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ABSTRACT
We answer affirmatively a question posed by Aviles in 1983, concern-
ing the construction of singular solutions of semilinear equations
without using phase-plane analysis. Fully exploiting the semilinearity
and the stability of the linearized operator in any dimension, our
techniques involve a careful gluing in weighted L1 spaces that han-
dles multiple occurrences of criticality, without the need of derivative
estimates. The above solution constitutes an Ansatz for the Yamabe
problem with a prescribed singular set of maximal dimension ðn"
2Þ=2, for which, using the same machinery, we provide an alterna-
tive construction to the one given by Pacard. His linear theory uses
Lp-theory on manifolds, while our strategy relies solely on asymptotic
analysis and is suitable for generalization to non-local problems.
Indeed, in a forthcoming paper, we will prove analogous results in
the fractional setting.
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1. Introduction

We are concerned with the construction of singular solutions of the semilinear elliptic
equation with superlinear nonlinearity,

"Du ¼ u
N

N"2 in B1 n f0g: (1.1)

The exponent N=ðN " 2Þ is critical for the existence of singular solutions, and below such
threshold the singularity is removable (see for example [1, Proposition 3.5]). Throughout
the paper, we assume that N % 3 and, because of the singularity, solutions are understood
in the very weak sense. For (1.1), we say that u 2 L

N
N"2ðB1Þ is a solution if

ð

B1

" uDf dx ¼
ð

B1

u
N

N"2f dx þ
ð

@B1

u
@f
@!

dr, 8f 2 C2ðB1Þ with fj@B1
¼ 0:

1.1. Singular solutions

In a series of papers by Aviles [2,3], he provided, in particular, the behavior of singular
solutions for (1.1) showing that
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uðxÞ ¼ N " 2ffiffiffi
2

p
# $N"2

ð1þ oð1ÞÞ 1

rN"2ð log 1
rÞ

N"2
2
,

as r :¼ jxj & 0: The author constructed radial solutions using ODE analysis and asked
for a more analytic construction. Here we give a positive answer using the gluing
method. In particular, we will prove the following result:

Theorem 1.1 (Existence of singular solutions). There exists "e 2 ð0, e"1Þ such that for any
e 2 ð0,"e', there exists a smooth positive radial solution "u of (1.1) such that

"uðrÞ ¼ N " 2ffiffiffi
2

p
# $N"2

1" N
4
log log 1

er

log 1
er

þ O
1

ð log 1
erÞ

3
2

 !0

@

1

A 1

rN"2ð log 1
erÞ

N"2
2
, (1.2)

as r & 0:

Remark 1.2. The error ð log 1
erÞ

"3
2 is not optimal, but simply fixed for the simplicity of

presentation. From the proof we see that the exact behavior has the power ð log 1
erÞ

"2 up
to a log log -correction, and more precise expansions are explicitly computable.

It is a standard approach to consider H€older spaces in gluing constructions, for the
control of derivatives and the bijectivity of the differential operators in view of
Schauder estimates. When the growth are of power type, a weighted H€older space is a
natural space to work on. In the present situation, however, polylogarithmic weights
appear all over. Our idea is the sole use of weighted L1 spaces, thus avoiding unneces-
sary heavy computations as one would expect with a weighted H€older space.
The actual weights involved are log -polyhomogeneous in nature, as one may see in

(1.2). This is due to the criticality of the problem, and is elaborated with the introduc-
tion of the precise setting given in Section 2.1.
The proof is robust and applies to much more general equations, as long as the first

approximation is stable, i.e. the linearized operator is positive in the sense that the asso-
ciated quadratic form is non-negative definite. The use of stability is known to the
experts; an example of this is the invertibility of the Jacobi operator when the right
hand side has very fast decay, see [4, Proposition 4.2]. We observe that for (1.1), the

Ansatz u1 ¼ c0r"Nð log 1
erÞ

"ðN"2Þ=2 is stable in all dimensions1, because the linearized
operator

"D" N
N " 2

u
2

N"2
1 ¼ "D" NðN " 2Þ

2
1

r2 log 1
er

is positive by Hardy inequality, in view of the helping logarithmic correction.
The recent striking regularity result of Cabr#e, Figalli, Ros-Oton and Serra [5] gives

another reason, besides the direct verification that u1 62 H1, why such singular stable
solutions have to be understood in a sense weaker than the variational one, at least in
dimensions N ( 9:
The solution in question represents the building block for constructing solutions to

the singular Yamabe problem, as we discuss below.

1For E> 0 small.
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1.2. Singular Yamabe problem

Given a compact Riemannian manifold ðMn, gÞ, the Yamabe problem asks for a con-
formal metric gu ¼ u

4
n"2g with constant scalar curvature. In the case of a sphere, the

equivalent (via the stereographic projection) PDE formulation is a semilinear equation
with a Sobolev critical exponent,

"Du ¼ u
nþ2
n"2 in Rn:

The combined work of Trudinger, Aubin and Schoen provided a complete solution to
this problem in 1984 (see e.g. [6] and the references therein). Consequently, it is par-
ticularly interesting to study the problem in the presence of singularities, both in a
curved setting and in a Euclidean space. In the singular Yamabe problem one looks for
solutions which are singular on some set R. By a theorem of Schoen and Yau [7], if gu
is complete then R is at most ðn" 2Þ=2-dimensional. Such singular solutions are indeed
constructed by Pacard [8] and Mazzeo and Pacard [9,10], where the authors provide
solutions which are singular (exactly) on a k-dimensional submanifold with k ¼ n"2

2 (for
n % 4 even) and k 2 ½0, n"2

2 Þ, respectively.2 Note that solutions with isolated singular-
ities were already constructed by Schoen in [11] and, indeed, [10] presents a simplifica-
tion of his long but remarkable proof.
With respect to the (lower) codimension N :¼ n" k 2 ½nþ2

2 , n', the exponent p ¼
nþ2
n"2 ¼

Nþkþ2
Nþk"2 is Sobolev subcritical. More explicitly, one is led to study singular solutions

of

"Du ¼ up in RN n f0g, (1.3)

for p ¼ Nþkþ2
Nþk"2 <

Nþ2
N"2 : In this regime, it is known that the fast-decaying radial solution

"uðrÞ of "D"u ¼ "up in RN n f0g exists as a building block, meaning that3

"uðrÞ * r"
2

p"1 as r & 0,

r"ðN"2Þ as r % 1,

(

provided that N " 2 > 2=ðp" 1Þ, which is equivalent to p > N=ðN " 2Þ: When p ¼
N=ðN " 2Þ, the scaling-invariant power 2=ðp" 1Þ ¼ N " 2 corresponds to the funda-
mental solution, thus a logarithmic correction must be inserted so that the nonlinear
equation (1.1) is satisfied. This slow-growing behavior was found by Aviles [2,3] using
ODE arguments to be

"uðrÞ * r"ðN"2Þ log
1
r

# $"N"2
2

as r & 0:

In both cases, a smallness can be obtained by rescaling4 "uðrÞ, and this is crucially used
in [8,9].
We emphasize here, that for the critical power p ¼ N=ðN " 2Þ, or more generally

p 2 ð1,N=ðN " 2ÞÞ, equation (1.3) cannot be posed on the full punctured space

2with the case k¼ 0 corresponding to isolated singularities
3Hereafter f * g means f and g are bounded by a positive multiple of each other.
4More precisely, blow-up for p ¼ N=ðN" 2Þ and blow-down for p > N=ðN" 2Þ:

COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 3



RN n f0g: Indeed, the Liouville theorem [12, Theorem 2.3] (applied to the Kelvin trans-
form) implies that no C2 positive solutions exist in an exterior domain. Nonetheless,
this does not pose any restriction on the Yamabe problem in Rn n R where p ¼
ðnþ 2Þ=ðn" 2Þ: In this work, we will focus only on the Dirichlet problem around the
singularity. As pointed out by Mazzeo and Pacard, the modifications in the arguments
to study our problem in manifolds instead of in a domain are minor and can be found
in the last section of [9]. In order to obtain a positive solution directly in the whole
Rn n R, one can either follow Pacard’s idea inverting the Laplacian, or invert the full
linearized operator (see Section 4.7), for a fixed point formulation.
When the conformally related metric is not necessarily complete, Pacard [13] con-

structed singular solutions for n¼ 4, 6 such that the singular set may have any
Hausdorff dimension in the interval ½n"2

2 , n': For dimensions n % 9, Chen and Lin [14]
constructed weak solutions singular in the whole Rn: Both constructions are variational
and use the stability of the radial solution, meaning that the quadratic form associated
to the linearized operator around "u is non-negative definite, i.e.

ð
jrfj2 " p"up"1f2 % 0, (1.4)

for smooth test functions f with compact support. This is true only when

N
N " 2

( p < p1 :¼ 1þ 4

N " 4þ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
N " 1

p :

Note that the threshold of stability satisfies p1 < Nþ2
N"2 :

Recently, the fractional curvature, a non-local intrinsic concept defined from the con-
formal fractional Laplacian, has caught important attention in problems arising in con-
formal geometry, and a parallel study to the local one, is being developed for this
problem. The fractional Yamabe problem arises when we try to find a metric conformal
to a given one and which has constant fractional curvature, and it is equivalent to look
for solutions of

ð"DÞsu ¼ u
nþ2s
n"2s in Rn,

where s 2 ð0, 1Þ: Note that we restrict ourselves to the case s 2 ð0, 1Þ, in order that the
extra difficulties that we are dealing with come from the non-locality, and not from the
loss of maximum principle. Thus, the singular fractional Yamabe problem is

ð"DÞsu ¼ u
nþ2s
n"2s in Rn n R,

where R is a singular set of dimension k satisfying

C
n" 2kþ 2s

4

# $%
C

n" 2k" 2s
4

# $
% 0,

which is true in particular when k 2 ½0, n"2s
2 '5. This dimension restriction is due to

Gonz#alez, Mazzeo and Sire [15] (see also [20]). Again, it is customary to consider the
model problem on the normal space with isolated singularity,

5For the case k ¼ n"2s
2 the above quotient is understood as the limit of the meromorphic function.
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ð"DÞsu ¼ up in RN n f0g,

in dimension N ¼ n" k with p ¼ Nþkþ2s
Nþk"2s <

Nþ2s
N"2s :

The case k¼ 0 has been studied in a series of papers by DelaTorre and Gonz#alez
[16], DelaTorre, del Pino, Gonz#alez and Wei [17] and Ao, DelaTorre, Gonz#alez and
Wei [18]. In the stable case when n

n"2s < p < p1ðsÞ, where p1ðsÞ is a suitable threshold
exponent corresponding to p1, Ao, Chan, Gonz#alez and Wei [19] generalized the result
of [14], where the fast-decay solution for the non-local ODE comes from the extremal
solution of an auxiliary problem.
A recent paper of Ao, Chan, DelaTorre, Fontelos, Gonz#alez and Wei [20] extends the

result of [9], which covers not only the stable regime n
n"2s < p < p1ðsÞ but also the

unstable one, i.e. n
n"2s < p < nþ2s

n"2s , thus completing the study of existence when k 2
½0, n"2s

2 Þ: This is done by constructing a fast-decay solution and developing a theory of
non-local ODE in the spirit of the Frobenius method, using tools from conformal
geometry, bifurcation theory, non-Euclidean Fourier analysis and complex analysis. See
[21] for an exposition and also [22] for a related application.
We remark that the case k ¼ n"2s

2 , corresponding to p ¼ n
n"2s , is not covered, due to

the limitations of the techniques used in [20]. Indeed, homogeneity (as opposed to poly-
homogeneity, as it appears extensively in the current paper) is crucial in several places
throughout the proof, including the construction of the building block, formulation of
the extension problem, and the inversion of fractional Hardy–Schr€odinger operator.
This leaves the remaining case k ¼ n"2s

2 as an interesting open problem, which we will
solve in a forthcoming paper [23], by constructing singular solutions that are singular
on a submanifold of dimension k ¼ ðn" 1Þ=2, for an odd integer n % 3, in the case
s¼ 1/2. This, in fact, is the original motivation of the present article.
Coming back to the local case with singularity of critical dimension k ¼ n"2

2 , by
exploiting the stability of the linearized operator associated to the radial singular solu-
tion, we provide an alternative proof which can be easily generalized to the fractional
case. The basic idea of the construction, namely the approximation with a singular
radial function composed with the distance to the singularity, stems from [8,9,20].
In order to avoid unnecessary technicalities, we present in full details only

the Dirichlet problem in a small tubular neighborhood around the singular set. A
scheme for constructing global singular solutions is given in Section 4.7. The exact
result reads:

Theorem 1.3. Let n % 4 be an even integer, k ¼ n"2
2 and Rk + Rn be a k-dimensional

smooth submanifold. Let r, ¼ r,ðRÞ > 0 be a universal constant such that the tubular
neighborhood T r, of width r, around R is well-defined and satisfies in addition the condi-
tion in Remark 4.4. Then

"Du ¼ u
nþ2
n"2 in T r, n R,

u ¼ 0 on @T r, ,

(

(1.5)

has a solution which generates a complete metric for the Yamabe problem.
Moreover, under the Fermi change of coordinates U : ð0, r,Þ - SN"1 - R ! T r, n R
defined in (2.6),
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uðUðr,x, yÞÞ " "uðrÞ ¼
O r"ðN"3Þð Þ for N % 4,

O ð log 1
rÞ

1
4

& '
for N ¼ 3,

8
<

:

as r & 0, where "uðrÞ is the singular radial solution given by Theorem 1.1.

Remark 1.4. As in Theorem 1.1, the errors here are not optimal but are sufficient for
our purpose, i.e., they are smaller than "uðrÞ in a neighborhood of R.

Our method to prove the two main results, i.e., Theorem 1.1 and Theorem 1.3, is based
on an a priori estimate using maximum principle with super-solutions, in weighted L1

spaces. We stress that it is possible to apply the method of continuity without H€older type
estimates, since no extra derivatives are involved in the iterations in view of the semilinearity.
As mentioned before, this will be robust enough to treat the fractional case

ð"DÞ
1
2u ¼ u

N
N"1 in B1 n f0g + RN ,

in our forthcoming paper [23].
The paper will be organized as follows. In Section 2 we introduce the notation, functional

spaces and some explicit computations that will be used to prove the main results of the
paper. Section 3 is dedicated to the construction of a singular solution for (1.1) and it is con-
cluded by proving Theorem 1.1. The last Section 4 is devoted to an alternative construction
for the Yamabe problem, which is singular along a submanifold of critical dimension. We
will follow the same procedure of Section 3 but taking into account the geometry of the sin-
gularity. The proof of Theorem 1.3 will be given at the end of this Section 4. For the con-
venience of the reader, we prove a maximum principle in annular regions in Appendix A.

2 Numerology and function spaces

2.1. The singular radial solution

Let us begin with the radial case, observing some occurrences of the criticality of
the problem.
First of all, the scaling of (1.1) suggests that the pure power radial solution should

behave like r"ðN"2Þ: Unfortunately, since this is the fundamental solution of "D, it
does not solve our equation. Hence, a correction must be included, and it turns out
that the correct factor is logarithmic one and, in fact, the approximation u1ðrÞ is of

order r"ðN"2Þð log 1
rÞ
"ðN"2Þ=2, as observed by Aviles [2,3]. See Corollary 2.2 below.

Moreover, the error produced by u1, which is a multiple of r"Nð log 1
rÞ
"ðNþ2Þ=2, is just not

enough for the linearized operator around u1, namely L1 ¼ "D" NðN " 2Þ 2r2 log 1
r

( )"1,

to be inverted. This is because L1 has a kernel that behaves like r"Nð log 1
rÞ
N=2, which is

exactly the expected order when the inverse operator is applied to the error. This has two
consequences. First, one must improve the logarithmic decay of the error,6 in order to
develop a satisfactory linear theory. Second, such error as the inhomogeneity of an ODE
requires a further logarithmic correction for the solution, namely u2ðrÞ ¼ u1ðrÞþ
c1r"Nð log 1

rÞ
"N=2 log log 1

r

( )
:

6with respect to the blowing-up inverse polynomial.
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Motivated by the above discussion, for e 2 ð0, e"1Þ and r 2 ð0, 1Þ, consider the log-
polyhomogeneous functions

/e
l, !, h ¼

1

rlð log 1
erÞ

!ð log log 1
erÞ

h : (2.1)

The parameter e is inserted, by exploiting the scaling invariance u 7! eN"2uðe.Þ of the
equation, to make sure the logarithm powers are well-defined and to produce smallness.
For l, ! % 0, we define the norm in B1 ¼ fx 2 Rn; jxj < 1g by

jujj jl, ! :¼ sup
r2ð0, 1Þ

/e
l, !, 0ðrÞ

"1juðrÞj (2.2)

and define the Banach spaces7 of functions in B1 singular at the origin,

L1l, !ðB1Þ ¼ fu 2 L1ðB1Þ : jujj jl, ! < 1g: (2.3)

These are functions that blow up at most as fast as the corresponding polyhomogeneity,
and is quantitatively small outside the half ball.

2.2. Singularity on a submanifold

We write the ambient dimension as n ¼ kþ N, where k and N are respectively the
dimensions of the submanifold R and of the normal space NyR at any point y 2 R: The

Fermi coordinates are well-defined on some tubular neighborhood T r, of Rk + Rn of
width r,: In fact, any point z 2 Rn with dist ðz,RÞ < r, can be written as

z ¼ yþ
XN

j¼1

xj!jðyÞ, (2.4)

where y 2 Rk and ð!1ðyÞ, :::, !jðyÞÞ is a basis for the normal space NyR at y, and x ¼
ðx1, :::, xNÞ 2 RN are the coordinates on NyR: Using polar coordinates in RN , we set

r ¼ jxj 2 ½0, r,Þ and x ¼ x
jxj

2 SN"1: (2.5)

Thus (2.4) and (2.5) define a diffeomorphism

U : ð0, r,Þ - SN"1 - Rk ! T r, n R + Rn

Uðr,x, yÞ ¼ yþ
XN

j¼1

rxj!jðyÞ:
(2.6)

The associated metric gðr,x, yÞ is well-known (see [9, 24,25]), given by

ðgijÞ ¼
1 0 OðrÞ
0 r2gSN"1, i0j0ðxÞ þ Oðr4Þ Oðr2Þ

OðrÞ Oðr2Þ gR, i00j00ðyÞ þ OðrÞ:

0

BB@

1

CCA,

7Indeed, any Cauchy sequence in a weighted L1 space when divided by the weight is a Cauchy sequence in L1,
whose limit times the weight is the limit of the original sequence.
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where Oðr‘Þ, ‘ ¼ 1, 2, 4, are uniformly small as r & 0, together with all derivatives with
respect to the vector fields r@r, @xi0 , @yi00 : (Here i, j ¼ 1, :::, n, i0, j0 ¼ 1, :::,N " 1,
i00, j00 ¼ 1, :::, k:) This yields the Laplace–Beltrami operator on ðT r, n R, gÞ,

Dg ¼ r1"N@rðrN"1@rÞ þ r"2Dx þ Dy þ OðrÞ@rr þ Oð1Þ@r þ L0,

as r & 0, where L0 is a small second order differential operator with at least one
derivative in x or y. In particular, when applied to a function depending only on r, we
have

DvðrÞ ¼ Drvþ OðrÞvrr þ Oð1Þvr, Drv ¼ r1"NðrN"1vrÞr: (2.7)

The norms and function spaces defined in (2.2), (2.3) concern only the growth in the
variable r. As a result, in the tubular neighborhood T r, we define similarly

jvjj jl, ! :¼ sup
r 2 ð0, r,Þ
x 2 SN"1

y 2 R

/e
l, !, 0ðrÞ

"1vðr,x, yÞ,

L1l, !ðð0, r,Þ - SN"1 - RkÞ :¼ v 2 L1ðð0, r,Þ - SN"1 - RkÞ : jvjj jl, ! < 1
n o

,

where /e
l, !, 0 is given in (2.1). Note that here we do not need the parameter h because,

with the exact singular solution constructed in Theorem 1.1, the error near the singular-
ity R is only due to its curvature. In other words, by the smoothness of R, the error is

as small as r"ðN"1Þð log 1
rÞ
"ðN"2Þ=2: Then one may just, for simplicity, forget about the

logarithmic decay unless N¼ 3, in which case the second anti-derivative of r"2 is
already logarithmic. From now on, in order to simplify the notation, we will simply
write /e

l, ! when h¼ 0 and jvjj jl when !¼ 0.

2.3. Some explicit computations

We conclude this section with some explicit computations of /e
l, !, h in the particular

case where l ¼ N " 2 is the critical power.
Recall that /e

l, !, h is defined in (2.1). Morally, the Laplacian of a logarithmically cor-
rected fundamental solution gain two powers in r and one power in log 1

r : In fact, we
can assert the following:

Lemma 2.1 (Laplacian of log-polyhomogeneous functions). For any !, h 2 R, r 2 ð0, 1Þ,
e 2 ð0, e"1Þ,

"D/e
N"2, !, h ¼ ðN " 2Þ!/e

N, !þ1, h þ ðN " 2Þh/e
N, !þ1, hþ1

" !ð! þ 1Þ/e
N, !þ2, h þ O h/e

N, !þ1, hþ1

( )
,

as r & 0:

Proof. For simplicity denote ‘1 ¼ log 1
er and ‘2 ¼ log ‘1, so that @r‘1 ¼ "r"1 and

@r‘2 ¼ "r"1‘"1
1 : By direct computations,

8 H. CHAN AND A. DELATORRE



@r r2"N‘"!
1 ‘"h

2

& '
¼ ð2" NÞr1"N‘"!

1 ‘"h
2 þ !r1"N‘"!"1

1 ‘"h
2 þ hr1"N‘"!"1

1 ‘"h"1
2

"rN"1@rðr2"N‘"!
1 ‘"h

2 Þ ¼ ðN " 2Þ‘"!
1 ‘"h

2 " !‘"!"1
1 ‘"h

2 " h‘"!"1
1 ‘"h"1

2

@r "rN"1@rðr2"N‘"!
1 ‘"h

2 Þ
& '

¼ ðN " 2Þ !r"1‘"!"1
1 ‘"h

2 þ hr"1‘"!"1
1 ‘"h"1

2

& '

" !ð! þ 1Þ‘"!"2
1 ‘"h

2 þ Oðh‘"!"2
1 ‘"h"1

2 Þ:

Thus

"D r2"N‘"!
1 ‘"h

2

& '
¼ ðN " 2Þ!r"N‘"!"1

1 ‘"h
2 þ ðN " 2Þhr"1r"N‘"!"1

1 ‘"h"1
2

" !ð! þ 1Þr"N‘"!"2
1 ‘"h

2 þ Oðhr"N‘"!"2
1 ‘"h"1

2 Þ:
w

As a special case (h¼ 0) we note the following,

Corollary 2.2 (Laplacian of polyhomogeneous functions). For any ! 2 R, r 2 ð0, 1Þ,
e 2 ð0, e"1Þ, we have

"D/e
N"2, ! ¼ ðN " 2Þ!/e

N, !þ1 " !ð! þ 1Þ/e
N, !þ2:

3. Construction of a singular radial solution

Over this section we will recover the existence results proved, using ODE methods, by
Aviles in [2]. Here, in its stead, we will use gluing techniques.

3.1. General strategy

Knowing the leading order behavior from [2,3], it is tempting to approximate the solu-
tion with

ue1ðrÞ ¼ c0/
e
N"2, N"2

2
ðrÞ ¼ c0

rN"2ð log 1
erÞ

N"2
2
:

Unfortunately, the error

"Due1 " ðue1Þ
N

N"2 ¼ O
1

rNð log 1
erÞ

Nþ2
2

 !

is too large in the sense that the space L1N, Nþ2
2

(defined in (2.3)) contains the fundamen-

tal solution of the linearized operator. As a result, no satisfactory linear theory can be
developed there.
As shortly described below, we will consider an approximation of the form

ue2ðrÞ ¼ c0/
e
N"2, N"2

2
ðrÞ þ c1/

e
N"2, N2 ,"1ðrÞ ¼

1

rN"2ð log 1
erÞ

N"2
2

c0 þ c1
log log 1

er

log 1
er

 !

,

extended globally to ue3ðrÞ via a cutoff function, where c0 and c1 are positive constants.
This produces an error of the form (Proposition 3.6)
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E3, e :¼ "Due3 " ðue3Þ
N

N"2 ¼ O
ð log log 1

erÞ
2

rNð log 1
erÞ

Nþ4
2

 !
, as r & 0,

which, because of the gain in the power of log 1
er , has fast enough decay8 for the maximum

principle, in the sense that a polyhomogeneous super-solution exists in L1N, Nþ3
2

(Lemma 3.8).

Thus an a priori estimate can be proved and this, together with the method of continuity,
sets the cornerstone of the linear theory, namely L"1

e : L1N, Nþ3
2
! L1N"2, Nþ1

2
is a bounded linear

operator (Proposition 3.11).
We look for a true solution "u ¼ ue3 þ u, that solves9

"D"u ¼ j"uj
2

N"2"u:

As usual the perturbation solves

Leu ¼ "E3, e þN u½ ',

where Le is the linearized operator around ue3 and N ½u' is quadratically small. A stand-
ard fixed point argument yields the existence of u in L1N"2, Nþ1

2
(Proposition 3.12).

Throughout the rest of this section, we will explain every step in details.

3.2. The approximations

We will construct our first approximation based on the sharp behavior of the solutions
provided by Aviles [2,3].

Definition 3.1. Let e 2 ð0, e"1Þ: Define locally the first approximation ue1 by

ue1ðrÞ ¼ c0/
e
N"2, N"2

2
ðrÞ, for r 2 ð0, 1Þ,

with

c
2

N"2
0 ¼ ðN " 2Þ2

2
:

By Corollary 2.2, with the choice of c0 that cancels the term of order r"Nð log 1
erÞ

"N=2,
one immediately obtains:

Lemma 3.2 (Error of first approximation). We have

E1, e :¼ "Due1 " ðue1Þ
N

N"2 ¼ "NðN " 2Þ
4

c0
1

rNð log 1
erÞ

Nþ2
2
:

Since the parameter ðN þ 2Þ=2 ¼ ! þ 1 in Lemma 3.2 is critical for the existence of a
super-solution (see (3.3); where one needs ! > N=2), we will improve it by adding a
log-polyhomogeneous correction.

8with respect to the blowing-up inverse polynomial
9Alternatively, one may consider the equation "D"u ¼ j"uj

N
N"2 and use the maximum principle, as in Section 4. But this is

not necessary.
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Definition 3.3. The second approximation solution is ue2 defined by

ue2ðrÞ :¼ ue1ðrÞ þ c1/e
N"2, N2 ,"1ðrÞ ¼ c0/e

N"2, N"2
2
ðrÞ þ c1/e

N"2, N2 ,"1ðrÞ,

with

c1 ¼ "N
4
c0:

Lemma 3.4 (Error of second approximation).

E2, e :¼ "Due2 " ðue2Þ
N

N"2 ¼ O /N, Nþ4
2 ,"2

& '
:

Proof. By Lemma 2.1, we have

"Due2 ¼ c0
ðN " 2Þ2

2
/e
N, N2

" NðN " 2Þ
4

/e
N, Nþ2

2

# $

" N
4
c0

NðN " 2Þ
2

/e
N, Nþ2

2 ,"1 " ðN " 2Þ/e
N, Nþ2

2
þ O /e

N, Nþ4
2 ,"1

& '# $
:

By binomial theorem and the choice of c1,

ðue2Þ
N

N"2 ¼ c0/
e
N"2, N"2

2

& ' N
N"2 1" N

4
log log 1

er

log 1
er

 ! N
N"2

¼ ðN " 2Þ2

2
c0/e

N, N2
1" N2

4ðN " 2Þ
log log 1

er

log 1
er

þ O
ð log log 1

erÞ
2

ð log 1
erÞ

2

 ! !
:

The proof is completed by taking the difference. w

Now we want to extend u2 globally by 0 outside the unit ball. Let v,ðrÞ be a smooth
radial cutoff function supported on B1 such that v, ¼ 1 in B1=2 and jrv,j ( C:

Definition 3.5. The third approximation ue3 is defined by

ue3ðrÞ ¼ ue2ðrÞv,ðrÞ, 8r > 0:

Proposition 3.6 (Error of global approximate solution). We have

E3, e :¼ "Due3 " ðue3Þ
N

N"2 ¼ O /e
N, Nþ4

2 ,"2

& '
1 0<r(1=2f g þ O j log ej"

N"2
2

& '
1 1=2<r<1f g:

In particular,

E3, ej jj jN, Nþ3
2
( Cj log ej"

1
2:

Recall that the weighted spaces L1l, !ðB1=2Þ are defined in (2.3). Hereafter 1A denotes
the characteristic function of a set A. In particular, the first and second terms of the
error are supported respectively on the ball B1=2 and on the annulus B1 n B1=2:
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Proof. By Lemma 3.4,

" Due3 " ðue3Þ
N

N"2

¼ "Due2v, " 2rue2 .rv, " ue2Dv, " ðue2Þ
N

N"2v
N

N"2
,

¼ "Due2 " ðue2Þ
N

N"2

& '
v, þ ðue2Þ

N
N"2 v, " v

N
N"2
,

& '
þ O jue2jþ jðue2Þrj

( )
1 1=2<r<1f g

¼ O /e
N, Nþ4

2 ,"2

& '
1 0<r<1f g

þ O /e
N, N2

þ /e
N, Nþ2

2 ,"1 þ /e
N, Nþ4

2 ,"2 þ /e
N"2, N"2

2
þ /e

N"2, N2 ,"1 þ /e
N"1, Nþ2

2

& '
1 1=2<r<1f g

¼ O /e
N, Nþ4

2 ,"21 0<r(1=2f g þ
1

ð log 1
eÞ

N"2
2
1 1=2<r<1f g

 !
:

3.3. The linearized operator

We look for a true solution in the form u ¼ ue3 þ u, where u is less singular than ue3 near
the origin and bounded elsewhere. Hence u behaves like ue3 and is singular exactly at the
origin. Note that we do not impose u> 0 away from the origin. Then the equation

"Du ¼ juj
2

N"2u, in B1

is equivalent to

Leu :¼ "Du" N
N " 2

ðue3Þ
2

N"2u ¼ "E3, e þN u½ ' in B1 + RN , (3.1)

where E3, e is given in Lemma 3.6 and

N u½ ' ¼ jue3 þ uj
2

N"2ðue3 þ uÞ " ðue3Þ
N

N"2 " N
N " 2

ðue3Þ
2

N"2u: (3.2)

Note that E3, e ¼ 0 on @B1 and u can be chosen such that u ¼ 0 on @B1:

Remark 3.7. Let us note that the linear operator Le, defined in (3.1), can be written as

Leu ¼ "Du" NðN " 2Þ
2

/e
2, 1v

2
N"2
, u 1" N

2ðN " 2Þ
log log 1

er

log 1
er

þ O
ð log log 1

erÞ
2

ð log 1
erÞ

2

 ! !

,

as er & 0: Thus, we can assert that asymptotically as er & 0,

Leu ¼ "Du" NðN " 2Þ
2

ð1þ oð1ÞÞ v
2

N"2
,

r2 log 1
er

u:

Lemma 3.8 (Super-solution). There exists e1 2 ð0, e"1Þ such that for any ! 2 ½N2 þ
1
4 ,

N
2 þ

1' and e 2 ð0, e1Þ,/e
N"2, ! is a super-solution for Le. More precisely,

Le/
e
N"2, ! >

N " 2
8

/e
N, !þ1, for r 2 ð0, 1Þ:
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Proof. By Corollary 2.2, for any r 2 ð0, 1Þ,

Le/e
N"2, ! ¼ ðN " 2Þ!/e

N, !þ1 " !ð! þ 1Þ/e
N, !þ2 "

NðN " 2Þ
2

v
N

N"2
,

rNð log 1
erÞ

!þ1

þ /e
N, !þ1v

2
N"2
,

N2

4
log log 1

er

log 1
er

þ O
ð log log 1

erÞ
2

ð log 1
erÞ

2

 ! !
:

% /e
N, !þ1 ðN " 2Þ ! " N

2

# $
" !ð! þ 1Þ

log 1
er

"
Cð log log 1

erÞ
2

ð log 1
erÞ

2

" #

>
N " 2
8

/e
N, !þ1,

(3.3)

for all sufficiently small e. w

Lemma 3.9 (A priori estimates). If u 2 L1N"2, Nþ1
2
ðB1Þ solves

Leu ¼ f in B1 n f0g,
u ¼ 0 on @B1,

(

with jf jj jN, Nþ3
2
< 1, then

jujj jN"2, Nþ1
2
( 8 jf jj jN, Nþ3

2
:

Proof. For any given d 2 ð0, 1Þ, we can define the function

ud,6 :¼ 8
N " 2

jf jj jN, Nþ3
2
/e
N"2, Nþ1

2
þ d/e

N"2, N2þ
1
4
6u,

which satisfies

Lud,6 > N"2
8 d/e

N, N2þ
3
4

in B1 n f0g,

ud,6 % 0 on @B1,

ud,6 > 0 a:e: in Br1 ,

8
>><

>>:

where r1 ¼ r1 d, jujj jN"2, Nþ1
2

& '
> 0 is chosen small enough. Invoking Proposition A.1,

ud,6 % 0 a.e. in B1 and, by taking d & 0,

juj ( 8
N " 2

jf jj jN, Nþ3
2
/e
N"2, Nþ1

2
:

Since N " 2 % 1, the proof is complete. w

Lemma 3.10 (The Poisson equation). For any radial f 2 L1N, Nþ3
2
ðB1Þ, there exists a unique

radial u 2 L1N"2, Nþ1
2
ðB1Þ solving

"Du ¼ f in B1 n f0g,
u ¼ 0 on @B1:

*

Moreover, there holds the estimate
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jujj jN"2, Nþ1
2
( 8 jf jj jN, Nþ3

2
:

Proof. Since the maximum principle implies uniqueness, we can assume u is radial. By
direct integration10, we have

uðrÞ ¼
ð1

r
t1"N

ðt

0
sN"1f ðsÞ ds dt,

showing that ð"DÞ"1 : L1N, Nþ3
2
ðB1Þ ! L1N"2, Nþ1

2
ðB1Þ is a well-defined bounded linear oper-

ator. The estimate follows from Lemma 3.9 which also applies in the absence of the
potential. w

Proposition 3.11 (Linear theory). For any radial f 2 L1N, Nþ3
2
ðB1Þ, there exists a unique

radial u 2 L1N"2, Nþ1
2
ðB1Þ solving

Leu ¼ f in B1 n f0g
u ¼ 0 on @B1:

*

Moreover, there holds the estimate

jujj jN"2, Nþ1
2
( 8 jf jj jN, Nþ3

2
:

In other words, L"1
e : L1N, Nþ3

2
ðB1Þ ! L1N"2, Nþ1

2
ðB1Þ is a bounded linear operator with a uni-

formly bounded operator norm,11

L"1
e

++ ++++ ++ ( 8:

Proof. We can prove it using the method of continuity (see for example [26, Theorem
5.2]). Indeed, if we interpolate between "D and Le linearly, i.e. for any k 2 ½0, 1', we
define

Lke :¼ "D" k
N

N " 2
ðue3Þ

2
N"2,

we just need to show that Lke has a bounded inverse for all k 2 ½0, 1' from L1N, Nþ3
2
ðB1Þ to

L1N"2, Nþ1
2
ðB1Þ: We proceed by induction, increasing k by a fixed amount at each step. By

Lemma 3.10, the assertion is true when k¼ 0. If ðLke Þ
"1 : L1N, Nþ3

2
ðB1Þ ! L1N"2, Nþ1

2
ðB1Þ

exists, then for any d 2 ð0, 1" k', the equation

Lkþd
e u ¼ Lkeu" d

N
N " 2

ðueÞ
2

N"2u ¼ f

can be rewritten (in its fixed-point form) as

u ¼ ðLke Þ
"1f þ d

N
N " 2

ðLke Þ
"1 ðueÞ

2
N"2u

& '
: (3.4)

10or the representation by Green formula
11By definition, jjL"1

e jj ¼ sup jjL"1
e ujjL1

N"2,Nþ1
2
ðB1Þ : u 2 L1N, Nþ3

2
ðB1Þ, jjujjL1

N,Nþ3
2

ðB1Þ ¼ 1
* ,

:
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Note that the multiplication operator by ðue3Þ
2

N"2 maps L1N, Nþ3
2
ðB1Þ ! L1N"2, Nþ1

2
ðB1Þ and is

bounded. Then, in view of Lemma 3.9, for d universally small the right hand side of
(3.4) defines a contraction, showing that ðLkþd

e Þ"1 exists (which again has the same
bound by Lemma 3.9). The invertibility of Le follows after d

"1 iterations. w

3.4. The nonlinear equation

We are in a position to solve the equation

Leu ¼ "E3, e þN u½ ' in Br, ,
u ¼ 0 on @Br, ,

*

where E3, e is the error of ue3 given in Proposition 3.6 and the superlinear term v is
defined in (3.2). The non-linear equation, in the fixed point form, reads

u ¼ Ge u½ ' :¼ L"1
e ð"E3, e þN u½ 'Þ,

where the solution operator L"1
e : L1N, Nþ3

2
ðB1Þ ! L1N"2, Nþ1

2
ðB1Þ is defined in Proposition

3.11. We consider the Banach space

X / X"C , e :¼ u 2 L1ðBr, Þ : jujj jX :¼ jujj jN"2, Nþ1
2
( "Cj log ej"

1
2

n o
,

where "C is a positive constant that will be characterized in the following proposition.

Proposition 3.12 (Contraction). There exists "C > 0 and "e 2 ð0, e2Þ such that for any e 2
ð0,"eÞ,Ge : X"C

! X"C
and Ge is a contraction.

Proof. By Proposition 3.6 and Proposition 3.11,

E3, ej jj jN, Nþ3
2
( Cj log ej"

1
2, L"1

e ðE3, eÞ
++ ++++ ++

X ( C1j log ej"
1
2:

From (3.2), for any u, ~u 2 X, the Fundamental Theorem of Calculus assures that

N u½ ' "N ~u½ ' ¼ jue3 þ uj
2

N"2ðue3 þ uÞ " jue3 þ ~uj
2

N"2ðue3 þ ~uÞ " N
N " 2

ðue3Þ
2

N"2ðu" ~uÞ

¼ N
N " 2

ð1

0
jue3 þ ð1" tÞu" t ~uj

2
N"2 " ðue3Þ

2
N"2

& '
dt . ðu" ~uÞ:

Since the function j . j
2

N"2 is uniformly C0, 2
N"2 for N % 4,

jN u½ ' "N ~u½ 'j ( C juj
2

N"2 þ j ~uj
2

N"2

& '
ju" ~uj

( C "Cj log ej"
1
2

& ' 2
N"2

ð/e
N"2, Nþ1

2
Þ

N
N"2jju" ~ujjX

( C"C
2

N"2j log ej"
4

N"2/e
N, Nþ3

2
jju" ~ujjX ,

where last inequality follows from the elementary fact that

N þ 1
2

N
N " 2

" N þ 3
2

¼ 3
N " 2

:

By Proposition 3.11,
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jjL"1
e ðN u½ ' "N ~u½ 'ÞjjX ( C"C

2
N"2j log ej"

4
N"2jju" ~ujjX:

When N¼ 3,

jN u½ ' "N ~u½ 'j ( C jujþ j ~ujð Þjue3jju" ~uj

( C "Cj log ej"
1
2

& '
ð/e

1, 2Þ
2/e

1, 12
jju" ~ujjX

( C"Cj log ej"2/e
3, 3jju" ~ujjX ,

so that

jjL"1
e ðN u½ ' "N ~u½ 'ÞjjX ( C"Cj log ej"2jju" ~ujjX:

Hence, by first choosing "C ¼ 2C1 and then e small, we know that Ge : X ! X (by spe-
cializing ~u ¼ 0) and Ge is a contraction. w

3.5. Proof of Theorem 1.1

By Proposition 3.12, there exists a singular solution of

"Du ¼ juj
2

N"2u in Br, ,

possibly sign-changing, that behaves like ue3 (in particular positive) near the origin. By
the scaling invariance, the desired solution is then

"uðxÞ ¼ eN"2uðexÞ,

which is defined in Br,=e n f0g and positive in B1 n f0g, for all small enough e. w

4. Singular Yamabe problem

This last Section is dedicated to the construction of a solution, which is singular along a
submanifold R of dimension n"2

2 , for the Yamabe problem. As we mentioned before,
this dimension is maximal for the singular set (see the classical work of Schoen and
Yau [7] for details), so it can be considered as a critical case. The existence of complete
metrics solving the problem is already known by Mazzeo and Pacard in [8,9], but it is
interesting to observe how the previous study can also help construct, in a simpler way,
solutions for this critical case. The main difference with the cited works is the absence
of weighted H€older spaces. We carry out all the estimates in weighted L1 spaces.
Moreover, we emphasize again, that this procedure will let us construct such solutions
also for the non-local case (see the forthcoming paper [23]).
Given R + Rn, the singular Yamabe problem is equivalent to find a positive solution

to

"Du ¼ u
nþ2
n"2 in Rn n R:

If we consider the model case R ¼ Rk, our problem can be reduced, with N :¼ n" k ¼
nþ2
2 , to

"Du ¼ u
N

N"2 in B1 n f0g + RN :
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Inspired by previous works in the local and non-local case (see [8,9,20]), we will use
the solution of this model case, as an approximate solution for a general submani-
fold R.
As in Section 2.2, we will denote by T r, the tubular neighborhood of width r, > 0

around R and, here, we will restrict to the construction of the solution in T r, n R, that
we will identify with in ð0, r,Þ - SN"1 - R: Note that to have a solution in the whole
Rn n R, only minor modifications are necessary, as we explain in Section 4.7.
Using the Fermi coordinates, we consider an Ansatz depending only the normal

variable and repeat the procedure in Section 3. Theorem 1.1 gives an exact solution
on a ball centered at the singularity, so that there will be no error when the cutoff
introduced in (4.1) equals 1. However, the curvature of the singular submanifold R
will enter here.

4.1. Ansatz and strategy

Let "ueðrÞ be the solution given by Theorem 1.1, with e 2 ð0,"e' small. We set

veðr,x, yÞ ¼ veðrÞ ¼ "ueðrÞv,ðrÞ, (4.1)

which is supported on T r, : By (1.2), it is easy to see that

veðrÞ *
v,ðrÞ

rN"2ð log 1
erÞ

N"2
2

for r 2 ð0, r,Þ, (4.2)

i.e. ve is bounded between positive multiples of the right hand side. We consider a per-
turbation "v :¼ ve þ w, which will be a solution of

"Dg"v ¼ j"vj
N

N"2 in ð0, r,Þ - SN"1 - R,

"v ¼ 0 on fr,g- SN"1 - R:

(

(4.3)

when w solves the linearized equation

Lw ¼ "E þ "N w½ ': (4.4)

where

Lw ¼ "Dgw" N
N " 2

v
2

N"2
e w

E ¼ "Dgve " v
N

N"2
e

"N w½ ' ¼ jve þ wj
N

N"2 " v
N

N"2
e " N

N " 2
v

2
N"2
e w:

(4.5)

It is important to remind here the following fact, that will be repeatedly used along
the Section:

Remark 4.1. The pair ðw, f Þ solves the Poisson equation

"Dgw ¼ f in ð0, r,Þ - SN"1 - R,

w ¼ 0 on fr,g- SN"1 - R:

(

if and only if ð ~w, ~f Þ ¼ ðw 0 U"1, f 0 U"1Þ solves
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"D~w ¼ ~f in T r, n R,
~w ¼ 0 on @T r, ,

(

where U is the diffeomorphism given in (2.6) and D is the usual Laplacian with the
flat metric.
Then we know that a maximum principle holds for (4.3), so "v > 0, and we can also

conclude that a positive solution of

"Dv ¼ v
N

N"2 in T r, ,
v ¼ 0 on @T r, ,

(

is given by vðzÞ ¼ "vðU"1ðzÞÞ:
Our goal then, is to find the proper perturbation which solves (4.4). We do it by a

fixed point argument, as in the previous Section. However, here, we need to distinguish
two cases depending on the dimension. First, for N % 4, we show that the error E is
bounded in the space L1N"1, that L"1 : L1N"1 ! L1N"3 exists and it is a bounded linear
operator, and that G : L1N"3 ! L1N"3 defined by G½u' ¼ L"1ð"E þ "N ½w'Þ is a
contraction.
Later, when N¼ 3, we see a low dimension phenomenon, so we need to use the bar-

rier ð log 1
rÞ
! , ! 2 ð0, 1Þ:

We conclude the idea of the strategy with a remark on the choice of parameters.
Depending on the geometry of R, we pick r, 2 ð0, 1Þ such that the constants in (2.7)
multiplied to r, are small, with respect to a dimensional constant (see Lemma 4.3).
Once r, is fixed, the smallness will be controlled just by choosing e.

4.2. Error estimates

In this Section we will show some explicit computation to prove the bound of the error

E ¼ "Dgve " v
N

N"2
e ,

made by approximating with ve as above.

Lemma 4.2 (Error of approximation). For any r 2 ð0, r,Þ, we have

jEj ( C

rN"1ð log 1
erÞ

N"2
2
:

In particular,

jjEjjN"1 ( Cj log ej"
N"2
2 ,

for N % 4, and

jjEjj2, 14 ( Cj log ej"
1
4,

when N¼ 3.
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Proof. By (2.7),

"Dgve " v
N

N"2
e ¼ "Drð"uev,Þ " ð"uev,Þ

N
N"2 þ OðrÞð"uev,Þrr þ Oð1Þð"uev,Þr

¼ "u
N

N"2
e v, " v

N
N"2
,

& '
" ð2þ OðrÞÞð"ueÞr þ Oð1Þ"ue
- .

ðv,Þr " "ueDrv,
þ Oð1Þ rð"ueÞrr þ ð"ueÞr

- .

¼ Oð1Þ
rN"1ð log 1

erÞ
N"2
2
1 r<r,=2f g þ Oð1Þj log ej"

N"2
2 1 r,=2<r<r,f g:

w

Now we are in good shape to do the linear study but, as we mention before, we need
to distinguish if N¼ 3 or higher. Let us focus, first, in the case N % 4:

4.3. Linear theory for N % 4

Consider

Lw ¼ f in ð0, r,Þ - SN"1 - R,

w ¼ 0 on fr,g- SN"1 - R:

(

(4.6)

Lemma 4.3 (Global super-solution). For any fixed l 2 ð0,N " 2Þ, there exists a small
r, ¼ r,ðlÞ 2 ð0, 1Þ such that for any r 2 ð0, r,Þ, we have

Lr"l % lðN " 2" lÞ
2

r"l"2: (4.7)

Proof. By (4.5), (2.7) and (4.2), we compute

Lr"l % "Drr"l þ OðrÞr"l"2 þ Oð1Þr"l"1 " C
r2 log 1

er

r"l

% lðN " 2" lÞ " Cr, "
C

log 1
"er,

 !
r"ðlþ2Þ,

for a universal constant C. Therefore r, can be chosen small enough such that we have
a super-solution. w

Remark 4.4. Hereafter we fix r, such that (4.7) holds true for l ¼ N " 3
and l ¼ N " 5=2:

Lemma 4.5 (A priori estimates). If w 2 L1N"3ð½0, r,Þ - SN"1 - RÞ is a solution of (4.6)
with jjf jjN"1 < 1, then

jjwjjN"3 ( 2jjf jjN"1:

Proof. For any d > 0 we can define the functions

wd,6 ¼ 2
N " 3

jjf jjN"1r
"ðN"3Þ þ dr"ðN"5

2Þ6w, (4.8)

COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 19



which, by Lemma 4.3, satisfy

Lwd,6 % 2N"5
8 dr"ðN"1

2Þ > 0 in ð0, r,Þ - SN"1 - R,

wd,6 ¼ 2
N"3 jjf jjN"1r

"ðN"3Þ
, þ dr

" N"5
2ð Þ

, > 0 on fr,g- SN"1 - R,

wd,6 % r"ðN"5
2Þ d" jjwjjN"3

ffiffi
r

p( )
> 0 in ð0, r0Þ - SN"1 - R,

8
>>><

>>>:

for some r0 ¼ r0ðd, jjwjjN"3Þ > 0: We apply now the maximum principle given in
Proposition A.1 to get wd,6 % 0: By taking d & 0,w0,6 % 0, as desired. w

Concerning the existence of solutions of (4.6), we use the method of continuity [26,
Theorem 5.2] and consider the linearly interpolated operators

Lk ¼ "Dg " k
N

N " 2
v

2
N"2
e ,

for k 2 ½0, 1', and the family of equations

Lkw ¼ "Dgw" k N
N"2 v

2
N"2
e w ¼ f in ð0, r,Þ - SN"1 - R,

w ¼ 0 on fr,g- SN"1 - R:

8
<

: (4.9)

It is clear that Lemma 4.5 also holds when L ¼ L1 is replaced by Lk , with a constant
uniform in k 2 ½0, 1': The reason why it is enough to consider weighted L1 spaces only
lies in the fact that L1 " L0 is a zeroth order term, where no extra regularity is neces-
sarily to make sense of the functions involved. Therefore, it suffices to solve (4.9) when
k¼ 0 in order to start the iteration.

Lemma 4.6 (Existence for k¼ 0). The operator L0 ¼ ð"DgÞ is invertible and

ð"DgÞ"1 : L1N"1ðð0, r,Þ - SN"1 - RÞ ! L1N"3ðð0, r,Þ - SN"1 - RÞ

is a bounded linear operator, i.e., there exists a constant C, ¼ C,ðr,Þ such
that jjð"DgÞ"1jj ( C,:

Proof. By Remark 4.1, we can work with the flat metric considering the problem in T r, :

Thus, let ~f 2 L1ðT r, Þ with

sup
z2T r,

dist ðz,RÞN"1j~f ðzÞj < 1:

We need to show that

sup
z2T r,

dist ðz,RÞN"3jGT r, , ~f ðzÞj < 1,

where GT r, is the Green function associated to "D in T r, :

First, we observe that in T r, n T r,=2 the weight does not play any role in the finiteness

and, it is standard that GT r, , ~f is bounded there. Then, we only need to prove the bound in

T r,=2, where for any z,"z 2 T r, ,GT r, ðz,"zÞ is comparable to jz " "zj"ðN"2Þ: Using now polar
coordinates and the diffeomorphism U defined in (2.6), we can rewrite it in Fermi coordi-
nates by z ¼ Uðr,x, yÞ and "z ¼ Uð"r , "x,"yÞ, and so it suffices to show the finiteness of
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I ¼ rN"3
ð

"z2T r,=2

1

jz " "zjN"2
1

"rN"1 d"z, 8z 2 T r, :

We have now a singular integral expression, but we observe that the kernel is regular
unless z and "z are close. Using polar coordinates as in (2.5), we can write z ¼ ðx, yÞ and
"z ¼ ð"x,"yÞ, where x ¼ rx, "x ¼ "r "x: So we can take d, > 0 as small as desired and we have

I ( Cðd,Þ þ CrN"3
ð

jx""x j<d,, jy""yj<d,

1

ðjx " "xj2 þ jy" "yj2Þ
N"2
2

1
"rN"1 d"x d"y,

By parameterizing y 2 R as a graph and integrating all over Rk,

I ( Cðd,Þ þ CrN"3
ð

jx""xj<d,

1

jx" "xjN"2
1

"rN"1 d"x:

Naming q :¼ "r
r , h ¼ /ðx, "xÞ, the rotational invariance of the integrand asserts

I ( Cðd,Þ þ
ðr,

2r

0

ðp

0

sin N"2h

ð1þ q2 " 2q cos hÞ
N"2
2

dh dq ( C,:

This completes the proof. w

Corollary 4.7 (Existence). For any f 2 L1N"1, there exists a unique solution w 2 L1N"3 of
(4.6), satisfying (4.8). In other words, L"1 : L1N"1 ! L1N"3 is a bounded linear operator
with jjL"1jj ( C,, where C, is the constant given by Lemma 4.6.

Proof. If we choose k 2 ½0, 1Þ such that L"1
k is invertible, then the equation

Lkþdu ¼ f

is equivalent to

u ¼ L"1
k f þ d

N
N " 2

L"1
k v

2
N"2
e u

& '
,

which defines a contraction on L1N"3 if d > 0 is small enough. Starting from k ¼ 0
(Lemma 4.6) and using the a priori estimates in Lemma 4.5 we see that L1 is invertible
after d"1 iterations. w

4.4. The nonlinear equation for N % 4

Knowing the invertibility of L it is easy to solve (4.4) in the proper space. We write
(4.4) in the fixed point form

w ¼ G w½ ' :¼ L"1ð"E þ "N w½ 'Þ,

where E and N ½w' are given in (4.5), and we define the space

X / XC2, e :¼ fv 2 L1N"3 ð0, r,Þ - SN"1 - R
( )

: jjvjjN"3 ( C2j log ej"
N"2
2 g,

where C2 > 0 will be characterized in Proposition 4.8.
Now are ready to prove the following:
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Proposition 4.8. There exists C2 > 0 and e3 2 ð0,"eÞ such that if e 2 ð0, e3Þ, then G :
X ! X and G is a contraction in X :

Proof. Let w 2 X , we can estimate jjG½w'jjX as follows. First, from Lemma 4.2 and
Corollary 4.7

jjL"1ðEÞjjX ( CjjL"1jjj log ej"
N"2
2 ( CC,j log ej"

N"2
2 ¼: C,,j log ej"

N"2
2 :

Now, proceeding as in the proof of Proposition 3.12, for w, "w 2 X , we have

j "N w½ ' " "N "w
- .

j ( C jwj
2

N"2 þ j"wj
2

N"2

& '
jw" "wj

( C C2j log ej"
N"2
2

& ' 2
N"2

ðr"ðN"3ÞÞ
N

N"2jw" "wj

Since ðN " 3Þ N
N"2 > N " 1, by Corollary 4.7,

jjG w½ ' " G "w
- .

jjX ( CC
2

N"2
2 jjL"1jjj log ej"1jjw" "wjjX ,

hence the result follows as in Proposition 3.12 by taking C2 ¼ 2C,, and e small
enough. w

4.5. Proof of Theorem 1.3 for N % 4

By Proposition 4.8, there exists a unique solution of (4.3) which satisfies

"vðr,x, yÞ ¼ "uðrÞ þ Oðr"ðN"1ÞÞ as r & 0:

By Remark 4.1, ~vðzÞ ¼ "vðU"1ðzÞÞ solves (1.5) and behaves like "uðdist ðz,RÞÞ near R. In
particular, it is positive near R and bounded elsewhere in T r, : Since ~v is super-
harmonic, it cannot attain a local minimum in T r, : We conclude that ~v > 0 in T r, and
is singular exactly on R, as desired. w

4.6. The case N5 3

As the scheme remains the same, we only indicate the modifications, due to the need of
a logarithmic correction. Recall that the error E is small in jj . jj2, 14: Then the super-

solution in Lemma 4.3 is replaced by ð log 1
erÞ

3
4, and the final integral in the proof of

Lemma 4.6 grows like log 1
r , showing that instead L"1 : L12, 14

! L10,"3
4
is bounded. Thus,

the fixed point argument implies the existence of a perturbation small in L10,"3
4
:

4.7. A scheme in the full space

We indicate here the modifications required to solve the singular Yamabe problem in
Rn n R: The Ansatz ve as defined in (4.1) induces the same compactly supported error
as in Lemma 4.2. We look for a perturbation which is less singular than ve near R and

decays like jzj"ðn"2Þ at infinity. A positive super-solution for the linearized operator can
be constructed as the Newtonian potential of a positive function behaving like the one
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in Lemma 4.3 near R12 and like jzj"ðnþ2Þ at infinity. (Note that the zeroth order term is
compactly supported and has a small coefficient). With this, we obtain a priori estimates
which guarantee uniform invertibility between appropriate weighted L1 spaces and the
validity of the fixed point argument.
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Appendix A. L1 theory

A.1. Maximum principle for positive operators

Inspired by the classical L1 theory due to Brezis, Cazenave, Martel and Ramiandrisoa [27], and
Dupaigne and Nedev [28], we prove a version of maximum principle in annular domains.

Let 0 2 X + RN : Let V : X n f0g ! R be a (possibly) singular potential satisfying

0 ( VðxÞ < ðN " 2Þ2

4
1

jxj2
, 8x 2 X n f0g:13

Consider an operator P of the form

P ¼ "D" VðxÞ,

which is positive in the sense of having a positive first Dirichlet eigenvalue,
ð

X
uPu dx ¼

ð

X
jruj2 dx"

ð

X
VðxÞu2 dx % k1

ð

X
u2 dx 8u 2 C1

c ðXÞ,

for some k1 > 0, via the Hardy–Poincar#e inequality. Consider a very weak solution u 2 L1ðXÞ
for the Dirichlet problem

Pu ¼ f in X
u ¼ g on @X,

*
(A.1)

with f 2 L1ðX; dist ðx, @XÞ dxÞ, g 2 Cð@XÞ in the sense
ð

X
uPf dx ¼

ð

X
f f dxþ

ð

@X
g
@f
@!

dr, 8f 2 C2ð"XÞ with fj@X ¼ 0: (A.2)

Using the techniques of [27, Lemma 1] and [28, Lemma 1.1], we prove the following

Proposition A.1 (Maximum principle). If f , g % 0 and u % 0 a.e. in some Bd with d > 0, then

u % 0 a:e: in X:

Note that if the operator P admits a positive Green’s function, then a maximum principle can
be easily obtained. See for example [29, Theorem 2.5].

First we need an existence result for functions with higher integrability.

Lemma A.2 (Variational existence). For any datum f 2 H"1ðXÞ, there exists a unique solution
u 2 H1

0ðXÞ to (A.1).

Proof. This is a standard application of the Riesz Representation Theorem (see e.g. Theorem 5.7
in [26]) on the bounded linear functional f ðvÞ ¼

Ð
Xfv dx, v 2 H1

0ðXÞ, with the positive symmetric
bilinear form

B u, v½ ' :¼
ð

X
ru .rv dx"

ð

X
VðxÞuv dx:

w

Proof of Proposition A.1. Without loss of generality, we may assume that g¼ 0. Indeed, let u0
be the solution of

13The equality, i.e. the critical Hardy potential, can be allowed, see [28]. The strict inequality suffices for our purpose,
and the presentation is simpler.
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"Du0 ¼ 0 in X

u0 ¼ g on @X,

(

where g % 0: Then u0 % 0 by the classical maximum principle and u0 is regular in X, thus ~u ¼
u" u0 satisfies

P~u ¼ ~f in X

~u ¼ 0 on @X,

(

for ~f ¼ f þ Vu0 2 L1ðX; dist ðx, @XÞ dxÞ and ~f % 0: Thus we are reduced to the case g¼ 0.
The idea is to test with the negative part u" ¼ maxf"u, 0g, which is supported on X n Bd and

so u" 2 L1ðXÞ + L2ðXÞ:
When u" is H€older continuous, we apply Lemma A.2 to obtain f 2 C2 satisfying

Pf ¼ u" in X

f ¼ 0 on @X:

(

Moreover, f % 0 by the classical maximum principle. Plugging such f into (A.2), we have

"
ð

X
u2" dx ¼

ð

X
uu" dx ¼

ð

X
f f % 0:

Thus u" / 0, and the proof is completed in the case u" is smooth enough.
In general, we consider a sequence of mollified negative parts u" , g1=k and test the equation

with the corresponding fk, which is positive and solves Pfk ¼ u" , g1=k: We arrive at
ð

X
uðu" , g1=kÞ dx % 0:

Since u 2 L1ðXÞ and u" 2 L1ðXÞ, we can take k ! 1 in view of Dominated Convergence
Theorem to conclude u" / 0: w
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