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Abstract 

In the last decades the attention to the out-of-plane response of infills has been increasingly 

growing due to their influence on the global seismic behaviour of frame structures. In order 

to assess their out-of-plane capacity, different approaches have been proposed, such as those 

based on the arching effect and on the yield-line theory. Both methods are implemented in 

Eurocode 6 for masonry structures. The first approach is based on the observation that an 

arching effect develops in a wall provided that surrounding elements are able to resist thrust. 

The second approach consists in defining a kinematically admissible mechanism (yield-line 

mechanism) and calculating the limit load by equating the internal and external works. This 

method was implemented in Eurocode 6 (EC6) as well as in other codes by means of 

coefficients, which depend on the orthogonal ratio of the masonry flexural strengths, the 

degree of fixity at the edges of the wall and the wall aspect ratio. The suitability of the 

methods proposed in EC6 is investigated herein for masonry infills through comparison with 

experimental tests. It is found that, considering the second approach, the results are, on the 

average, conservative, contrary to the assumption that the method should provide an upper 

bound of the resistance. 

 

Keywords: Infilled frames, Out-Of-Plane Collapse, Arching Effect, Yield-line Theory, 

Compressive Strength, Flexural Strength. 
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1 INTRODUCTION 

The influence of masonry infills to the structural response of frame buildings is widely 

recognized. The presence of regularly distributed infills is usually beneficial, due to their 

capacity to reduce the displacement demand and to dissipate energy [1–5]. On the other hand, 

irregular distributions due to the lack of one or more panels may lead to the increase of 

internal forces and displacements as well as to brittle failures [6–9]. In addition, the collapse 

of infills, especially in the out-of-plane (OOP) direction, occurs also for moderate intensity of 

the ground motion [10–13], causing casualty risks and economic losses. This explains the fact 

that in the last years the OOP response of infills and the interaction between in-plane (IP) and 

OOP actions have become issues of major concern [14–19]. Different methods have been put 

forward for their assessment, like those based on rigid body mechanisms or on numerical and 

iterative solutions [20,21]. The first category includes methods derived from the yield-line 

theory as well as methods which take into account the arching effect. 

The first approach, based on the yield-line theory, was initially proposed to determine the 

collapse load of reinforced concrete slab [22,23] and was subsequently applied to masonry 

walls [24,25]. The method allows taking into account different strengths in two orthogonal 

directions and the bending resistance along supports. It consists in defining a kinematically 

admissible mechanism in which all deformations (rotations) take place along yield lines and 

edges, and the single portions of the wall rotate as rigid bodies (Figure 1a). The limit load is 

estimated by equating the internal work, which is given by the energy dissipated along the 

yield lines, to the external work, i.e. the work done by the applied loads. Among the infinite 

number of mechanisms, the collapse mechanism is the one that occurs under the smallest load. 

Considering the upper bound theorem of the limit analyses, it is possible to recognise that the 

yield-line method provides an upper bound of the wall strength. This method was 

implemented in Eurocode 6  [26]  (EC6 hereinafter) as well as in other codes [27] by means 

of coefficients, which depend on the degree of fixity at the edges of the wall, the wall aspect 

ratio and the orthogonal ratio of the masonry flexural strengths. 

The second approach is based on the observation that the arching effect develops in a wall 

provided that surrounding elements are able to resist thrust. In the one-way arching model, the 

collapse is associated to a three-hinge mechanism (Figure 1b), which is usually activated 

along the shorter dimension, and the collapse load depends on the masonry compressive 

strength and on the wall slenderness [28]. When the infill is restrained at four edges, a two-

way arching action may develop, thus increasing the OOP strength [29,30]. The one-way 

arching method is included in EC6 which provides an equation of the limit load that can be 

used when lateral deflections are small. 

The suitability of the methods proposed in EC6 for masonry structures and described in § 2, 

is investigated herein for masonry infills through comparison with experimental tests. 

Specifically, a dataset of 71 experimental tests on one-storey one-bay infilled frames is 

compiled (§ 3) and the related experimental OOP strengths are compared with those predicted 

by the EC6 formulations in § 4.  
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(a) (b) 

Figure 1: a) example of a kinematically admissible mechanism for an infill supported on four edges for use in the 

yield-line method; b) one-way arching model, the collapse is associated to a three-hinge mechanism. 

2 EC6 PREDICTIVE MODELS  

As mentioned above, the yield-line method was included in EC6 in form of tabulated 

coefficients. The procedure consists in verifying that the design value of the moments applied 

to a masonry wall does not exceed the corresponding moments of resistance. The design 

moments per unit length in two orthogonal directions, 𝑀𝐸𝑑1  and 𝑀𝐸𝑑2 , acting on a wall 

subjected to the design lateral uniform pressure 𝑞𝑑 can be calculated as:  

𝑀𝐸𝑑1 = 𝛼1 𝑞𝑑  𝑙𝑚
2  (1) 

𝑀𝐸𝑑2 = 𝛼2 𝑞𝑑  𝑙𝑚
2  (2) 

while the moments of resistance as: 

𝑀𝑅𝑑1 =  𝑓𝑥𝑑1 𝑍 (3) 

𝑀𝑅𝑑2 =  𝑓𝑥𝑑2 𝑍 (4) 

where: 𝛼2 is a coefficient provided in Annex E of EC6; 𝛼1 = 𝜇 𝛼2; 𝜇 is the orthogonal ratio, 

i.e. the ratio between the flexural strength in the horizontal direction, 𝑓𝑥1, and in the vertical 

direction, 𝑓𝑥2 (Figure 2); 𝑙𝑚 is the length of the wall; 𝑍 is the elastic section modulus of unit 

length of the wall: 

𝑍 = 𝑡2 6⁄   (5) 

and 𝑡 is the panel thickness. 

The inequality between the design value of the applied moment and the design value of the 

moment of resistance gives:  

𝛼1 𝑞𝑑  𝑙𝑚
2 ≤ 𝑓𝑥𝑑1 𝑍 (6) 

𝛼2 𝑞𝑑  𝑙𝑚
2 ≤ 𝑓𝑥𝑑2 𝑍 (7) 

 
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 thus:  

 𝑞𝑑 ≤
𝑓𝑥𝑑2 𝑍

𝛼2 𝑙𝑚
2

 (8) 

Values of 𝛼2 , which are provided in Annex E for different boundary conditions, 

orthogonal ratios and aspect ratios, are given by the following equation: 

𝛼2 =
𝑓𝑥𝑑2 𝑍

𝑞 𝑙𝑚
2

 (9) 

where 𝑞 is the uniform load which leads to collapse, calculated through the yield-line theory. 

An example of calculations is reported in [31].  

 

 

Figure 2: Plane of failure of masonry in bending: a) parallel to bed joints, flexural strength 𝑓𝑥1; b) perpendicular 

to bed joints, flexural strength  𝑓𝑥2 [26]. 

The other approach encompassed in EC6 is based on the assumption that an arching effect 

develops in unreinforced masonry walls having slenderness ratio not greater than 20 and 

design value of the vertical stress not less than 0.1 MPa. In these cases, a wall subjected to 

lateral loading may be designed by employing the following equation:  

𝑞𝑑 = 𝑓𝑑 (
𝑡

𝑙𝑎
)

2

 (10) 

where: 𝑞𝑑 is the design lateral strength per unit area; 𝑓𝑑 is the design compressive strength 

of the masonry in the direction of the arch thrust; 𝑙𝑎 is the length or the height of the wall 

depending on the direction along which the arching effect develops and 𝑡 is the wall thickness.  

Finally, it is worthwhile to mention that Eurocode 8 [32] suggests measures to avoid the 

OOP collapse of slender masonry panels with specific reference to panels with slenderness 

ratio greater than 15. Examples of measures for the improvement of both IP and OOP 

response include the use light wire meshes, wall ties fixed to the columns, wind-posts and 

concrete belts. 

3 EXPERIMENTAL TESTS 

Seventy-one experimental tests are employed in this study (Table 1). Both infilled 

reinforced concrete and steel frames are considered as well as confined masonries. The 

slenderness ratio, 𝑠𝑟 = 𝑙𝑎 𝑡⁄ , and the aspect ratio, 𝑎𝑟 = ℎ𝑚 𝑙𝑚⁄ , vary in the range 7–34 and 

0.5–1.0, respectively (Table 2). 

The walls were made up of clay bricks having horizontal or vertical hollows, solid clay 

bricks and concrete blocks having vertical hollows, as specified in Table 2. The masonry 
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compressive strength varies between 0.5 and 28.1 MPa. However, in 80% of the cases it not 

greater than 15.0 MPa, higher values are related to concrete block infills. 

In 39 tests the infill were loaded in the OOP direction only. Generally, the OOP loads were 

applied monotonically by means of airbags, in some cases they were applied at four points or 

at mid-height. 

The interaction between IP and OOP actions was considered in 32 tests, where an IP 

horizontal displacement was applied at the beam level prior to the OOP load. Maximum IP 

interstorey drift ratios (IDR) are specified in Table 1. 

 

Reference OOP
(1)

  
IP-

OOP
(2)

  
Frame

(3)
 

Supported 

edges
 (4)

 
IDR

(5)
 (%)  

OOP 

load type  

Dawe and Seah (1989) [29] 6 - Steel 
3 (1 test),  

4 (5 tests) 
- airbag 

Angel et al. (1994) [33] 1 5 RC 4  
0.22, 0.25, 

0.34 
airbag 

Flanagan (1994) [34]  

Flanagan and Bennett (1999) [35] 
3 2 Steel 4  0.42, 0.84 airbag 

Calvi and Bolognini (2001) [36] 1 2 RC 4  0.4, 1.2 
four 

points 

Pereira et al. (2011, 2014) 

[37,38] 
- 4 RC 4  0.5 airbag 

Varela-Rivera et al. (2011) [39] 6 - CM 
3 (3 tests) 

4 (3 tests) 
- airbag 

Varela-Rivera et al. (2012) [40] 6 - CM 4  - airbag 

Da Porto et al. (2013) [41] - 3 RC 4  0.5, 0.19 
four 

points 

Hak et al. (2014) [42]  - 3 RC 4  
1.0, 1.5, 

2.5 

mid-

height 

Furtado et al. (2016) [43] 2 1 RC 4  0.5 airbag 

Akhoundi et al. (2016)  [44]  1 - RC 4  - airbag 

Wang (2017) [45] 3 1 
RC (3 tests) 

Steel (1 test) 

3 (1 test) 

4 (3 tests) 
1.34 airbag 

Sepasdar (2017) [46] 2 2 RC 4  0.65, 1.7 airbag 

Ricci et al. (2018) [47] 1 3 RC 4  
0.16, 0.37, 

0.58 

four 

points 

De Risi et al. (2019) [48] 1 3 RC 4  
0.15, 0.28, 

0.51 

four 

points 

Di Domenico et al. (2019) [49] 3 - RC 
3 (2 tests) 

4 (1 test) 
- 

four 

points 

Akhoundi et al. (2020) [50] 3 3 RC 4  
0.3, 0.5, 

1.0 
airbag 

(1)
 number of tests subjected to OOP loads only; 

(2)
 number of tests subjected to IP drift and OOP load; 

(3)
 Frame material: RC = Reinforced Concrete, CM = Confined Masonry; 

(4)
 number of supported edges; 

(5)
 Interstory Drift Ratio. 

Table 1: Experimental tests on infilled frames. 
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Reference Masonry units
(1)

 𝑓𝑚
(2)

 (MPa) 𝑠𝑟(3)
 𝑎𝑟(4)

 

Dawe and Seah (1989) [29] concrete blocks, vh  20.20 – 28.10 15 – 31 0.78 

Angel et al. (1994) [33] solid clay bricks  4.6 – 11.5 17 – 34 0.67 

Flanagan (1994) [34]  

Flanagan and Bennett (1999) [35] 
clay bricks, hh 2.29 – 5.59 7 – 24 1.00 

Calvi and Bolognini (2001) [36] clay bricks, hh 1.1 20 0.66 

Pereira et al. (2011, 2014) 

[37,38] 
clay bricks, hh 1.26 – 1.34 11 – 19 0.51 

Varela-Rivera et al. (2011) [39] concrete blocks, vh 3.0 12 – 24 0.49 

Varela-Rivera et al. (2012) [40] concrete blocks, vh 2.45 – 2.84 18 – 24 0.74 – 0.95 

Da Porto et al. (2013) [41] 
clay bricks, hh (1 

test) and vh (2 tests) 
2.0 – 6.0 9 – 22 0.64 

Hak et al. (2014) [42]  clay bricks, vh 4.64 8 0.70 

Furtado et al. (2016) [43] clay bricks, hh 0.53 15 0.55 

Akhoundi et al. (2016)  [44]  clay bricks, hh 1.59 20 0.68 

Wang (2017) [45] concrete blocks, vh 7.9 – 9.0 11–15 0.73 

Sepasdar (2017) [46] concrete blocks, vh 9.4 – 9.7 11 0.73 

Ricci et al. (2018) [47] clay bricks, hh 1.80 23 0.78 

De Risi et al. (2019) [48] clay bricks, hh 2.37 23 1.00 

Di Domenico et al. (2019) [49] clay bricks, hh 1.65 – 2.44 15 – 29 0.78 

Akhoundi et al. (2020) [50] clay bricks, hh 1.17 20 0.68 
(1)

 hh = horizontal hollows, vh = vertical hollows; 
(2)

 masonry compressive strength; 
(3)

 slenderness ratio; 
(4)

 aspect ratio. 

Table 2: Experimental tests on infilled frames, mechanical and geometrical data. 

4 ASSESSMENT OF EC6 MODELS  

In order to compare the OOP strength predicted by the formulations reported in EC6 (Eq. 8 

and Eq. 10) with the strength obtained in experimental test, the following assumption are 

made. 

- The experimental flexural strength, 𝑓𝑥2, is employed in Eq. 8 instead of the design 

flexural strength, 𝑓𝑥𝑑2. When the former value was not available, the flexural strength 

provided by EC6 for different masonry types was adopted. Such value was multiplied 

by 1.5 to obtain a mean value from the characteristic one.  

- Similarly, when the orthogonal ratio was not available from experimental campaigns, it 

was derived from EC6.  

- The experimental compressive strength of masonry, 𝑓𝑚, is used in Eq. 10 in the place 

of the design strength, 𝑓𝑑, for a consistent comparison with experimental tests. 

- Eq. 10 is applied also in case of walls having slenderness ratio greater than 20 in order 

to investigate the influence of such parameter.  

Therefore, the predicted OOP strength, 𝑞𝑝𝑟𝑒𝑑, is determined as 

𝑞𝑝𝑟𝑒𝑑 =
𝑓𝑥2 𝑍

𝛼2 𝑙𝑚
2

 (11) 

and  

𝑞𝑝𝑟𝑒𝑑 = 𝑓𝑚 (
𝑡

𝑙𝑎
)

2

 (12) 

according to whether the method is based on the yield-line theory (Eq. 11) or on the arching 

effect (Eq. 12). As mentioned in § 2, 𝑙𝑎 is the dimension of the wall in the direction along 



L. Liberatore 

which the arching effect develops. Therefore, in case of infills having a top gap 𝑙𝑎 is the wall 

length, whereas for infills supported along four edges, it is the height, since aspect ratios are 

not greater than 1.0. 

The experimental strength, 𝑞𝑒𝑥𝑝, is the maximum OOP pressure recorded during the tests. 

In cases where the OOP load was applied in concentrated points, an equivalent uniform 

pressure was estimated so as to provide the same maximum bending moment as the 

concentrated forces. 

4.1 Results  

The comparison between predicted (𝑞𝑝𝑟𝑒𝑑) and experimental (𝑞𝑒𝑥𝑝) OOP strength is shown 

in Figure 3 to 5, where the ratio 𝑞𝑝𝑟𝑒𝑑/𝑞𝑒𝑥𝑝  is plotted against the masonry compressive 

strength, the slenderness ratio, the aspect ratio and the IDR. The mean and the mean  one 

standard deviation of 𝑞𝑝𝑟𝑒𝑑/𝑞𝑒𝑥𝑝 are also shown. The expressions “yield line” and “arching 

action” used in the figures refer to the application of Eq. 11 and Eq. 12, which are based on 

the two approaches, respectively. 

In Figures 3 and 4 only pure OOP tests are reported. First of all, it is noticed that the 

application of the arching action approach leads to a considerable overestimation of the 

strength when the masonry compressive strength 𝑓𝑚 is greater than 20 MPa, while it 

underestimates the strength when 𝑓𝑚 is less than 2 MPa (Figure 2a). This outcome implies 

that 𝑞 and 𝑓𝑚 are not linearly proportional to one another and that Eq. 12 should not be used 

for strong masonries. In the following comparisons, such cases (6 tests) are disregarded. 

On the average, both methods underestimate the strength, being the mean ratio between 

predicted and experimental values equal to 0.51 and 0.86 in case of predictions obtained 

through the yield-line theory (Eq. 11) and the one-way arching effect method (Eq.12), 

respectively. However, the application of Eq. 12 leads to a significant scatter due also to the 

fact that it does not take into account the effect of the aspect ratio. The yield-line method 

gives more conservative results and a smaller scatter. 

 

  
(a) (b) 

Figure 3: Ratio between predicted and experimental values of the OOP strength (for tests loaded OOP only) 

plotted against the masonry compressive strength. Continuous lines represent the mean values, dotted lines 

represent the mean  one standard deviation: red = yield line, grey = arching effect. 
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(a) (b) 

Figure 4: Ratio between predicted and experimental values of the OOP strength (for tests loaded OOP only) 

plotted against the slenderness ratio (a) and the aspect ratio (b). Continuous lines represent the mean values, 

dotted lines represent the mean  one standard deviation: red = yield line, grey = arching effect. 

 

Figure 5: Ratio between predicted and experimental values of the OOP strength (for tests loaded to IP drift + 

OOP load) plotted against the IP interstory drift ratio (IDR). Continuous lines represent the mean values, dotted 

lines represent the mean  one standard deviation: red = yield line, grey = arching effect. 

Figure 4 shows that, contrary to what expected, the predictive capacity of Eq. 12 does not 

worsen for slenderness ratios greater than 20. In general, the ability of the two methods in 

predicting the strength does not show a clear trend with varying aspect and slenderness ratios.    

The predictions in case of previous IP damage are reported in Figure 5. Obviously, in this 

case both models overestimate, on the average, the experimental values. In fact, they do not 

account for previous IP damage. Also in this case, Eq. 11 gives more conservative results.  

Finally, the yield-line equations provide the collapse mechanisms related to the minimum 

collapse pressure [31]. In Figure 6 the occurrences of predicted mechanisms is reported as a 

function of the infill aspect ratio. “Type 1” mechanisms (Figure 6a) refer to those cases which 

are most frequently observed in experimental campaigns: for infills supported along four 

edges the collapse mechanism is related to a first horizontal crack followed by inclined cracks 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 5 10 15 20 25 30 35 40

q
p

re
d
/q

ex
p

(-
)

sr (-)

yield line arching action

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.2 0.4 0.6 0.8 1.0 1.2

q
p

re
d
/q

ex
p

(-
)

ar (-)

yield line arching action

0

1

2

3

4

5

6

0.0 0.5 1.0 1.5 2.0 2.5

q
p

re
d
/q

ex
p

(-
)

IDR (-)

yield line arching action



L. Liberatore 

running to the corners of the panel; for infills with no support along the top, a vertical crack 

develops at the centre of the panel followed by inclined cracks running to the bottom corners. 

In “type 2” mechanisms, the first crack is vertical for panels supported along four edges, 

whereas in panel with a top gap only inclined cracks develop (Figure 6b). Figure 6c indicates 

that “type 1” mechanisms develop when 𝑎𝑟  is in the range 0.49–078, whereas “type 2” 

mechanisms occur when 𝑎𝑟 ranges between 0.64 and 1.00. The yield-line method predicts the 

“type 2” mechanism more frequently than “type 1”, in contrast to what observed 

experimentally. In fact, the method is not always able to predict the experimental collapse 

mechanisms, which are often a combination of different failure modes. 

 

        

 

 

 
 

 

 

 

c) 

 

a) 

 

b) 

Figure 6: a) crack patterns of type 1 collapse mechanisms; b) crack patterns of type 2 collapse mechanisms; c) 

occurrences of predicted collapse mechanisms. 

5 CONCLUSIONS  

In this study the methods encompassed in EC6 to determine the OOP strength of masonry 

walls are investigated to evaluate their possible suitability for infills. To this aim, a dataset of 

71 experimental tests available in the literature is employed. The following conclusions are 

inferred: 

 Eq. 11, based on the yield-line theory, is, on the average, conservative. In this case, the 

mean value of the ratio between predicted and experimental values is equal to 0.51. This 

is probably due to the fact that the masonry flexural strength used to estimate the OOP 

resistance is derived from tests on simply supported specimen and therefore does not 

account for the confining effect of the frame. 

 On the average, Eq. 12, which is based on the one-way arching effect, is slightly 

conservative, being the mean value of the ratio between predicted and experimental 

values equal to 0.86. However, the scatter of data is noticeable, also because the two-way 

arching action and the influence of the aspect ratio are not taken into account by the 

model. 

 The effect of previous IP damage is not considered in the examined formulations and 

therefore, as expected, the predictions are unconservative when previous IDR was 

applied to the infilled frame. The mean value of the ratio between predicted and 

experimental strength is equal to 1.23 and 1.79 when using Eq. 11 and Eq. 12, 

respectively.  

 The yield-line method is not always able to predict the experimental crack patterns 

related to the collapse mechanisms observed experimentally.  
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