cloud by a simple cellular automaton, showing that the
process exhibits self-organized criticality.

4.8.3 Plasma-Triggered Superradiant Instabilities

Consider a spinning BH surrounded by a plasma. If the total mass of the surrounding
matter is sufficiently small, its gravitational backreaction is negligible and the
background spacetime is uniquely described by the Kerr metric. In this configuration
even standard photons interacting with the plasma acquire an effective mass given
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(in Planck units) by the plasma frequency [240, 241]

ωp =
√

4πe2n

me
, (4.76)

where n is the electron density and me and e are the electron mass and charge,
respectively. As a consequence of the modified dispersion relation, Maxwell
equations within the plasma in flat spacetime read

∇σF σν = ω2
pA

ν . (4.77)

The equation above is also valid in curved spacetime as long as the background is
slowly varying compared to ω−1

p and the density gradient is small compared to the
gravitational field [241].

When the plasma density is constant and homogeneous, Eq. (4.77) coincides with
Proca equation (4.34), where the plasma frequency can be identified with the mass of
the vector field. More generically, the plasma density might have a nontrivial radial
and angular profile. In this case the instability can be investigated semi-analytically
by using the methods developed in Refs. [13, 154] or by a fully numerical analysis.

Superradiant instabilities triggered by plasma were analyzed in Ref. [242],
where it was shown that they are relevant only for small primordial BHs in the
early universe, as discussed in detail in Sect. 5.5. It has also been suggested that
plasma-induced superradiant instabilities could explain observations of “Fast Radio
Bursts” [243]. A numerical investigation of superradiant instabilities triggered by
plasmas and accretion disks can be found in Ref. [244].

An important caveat with any claims about the role of plasmas in superradiance
concerns backreaction and nonlinear effects. A growing EM field will easily change
the plasma distribution around a BH or compact star, and potentially even blow
the plasma away from the BH vicinity; likewise, Eq. (4.77) will acquire nonlinear
corrections in the electric field amplitude which can make the plasma transparent
at some frequency. The impact of any of these effects on the development of
superradiant instabilities is unknown.

4.9 Superradiance in Scalar-Tensor Theories

Nonminimal couplings can produce effective mass terms in the perturbation equa-
tions and confine radiation, thus giving rise to superradiant instabilities akin to
the ones discussed above for massive bosonic fields. Here we discuss superradiant
instabilities in a modified theory of gravity, namely scalar-tensor theories.



4.9 Superradiance in Scalar-Tensor Theories 159

4.9.1 Spontaneous Superradiant Instabilities in Scalar-Tensor
Theories

As discussed in Sect. 3.13, the presence of matter may drastically affect the
superradiant amplification of scalar waves in scalar-tensor theories [245, 246].
Indeed, the Klein–Gordon equation for a massless scalar field acquires an effective,
spacetime-dependent mass term μeff proportional to the trace of the stress-energy
tensor.

When μ2
eff > 0, a “spontaneous superradiant instability” might be present for

rotating BHs, similarly to the case of massive Klein–Gordon fields previously
discussed. Focusing on separable solutions of the Klein–Gordon equation with
� = �(r)S(ϑ)e−iωt+imϕ , Refs. [245, 246] found that if the (trace of the stress-
energy tensor of the) matter profile has the general form

T (r, ϑ) ∼ 2
F(ϑ)+ G(r)

a2 + 2r2 + a2 cos 2ϑ
, (4.78)

then the scalar acquires an effective mass μ2
eff ∼ μ2

0 + T , and the Klein–Gordon
equation is separable, where μ0 is the original, constant, mass of the scalar [245,
246]. In this case, the scalar perturbations reduce to the following coupled system
of equations:

(sinϑS′)′

sinϑ
+
[
a2
(
ω2 − μ2

0

)
cos2 ϑ − m2

sin2 ϑ
− F + λ

]
S = 0,

�
d

dr

(
�
d�

dr

)
+
[
K2 −�

(
G + r2μ2

0 + λ
)]
� = 0 ,

where�,K , and λ have been defined in Sec 3.7.1, whereas μ0 is a “bare” mass that
will be set to zero in the following, because we are interested in an effective mass
term that vanishes at large distances.

A representative case is summarized in Fig. 4.22 for a matter profile characterized
by μ0 = 0, F = 0 and G =  [r − r0]β(r − r0)/r3, where β parametrizes the
strength of the scalar-tensor coupling. Even though the effective mass term vanishes
at large distances, the instability is akin to the original BH bomb, i.e., a spinning
BH enclosed by a mirror located at r = r0: as discussed in Sect. 4.4, for small
r0 there is no instability, as the natural frequencies of this system scale like 1/r0
and are outside the superradiant regime. It is clear from Fig. 4.22 that this is a
superradiant phenomenon, as the instability is quenched as soon as one reaches the
critical superradiance threshold. At fixed large r0/M , and for any sufficiently large
β, the instability time scale ω−1

I is roughly constant. In agreement with the simpler
BH bomb system, a critical β corresponds to a critical barrier height which is able to
reflect radiation back. After this point increasing β further is equivalent to a further
increase of the height of the barrier and has no effect on the instability.
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Fig. 4.22 Superradiant instability for a matter profile characterized by Eq. (4.78) with μ0 = 0,
F = 0, and G =  [r − r0]β(r − r0)/r3, where β parametrizes the strength of the scalar-tensor
coupling. For large β the system behaves as a BH enclosed in a cavity with radius r0. Curves are
truncated when the modes become stable. From Ref. [245]

Although spontaneous superradiant instabilities seem to be a generic feature
of scalar-tensor theories [246], so far they have been investigated only through
the ansatz (4.78), i.e., when the equations are separable. Further investigation is
necessary in order to understand realistic configurations such as accretion disks. In
that case, methods such as those used in Ref. [15, 16, 125, 154] would be required.

Finally, spontaneous superradiant instabilities of Kerr-de Sitter BHs in scalar-
tensor theories and the role of a positive cosmological constant were recently
investigated [247].

4.9.2 Floating Orbits

Although not directly related to superradiance—when the bosonic field is coupled
to matter—new effects related to stimulated emission may be triggered, modifying
the inspiral dynamics of compact binaries [150, 248–250]. Figure 4.23 illustrates
one such process: a point particle of mass mp orbits a supermassive BH on a quasi-
circular orbit of Boyer–Lindquist radius r0. The point particle is coupled to a scalar
field through the trace of its stress-energy tensor T , yielding the equation of motion
for the scalar field,

[
� − μ2

s

]
� = αT , (4.79)

the couplingα is related to the specific theory under consideration [150,245]. Within
a perturbation framework, for small masses mp the scalar field � is small and its
backreaction in the geometry can be neglected. In other words, the particle follows
a geodesic in the spacetime of a rotating BH, emitting scalar and GWs of frequency
proportional to the orbital frequency of the circular geodesic.

The power emitted as gravitational radiation can be estimated with the use of
the quadrupole formula to be Ėg∞ = 32/5 (r0/M)−5m2

p/M
2. This is the power

at spatial infinity in the low-frequency regime, the flux through the horizon being
negligible for large orbital radii. The scalar flux at infinity can be computed in the
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Fig. 4.23 Pictorial description of floating orbits. An orbiting body excites superradiant scalar
modes close to the BH horizon which are prevented from escaping to infinity due to their being
massive (represented by the gray “wall”). Since the scalar field is massive, the flux at infinity
consists solely of gravitational radiation. From Ref. [150]

low-frequency regime,

Ės∞ = α2M2

12π

(
1 − μ2

s r
3
0/M

)3/2
r4

0

m2
p (�p − μs) , (4.80)

where  (x) is the Heaviside function. As expected, for orbital radii large enough
that the orbital frequency �p < μs , scalar radiation is quenched at spatial infinity.
However, we learned in Sect. 4.6 that the Kerr spacetime admits the existence of
superradiant resonances at

ω2
res = μ2

s − μ2
s

(
μsM

l + 1 + n
)2

, n = 0, 1, . . . (4.81)

Thus, one might expect enhanced scalar flux at the horizon close to these
resonances. Indeed, Fig. 4.24 shows that the flux of (scalar) energy at the horizon is
greatly enhanced close to these resonances. We can estimate the peak flux close to
the resonant frequencies for large distances and for l = m = 1,

Ė
s,peak
r+ ∼ −

3α2
√
r0
M
m2
pM

16πr+
(
M2 − a2

) (
a

2r+ − (M
r0
)3/2
)
F
, (4.82)
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Fig. 4.24 Dominant fluxes of scalar and gravitational energy (l = m = 1 and l = m = 2,
respectively) for μsM = 10−2, α = 10−2 and a = 0.99M . The inset is a zoom around resonance.
From Ref. [150]

with F = 1 + 4P 2. The scalar flux at the horizon grows in magnitude with r0
and it is negative, due to superradiance, at sufficiently large distances. Eccentric but
equatorial orbits do not affect the overall picture [250].

Thus, for any μsM � 1, there exists a frequency ωres � μs for which the total
flux Ės∞ + Ėsr+ + Ėg∞ + Ėgr+ = 0, because the negative scalar flux at the horizon
is large enough to compensate for the other positive contributions. These points are
called floating orbits, because an energy balance argument suggests that at these
locations the small point particle does not inspiral (neither inwards nor outwards).
All the energy lost at infinity under GWs is provided entirely by the rotational energy
of the BH. Under ideal conditions, floating would stop only when the peak of the
scalar flux at the horizon is too small to compensate for the gravitational flux, |Ėg| >
|Ėspeak|.

Floating orbits are not possible in vacuum GR [251]. Thus, they are a smoking-
gun of new physics; the orbital frequency at which the particle stalls exactly
matches the mass of the putative fundamental field, making BHs ideal self-tuned
“particle detectors.” The existence of floating orbits manifests itself in a sizeable and
detectable dephasing of GWs, with respect to pure GR waveforms [150, 197, 248–
250].

The above analysis assumes the orbiting pointlike to carry some nonzero charge,
with which it interacts with the field and therefore with the spinning BH. However,
purely gravitational exchange angular momentum is also possible and gives rise to
similar phenomena [227–229].
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4.10 Superradiant Instability from Stars

As discussed in Sect. 3.8 rotating conducting stars or stellar magnetospheres in
axionic physics can amplify radiation due to superradiance. Hence, in analogy
with the BH case, the mass term for the Proca field can lead to superradiant
instabilities in conducting stars. The parameter space of the QNM spectrum is
large and complicated, since—even for fixed “quantum” numbers (l,m, n)—it still
depends on four dimensionless parameters, namely (μVM,M/R,�/�K , σM),
where we remind that M , R, and � are the mass, radius, and angular velocity of
the star, respectively, and�K = √M/R3 is the Keplerian angular velocity, and σ is
the conductivity.

In the axial case, the numerical results for the l = m = 1 fundamental unstable
mode are well approximated in the small μVM limit and to linear order in �/�K
by [252]

ω2
R ∼ μ2

V

(
1 − μ2

VM
2

8

)
, (4.83)

ωI ∼ −
[
α1

σM

α2 + (σM)3/2
]
(μVM)

8(μV −m�) , (4.84)

where αi are dimensionless constants that depend on the compactness and also on
� since the combination �/σ is not necessarily small. Besides the prefactor in
square brackets in Eq. (4.84), the functional form of the superradiantly unstable
modes is the same as that found for a BH [16, 125, 131, 154]. The dependence
of the prefactor in Eq. (4.84) on σ and M/R are presented in the right panel
of Fig. 3.15, which displays a linear behavior in σ at small conductivities and a
∼ σ−1/2 behavior at large conductivities. The dependence on the compactness is
monotonic at small conductivities, but it is more complicated at large conductivities,
in line with the aforementioned behavior of the amplification factor of massless
fields. A simple model that shares many features with these numerical results
was presented in Ref. [252]. Bounds on ultralight bosons using the superradiant
instability of pulsars [252, 253] are discussed in Sect. 5.3 below. A discussion
of superradiant instabilities triggered by axion–photon couplings can be found in
Refs. [234, 254] and may play an important role in magnetars [254]. Although
unrelated to superradiance, we should add that stars with magnetic fields can
naturally develop a non-trivial axionic profile [255] due to couplings with the
standard model, such as the one in Sect. 4.8.1.

4.11 Black Holes Immersed in aMagnetic Field

Magnetic fields can also confine radiation and work as “natural” mirrors. Strong
magnetic fields are believed to exist around astrophysical BHs, mainly supported by
accretion disks. Realistic astrophysical BHs are in general very complex systems
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which involve the coupling of gravity to the surrounding accretion disk and
magnetic field. However some approximate solutions have been found that can give
an accurate qualitative, and in some cases quantitative, description of stationary
magnetized BH solutions.

The first approximate solution to be found describes a test uniform magnetic
field in a Kerr background [256]. In addition to this solution, there exists a class
of exact “Ernst” solutions of the Einstein–Maxwell equations, which describe
BHs immersed in a uniform magnetic field [257]. These solutions are not asymp-
totically flat. At infinity the Ernst solutions resemble another solution of the
Einstein–Maxwell found by Melvin [258,259] and further studied by Thorne [260],
describing a uniform magnetic field held together by its own gravitational pull.
Much like AdS spacetime which behaves as a covariant box for perturbations
(cf. Sect. 4.5), the Melvin solution also admits normal modes [2], because the
asymptotic boundary of the Melvin solution is able to confine perturbations. The
model introduced in Sect. 4.2 then predicts that a rotating BH immersed in this
spacetime should be superradiantly unstable.

Similarly to massive vector and tensor perturbations of a Kerr background (cf.
Sect. 4.6), perturbations do not separate in the Ernst backgrounds. Due to this
difficulty, up to date no study of the gravito-EM perturbation of this solution has
been performed. However scalar field perturbations have been studied by several
authors [2,261–263]. This was first done in Ref. [261], who found that in a Br � 1
expansion (with B being the magnetic field strength and r the radial coordinate,
both in geometric units) the massless scalar field equation (4.26) is separable and is
equivalent to a massive scalar perturbation propagating on a Schwarzschild or Kerr
metric with an effective mass μeff = Bm, where m is the field’s azimuthal number.
This was further developed in Refs. [262, 263] who showed that the magnetic field
triggers the same superradiant instability associated with massive fields. However,
this approximation becomes inaccurate at distances comparable to or larger than
∼ 1/B. To handle the problem of non-separability, Ref. [2] used a slow-rotation
approximation (cf. Sect. 4.6.3) and methods introduced in Ref. [15] to study in full
detail scalar perturbations of the Ernst solutions without any approximation in the
magnetic field strength B. In particular, they studied perturbations around the most
generic of these solutions, a magnetized version of the Kerr–Newman metric, and
found that in this background, the mode spectrum reads

ωR ∼ [0.75n+ 1.2m+ 0.25l + 0.7]B + O(B3) , (4.85)

ωIM ∼ γ
(
am/M − 2ωRr+

1 + 8B2M2 − 16B4M4

)
(BM)2(l+1) . (4.86)

This estimate was computed including Wald’s result for the charge induction [256]
caused by the magnetic field, which implies that to have a vanishing total electric
charge at infinity a rotating BH should acquire a nonzero charge q = −2aMB. It
is clear that the instability time scale can be orders of magnitude smaller than the
one estimated using the Br � 1 approximation of Refs. [261–263], in terms of an
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Fig. 4.25 Imaginary part of the fundamental modes of a Kerr–Newman–Ernst BH with Wald’s
charge q = −2aMB, computed at second order in the rotation, as a function of the BH rotation
J/M2, for l = m = 1, and different values of the magnetic field. The dotted thinner lines
correspond to a magnetized BH without charge q = 0. The only effect of the charge is to change
the superradiance threshold. From [2]

effective mass μeff = Bm (cf. Eq. (4.27)). An example of the instability growth rate
for the Kerr–Newman–Ernst BH is shown in Fig. 4.25.

The model presented in Sect. 4.2 suggests that magnetized Kerr–Newman
BHs should also be unstable against gravito-EM perturbations. The same model
predicts that the instability growth rate should follow the same scaling as scalar
perturbations (4.86). Moreover, since superradiant extraction is more efficient for
gravitational and EM perturbations (cf. Sect. 3.7.5) we expect them to trigger a
slightly stronger instability. This generic instability of BHs surrounded by magnetic
fields can be used to impose intrinsic limits on the strength of magnetic fields around
rotating BHs as we discuss in more detail in Sect. 5.6.

4.12 Superradiant Instability of Black Holes Surrounded by
Conducting Rings

An interesting toy model of superradiant-triggered energy extraction in astrophys-
ical systems was proposed by Press [264]. As depicted in Fig. 4.26, the model
consists of two coaxial rings, the inner of which is resistive and rotates around the
common axis of symmetry, whereas the outer one is a conductor (which we take to
be nonspinning for simplicity). The astrophysical analog of such toy model (right
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Fig. 4.26 Left: Table-top model for superradiant amplification by two conducting rings. The
inner resistive ring rotates at relativistic speed, whereas the outer ring is a conductor and might
be nonrotating. Rotational energy is extracted from the resistive ring and may be larger than
radiative losses to infinity, yielding exponential growth of the stored field energy. Shading shows
schematically the location of positive and negative charge in an m = 2 unstable mode. Right:
the conjectured BH analog of the table-top model, where the resistive rotating ring is replaced by
a Kerr BH. Shading shows the charge density on the ring, and the image charge density on the
horizon. From Ref. [264]

panel of Fig. 4.26) is obtained by replacing the inner ring by a Kerr BH, the event
horizon playing the role of the rotating resistor.12

In the two-ring model, the electric field is computed by solving Maxwell
equations in terms of retarded potentials [20, 264]. The key point of the derivation
is to recognize that Ohm’s law J = σEϕ (where J , σ , and E are the electric
current on the ring, the conductivity, and the ϕ component of the electric field,
respectively) must be applied in the matter rest frame of each ring element. Using
Lorentz transformations into the inner rotating ring frame yields

J ′
1
ϕ̂ = σE′ϕ̂ → γ

(
1 − m�

ω

)
J1 = σEϕ̂1 , (4.87)

where a prime denotes the ring rest frame, the hatted index is the orthonormal
tetrad component [264], γ is the Lorentz factor associated with the inner ring
angular velocity �, i.e., γ = (1 − v2)−1/2, where v is the linear velocity. Note
the superradiant factor emerging in the equation above when Ohm’s law is written
in the inertial frame.

12The membrane paradigm assigns an electrical resistance of ∼ 377 Ohm to the horizon [265].
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4.13 Kaluza–KleinMass: superradiant Instabilities in Higher
Dimensions

For higher-dimensional BH spacetimes, instabilities are the rule rather than the
exception. For example, black strings and black branes are unstable against long
wavelength modes along the flat dimension. This is known as the Gregory–
Laflamme instability [170, 266] (see also Sect. 4.6 for the relation between this
instability and the instability of the Kerr BH family against massive spin-2
fluctuations [166, 169]). As another example, for D ≥ 6 dimensions where no
upper bound on the rotation of Myers–Perry BHs exists, a Gregory–Laflamme-like
instability renders ultra-spinning BHs unstable [267–271].

Besides these instabilities, spinning black branes in D = d + n dimensions (and
black strings for the particular case n = 1) are unstable against massless bosonic
fields due to the superradiant instability when d = 4 [11, 272, 273]. Spinning black
branes in D = 4 + n have the form

ds2 = ds2
Kerr + dxjdxj , (j = 1, 2, . . . , n) , (4.88)

where Kerr stands for the 4D Kerr geometry given in (3.5) with � = 0. With
the ansatz � = e−iωt+imϕ+iμj xj S0lm(ϑ)ψ(r), the massless Klein–Gordon equa-
tion (4.26) in the background (4.88) results in the decoupled Teukolsky equations
for a scalar field with effective mass μ2

S ≡ ∑
i μ

2
i . It can be shown that, more

generally, certain gravitational fluctuations are also governed by the massive Klein–
Gordon or Maxwell equations [273]. Thus the propagation of massless fields around
the geometry above is equivalent to the propagation of a massive field in the
vicinity of the 4D Kerr BH, the mass of field being played by the “Kaluza–Klein”
momenta along the flat dimensions. Since Kerr BHs are unstable against massive
bosonic fields, the black brane (4.88) is also unstable. Surprisingly, this is only
true if d = 4 [11]. For d > 4 there are no stable bound orbits for massive
particles [274], which in terms of wave propagation means that there is no well
in the effective potential, and thus there are no (quasi)-bound states. As discussed
in Sect. 4.6, this is a fundamental property needed to trigger the superradiant
instability. Similar arguments were used to show that large doubly spinning black
rings in D = 5 [275]13 are unstable. That this geometry must be unstable was
realized from the fact that in the large-radius limit they reduce to boosted Kerr
black strings, which are unstable due to the reasons stated above. The superradiant
instability for massive scalar fields around boosted Kerr black strings was recently
studied [278].

13Black rings have topology S1 ×SD−3 unlike Myers–Perry BHs which have topology SD−2. The
first 5D black ring was found by Emparan and Reall [276, 277].
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4.14 Ergoregion Instability

We argued in Sect. 3.3.4 that the standard Penrose process and superradiance from
spinning BHs are two distinct phenomena: the former only requires the existence of
an ergoregion, whereas the latter requires the existence of a horizon. For stationary
and axisymmetric BHs, this distinction is superfluous because the existence of
an ergoregion implies that of a horizon (cf. proof in Sect. 3.1.5). However, an
interesting effect occurs for those geometries that possess an ergoregion but not
a horizon: the so-called ergoregion instability [279]. The mechanism is simple: a
negative-energy fluctuation in the ergoregion is forced to travel outwards; at large
distances only positive-energy states exist, and energy conservation implies that
the initial disturbance gives rise to a positive fluctuation at infinity plus a larger
(negative-energy) fluctuation in the ergoregion. Repetition of the process leads to
a cascading instability. The only way to prevent such cascade from occurring is by
absorbing the negative-energy states, which BHs do efficiently (and hence Kerr BHs
are stable against massless fields), but horizonless objects must then be unstable.14

This instability was discovered by Friedman while studying ultracompact slowly
rotating stars with an ergoregion [279, 282], with subsequent work quantitatively
describing the unstable modes for a scalar field propagating on a slowly rotating
metric in the large-l limit [283]. This approach has been extended in subsequent
work [284–286]. Most notably, Ref. [284] extended the analysis to the case of small
multipoles (l,m), finding that the instability time scale is much shorter. Finally,
Ref. [287] studied axial gravitational modes (but again only to first order in the spin),
by neglecting the coupling to polar modes that arises in the slow-rotation limit. They
find that the time scale can be of the order of the seconds/minutes depending on the
compactness of the star. A discussion of these results and their connection to the
CFS instability and the r-mode instability is given in Sect. 5.

However, these works are based on an initial assumption which is not fully
consistent, because they consider a slowly rotating, perfect-fluid star including some
terms to second order in the rotation but neglecting others (see below). Although
this approximation is expected to be reliable for very compact stars [283], no
consistent treatment of the ergoregion instability has been developed to date. Below,
based on recent developments in the study of perturbations of slowly rotating
spacetimes [13, 125, 288, 289], we give the first fully consistent treatment of this
problem.

14The only exception to this rule and argument may occur if the ergoregion extends all the way
to infinity as in certain non-asymptotically flat geometries [280, 281]; we thank Óscar Dias for
drawing our attention to this point.
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4.14.1 Ergoregion Instability of Rotating Objects: A Consistent
Approach

The technical details of this computation are given in Appendix E and in a publicly
available MATHEMATICA® notebook (cf. Appendix A). Our starting point is the
line element (E.2). To second order in the spin, the ergosphere condition gtt = 0
becomes

eν(1 + 2h0) = [r2! 2 sin2 ϑ + eνh2(3 sin2 ϑ − 2)] . (4.89)

The solution to Eq. (4.89) is topologically a torus. Thus, to characterize the
ergoregion it is necessary to include the second-order terms h0 and h2. All previous
analysis of the ergoregion instability neglected such terms, based on the fact that for
a very compact object eν ∼ 0 and the terms proportional to h0 and h2 should be
subdominant relative to the term proportional to ! 2. However, it is easy to show
that this approach would give the wrong result for the ergosphere. For example, in
the particular case of a Kerr BH, Eq. (4.89) is solved by

rergo = 2M − a2

4M
cos 2ϑ + O

(
a4

M4

)
, (4.90)

which agrees with the exact result to second order in the spin.15 On the other
hand, neglecting the second-order terms h0 and h2 in Eq. (4.89) would give the

wrong result, rergo = 2M
(

1 + a2

2M2 sin2 ϑ
)

+ O
(
a4

M4

)
, i.e., the ergoregion would

always be larger than the Schwarzschild radius, in clear contrast with the correct
result (4.90). Clearly, computing the ergoregion of slowly rotating spacetimes
requires to go at least to second order in the rotation. The formalism to construct
slowly rotating geometries has been developed by Hartle & Thorne and is described
in Appendix E. The ergoregion of a compact rotating star, computed by solving
Einstein’s equations to second order in the angular momentum and using Eq. (4.89),
is shown in Fig. 4.27.

In Fig. 4.28, we show the size of the ergoregion for a constant-density star (whose
metric in the static case is given in Eqs. (F.2) and (F.3)) for the consistent second-
order case (top panel) and for the inconsistent case obtained neglecting h0 and h2
in Eq. (4.90) (bottom panel). For a given rotational frequency �, the boundaries
of the ergoregion are the intersections between each curve and the horizontal line.
The two cases can differ substantially, especially as the compactness decreases. In
particular, two striking differences appear: (i) in the consistent case the ergoregion
extends to the center of the star, while it disappears in the inconsistent case, and (ii)

15Note that the metric (E.2) is not written in Boyer–Lindquist coordinates, so the ergoregion
location does not coincide with that given in Eq. (3.14).
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Fig. 4.27 The toroidal ergoregion of a NS with APR equation of state and spinning at the mass-
shedding limit, � = �K ≡ √

M/R3, for a mass slightly above the maximum value (to be
compared with Fig. 3.2 for a Kerr BH). The coordinates (x, y, z) are Cartesian-like coordinates
obtained from (r, ϑ, ϕ) of the line element (E.2)

in the consistent case the ergoregion can extend well beyond the radius of the star.
Overall, the inconsistent result tends to underestimate the size of the ergoregion.

The spectrum of perturbations of spinning geometries is generically involved,
due to the coupling between modes with opposite parity and different harmonic
index l. Nonetheless, within a slow-rotation approach, certain classes of perturba-
tions can be studied consistently by neglecting such couplings [13, 125, 288, 290].
For example, for perturbations of a perfect-fluid star to first order in the spin, the
following master equation can be derived:

d2�

dr2∗
+
[
ω2 − 2mω! − eν

(
l(l + 1)

r2 + η2M(r)

r3 + 4π(P − ρ)
)]
�(r) = 0 ,

(4.91)

where dr/dr∗ = e(ν−λ)/2 and η = −3, 1 for gravitational axial and probe scalar
perturbations, respectively. For an ultracompact star with an ergoregion, the former
and the latter perturbations were studied in Ref. [287] and [283, 284], respectively,
finding a family of unstable modes.16 The instability growth rate increases with the

16We remark that Refs. [283, 284] studied scalar perturbations propagating in the toy-model
metric (4.94).
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Fig. 4.28 Size of the ergoregion on the equatorial plane of a constant-density star with various
compactnesses for the consistent second-order case (top panel) and for the inconsistent case
obtained neglecting h0 and h2 in Eq. (4.90) (bottom panel). For a given rotational frequency
� and a given compactness, the boundaries of the ergoregion are the intersections between the
corresponding curve and the horizontal line. For example in the consistent case with R = 2.40M
and � ∼ 0.6�K , the ergoregion extends between the two black markers, 0.25 � r/R � 0.95

spin of the object, is typically maximum for l = m = 1 modes, and is also larger
for gravitational perturbations than for scalar modes.

Nonetheless, our previous analysis shows that—to treat the ergoregion instability
consistently—one has to include a background geometry to second-order in the spin.
Here we consider the simplest case of a probe scalar field that propagates on the
background of a spinning NS. The perturbation equations to second order in the
spin are derived in Appendix E, the final result is the master equation

d2�

dr2∗
+
[
ω2 − 2mω! − V

]
�(r) = 0 , (4.92)

where

V = eν
(
l(l + 1)

r2 + 2M(r)

r3 + 4π(P − ρ)+ V2(ω)

)
, (4.93)

and V2 is a second-order quantity in the spin that is a cumbersome function of the
background metric coefficients appearing in (E.2), of the pressure P and the density
ρ, and of their derivatives. Indeed, because V2 contains second radial derivatives
of ρ, solving the corresponding eigenvalue problem is quite challenging. For this
reason, here we consider a constant-density star which simplifies the problem
considerably. The effective potential V for this case is shown in Fig. 4.29 for various
spin rates.
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Fig. 4.29 The potential V for ω = 0 as defined in Eq. (4.93) for a constant-density spinning star
withR ∼ 2.26M for different values of the angular velocity. As the mass-shedding limit� → �K
is approached, the potential develops a deeper negative well. Note that V becomes negative only
because of second-order corrections and is positive when � = 0, although its minimum almost
crosses the real axis, giving rise to long-lived modes in the nonspinning case, cf. Sect. 4.14.2

We have solved the eigenvalue problem associated with Eq. (4.92) on the
background of a constant-density spinning star to second order in the angular
velocity. The background problem is solved in the interior by requiring continuity of
the metric functions at the star radius R.17 For the scalar perturbations, the fact that
ρ = ρc = const in the interior and ρ = 0 in the exterior produces discontinuities
in V at the star’s radius, which can be taken into account by suitable junction
conditions for the derivative of the scalar field. At the stellar radius we impose
ψ− = ψ+ and ∂rψ+ = ∂rψ− − �Vψ−/(1 − 2M/r)2, where �V = V+ − V−
and we defined A± = limε→0 A(R ± ε).

The fundamental modes of the system are shown in Fig. 4.30 for a constant-
density star with ultrahigh compactness, R ∼ 2.26M , whose effective potential
is shown in Fig. 4.29. We present both first-order and second-order computations.
As expected, these two cases are in agreement with each other for small angular
velocities, but they are dramatically different when � � 0.1�K . Indeed, while
the modes remain stable to first order in the spin, they become unstable to second
order. Interestingly, the threshold of the instability corresponds (within numerical
accuracy) to a zero crossing also of the real part of the mode. In Fig. 4.30, we focus
only on ωR > 0 by exploiting the symmetry of the field equations under m → −m
and ω → −ω.

The fact that the second-order terms play such an important role in the stability
analysis can be understood by the fact that the ergoregion of the spacetime appears

17Note that, because of the absence of Birkhoff theorem in the spinning case, the exterior geometry
is not a slowly spinning Kerr metric.
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Fig. 4.30 Real and imaginary parts of the fundamental l = m = 1 mode for a constant-density
star with ultrahigh compactness, R ∼ 2.26M , as a function of the angular velocity of the star
normalized by the mass shedding limit. Note that the vertical axis of the bottom plot shows the
absolute value of ωI and is in a log scale. The first order result fails to capture the instability
(ωI > 0, rightmost part of the plots) because in this case the background geometry does not possess
an ergoregion. To second order, the threshold of the instability corresponds to a zero crossing of
both ωR and ωI , see text for details

only at the second order. Indeed, while our results are generically in qualitative
agreement with previous analysis [283–287], it is important to note that in all cases
the latter have been obtained by including some (but not all) second-order terms.
Should all second-order terms be neglected, no unstable mode would be found. The
results in Fig. 4.30 represent the first fully consistent computation of the ergoregion
instability for a spinning compact star. The phenomenology of this instability is
discussed in detail in Sect. 5.7.1.

4.14.2 Ergoregion Instability and Long-LivedModes

The underlying origin of the ergoregion instability is the existence of long-lived
modes in ultracompact spacetimes in the static limit; these modes are very slowly
damped and can become unstable when rotation is included. This has been first
discussed in the eikonal limit [283] and it has been recently put on a firmer basis in
Ref. [291].

Such long-lived modes exist in ultracompact spacetimes which possess a light
ring (i.e., an unstable circular orbit as in the Schwarzschild case) but not a
horizon [291, 292]. The reason for that is explained in Fig. 4.31 (cf. also Fig. 4.29
above), which shows the effective potential (F.1) (cf. Appendix F for details)
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Fig. 4.31 Examples of the potential governing linear perturbations of a static ultracompact star.
The black solid line and the red dashed line correspond to l = 10 gravitational axial perturbations
of a uniform star with R = 2.3M and of a gravastar with R = 2.1M , respectively

corresponding to two models of static ultracompact objects: a constant-density star
with compactnessM/R ∼ 0.435 (black solid curve) and of a thin-shell gravastar18

with compactness M/R ∼ 0.476 (dashed red curve), respectively.19 Because
the radius of these objects is smaller than the light-ring location of the external
Schwarzschild spacetime, r = 3M , the effective potential develops a maximum at
that location. Furthermore, the centrifugal potential near the center of these objects
is responsible for the existence of a further stable null circular orbit in the object’s
interior. This corresponds to the minimum shown in Fig. 4.31, where the long-
lived modes are localized [291]. These modes (sometimes dubbed “s-modes” in
the context of ultracompact stars [290]) are computed in the WKB approximation in
Appendix F and they agree quite well with exact numerical results (cf. Fig. F.1 and
Ref. [291]).

The dependence of the frequency and damping time of these long-lived modes
to instability as functions of the spin in connection to the ergoregion has been first
discussed in Ref. [283], which considers an approximate line element

ds2 = −F(r)dt2 + B(r)dr2 + r2dθ2 + r2 sin2 θ(dφ −!(r)dt)2 . (4.94)

18Thin-shell gravastars [293] are discussed in Sect. 5.7.2 in the context of the so-called “BH
mimickers.”
19Other regular geometries which possess a light-ring are the perfect-fluid stellar objects with
multiple necks discussed in Refs. [294–296].
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Although not being a solution of Einstein’s equations coupled to a fluid, this metric
should approximate the exact geometry describing a spinning star in the case of
slow rotation and high compactness, as we discussed. In such approximate metric,
the ergoregion is defined by

!(r) sin θ >

√
F(r)

r
. (4.95)

In the eikonal limit, the Klein–Gordon equation in the background (4.94) can be
written in the form [283]

ψ ′′ +m2B

F
(ω̄ + V+)(ω̄ + V−)ψ = 0 , (4.96)

where ω̄ = ω/m is a rescaled frequency,m is the azimuthal number associated with
the axisymmetry of the background, and

V± = −! ±
√
F

r
, (4.97)

are the effective potentials that describe the motion of (counter-rotating for the plus
sign and co-rotating for the minus sign) null geodesics in the equatorial plane of the
geometry (4.94).

Now, the boundary of the ergoregion (if it exists) corresponds to two real roots of
V+ = 0 and V+ < 0 inside the ergoregion. Because V+ → +∞ at the center
and attains a positive finite value in the exterior, it is clear that the ergoregion
must contain a point in which V+ displays a (negative) local minimum. This
simple argument shows the important result that the presence of an ergoregion
in a horizonless object implies the existence of stable counter-rotating photon
orbits [291].

Furthermore, Eq. (4.96) supports unstable modes, whose computation is briefly
presented in Appendix F in the WKB approximation. In the eikonal limit, the
instability time scale depends exponentially on the azimuthal number,

τergo ∼ 4αe2βm , (4.98)

where α and β are two positive constants [283] (cf. Appendix F). The instability
can be understood from the fact that the corresponding modes are localized near the
stable photon orbit, which is situated within the ergosphere, and are confined within
the star. This confinement provides the arena for the instability to grow through
the negative-energy states that are allowed within the ergoregion [279]. Likewise,
this argument also explains why spinning BHs—that also possess a light ring and
an ergoregion—are linearly stable, because the presence of the horizon forbids the
existence of trapped modes.
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4.14.3 Ergoregion Instability in Fluids

In the context of acoustic geometries introduced in Sect. 2.4.2 and expanded in
Sects. 2.5.4 and 3.9, sound waves propagate in moving fluids as a massless scalar
field in curved spacetime, with an effective geometry dictated by the background
fluid flow. There are simple acoustic setups with instabilities that can be framed in
the language of curved spacetime as ergoregion instabilities [32, 297].

Let us focus again on the two-dimensional fluid flow of Sect. 3.9, but consider a
specific flow with vanishing radial speed (A = 0 in Eq. (3.126)), the so-called the
hydrodynamic vortex, whose line element is

ds2 = −c2
(

1 − C2

c2r2

)
dt2 + dr2 − 2Cdtdθ + r2dθ2 + dz2 . (4.99)

This effective spacetime presents an ergoregion with outer boundary at rergo = C/c,
which coincides with the circle at which the (absolute value of the) background flow
velocity equals the speed of sound c. Henceforth we set the speed of the sound equal
to unity (c = 1).

The background velocity diverges at the origin as 1/r , signaling a physically
singular behavior. Possible experimental setups can be mimicked by imposing
boundary conditions at a finite position r = rmin, the precise form of which
depend on the specific experimental apparatus. Assume, therefore, that an infinitely
long cylinder of radius rmin is placed at the center of our coordinate system.
The cylinder is made of a certain material with acoustic impedance Z [298].
Low-impedance materials correspond to Dirichlet-type boundary conditions on the
master variable (see Sect. 2.5.4) and, for completeness, we also consider Neumann-
type conditions [32]).

Together with Sommerfeld conditions at large distance, the problem is an
eigenvalue problem for the possible frequencies, the solution of which is shown in
Fig. 4.32 for a specific cylinder position at rmin = 0.3 as a function of rotation rate
C. Notice that our generic arguments in favor of an ergoregion instability predict that
the geometry is unstable as long as the cylinder position is within the ergosurface.
In other words, as long as C > 0.3. Figure 4.32 shows that indeed the large-m
threshold of the instability asymptotes to C = 0.3, as can be seen from Fig. 4.32,
and as anticipated from our discussion. The striking similarity between Fig. 4.32
and Fig. 4.30 is also remarkable. Indeed, in this analog geometry we recover all
the qualitative features previously discussed for ultracompact stars. In particular, in
both cases at the threshold for the instability the frequency of the mode has a zero
crossing and the imaginary part of the mode has an inflection point. Further insights
into the onset of the instability were derived in Ref. [299].

The results also indicate (cf. Fig. 4.32) that all modes m > 5 are unstable for
rmin = 0.3 and circulationC = 0.5. Moreover, at fixed inner boundary location rmin
and fixedm the instability gets stronger for largerC, as might also be anticipated. All
the numerical results fully support the statement that the presence of an ergoregion
without event horizon gives rise to instabilities. A complementary facet of the
instability is shown in snapshots of the evolution, as those depicted in Fig. 4.33.
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These snapshots compare the evolution of a stable (C = 0.5) and unstable (C = 1.5)
configuration, both for m = 2, and show clearly how the instability develops inside
the ergoregion and close to the inner boundary at rmin = 0.3. Notice the scale in the
last snapshot, and how the field decays in space but grows in time.

As might be expected in a centuries-old field, similar instabilities were reported
decades ago in fluid dynamics, within that specific field’s language. Broadbent
and Moore have conducted a thorough study of stability of rotating fluids, but
imposing slightly different boundary conditions [300]. In line with our findings,
they uncover an instability for compressible fluids related also to sound wave
amplification (note that incompressible fluids were also analyzed by Lord Kelvin
and were found to be marginally stable [301]). The evidence that the hydrodynamic
vortex is an unstable system and that the instabilities are directly related to the
existence of an ergoregion together with the absence of an event horizon agrees with
the prediction in Ref. [279]. This confirmation further strengthens the similarities
between effective spacetimes in fluids and BHs.

The simple physical description of such ergoregion instabilities was recently used
to understand the dynamical instability of multiply quantized vortices in spatially
homogeneous atomic Bose–Einstein condensates [302]. In particular, an analysis
of the role of boundary conditions at large distance in the linearized Bogoliubov
problem showed that this is a dispersive version of the ergoregion instability of
rotating spacetimes with respect to scalar field perturbations.

4.14.4 Ergoregion Instability and Hawking Radiation

As we mentioned in Sect. 3.14, string theory has made great progress in understand-
ing the microphysics of BHs. In particular, for certain (nearly) supersymmetric BHs,
one is able to show that the Bekenstein–Hawking entropy SBH = A/4, as computed
in the strongly coupled supergravity description, can be reproduced in a weakly
coupled D-brane description as the degeneracy of the relevant microstates [303].
The AdS/CFT correspondence [304–306] allows further insights into these issues
by providing a dictionary relating the geometric description of the physics in the
near-horizon region with the physics of a dual conformal field theory. In particular,
the AdS/CFT indicates that Hawking evaporation should be a unitary process, in
keeping with the basic tenets of quantum theory. The discussion of BHs in the
context of the AdS/CFT correspondence makes it evident that the path integral over
geometries in the bulk may include multiple saddle-points, i.e., several classical
supergravity solutions [307]. Another point that was realized early on is that the
geometric description of individual microstates would not have a horizon [308].
These ideas were incorporated by Mathur and colleagues in a radical revision of
the stringy description of BHs, the “fuzzball” proposal [309, 310]. They argue that
each of the CFT microstates corresponds to a separate spacetime geometry with
no horizon. The BH is dual to an ensemble of such microstates and so the BH
geometry only emerges in a coarse-grained description which “averages” over the
BH microstate geometries.



180 4 Black Holes and Superradiant Instabilities

In a fuzzball microstate the spacetime ends just outside the horizon (because
compact directions “cap-off” [310]), thus avoiding issues like the information
paradox in BH physics. However, it seemingly introduces an unexpected problem:
if the horizon is not the traditional one, how is it possible to recover traditional
BH thermodynamics like the Hawking radiation rate? Surprisingly, for the few
microstates known explicitly—which rotate and possess an ergoregion—it was
shown that the Hawking radiation rate can be exactly reproduced from the ergore-
gion instability [311,312] (because these effective geometries have no horizon, spin
will in general give rise to an ergoregion hence an instability [313]).

4.15 Black-Hole Lasers and Superluminal Corrections to
Hawking Radiation

A completely different, semi-classical realization of the BH-bomb mechanism was
put forward in Ref. [314]. In this model, one considers Hawking radiation from
a geometry with an outer and an inner horizon and in the presence of high-
energy modifications that change the dispersion relation ω(k) of photons at high
frequencies.20

For a geometry with a single (event) horizon, Hawking radiation is rather insen-
sitive to high-energy modifications, producing the classical thermal spectrum [315]
at frequencies much lower than the new scale. However, in the presence of two
horizons and if the dispersion relation is superluminal, the negative-energy partners
of Hawking quanta are able to bounce back and return to the outer horizon on
a superluminal trajectory. Indeed, the origin of the laser effect can be attributed
to the closed trajectories followed by the negative Killing frequency partners of
Hawking quanta, which can bounce between the two horizons due to the modified
dispersion relation. If the quanta are fermions, they suppress Hawking radiation,
whereas if they are bosons they stimulate a secondary emission which is correlated
to the original radiation, unlike in the usual Hawking effect. The process sustains
itself as in the BH-bomb mechanism (and, in fact, as in the stimulated emission
of a laser), the role of the mirror being played by the ergoregion between the two
horizons which allows for superluminal bouncing trajectories with negative energies
(see Ref. [314] for details). A thorough mode analysis of the BH laser effect shows
that it is described in terms of frequency eigenmodes that are spatially bound. The
spectrum contains a discrete and finite set of complex frequency modes which
appear in pairs and which encode the laser effect [316,317]. Related, zero-frequency
“undulation” modes were dealt with in Refs. [318, 319].

The BH laser is a dynamical instability, the origin of which can be traced back
to the negative-energy states behind the outer horizon, and which work in fact as an

20The example considered in Ref. [314] was inspired by analogue BH models and, as should be
clear from Sect. 2.4.2, the geometry only plays the role of a spectator. The laser effect occurs in
analogue models as well as in true, gravitational BHs (for example, in the RN geometry).
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ergoregion for the modes “living” there. One can then naturally associate the BH
laser instability with a superradiant instability [316, 317].

4.16 Black Holes in Lorentz-Violating Theories: Nonlinear
Instabilities

A related instability is thought to occur for BHs in Lorentz-violating theories [320,
321]. In these theories, BH solutions can exist (see, e.g., Refs. [322–324] or
the overview [116]) with multiple, nested horizons, one for each maximal speed
of propagation in the theory. Each horizon traps the corresponding species of
field excitations. Consider two particles, with different propagation speeds, and,
therefore, two horizons. In this framework, the region between the two horizons
is classically accessible to the faster particle and it is a classically inaccessible
ergoregion for the slower one. If these particles are now allowed to interact
gravitationally, it is possible that an energy transfer occurs from the slower to the
faster particle, resulting in a nonlinear ergoregion instability. Hints of nonlinear
instabilities were discussed in Ref. [321], but it is not clear whether they are related
to this particular mechanism.

4.17 Open Issues

Superradiant (or “BH bomb”) instabilities are a fascinating and rapidly growing
topic. Here we list some of the most urgent open questions related to this problem
at the time of writing.

• While superradiant instabilities of spinning BHs have been studied thoroughly
for long time, it has been only recently that a similar understanding for massive
vector fields has been reached [16,125,154,156,159,160,164,186]. Massive spin-
2 perturbations are still largely unexplored. In this case, the only available results
have considered either an expansion at first-order in the spin [166] or a small
gravitational coupling approximation [168]. It would also be very interesting to
understand the nature of the “special” mode found in Ref. [166] (see discussion
in Sect. 4.6.4). Finally, it is unknown whether the system of equations (4.41) is
separable in a Kerr background. Can techniques similar to those recently used in
the Proca case [159, 160] be used for spin-two massive fields?

• It was shown that RN-dS BHs are unstable under spherically symmetric charged
scalar perturbations [147–149].21 Given the fact that asymptotically flat RN BHs
are stable against these perturbations, this is a quite surprising and still not very
well understood result. In Ref. [148] it was shown that a necessary condition for

21Higher-dimensional RN-dS were shown to be unstable inD ≥ 7 dimensions against gravito-EM
perturbations [325–327]. However this instability is of different nature.
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the instability to occur is that the field’s frequency ωR satisfies

qQ

rc
< ωR <

qQ

r+
. (4.100)

This is exactly the superradiant condition for this spacetime (cf. Eq. (3.130)),
which suggests that the instability is of superradiant nature. However, it was also
found that not all the superradiant modes are unstable and only the monopole
l = 0 suffers from this instability. The instability only occurs at small values
of the coupling qQ � 1, as long as qQ � μM , where μ is the mass of the
scalar field, and disappears when � → 0. The end-state of the instability is
still an open-problem, but the fact that the system is not confined, unlike in the
RN-AdS case (see Sect. 4.5.2), makes it likely that the instability will extract
charge and mass from the BH, evolving to a stable region in the parameter space.
A detailed understanding of charged BHs in asymptotically dS spacetimes may
also prove fundamental to explore the Strong Cosmic Censorship Conjecture: it
was shown recently that near-extremal geometries damp fluctuations fast enough
that Cauchy horizons are stable, opening the door to the lack of determinism in
GR [328–331].

• Shibata and Yoshino found that rapidly singly spinning higher-dimensional BHs
with spherical topology are unstable against non-axisymmetric perturbations (the
so-called “bar”—mode instability) [332, 333] in D = 5, 6, 7, 8 dimensions (see
also [334]). This was extended to equal angular momenta Myers–Perry BHs in
odd dimensions in Ref. [335] and analytically studied in the large-D limit in
Ref. [336]; these unstable BHs will emit gravitational radiation and consequently
spin down and decrease their mass [333]. The area theorem (cf. Sect. 3.2) then
requires that the unstable modes should satisfy the superradiant condition (1),
which indicates that the instability is of superradiant nature. However not all
the superradiant modes are unstable and unlike the superradiant instability
discussed in this Section, this instability is not due to confinement. A complete
comprehension of the physical mechanism behind this instability is still an open
problem.

• An interesting open question is the effect of rotation in the outer disk of the two-
ring model discussed in Sect. 4.12, for example, to investigate possible resonant
effects when both rings are spinning. Likewise, the BH analog of the two-ring
model proposed by Press [264], namely a Kerr BH surrounded by a conductive
disk—in particular whether such system is unstable or not, and on which time
scales—has not been studied yet.

• One of the important missing studies concerns a detailed investigation of the
ergoregion instability of ultracompact spinning NSs or other compact objects.
Rapidly or (consistently built, see Sect. 4.14.1) slowly spinning stars are all
basically uncharted territory (but see Ref. [337] for a recent development
showing that stars with an ergoregion can be stable at least for a dynamical
time). Gravitational perturbations of slowly spinning NSs can, in principle, be
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computed by extending recently developed perturbative methods to second order
in the spin (including the star structure [338] and its perturbations [13,288,289]).

• Massive fermions near a Kerr BH form bound states that, rather than inducing an
instability as in the bosonic case, condense and form a Fermi sea which extends
outside the ergosphere [339]. This analysis has been performed in the WKB limit
and hints at possible important nonlinear effects in the behavior of fermion fields.
Whether or not such systems can trigger superradiant instabilities at the nonlinear
level is unclear. In a different but related vein, Ref. [340] opened the possibility of
overspinning a RN BH by quantum tunneling; such possibility was later argued
to be ruled out, and that cosmic censorship conjecture is actually respected in this
situation [341]. The physical mechanism is a quantum version of superradiance,
which protects the integrity of the BH horizon by spontaneously emitting low-
energy (ω < m�) fermions. The final destiny of charged BHs is still unclear, as
quantum effects may still play an important role [342] (and references therein).

• As we discussed in Sect. 4.11, BHs in strong magnetic fields are unstable.
Because these are confining geometries, the lesson from AdS spacetimes (see
Sect. 4.5.1) implies that non-axially symmetric BH solutions should exist. These
would be interesting to construct, even if only numerically.

• One of the most exciting topics concerns the experimental verification of the
theoretical results. Rotational superradiance was recently seen in the laboratory
using fluids [343], as we summarized in Sect. 3.10. Important open issues
concern validation of the previous results by independent teams, or measurement
of superradiance in other setups, such as “photon fluids” [344]. The realization
of the ergoregion instability or of instabilities triggered by massive fluctuations
is specially interesting, in light of all the important phenomenology and physics
associated.

• The superradiant instability triggered by plasma (Sect. 4.8.3) is poorly studied
and several interesting extensions are worth investigating. For example, the
dispersion relation of photons in a plasma is nontrivial and it is unclear whether
the Proca equation (with an effective mass given by the plasma frequency ωp)
is sufficiently accurate to describe the dynamics of all relevant frequencies. Fur-
thermore, nonlinear effects (in particular, backreaction of growing EM fields on
the plasma distribution and on the transparency of plasmas at certain frequencies)
might affect the propagation and trapping of photons and they should be included
in more sophisticated analyses.

• An intriguing mechanism to trigger instabilities in astrophysical systems con-
cerns the ergoregion instability in fluids, such as accretion disks around grav-
itational BHs. In an analogue description, sound waves in these systems are
described by an effectively curved background geometry [345–347]. When the
accretion disk velocity surpasses the local sound speed, an acoustic ergoregion
appears, presumably giving rise to ergoregion instabilities. As far as we are
aware, these phenomena have not been explored.

• We mentioned in Sect. 4.16 that nonlinear ergoregion instabilities are thought
to occur for BHs with multiple horizons in Lorentz-violating theories. Explicit
examples do not exist yet.
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• Superradiance of self-interacting fields, or fields with nontrivial dispersion
relations have hardly been explored, with a noteworthy (but one-spatial dimen-
sional) toy-model [348]. Recently, the role of nonlinearities in the superradiant
instability triggered by massive scalars has been discussed in Ref. [349] but
further studies are needed.
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5Black Hole Superradiance in Astrophysics

BHs are one of the most striking predictions of Einstein’s GR, or of any relativistic
theory of gravity [1]. Since Schmidt’s identification of the first quasar [2], large
consensus in the astronomy community has mounted that nearly all galactic centers
harbor a supermassive BH and that compact objects with mass above ∼3M� should
be BHs (we discuss some alternatives to this paradigm in Sect. 5.7.2 below; see
Ref. [3] for a recent review). Indeed, strong evidence exists that astrophysical BHs
with masses ranging from few solar masses to billions of solar masses are abundant
objects.

BHs with masses in the range ∼5–30M� have been indirectly observed through
the X-ray emission from their accretion disk, whose inner edge can be associated
to their innermost stable circular orbit (ISCO). Since 2015, BHs with masses up
to ∼102M� have been detected in compact binary coalescence GW event by laser
interferometers [4]. To date, the heaviest BH detected by LIGO-Virgo is the remnant
of GW170729, with massM ≈ 80M�. In 2019, during the third observation run of
the LIGO-Virgo interferometers, binary BH mergers have been detected on a weekly
basis.

GR’s uniqueness theorems imply a very strong prediction: all isolated, vacuum
BHs in the Universe are described by the two-parameter Kerr family. Not only
does this implies that BHs are perfect testbeds for strong-gravity effects due to
their simplicity, but it also means that observing any deviation from this “Kerr
paradigm”—a goal within the reach of current [5, 6] and future [7–10] GW and
EM [11–13] facilities—would inevitably imply novel physics beyond GR [3].
Finally, the equivalence principle guarantees that gravity couples universally to
matter. Altogether, these properties suggest that predictions based on gravitational
effects of extra fields around BHs should be very solid.
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5.1 Evolution of Superradiant Instabilities for Astrophysical
BHs

We saw in the previous chapter that quantum or classical fluctuations of any massive
bosonic field can trigger a superradiant instability of the Kerr metric, whose time
scale τ can be extremely short when compared to typical astrophysical time scales.
For a BH with massM , the shortest instability time scale (occurring for an optimal
value of the coupling is τ ∼ (

M/106M�
)

yr for an ultralight scalar [14–18], and
shorter for vector [16,17,19] and tensor fields [18] for which superradiance is more
efficient (cf. Sect. 4.6).

As we discussed in Sect. 4.6, the nonlinear development of the superradiant
instability leads to the formation of a nonspherical bosonic cloud near the BH
on a time scale τ that extracts energy and angular momentum from the BH until
superradiance stops. On even longer time scales the cloud is slowly dissipated
through GW emission [17, 20–28]. During the evolution, the BH acquires an
effective “hair” as pictorially depicted in Fig. 5.1. This process effectively occurs
for all unstable modes, but during the finite lifetime of a BH only the most unstable
modes grow through superradiance.

In recent years superradiant instabilities have been used to turn astrophysical
BHs into effective particle detectors, by exploiting the prediction that putative
ultralight bosons (cf. Sect. 4.6.1) would make such massive BHs superradiantly
unstable, in disagreement with current observations of spinning BHs. In addition,
the GWs emitted by the cloud would lead to very specific quasi-monochromatic
signals that would be a smoking-gun feature of the existence of ultralight bosons.
These exciting possibilities are discussed in Sect. 5.2 below. However, before
venturing into the astrophysical implications of superradiant instabilities, we need
to assess how effects such as GW emission and gas accretion affect the development
of the process.

Fig. 5.1 Pictorial description of a bosonic cloud around a spinning BH in a realistic astrophysical
environment. The BH loses energy ES and angular momentum LS through superradiant extraction
of scalar waves and emission of GWs, while accreting gas from the disk, which transports energy
EACC and angular momentum LACC. Notice that accreting material is basically in free fall after it
reaches the ISCO. A scalar cloud would be localized at a distance ∼1/Mμ2

S > 2M
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5.1.1 A Simplified Model Including Gas Accretion

The evolution of the superradiant instability including the effect of GW emission
and of gas accretion can be studied with a simple quasi-adiabatic, fully relativistic
model [24]. For simplicity, let us focus on the case of a (generically complex)
massive scalar field minimally coupled to gravity. The starting point of the analysis
is the action (3.1) with vanishing gauge field. As previously discussed following the
development of the instability in a fully nonlinear evolution is extremely challenging
because of the time scales involved: τBH ∼ M is the light-crossing time, τS ∼ 1/μS
is the typical oscillation period of the scalar cloud, and τ ∼ M/(MμS)

9 is the
instability time scale in the small-MμS limit. Even in the most favorable case for
the instability τ ∼ 106τS is the minimum evolution time scale required for the
superradiant effects to become noticeable. This requires extremely long and time-
consuming simulations. However, in such configuration the system is suitable for a
quasi-adiabatic approximation: over the dynamical time scale of the BH the scalar
field can be considered almost stationary and its backreaction on the geometry can
be neglected as long as the scalar energy is small compared to the BH mass [24].

At leading order, the geometry is described by the Kerr spacetime and the scalar
evolves in this fixed background. For small mass couplings MμS , the spectrum
of the scalar perturbations admits the hydrogenic-like solution (4.27), whereas the
eigenfunctions are given in Eq. (4.29) [29, 30]. Their typical length scale is given
by Eq. (4.54) and thus extends well beyond the horizon, where rotation effects
can be neglected. The analytical result is a good approximation to the numerical
eigenfunctions for moderately large couplings, μSM � 0.2, even at large BH
spin [24].

In the quasi-adiabatic approximation (and focusing on the l = m = 1
fundamental mode), the cloud is stationary and described by Eq. (4.55), where the
amplitudeA0 can be expressed in terms of the massMS of the scalar cloud through
Eq. (4.57). This dipolar cloud will emit GWs with frequency 2π/λ ∼ 2ωR ∼ 2μS .
As previously discussed, the emission is incoherent, so the quadrupole formula does
not apply [21, 24, 25, 30]. By performing a fully relativistic analysis within the
Teukolsky formalism, Ref. [24, 26] found that the energy and angular momentum
fluxes of gravitational radiation emitted from the cloud are given by Eqs. (4.58) and
(4.59).

Gas Accretion Astrophysical BHs are not in isolation but surrounded by matter
fields in the form of gas and plasma. On the one hand, addition of mass and
angular momentum to the BH via accretion competes with superradiant extraction.
On the other hand, a slowly rotating BH which does not satisfy the superradiance
condition might be spun up by accretion and become superradiantly unstable
precisely because of angular momentum accretion. Likewise, for a light BH whose
coupling parameter μSM is small, superradiance might be initially negligible but
it can become important as the mass of the BH grows through gas accretion. It is
therefore crucial to include accretion in the treatment of BH superradiance.
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Reference [24] considered a conservative and simple model in which mass
accretion occurs at a fraction of the Eddington rate (see, e.g., [31]):

ṀACC ≡ fEddṀEdd ∼ 0.02fEdd
M(t)

106M�
M�yr−1 . (5.1)

The formula above assumes an average value of the radiative efficiency η ≈ 0.1,
as required by Soltan-type arguments, i.e., a comparison between the luminosity of
active galactic nuclei and the mass function of BHs [32, 33]. The Eddington ratio
for mass accretion, fEdd, depends on the details of the accretion disk surrounding
the BH and it can be of order unity (or even larger for ultraluminous sources) for
quasars and active galactic nuclei, whereas it is typically much smaller for quiescent
galactic nuclei (e.g., fEdd ∼ 10−9 for SgrA∗). If we assume that mass growth occurs
via accretion through Eq. (5.1), the BH mass grows exponentially with e-folding
time given by a fraction 1/fEdd of the Salpeter time scale

τSalpeter = σT

4πmp
∼ 4.5 × 107 yr , (5.2)

where σT is the Thompson cross section and mp is the proton mass. Therefore,
the minimum time scale for the BH spin to grow via gas accretion is roughly
τACC ∼ τSalpeter/fEdd � τBH and also in this case the adiabatic approximation
is well justified.

Regarding the evolution of the BH angular momentum through accretion,
Ref. [24] made the conservative assumption that the disk lies on the equatorial plane
and extends down to the ISCO. If not, angular momentum increase via accretion
is suppressed and superradiance becomes (even) more dominant. Ignoring radiation
effects,1 the evolution equation for the spin reads [35]

J̇ACC ≡ L(M, J )

E(M, J )
ṀACC , (5.3)

where L(M, J ) = 2M/(3
√

3)
(
1 + 2

√
3rISCO/M − 2

)
and E(M, J ) =√

1 − 2M/3rISCO are the angular momentum and energy per unit mass, respectively,
of the ISCO of the Kerr metric, located at rISCO = rISCO(M, J ) in Boyer–Lindquist
coordinates.

Growth and Decay of Bosonic Condensates Around Spinning Black Holes The
evolution of the cloud is governed by a simple set of differential equations [24].

1In the absence of superradiance the BH would reach extremality in finite time, whereas radiation
effects set an upper bound of a/M ∼ 0.998 [34]. To mimic this upper bound in a simplistic way, a
smooth cutoff in the accretion rate for the angular momentum can be introduced [24]. This cutoff
merely prevents the BH to reach extremality and does not play any role in the evolution.
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Energy and angular momentum conservation requires that

Ṁ + ṀS = −ĖGW + ṀACC , (5.4)

J̇ + J̇S = − 1

μS
ĖGW + J̇ACC , (5.5)

where MS and JS are the mass and the angular momentum of the scalar cloud, we
have neglected the subdominant contributions of the mass of the disk and of those
GWs that are absorbed at the horizon, and we have approximated the local mass and
angular momentum by their ADM counterparts. The latter approximation is valid as
long as backreaction effects are small, as we discuss below. The system is closed by
two further equations

Ṁ = −ĖS + ṀACC , (5.6)

J̇ = − 1

μS
ĖS + J̇ACC , (5.7)

which describe the superradiant extraction of energy and angular momentum and
the competitive effects of gas accretion at the BH horizon. In the equations above
we have introduced the scalar energy flux that is extracted from the horizon through
superradiance,

ĖS = 2MSωI , (5.8)

where MωI = 1
48 (a/M − 2μSr+)(MμS)9 for the l = m = 1 fundamental mode.

These equations assume that the scalar cloud is not directly (or only very weakly)
coupled to the disk.

Representative results for the evolution of the system are shown in Fig. 5.2
where we consider the scalar field mass μS = 10−18 eV and mass accretion near
the Eddington rate, fEdd = 0.1. We consider two cases: (I) the left set of plots
corresponds to a BH with initial massM0 = 104M� and initial spin J0/M

2
0 = 0.5,

whereas (II) the right set of plots corresponds toM0 = 107M� and J0/M
2
0 = 0.8.

In Case I, superradiance is initially negligible because μSM0 ∼ 10−4 and
superradiant extraction is suppressed. Thus, the system evolves mostly through
gas accretion, reaching extremality (J/M2 ∼ 0.998) within the time scale
τACC ∼ 10 τSalpeter. At about t ∼ 6 Gyr, the BH mass is sufficiently large that
the superradiant coupling μSM becomes important. This corresponds to the BH
entering the region delimited by a dashed blue curve in the Regge plane [21] shown
in Fig. 5.2 for Case I. At this stage superradiance becomes effective very quickly:
a scalar cloud grows exponentially near the BH (left bottom panel), while mass
and angular momentum are extracted from the BH (left top panel). This abrupt
phase lasts until the BH spin reaches the critical value acrit/M [cf. Eq. (4.28)] and
superradiance halts. Because the initial growth is exponential, the evolution does
not depend on the initial mass and initial spin of the scalar cloud as long as the latter
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Fig. 5.2 Evolution of the BH mass and spin, and of the scalar cloud mass due to superradiance,
accretion of gas, and emission of GWs. The two sets of plots show two different cases. In Case I
(left set) the initial BH mass M0 = 104M� and the initial BH spin J0/M

2
0 = 0.5. The BH enters

the instability region at about t ∼ 6 Gyr when its massM ∼ 107M� and its spin is quasi-extremal.
The set of plots on the right shows Case II, in which M0 = 107M� and J0/M

2
0 = 0.8, and the

evolution starts already in the instability region for this scalar mass μ = 10−18 eV. For both cases,
the left top panels show the dimensionless angular momentum J/M2 and the critical superradiant
threshold acrit/M (cf. Eq. (4.28)); the left bottom panels show the mass of the scalar cloud MS/M
(note the logarithmic scale in the x-axis for Case II); and the right panels show the trajectory of
the BH in the Regge plane [21] during the evolution. The dashed blue line denotes the depleted
region as estimated by the linearized analysis, i.e., it marks the threshold at which τ ∼ τACC. From
Ref. [24]

are small enough, so that in principle also a quantum fluctuation would grow to a
sizeable fraction of the BH mass in finite time.

Before the formation of the scalar condensate, the evolution is the same
regardless of GW emission and the only role of accretion is to bring the BH into
the instability window. After the scalar growth, the presence of GW dissipation and
accretion produces two effects: (1) the scalar condensate loses energy through the
emission of GWs, as shown in the left bottom panel of Fig. 5.2 [the signatures of
this GW emission are discussed in Sect. 5.2.2 below]; (2) gas accretion returns to
increase the BH mass and spin.

However, because accretion restarts in a region in which the superradiance
coupling μSM is nonnegligible, the “Regge trajectory” J (t)/M(t)2 ∼ acrit/M (cf.
Eq. (4.28)) is an attractor for the evolution and the BH “stays on track” as its mass
and angular momentum grow. For Case I, this happens between t ∼ 6.8 Gyr and
t ∼ 9.5 Gyr, i.e., the Regge trajectory survives until the spin reaches the critical
value J/M2 ∼ 0.998 and angular momentum accretion saturates.

A similar discussion holds true also for Case II, presented in the right set of
plots in Fig. 5.2. In this case, the BH starts already in the instability regime, its
spin grows only very little before superradiance becomes dominant, and the BH
angular momentum is extracted in about 10 Myr. After superradiant extraction, the
BH evolution tracks the critical value acrit/M while the BH accretes over a time
scale of 1 Gyr.
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5.1.2 Superradiant Instabilities Imply No Highly Spinning Black
Holes

While GW emission is always too weak to affect the evolution of the BH mass
and spin (nonetheless being responsible for the decay of the scalar condensate, as
shown in Fig. 5.2), accretion plays a more important role. From Fig. 5.2, it is clear
that accretion produces two effects. First, for BHs which initially are not massive
enough to be in the superradiant instability region, accretion can bring them to the
instability window by feeding them mass as in Case I. Furthermore, when J/M2 →
acrit/M the superradiant instability is exhausted, so that accretion is the only relevant
process and the BH inevitably spins up again. This accretion phase occurs in a very
peculiar way, with the dimensionless angular momentum following the trajectory
J/M2 ∼ acrit/M over very long time scales.

Therefore, a very solid prediction of BH superradiance is that supermassive BHs
would move on the Regge plane following the bottom-right part of the superradiance
threshold curve. The details of this process depend on the initial BH mass and spin,
on the scalar mass μS , and on the accretion rate. A relevant problem concerns the
final BH state at the time of observation; namely, given the observation of an old BH
and the measurement of its mass and spin, would these measurements be compatible
with the evolution depicted in Fig. 5.2?

This problem is addressed in Fig. 5.3, which shows the final BH mass and spin
in the Regge plane [20, 21] (i.e., a BH mass-spin diagram) for N = 103 Monte
Carlo evolutions. We consider a scalar field mass μ = 10−18 eV and three different
accretion rates fEdd (which, we recall, is defined as the fraction of mass accretion
rate relative to the Eddington limit) and, in each panel, we superimpose the bounds
derived from the linearized analysis, i.e., the threshold line when the instability
time scale equals the accretion time scale (cf. Sect. 5.2 below for details). As a
comparison, in the same plot we include the experimental points for the measured
mass and spin of some supermassive BHs listed in Ref. [36].

Various comments are in order. First, it is clear that the higher the accretion
rate the better the agreement with the linearized analysis. This seemingly counter-
intuitive result can be understood by the fact that higher rates of accretion make it
more likely to find BHs that have undergone a superradiant instability phase over
our observational time scales. In fact, for high accretion rates it is very likely to find
supermassive BHs precisely on the “Regge trajectory” [20, 21] given by J/M2 ∼
acrit/M (cf. Eq. (4.28)).

Furthermore, for any value of the accretion rate, we always observe a depleted
region (a “hole”) in the Regge plane [20, 21], which is not populated by old BHs.
While the details of the simulations might depend on the distribution of initial mass
and spin, this qualitative result is very solid and is a generic feature of the evolution.
For the representative value μS = 10−18 eV adopted here, the depleted region
is incompatible with observations [36]. Similar results would apply for different
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Fig. 5.3 The final BH mass and spin in the Regge plane for initial data consisting of N = 103

BHs with initial mass and spin randomly distributed between log10M0 ∈ [4, 7.5] and J0/M
2
0 ∈

[0.001, 0.99]. The BH parameters are then extracted at t = tF , where tF is distributed on a
Gaussian centered at t̄F ∼ 2 × 109 yr with width σ = 0.1t̄F . We considered μS = 10−18 eV. The
dashed blue line is the prediction of the linearized analysis obtained by comparing the superradiant
instability time scale with the accretion time scale, τ ≈ τSalpeter/fEdd, whereas the solid green line
denotes the region defined through Eq. (5.9). Old BHs do not populate the region above the green
threshold curve. The experimental points with error bars refer to the supermassive BHs listed in
Ref. [36]. From Ref. [24]

values2 of μS in a BH mass range such that μSM � 1. Therefore, as discussed in
Refs. [16, 18, 20, 21] and reviewed in Sect. 5.2 below, observations of massive BHs
with various masses can be used to rule out various ranges of the boson-field mass
μS .

Finally, Fig. 5.3 suggests that when accretion and GW emission are properly
taken into account, the holes in the Regge plane are smaller than what naively
predicted by the relation τ ≈ τACC, i.e., by the dashed blue curve in Fig. 5.3. Indeed,

2Note that, through Eq. (5.1), the mass accretion rate only depends on the combination fEddM ,
so that a BH with mass M = 106M� and fEdd ∼ 10−3 would have the same accretion rate of a
smaller BH with M = 104M� accreting at rate fEdd ∼ 10−1. Because this is the only relevant
scale for a fixed value of μSM , in our model the evolution of a BH with different mass can be
obtained from Fig. 5.2 by rescaling fEdd and μS .
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Fig. 5.4 Holes in the Regge
plane for an ultralight scalar
with mass μS = 10−11 eV for
various multipoles
(l = 1, . . . , 5). Shaded
regions correspond to BH
parameters which would
result in spindown within
106 yr. The description refers
to a representative evolution
of a BH withM = 6M� and
initial spin a/M = 0.95.
From Ref. [38] 5 10 15 20
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a better approximation for the depleted region is [24, 37]

J

M2 � acrit

M
∼ 4μM ∪ M �

(
96

μ10τACC

)1/9

, (5.9)

whose boundaries are shown in Fig. 5.3 by a solid green line. These boundaries
correspond to the threshold value acrit (cf. Eq. (4.28)) for superradiance and to a BH
mass which minimizes the spin for which τ ≈ τACC, for a given μ [19]. As shown
in Fig. 5.3, the probability that a BH populates this region is strongly suppressed as
the accretion rate increases.

Although the instability is strongly suppressed for higher multipoles, the first
few (l,m) modes (and not only the dipole with l = m = 1) can contribute to
the depleted region in the Regge plane [21]. Because the superradiance condition
depends on the azimuthal number m, for certain parameters it might occur that the
modes with l = m = 1 are stable, whereas the modes with l = m = 2 are unstable,
possibly with a superradiant extraction stronger than accretion. When this is the
case, the depleted region of the Regge plane is the union of various holes [20, 21],
as shown in the schematic evolution depicted in Fig. 5.4 for a massive scalar field.

Finally, note that in the case of multiple modes with large initial amplitude
the shape of the Regge gaps is more complex, mostly due to the absorption of
nonsuperradiant modes [37].

5.1.3 Summary of the Evolution of Superradiant Instabilities

Because the results discussed above play an important role for the analysis of the
next sections, it is relevant to summarize here the main features of the evolution of
superradiant instabilities:

• The mass of the cloud remains a sizeable fraction of the BH mass over
cosmological times, so that such systems can be considered as (quasi)-stationary
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hairy BHs for any astrophysical purpose. Nonetheless, the energy density in the
scalar field is negligible because the cloud typically extends over very large
distances. Therefore, the geometry is very well described by the Kerr metric
during the entire evolution.

• The role of gas accretion is twofold. On the one hand, accretion competes against
superradiant extraction of mass and angular momentum. On the other hand,
accretion may produce the optimal conditions for superradiance, for example, by
increasing the BH spin before the instability becomes effective or by “pushing”
the BH into the instability region in the Regge plane.

• A very generic prediction of BH superradiant instabilities is the existence of holes
in the Regge plane. For mass accretion near the Eddington rate, such depleted
regions are very well described by Eq. (5.9), which refines the estimate obtained
just by comparing the instability time scale against a typical accretion time
scale (cf. Sect. 5.2 below). A more sophisticated analysis—including radiative
effects and the geometry of the disk—would be important to refine the bounds
previously derived [16, 18, 21, 39].

Finally, the above discussion focused on the scalar case. However, the main
qualitative features of the evolution of the superradiant instability extend also to the
vector case. In that case, as discussed above, the case the superradiant instability is
shorter and so is the GW emission time scale. The phenomenological consequences
of these features are discussed in the next section.

5.2 Astrophysical Black Holes as Particle Detectors

As we already alluded to in the previous section, the instabilities discussed in Sect. 4
have important astrophysical implications that arise from the surprising connections
between strong-field gravity and particle physics. One generic prediction of these
instabilities is that—over the superradiance time scale—isolated, massive BHs
should not spin above the superradiant threshold. In other words, superradiant
instabilities set an upper bound on the BH spin which is smaller than the theoretical
Kerr bound for the absence of naked singularities. Another prediction is a peculiar
emission of GWs through various channels, as discussed below. These effects have
been investigated in the context of stringy axions and ultralight scalars [20, 21,
24, 26, 30, 38–45] (with bounds being complementary to those from cosmological
observations [46, 47]), light vector fields [16, 43, 45, 48], and light tensor field, the
latter also related to massive gravity and bimetric theories [18, 49].

Here, we present an overview of astrophysical signatures that can be used to
either constrain the existence of new light particles or constrain their existence.
As discussed, for a bosonic field of mass μ, the only parameter regulating the
strength of the gravitational coupling to a BH of mass M is the dimensionless
combination μM . The instability time scale is minimized when 2μM ∼ 1, i.e.,
when the Compton wavelength of the bosonic field is roughly comparable to the
size of the BH. However, the details of the process depend on the nature of the
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bosonic field. As discussed in Sect. 4, for a given coupling μM the instability time
scale is shorter for bosonic fields with spin.

5.2.1 Bounds on theMass of Bosonic Fields from Gaps in the
Regge Plane

A very generic and solid prediction of BH superradiant instabilities is the existence
of holes in the Regge plane, as discussed in Sect. 5.1. The estimates for the
instability time scale, together with reliable spin measurements for BHs in various
mass ranges, can be used to impose stringent constraints on the allowed mass of
ultralight bosons [16, 18, 20, 21, 26, 38, 41, 43–45, 48].

Measuring the BH Spin BH spin is routinely obtained from the EM spec-
trum using reliable proxies for the position of the ISCO [50]. Both the (mass-
independent) shape of the iron Kα line seen in reflection [51] and the thermal emis-
sion from the inner edge of the disk [52]—assumed to be the ISCO [53, 54]—are
commonly employed for both stellar-mass BHs in binaries and supermassive BHs in
active galactic nuclei (although the latter’s use is a more recent development [55]).
While important caveats exist for both traditional approaches, convincing evidence
for truncation at the ISCO comes from the consistent position of the inner disc edge
in LMC X-3 from modeling of the thermal dominant state, providing a remarkably
stable spin value over a baseline of 26 yr [56]. While not as well sampled (due to
the source rarely entering the requisite thermal dominant state), Cygnus X-1 also
shows a remarkably stable spin value over 14 yr from the same approach [57].
These observations imply that at the moment LMC X-3 and Cygnus X-1 are not
undergoing a superradiant instability at least over a time scale of 26 yr and 14 yr,
respectively. This fact was used in Ref. [43] to put direct constraints on the mass
of ultralight scalar and vector fields, as discussed below. More stringent (albeit less
direct) constraints come from comparing the instability time scale against a typical
accretion time scale, that we estimate here to be the Salpeter time scale given in
Eq. (5.2).

A novel approach to measure the masses and spins of astrophysical BHs comes
from GW astronomy. Binary BHs are arguably the cleanest gravitational sources,
so measurements of the mass and spin of the binary components should be less
affected by systematics than in the EM case. While the spins of the primary and
secondary objects in the coalescence events detected so far by LIGO are affected by
large uncertainties and are (marginally) compatible with zero spin for most sources
(but see [4,58] for a few events in which the effective spin of the binary is nonzero),
future detections will provide more stringent constraints on the individual spins,
at the level of 30% [59]. More precise measurement will come from the LISA
space mission [60]. LISA will be able to measure the mass and spin of binary BH
components out to cosmological distances. Depending on the mass of BH seeds in
the early Universe, LISA will also detect intermediate-mass BHs and measure their
mass and spin, thus probing the existence of light bosonic particles in a large mass
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Fig. 5.5 Exclusion regions in the BH spin-mass diagram obtained from the superradiant instabil-
ity of Kerr BHs against massive bosonic fields for the two most unstable modes. The top, middle,
and bottom panels refer to scalar (spin-0), vector (spin-1), and tensor (spin-2) fields, respectively.
For each mass of the field (reported in units of eV), the separatrix corresponds to an instability
time scale equal to the Salpeter time τS = 2 × 107 yr . Note that the rightmost part of each curve is
universal, a ∼ acrit [cf. Eq. (4.28)], i.e., it does not depend on the spin of the field. The meaning of
the markers is explained in the main text. BHs lying above each of these curves would be unstable
on an observable time scale, and, therefore, each point can in principle rule out a range of the
boson-field masses. Adapted from Refs. [26, 38, 43, 48, 49]. In the spin-2 case we do not show
results for the “special” dipolar mode [18], which might in principle provide stronger constraints
but has been only computed to first order in the spin

range (roughly ms ∼ 10−13–10−16 eV) that is inaccessible to EM observations of
stellar and supermassive BHs and to Earth-based GW detectors.

Bounds from BH Spin Measurements In order to quantify the dependence of
the boson mass bounds on the mass and spin of astrophysical BHs, in Fig. 5.5 we
show exclusion regions in the BH Regge plane. More precisely, using the results
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summarized in Sect. 4.6.5, we plot contours corresponding to an instability time
scale of the order of the Salpeter time for different masses of the bosonic field and
considering the unstable modes with the largest growth rate. From top to bottom, the
three panels refer to a spin-0, spin-1, and spin-2 field, respectively. The figure shows
that observations of astrophysical BHs with M� � M � 1010M� spinning above
a certain threshold would exclude a wide range of boson-field masses. Because
superradiance is stronger for bosonic fields with spin, the exclusion windows are
wider as the spin of the field increases, and they also extend almost down to
J ∼ 0 for spin-1 and spin-2 bosons. This feature is important because current spin
measurements might be affected by large systematics. Nonetheless, it is clear from
Fig. 5.5 that almost any BH spin measurement would exclude a considerable range
of masses.

In Fig. 5.5, black data points denote EM estimates of stellar or supermassive BH
spins obtained using either the Kα iron line or the continuum fitting method [36,61],
whereas red data points are LIGO-Virgo 90% confidence levels for the spins of
the primary and secondary BHs in the merger events detected in the first two
observing runs [4]. Although current LIGO-Virgo measurements are still not precise
enough to measure the spins from the merging BHs and give any meaningful
constraints, by combining information from multiple detections and with the
expected improvement of future ground-based detectors [62] it is expected that
constraints coming from the observation of merging stellar-mass BHs will improve
significantly [41,48,63]. On the other hand, as discussed in Ref. [26], LISA will have
the ability to measure BH masses and spins with a very good precision [64], in a
range of masses largely complementary to the ones coming from ground-based GW
detector and EM observations. The range of the projected LISA measurements using
three different population models for supermassive BH growth (popIII, Q3, and Q3-
nod from [64]) is denoted by arrows in Fig. 5.5. Green points are the 90% confidence
levels for the mass-spin of a selection of the GW coalescence remnants [4]. While
those events cannot be used to constrain the Regge plane (because the observation
time scale is much shorter than τinst), they identify targets of merger follow-up
searches [38, 41, 48, 65, 66] (see Sect. 5.2.2). This is particularly important in the
spin-1 and spin-2 cases, since τinst can be as small as a fraction of seconds for
typical remnants in the LIGO/Virgo band.

Instead of using the Salpeter time as a reference time scale, more direct con-
straints would come from comparing τinst against the baseline (typically O(10 yr))
during which the spin of certain BH candidates is measured to be constant [43],
as it is the case for LMC X-3 [56] and Cyg X-1 [57], shown in the panels of
Fig. 5.5 by blue points. These sources could confidently exclude the range mb ∈
(10−11, 10−13).

Note that, for a single BH observation, superradiant instabilities can only
exclude a window in the mass range of the fields, as shown in Fig. 5.5. For each
BH observation, the upper limit comes from the fact that when Mμ � 1 the
time scale grows with some power of 1/(μM) and eventually the instability is
ineffective on astrophysical time scales. The lower limit comes from the fact that the
instability exists only when the superradiant condition is satisfied, and this imposes
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a constraint on μ for a given azimuthal number m.3 Indeed, the rightmost part of
the curves shown in Fig. 5.5 for fixed μ is universal and arises from saturation of the
superradiant condition, a ∼ acrit, where acrit is given in Eq. (4.27). Such condition
does not depend on the spin of the field, so the upper bounds arising from the Regge
gaps are the same for scalar, vector, and tensor fields.

By combining different BH observations in a wide range of BH masses and
assuming4 that spinning BHs exist in the entire mass rangeM� � M � 1010M�,
one would be able to constrain approximately the entire range

10−21 eV � mb � 10−10 eV , (5.10)

where the best upper bound would come from the lightest massive BHs (with
M ≈ 5M� [61]), whereas the best lower bound would come from the heaviest
supermassive BHs for which spin measurements are reliable, e.g., the BH candidate
Fairall 9 [69]. Note that in the 10−21 eV range ultralight bosons are also compelling
dark-matter candidates [70].

This lower bound could be further improved if the supermassive BH in M87∗
is confirmed to have a large spin, as recently suggested [71, 72] (single gray point
in Fig. 5.5). In fact, Ref. [45] showed that together with the BH mass measurement
M ∼ 6.5 × 109M� coming from the imaging of M87∗’s shadow by the Event
Horizon Telescope [13], this source alone rules out scalar field masses 2.8 ×
10−21 eV < mS < 4.6 × 10−21 eV and vectors with masses 8.5 × 10−22 eV <

mV < 4.6 × 10−21 eV at 1σ level. In addition, if the largest known supermassive
BHs withM � 2×1010M� [73,74] were confirmed to have nonzero spin, we could
get even more stringent bounds.

Aside from constraining the existence of these particles, an even more exciting
prospect is to use these arguments to actually detect ultralight bosons and measure
their properties. For massive scalar fields this was studied in Refs. [41, 63, 75] for
stellar-mass BHs detected in ground-based GW detectors and in [26] for massive
BHs detected by LISA. It was shown that with the expected number of merging
BHs that will be observed by aLIGO and LISA, the mass of the boson could be
inferred with accuracies between ∼5–50%, in case such particles exist in nature.

Under certain conditions, the constraint (5.10) (see also Table 5.1) on massive
spin-2 fields also applies to massive gravitons propagating on a Kerr BH [18], and
sets a stringent bound on the mass of the graviton [76]. Similarly, such bounds can
also be translated in a bound on the photon mass [16], although in this case the

3As we already discussed, as m increases, larger values of μ are allowed in the instability region
and virtually any value of μ gives some unstable mode in the eikonal (l, m � 1) limit. However,
the instability is highly suppressed as l increases so that, in practice, only the first few allowed
values of l = m correspond to an effective instability.
4Some recent observations of ultraluminous X-ray sources suggest that these sources contain
intermediate-mass BHs (e.g., [67, 68]), suggesting that the BH mass spectrum might be populated
continuously from few solar masses to billions of solar masses.
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effect of the coupling between photons and accreting matter on the instability needs
to be assessed (see Ref. [16] for a discussion). A more rigorous analysis should be
performed to assess whether plasma interactions (see Sect. 5.5) can affect the bounds
discussed above in the case of massive photons.

5.2.2 Gravitational-Wave Signatures

Upcoming precise spin measurements of massive BHs [11, 12, 26] will be useful to
refine the bounds discussed above. However, a very different phenomenology can
be probed through detection of GWs that are possibly emitted by bosonic clouds
around spinning BHs [20, 21, 24, 26, 28, 30, 38, 41, 42, 48, 65, 66, 77–79].

As first discussed in Refs. [20,21,38,40], a bosonic condensate around a spinning
BH as the one depicted in Fig. 5.1 would emit GWs through different channels,
which are discussed below. When the specific analysis applies to a generic massive
scalar, vector, or tensor, we will denote its mass by μS , μV , or μT , respectively, or
more generically as μ if it applies to all cases, whereas μa and fa will specifically
refer to axions as in Eq. (4.73).

Direct Continuous GW Emission As we discussed in Sect. 4.6.7 the formation
of a nonspherical monochromatic boson cloud anchored on a spinning BH leads
to emission of GWs with frequency ∼ωR/π . In a particle-like description of the
interaction, such waves can be interpreted as arising from the annihilation of the
boson field to produce gravitons [21].

Detailed relativistic computations find that for scalar, vector, and tensor5 fields
the emitted GW flux for the l multipole and spin polarization S scales as [24,30,37,
48, 49]

ĖGW ∝
(
MS

M

)2

(μM)4l+4S+10 , (5.11)

where MS denotes the cloud’s total mass. This result is valid only when μM �
1, but it approximates the scaling of the exact results reasonably well also for
moderately large values of the coupling which can be computed numerically by
solving the Teukolsky equation [26, 30, 79] (cf. Fig. 4.17).

This radiation is monochromatic with frequency

fGW ∼ ωR/π ∼ 5 kHz

(
μh̄

10−11 eV

)
, (5.12)

5In the spin-2 case there exists a special dipolar mode [18] that does not follow the behavior of
Eq. (5.11).
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with a typical duration for the dominant mode roughly given by [26, 30, 48, 49, 79]

τSGW ≈ 6.5 × 104 yr

(
M

10M�

)(
0.1

MμS

)15
M

a
,

τ
V,T
GW ≈ 1 day

(
M

10M�

)(
0.1

MμV,T

)11
M

a
, (5.13)

for the scalar, vector, and tensor case, respectively, and where here a = J/M is
the initial BH spin. Thus, BH-boson condensates are continuous GW sources, like
pulsars for LIGO or verification binaries for LISA. There are, however, two notable
differences: (1) depending on the value ofMμ, the GW emission time scale τGW for
vectors and tensors can be significantly shorter than the observation time, resulting
in an impulsive signal; (2) for the tensor case, at variance with the massive scalar
and vector field case, GW emission for the dominant hydrogenic mode is mostly
hexadecapolar and not quadrupolar.6

The frequency of the signal (5.12) is only weakly dependent on the BH mass and
spin, and since one needs 2μM ∼ O(1) for the boson occupation number to grow
sufficiently fast through superradiance, ground-based detectors would be sensitive
to the presence of bosonic clouds around stellar-mass BHs, whereas space-based
detectors are sensitive to signatures of clouds around supermassive BHs.

The root-mean-square GW strain amplitude7 of these signals for a scalar cloud
in the dominant l = m = 1 mode is shown in Fig. 5.6, where we compare it
against the expected noise power spectral density (PSD) of LISA and Advanced
LIGO at design sensitivity, integrated over a coherent observation time of 4 years.8

Also shown in thin solid curves is the estimated stochastic background, for the
most optimistic models of Refs. [26, 42], from the annihilation GW signal emitted
by the whole BH population too faint to be detected as individual sources. We
discuss this background in more detail below. With the addition of a detector in
the deci-Hz such as the proposed DECIGO [81], bosons with masses in the range
10−19 eV � mS � 10−11 eV could be detectable by GW observatories. Similar
results hold for ultralight vector and tensor fields; the main difference being that the
GW signal would be significantly stronger but also shorter lived [48, 49, 79] as one
can infer from Eqs. (5.11) and (5.13).

6This is because the signal is produced by a spinning quadrupolar field and not by a spinning
dipolar field [49]. The hexadecapolar nature of the radiation implies that the signal vanishes along
the BH spin axis, at variance with the quadrupolar case, for which it is maximum in that direction.
7The root-mean-square GW strain for a LIGO-like detector is given by h =√
ĖGW/(5d2π2f 2) [26], for a source emitting power ĖGW at frequency f and at distance

d away from the detector.
8Assuming an observation time Tobs, the signal-to-noise (SNR) ratio of a monochromatic signal
with frequency f scales as SNR ∝ h

√
Tobs/Sn(f ), where Sn(f ) is the noise PSD. The noise

curves we plot in Fig. 5.6 are given by
√
Sn(f )/Tobs such that a quick estimate of the SNR can be

obtained by taking the ratio between the signal amplitude and the noise curves.
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Fig. 5.6 Root-mean-square GW strain produced by BH-scalar condensates compared to the
Advanced LIGO PSD at design sensitivity [80] and to the non-sky averaged LISA PSD [60] (black
thick curves), assuming a coherent observation time of Tobs = 4 yr in both cases. Each (nearly
vertical) line shows the strain for a given boson mass mS , computed at redshift z ∈ (0.001, 3.001)
(from right to left, in steps of δz = 0.2), withMμS increasing in the superradiant range (0,M�H)

along each line, and assuming an initial BH spin a = 0.9M . Different colors correspond to different
boson masses mS . Thin lines show the stochastic background produced by the whole population
of astrophysical BHs under the optimistic assumptions of Ref. [26, 42]. The PSD of DECIGO [81]
(dashed line) is also shown for reference. From [42]. Similar results (but with stronger signals)
hold for the vector and tensor cases [49]

The prospect for detection of GWs emitted by scalar clouds in blind all-sky
searches with the Advanced LIGO-Virgo experiments [5, 6] and with an LISA-like
mission [60,82] was studied in Refs. [26,38,42]. Using recent mass distributions for
stellar BHs and supermassive BHs, Refs. [26,38,42] estimated an expected number
of signals as large as O(104), assuming that scalar fields with masses in the optimal
range for a given BH exist. A summary of these results is shown in Fig. 5.7. The
range of scalar masses that is detectable is complementary to the one that could be
excluded by BH spin measurements (cf. Sect. 5.2). Similar estimates were obtained
for massive vector fields in Ref. [48].

A detailed study of the detectability of the ensemble of boson annihilation
GW signals emitted by a population of isolated Galactic BHs was done more
recently [83]. It was shown that, with the sensitivity of the latest all-sky searches
for continuous GWs [84–87], up to ∼103 (∼102) signals could have already been
detected, assuming a population of stellar-mass BHs between 5 and 30 M� and a
uniform distribution χ ∈ [0, 1] (χ ∈ [0, 0.5]) for the BH spin. Negative results
can, in principle, be turned into a constraint on ultralight scalar fields; however, for
signals that can be numerous and very loud in a small frequency range—in particular
for scalar fields with masses in the range [3, 10] × 10−13 eV—the sensitivity of the
current methods to search for continuous GW signals needs to be reassessed in order
to properly interpret null results.

Aside from blind all-sky searches, Refs. [41,48] proposed that these GW signals
could also be detected by performing targeted follow-up searches of known binary
BH mergers remnants. The prospects of performing targeted searches [41,48,65,66]
is especially promising for planned third-generation GW detectors, such as the
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Fig. 5.7 Expected number of scalar field annihilation events observable with aLIGO at design
sensitivity [5] and for the space-based detector LISA [60, 82] as a function of the scalar field
mass, assuming that the search is done with a semi-coherent method, where the signal is divided
into 121 coherent segments with time length Tcoh = 250 h. The different lines correspond
to different assumptions about the astrophysical models that bracket optimistic to pessimistic
estimates. Shaded areas correspond to exclusion regions that could be placed by a 4-year LISA
mission from massive BH spin measurements (cf. Sect. 5.2.1). For reference we also show with
brackets the constraints that can be placed by current spin measurements of massive/stellar-mass
BHs [36, 38] as discussed in Sect. 5.2.1. See Refs. [26, 42] for details. Similar estimates were first
computed in Ref. [38] and more recently also in Ref. [83]

Einstein Telescope [88] and Cosmic Explorer [89,90]. Dedicated pipelines to search
for these signals in LIGO data are actively being developed and implemented for
both blind all-sky [83–86, 91] and targeted searches [65, 92] but no GW signal
consistent with a boson annihilation has been detected so far.

Using LIGO O2 data, it has been proposed that the absence of signals in generic
all-sky searches on LIGO and Virgo data constrains the existence of scalar fields in
the mass range ∼[1.1–4.0]×10−13 ([1.2–1.8]×10−13) eV assuming the existence of
a speculative population of young heavy BHs (M � 30M�) in the Milky Way born
with high spins ∼0.998 (moderate spins ∼0.6) [84]. In principle, current null results
already disfavor the existence of scalar bosons in the range [2, 25]× 10−13 eV [83].
However, as mentioned above, those constraints should be reassessed by properly
taking into the account the overall expected GW signal from the population of
galactic BHs.

GWs from Level Transitions Because the boson condensate has a hydrogenic-
like spectrum (cf. Eq. (4.27)), GW emission can also occur from level transitions
between states with the same harmonic indices (l, m) but different overtone numbers
n, similarly to photon emission through atomic transitions. This process occurs
when the growth rate of some n > 0 mode is stronger than that of the fundamental
n = 0, as this can happen for high values of (l,m) [20,21,38,79] (a detailed analysis
of this effect is presented in Ref. [25] for scalar fields and Ref. [79] for vector fields).
In the GW signal this phenomenon shows up as a beating pattern due to the close
frequencies of the excited and group-state modes, as can be seen in the numerical
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simulations of Figs. 4.10 and 4.15. The frequency of the emitted graviton is given by
the frequency difference between the excited (ñe > ñg) state and the ground state
ñg ,9

ωtrans ∼ μ

2
(Mμ)2

(
1

ñ2
g

− 1

ñ2
e

)
, (5.14)

and the corresponding wavelength is usually much longer than the size of the
system. Therefore, in this case the quadrupole formula is valid [21]. In this approx-
imation, the dominant GW flux for a scalar field (corresponding to a transition
between the l = m = 4, n = 1 and l = m = 4, n = 0 modes) reads [21, 38]

ĖGW ∼ O
(
10−6 ÷ 10−8)MgMe

M2 (μSM)
8 , (5.15)

whereMg andMe are the mass in the ground and excited states, respectively.
Although this is usually tiny, the GW strain is enhanced by the occupation

number of the two levels, which grow exponentially through superradiance. Also
in this case the signal is monochromatic. For the dominant transition of a scalar
field, the typical frequency is

ftrans ∼ 13 Hz

(
μSh̄

10−11 eV

)3 ( M

5M�

)
, (5.16)

which falls in the sensitivity bands of advanced ground-based detectors for a
boson with mass about 10−11 eV around a stellar-mass BH with M ∼ 5M�,
whereas it falls within LISA milliHertz band for a boson with mass about 10−15 eV
around a supermassive BH with M ∼ 105M�. The number of transition events
for aLIGO/aVirgo as estimated in Ref. [38] for a massive scalar field is shown
in Fig. 5.8. For space-based detectors, the peak of sensitivity falls in the range
of intermediate-mass BHs, for which precise mass distributions are lacking. This
affects the event estimates, but it is promising that the reach radius for transition
signals of a LISA-like detector would extend up to hundred megaparsec [38].

Stochastic GW Background In addition to GW events that can be detected as
individual sources, one expects the existence of an even larger number of sources too
faint to be detected individually. The incoherent superposition of all these sources
produces a stochastic GW background that was first computed in [26, 42] for the
GW signal emitted by scalar annihilations. The background can be characterized by

9Here ñ denotes the principal quantum number given by ñ = l + S + n+ 1.
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Fig. 5.8 Expected number of events for GWs emitted through level transitions with aLIGO at
design sensitivity [5] as a function of the axion mass (but the results are also valid for a generic
scalar field). The vertical shaded regions are disfavored by BH spin measurements assuming the
QCD axion coupling strength (light gray) or stronger (dark gray). For stronger axion couplings
nonlinear effects become important and extrapolations of the linearized results are not reliable (cf.
Sect. 4.8). Each of the three bands corresponds to varying the BH mass distribution width including
optimistic and pessimistic estimates of astrophysical uncertainties. See Ref. [38] for details

its (dimensionless) energy spectrum

�gw(f ) = 1

ρc

dρgw

d ln f
, (5.17)

where ρgw is the background’s energy density, f the GW frequency measured at
the detector, and ρc the critical density of the Universe at the present time. The
predicted stochastic background is shown in Fig. 5.9. The maximum frequency
of the background is determined by the boson mass, whereas its amplitude is
mostly determined by the astrophysical population of BHs. For the most optimistic
astrophysical models, LIGO could detect or rule out scalar masses in the range
2×10−13 eV � mS � 10−12 eV, whereas LISA would be sensitive to scalar masses
in the range 5 × 10−19 eV � mS � 5 × 10−16 eV.

A dedicated search in the first Advanced LIGO observing run found no evidence
from such stochastic signal, excluding scalar field with masses in the range 2.0 ×
10−13 eV ≤ mS ≤ 3.8 × 10−13 eV at 95% credibility, under optimistic assumptions
about BH populations [95].

GW Bursts from Bosenova Explosions As we discussed in Sect. 4.8.2 when
nonlinear terms are taken into account, additional effects can arise. For example,
for an axion-like field described by the sine-Gordon potential (4.73) nonlinear
effects become important when the mass in the cloud reaches a critical mass (cf.
Eq. (4.75)) and a bosenova explosion can occur. At variance with annihilation and
level transition signals, the signal from bosenova explosions is a periodic emission
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Fig. 5.9 Stochastic background from boson annihilation GW signals in the LISA and LIGO
bands. For each boson mass the different predicted signals correspond to different astrophysical
models described in Ref. [42]. The black lines are the power-law integrated curves of [93],
computed using predicted noise PSDs for LISA [60], advanced LIGO at design sensitivity [94],
and upper limits from LIGO’s first two observing runs (O1 + O2) [94]. A power-law stochastic
background which lies tangent to one of these curves would be detectable with a 2σ significance.
Adapted from [42]

of bursts, whose separation depends on the fraction of the cloud which remains
bound to the BH after each subsequent collapse.

The typical frequency of a single bosenova burst is [38–40]

fbn ∼ 30 Hz

(
16rcloud

tbn

)(
μaM

0.4l

)2 (10M�
M

)
, (5.18)

where tbn is the infall time and rcloud is the characteristic size of the cloud as given
in Eq. (4.54). For example, a burst from a 10M� BH would last approximately 1 ms
and, as the result of multiple subsequent explosions, there can be various spikes
separated by a quiet period of approximately 300 s [38]. A quadrupole estimate of
the GW strain for such signal yields [38–40]

h ∼ 10−21
(

kpc

d

)( ε

0.05

)(16rcloud

tbn

)2 (
μaM
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M

10M�

)(
fa
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a

)2

,

(5.19)

where ε is the fraction of the cloud falling into the BH (typically ε ≈ 5% [40]),
fmax
a is the largest coupling for which bosenova occurs, and d is the distance of the

source from the detector.

5.2.3 Electromagnetic Signatures

In addition to the GW signatures discussed above, direct EM signatures of ultralight
bosons around astrophysical BHs have also been proposed. Those can be divided
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into two categories: (1) direct imaging of sources close to supermassive BHs or
through spectral properties of X-rays emission by accreting BHs [96–101]; (2)
bursts of light from compact objects, or polarimetric measurements of light from
the BH vicinity [102–106] (cf. Sect. 4.8.1). We now discuss these signatures in more
detail.

Black-Hole Shadows The presence of a dense boson cloud around astrophysical
BHs would affect the geodesic structure of the spacetime surrounding the BH.
Therefore, any deviation from a vacuum BH spacetime is encoded in the way light
rays are lensed in the neighborhood of the BH, and in particular in the properties of
the “shadow” that the BH casts.

The shadows of spinning BHs surrounded by scalar clouds (cf. Sect. 4.6.8)
were first studied in Refs. [96–98]. It was shown that for very heavy clouds the
shadow can be considerably different from their vacuum Kerr BH counterparts,
and measuring this difference is potentially in the reach of current and future
very long baseline interferometric observations of supermassive BHs, such as the
recent observations of M87∗ by the Event Horizon Telescope [13]. However, for
bosonic clouds formed dynamically due to the superradiant instability, the prospect
of directly imaging deviations from Kerr is more challenging [96, 98, 99]. As we
discussed in Sect. 4.6.8 the superradiant instability BH can only extract a limited
amount of energy, therefore, producing bosonic clouds which backreact weakly
on the geometry [24]. In fact, it was shown in Ref. [99] that the Event Horizon
Telescope observations are not yet precise enough to constrain the possibility that
the M87∗ supermassive BH is surrounded by superradiantly produced bosonic
cloud.

Examples of shadows for spinning BHs surrounded by scalar clouds are shown
in Fig. 5.10. Three different configurations illustrate the differences between light
and heavy clouds. For comparison we also show the shadow of a Kerr BH with
comparable mass and spin. As clearly illustrated, the shadow of light clouds is
similar to the one produced by a Kerr BH with comparable parameters. However for
very heavy scalar configurations the structure of the shadow can be quite distinct
from that of an isolated Kerr BH.

Quasi-Periodic-Oscillations and Iron Kα Line In addition to signatures in the
BH shadow, deviations in the geodesic structure due to superradiant clouds have
also been proposed to be potentially observable through the observation of “quasi-
periodic-oscillations” (QPOs) in the X-ray spectrum of accreting BHs [100]. High-
frequency QPOs are thought to originate from the innermost regions of the accretion
disk and to be associated with the epicyclic frequencies of the geodesic motion
of time-like particles. Therefore QPOs provide a direct measure of the spacetime
structure around the BH and could constrain the presence of superradiant clouds.
The iron Kα line, expected in the reflection spectrum of accreting BHs, can also be
used to constrain the presence of a structure in the BH vicinity [101], since such
structure would affect the spacetime geodesics probed by the iron spectrum.
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Fig. 5.10 Top row: Shadows of spinning BHs surrounded by a dipolar scalar cloud. From left to
right we show the shadow of a configuration where the scalar cloud contains approximately 5%,
75%, and 98.2% of the total ADM mass, respectively. Bottom row: For reference we also show the
shadow of a Kerr BH with the same ADM mass and spin for each configuration shown in the top
row. From left to right the dimensionless spin is given by χ � 0.999, χ � 0.85, and χ � 0.894,
respectively. To help visualizing the extreme gravitational lensing in the vicinity of the BH, the
celestial sphere is divided into four different patches as represented by the different colors. See
Ref. [96] for details

A detailed study of the possible constraints from QPOs was done in Ref. [100]
whereas prospects for iron Kα line measurement were studied in Ref. [101]. Both
studies concluded that heavy bosonic clouds would be easily distinguishable from
a vacuum Kerr BH, but measuring the effect of “light” superradiantly produced
bosonic clouds is not feasible with current data.

Black-Hole Lasers As we discussed in Sect. 4.8.1, if the scalar field that populates
the boson cloud couples to photons, the system can become unstable against the
emission of EM bursts when the mass of the cloud reaches a critical value set by
Eq. (4.71) [103, 104]. For the axionic couplings discussed in Sect. 4.8.1 the EM
waves emitted during the process are mostly monochromatic with frequencies given
by [102–104, 107]

fEM ∼ ωR

4π
∼ 1200 Hz

( mS

10−11 eV

)
. (5.20)

For bosons with masses mS � 10−11 eV, corresponding to the range of masses
for which astrophysical BHs with masses M � 10M� can become superradiantly
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unstable (cf. Sect. 5.2), the frequency of these EM waves would be smaller than
the typical plasma frequency of the interstellar medium [104, 107], thus making
their direct detection unlikely. However it has been suggested that the properties of
the EM bursts could be linked to “Fast Radio Bursts” if a QCD axion with mass
mS ∼ 10−5 eV and primordial BHs with masses aroundM ∼ 10−6M� exist in our
Universe [102].

Finally, even if not directly observable, this process effectively limits the
maximum amount of energy that superradiance can extract before the EM burst
sets in and therefore would directly affect the constraints from GW searches (cf.
Sect. 5.2.2).

Polarization-Dependent Propagation The pseudo-scalar nature of the axion–
photon interaction, described by the equations of motion (4.70a) and (4.70b), also
affects the polarization properties of EM waves propagating through an axion
background [105, 106, 108].

Due to the axion interaction the cloud behaves like an optically active medium,
i.e., a medium in which left- and right-circular polarizations propagate at different
speeds. To see this, consider for simplicity an EM plane wave propagating along
the z-axis with wavelength much smaller than the length scale over which the
background axion field changes appreciably, such that space derivatives of the
axion field can be neglected. We assume that the wave propagates in a region
sufficiently far from the BH such that the spacetime is approximately flat. Within
this approximation the field equations (4.70b) admit plane-wave solutions of the
form [109]

A± ≈ A0 cos

[
ωt − z

(
ω ± ka

∂�

∂t

)]
ex ∓ sin

[
ωt − z

(
ω ± ka

∂�

∂t

)]
ey ,

(5.21)

where ± denotes right- and left-handed circularly polarized EM waves and we
expanded the phase up to linear order in ka. In particular, due to the pseudo-
linear nature of the axion coupling the two EM circular polarizations propagate
with different phase velocities, a property known as birefringence. For a linearly
polarized EM wave propagating through an axion background this effect induces a
relative phase shift between the two circularly polarized EM components. This leads
to a rotation of the plane of polarization of the wave while it propagates through
the axion background, in analogy with the Faraday rotation effect that occurs for
linearly polarized EM waves propagating in a magnetized plasma.

Although birefringence is not unique to axion clouds, a smoking-gun feature
of the axion birefringence would be the existence of a time-dependent angle of
rotation of the plane of polarization, which would oscillate with period ∼1/μS .
In Refs. [105, 106] this effect was proposed as a means to detect or constrain the
presence of an axion cloud around supermassive BHs. In particular, Ref. [106]
showed that polarimetric measurements by the Event Horizon Telescope of the
supermassive BH M87∗ (Sgr A∗) could detect or rule out the presence of an
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axion with masses around mS ∼ 10−20 eV (mS ∼ 10−17 eV) with decay constant
ka � O(10−16)GeV−1.

In addition, Ref. [105] also studied how the axion interaction affects the bending
of an EM wave passing through the axion cloud. Let us assume that the cloud’s
self-gravity can be neglected and, again, that the length scale over which the axion
field changes is much larger than the wavelength of the EM wave. Under those
assumptions, and considering propagation in the equatorial plane of a nonspinning
BH, Ref. [105] showed that in the eikonal limit the geodesic equation (3.11) gets
modified to:

ṙ2 = E2 − L2

r2

(
1 − 2M

r

)
± 2kaE

∂�

∂t
, (5.22)

where again ± corresponds to right- and left-handed circularly polarized EM waves.
Since the two polarizations follow different photon orbits when passing through
the cloud, they experience a different deflection angle. This angular splitting was
computed in Ref. [105]. For axion masses between 10−18 eV � mS � 10−12 eV and
decay constants in the range 10−18 GeV−1 � ka � 10−12 GeV−1 they found that the
angular splitting could take values of the orderO(10−8÷1) arcsec, depending on the
axion mass, decay constant, and field’s amplitude. A proper investigation of whether
this effect can be detected with future radio telescopes remains to be done; however,
as noted in [105] angular resolutions of the order O(10−3) arcsec are achievable
using very-long-baseline interferometry techniques, making a detection potentially
achievable.

5.2.4 Signatures in Binary Systems

The constraints discussed so far assume that the BH-cloud system can be considered
in isolation. In the presence of a companion star or BH a wealth of novel effects can
occur that lead to very distinct observational signatures, as we now discuss.

Tidal Effects As we discussed in Sect. 4.7, the tidal force exerted on the boson
by a companion orbiting body can excite additional modes in the cloud which can
lead to a very rich dynamical evolution of the system. In particular, the cloud’s tidal
deformation induced by the companion triggers a mixing between modes that leads
to an efficient transfer of angular momentum between the cloud and the orbiting
object [110, 111]. For weak tidal perturbations, this mixing is in general too small
to significantly affect the orbital motion. However, as first shown in Ref. [112],
the effect can be enhanced when the orbital frequency � matches the energy split
� = (ωa − ωb)/(ma − mb) between two states ψa and ψb for which the tidal
perturbation induces a nonzero transition probability (see [113,114] for an extension
to eccentric and hyperbolic orbits). As shown in [110,112], depending on the excited
modes and the orientation of the orbit, the angular momentum transfer can make the
orbit shrink faster than in vacuum, or even be strong enough to compensate for the
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angular momentum loss caused by GW emission and temporarily stall the orbit (cf.
Sect. 4.9.2). Considering, for example, a mixing between two levels with principal
quantum number ña and ñb one finds that the GWs emitted by the binary system
during such resonances have frequency [110–112]:

fres = �

π
= 0.2 Hz

1

|�m|
(

60M�
M

)(
Mμ

0.07

)3 ∣∣∣∣ 1

ñ2
a

− 1

ñ2
a

∣∣∣∣ , (5.23)

where �m = ma − mb is the difference between the azimuthal numbers of the
two modes. Reference [111] showed that these resonances can lead to a significant
dephasing of the GW signal when compared to a binary system without a cloud,
therefore, suggesting that they can leave detectable imprints in the GW signal
emitted by the binary, especially for systems observable through the future space-
based GW detector LISA [60].

The structure of the cloud would also be imprinted in the GW signal of a binary
system through its multipole moments or through its tidal Love numbers that could
be significantly different than in the case where no cloud is present [111, 112].
The mode-mixing discussed above would induce a strong time dependence on
these quantities, especially at frequencies close to the resonances [111, 112]. These
signatures would leave interesting imprints in the GW signal emitted by the binary
system, in particular Ref. [111] suggested that they could be used to distinguish
scalar and vector clouds; however, a detailed study of the detectability of these
effects has not yet been done.

Tidal Disruption The discussion above assumes that the tidal field induced by the
companion is sufficiently weak such that it can be treated perturbatively, but for
sufficiently large tidal fields the boson cloud will be disrupted (cf. Sect. 4.7). The
results of Sect. 4.7 allows us to estimate when such disruptions can occur for known
BHs. For example, let us consider the Cygnus X-1 system and the BH at the center
of our galaxy, SgrA∗.

Cygnus X-1 is a binary system composed of a BH of mass M ∼ 15M� and a
companion withMc ∼ 20M� at a distance R ∼ 0.2 UA ∼ 3 × 1010 m [115]. With
these parameters, we find a tidal momentMcM2/R3 ∼ 5×10−19 (see Sect. 4.7). For
it to sit at the critical tide for disruption, Eq. (4.65), one needsMμS ∼ 2×10−3. The
time scale for the growth of a scalar cloud via superradiance is given in Eq. (4.46)
and is of order ∼(MμS)9M , and, therefore, the growth time scale for a cloud that
can be tidally disrupted is too large to be meaningful for scalar fields, but it could be
potentially important for vector fields that instead can grow on much smaller time
scales ∼(MμV )7M . The tide is also small enough that it should not be affecting
any of the constraints derived from the possible non-observation of GWs from the
system [77, 92].

On the other hand, at the center of our galaxy there is a supermassive BH of mass
∼4 × 106M� with known companions [116, 117]. For the closest known star, S2,
with a pericenter distance of ∼1400M we findMcM2/R3 ∼ 2 ×10−15, or a critical
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coupling Mμ ∼ 9 × 10−3 (we assume Mc ∼ 20M� but the result above is only
mildly dependent on the unknown mass of S2). This is now a potential source of tidal
disruption for interesting coupling parameters, and will certainly affect the estimates
using pure dipolar modes to estimate GW emission. Tidal disruptions could also
be a potential source of GWs, although the detailed GW signal emitted during the
process has not been computed so far.

Self-Gravity of the Cloud The presence of a spatially extended boson cloud
around supermassive BHs can also significantly influence the motion of small
compact objects and stars orbiting them [118–121]. For example, compared to the
vacuum case, the boson cloud changes the gravitational potential felt by the orbiting
bodies which is potentially measurable through precise measurements of the orbit
of stars around SgrA∗ [118, 120, 121]. This would also be imprinted in the GWs
emitted by small compact objects orbiting supermassive BHs [118, 119], one of the
most promising GW sources for LISA [60].

In addition to this effect, it was also shown in Ref. [118] that the presence of
a non-axially symmetric scalar field profile causes orbiting bodies to process at
a rate that depends solely on the parameters governing the scalar field. The field
also causes variations of other orbital parameters, such as the orbital nodes and the
orbital eccentricity [118, 121]. These effects add to the general relativistic ones and
therefore the presence of a cloud can be inferred by carefully measuring the orbital
parameters of satellites around supermassive BHs [118, 121]. In fact, as shown
in [121] precise measurements by the GRAVITY experiment [12] of the S2 star
could constrain the fractional mass of a possible scalar cloud around SgrA∗ to be
�1% for scalar masses in the range 10−20 eV � mS � 10−18 eV.

The presence of a boson cloud can also give rise to resonant orbits when the
orbital frequency matches the characteristic frequencies of the system [118], which
includes one co-rotation resonance, where a large number of orbiting bodies will
tend to pile up, and two Lindblad resonance where the scalar field can exchange
angular momentum with the orbiting body [118], which can potentially cause
floating orbits (cf. Sect. 4.9.2 and discussion above).

Finally, the dissipation of the cloud due to the monochromatic GWs discussed
in Sect. 5.2.2 can also significantly affect the orbital motion of a binary system. It
was shown in Ref. [122] that this energy loss tends to push the companion outwards
(similarly to the floating orbits discussed above and in Sect. 4.9.2) and this could be
used to detect scalar masses in the range 10−15 eV � mS � 3 × 10−12 eV through
the precise timing of the orbital period of pulsar-BH binaries.

Gravitational Drag and Accretion In addition to the effects discussed above, a
binary system evolving in a boson environment will be influenced by at least two
additional effects: accretion and dynamical friction. As the bodies move through
the medium, they accrete material while simultaneously exerting a gravitational
pull on the surrounding environment. These effects leave an imprint on the inspiral
dynamics and, in consequence, the GW phasing. The effect of dynamical friction
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and accretion for boson clouds has been studied in [114, 118] (see also [123] for
related studies). Those effects are especially important close to the peak of the scalar
configuration, where they can dominate over gravitational radiation reaction [114].

The cumulative effect of these effects over a large number of orbits can leave
a clear imprint in the gravitational waveform, measurable as a phase shift in the
GW signal relative to the inspiral in vacuum. In particular, Ref. [114] showed that
the effect of dynamical friction could be particularly important for stellar-mass BHs
sweeping over the LISA band.

In addition, the transfer of angular momentum induced by the dynamical friction
caused by the cloud could also increase the probability of a BH dynamically
capturing other compact objects, therefore, increasing the formation rate of BH
binaries [114].

5.3 Bounds on Ultralight Particles from Pulsar Timing

The observation of an isolated compact object with spindown time scale τspindown
would exclude superradiant instabilities for that system, at least on instability time
scales τ < τspindown. Therefore, spinning compact objects for which a (possibly
small) spindown rate can be measured accurately are ideal candidates to put
constraints on superradiant mechanisms, especially those triggered by ultralight
bosons.

Unfortunately, direct measurements of the spin derivative of BHs are not
available,10 so that constraints on superradiant instabilities using BH mass and spin
measurements are only meaningful in a statistical sense, as discussed above. On the
other hand, both the spin and the spindown rate of pulsars are known with aston-
ishing precision through pulsar timing (cf., e.g., Ref. [124]). For several sources, the
rotational frequency is moderately high, fspin = �/(2π) � (500 − 700)Hz, and
the spindown time scale can be extremely long, τspindown = �/(�̇) � 1010 yr. As
an example, the ATNF Pulsar Catalogue http://www.atnf.csiro.au/research/pulsar/
psrcat/ [125] contains 398 (40) pulsars for which τspindown > 2×109 yr (τspindown >

2 × 1010 yr).
In Fig. 5.11, we show the excluded regions in the conductivity vs. dark-photon

mass plane for the model given by action (3.115), where the conductivity can be
directly related to the fractional hidden charge of the electron [130]. The bound
is obtained by imposing τ < τspindown for three known sources, namely pulsars
J1938+2012 [126] and J1748−2446ad [127], and pulsar binary B1957+20 [128].
The first one is representative of a pulsar with an exceptionally long spindown time
scale (τspindown � 1.1 × 1011 yr), but with a moderately large spin (fspin � 380 Hz,
which corresponds to �/�K ≈ 0.28 assuming M = 1.4M� and M/R = 0.15).

10As previously discussed, observations of LMC X-3 and Cygnus X-1 are consistent with a
constant spin on a time scale of the order of 10 years, which gives a very mild bound compared to
the one discussed in this section.

http://www.atnf.csiro.au/research/pulsar/psrcat/
http://www.atnf.csiro.au/research/pulsar/psrcat/
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Fig. 5.11 Exclusion plots in the σ/σEM vs. mV plane for the model given by action 3.115. The
bounds are obtained from the measurements of spin and spindown rate of pulsars J1938+2012
(orange) [126] and J1748−2446ad (green) [127], and of the pulsar binary B1957+20 (blue) [128].
In all cases we assumed M = 1.4M� and two values of the compactness, namely M/R = 0.15
(solid) and M/R = 0.2 (dotted). The shaded areas correspond to regions excluded by the
superradiant instability because τ < τspindown for a given pulsar (i.e., the pulsar is observed to
spin down at much longer rate than that predicted by the superradiant instability in that region
of the parameter space). The horizontal dashed line indicates when σ has the same value than
the standard electric conductivity, i.e., σ σ = σEM. We only display the region where σ � �.
In the opposite limit, the instability time scale grows as τ ∼ 1/σ [cf. Eq. (4.84)] and eventually
τ > τspindown for sufficiently small σ . The shaded gray region is excluded from distortions of the
CMB blackbody from γ → X photon depletion [129]. Taken from Ref. [130]

The second one is the fastest pulsar known to date (fspin � 716 Hz, corresponding
to �/�K ≈ 0.53 forM = 1.4M� and M/R = 0.15), but only an upper bound on
its spin derivative is available, from which we infer τspindown > 7.6 × 107 yr. The
last one is representative of a pulsar with very large spin (fspin � 622 Hz, which
corresponds to �/�K ≈ 0.46 again assuming M = 1.4M� and M/R = 0.15),
but moderately long spindown time scale (τspindown � 3 × 109 yr). Furthermore,
because our fits for α1 and α2 appearing in Eq. (4.84) are independent of � only
for �/σ � 1, in Fig. 5.11 we show only values of the conductivity which satisfy
σ � �.

The exclusion plot shown in Fig. 5.11 is obtained as follows. For a given
measurement of the spin frequency of a pulsar, fspin, we can estimate� and compute
the instability time scale as a function of σ and μV through Eq. (4.84). Furthermore,
the measurement of a spindown time scale for a pulsar, τspindown, implies that a
faster spindown rate caused by the superradiant instability would be incompatible
with observations. Thus, imposing τ < τspindown yields an excluded region in the σ -
mV plane. Fastly spinning pulsars constrain the rightmost part of the σ -mV diagram
because the instability requires μV ∼ ωR < m�. On the other hand, pulsars with
longer spindown time scale correspond to higher threshold lines in the leftmost part
of the σ -mV diagram.
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The above results were obtained for the model (3.115), but similar analysis
should be valid also in other cases, provided the ultralight bosons are coupled to
the material of the star. For example, using a toy model for the coupling [131],
Ref. [132] recently studied the superradiant instability of millisecond pulsars due to
the interaction between ultralight scalar fields and neutrons.

5.4 Summary of the Bounds on Ultralight Bosons from
Superradiant Instabilities

Table 5.1 summarizes current constraints on ultralight bosons coming from the
absence of effects predicted by the superradiant instability of compact objects. For
each measurement we provide the bounds on the mass of a scalar, vector, and tensor
field, and also provide the relevant references in which these bounds have been
derived. For a discussion on the caveats for each bound we refer to the corresponding
reference. In many cases, only bounds on scalars (and sometimes on vectors) have
been explicitly derived. When a bound is not available in the literature, we derived
it independently using the results discussed in the previous sections, especially in
Sect. 4.6.5, and other results in the references. These new bounds are marked in
Table 5.1 with an asterisk.

Note that, in the tensor (spin-2) case, we only consider hydrogenic modes (using
the results of Ref. [49]) and neglect the “special” dipolar mode [18], which might
in principle provide stronger constraints but has been only computed to first order
in the spin. As shown in Table 4.2, the time scale for the most unstable hydrogenic
tensor mode has the same scaling with the coupling than the most unstable vector
mode, but a larger prefactor by a factor ≈5.6. This explains why the lower bounds
shown in Table 5.1 are always less stringent for spin-2 relative to the spin-1 case.

5.5 Plasma Interactions

Already in his PhD thesis, Teukolsky proposed that plasmas could be used as mirrors
to trigger superradiant instabilities [133, 134]. Because the frequency of amplified
radiation is much smaller than the plasma frequency ω−1

p (cf Eq. (4.76)) of the
interstellar medium, photons scattered by a BH in vacuum would be reflected by
a spherically symmetric plasma distribution.

This process was recently analyzed in Ref. [135] (cf. Sect. 4.8.3). If the back-
ground is slowly varying relative to the plasma time scale ω−1

p and the density
gradients are small compared to the gravitational field, then [136] the relevant
dynamical equation is given by Eq. (4.77), which is equivalent to the Proca
equation (4.34) when the plasma is homogeneous. In this simple case the plasma
frequency ωp can be identified with the mass μV of the vector field and all the
results discussed for Proca fields around a Kerr BH can be directly applied [135]. In
a more realistic situation the plasma will have an inhomogeneous distribution due
to the local gravitational field near the BH, e.g., the density would peak at a few
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Table 5.1 Current constraints on ultralight bosons coming from the absence of effects predicted
by the superradiant instability of compact objects

Excluded region (in eV) Source References

5.2 × 10−13 < mS < 6.5 × 10−12 * Direct bounds from absence of
spin down in Cyg X-1

[43, 49]

1.1 × 10−13 < mV < 8.2 × 10−12 *

2.9 × 10−13 < mT < 9.8 × 10−12 *

6 × 10−13 < mS < 2 × 10−11 Indirect bounds from BH
mass-spin measurements

[16, 18, 38, 48]

7 × 10−20 < mS < 1 × 10−16

2 × 10−14 < mV < 1 × 10−11 * [26, 43, 44, 49]

1 × 10−20 < mV < 9 × 10−17 *

6 × 10−14 < mT < 1 × 10−11 *

3 × 10−20 < mT < 9 × 10−17 *

1.2 × 10−13 < mS < 1.8 × 10−13 Null results from blind all-sky
searches for continuous GW
signals

[83, 84]

2.0 × 10−13 < mS < 2.5 × 10−12

mV : NA

mT : NA

6.4 × 10−13 < mS < 8.0 × 10−13 Null results from searches for
continuous GW signals from
Cygnus X-1

[77, 92]

mV : NA

mT : NA

2.0 × 10−13 < mS < 3.8 × 10−13 Negative searches for a GW
background

[26, 42, 95]

mV : NA

mT : NA

5 × 10−13 < mS < 3 × 10−12 Bounds from pulsar timing [130, 132]

mV ∼ 10−12

mT : NA

2.9 × 10−21 < mS < 4.6 × 10−21 Bounds from mass and spin
measurement of M87 with EHT

[45]

8.5 × 10−22 < mV < 4.6 × 10−21

1.0 × 10−21 < mT < 8.2 × 10−21 *

These bounds will be constantly updated online http://blackholes.ist.utl.pt/?page=Files, https://
web.uniroma1.it/gmunu, https://www.darkgra.org as new results come out (“NA” means that the
bound is not available yet, whereas an asterisk stands for bounds originally derived in this work
based on previous results). The quoted bounds are typically at 1σ significance level, but some of
them are affected by caveats discussed in the corresponding reference

Schwarzschild radii whereas it would be negligible near the horizon. In this case
a detailed model for matter distribution is necessary for a quantitative assessment,
although preliminary computations show that the frequency and the time scale of
the instability are insensitive to local inhomogeneities near the horizon [135]. As an
example of superradiance stimulated amplification in a realistic setting, Ref. [137]
studied superradiant confinement in a toroidal magnetosphere around a Kerr BH,
arguing that the repeated amplification of EM (with time scales of the order of the
second for stellar-mass BHs) might be a model for periodic γ -ray bursts.

This class of plasma-triggered superradiant instabilities is also relevant for small
primordial BHs in the early universe [138]. When formed at redshift z, such BHs

http://blackholes.ist.utl.pt/?page=Files
https://web.uniroma1.it/gmunu
https://web.uniroma1.it/gmunu
https://www.darkgra.org
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are surrounded by a mean cosmic electron density,

n = n0 (1 + z)3 ≈ 220 cm−3
(

1 + z
103

)3

, (5.24)

which translates to a time-dependent plasma frequency through Eq. (4.76). Because
the cosmological evolution occurs on a much longer time scale than the BH
evolution, we can adopt an adiabatic approximation and treat n as constant during
the energy extraction phase at a given z.

In order for the superradiance instability to be effective at a given redshift z, the
instability time scale must be much shorter than the cosmological evolution time
scale. By comparing the time scale (4.37) (with l = m = 1 and after identifying
μS = ωp) with the age of the Universe τage as a function of redshift, we show in
Fig. 5.12 the Regge plane for primordial BHs with mass in the range 10−9M� <

M < M� for three representative redshift values. Similarly to the previous cases,
at any plotted z, BHs located above the corresponding curve are unstable due to
superradiant instability with τ < τage. It is easy to derive an upper bound on the BH
mass corresponding to the portion of the Regge plane where superradiant instability
starts becoming effective. This reads [135]

M

M�
� 0.19

a

M

(
1 + z
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)−3/2

. (5.25)
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Fig. 5.12 Contour plots in the BH Regge plane [19–21] corresponding to a plasma-triggered
instability of a primordial BH whose time scale is shorter than the age of the universe at a given
redshift, assuming a mean cosmic gas density (5.24). Thick and thin curves correspond to polar
and axial modes, respectively [19]. In both families, the rightmost part of each curve is described
by J/M2 ∼ 4Mωp . Roughly speaking, primordial BHs in the mass range 7 × 10−9M� < M <

0.2M� go through a cosmic era (at some redshift 103 < z < 2 × 106) when the superradiant
instability is effective. From [135]
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In other words, a primordial BH with mass M and spin a satisfying the relation
above will pass through an epoch at redshift z when the mean gas density is such
that the superradiant instability is effective.

As previously discussed, a spinning BH could lose most of its rotational energy
over a short time scale as a result of the superradiant instability. Because the
threshold curves shown in Fig. 5.12 extend almost down to J ∼ 0, a single
primordial BH will essentially lose all its initial angular momentum, whereas its
mass loss reads [135]

�M

M
≈ aωR

1 − 2aωR
≈ 10−3 a

M

(
1 + z
103

)3/2 (
M

10−3M�

)
, (5.26)

where in the last step we assumed (M/M�) � 2 × 105(1 + z)−3/2. According to
this estimate, in the linear approximation the efficiency of the energy extraction at
z ∼ 105 forM ∼ 10−4M� is roughly a/M × 20%.

Primordial BHs are intensively investigated as a possible solution of the dark-
matter problem (see, e.g., Ref. [138] for a review). In Ref. [135], it was argued
that as the plasma density declines due to cosmic expansion, the superradiance
energy (5.26) is released and dissipated in the cosmic microwave background
through Coulomb collisions. By evaluating the resulting spectral distortions of the
cosmic microwave background in the redshift range 103 � z � 2 × 106, and by
using the existing COBE/FIRAS data [139], competitive upper limits on the fraction
of dark matter that can be associated with spinning primordial BHs in the mass range
10−8M� �M � 0.2M� were obtained, as shown in Fig. 5.13.
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Fig. 5.13 Upper limits on the mass fraction of dark matter in primordial BHs with masses in
the range 10−9M� < M < 102M�. The solid blue curve is the theoretical constraint derived
in this paper using COBE/FIRAS data [139]. The dashed red line is the expected limit from
the proposed PIXIE experiment [140]. The limits from superradiant instabilities are plotted for
maximally spinning primordial BHs, and scale roughly as the inverse of the average spin parameter
weighted by the initial BH spin distribution. The limits from other methods are adopted from
Ref. [138]. See Ref. [135] for details
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5.6 Intrinsic Limits onMagnetic Fields

In Sect. 4.11 we showed that rotating BHs immersed in a magnetic field are unstable
against superradiant modes. In complete analogy with the discussion of Sects. 5.1
and 5.2, due to this instability, the energy density of the radiation in the region
r � 1/B, with B the magnetic field strength, would grow exponentially in time at
the expense of the BH angular momentum, with the end state being a spinning BH
with a spin set by the superradiant threshold.11 This implies an upper bound on
the spin of magnetized BHs, again leading to holes in the BH Regge plane (cf.
Sect. 5.1). This was used in Ref. [141] to put intrinsic limits on magnetic fields
around astrophysical BHs.

In Fig. 5.14 we show the BH Regge plane with contour curves corresponding to
an instability time scale 1/ωI , given by Eq. (4.86), of the order of the Salpeter time.
Since the contours extend almost up to J/M2 ∼ 0, one interesting consequence of
these results is that essentially any observation of a spinning supermassive BH (even
with spin as low as J/M2 ∼ 0.1) would provide some constraint on B. However,
these observations can possibly exclude only very large values of B. For example, a
putative observation of a supermassive BH withM ∼ 109M� and J/M2 � 0.5 can
potentially exclude the range 107Gauss � B � 109Gauss.12

Although these results are only valid when B/BM � 1, this limit includes
the most interesting region of the parameter space. Indeed, the strongest magnetic
fields around compact objects observed in the Universe are of the order of 1013–
1015Gauss [142] and, in natural units, this value corresponds to B/BM ∼ 10−6–
10−4. For astrophysical BHs, a reference value for the largest magnetic field that can
be supported in an accretion disk is given byB ∼ 4×108 (M/M�)−1/2 Gauss [143]
so that the approximation B � BM is well justified.

The main caveat of these bounds is that they were obtained using the Ernst metric
which, as we discussed in Sect. 4.11, is not asymptotically flat, but instead describes
a BH immersed in a magnetic field which is supported by some form of matter at
infinity. In most realistic models it is expected that the Ernst metric is a relatively
good approximation for the geometry of astrophysical BHs only up to a cutoff
distance associated with the matter distribution. Considering that the accretion disk
is concentrated near the innermost stable circular orbit, this would imply that these
results can be trusted only when B/BM � 0.1 [141], which is a very large value
for typical massive BHs. On the other hand, the Ernst metric is more accurate to
describe configurations in which the disk extends much beyond the gravitational
radius, as is the case in various models (cf. Refs. [31, 144]). In this case, however,

11As was pointed out in Ref. [141], for the (unrealistic) Ernst metric in which radiation cannot
escape, the end state is most likely a rotating BH in equilibrium with the outside radiation, similarly
to the asymptotically AdS case discussed in Sect. 4.5.1. However, in realistic situations part of the
radiation will escape to infinity, reducing the BH spin (see discussion below).
12The strength of the magnetic field can be measured defining the characteristic magnetic field
BM = 1/M associated to a spacetime curvature of the same order of the horizon curvature. In
physical units this is given by BM ∼ 2.4 × 1019 (M�/M)Gauss.
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Fig. 5.14 Contour plots in the BH Regge plane corresponding to an instability time scale shorter
than τSalpeter ∼ 4.5 × 107 yr for different values of the magnetic field strength B for modes with
l = m = n = 1. BHs lying above each of these curves would be unstable on an observable time
scale. The threshold lines are obtained using Eq. (4.86) in the range 10−4 � B/BM � 1. From
Ref. [141]

the magnetic field will not be uniform and the matter profile has to be taken into
account. While the simplistic analysis of Ref. [141] can provide the correct order of
magnitude for the instability, a more refined study is needed to assess the validity of
these results in the full range of B.

5.7 Phenomenology of the Ergoregion Instability

The ergoregion instability discussed in Sect. 4.14 has important phenomenological
implications. Indeed, building on the results by Friedman [145] that a horizonless
object with an ergoregion is unstable, a series of more recent works [146–153] have
established that—under certain assumptions—this instability rules out extremely
compact NSs and various exotic alternatives to BHs.

5.7.1 Ergoregion Instability of Ultracompact Stars

As shown in Fig. 4.30, the time scale of the ergoregion instability of a compact
spinning star can be as short as τER ∼ 107M (although this requires an extrapolation
to � ∼ �K beyond the slowly rotating regime). For a compact star with M ≈
1.4M�, this corresponds to a short time scale of the order of seconds. A relevant
question concerns the dependence of the instability on the compactness of the
star and on its equation of state. A representative example is shown in Fig. 5.15,
which presents the frequency and time scale of the fundamental l = m = 1 mode
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Fig. 5.15 The frequency
(top panel) and the time scale
(bottom panel) of the
fundamental l = m = 1
unstable mode of a
constant-density NS as
functions of the stellar
compactness R/M . The
l = m = 1 mode turns stable
at about R ∼ 2.35M .
Although not shown, higher
multipoles with l = m� 1
will remain unstable until
R � 3M [154, 155] (cf. also
Fig. 4.32 where higher
unstable multipoles are
shown in a different system)
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as functions of the stellar compactness R/M for a constant-density star, whose
pressure is given in terms of the constant density in Eq. (F.4).

The instability time scale grows very rapidly as the compactness decreases and
the l = m = 1 mode turns stable at R ≈ 2.35M . This result is valid to second
order in the spin, a consistent treatment was described in Sect. 4.14.1. On the other
hand, by neglecting some of the second-order terms in the perturbations equations,
various works have explored the dependence of the time scale on l, m, and on the
stellar compactness. Yoshida and Eriguchi have presented a detailed analysis [155],
showing that various l = m modes can become unstable. The WKB analysis by
Comins and Schutz [154] shows that in the eikonal (l = m→ ∞) limit an unstable
mode appears precisely when an ergoregion is formed, although the time scale is
exponentially long, cf. Eq. (4.98). This is also confirmed by our previous analysis of
the ergoregion instability in analogue-gravity systems, see Fig. 4.32.

Clearly, the instability is phenomenologically relevant only if the associated time
scale is shorter than the age of the star. Indeed, dynamically stable (i.e., with τER �
M) spinning stars with an ergoregion can exist also in realistic scenarios [156] (see
below).

In addition, the compactness of a NS is bounded from above by the requirement
that the speed of sound in the stellar interior is smaller than the speed of light. This
causality bound translates into the lower constraint R � 3M [157, 158] on the NS
radius. This seems to exclude the ergoregion instability because, as we have shown,
the latter is associated with long-lived modes which exist only for ultracompact stars
with R � 3M in the nonspinning limit.13 Furthermore, causality also constrains the

13 Recently, Ref. [159] showed that long-lived modes necessarily exist for matter configurations
whose trace of the stress-energy tensor is positive (or zero). For a perfect-fluid star, this requires
P > ρ/3, where P and ρ are the NS pressure and density. This is an extreme configuration which
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maximum angular velocity of a spinning NS [160], thus disfavoring the formation
of an ergoregion.

However, it is likely that an ergoregion forms for NSs whose radius is larger than
3M if the star is fastly spinning. In addition, differential rotation seems to help.
The first NSs with an ergoregion (stable on dynamical time scales) were recently
constructed for a compressible, causal equation of state [156]. Ergoregion-instability
time scales for such objects have not been systematically studied yet.

5.7.2 Testing the Black-Hole Paradigm: Extreme Compact Objects

BHs in GR have a remarkable property: being vacuum solutions of Einstein’s field
equations they do not depend on any external scale and, therefore, can exist in
any size (or, equivalently, with any mass). Dark objects as compact and massive
as BHs but that do not possess an event horizon go under the generic name of
“BH Mimickers,” “Exotic Compact Objects,” or generically “Extreme Compact
Objects” (ECOs) (see Refs. [3, 161, 162] for some overviews). Notwithstanding,
ordinary matter—even when in extreme conditions—cannot support the enormous
self-gravity of a massive and ultracompact object. For example, NSs—the densest
material objects known in the Universe—cannot sustain masses larger than14

≈3M�. Therefore, supporting the self-gravity of an ECO requires (at least!) exotic
matter, or quite drastic modifications to GR: this is the price to pay to avoid dealing
with event horizons.

There are strong motivations to study ECOs as alternatives to ordinary BHs,
or as new “species” of compact objects that might co-exist in the universe along
with ordinary BHs and NSs [3, 161]. Despite the growing evidence in favor of
the BH paradigm, a definite proof that massive compact objects are endowed
with a horizon is fundamentally impossible. On the contrary, the observation of
a surface would be a bullet-proof indication that compact dark objects have star-like
properties (see, e.g., Ref. [163]). Such tests are extremely challenging to perform in
the electromagnetic window [3, 161, 164]. On the other hand, GW-based tests are
already providing strong constraints and the whole field will improve significantly
in the next years.

ECO Taxonomy Within GR, Buchdhal’s theorem [165] sets an upper bound on the
maximum compactness of a self-gravitating compact object. This implies that ECOs
can exist either within GR if some of the assumptions of the theorem are violated

is unlikely to exist in ordinary stars, but it might occur in other models of ultracompact objects, as
those discussed in Sect. 5.7.2.
14Even constant-density NSs have a maximum compactness which is smaller than the BH limit
M/R = 1/2. Inspection of Eq. (F.2) shows thatM/R ≤ 4/9 to ensure regularity of the geometry.
More realistic equations of state yield a maximum mass and a maximum compactness.
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(e.g., staticity, perfect-fluid matter, isotropy) or if the underlying theory of gravity is
not GR [3].

While the list of ECO models is ever growing, the most popular models are
reviewed and discussed in Ref. [3].

Diagnostics for ECOs Observational signatures of ECOs can be divided into
two categories: EM tests and GW tests. The former includes EM counterparts
of accretion and two-body processes [166–168], mostly in the X-ray and radio
band (including the recently observed shadow of the supermassive BH candidate
in M87 [13, 169, 170]). The latter includes:

• Tests of the inspiral phase: BH no-hair theorem tests using multipole
moments [171–174], absence/presence of an horizon from tidal heating [175–
177], measurement of the tidal deformability [175,178–180] (the so-called “tidal
Love numbers”), resonance excitation during the inspiral [110, 114, 123, 181,
182];

• Signatures of matter or of an effective surface during the merger [31, 123, 151,
183–186]; possible EM counterpart associated with it;

• Ringdown tests using the oscillation modes of the merger remnant [187–189];
• Inspiral-merger-ringdown consistency tests [190, 191]
• Post-merger tests using GW echoes [192, 193].

A detailed discussion of these signatures and of the corresponding bounds on ECOs
is given in Ref. [3]. Below we shall focus only on those aspects which are directly
related to superradiance.

Ergoregion Instabilities of ECOs and Their Phenomenology Very compact
objects can develop negative-energy regions once spinning, and become unstable.
Such instability affects any horizonless geometry with an ergoregion, similarly to
the aforementioned case of spinning ultracompact stars [146, 150, 152, 194–197].
As discussed in Sect. 4.14, the only way to prevent this instability from occurring
is by absorbing the negative-energy modes. BHs can absorb them efficiently (and
hence Kerr BHs are stable against massless fields), but horizonless objects—at least
if perfectly reflecting—must then be unstable.

The ergoregion instability of various boson stars and “gravastars” (objects with
a de Sitter interior [198]) models has been studied in some detail in Ref. [146, 149],
showing that unstable modes generically exist. While gravastars have been studied
only in the slowly rotating limit, numerical solutions of highly spinning boson stars
are available.15 For a given compactness of the order of M/R ∼ 1/2, gravastars

15The angular momentum of a boson star is quantized [199]; this prevents performing a standard
slow-rotation approximation. Furthermore, there are indications that spinning scalar boson stars
(at variance with their vector counterpart known as Proca stars [200]) are also subject to another
(nonsuperradiant) type of instability, at least in the absence of self-interactions [201].
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and boson stars develop an ergoregion when spinning above a certain threshold. As
for ultracompact stars, also in this case the instability arises from long-lived modes
that exist when these objects possess a light ring, which typically happens when
R � 3M in the nonspinning limit.

The ergoregion instability of other objects with ergoregions (e.g., “superspinars”
and wormholes) was studied in Ref. [147], showing that similar results hold.
Because in this case the exact form of the geometry is unknown, the stability
analysis has been performed by imposing Dirichlet boundary conditions at the
excision surface at r = r0. The latter should approximate the boundary conditions
required by a hard surface at the would-be horizon location. A detailed analysis
of the instability of Kerr-like objects with different boundary conditions, was
performed in Refs. [148, 152, 153].

More recently, Refs. [152, 153] studied in detail ultracompact Kerr-like ECOs,
with radius r0 = r+(1 + ε) (where ε � 1), and whose exterior geometry (r > r0) is
described by the Kerr metric. The properties of the object’s interior and surface
can be parametrized in terms of boundary conditions at r = r0, in particular
by a complex and (possibly) frequency-and-spin-dependent reflection coefficient,
R [152, 202]. The ergoregion instability of Kerr-like ECOs has been studied
for scalar, electromagnetic, and gravitational perturbations—both numerically and
analytically in the low-frequency regime—for a variety of boundary conditions at
r = r0. The overall summary of these studies is that the instability time scale
depends strongly on the spin and on the compactness of the objects, which can
be parametrized in terms of ε. The ergoregion-instability time scale can very
long [146, 152, 194]. For concreteness, for gravastars with ε ∼ 0.1 − 1 the
ergoregion is absent even for moderately high spin [149]. However, at least for
perfectly reflecting Kerr-like ECOs in the ε → 0 limit, the critical spin above
which the object is unstable is very low [153]. As for the case of superradiance,
the instability removes angular momentum from the spinning body until the latter
reaches the critical spin for which the instability is absent [203]. This implies that
highly spinning ECOs should be unstable over relatively short time scales in a large
portion of the spin-compactness plane, as shown in Fig. 5.16.

Ergoregion Instability for Partially Absorbing Objects The above discussion
assumed that the ECOs are perfectly reflecting. A possible way to quench the
instability is by absorbing the negative-energy modes trapped within the ergoregion,
similarly to the BH case.

A first attempt to understand the role of partial absorption in the superradiant
energy extraction was discussed in Refs. [152,153], which showed that the instabil-
ity is totally quenched if the absorption rate at the ECO surface is at least equal to
the maximum superradiance amplification. For highly spinning objects, this requires
at least 0.4% absorption rate for scalar fields, but up to 100% absorption rate for
gravitational perturbations and almost maximal spins. While these numbers reduce
to �0.1% for spins χ � 0.7, they are still several orders of magnitude larger than
what achievable with viscosity from nuclear matter. Nonetheless, certain models of
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Fig. 5.16 Exclusion plot in the χ − ε plane due to the ergoregion instability of a perfectly
reflecting ECO, assumed to be described by the Kerr geometry in their exterior, r > r0 = r+(1+ε).
Shaded areas represent regions where the object is unstable against l = m = 2 gravitational
perturbations with a time scale equal to or shorter than τinst. For details see Refs. [3, 152, 153]

quantum BHs seem to have reflectivity properties such that the ergoregion instability
is absent [204, 205].

Finally, given its long time scales, it is possible that the instability can be
efficiently quenched by some dissipation mechanism of nongravitational nature,
although this effect would be model-dependent [152,153]. Unfortunately, the effect
of viscosity in ECOs is practically unknown [151, 206], and so are the time scales
involved in putative dissipation mechanisms that might quench this instability.

It is also possible that, when spinning, a partially absorbing object can support
quasi-trapped superradiant modes withωR < m�, which might lead to an instability
similar to that of massive bosonic fields around Kerr BHs. To better understand this
point, let us consider Eq. (3.53) for an object with reflectivity Rsurface at its surface.
In such case, O = T Rsurface and the scattering reflectivity coefficient reads

|R|2 = |I|2 − ω −m�
ω

|T |2
(

1 − |Rsurface|2
)
, (5.27)

where for simplicity we assumed k∞ = ω and kH = ω − m�, with � being
the angular velocity at the surface. If the object is only partially reflecting, then
|Rsurface| < 1 and superradiance would occur whenever ω < m� (regardless of
the caveat discussed in Sect. 3.5 related to possible instabilities). In more realistic
configurations Rsurface = Rsurface(ω) (and it would be, in general, a complex
function). If an object has a reflectivity Rsurface(ω) in the static limit, when spinning
the effective reflectivity can acquire a superradiant term ω → ω − m�. This
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Fig. 5.17 Scalar eigenfunctions of a static, ultracompact star with radius R = 2.3M for m = 0
and l = 6, 10, 20 (from left to the right). The eigenfunctions have a typical width that scales as l−1

in the angular direction and a width in the radial direction that depends on the model, but typically
ranges between l−0.4− l−0.8. Therefore, the “aspect ratio” of the perturbation ∼ l0.6− l0.2 grows in
the large-l limit and the perturbation becomes more and more elongated along the radial direction.
See Ref. [151] for details

happens, for instance, to the reflectivity coefficient of a BH, see Eqs. (3.104)
and (4.9).16

Nonlinear Instability Linearized gravitational fluctuations of any nonspinning
ECO are extremely long-lived and decay no faster than logarithmically [151, 207–
209]. Being trapped between the center of the object and the light ring, and being
localized near a second, stable null geodesic [151, 210], the long damping time of
these modes has led to the conjecture that ECOs are nonlinearly unstable and may
evolve through a Dyson–Chandrasekhar–Fermi type of mechanism [211–213] at the
nonlinear level [151, 207].

To understand this mechanism, it is illustrative to inspect the eigenfunctions
of the linearized problem. An example is shown in Fig. 5.17 for the case of a
ultracompact star (qualitatively similar results hold for other BH mimickers). As the
multipolar index l increases, the eigenfunctions becomes more and more elongated
along the radial direction. If we assume for simplicity that the perturbations are
axisymmetric (m = 0), these elongated, long-lived modes are unstable against
the same “Dyson–Chandrasekhar–Fermi” mechanism that affects thin cylinders
or rings of matter [211–214]. The minimum growth time scale of this instability
scales as τDCF ∼ δρ−1/2, where δρ is the density fluctuation. The requirement that
nonlinearities take over is that τDCF be much smaller than the lifetime of linear
fluctuations. Because the latter grows exponentially with l (cf. Eq. (4.98)), it is easy
to show that fragmentation becomes important already at moderately small values
of l even for δρ/ρ ∼ 10−16 or smaller [151].

16The dependence of |Rsurface|2 on the combination ω − m� should actually be linear, hence the
change of sign in the superradiant regime. Heuristically this can be understood as follows. Let us
consider a compact object such that the effective potential vanishes at its surface. The field near the
surface is � ∼ e−i(ω−m�)r∗ and the energy flux depends on linear partial derivatives with respect
to the tortoise coordinate, ∂r∗�, which brings a linear ω −m� dependence.
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The fragmentation of the linear eigenfunction leads to a configuration which
consists on a spherically symmetric core surrounded by droplets of the star fluid,
whose sizes are much smaller than that of the original object [151] (see also
nonlinear results for fragmentation of black strings [215]). It is easy to see that
these smaller droplets, although of the same material as the original star, are much
less compact because they are much smaller and are therefore expected to be
themselves stable. Likewise, the core of the star is also less compact and stable. On
longer time scales, these droplets re-arrange and fall into the core, and the process
continues. The dynamical picture looks like that of a “boiling” fluid, and radiates
a nonnegligible amount of radiation. Exact calculations have not been performed
yet but, if this scenario is correct, a sizable fraction of the object’s initial mass can
disperse to infinity, possibly reducing the compactness of the final object to values
which no longer allow for the existence of light rings. In an alternative scenario,
nonlinear interactions over the ultralong lifetime of the unstable modes may lead to
the formation of small BHs close to the stable light ring [151].

Do Light Rings Imply Black Holes? To summarize, ultracompact objects with
R � 3M might be plagued by various instabilities. When these objects are almost
perfectly reflecting and spinning sufficiently fast, they suffer from the ergoregion
instability at the linear level. Even when they are only slowly spinning or static,
long-lived modes trapped by the light ring can become unstable at the nonlinear
level. In the latter case, the instability can lead to fragmentation (thus reducing
the object’s compactness) or to gravitational collapse (thus forming a BH). In
both cases, the instability can be sufficiently strong to be dynamically effective.
As recently pointed out [159], exotic matter configurations with T μμ ≡ T > 0
are necessarily characterized by the existence of long-lived modes. Altogether,
these results give further theoretical support to the BH hypothesis [3]: the mere
observation of a light ring—a much simpler task than the observation of the
horizon—might thus be seen as a compelling (albeit indirect) evidence for the
existence of BHs.

Superradiance and Gravitational-WaveEchoes A powerful discriminator for the
presence of structure at the horizon scale is the post-merger GW signal [192, 193].
When ECOs are very compact, this signal displays the same prompt ringdown
as observed for BHs, but followed by a repeated and modulated train of pulses,
known as GW echoes [193,216]. Echoes have been studied with several approaches,
most notably time- and frequency-domain templates [216–221], using transfer
functions [202,219,222], Dyson series [223], or resonance methods [224,225] (see
Refs. [204, 226–232] for a discussion of the detectability of this effect in actual
LIGO/Virgo data).

Interestingly, superradiance is also relevant for echoes. Indeed, the frequency
content of the echo signal decreases in time for each subsequent echo, so that
eventually the frequency can be small enough to satisfy the superradiant condition,
ω < m� [218, 220]. This produces interesting effects and resonances in the
transfer function [220]. In the case of perfectly reflecting ECOs, one might
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be tempted to conclude that the echo amplitude will grow in time due to the
superradiant/ergoregion instability. While this is true, the time scale for this process
is parametrically longer than the echo delay time, and likely plays a negligible role in
actual searches for echoes [220]. On the other hand, if spinning compact objects are
ECOs, this effect might produce a strong stochastic background from all unresolved
sources which would be detectable with current and future interferometers [203].

Tidal Heating and Superradiance as Discriminators for Horizons Another
strong diagnostic for horizons which is directly related to superradiance is tidal
heating [233, 234] (see Sect. 2.5.5). As we have discussed, a spinning BH absorbs
radiation of frequency ω > m�H, but amplifies radiation of smaller frequency due
to superradiance. In this respect, BHs are dissipative systems which behave just like
a Newtonian viscous fluid [235–237].

For low-frequency circular binaries, the energy flux associated to tidal heating at
the horizon, ĖH , corresponds to the rate of change of the BH mass [238, 239] (see
also Eq. (2.71)),

Ṁ = ĖH ∝ �5
orb

M2
(�orb −�H) , (5.28)

where �orb � 1/M is the orbital angular velocity (related to the linear velocity v
by v = (M�orb)

1/3) and the (positive) prefactor depends on the masses and spins
of the two bodies. Thus, tidal heating is stronger for highly spinning bodies relative
to the nonspinning by a factor ∼ �H/�orb � 1.

The energy flux (5.28) leads to a potentially observable phase shift of GWs
emitted during the inspiral, which can be parametrized by higher-order post-
Newtonian (PN) corrections to the phase [240]. Absorption at the horizon introduces
a 2.5PN × log v (resp., a 4PN × log v) correction to the GW phase of spinning
(resp., nonspinning) binaries, relative to the leading term [175]. This effect has been
used to estimate the constraints coming from the detection of supermassive spinning
binaries with future detectors [175,176]. More recently, the effect of tidal heating in
extreme-mass-ratio inspirals [234] has been shown to lead to exquisite constraints
on the effective reflectivity of an ECO [177] (see also Ref. [241]).

5.8 Superradiance and Relativistic Jets

Relativistic jets emitted by astrophysical sources are one of the most interesting
and mysterious phenomena in our Universe. The most powerful jets are seen in
active galactic nuclei (AGNs) and are believed to be the result of accretion of matter
by supermassive BHs [32]. AGNs are the most powerful sources in the Universe,
making it very hard to conceive viable models for their production without invoking
very compact objects. Although the first AGNs (such as quasars and radio galaxies)
were discovered four decades ago, the engine powering these events is still largely
unknown. The energy needed for the acceleration of these relativistic outflows of



242 5 Black Hole Superradiance in Astrophysics

matter is widely believed to either come from gravitational binding energy and/or
from the object’s rotational energy. In the first case, accretion of matter onto the
BH leads to a transfer of gravitational binding energy to particles which are tossed
away along the rotational axis of the BH (see, e.g., Ref. [242] for such a process).
Other mechanisms, akin to superradiance or to the Penrose process, make use of
the rotational energy of the BH. This is the case of the Blandford–Znajek (BZ)
mechanism [243] which occurs for BHs immersed in magnetic fields (see also, e.g.,
Refs. [244–246] for a discussion on the relationship between the BZ mechanism and
superradiance or the Penrose process17 ). In this mechanism the magnetic field lines,
which are anchored in the accretion disk, are twisted due to the frame dragging effect
near the rotating BH (see Sect. 3.1.3), thus increasing the magnetic flux. Similar
to the Earth–Moon system discussed in Sect. 2.5.5, due to dissipative effects, this
can lead to energy transfer from the BH to the magnetic field [248]. This energy
is then used to accelerate the surrounding plasma and to power a jet collimated
along the BH rotational axis. In general both the accretion process and the BZ
mechanism might contribute to the energy released in the jets, making it difficult
to prove from numerical simulations that the latter mechanism is at work, but recent
general relativistic magnetohydrodynamic (GRMHD) simulations seem to indicate
that this is indeed the case [245, 249–251].

5.8.1 Blandford–Znajek Process

In the BZ solution a Kerr BH is considered to be immersed in a stationary
axisymmetric force-free magnetosphere [243]. In Ref. [243] it was argued that in
analogy with what happens in pulsars, a rotating BH would trigger an electron–
positron pair cascade just outside the accretion disk and the horizon where the
plasma is rarefied, establishing an approximately force-free magnetosphere.18 In
Fig. 5.18 we depict the region where this force-free magnetosphere is localized plus
the other regions that characterize the magnetosphere. Region (FF) is where the
transfer of energy takes place. This energy is then deposited in region (A) where
particles are accelerated.

To describe the force-free magnetosphere, in addition to Maxwell’s equations
with a source

∇νFμν = Jμ

ε0
, (5.29)

17Interestingly the analogy between the BZ process and superradiance might be more than just
an analogy. In fact, Ref. [247] recently showed that the BZ process can be interpreted as the long
wavelength limit of the superradiant scattering from Alfvénic waves in the plasma.
18A condition for this to happen is that initially there is a small electric field component parallel to
the magnetic field (note that this is a Lorentz invariant condition). In Ref. [252], this was shown to
occur for rotating BHs immersed in a magnetic field.
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Fig. 5.18 Pictorial description of the magnetosphere surrounding a BH in the BZ mechanism.
The solid lines denote electric equipotential surfaces. The magnetosphere is composed of three
different regions: a region (D) which includes the accretion disk and the horizon, where the field is
degenerate, i.e., the electric field is perpendicular to the magnetic field, but not force-free. This last
condition is required for these regions to be able to anchor the magnetic field; a region (FF) where
the field is force-free. In this region the current flows along equipotential surfaces; an acceleration
region (A) in which the field is neither degenerate nor force-free. In region (A) the equipotential
surfaces close up, and the energy extracted from the BH is used to accelerate charged particles. In
regions (D) and (A) the current can flow across the equipotential surfaces. Reproduction of figure
from Ref. [248]

the EM field must satisfy the following three conditions:

FμνJ
ν = 0 , ∗FμνFμν = 0 , FμνF

μν > 0 , (5.30)

where ∗Fμν ≡ 1
2ε
μνρσFρσ is Maxwell’s tensor dual (we use the definition εμνρσ ≡

1√−gE
μνρσ , where Eμνρσ is the totally anti-symmetric Levi-Civita symbol with

E0123 = 1), ε0 is the vacuum permittivity, and Jμ is the current generated by
the electron–positron plasma. The first condition implies—assuming that the vector
potential has the same symmetries (axisymmetry and stationarity) than the BH
spacetime—that the magnetic field lines lie along surfaces of constant Aϕ . On the
other hand, if the second condition is satisfied but not the third one can always find
a local inertial frame where the EM field is purely electric. From these equations, it
also follows that one can define a function �EM(r, ϑ) as

�EM(r, ϑ) = − At,r
Aϕ,r

= −At,ϑ
Aϕ,ϑ

, (5.31)

which can be interpreted as being the “angular velocity” of the EM field as will
become clear below.
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The field equations must also be supplemented with appropriate boundary
conditions at the horizon and at infinity. At the horizon it was shown in Ref. [253]
that regularity implies (assuming Aϕ to be finite)

� sinϑ

ρ2 Frϑ = 2Mr+ (�EM −�H)

r2+ + a2 cos2 ϑ
Aϕ,ϑ(r+, ϑ) , (5.32)

where in the force-free approximation, Frϑ can be shown to be a function of Aϕ
only. On the other hand, the boundary conditions at infinity are not unique but they
can be chosen, e.g., by matching the field to known flat-space solutions.

The factor �EM − �H appearing in the boundary conditions above (compare it
with the superradiant condition (1)) already suggests that stationary axisymmetric
solutions of the inhomogeneous Maxwell’s equations (5.29) in a Kerr background
are akin to a superradiance-like process. In fact the conserved radial EM energy and
angular momentum fluxes at the horizon are given by [243]

δErhole ≡ −T r
μ ξ

μ

(t) = �EM(�EM −�H)

(
Aϕ,ϑ

r2+ + a2 cos2 ϑ

)2 (
r2+ + a2)ε0 ,

(5.33)

δJ rhole ≡ T r
μ ξ

μ
(ϕ) = δErhole

�EM
, (5.34)

and thus when 0 < �EM < �H there is a net radial negative energy and angular
momentum flux δErhole < 0, δJ rhole < 0 at the horizon, i.e., energy and angular
momentum are extracted from the BH. From Eq. (5.34) one sees that the function
�EM can indeed be interpreted as the “angular velocity” of the EM field.

By deriving specific solutions for the EM field, it is possible to construct the
function �EM through Eq. (5.31) explicitly. Particularly important are the split
monopole, and the paraboidal magnetic field solutions found perturbatively in
the slowly rotating limit [243]. In these cases, �EM = �H/2 and �EM ≈
0.38�H, respectively (see, e.g., Ref. [254] for a recent summary of these solutions
and also Refs. [255–258] for recent exact solutions found around extreme Kerr
BHs). Recently Ref. [259] studied the linear stability of the monopole solution
and their results suggest that the solution is mode stable. In fact, force-free
simulations (e.g., [244,260–263]) and recent GRMHD simulations seem to indicate
that magnetic fields generated by accretion disks have large split monopole compo-
nents [249–251] suggesting that the BZ mechanism should occur in fully dynamical
setups.
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5.8.2 Blandford–Znajek Process and theMembrane Paradigm

The understanding of the physics behind the BZ mechanism was at the origin of a
new paradigm to describe BHs, the so-called membrane paradigm. This paradigm
uses a 3 + 1 spacetime decomposition in which the BH event horizon is regarded
as a two-dimensional surface residing in a three-dimensional space, while the
region inside the horizon is “thrown away” from the picture since it is causally
disconnected from any observer outside the horizon.19 This surface can be shown
to behave as an electrically charged viscous fluid with finite surface electrical
resistivity, entropy, and temperature. In this picture the interaction of the membrane
with the rest of the Universe is then governed by well-known physical laws for
the horizon’s fluid, such as the Navier–Stokes equation, Ohm’s law, tidal force
equations, and the laws of thermodynamics. Originally all quantities were computed
in the ZAMO frame (see Sect. 3.1) in relation to which electric and magnetic fields
are defined and physical laws are formulated, although the membrane paradigm
has also been reformulated in a covariant form in Ref. [264]. For stationary (or
static) BH spacetimes the membrane paradigm is fully equivalent to the standard
spacetime approach as long as one is only interested in physics occurring outside
the horizon. The teleological nature of the paradigm makes it more challenging to
study time-dependent problems although some cases involving weakly perturbed
non-stationary spacetimes have successfully been studied [265]. For astrophysical
purposes this paradigm has been quite successful to describe and understand rela-
tivistic phenomena in BH spacetimes (see Ref. [265] for a pedagogical introduction
and a compilation of works which led to the full formulation of the membrane
paradigm. See also Ref. [264] for a derivation of the membrane paradigm starting
from an action principle).

In the membrane paradigm, one can understand how the BZ mechanism works
through an analogy with the tidal acceleration effect (see Sect. 2.5.5) [248]. Taking
an infinitesimal tube of magnetic flux δψ in the force-free region (for example, a
tube with walls given by surfaces 1 and 2 of Fig. 5.18) and which intersects the
hole, it is possible to show that the torque exerted by the membrane on this tube
is [248]

− dδJ

dt
= �H −�EM

4π
gϕϕB⊥δψ , (5.35)

where B⊥ is the magnetic field perpendicular to the membrane as seen by the
ZAMO’s observer and gϕϕ is to be taken at the horizon. The power transmitted

19The use of a 3 + 1 spacetime decomposition was mainly useful to write the equations in a more
familiar form for the astrophysics community. In fact most of the work done in this area in the last
decades has been done using this formalism. Recently the GR community has regained interest
in the subject and some remarkable effort has been done to develop a fully covariant theory of
force-free magnetospheres around rotating BHs [254].
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to the flux tube due to this torque is then

P = −�EM
dδJ

dt
= �EM

�H −�EM

4π
gϕϕB⊥δψ . (5.36)

This torque and power are transmitted through the tube up to region A, where angu-
lar momentum gets gradually deposited into charged particles. A direct comparison
with Eqs. (2.69) and (2.70) shows that from the point of view of the ZAMO’s
observer this is indeed a analogous process to tidal acceleration, and thus completely
analogous to superradiance.

The membrane picture also suggests an analogy between the BZ mechanism and
the circuit of Fig. 5.19, in which energy is transferred from a battery (the BH) to a
load (the acceleration region A) [248]. The current flowing along the resistance RS
produces a potential drop VS , while at RL it produces a potential drop VL such that
the electromotive force of the battery is given by E = VS + VL. From Ohm’s law
the current I flowing along the circuit is given by

I = E
RS + RL , (5.37)

while the power dissipated in the load is given by

PL = I 2RL = E2

R2
S/RL + 2RS + RL

. (5.38)

On the other hand, the efficiency of this process, defined by the ratio of the power
dissipated in the load to the total power generated by the source, reads

η = 1

RS/RL + 1
. (5.39)

VS

RS

VL
RLε

Fig. 5.19 Circuit analogy of the BZ mechanism in which a battery transfers energy to a load. A
battery of electromotive force E with internal resistance RS drives a current I through the load
resistance RL (which could be, for example, an electric light). Maximum power transfer is attained
when RL = RS
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Although the efficiency has its maximum when RL � RS , the maximum power
output at the load is obtained when RL = RS . Note that in this case only half of the
energy is really transferred to the load, the other half being dissipated as heat due
to the source internal resistance. On the other hand, if RL � RS , then most of the
power output is dissipated as heat at the source, whereas if RL � RS the current I
generated at the source will be very low and thus the power transferred to the load
will be very small, even though the efficiency will tend to 100%.

In the BZ process case, the current flowing from surface 1 to 2 of Fig. 5.18 in the
horizon membrane’s produces a potential drop δVH due to the membrane internal
resistance RH , given by [248]

δVH = IδRH = (�H −�EM)δψ

2π
, (5.40)

where δRH is related to RH through [248]

δRH = RH δψ

4π2gϕϕB⊥
. (5.41)

The potential drop in region A can be thought as being due to a resistance δRA, and
it can be shown to be given by [248]

δVA = IδRA = �EMδψ

2π
, (5.42)

where it is assumed that the acceleration region A is sufficiently far away such that
frame dragging effects are negligible. Using Eqs. (5.40)–(5.42), the ratio between
the potentials in the acceleration region and at the horizon is then given by

δVA

δVH
= δRA

δRH
= 1

�H/�EM − 1
. (5.43)

By comparison with Eq. (5.39), one can define the efficiency of the BZ mechanism
by η = �EM/�H [243].20 The sum of the potential drops is equal to the total
electromotive force E = δVH + δVA around a closed loop that passes along the
horizon from surface 1 to 2, then up the surface 2 poloidally to the region A in
which it crosses to surface 1 again and then back down to the horizon. Thus, the
total current I and the total power transmitted P to the acceleration region are

20This is not to be confused with the jet efficiency, defined by ηjet = 〈
Ljet
〉
/
〈
Ṁ
〉
, where

〈
Ljet
〉

is
the time-average jet luminosity and

〈
Ṁ
〉

is the time-average rate of matter accretion by the BH.
Recently, efficiencies up to ηjet ∼ 300% have been obtained in GRMHD simulations [245, 249,
250, 266] which is a strong indication that the BZ mechanism is at work.



248 5 Black Hole Superradiance in Astrophysics

given by

I = E
δRA + δRH = 1

2
(�H −�EM) gϕϕB⊥δψ , (5.44)

P = δRAI 2 = �EM
(�H −�EM)

4π
gϕϕB⊥δψ . (5.45)

Maximum power transmission then implies �EM = �H/2. From Eq. (5.43),
this happens when RA = RH and δVA = δVH , which corresponds to the
condition obtained from the circuit analogy. In Ref. [248] it was argued that the
configuration �EM = �H/2 would be likely to be achieved in a dynamical setup
due to the backreaction of charged particles onto the field lines. In fact recent
GRMHD simulations seem to obtain �EM/�H ≈ 0.3 – 0.4, in agreement with this
analysis [250, 251].

A key ingredient for this analogy to work is to understand the physical origin
behind the electromotive force E driving the current I . The membrane paradigm
suggests an analogy with Faraday’s unipolar inductor. Consider a rotating conduct-
ing disk, which can be idealized as a perfect conductor, immersed in a uniform
magnetic field perpendicular to the rotational axis of the disk. Due to the rotational
motion of the disk through the magnetic field there is a radial Lorentz force on
the free charges in the disk, which in turn produces a potential difference between
the center and the boundary of the disk. On the other hand, due to the magnetic
field, this current feels a Lorentz force opposite to the rotational motion of the
disk, producing a reaction torque on the conductor which will make it slow down
in analogy with the BZ mechanism. Completing this circuit with a wire attached
at the boundary and the center of the disk, one can effectively use the disk as a
battery. This is in fact the mechanism behind the electromotive force developed by
rotating magnetized stars [267, 268] and planets [269]. However, as was pointed
out in Refs. [244, 260] the membrane paradigm suggests that the horizon plays a
similar role to the surface of a magnetized rotating star, hiding the role played by
the ergosphere. Unlike the surface of a disk in which an electromotive force can
indeed drive an electric current, Einstein’s equivalence principle tells us that the BH
horizon is not a physical surface where electrics current can flow.21 In Ref. [260]
the author showed that inside the ergoregion there are no stationary axisymmetric
solutions of the Einstein–Maxwell equations, describing a EM field supported by
a remote source, that satisfy both the second and third conditions of Eq. (5.30)
along the magnetic field lines (see also Ref. [271, 272]). This implies that near a
rotating BH there are no stationary solutions with a completely screened electric
field. This is in fact a purely gravitational effect caused by the dragging of inertial

21However from the point of view of BH complementarity introduced in Ref. [270], the membrane
is real as long as the observers remain outside the horizon, but fictitious for observers who jump
inside the BH. Since neither observer can verify a contradiction between each other, the two are
complementary in the same sense of the wave–particle duality.
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frames near the BH. Although the force-free approximation is for all purposes a
good approximation for the magnetosphere near a rotating BH, it fails to predict that
current sheets must form inside the ergoregion, where a strong enough unscreened
electric field perpendicular to the magnetic field must persist in order to sustain the
potential drop along the magnetic field lines. On the other hand, in the region where
the force-free approximation holds, it is the residual component of the electric field
parallel to the magnetic field that drives the poloidal currents [260].

5.9 Superradiance, CFS Instability, and r-Modes of Spinning
Stars

Another important astrophysical process that bears some resemblance with super-
radiant phenomena is the Chandrasekhar–Friedman–Schutz (CFS) instability of
spinning NSs driven by gravitational radiation. This instability was discovered
by Chandrasekhar in 1970 while studying Maclaurin spheroids [273]. In 1978,
Friedman and Schutz extended the analysis to the case of compressible, perfect-fluid
stars and explained the instability in an elegant way [274]. In fact, such instability is
very generic and occurs whenever a mode that is retrograde in a frame co-rotating
with the star appears as prograde to a distant inertial observer (see Refs. [275–277]
and references therein).

The mechanism for the instability is depicted in Fig. 5.20. In the left panel we
show a stable configuration: a fluid perturbation of a static star with phase velocity

Fig. 5.20 Illustration of the CFS instability as seen from the laboratory frame. In the left panel
a bar-like mode of the fluid in a static star rotates counter-clockwise. This perturbation tends to
increase the angular momentum of the star. Because the perturbation carries away positive angular
momentum through GWs, it also reduces its amplitude. In the right panel the star rotates clockwise
(with rotational axis perpendicular to the plane of the figure) such that, in the laboratory frame,
the phase velocity of the mode vanishes and so does the emission of GWs. For a slightly higher
stellar spin, the mode would appear to rotate clockwise and it would emit GWs with negative
angular momentum. This negative value is subtracted from the (positive) angular momentum of
the perturbation, which, therefore, increases in amplitude. The larger the perturbation grows, the
larger is the angular momentum radiated in GWs, thus producing a positive feedback
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ω/m moving counter-clockwise. Within our axis conventions, this perturbation
carries a positive angular momentum and also emits positive angular momentum
through GWs. The angular momentum emitted in GWs has to be subtracted by that
of the perturbation, whose amplitude consequently decreases. However, a drastically
different picture emerges when the star rotates (right panel of Fig. 5.20). In such case
the sign of the angular momentum carried by GWs depends only on the relative
motion of the perturbation with respect to the laboratory frame, whereas the sign
of the angular momentum of the perturbation depends only on the motion of the
mode relative to the star. Therefore, as the star rotates faster and faster in clockwise
direction, the counter-clockwise mode starts rotating more slowly as viewed from
the laboratory frame, decreasing the rate of angular momentum emission in GWs,
but not its intrinsic angular momentum, which remains roughly the same as in the
nonrotating case. For some critical angular velocity, the phase velocity of the mode
will vanish and the mode will freeze relative to the laboratory (as shown in the right
panel of Fig. 5.20). For a slightly higher stellar rotation rate, the initially counter-
clockwise mode rotates in the clockwise sense, thus emitting negative angular
momentum through GWs. This emission has to be compensated by an increase of
the (positive) angular momentum of the perturbation, which, therefore, increases in
amplitude. The larger the perturbation grows, the larger is the angular momentum
radiated in GWs, and the instability ensues. The instability evolves on a secular
time scale, extracting angular momentum from the star via GW emission, unless it
is suppressed by other mechanisms, such as viscosity.

This qualitative picture already shows some similarity with the fact that super-
radiant modes within the ergoregion appear to be prograde to a distant inertial
observer but are in fact retrograde in a frame co-rotating with the BH. To put this
in more quantitative terms, let us consider Newtonian stars within the Lagrangian
perturbation framework developed in Ref. [274]. We consider a normal mode (i.e.,
ignoring GW dissipation) of the star in the form ξ = ξ̂ e−i(ωt−mϕ). In such case, the
canonical energy and angular momentum of the mode are related as [274, 276]

Ec = ω

m
Jc , (5.46)

which resembles Eq. (3.23), as expected for the perturbation of an axisymmetric
object. When the star rotates with angular velocity � > 0, the canonical angular
momentum must also satisfy the inequality [274, 276]

ω −m�−�
m

≤ Jc/m
2

〈ξ̂ , ρξ̂ 〉 ≤ ω −m�+�
m

, (5.47)

where ρ is the fluid density and the angular parenthesis denote the inner product over
the volume of the star. The equation above shows that, in the static � → 0 limit,
co-rotating modes (with ω/m > 0) must have Jc > 0, whereas counter-rotating
modes have Jc < 0. From Eq. (5.46), this implies Ec > 0 and therefore the modes
are stable. However, when the star rotates in the opposite direction relative to the
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mode phase velocity, an initially counter-rotating mode can become co-rotating as
discussed before. When this happens Ec can change sign and the mode becomes
unstable when ω ≤ m� (in the laboratory frame), with the inequality saturated for
marginally stable modes. Therefore, it is clear that the CFS instability requires the
existence of modes satisfying the superradiant condition (1).

The relativistic framework to study this instability was developed in a series of
papers during the 1970s [274, 278, 279], the crucial additional ingredient being the
emission of GWs generated by fluid and spacetime perturbations of the star. These
works confirmed the Newtonian analysis, finding that a mode becomes unstable at
the point where its phase velocity vanishes in the inertial frame, i.e., when ω/m = �
(see Refs. [275, 276] for some reviews on the important of the CFS instability in
astrophysics).

The r-Mode Instability of Rotating Stars Some axial fluid modes of static,
Newtonian stars (as well as the axial gravitational modes of relativistic stars) are
degenerate at zero frequency. Therefore, even in the nonrotating case such modes are
marginally stable towards the CFS instability. As soon as rotation is turned on, these
r-modes become unstable for arbitrarily small rotation rates [280] (cf. Ref. [281] for
a review).

To first order in the stellar spin, the frequency of the r-modes in the inertial frame
reads

ω = m�
(

1 − 2

l(l + 1)

)
. (5.48)

Therefore, modes with positive phase velocity, ω/m > 0, relative to the laboratory
frame have always a negative phase velocity ω/m − � < 0 in the star comoving
frame for any value of l and � (the special case of l = 1 fluid perturbations is
marginally stable to first order in the spin). This is confirmed by the canonical energy
of these modes which, to first order in �, reads [276]

Ec = A(ω +m�)(ω −m�) , (5.49)

where A > 0 is a constant depending on the amplitude of the modes, the harmonic
index l and on the stellar density. Therefore, to first order in the spin the instability
occurs when ω < m�, i.e., when the superradiant condition (1) holds. Such analogy
remains valid also to second order in � in the large-l limit.

5.10 Open Issues

• The impact of nonlinearities on the bounds discussed in Sect. 5.2 has not
been fully explored. Nonlinearities might slow down or even saturate the
superradiant growth of bosonic clouds, thus making the constraints derived from
BH superradiance less stringent. On the other hand, nonlinear effects similar to
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the bosenova [39, 40] can provide novel smoking guns for bosonic condensates
around astrophysical BHs.

• Plasma-triggered superradiant instabilities have been studied in Ref. [135] but
mostly for homogeneous configurations. It would be interesting to extend such
analysis to more realistic matter profiles around a spinning BH, for example, by
extending perturbative [282] or fully numerical [17] methods (see Ref. [137] for
a related analysis). Such studies can be important for scalar-tensor theories where
accretion disks are able to provide tachyonic modes to a fundamental scalar [283,
284].

• As mentioned above, a systematic study of the ergoregion instability in realistic
models of spinning NSs is still lacking. It would be interesting to compute the
time scale and check whether the instability can be used to rule out some region
of the NS mass-radius-spin parameter space.

• Wormholes are interesting alternatives to the BH paradigm. Traversable worm-
holes are predicted in GR for matter that violates the null energy condition [285].
When rotating, such objects are expected to be unstable because of the ergoregion
instability, but a detailed computation, together with a discussion of possible
astrophysical implications, is not available yet.

• The role of the horizon in the BZ mechanism is still unclear and whether it
is necessary for the process to occur is still a matter of debate. In fact, some
recent numerical simulations [272] seem to indicate that the ergosphere alone is
sufficient for the process to occur.

• As was pointed out in Ref. [286], recent GRMHD simulations studying the BZ
mechanism suggest that the magnetosphere leading to BH jets has a large split-
monopole component [249–251]; however, a simple explanation for why the
system tends to this solution is still missing.

• Recent numerical simulations suggest that BHs carrying linear momentum [287]
and coalescing BH–BH or BH–NS binary systems can also power jets [288].
Although some work has been done to understand the mechanism behind these
jets [289, 290], a complete theoretical understanding is still needed.

• In the context of the BH analog of the two-ring model discussed in Sect. 4.12, it
is important to understand whether such mechanism (or extensions therein) can
be used to power gamma-ray burst, as discussed in Ref. [291]. More in general,
a purely superradiant model for gamma-ray burst production has not yet been
developed.
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6Conclusions and Outlook

Energy extraction through superradiance is ubiquitous in physics and appears in
essentially any dissipative system under different guises. In fact, we have discussed
how superradiance can be understood in simple kinematical terms. In flat spacetime
the most common superradiant phenomenon is Cherenkov emission, but many
classical and quantum systems can be turned into superradiant amplificators. Sound
and surface waves can be amplified in a variety of settings that can be easily devised
in the laboratory.

In gravitational theories, superradiance is intimately connected to tidal accel-
eration, even at Newtonian level. Relativistic gravitational theories predict the
existence of BHs, gravitational vacuum solutions with two special properties: the
first is the defining feature of a BH, the horizon. But spinning BHs possess also
ergoregions, where matter is forced to co-rotate with the BH and which provide
a coupling between the matter and the background spacetime. Ergoregions allow
superradiance to occur in BH spacetimes, and to extract energy from vacuum even at
the classical level. When semiclassical effects are taken into account, superradiance
occurs also in static configurations, as in the case of Hawking radiation from a
Schwarzschild BH. The efficiency of superradiant scattering of GWs by a spinning
(Kerr) BH can be larger than 100% and this phenomenon is deeply connected
to other important mechanisms associated to spinning compact objects, such as
the Penrose process, the ergoregion instability, the Blandford–Znajek effect, and
the CFS instability. Rotational superradiance has been recently observed in the
laboratory in analog BH systems, and is associated with a number of interesting
effects and instabilities in astrophysics, which potential observable imprints. We
have presented a unified treatment of BH superradiant phenomena including charged
BHs, higher dimensions, nonasymptotically flat spacetimes, analog models of
gravity, and theories beyond GR.
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An important point of our analysis is the role played by the event horizon
and by the ergoregion in energy-extraction processes, such as superradiance, tidal
acceleration, and the Penrose process. The ergosphere (allowing negative-energy
states in its interior) is responsible for energy amplification. As we have shown, the
existence of an event horizon in stationary and axisymmetric spacetimes implies
that of an ergoregion, so the existence of dissipation and negative-energy states
are indissolubly connected to each other. However, superradiance in GR is not
a prerogative of BHs, but it can also occur in conducting stars and in exotic,
horizonless compact objects; in the latter case it is associated with instabilities of
these objects.

One of the most interesting applications of BH superradiance is the possibility
of tapping the amplified radiation through various mechanisms of confinement, thus
producing a “BH bomb” instability. We have discussed various of such confining
mechanisms, including reflecting surfaces, AdS boundaries, massive fields, mag-
netic fields, and other nonminimal interactions. Superradiant instabilities of charged
BHs in AdS spacetimes provide a holographic dual description of a spontaneous
symmetry-breaking mechanism at finite temperature, and are associated with a
phase transition between RN-AdS BHs and a novel hairy BH which is the ground
state at low temperatures. Novel hairy BH solutions branch off the superradiant
threshold in the AdS case and in asymptotically flat spacetimes with massive
complex scalars. These solutions can be interpreted as the nonlinear extension of
linear bound states of frequency saturating the superradiant condition (1), and give
rise to stationary hairy BHs that interpolate between Kerr BHs and boson stars.
These hairy BHs evade the no-hair theorem of GR and might play an important role
in astrophysical tests of the Kerr hypothesis.

The study of superradiant instabilities triggered by light bosons has flourished
in recent years, because of the exciting connections between BH superradiance and
particle physics. We have provided a unified picture of the state of the art in this field
and have described the evolution of these instabilities in a Kerr BH. Superradiant
instabilities of massive bosons have important phenomenological effects, being
associated to very peculiar EM and GW emission from astrophysical BHs and NSs.
The effects we have discussed (formation of bosonic condensates near spinning
BHs, lack of highly spinning BHs, emission of peculiar monochromatic GWs
and dipolar scalar waves) are currently being investigated to constrain ultralight
bosons arising in various extensions of the Standard Model, to rule out dark-matter
candidates, and to study various astrophysical effects in the strong-curvature regime.
Table 5.1 summarizes the state of the art, an astonishing set of constraints on
ultralight fields, obtained using astrophysical BHs!

BH superradiance has been discovered almost 50 years ago, but it is nowadays
more alive than ever. Not only new exciting theoretical developments have been
recently discovered, but recent EM and GW facilities are currently searches for
direct evidence of BH superradiance, thus providing a new tool to test gravitational
interactions and particle physics in curved spacetime.
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We concluded the first edition of this book with this list of open problems:

Among the most urgent open problems are the fully nonlinear evolution of the super-
radiant instability, the stability of hairy BHs, EM and GW tests of bosonic condensates
around massive BHs, observing superradiance in analog-gravity models in the laboratory,
understanding completely the holographic dual of superradiant states and their microscopic
description.

It is amusing to note that, in the 5 years past the first edition, essentially all these
outstanding open problems have been solved. Nonetheless, as we have discussed,
this area is still very active and we are positive that novel exciting developments
will be uncovered in the near future.



AList of Publicly Available Codes

The numerical and analytical methods used in this work have been implemented
in ready-to-be-used MATHEMATICA® notebooks, which are publicly available [1].
Here we give a short description of them:

• superradiance charge.nb: Amplification factors of the superradiant scattering
of a charged wave off a spherically symmetric or a slowly rotating BH with
generic metric.

• superradiance spin.nb: Amplification factors of the superradiant scattering of
a neutral bosonic wave of generic spin off a Kerr BH, obtained by solving the
Teukolsky equations.

• Kerr massive scalar bound states.nb: solves the eigenspectrum of unstable
modes of a Kerr BH under massive scalar perturbations through Leaver’s
continued fraction method.

• HartleThorne.nb: (1) computes and solves Einstein’s equations for a rotating
self-gravitating perfect-fluid to second order in the spin and (2) derives in detail
the procedure to separate the Klein–Gordon equation in this background.

Some data presented in the main text are also available on the webpage [1]. For
example, the data files contained in the file superradiance spin.nb provide the
dependence of the amplification factorZslm(ω) for a Kerr BH in the entire parameter
space. The number of digits in the tables is not indicative of the precision; our tests
indicate a precision of roughly one part in 105.
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BAnalytic Computation of the Amplification
Coefficients

In this section we compute the cross section of a Kerr BH for generic spin. We will
follow Refs. [2,3]. We assume that the Compton wavelength of the particle is much
bigger than the gravitational size of the BH, i.e., ωM � 1. We also consider the
slowly rotating regime aω � 1.

To solve the radial equation (3.74) we use a matching procedure, dividing the
spacetime in two overlapping regions, the near-region r − r+ � 1/ω, and the far-
regionM � r − r+.

Changing variables to

x = r − r+
r+ − r− , (B.1)

Equation (3.74) is approximately given by

x(1 + x)2 d
2R

dx2 + (s + 1)x(x + 1)(2x + 1)
dR

dx

+
[
k2x4 + 2iskx3 − λx(x + 1)− isQ(2x + 1)+Q2

]
R = 0, (B.2)

whereQ = ω−m�H
4πTH

, 4πTH = (r+ − r−)/r2+ and k = ω(r+ − r−).

(i) Near-Region Solution In this region we consider kx � 1 such that Eq. (B.2) is
then approximately given by

x(1 + x)2 d
2R

dx2 + (s + 1)x(x + 1)(2x + 1)
dR

dx

+
[
Q2 − isQ(2x + 1)− λx(x + 1)

]
R = 0. (B.3)
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The most general solution to Eq. (B.3), satisfying the ingoing boundary condition
is given by

R = A1x
−s−iQ(x + 1)−s+iQF (α, β, γ,−x), (B.4)

γ = 1 − s − 2iQ, (B.5)

α = −l − s, (B.6)

β = l − s + 1. (B.7)

The large x behavior is

R ∼ A1

[
xl−s �(γ )�(β − α)

�(γ − α)�(β) + x−l−1−s �(γ )�(α − β)
�(α)�(γ − β)

]
. (B.8)

(ii) Far-Region Solution In the asymptotic region Eq. (B.2) is approximately given
by

d2R

dx2 + 2(1 + s)
x

dR

dx
+
(
k2 + 2isk

x
− λ

x2

)
R = 0, (B.9)

The solution of this equation can be written in terms of the confluent hypergeometric
function

R = C1e
−ikxxl−sU(l − s + 1, 2l + 2, 2ikx)

+ C2e
−ikxx−l−s−1U(−l − s,−2l, 2ikx). (B.10)

Expanding for small kx � 1, we obtain

R ∼ C1x
l−s + C2x

−l−s−1. (B.11)

Matching (B.8) and (B.11) we get

C1 = A1
�(1 − s − 2iQ)�(2l + 1)

�(l − s + 1)�(l + 1 − 2iQ)
, (B.12)

C2 = A1
�(1 − s − 2iQ)�(−1 − 2l)

�(−l − 2iQ)�(−l − s) . (B.13)

When r → ∞ and in the low-frequency limit, the solution of (3.74) behaves as

Rslm ∼ Is
e−iωr

r
+ Rs

eiωr

r2s+1
, as r → ∞. (B.14)
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To compute the fluxes at infinity, we must relate the C1 and C2 with Is and Rs .
Expanding (B.10) at infinity and matching to (B.14) we find

Is = 1

ω

[
kl+1+s C2(−2i)l+s�(−2l)

�(−l + s) + ks−l C1(−2i)s−l−1�(2l + 2)

�(l + s + 1)

]
,(B.15)

Rs = ω−2s−1
[
kl+1+s C2(2i)l−s�(−2l)

�(−l − s)

+ks−l C1(2i)−l−s−1�(2l + 2)

�(l − s + 1)

]
. (B.16)

To obtain the fluxes one can use the trick proposed in Ref. [4]: solve Eq. (3.74)
replacing s by −s, with the asymptotic behavior of R−slm given by

R−slm ∼ I−s
e−iωr

r
+ R−s

eiωr

r−2s+1 . (B.17)

Making use of the symmetries of the radial equation,

Rs l mω(r) = (−1)mR∗
s l−m−ω(r),

R∗
s l mω(r) = �−sR−s l mω(r), (B.18)

the absorption coefficient can then be computed using

Zslm = dEout

dEin
− 1 =

∣∣∣∣RsR−s
IsI−s

∣∣∣∣− 1. (B.19)

After some algebra one finally finds (3.103) (see also the Appendix of Ref. [4] for
details).



CAngular Momentum and Energy

Consider a stationary and axially symmetric spacetime with Killing vector fields
ξ
μ

(t) ≡ ∂μt and ξμ(ϕ) ≡ ∂μϕ. For a stress-energy tensor Tμν the conserved energy
flux vector is given by

εμ = −T μνξν(t), (C.1)

and the conserved angular momentum flux vector by

lμ = T μνξν(ϕ). (C.2)

Thus over a hypersurface d�μ the energy and angular momentum fluxes are

δE = εμd�μ, δJ = lμd�μ. (C.3)

Over a spherical surface d�μ ≡ nμr2dtd�, where nμ is the radial outgoing normal
vector to the surface, we then have

δJ

δE
= −T

r
ϕ

T rt
. (C.4)

Considering a scalar field �(t, r, ϑ, ϕ) = f (r, ϑ)e−iωt+imϕ with the scalar
stress-energy tensor

Tμν = �,μ�,ν − 1

2
gμν�α�

α, (C.5)
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one finds

δJ

δE
= m

ω
. (C.6)

This applies for generic fields (photons, gravitons, etc.) as can be seen, by using
the EM stress-energy tensor or using the effective stress-energy tensor for linearized
GWs [5]. We can also see it using the following simple argument [6]. At infinity
the wave is composed of many quanta each with energy E = h̄ω and angular
momentum in the ϕ direction J = h̄m. Thus the ratio of the total angular momentum
to the total energy carried by the wave across a sphere must be m/ω.

C.1 Energy and Angular Momentum Fluxes at the Horizon

The energy flux at the horizon, as measured at infinity, is given by

δEhole = −T ν
μ ξ

μ
(t)d

3�ν, (C.7)

where ξμ(t) ≡ ∂μt is the time Killing vector of the Kerr metric and �μ is the 3–
surface element of the hole given by

d3�μ = nμ2Mr+ sinϑdϑdϕdt, (C.8)

with the normal vector nμ in the inward direction. Likewise we can define a
conserved angular momentum flux associated with the axial Killing vector ξμ(ϕ) ≡
∂μϕ,

δJhole = T ν
μ ξ

μ
(ϕ)d

3�ν. (C.9)

On the horizon we have

nμ = ξμ(t) +�Hξ
μ

(ϕ), (C.10)

thus for any wave that enters the BH we obtain

d2Ehole

dtd�
−�H

d2Jhole

dtd�
= 2Mr+T μνnμnν. (C.11)

Because of energy conservation, an angular momentum increment δJ is related to
an energy increment δE ≡ δM by Eq. (3.23) [6]. Inserting this in (C.11) gives

d2Ehole

dtd�
= ω

kH
2Mr+T μνnμnν. (C.12)



DElectromagnetic Fluctuations Around a
Rotating Black Hole Enclosed in aMirror

Consider the evolution of a Maxwell field in a Schwarzschild background with
metric given by

ds2 = −f (r)dt2 + dr2

f (r)
+ r2(dϑ2 + sin2 ϑdϕ2), (D.1)

where f (r) = 1 − 2M/r andM is the BH mass. The perturbations are governed by
Maxwell’s equations:

Fμν ;ν = 0, Fμν = Aν,μ − Aμ,ν, (D.2)

where a comma stands for ordinary derivative and a semicolon for covariant
derivative. Since the background is spherically symmetric, we can expand Aμ in
4-dimensional vector spherical harmonics (see [7]):

Aμ(t, r, ϑ, ϕ) =
∑
l,m

⎡
⎣
⎛
⎝ 0

0
alm(t, r)S̄ lm

⎞
⎠+

⎛
⎝ f

lm(t, r)Ylm

hlm(t, r)Ylm

klm(t, r)Ȳ lm

⎞
⎠
⎤
⎦ , (D.3)

with the vector spherical spherical harmonics given by,

Ȳ
ᵀ
lm = (∂ϑYlm, ∂ϕYlm) , S̄

ᵀ
lm =

(
1

sinϑ
∂ϕYlm,− sinϑ∂ϑYlm

)
, (D.4)

and where Ylm are the usual scalar spherical harmonics,m is the azimuthal number,
and l the angular quantum number. The first term in the right-hand side has parity
(−1)l+1, and the second term has parity (−1)l . We shall call the former the axial
modes and the latter the polar modes.
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Upon defining

ϒlm = r2

l(l + 1)

(
∂th

lm − ∂rf lm
)
, (D.5)

and inserting (D.3) into Maxwell’s equations (D.2), and after some algebra, we get
the following system of equations

∂2alm(t, r)

∂r2∗
+
[
− ∂

2

∂t2
− V (r)

]
alm(t, r) = 0, (D.6)

∂2ϒlm(t, r)

∂r2∗
+
[
− ∂

2

∂t2
− V (r)

]
ϒlm(t, r) = 0, (D.7)

V = f l(l + 1)

r2
. (D.8)

If we assume a time dependence alm,ϒlm ∝ e−iωt , the equation for EM
perturbations of the Schwarzschild geometry takes the form

∂2�

∂r2∗
+
[
ω2 − V

]
� = 0, (D.9)

where the tortoise coordinate is defined through dr/dr∗ = f (r), � = alm for axial
modes and � = ϒ for polar modes. The potential V appearing in Eq. (D.9) is given
by Eq. (D.8).

Let us now assume we have a spherical conductor at r = rm. The conditions to
be satisfied are then that the electric/magnetic field as seen by an observer at rest
with respect to the conductor has no tangential/parallel components, Eϑ ∝ Fϑ t =
0, Eϕ ∝ Fϕ t , Br ∝ Fϕ ϑ = 0. This translates into

∂t a
lm(t, rm) = 0, f lm(t, rm)− ∂tklm(t, rm) = 0. (D.10)

Using Maxwell’s equations (D.2), we get the relation

f lm(t, rm)− ∂tklm(t, rm) = f

l(l + 1)
∂r

(
r2∂rf

lm − r2∂th
lm
)
. (D.11)

Finally, using Eq. (D.5) we get

∂rϒ = 0. (D.12)

In other words, the boundary conditions at the surface r = rm are � = 0 and
∂r� = 0 for axial and polar perturbations, respectively. This can be used to easily
compute the EM modes inside a resonant cavity in flat space. Taking M = 0 in
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Eq. (D.9) we find the exact solution

� = √
r
[
C1Jl+1/2(rω)+ C2Yl+1/2(rω)

]
, (D.13)

where Ci are constants and Jn(rω) and Yn(rω) are Bessel functions of the first and
second kind, respectively. Imposing regularity at the origin r = 0 implies C2 = 0.
The Dirichlet boundary condition � = 0 at r = rm, which can easily be shown to
correspond to the transverse electric modes (modes with Er = 0) [8], then gives

ωTE = jl+1/2,n

rm
, (D.14)

where jl+1/2,n are the zeros of the Bessel function Jl+1/2 and n is a non-
negative integer. On the other hand, the eigenfrequencies for the Neumann boundary
condition ∂r� = 0, which corresponds to the transverse magnetic modes (modes
with Br = 0) [8], can be computed solving

{
∂r
[√
rJl+1/2(rω)

]}
r=rm = (l + 1)Jl+1/2(rmω)− rmωJl+3/2(rmω)√

rm
= 0.

(D.15)
Defining j̃l+1/2,n as being the zeroes of ∂r

[√
rmJl+1/2(rmω)

]
we find

ωTM = j̃l+1/2,n

rm
. (D.16)

The eigenfrequencies for l = 1 and n = 0 are shown in Fig. 4.3 where we see that
when rm � M , the real part of the quasinormal frequencies of a BH enclosed in a
mirror asymptotically reduces to the flat space result. One can write down a relation
between the Regge–Wheeler function � [9–11] and the Teukolsky radial function
R (cf. Eq. (3.73)) given by

�

r(r2 − 2Mr)s/2
=
(
r
√
�
)|s|

D|s|
−
(
r−|s|R

)
, s < 0,

�

r(r2 − 2Mr)s/2
=
(
r√
�

)s
Ds+

[(
r2 − 2Mr

r

)s
R

]
, s > 0,

(D.17)

where D± = d/dr ± iω/f . Using these relations and Teukolsky’s radial equa-
tion (3.74), one finds that the Dirichlet and the Neumann boundary conditions for
� correspond to the Robin boundary conditions for the radial function R given,
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respectively, by

∂rR−1 = r − 2M + ir2ω

r(r − 2M)
R−1, (D.18)

∂rR−1 = rω[2M + r(−1 − irω)] − il(l + 1)(2M − r)
(2M − r)r2ω

R−1. (D.19)

After having understood the nonrotating case, below we turn to the rotating case.
The main difficulty relies on describing the EM physical quantities in terms of the
Newman–Penrose quantities. We will show that doing so will allow us to generalize
the conditions (D.18) and (D.19).

Newman–Penrose Approach In the Newman–Penrose formalism, the EM field is
characterized by three complex scalars from which one can obtain the electric and
magnetic field. The details of this procedure are not important for us here so we
refer the reader to Ref. [12]. In the frame of a ZAMO observer (cf. Sect. 3.1), the
relevant electric and magnetic field components read [12]

E(ϑ) =
[

�1/2(r2 + a2)√
2ρ∗A1/2(r2 + a2 cos2 ϑ)

(
φ0

2
− φ2

ρ2�

)
+ c.c.

]

−2a�1/2

A1/2 sinϑ Im(φ1),

E(ϕ) =
[
−i�1/2ρ

(
φ0

2
√

2
+ φ2√

2ρ2�

)
+ c.c.

]
,

B(r) =
[
a sinϑ√
2ρA1/2

(
φ2 −�ρ2 φ0

2

)
+ c.c.

]
+ 2

r2 + a2

A1/2 Im(φ1), (D.20)

where ρ = −(r−ia cosϑ)−1,A = (r2+a2)2−a2� sin2 ϑ , and� = r2−2Mr+a2.

If we assume a conducting spherical surface surrounding the BH at r = rm, then
Maxwell’s equations require that E(ϑ) = E(ϕ) = B(r) = 0 at r = rm and we are left
with the boundary conditions at the conductor:

Re (ρ�0) = Re (ρ�2)

�
, Im (ρ�0) = − Im (ρ�2)

�
, Im(φ1) = 0, (D.21)

where we defined�0 = φ0 and �2 = 2ρ−2φ2. This can be simplified to

|�0|2 = |�2|2
�2

. (D.22)
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We use the decomposition

�0 =
∑
lm

∫
dωe−iωt+imϕRs l mωSs l mω(ϑ),

�2 =
∑
lm

∫
dωe−iωt+imϕR−s l mωS−s l mω(ϑ), (D.23)

where the radial and the angular function, R and S, satisfy Teukolsky’s Eqs. (3.74)
and (3.75), respectively. The functions Rs=1 can be written as a linear combination
ofRs=−1, and Ss=−1 can be written as a linear combination of Ss=1 and its derivative
through the Starobinski–Teukolsky identities [13–15]

D0D0R−1 = BR1, L0L1S1 = BS−1, (D.24)

where B = √
(A−1lm + a2ω2 − 2amω)2 + 4maω− 4a2ω2 and the linear opera-

tors are given by

D0 = ∂r − i K
�
, Ln = ∂ϑ +m cscϑ − aω sinϑ + n cotϑ. (D.25)

Finally, replacing (D.23) and (D.24) in Eq. (D.22) and integrating (D.22) over the
sphere we find the following conditions for the two polarizations:

∂rR−1 = −i� [±B + A−1lm + ω (a2ω − 2am+ 2ir
)]

2�
(
a2ω − am+ r2ω

) R−1 (D.26)

+
(
a2ω − am+ r2ω

) (
2ia2ω − 2iam+ 2M + 2ir2ω + ∂r�− 2r

)
2�
(
a2ω − am+ r2ω

) R−1,

where we integrated out the angular dependence using the normalization condi-
tion (3.76). This is the result shown in Sect. 4. Note that for a = 0 we recover the
condition (D.18) when using the minus sign, while for the plus sign we recover the
condition (D.19).



EHartle–Thorne Formalism for Slowly Rotating
Spacetimes and Perturbations

In this appendix we summarize the formalism originally developed by Hartle and
Thorne [16] to construct slowly rotating stars and that developed by Kojima [17,18]
to include generic nonspherical perturbations (see also Refs. [19, 20] for extensions
and [21] for a review.).

E.1 Background

Let us start by considering the most general stationary axisymmetric spacetime (we
also assume circularity, see Sect. 3.1.5 and Ref. [22])

ds2
0 = gttdt2 + grrdr2 + 2gtϕdtdϕ + gϑϑdϑ2 + gϕϕdϕ2, (E.1)

where gtt , grr , gtϕ , gϑϑ , and gϕϕ are functions of r and ϑ only. Assuming slow
rotation, we construct a perturbative expansion in the angular momentum J (or in
some other parameter linear in J , which characterizes the rotation rate). To second
order in rotation, the metric above can be expanded as [16]

ds̃2 = −eν
[
1 + 2ε2 (h0 + h2P2)

]
dt2 + 1 + 2ε2(m0 +m2P2)/(r − 2M)

1 − 2M/r
dr2

+r2
[
1 + 2ε2(v2 − h2)P2

] [
dϑ2 + sin2 ϑ(dϕ − ε!dt)2

]
, (E.2)

where P2 = P2(cosϑ) = (3 cos2 ϑ − 1)/2 is a Legendre polynomial. The radial
functions ν andM are of zeroth order in rotation,! is of first order, and h0, h2,m0,
m2, v2 are of second order.

We consider a perfect fluid coupled to gravity with a barotropic equation of state
P = P(ρ), where P and ρ are the pressure and the density of the fluid, respectively.
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Under an infinitesimal rotation both P and ρ transform as scalars. As shown in [16,
23], in order to perform a valid perturbative expansion it is necessary to transform
the radial coordinate in such a way that the deformed density in the new coordinates
coincides with the unperturbed density at the same location. It can be shown that
this transformation is formally equivalent to working in the original coordinates but
expanding the pressure and the density as

P ≡ P0 +�P = P0 + (ρ0 + P0)(p0 + p2P2), (E.3)

ρ ≡ ρ0 +�ρ = ρ0 + (ρ0 + P0)
∂ρ0

∂P0
(p0 + p2P2), (E.4)

where P0 and ρ0 denote the corresponding quantities in the nonrotating case.
Finally, the stress-energy tensor is the standard one,

T μν = (P + ρ)uμuν + gμνP, (E.5)

where uμ is the fluid four-velocity. By plugging the decompositions above into the
gravitational equationsGμν = 8πTμν , and by solving the equations order by order
in the spin, we obtain a system of ODEs for the rotating background, which can be
solved by standard methods [16, 23, 24].

E.2 Perturbations of a Slowly Rotating Object

Perturbations of slowly rotating and oscillating compact objects can be studied by
perturbing the solution discussed above. Scalar, vector, and tensor field equations in
the background metric (E.2) can be linearized in the field perturbations. Any per-
turbation function δX can be expanded in a complete basis of spherical harmonics,
similarly to the static case. Schematically, in the frequency domain we have

δXμ1...(t, r, ϑ, ϕ) = δX(i)lmY lm (i)μ1...
e−iωt , (E.6)

where Y lm (i)μ1... is a basis of scalar, vector, or tensor harmonics, depending on the
tensorial nature of the perturbation δX. As in the spherically symmetric case, the
perturbation variables δX(i)lm can be classified as “polar” or “axial” depending on
their behavior under parity transformations.

The linear response of the system is fully characterized by a coupled system of
ODEs in the perturbation functions δX(i)lm . In the case of a spherically symmetric
background, perturbations with different values of (l, m), as well as perturbations
with opposite parity, are decoupled. In a rotating, axially symmetric background,
perturbations with different values of m are still decoupled but perturbations with
different values of l are not.
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To second order, the perturbation equations read schematically as (cf. Ref. [21]
for details)

0 = Al + ãmĀl + ã2Âl + ã(QlP̃l−1 + Ql+1P̃l+1)

+ã2
[
Ql−1QlĂl−2 + Ql+2Ql+1Ăl+2

]
+ O(ã3), (E.7)

0 = Pl + ãmP̄l + ã2P̂l + ã(QlÃl−1 + Ql+1Ãl+1)

+ã2
[
Ql−1QlP̆l−2 + Ql+2Ql+1P̆l+2

]
+ O(ã3), (E.8)

where ã = a/M , Ql =
√
l2−m2

4l2−1
and the coefficients Al and Pl (with various

superscripts) are linear combinations of axial and polar perturbation variables,
respectively.

The structure of Eqs. (E.7)–(E.8) is interesting. In the limit of slow rotation there
is a Laporte-like “selection rule” [25]. Perturbations with a given parity and index
l are coupled to: (1) perturbations with opposite parity and index l ± 1 at order εa ;
(2) perturbations with same parity and same index l up to order ε2

a ; (3) perturbations
with same parity and index l ± 2 at order ε2

a . Furthermore, from the definition of
Ql it follows that Q±m = 0, and therefore if |m| = l the coupling of perturbations
with index l to perturbations with indices l− 1 and l− 2 is suppressed. This general
property is usually called [25] “propensity rule” in atomic theory, and states that
transitions l → l + 1 are strongly favored over transitions l → l − 1. Indeed, the
slow-rotation technique is well known in quantum mechanics and the coefficients
Ql are related to the usual Clebsch–Gordan coefficients.

E.2.1 Scalar Perturbations of a Slowly Rotating Star

The formalism above can be applied to any type of perturbations of a generic
stationary and axisymmetric background. The simplest example is a probe scalar
field governed by the Klein–Gordon equation (2.36) and propagating on the
fixed geometry (E.2). The entire procedure is performed in a publicly available
MATHEMATICA® notebook, cf. Appendix A.

We start by the standard decomposition of the scalar field in spherical harmonics
in Fourier space,

� =
∑
lm

∫
dω�l(r)Y

l(ϑ, ϕ)e−iωt . (E.9)

By plugging this equation into (2.36) and using the line element (E.2), we obtain
the following equation in schematic form:

AlY
l + Âl cos2 ϑY l + B̃l cosϑ sinϑY l,ϑ = 0, (E.10)
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where a sum over (l,m) is implicit, and the explicit form of the radial coefficients
Al , Âl and B̃l is given in the notebook. The coefficients Âl and B̃l are proportional
to terms quadratic in the spin, so they vanish to first order. Indeed, to first order the
equation reduces to Al = 0 which can be explicitly written as in Eq. (4.91).

The separation of Eq. (E.10) can be achieved by using the identities [17]

cosϑY l = Ql+1Y
l+1 + QlY l−1,

sinϑ∂ϑY l = Ql+1lY
l+1 − Ql(l + 1)Y l−1,

cos2 ϑY l =
(
Q2
l+1 + Q2

l

)
Y l + Ql+1Ql+2Y

l+2 + QlQl−1Y
l−2,

cosϑ sinϑ∂ϑY l =
(
lQ2
l+1 − (l + 1)Q2

l

)
Y l + Ql+1Ql+2lY

l+2

−QlQl−1(l + 1)Y l−2,

and so on, as well as the orthogonality property of scalar spherical harmonics. The
result reads

Al + Q2
l+1[Âl + lB̃l] + Q2

l [Âl − (l + 1)B̃l]
+Ql−1Ql[Âl−2 + (l − 2)B̃l−2]
+Ql+2Ql+1[Âl+2 − (l + 3)B̃l+2] = 0. (E.11)

Therefore, at second order, perturbations with harmonic index l are coupled
to perturbations with l ± 2. Crucially, this coupling does not contribute to the
eigenfrequencies to second order [19, 21]. Therefore, for given values of l and m,
the eigenspectrum of the scalar perturbations is governed by a single ODE:

Al + Q2
l+1[Âl + lB̃l] + Q2

l [Âl − (l + 1)B̃l] = 0. (E.12)

In the online notebook HartleThorne.nb we show that the equation above reduces
to (4.92) and we give the explicit form of V2, which is too involved to be reproduced
here.

www.HartleThorne.nb


FWKBAnalysis of Long-Lived and Unstable
Modes of Ultracompact Objects

As discussed in Sect. 4.14.2, ultracompact objects have two light rings [26]. From
a point of view of massless fields, which propagate as null particles in the eikonal
regime, the light rings effectively confine the field and give rise to long-lived modes,
which may become unstable if they form within the ergoregion. Here we perform a
WKB analysis of these trapped modes.

Let us first discuss static, spherically symmetric spacetimes described by a line
element given in Eq. (4.94) with ! = 0. Various classes of perturbations of this
geometry are described by a master equation of the form (3.51) where Veff = ω2 −
Vsl(r), and the effective potential for wave propagation reads [26]

Vsl(r) = f
[
l(l + 1)

r2 + 1 − s2

2rB

(
f ′

f
− B ′

B

)
+ 8π(prad − ρ)δs2

]
, (F.1)

and the prime denotes derivative with respect to the coordinate r , which is related
to the tortoise coordinate r∗ through dr/dr∗ = √

f/B . In the potential (F.1) l ≥ s,
s = 0, 1 for test Klein–Gordon and Maxwell fields, respectively, whereas s = 2 for
axial perturbations of a (generically anisotropic) fluid in GR (where prad = T rr and
ρ = −T tt are the radial pressure and the energy density of the fluid, respectively).

Figure 4.31 shows an example of Vsl(r) for two representative ultracompact
objects: the so-called gravastar model discussed in Sect. 5.7.2 and a constant density
star which, in the static case, is described by the line element (4.94) with ! = 0
and

F(r) = 1

4R3

(√
R3 − 2Mr2 − 3R

√
R − 2M

)2
, (F.2)

B(r) =
(

1 − 2Mr2

R3

)−1

, (F.3)
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where R is the radius of the star. The pressure is given by

P(r) = ρc
√

3 − 8πR2ρc −√3 − 8πr2ρc√
3 − 8πr2ρc − 3

√
3 − 8πR2ρc

, (F.4)

where ρc = 3M/(4πR3) is the density of the uniform star.
This potential Vsl(r) shares many similarities with the geodesic potential to

which it reduces in the eikonal limit [28]: it has a local maximum, diverges at
the origin and is constant at infinity. Because the potential necessarily develops
a local minimum, it is possible to show that in the eikonal limit (l � 1) the
spectrum contains long-lived modes whose damping time grows exponentially with
l [28–30]. To first order in the eikonal limit, the potential can be approximated as
Vsl(r) ∼ l2f/r2. Let us define ra , rb , and rc to be the three real turning points of
ω2
R −Vsl(r) = 0 as shown in Fig. 4.31 for the black solid curve. When such turning

points exist, the real part of the frequency of a class of long-lived modes is given by
the WKB condition:

∫ rb

ra

dr√
f/B

√
ω2
R − Vsl(r) = π (n+ 1/2) , (F.5)

where n is a positive integer. The imaginary part of the frequencyωI of these modes
is

ωI = − 1

8ωRγ
exp

[
−2
∫ rc

rb

dr√
f/B

√
Vsl(r)− ω2

R

]
, (F.6)

where

γ =
∫ rb

ra

dr√
f/B

cos2 χ(r)√
ω2
R − Vsl(r)

, χ(r)=−π
4

+
∫ r

ra

dr√
f/B

√
ω2
R − Vsl(r).(F.7)

By expanding Eqs. (F.5) and (F.6), one can show that, to leading order in the eikonal
limit, the mode frequency reads

ω ∼ a l − i b e−cl l � 1, (F.8)

where a, b, and c are positive constants. By expanding Eq. (F.5) near the minimum
of the potential displayed in Fig. 4.31, it is possible to show that [26]

a ∼ �LR2 ≡
√
f (rLR2)

rLR2
, (F.9)

where �LR2 is the angular velocity of the stable null geodesic at the light-ring
location r = rLR2. Note that the damping time of these modes is exponentially large,
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Fig. F.1 Real and imaginary parts of the long-lived modes of a uniform star for different
compactness (left panels) and for a gravastar with R = 2.2M (right panels). The lines are the
WKB results, whereas markers show the numerical results obtained in Ref. [26] by using direct
integration or continued fractions. For uniform stars we show gravitational axial modes, whereas
for gravastar we show both axial modes (red circles) and gravitational polar modes with vs = 0.1
(green squares), where vs is related to the speed of sound on the shell [27]. See Ref. [26] for details

so that they are arbitrarily long-lived in the large-l limit. In Fig. F.1, we compare
the long-lived modes computed through the above WKB formula with the exact
numerical result [26] for two representative ultracompact objects, showing a quite
good agreement in the large-l limit.

Practically, the long-lived modes of a static ultracompact object are metastable
and it is reasonable to expect that they can turn unstable when rotation is included.
In the slow-rotation limit one may consider a probe scalar field propagating on the
approximate spinning geometry (4.94); the Klein–Gordon equation in the eikonal
limit reduces to Eq. (4.96), which is suitable for a WKB analysis similarly to the
nonrotating case [31, 32]. By defining W = B(r)

f (r)
(ω̄ − V+) (ω̄ − V−), the quasi-

bound unstable modes are determined by

m

∫ rb

ra

√
W(r)dr = π

2
+ nπ, n = 0, 1, 2, . . . (F.10)

and their characteristic time scale can be computed through

τ = 4 exp

[
2m
∫ rc

rb

√|W |dr
] ∫ rb

ra

d

dω̄

√
Wdr, (F.11)
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where ra , rb are solutions of V+ = ω̄ and rc is determined by the condition V− = ω̄.
This result agrees with Eq. (4.98) quoted in the main text. As discussed in Sect. 4.14,
the long-lived modes become unstable (i.e., their imaginary part changes sign) above
a critical spin and precisely when an ergoregion forms in the geometry [26, 31, 32].
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