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Abstract. We consider the impact of quantum diffusion on inflationary dynamics during an
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the linear level, the result obtained by solving the Mukhanov-Sasaki equation, even in the
presence of an ultra-slow-roll phase. We confirm this result numerically in a model in which
the inflaton has a polynomial potential and is coupled quadratically to the Ricci scalar. En
route, we assess the role that quantum noise plays in the presence of an ultra-slow-roll phase,
and clarify the issue of the quantum-to-classical transition in this scenario.
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1 Motivation and main results

In the standard description of single-field inflation, the homogeneous part of the inflaton
field φ is usually assumed to behave classically, while small deviations from homogeneity
and isotropy over the classical background are treated quantum mechanically. In the slow-
roll regime, the kinetic energy φ̇2/2 and the acceleration φ̈ are neglected, respectively, with
respect to the potential energy V (φ) and the Hubble friction 3Hφ̇. This treatment leads
to the usual PR ∼ H4/Ḣ dependence of the primordial power spectrum (with H being
the Hubble function and Ḣ � H2). This is known to account well for the temperature
anisotropies in the Cosmic Microwave Background (CMB), provided that a suitable V (φ) is
assumed. The formation of the primordial power spectrum in the slow-roll regime is usually
pictured as follows: comoving curvature perturbations, starting their evolution in the Bunch-
Davies vacuum in the far past, are said to be stretched out of the horizon (of size H−1) by
inflation, in such a way that fluctuations over a comoving extension k−1 become constant
shortly after the condition k < aH = ȧ is met (where a is the scale factor of the Universe),
determining PR and becoming classical.

This description leaves out of the frame the possibility that quantum fluctuations could
back-react on the classical trajectory of the inflaton, modifying the way in which the back-
ground evolves, and potentially altering the inflationary predictions. This back-reaction can
be described in the framework of stochastic inflation [1], which aims to understand not only
how quantum effects can affect the background dynamics, but also the process through which
fluctuations become classical during inflation. In this framework, the long wavelength fluctu-
ations (small k) are sourced by the small wavelength ones (larger k) through a coarse-graining
procedure in which the latter behave as classical (stochastic) noise for the former according
to Langevin equations. The divide between short and long wavelength fluctuations is defined
by considering a (non-comoving) length scale sufficiently larger than the horizon scale during
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inflation. The system of Langevin equations can be solved perturbatively at first order in
the fluctuations. It is known that in the slow-roll regime this procedure leads to a PR in
agreement with the result of the more commonly used standard perturbation theory.

Whether or not an analogous result holds away from the slow-roll regime may have
important implications, especially if inflation undergoes a phase of ultra-slow-roll (USR) [2],
in which the acceleration of the inflaton φ̈ is not negligible with respect to Hubble friction
and instead V ′(φ) is subdominant. A temporary USR phase is the key ingredient of the vast
majority of single-field inflation models that have been proposed in recent years with the aim
of providing an explanation for a putative population of primordial black holes (PBHs) that
could account for the totality of the dark matter. In these models, the USR phase arises from
an approximate inflection point (typically a shallow minimum) in V (φ), which produces a
rapid deceleration of the inflaton. In the standard approach to inflationary perturbations, this
kind of dynamics leads to a localized enhancement of PR for modes exiting the horizon around
the USR phase. If the primordial spectrum is large enough, PBHs will form abundantly when
those modes become sub-horizon after inflation ends. In the simplest scenario, in which PBH
formation takes place during radiation domination, the (narrow) PBH mass distribution is
determined by the location of the spectral peak in k-space and the PBH abundance depends
exponentially on PR. Within this scenario, the value of PR required to account for all the
dark matter can be estimated to be several (∼ 7) orders of magnitude larger than the one
inferred at CMB scales. The local minimum of V (φ) has to be carefully crafted to generate
this enhancement of PR, as small variations of its properties can lead to exponentially large
effects on the PBH abundance. It is then natural to ask whether the back-reaction of small
scale fluctuations changes this picture substantially. Given an USR phase, the back-reaction
could modify the peak height of PR or the location of the peak itself. It was also speculated
in [3] that, for instance, a broadening of the PBH mass function might occur.

The question was addressed quantitatively in reference [4], where it was argued that
the usual estimate of the PBH abundance and distribution (based on standard perturbation
theory) could be significantly altered once the effects of stochastic dynamics are properly
taken into account. The matter was also studied in [5], which concluded that the back-
reaction of short wavelength modes generates an enhancement of three to four orders of
magnitude on the peak height of PR for a concrete (but representative) example of PBH
formation from USR in single-field inflation. Given the exponential dependence of the PBH
abundance on PR, this would be a result with significant consequences extending into the
model-building details of single-field inflation for PBH formation.1 However, the results of [5]
where disputed in [6], which instead concludes that in an USR phase the primordial power
spectrum computed with traditional perturbation theory agrees with the one computed in
the stochastic approach at zeroth order in the slow-roll expansion.2

Considering the relevance of these issues for PBH dark matter, we reassess the compu-
tation of the primordial power spectrum (in the presence of an USR phase) using the frame-
work of stochastic inflation, both analytically and numerically. We construct an analytical
toy model which implements the main features of the necessary transition from slow-roll to
ultra-slow-roll (see [9]) and allows us to calculate PR in the stochastic approach by taking
into account the stochastic noise in the comoving curvature perturbation and its conjugate
momentum. We find that at linear order in fluctuations (and at all orders in the slow-roll

1In particular, it could allow to reduce the tuning in the shape of V (φ) required to account for all dark
matter.

2For other studies of stochastic effects during USR see [7, 8].

– 2 –



J
C
A
P
0
8
(
2
0
2
0
)
0
4
3

expansion) the primordial spectra calculated in the stochastic framework and in the usual
perturbative approach are the same. We confirm this result numerically using a simple model
of polynomial inflation capable of accounting for all dark matter.3 With our analysis we help
to clarify the role of the coarse-graining (distance) scale that separates long and short wave-
length modes in defining the stochastic approach and characterizes the quantum-to-classical
transition of the Fourier modes of the comoving curvature perturbation during inflation. We
show that an inadequate choice of this scale can lead to spurious results for PR and thus for
the PBH abundance and mass. Our findings ensure that the standard computation of the
primordial power spectrum in inflationary models of PBH formation featuring a transient
USR period is robust under the inclusion of the leading order fluctuations from stochastic
dynamics. However, let us mention that non-linear corrections, which we have not studied
here, might be relevant, and induce sizeable non-Gaussianities, as those presented in [10] for
the case of slow-roll inflation.

In the next section we present our toy-model of inflation for PBH formation with an
USR phase and obtain (analytically) the spectrum of comoving curvature fluctuations with
the usual splitting into background and perturbations. In section 3 we discuss the stochastic
approach, emphasizing the role of the coarse-graining scale. In section 4 we present our
results. We discuss the quantum to classical transition for the analytical toy model and
compute the stochastic noise and its primordial power spectrum. We compare the results
with a numerical analysis for the model introduced in [9]. We close the section with some
relevant comments about non-Gaussianities. In section 5 we present our conclusions. In this
paper we use natural units (~ = c = 1) and set the reduced Planck mass (8πG)−1/2 to 1.

2 The classical dynamics and the standard perturbative description

The key ingredient in the scenario we are focusing on is the presence of an ultra-slow-roll
(USR) phase during inflation. This part of the inflationary dynamics is defined by the
condition η > 3/2 on the Hubble parameter η:

ε ≡ − Ḣ

H2
=

1

2

(
dφ

dNe

)2

, η ≡ − Ḧ

2HḢ
= ε− 1

2

d log ε

dNe
, (2.1)

where φ is the classical solution for the evolution of the inflaton, Ne is the number of e-folds
and Ḣ is the cosmic time derivative of the Hubble function. As shown in [9], the evolution of
the comoving curvature perturbation during inflation is described by the differential equation
of a damped harmonic oscillator. During the USR phase the friction term changes sign and
becomes a driving force, exponentially enhancing the amplitude of the comoving curvature
perturbations. These dynamics lead to an enhancement of the power spectrum of curvature
perturbations at small scales, and in particular at those scales relevant for the formation
of PBHs.

In what follows we develop a simple, yet remarkably powerful, analytical model dividing
the classical dynamics in three regions, each of them characterized by a constant value of η.
Using the classical equation of motion of the inflaton we can also express the evolution of the

3This model also addresses the issue of the smallness of the scalar spectral index in PBH formation from
single-field inflation, see [9] and also [3].
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inflaton itself and the potential in terms of Hubble parameters:4

V (N) = V (Ñ) exp

{
−2

∫ N

Ñ
dN ′

[
ε(3− η)

3− ε

]}
, (2.2)

φ(N) = φ(Ñ)±
∫ N

Ñ
dN ′
√

2ε , (2.3)

where Ñ is some reference value for the e-fold time N . We remark that no approximation is
assumed in eqs. (2.2), (2.3). For a given time evolution of the Hubble parameters ε = ε(N)
and η = η(N), one can solve — at worst numerically — eqs. (2.2), (2.3) and reverse-engineer
the potential and field profile. The three regions of the analytical model are defined as follows:

◦ Region I. The first phase of the classical dynamics extends from some initial (e-fold)
time N∗ to some final time Nin. During this phase, we assume η = 0 and constant
ε = εI � 1. From eqs. (2.2), (2.3) we find

VI(φI) = V∗ exp

[
3
√

2εI
3− εI

(φI − φ∗)
]
' V∗

[
1 +
√

2εI(φI − φ∗)
]
, (2.4)

φI(N) = φ∗ −
√

2εI(N −N∗) . (2.5)

At N = Nin, we have φin ≡ φI(Nin) and Vin ≡ VI(φin). In eq. (2.3), we take the
negative branch of the solution since we consider (without loss of generality) a large
field inflation model in which the field rolls down the potential from large to small
values.

◦ Region II. The second phase of the classical dynamics extends from Nin to some final
time Nend. We define ∆N ≡ Nend − Nin. During this phase, we assume η = ηII > 3.
The Hubble parameter ε is not constant but it evolves in time according to

dε

dN
= 2ε(ε− η) ' −2εη =⇒ εII(N) = εIe

−2ηII(N−Nin) . (2.6)

As it is evident form this equation, εII drops down to exponentially small values. From
eqs. (2.2), (2.3) we find

VII(φII) = Vin exp

{
(3− ηII)

6

[
2
√

2εI + ηII(φII − φin)
]

(φII − φin)

}
, (2.7)

φII(N) = φin +

√
2εI
ηII

[
−1 + e−ηII(N−Nin)

]
. (2.8)

At N = Nend, we have φend ≡ φII(Nend) and Vend ≡ VII(φend).

◦ Region III. The third phase of the classical dynamics extends from Nend to some
final time N0. During this phase we assume η = ηIII < 0. Consequently, the Hubble
parameter ε evolves in time according to

εIII(N) = εIe
−2ηII∆Ne−2ηIII(N−Nend) . (2.9)

4See [11] for another application of this strategy. Notice that the expression for V (N) given there assumes
ε� 3.

– 4 –



J
C
A
P
0
8
(
2
0
2
0
)
0
4
3

For negative ηIII, εIII increases exponentially starting from the small value reached at
the end of region II. Thus, eventually the condition εIII = 1 will be satisfied and inflation
will end. We shall consider values of N0 not too far from Nend, such that we can still
use the approximation in which εIII � min{|ηIII|, 1}. From eqs. (2.2), (2.3) we find

VIII(φIII) =Vend exp

{
(3−ηIII)

6

[
2
√

2εIe
−ηII∆N+ηIII(φIII−φend)

]
(φIII−φend)

}
, (2.10)

φIII(N) =φend +

√
2εIe

−ηII∆N

ηIII

[
−1+e−ηIII(N−Nend)

]
. (2.11)

This simple analytical model captures well the dynamics relevant for the production of PBHs,
as discussed in [9]. Assuming a non-negligible η in Region I is not essential to describe
the relevant physics and only complicates the previous expressions and subsequent ones
unnecessarily. In the right panel of figure 1 we show our piecewise approximation for η
as a function of the number of e-folds across the three regions discussed before. We also
superimpose the exact evolution of η found solving numerically the inflaton dynamics in a
model where PBHs can account for all the DM content of the Universe, see [9]. The piecewise
analytical model is designed to reproduce the behaviour of the exact solution. As we will see
in a moment, it also performs well in describing the shape of the power spectrum of curvature
perturbations. We stress that the qualitative behaviour of the numerical result shown in the
right panel of figure 1 is by no means unique of [9]. In the context of PBH production, an USR
phase has been widely considered in inflation models capable of featuring an approximate
stationary inflection point with a local minimum (see e.g. [3, 12–18], and [19, 20] for earlier,
related works). In these scenarios a rapid growth and subsequent drop of η can happen when
the inflaton approaches the local minimum and then slowly overcomes the barrier. Therefore,
choosing appropriately the parameters ηII, ηIII and the duration of the USR phase ∆N, the
analytical model allows to describe locally any such model.5

For illustrative purposes, we show in the left panel of figure 1 the typical shape of the
potential we consider in this paper as a function of the inflaton field across the three regions
discussed before. If ηII = 3, the potential in region II is flat (see eq. (2.7)) while for ηII > 3
the potential increases for decreasing field values (in the left panel of figure 1 we consider
the case ηII = 4), thus reproducing the typical situation, relevant for PBH production, that
arises in the presence of an approximate stationary inflection point with a local minimum
followed by a local maximum.

In this model it is possible to compute analytically the power spectrum of comoving
curvature perturbations. We work using the spatially flat gauge. The perturbed line ele-
ment is

ds2 = gµνdx
µdxν = (1 + 2Φ)dt2 − 2a(∂iB)dxidt− a2δijdx

idxj , (2.12)

where Φ = Φ(t, ~x) and B = B(t, ~x) are functions of the time and space coordinates, since
perturbations describe departure from the homogeneous and isotropic situation. The equa-
tion of motion of the inflaton field φ(t, ~x) in the perturbed metric gµν of eq. (2.12) takes

5The (rather generic) failure of the slow-roll approximation in inflationary PBH formation models with an
approximate inflection point was pointed out in [3, 21, 22]. The power spectrum, PR, for such models was first
correctly computed using standard perturbation theory in [3]. An earlier analysis which assumed a quickly
varying epsilon (also in the context of PBH formation) can be found in [23]. The deviation from slow-roll in
the growth of PR from a sudden change in the slope of the potential was studied before in [24, 25], the latter
of which considered the model of [19].
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Figure 1. Left panel. Profile of the potential as function of inflaton field values across the three
regions discussed in our toy model. We take εI = 0.1, ηII = 4, ηIII = −1 and ∆N = 3. Right panel.
Piecewise approximation for η as function of the number of e-folds (solid black line) across the three
regions discussed in our toy model. We superimpose (dashed blue line) the exact value of η obtained
numerically in the context of a model in which one can generate 100% of dark matter in terms of a
population of PBHs (see ref. [9] for details). Horizontal dotted gray lines mark reference values of η.
The exact numerical result features ηII > 3 and ηIII < 0; for the potential in the left panel and the
computation of the power spectrum in figure 2, we used ηII = 4 and ηIII = −1.

the form

dφ

dt
=

(1 + Φ)

a3
π +

1

a
(∂iB)(∂iφ) , (2.13)

dπ

dt
=

1

a
∂i [(∂iB)π] + a4φ+ a∂i [Φ(∂iφ)]− a3(1 + Φ)

dV

dφ
, (2.14)

where we use the Hamiltonian formalism and we use the notation 4 ≡ ∂i∂i. In the context
of the familiar perturbative description [26], the splitting

φ(t, ~x) = φcl(t) + δφ(t, ~x) (2.15)

is used, where we indicate with φcl(t) the classical homogeneous and isotropic background —
that is, the solution discussed in this section, in eqs. (2.5), (2.8), (2.11) — while δφ(t, ~x) is a
small inhomogeneous perturbation. The metric perturbations in spatially flat gauge satisfy
the system of equations (derived, respectively, from the 0

i and 0
0 components of the perturbed

Einstein’s field equations δGµν = δTµν with δGµν the perturbed part of the Einstein’s tensor
and δTµν the perturbed part of the inflaton energy-momentum tensor):

HΦ =
1

2

(
dφcl

dt

)
δφ , (2.16)

−4B
a

= 3HΦ +
1

2H

dV

dφ

∣∣∣∣
φcl

δφ− Φ

2H

(
dφcl

dt

)2

+
1

2H

(
dφcl

dt

)(
dδφ

dt

)
. (2.17)
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By combining eqs. (2.13), (2.14) with eqs. (2.16), (2.17), we obtain, at linear order in the
perturbations, the field equation

d2δφ

dt2
+ 3H

dδφ

dt
− 4δφ

a2
+

{
d2V

dφ2

∣∣∣∣
φcl

− 1

a3

d

dt

[
a3

H

(
dφcl

dt

)2 ]
︸ ︷︷ ︸

from metric perturbations

}
δφ = 0 , (2.18)

where the second term in the curly brackets is generated by the coupling of the inflaton with
metric perturbations. If we now define (in spatially flat gauge) u ≡ aδφ and change the
variable from cosmic t to conformal τ time (defined by means of dt/dτ = a) we find

d2u

dτ2
=

(
4+

1

z

d2z

dτ2

)
u , (2.19)

1

z

d2z

dτ2
= a2H2

[
(1 + ε− η)(2− η) +

1

aH

(
dε

dτ
− dη

dτ

)]
, (2.20)

with z ≡ (1/H)(dφcl/dτ). The field u can be quantized by defining the operator

û(τ, ~x) =

∫
d3k

(2π)3/2

[
u~k(τ)a~ke

+i~k·~x + u∗~k(τ)a†~k
e−i

~k·~x
]
, (2.21)

with the annihilation and creation operators that satisfy the commutation relations of bosonic
fields

[a~k, a~k′ ] = [a†~k
, a†~k′

] = 0 , [a~k, a
†
~k′

] = δ(3)(~k − ~k′) , a~k|0〉 = 0 , (2.22)

and where the vacuum condition defines the scalar field’s Fock space. The equation of motion
for each mode uk(τ) takes the form of a Schrödinger equation

d2uk
dτ2

+

(
k2 − 1

z

d2z

dτ2

)
uk = 0 , (2.23)

with z−1(d2z/dτ2) acting like a time-dependent potential. Notice that eq. (2.23) depends on
~k only through its modulus k ≡ |~k|, and, therefore, the same is true of its solution. For this
reason, we simply use the notation uk in place of u~k. The solution of eq. (2.23) in each of
the three regions i = I, II, III can be written as:

u
(i)
k (τ) = αi

kvk(τ) + β i
kv
∗
k(τ), (2.24)

with

vk(τ) =

√
π

2
ei(ν+1/2)π/2

√
−τH(1)

ν (−kτ) , (2.25)

where H
(1)
ν is the Hankel function of the first kind. The complex coefficients αi

k and β i
k satisfy

the Wronskian condition |αi
k|2−|β i

k|2 = 1. We impose Bunch-Davies initial conditions αI
k = 1

and βI
k = 0 in the first region. The coefficients in the regions II and III are found imposing

continuity of the comoving curvature perturbation in Fourier space Rk and its derivative,
which in the spatially flat gauge is Rk = uk/z. Finally, the two-point correlation function of
the comoving curvature perturbation is given by

〈0|RkRk′ |0〉 =
|uk|2

z2
δ(3)(~k − ~k′) ≡ PR

4πk3
(2π)3δ(3)(~k − ~k′) =⇒ PR(τ, k) =

k3

2π2

|uk(τ)|2

z(τ)2
,

(2.26)
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where |0〉 is the vacuum quantum state of the system. The power spectrum PR(k) ≡
limkτ→0− PR(τ, k) is defined and computed on super-Hubble scales after the time at which the
Fourier modes Rk remain frozen to their final constant value, which is kept until their horizon
re-entry. In the left panel of figure 2 we show the power spectrum PR(k) computed for the
analytical model discussed in this section. Working at the leading order in ε, and therefore
considering H constant with H2 = V∗/3, we find the following analytical expression:6

PR(k) =
H2

8π3εI

Γ(νIII)
2

21−2νIII
e2∆N(ηII−ηIII)

(
kin

k

)2νIII−3{
|αIII
k |2+|βIII

k |2−
[
αIII
k (βIII

k )∗eiπ(νIII+1/2)+c.c.
]}
,

(2.28)
where ν =

√
9/4− η(3− η), Γ(ν) is the Euler gamma function with argument ν, and αi

k

and β i
k are complex coefficients, functions of the comoving wavenumber k, whose explicit

expressions — in terms of Hankel functions of first and second kind — are quite lengthy and
depend on the specific values of ∆N and η in regions II and III. For integer values of ηII and
ηIII, the Hankel functions admit close analytical expressions. In the left panel of figure 2, we
use the values ηII = 4 and ηIII = −1 (hence νIII = 5/2). In this case, we find

αIII
k =

1

4x9

[
gx
(
45ie5∆N + 15ie3∆Nx2 + 5ie∆Nx4 + 2x5

)
+ 5ie2ix(1−e−∆N )+∆Nfx

(
−3e2∆N − 3ie∆Nx+ x2

)2 ]
, (2.29)

βIII
k =

e2ix

4x9

[
fx
(
−45ie5∆N − 15ie3∆Nx2 − 5ie∆Nx4 + 2x5

)
− 5ie2ix(e−∆N−1)+∆Ngx

(
−3e2∆N + 3ie∆Nx+ x2

)2 ]
, (2.30)

where we defined x ≡ k/kin, fx ≡ 15− 30ix− 18x2 + 4ix3 and gx ≡ −15− 12x2− 8ix3 + 2x4.
The model features a large peak in the power spectrum, and the benchmark values for ηII,
ηIII and ∆N used in the left panel of figure 2 produce the typical enhancement (around seven
orders of magnitude in between the peak amplitude of the power spectrum and the amplitude
at CMB scales) that is required to generate a sizable population of PBHs that could account
for all dark matter. The position of the peak of the power spectrum is related to the mass
of the produced PBHs while the duration of the ultra-slow-roll phase — and, consequently,
the amplitude of the peak — is related to their abundance.

In standard slow-roll inflationary models, the comoving curvature perturbation Rk with
comoving wavenumber k freezes to a constant value soon after the horizon-crossing time τk
defined by k = a(τk)H(τk) ≡ akH, where, as explained before, we consider H constant since
we are working under the assumption ε � 1. In the presence of an ultra-slow-roll phase τk
does not describe reliably the time after which perturbations stay constant. This is illustrated
in the right panel of figure 2, where we computed, for each k on the y-axis, the transition
time (expressed in terms of the number of e-folds) after which Rk settles to a constant value.
Despite the simplicity of the model, the result captures well the expected deviation from the
condition k = akH (diagonal dashed line). For the sake of comparison we refer to ref. [9]
for the analog result in the context of a polynomial inflation model in which 100% of dark
matter consists of PBHs.

6In deriving this expression we have also made use of the identity

lim
x→0

xnH(1)
n (x) = −iΓ(n)2n/π. (2.27)
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Figure 2. Left panel. Power spectrum of comoving curvature perturbations as a function of the
comoving scale k obtained with eq (2.28). Right panel. e-fold time N after which the comoving
curvature perturbation in Fourier space Rk freezes to a constant value. The diagonal dashed line
shows the horizon-crossing condition k = a(τk)H(τk). Horizontal lines denote the scales at which
the power spectrum of curvature perturbations presents a dip and a maximum (see left panel). kth
denotes the minimum scale for which Rk becomes constant significantly after the horizon-crossing.
For both panels the parameters of the analytical model are the same as in figure 1.

Let us close this section with one important comment. The threshold value kth above
which the horizon crossing condition is sizably altered by the presence of the ultra-slow-roll
phase (see the corresponding label in figure 2) and the position of the dip kdip admit the
following approximate analytical expressions. As discussed in ref. [9], the dip occurs for the
mode with comoving wavenumber kdip such that i) it crosses the Hubble horizon before the
beginning of the ultra-slow-roll phase and ii) the condition |Rkdip

(Nend)| = 0 is met. We find

k2
dip ≈ k2

in

{
e2∆N [3 + 4ηII(ηII − 2)]

e2∆N (2ηII − 1) + 2e∆N(2ηII−1) − 3 + 2ηII

}
' k2

in e
−2∆N(ηII−3/2)

[
3 + 4ηII(ηII − 2)

2

]
. (2.31)

The comoving wavenumber kdip crosses the Hubble horizon at time Ndip = Nin−log(kin/kdip).
The precise definition of kth, on the contrary, is somewhat arbitrary. As explained in ref. [9],
for modes that cross the Hubble horizon well before the beginning of the ultra-slow-roll phase
(that is for modes with comoving wavenumber k < kin) the corresponding comoving curvature
perturbation |Rk| freezes to a constant value that is sizably altered by the ultra-slow-roll
dynamics only if the duration of the latter is long enough to compensate the suppression
k/kin. Consequently, for fixed ∆N , there will always be some k � kin below which |Rk|
remains constant within some accuracy δR. In such case, we find kth ≈ kdipδR with δR � 1
in general. The arbitrariness in the exact value of kth depends on the specific choice of δR.
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k
Short-wavelength modes

Long-wavelength modes

t

1/aH

1/σaH

k & kσ

k . kσ

Figure 3. Schematic depiction of the effect of short-wavelength fluctuations on the coarse-grained
field as a function of time.

3 The stochastic dynamics

We now consider quantum fluctuations in the context of stochastic inflation. This approach
relies on an effective field theory for the long wavelength fluctuations of the inflaton field,
which act as classical variables with a stochastic character due to the presence of quantum
fluctuations [1]. More precisely, the inflaton field φ(t, ~x) in eqs. (2.13), (2.14) is split in
two pieces:

φ(t, ~x) = φ̄(t) +

∫
d3~k

(2π)3/2
W[k − kσ(t)]

[
a~kφ~k(t)e

+i~x·~k + h.c.
]

︸ ︷︷ ︸
≡φ̂Q(t,~x)

, (3.1)

where φ̄(t) is the coarse-grained field that contains the long-wavelength modes while φ̂Q(t, ~x)
only contains the short-wavelength ones. The latter is treated as a perturbation. The short
wave-length modes in the previous expression are selected through a window function W
such that W[k − kσ(t)] ' 0 for k . kσ and W[k − kσ(t)] ' 1 for k & kσ, with kσ defined
as kσ = σaH, where σ � 1 is a coarse-graining cutoff parameter. The crucial aspect of this
description is the time-dependence of the window function W, schematically illustrated in
figure 3. As time passes by, more and more modes leave the short-wavelength part φ̂Q of
the field to source the coarse-grained part φ̄ (the k-interval covered by the blue, downwards
pointing, arrows become larger and larger). Consequently, the dynamics of the coarse-grained
field is continuously altered by the “inflow” of modes which cross the coarse-graining barrier
as inflation proceeds. For simplicity, we choose the window function to be the Heaviside step
function

W[k − kσ(t)] = θ[k − kσ(t)] . (3.2)

If we now plug eq. (3.1) — together with an analogue decomposition for the conjugate
momentum π(t, ~x) — into eqs. (2.13), (2.14), we find, linearizing in φ̂Q and π̂Q, the system

dφ̄

dt
=

π̄

a3
+ ξφ , (3.3)

dπ̄

dt
= −a3 dV

dφ

∣∣∣∣
φ̄

+ ξπ , (3.4)

– 10 –



J
C
A
P
0
8
(
2
0
2
0
)
0
4
3

where we have defined the so-called noise operators

ξφ≡−
∫

d3~k

(2π)3/2

dW
dt

[
a~kφke

+i~x·~k+a†~k
φ∗ke
−i~x·~k

]
, ξπ ≡−

∫
d3~k

(2π)3/2

dW
dt

[
a~kπke

+i~x·~k+a†~k
π∗ke
−i~x·~k

]
,

(3.5)
and where φk(t) and πk(t) satisfy the Hamiltonian system

dφk
dt

=
1

a3
(π̄Φk + πk) , (3.6)

dπk
dt

= − π̄
a
k2Bk − ak2φk − a3

(
Φk

dV

dφ

∣∣∣∣
φ̄

+
d2V

dφ2

∣∣∣∣
φ̄

φk

)
. (3.7)

In Fourier space, the metric perturbations in spatially flat gauge (see eq. (2.12)) satisfy the
system of equations

HΦk =
1

2

(
dφ̄

dt

)
φk , (3.8)

k2

a
Bk = 3HΦk +

φk
2H

dV

dφ

∣∣∣∣
φ̄

− Φk

2H

(
dφ̄

dt

)2

+
1

2H

(
dφ̄

dt

)(
dφk
dt

)
. (3.9)

In eq. (3.5) the time derivative of the window function is (see eq. (3.2))

dW
dt

=
d

dt
θ[k − kσ(t)] = −δ[k − kσ(t)]

dkσ(t)

dt
. (3.10)

Notice that, as in the classical treatment of the previous section, eqs. (3.6)–(3.9) are isotropic
in the sense that ~k appears only through its modulus k ≡ |~k|. Therefore, we simply use the
notation φk, πk, Φk, Bk. By combining these equations we obtain

d2φk
dt2

+ 3H
dφk
dt

+
k2

a2
φk +

{
d2V

dφ2

∣∣∣∣
φ̄

− 1

a3

d

dt

[
a3

H

(
dφ̄

dt

)2
]}

φk = 0 . (3.11)

After defining uk ≡ aφk and using the conformal time, this equation is formally analogous
to eq. (2.23). However, in eq. (3.11) the product z−1(d2z/dτ2) is defined as in eq. (2.20)
but with the Hubble parameters constructed from the coarse-grained field φ̄ instead of the
classical field φcl.

Contrary to eq. (2.15), it is important to stress that both fields φ̄ and φ̂Q in eq. (3.1)

have an intrinsic quantum nature. This is clear in the case of φ̂Q since it is a q-number
defined in terms of creation and annihilation operators. The same is actually true also for φ̄;
formally, we can write

φ(t, ~x) =

∫
d3~k

(2π)3/2
W[−k + kσ(t)]

[
a~kφ~k(t)e

+i~x·~k + h.c.
]

︸ ︷︷ ︸
≡φC(t,~x)

+φ̂Q(t, ~x) , (3.12)

where φ̂Q(t, ~x) is defined as in eq. (3.1) and where the window function in the coarse-grained
part of the field selects wavenumbers with k < kσ = σaH � aH. On these scales, the spatial
dependence in φC can be neglected when compared to the temporal one, and one defines
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φC(t, ~x) → φC(t) ≡ φ̄(t). In other words, the coarse-grained field φC can be considered
homogeneous, at each time t, over a length scale Lσ(t) ≡ (σaH)−1, and eqs. (3.3), (3.4)
follow the evolution of this homogeneous patch. Despite their intrinsic quantum nature, a
classical interpretation is assigned to φ̄ and ξφ,π in eqs. (3.3), (3.4). In this respect, the
choice of the coarse-graining cutoff wavenumber kσ plays an important role. The physical
picture is the following: modes with comoving wavenumber k that start in the Minkowski
vacuum well inside the Hubble horizon (k � aH) are stretched by the expansion and become
semi-classical when the condition k . kσ is met. In standard slow-roll inflationary models,
the definition kσ = σaH with σ � 1 is appropriate because it is possible to show that
soon after horizon crossing (k . aH) modes that start as Minkowski vacuum well inside the
Hubble horizon become highly squeezed (with large occupation number, a typical signature
of classical rather than quantum modes) with amplitude that is described by a Gaussian
distribution [27]. In standard slow-roll inflationary models, therefore, as time passes by and
inflation proceeds the quantum dynamics turns gradually into a classical one, the latter being
de facto equivalent to a classical stochastic process with a Gaussian distribution. This is the
classical interpretation that is assigned to φ̄. We remark that the attribute “classical” refers
here to the fact that we can describe the system in terms of a classical random variable.

At this stage, ξφ and ξπ defined in eq. (3.5) are still quantum objects. However, as
anticipated, they also admit a classical interpretation in terms of statistical quantities. As
a first hint, we can compute the equal-time commutator [ξφ(t, ~x), πφ(t, ~x′)]. We find, in the
limit kσ|~x− ~x′| � 1

[ξφ(t, ~x), ξπ(t, ~x′)] ∝ φkσ(t)π∗kσ(t)− φ∗kσ(t)πkσ(t) = 0 , (3.13)

which is valid for kσ = σaH with σ � 1. Since the commutator vanishes, the variables ξφ
and ξπ can be considered classical. However, at this stage we cannot ascribe to them any
specific numerical value since they are still defined in terms of q-numbers. This simply means
that, from a classical point of view, they must be considered as stochastic variables whose
statistical properties are fully determined by computing their correlation functions (that is
by identifying quantum expectation values with statistical moments). It is straightforward
to check that 〈0|ξφ,π(t, ~x)|0〉 = 0. We define the two-point correlation matrix

Θ(t, ~x; t′, ~x′) ≡
(
〈0|ξφ(t, ~x)ξφ(t′, ~x′)|0〉 〈0|ξφ(t, ~x)ξπ(t′, ~x′)|0〉
〈0|ξπ(t, ~x)ξφ(t′, ~x′)|0〉 〈0|ξπ(t, ~x)ξπ(t′, ~x′)|0〉

)
, (3.14)

with elements

Θfg(t, ~x; t′, ~x′) ≡ 〈0|ξf (t, ~x)ξg(t
′, ~x′)|0〉 =

1

6π2

dk3
σ

dt
fkσ(t)g∗kσ(t)

sin[kσ|~x− ~x′|]
kσ|~x− ~x′|

δ(t− t′) . (3.15)

The two-point correlation functions are non-zero only at equal time t = t′. This property
defines the so-called white noise and originates from our choice of the window function,
namely a Heaviside step function in momentum space. Other cutoffs are certainly acceptable
(see, e.g., ref. [28]) but they will lead to “colored” noises that unnecessarily complicate the
derivation of the phase space picture which, after all, should not depend strongly on the cutoff
choice. In the following, we shall restrict our analysis to the simplest case of white noise.
Furthermore, the noise is Gaussian since it is easy to check that all higher-order correlation
functions can be expressed in terms of products of its two-point functions (and higher-order
cumulants are zero).

– 12 –



J
C
A
P
0
8
(
2
0
2
0
)
0
4
3

We are interested in the effect of the noise on length scales ∆x ≡ |~x−~x′| over which the
coarse-grained field is homogeneous, ∆x� Lσ. This implies that we can evaluate eq. (3.15)
at the same spatial point, ~x ' ~x′. Eq. (3.15) becomes

Θfg(t, ~x; t′, ~x) = Θfg(t)δ(t− t′) , Θfg(t) ≡
d log kσ
dt

k3
σ

2π2
fkσ(t)g∗kσ(t)︸ ︷︷ ︸
≡Pfg(t,kσ)

, (3.16)

where Pfg(t, kσ) is the power spectrum of the fluctuations {φ, π} evaluated for each time t
at the corresponding coarse-graining cutoff wavenumber kσ.

In summary, in the conventional stochastic interpretation we interpret eqs. (3.3), (3.4)
as Langevin equations for the classical stochastic variables φ̄ and π̄ with ξφ and ξπ viewed as
stochastic external perturbations (classical noise) which originate from quantum fluctuations
inside the horizon and with correlations specified by eq. (3.16). A number of important points
are worth emphasizing:

◦ As a consequence of their stochastic interpretation, one can solve — in general nu-
merically by discretizing the time variable — eqs. (3.3), (3.4) multiple times starting
from some initial time t∗ up to some final time t0, obtaining different solutions. From
a sufficiently large sample of stochastic realizations one can then extract a probability
distribution function which effectively measures at t0 the impact of field fluctuations
on a scale of order Lσ(t0).

◦ Solving the Langevin equations (3.3), (3.4) without any approximation is a complicated
numerical task because the stochastic noise depends, implicitly, on the coarse-grained
fields φ̄ and π̄. In fact the correlation functions in eq. (3.16) are computed from the
fields φk(t) and πk(t), which in turns are obtained solving eq. (3.11) once the back-
ground evolution is specified. However, the latter depends on the coarse-grained fields.
These are stochastic variables, and take different values for each stochastic realization
of the Langevin equations. This implies that, in principle, at every time-step one should
solve the Langevin equations and re-compute the noise correlation matrix by integrat-
ing eq. (3.11) with the appropriate background functions, solutions of the Langevin
equations obtained for the time-step under consideration. With the new noise correla-
tion matrix at hand, one can then proceed to solve the next time-step in the dynamical
evolution. It is possible to bypass this cumbersome numerical procedure if the noise
does not depend on the coarse-grained fields and if dV/dφ|φ̄ ∝ φ̄m with m = 0, 1. In
this case the Langevin system is linear and can be analytically solved by means of
standard Green’s function techniques [29].

◦ At the linear order, a solution to eqs. (3.3), (3.4) can be obtained by expanding the
coarse-grained fields about their classical counterparts at first order, φ̄ = φcl + δφst

and π̄ = πcl + δπst, where φcl and πcl are determined by the solution of the Langevin
equations without the noise term. This can be thought as the first step of a recursive
strategy [30, 31]. Following this approach, the noise appears, evaluated on the classical
trajectory, in the equations for δφst and δπst. Notice that, despite the similarity of
these definitions with those of the standard perturbative description (see eq. (2.15)),
the variables δφst and δπst retain here their statistical meaning precisely because of the
presence of the noise terms in the equations governing their evolution. It is, therefore,
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only by computing the corresponding statistical moments that one can extract infor-
mation about the distribution of perturbations. This is the approach that we shall take
in the rest of this paper. Notice also that, working within this approximation, ref. [5]
found that the power spectrum of comoving curvature perturbations in stochastic in-
flation with an USR phase is significantly different from that obtained by means of the
conventional perturbative approach. As we will show later, we find instead that the
power spectra computed in both approaches agree at the linear level, in contrast with
the result of [5].

◦ Until now, we have formulated the problem using the cosmic time t as time variable.
In the context of stochastic inflation, using another time variable is not without con-
sequences, and actually leads to physically different stochastic processes with different
probability distributions. This is for instance the case if one considers the number of
e-folds N instead of the cosmic time t. The reason is related to the fact that changing
variable from t to N involves H which is a stochastic variable since it is a function of
φ̄. In ref. [32], it was argued that the number of e-folds N is the time variable which
allows one to consistently connect stochastic inflation with results from QFT on curved
space-times (see also refs. [33, 34]). This issue is not really relevant for us since all our
results will be derived under the assumption that H is constant (an approximation that
is justified in the context of the model discussed in section 2). Nevertheless, formulat-
ing the stochastic dynamics in terms of the number of e-folds can help elucidating the
physical interpretation of some of the final equations. For this reason, from now on
we switch to the description in terms of the number of e-folds. For completeness, the
relevant equations are modified as follows. The Langevin equations take the form

dφ̄

dN
= π̄ + ξφ , (3.17)

dπ̄

dN
= −(3− ε)π̄ − 1

H2

dV

dφ

∣∣∣∣
φ̄

+ ξπ , (3.18)

where, compared with eqs. (3.3), (3.4), we have rescaled the conjugate momentum
according to π̄/(a3H)→ π̄. This rescaling allows a more direct identification of π̄ with
the inflaton velocity. The noise operators are

ξφ ≡ −
∫

d3~k

(2π)3/2

dW
dN

[
a~kφke

+i~x·~k + a†~k
φ∗ke
−i~x·~k

]
,

ξπ ≡ −
∫

d3~k

(2π)3/2

dW
dN

[
a~kπke

+i~x·~k + a†~k
π∗ke
−i~x·~k

]
, (3.19)

where now φk and πk are given by

dφk
dN

= π̄Φk + πk , (3.20)

dπk
dN

= −(3− ε)πk −
π̄k2

aH
Bk −

k2

(aH)2
φk −

1

H2

(
Φk

dV

dφ

∣∣∣∣
φ̄

+
d2V

dφ2

∣∣∣∣
φ̄

φk

)
. (3.21)

If we eliminate the metric perturbations by means of the Einstein field equations, we find

d2φk
dN2

+ (3− ε)dφk
dN

+ φk

[
k2

(aH)2
+

(3− ε)
V

d2V

dφ2

∣∣∣∣
φ̄

− 2ε(3 + ε− 2η)︸ ︷︷ ︸
metric perturbations

]
= 0 , (3.22)
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where now the effect of metric perturbations enters implicitly by means of the last term
in the square brackets. For the noise correlation function in eq. (3.16), we have

Θfg(N) ≡ d log kσ
dN

k3
σ

2π2
fkσ(N)g∗kσ(N) , (3.23)

where kσ = kσ(N).

From the discussion presented in this section, it is clear that a proper definition of the coarse-
graining cutoff wavenumber kσ is necessary in order to have a correct interpretation of the
stochastic dynamics. In standard slow-roll inflationary models, the choice kσ = σaH is well
motivated. However, in the presence of an ultra-slow-roll phase the horizon-crossing condition
(σ ∼ 1) — as discussed in section 2 — does not offer a correct description of the dynamics of
the perturbations (in particular, it does not always describe the time after which perturba-
tions stay constant). It is, therefore, important to re-think about the appropriate definition
of kσ in models that feature an ultra-slow-roll phase. Clearly, this is crucial to correctly
compute the time-evolution of the correlation matrix in eq. (3.16). Let us further motivate
this point from a more quantitative perspective. The evolution of the scalar perturbations is
controlled, in the Heisenberg picture, by the Hamiltonian operator (see appendix A)

Ĥ(τ) =
1

2

∫
d3~k

{
k

[
a~k(τ)a†~k

(τ)+a†
−~k

(τ)a−~k(τ)

]
︸ ︷︷ ︸

collectionof harmonicoscillators

+
i

z

dz

dτ

[
a†
−~k

(τ)a†~k
(τ)−a~k(τ)a−~k(τ)

]
︸ ︷︷ ︸

interactingterm(paircreation)

}
. (3.24)

The first term in square brackets is the standard part describing a collection of free harmonic
oscillators. The second term in square brackets is an interacting term between the scalar field
and the classical gravitational background (it vanishes in flat space-time). The interaction is
described by the product of two creation operators for the mode ~k and −~k and it represents
the production of pairs of quanta with opposite momentum (that is, consequently and as it
should be, conserved) during the cosmological expansion. In terms of the Hubble parameters,
we find

1

z

dz

dτ
= aH(1 + ε− η) '


aH slow roll phase with ε ' η � 1 ,

aH(1− η) ultra slow roll phase with ε� 1 .
(3.25)

During a standard phase of slow-roll evolution, the relative importance of the interacting term
is controlled by the relation between k and aH. For k � aH, that is after the mode with
comoving wavenumber k crosses outside the Hubble horizon, the interacting term dominates
and a copious pair production enhances exponentially the number of quanta in the original
Minkowski vacuum that, consequently, undergoes a quantum-to-classical transition. This
justifies the standard definition kσ = σaH for the coarse-graining cutoff wavenumber. When
slow-roll is violated, the description of the quantum to classical-transition is more involved.
Consider, for instance, the model discussed in section 2. In region II, we have ηII > 3 and
the interacting term in eq. (3.25) flips sign compared to the standard slow-roll case. A more
detailed analysis, therefore, seems necessary to better understand the quantum-to-classical
transition in the presence of an ultra-slow-roll phase. In the next section we will argue that
the definition kσ = σaH can still be used in the presence of an ultra-slow-roll phase, provided
that the cutoff parameter σ is chosen to be small enough to allow for the classicalization of
the relevant modes to occur.
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4 Results and discussion

4.1 Quantum-to-classical transition in the presence of an ultra-slow-roll phase

In the Heisenberg picture, the time-dependent occupation number nk(τ) is defined, for each
mode k, by the expectation value in the original vacuum state of the time-dependent particle
number operator a†~k

(τ)a~k(τ). We find (see appendix A for details)

n
(i)
k (τ) =

π

8
(−kτ)

{
|α̃ i
k|2 + |β̃ i

k|2 +
[
α̃ i
k(β̃

i
k)
∗eiπ(νi+1/2) + c.c.

]}
, (4.1)

where (omitting for simplicity the argument −kτ of the Hankel functions)

|α̃ i
k|2 + |β̃ i

k|2 = − 4

π(−kτ)
+
(
|α i
k|2 + |β i

k|2
){

(1 + κ2
i )H(1)

νi
H(2)
νi

+H
(1)
νi−1H

(2)
νi−1

+ κi

[
H(1)
νi
H

(2)
νi−1 +H(2)

νi
H

(1)
νi−1

]}
, (4.2)

α̃ i
k(β̃

i
k)
∗ = α i

k(β
i
k)
∗
[
(1 + κ2

i )H(1)
νi
H(1)
νi

+H
(1)
νi−1H

(1)
νi−1 + 2κiH

(1)
νi
H

(1)
νi−1

]
, (4.3)

with the definition κi ≡ (3/2− νi − ηi) /(−kτ). The index i assumes values i = I, II, III
depending on which one of the three regions of our model is crossed during the time evolution.
We use

−kτ = xeNin−N , x ≡ k/kin , (4.4)

to convert comoving time into e-fold time, using kin = ainH as a reference wavenumber. For
a given k we can compute, in terms of Nin, the e-fold time Nk at which we have horizon
crossing: Nk = Nin + log x. In region I, we find the exact result

n
(I)
k (N) =

1

4x2
e2(N−Nin) , N 6 Nin , (4.5)

and the occupation number grows exponentially, as expected in the case of standard slow-roll
inflation with small Hubble parameters. Let us now consider region II. The analytical expres-
sion for the occupation number is much more complicated but we can still learn something
if we take the limit −kτ � 1. In region II, this implies that we are considering e-fold time
N such that x� eN−Nin (with Nin 6 N 6 Nend) for a given x. We find

n
(II)

x�eN−Nin
∝ e(2νII+1)N , Nin 6 N 6 Nend . (4.6)

In this limit, we still have an exponential growth. If we take our benchmark value ηII = 4
(hence νII = 5/2) we find that the occupation number grows as ∝ e6N , which is much faster
than the growth shown in eq. (4.5). We can take a similar limit also in region III where
we find

n
(III)

x�eN−Nin
∝ e(2νIII−1)N , Nend 6 N . (4.7)

If we take our benchmark value ηIII = −1 (hence νIII = 5/2) we find that the occupation
number grows ∝ e4N , which is faster than the one shown in eq. (4.5) (but slower than the
growth in region II). In the left panel of figure 4 we show the time evolution of the occupation
number for the mode corresponding to the peak of the comoving power spectrum, k = kpeak.
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Figure 4. Time evolution of the occupation number density as function of the number of e-folds for
two representative modes kpeak (left panel) and kdip (right panel). Nk denotes the horizon crossing
e-fold time. The blue line in the right panel corresponds to the evolution of |Jk(τ)|2, see appendix A
for details.

The three exponential behaviors computed in eqs. (4.5), (4.6), (4.7) are evident. For this
mode, it is clear that soon after horizon crossing (vertical dashed line at e-fold time Nk)
we have nk � 1 and the mode undergoes a quantum-to-classical transition. More care is
needed in the case of modes with comoving wavenumbers close to kdip. As discussed in
section 2 and more in depth in ref. [9], these modes cross the Hubble horizon before the
beginning of the ultra-slow-roll phase. In this stage of the evolution the comoving curvature
perturbation Rk is a superposition of a constant mode and a negligible decaying mode. The
latter, once the ultra-slow-roll phase starts, becomes an exponentially growing mode rather
than a decaying one. Crucially, the sign is opposite with respect to the one of the constant
mode.7 This implies that the growing mode is able to cancel the constant contribution if the
duration of the ultra-slow-roll phase is long enough. Finally, when the ultra-slow-roll phase
ends, Rk settles to its final and constant value. These dynamics explain the presence of the
dip in the power spectrum of R. Qualitatively, a similar picture can be drawn also for the
occupation number. It can be significantly reduced during the ultra-slow-roll phase and after
that it starts growing exponentially again. In this case, however, the dynamics are more
complicated, and the occupation number density can present a second dip during the last
regime (region III). An example of the evolution is shown in the right panel of figure 4. To
corroborate our analysis on the quantum-to-classical transition we investigate the evolution
of another quantity, Jk(τ), which can be related to the anti-commutator of the operator û
and its conjugate momentum p̂:∣∣〈{û(τ,~k), p̂†(τ,~k)

}〉∣∣2 = 4|Jk(τ)|2 − 1 , (4.8)

A detailed analysis is performed in appendix A, and here we only summarize our main
findings. One can show that |Jk(τ)|2 > 1/4, and the minimum value for this quantity
is attained in the far past, τ → −∞, when the mode is in the Bunch-Davies vacuum state.
This means that initially the anti-commutator vanishes and the state admits a pure quantum
description. During standard slow-roll inflation, and after horizon crossing, Jk(τ) grows

7Here we refer to the real or imaginary part of the complex Rk.
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Figure 5. e-fold time N at which the comoving curvature perturbation Rk becomes constant (black,
solid), together with the e-fold times at which the occupation numbers reach certain values (in red):
dashed (nk = 103) and dot-dashed (nk = 102). The occupation numbers grow exponentially only
after the curvature perturbation corresponding to the same k freezes out. Thus, in the presence
of an ultra-slow-roll phase, the classicalization of the modes occurs at k = σaH only if σ is small
enough. The blue-dashed line represents a proxy for the quantum to classical transition, which takes
into account the effect of the USR phase on the growth of the occupation numbers. It indicates that
the quantum to classical transition can be completed only after the USR phase has ended for modes
whose nk is affected by this phase.

exponentially to large values, a signal of the quantum-to-classical transition. Instead, during
the ultra-slow-roll phase and the subsequent region III this growth can be significantly altered.
The precise evolution depends on the specific comoving wavenumber. For modes close to kdip,
Jk(τ) can drop and even present a second dip in the region III. The time evolution for the
wavenumber kdip is shown by the dashed blue line in the right panel of figure 4. Sufficiently
long after the end of the ultra-slow-roll phase, |Jk(τ)|2 grows exponentially to large values.
This suggests that only at these times one can firmly consider the state as semi-classical.
These results are illustrated in figure 5. The black solid line shows the e-fold time at which
the comoving curvature perturbation Rk becomes constant while red lines are isocontours of
nk for two representative values, nk = 102 and nk = 103.

Summarizing, this discussion suggests the following interpretation:

◦ Modes with k . kth are not affected by the presence of the ultra-slow-roll phase. Their
quantum-to-classical transition, therefore, follows the standard picture and occurs soon
after horizon crossing.

◦ Modes with kth . k . kpeak are sizably affected by the ultra-slow-roll phase. The
exact e-fold time at which a given mode with comoving wavenumber k undergoes the
quantum-to-classical transition is difficult to compute (and even define) precisely. The
simplest option is to assume that for all these modes the quantum-to-classical transition
is completed only after the end of the ultra-slow-roll phase. This case is better motivated
in appendix A. For illustrative purposes, this choice corresponds to the dashed blue line
in figure 5.
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σ → 0 region I region II region III

Θφφ(N) H2

4π2
H2

4π2 e
−2ηII(N−Nin) H2

4π2 e
−2ηIII(N−Nend)−2ηII∆N

Θπφ(N) 0 − H2

4π2 ηII e
−2ηII(N−Nin) − H2

4π2 ηIII e
−2ηIII(N−Nend)−2ηII∆N

Θππ(N) 0 H2

4π2 η
2
II e
−2ηII(N−Nin) H2

4π2 η
2
III e

−2ηIII(N−Nend)−2ηII∆N

Table 1. Noise correlation functions in the limit σ → 0.

◦ For modes with k & kpeak the quantum-to-classical transition follows the standard
picture and occurs soon after horizon crossing after the end of the ultra-slow-roll phase.

4.2 Stochastic noise

We now move on to the computation of the noise correlation matrix in eq. (3.23). When kσ is
constant, Θfg(N) = 0. A non-trivial result arises from the time-dependent value kσ = σaH
for the coarse-graining cutoff wavenumber. We find the following general expressions

Θ
(i)
φφ(N) =

H2

8π
σ3
{(
|α i
kσ |

2 + |β i
kσ |

2
)
H(1)
νi
H(2)
νi

+
[
α i
kσ(β i

kσ)∗H(1)
νi
H(1)
νi
eiπ(νi+1/2) +c.c.

]}
, (4.9)

Θ
(i)
φπ(N) =−H

2

8π
σ3

{
|α i
kσ |

2H(1)
νi

[
−
(
νi−

3

2

)
H(2)
νi

+σH
(2)
νi−1

]
+|β i

kσ |
2H(2)

νi

[
−
(
νi−

3

2

)
H(1)
νi

+σH
(1)
νi−1

]
+α i

kσ(β i
kσ)∗H(1)

νi

[
−
(
νi−

3

2

)
H(1)
νi

+σH
(1)
νi−1

]
eiπ(νi+1/2) +c.c.

}
, (4.10)

Θ(i)
ππ(N) =

H2

8π
σ3

{(
|α i
kσ |

2 + |β i
kσ |

2
)[
−
(
νi−

3

2

)
H(1)
νi

+σH
(1)
νi−1

][
−
(
νi−

3

2

)
H(2)
νi

+σH
(2)
νi−1

]
+ α i

kσ(β i
kσ)∗eiπ(νi+1/2)

[
−
(
νi−

3

2

)
H(1)
νi

+σH
(1)
νi−1

]2

+c.c.

}
, (4.11)

with i = I, II, III depending on which one of the three regions of our model is crossed
at e-fold time N (see the x-axis labels in figure 5 for a graphical representation). In
eqs. (4.9), (4.11), (4.10) the argument of the Hankel functions, that we omit for simplicity, is
σ. At lowest order in σ the noise correlation functions admit simple analytical expressions,
see table 1.

To solve the stochastic dynamics, we consider, as anticipated in section 3, the expansion
of the coarse-grained field about its classical counterpart at first order, namely φ̄ = φcl + δφst

and π̄ = πcl + δπst, where φcl and πcl define the classical trajectory. The latter is the classical
solution computed in section 2 while δφst and δπst are, on the contrary, statistical variables.
This simply follows from the fact that if we substitute φ̄ = φcl + δφst and π̄ = πcl + δπst in
the Langevin equations, then φcl and πcl solve, by definition, the system without the noise
terms while ξφ and ξπ enter in the equations for δφst and δπst.

To interpret δφst and δπst, therefore, we have to compute their statistical moments.
The latter, in full generality, are given by

〈δφnstδπmst 〉(N) =

∫
dφ̄dπ̄ [φ̄− φcl(N)]n[π̄ − πcl(N)]mP (φ̄, π̄, N) , (4.12)
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where P (Φ, N) is the phase-space probability density for the coarse-grained variables φ̄ and
π̄ that solves the Fokker-Planck equation (see e.g. [29, 35, 36])

∂P (Φ, N)

∂N
= −

2∑
A=1

∂

∂ΦA
[DAP (Φ, N)] +

1

2

2∑
A,B=1

DAB(N)
∂2P (Φ, N)

∂ΦA∂ΦB
, (4.13)

where Φ ≡ (φ̄, π̄)T. In eq. (4.13), D is the drift vector with components (the notation

{1,2}={φ,π} is understood for matrix indices)

Dφ = π̄ , Dπ = −(3− εφ̄)

(
π̄ +

d log V

dφ

∣∣∣∣
φ̄

)
, (4.14)

and D is the diffusion matrix

D(N)≡ 1
2

[
Θ

(i)
φφ(N)+Θ(i)

ππ(N)
]

+
σ1

2

[
Θ

(i)
φπ(N)+Θ

(i)
πφ(N)

]
+
σ3

2

[
Θ

(i)
φφ(N)−Θ(i)

ππ(N)
]
, (4.15)

with σi=1,2,3 the Pauli matrices. The drift term in the Fokker-Planck equation describes the
deterministic part of the dynamics while the diffusion term gives the stochastic one. It is
important for what follows to remark that in eq. (4.14) εφ̄ indicates the Hubble parameter

evaluated on the coarse-grained field φ̄, namely 2εφ̄ = (dφ̄/dN)2 = π̄2.

By using the Fokker-Planck equation, it is possible to write the equations describing
the evolution of the statistical moments. Let us focus on the two-point statistical correlators
which are relevant for the computation of the power spectrum. We find

d

dN
〈δφ2

st〉= 2〈δφstδπst〉+Dφφ , (4.16)

d

dN
〈δφstδπst〉=−(3−εcl)

d2 logV

dφ2

∣∣∣∣
φcl

〈δφ2
st〉+

[
−3(1−εcl)+πcl

d logV

dφ

∣∣∣∣
φcl

]
〈δφstδπst〉+〈δπ2

st〉+Dφπ ,

(4.17)

d

dN
〈δπ2

st〉= 2

[
−3(1−εcl)+πcl

d logV

dφ

∣∣∣∣
φcl

]
〈δπ2

st〉−2(3−εcl)
d2 logV

dφ2

∣∣∣∣
φcl

〈δφstδπst〉+Dππ .

(4.18)

where, to be crystal-clear with our notation, we indicate with εcl the Hubble parameter ε
evaluated on the classical trajectory, namely 2εcl = (dφcl/dN)2. Eqs. (4.16), (4.17), (4.18)
are of general validity. They are obtained by expanding the components of the drift vector
around the classical trajectory

Dφ = πcl + δπst , (4.19)

Dπ =

[
−3(1− εcl) + πcl

d log V

dφ

∣∣∣∣
φcl

]
(1 + δπst)− (3− εcl)

d2 log V

dφ2

∣∣∣∣
φcl

δφst , (4.20)

and using integration by parts in the Fokker-Planck equation (under the assumption that,
by definition, the phase-space probability density P decays fast enough at infinity so that
the boundary terms in the integration by parts vanish).
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To rewrite more explicitly eqs. (4.16), (4.17), (4.18) one can use the following relation

d2 log V

dφ2

∣∣∣∣
φcl

=
1

3
(3− η)η . (4.21)

We find

d

dN
〈δφ2

st〉(i) = 2〈δφstδπst〉(i) +D
(i)
φφ , (4.22)

d

dN
〈δφstδπst〉(i) = −(3− ηi)ηi 〈δφ2

st〉(i) − 3〈δφstδπst〉+ 〈δπ2
st〉(i) +D

(i)
φπ , (4.23)

d

dN
〈δπ2

st〉(i) = −6〈δπ2
st〉(i) − 2(3− ηi)ηi 〈δφstδπst〉(i) +D(i)

ππ . (4.24)

This system can then be solved in each one of the three regions (denoted with subscripts
i) by starting from some classical phase-space configuration at some reference initial time.
We focus here on the behavior of the solutions in region III. By starting from a classical
phase-space configuration at Nend (since in region II the noise decreases exponentially):

〈δφ2
st〉III

∣∣
Nend

= 0 , 〈δφstδπst〉III
∣∣
Nend

= 0 , 〈δπ2
st〉III

∣∣
Nend

= 0 , (4.25)

and using the expressions for the noise at lowest order in σ in table 1, we find

〈δφ2
st〉III =

H2

4π2
jηII,ηIII(N −Nσ)e−2ηIIIN , (4.26)

〈δφstδπst〉III = −H
2

4π2
jηII,ηIIIηIII(N −Nσ)e−2ηIIIN , (4.27)

〈δπ2
st〉III =

H2

4π2
jηII,ηIIIη

2
III(N −Nσ)e−2ηIIIN . (4.28)

with jηII,ηIII = e2(ηIIINend−ηII∆N). One can check that from a generic initial condition the
solution will evolve exponentially fast towards eqs. (4.26), (4.27), (4.28). The field diffuses
in all three directions in phase-space but, crucially, with very precise relations among the
two-point statistical correlators.

Before moving on, it is also worth noting that the solution in region I is

〈δφ2
st〉I =

H2

4π2
(N −N∗) , 〈δφstδπst〉I = 0 , 〈δπ2

st〉I = 0 . (4.29)

This is of course nothing but the standard result in slow-roll inflation according to which the
inflaton field only diffuses along the φφ direction.

4.3 The power spectrum of comoving curvature perturbations

The power spectrum of comoving curvature perturbations is defined by the Fourier transform
of the two-point correlation function of R

〈R(~x1)R(~x2)〉 =

∫
d3~k1

(2π)3/2

d3~k2

(2π)3/2
ei
~k1~x1+i~k2~x2∆R(~k1,~k2) , (4.30)

where the left-hand side indicates an ensemble average in the sense discussed in the previous
section. In stochastic inflation (see discussion in section 3), we are interested in computing the

– 21 –



J
C
A
P
0
8
(
2
0
2
0
)
0
4
3

effect of quantum fluctuations (interpreted as classical noise) on length scales over which the
coarse grained field is homogeneous. In the previous equation, this implies that ∆R(~k1,~k2) =
δ(3)(~k1+~k2)∆R(k) with ∆R(k) that can be considered as function of the modulus k1 = k2 ≡ k
only. Furthermore, we can restrict the computation to correlators evaluated at the same
spatial point. The integration over k will be limited only to the long wavelength interval
k ∈ [0, kσ]. We find

〈R2〉 ≡ 〈R(~x)R(~x)〉 =

∫ kσ

0

dk

k
PR(k) , (4.31)

where we introduced the conventional definition of dimensionless power spectrum PR(k) ≡
k3∆R(k)/2π2. If we now change variable from k to the number of e-folds by means of
k = akH with dk/k = dNk and take derivatives on both sides, we find that we can write

PR(k) =
d

dN
〈R2〉 =

1

2εcl

[
d

dN
〈δφ2

st〉 − 2(εcl − ηcl)〈δφ2
st〉
]
, at time

�������  = σ�




=
 
�

(4.32)

The right-hand side has to be evaluated at time Nσ, with σ small enough to allow for
classicalization of the mode k for which the power spectrum is computed. Even though we
cannot compute precisely when this transition happens in the presence of the ultra-slow-roll
phase, we know — following from our discussion in section 4.1 — that, at least for k > kth, the
safest choice is to compute the power spectrum in region III after the end of the ultra-slow-roll
phase, as shown in the inset plot in eq. (4.32). In the conventional background+perturbation
splitting approach, this corresponds the usual prescription according to which the power
spectrum has to be evaluated after the perturbation Rk associated with the wavenumber k
freezes to the final constant value that it maintains until its horizon re-entry after the end of
inflation. We can, therefore, write

PR(k) =
1

2εIII

{
D

(III)
φφ + 2

(
〈δφstδπst〉III + ηIII 〈δφ2

st〉III
)} ∣∣∣

k=kσ
, (4.33)

where we have used eq. (4.16) to rewrite d〈δφ2
st〉/dN . We can compute the power spectrum

in eq. (4.33) analytically by working at the lowest order in σ.

In region III, as a consequence of eqs. (4.26), (4.27) we find that 〈δφstδπst〉III and
ηIII 〈δφ2

st〉III cancel out. Using eq. (2.9) and eq. (4.9), we find (recall that the argument
of the Hankel function in eq. (4.9) is σ)

PR(k) =
H2

8πεI
e2ηII∆Ne2ηIII(N−Nend)σ3×{(

|αIII
kσ |

2 + |βIII
kσ |

2
)
H(1)
νIII
H(2)
νIII

+
[
αIII
kσ (βIII

kσ )∗H(1)
νIII
H(1)
νIII
eiπ(νIII+1/2) + c.c.

]}
, (4.34)

with k = kσ (so that we can consider αIII
kσ

= αIII
k and βIII

kσ
= βIII

k ). Using, at the leading

order in σ, the asymptotic expression in eq. (2.27) and the relation (k/kin) = σe(N−Nin) to
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eliminate the remaining overall inverse power of σ, we find (remember that in region III with
ηIII negative we have 2ηIII = (3− 2νIII))

PR(k) =
H2

8π3εI

Γ(νIII)
2

21−2νIII
e2(ηII−ηIII)∆N

(
k

kin

)2ηIII{
|αIII
k |2 + |βIII

k |2−
[
αIII
k (βIII

k )∗eiπ(νIII+1/2) +c.c.
]}

,

(4.35)

which coincides with eq. (2.28). We conclude that the computation of the power spectrum
obtained in the context of stochastic inflation matches precisely, even in the presence of an
ultra-slow-roll phase, the result obtained by means of the conventional perturbative approach.
This conclusion disagrees with the claim presented in ref. [5]. Translated into our notation,

ref. [5] claims that i) the first term proportional to D
(III)
φφ in eq. (4.33) reproduces the power

spectrum obtained by solving the Mukhanov-Sasaki equation and ii) the term 〈δφstδπst〉III +
ηIII 〈δφ2

st〉III also contributes to the power spectrum, leading to an additional enhancement
at its peak. Our analytical approach shows that i) is correct. As far as ii) is concerned, on
the contrary, we find that a precise cancellation between 〈δφstδπst〉III and ηIII 〈δφ2

st〉III makes
their sum disappear from the final result.

Two aspects of our result deserve further analysis. The first one is that we have worked
at the leading order in σ, and one may wonder what happens if higher-order terms are
included. This is a non-trivial question which is intimately related to the exact meaning of
σ in the stochastic approach. Second, we have assumed the analytical toy model introduced
in section 2 whereas ref. [5] discussed an explicit numerical analysis in the context of a more
realistic model (more specifically, the one introduced in ref. [12]). Even though our analytical
description captures well all relevant features of the power spectrum in the presence of an
approximate stationary inflection point, it remains an approximation. For instance, in more
realistic models εI is not constant (equivalently, ηI < 0) and it may also reach O(1) values
during the inflationary dynamics before the beginning of the USR phase.

4.4 Numerical analysis

In order to put our analytical results on firmer ground and answer the previous questions, we
now consider a numerical analysis in the context of the class of models discussed in ref. [9]:
the inflaton potential in the Einstein frame takes the form

V (φ) ≡ Ṽ [ϕ(φ)] , with Ṽ (ϕ) =
1

(1 + ξϕ2)2

(
a2ϕ

2 + a3ϕ
3 + a4ϕ

4 +

N∑
n=5

anϕ
n

)
,

dφ

dϕ
=

√
1 + ξϕ2(1 + 6ξ)

1 + ξϕ2
, (4.36)

where φ is the canonically normalized inflaton field and ξ the non-minimal coupling to gravity
(defined for the scalar field ϕ in the Jordan frame). The potential V (φ) in eq. (4.36) features
the presence of an approximate stationary inflection point as the consequence of a tuning
between the coefficients of the quadratic and cubic terms, which are taken to be of the same
order and opposite in sign. The presence of higher-dimensional operators (which in general
are not forbidden and should be included) is not crucial for the production of PBHs but helps
improving the fit of the model against CMB observables [9].

In the following, we consider in our numerical analysis a specific choice of coefficients for
the potential in eq. (4.36) (to be precise, we adopt the same inflationary solution indicated
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Figure 6. Left panel. Transition time (solid black line) for the comoving wavenumbers k on the y-axis
as function of the number of e-folds. This plot refers to the numerical model discussed in ref. [9] (see
text for details). Diagonal dashed lines correspond to the condition k = kσ = σaH for different σ. The
vertical band shaded in magenta covers the e-fold interval during which the USR phase takes place.
Right panel. Power spectrum obtained, for the model discussed in ref. [9], by solving numerically the
Mukhanov-Sasaki equation (solid green line). We also show the value of Dφφ/(2ε) for different σ (red
dashed lines). As discussed in the text, this quantity reproduces, in the limit of small σ, the power
spectrum computed by means of the Mukhanov-Sasaki equation. Notice that Dφφ/(2ε) is a function
of the number of e-folds, but for fixed σ the dependence on N can be translated into a k-dependence
as discussed in eq. (4.32).

in ref. [9] with a cyan star; this solution is in agreement with CMB observables and generates
the correct abundance of dark matter in the present-day Universe in the form of PBHs).

In the left panel of figure 6 we show for each comoving wavenumber k the transition
time (solid black line) after which the corresponding mode freezes to its final constant value.
This plot has to be compared with the right panel of figure 2, and the agreement is evident.
The region shaded in magenta marks the interval of e-folds during which the USR phase
takes place (that is the interval between Nin and Nend in our analytical toy model). We also
show contours of kσ = σaH for different values of σ with σ = 1 corresponding to the horizon
crossing condition. In the right panel of figure 6 we show the power spectrum obtained
by solving numerically the Mukhanov-Sasaki equation (solid green line). This plot has to
be compared with the left panel of figure 2, and shows that, as anticipated, the analytical
approximation captures all relevant features of the numerical solution.

The next step consists of the computation of the elements of the diffusion matrix D(N)
in eq. (4.15). The latter are defined in terms of the noise correlators in eq. (3.23) which take
the form

Θfg(N) =
(1− ε)

2π2
k3
σfkσ(N)g∗kσ(N) , (4.37)

with fk, gk = φk, πk and k = kσ = σaH (with both a and H that depend on N). Notice
that the relation between φk and πk is given by eq. (3.20) and one should also include the
gravitational potential term (which is proportional to ε and gives a sub-leading contribution
in the analytical model). Compared to our analytical analysis, things are a little bit more
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complicated now because we want to keep σ non-zero and finite. In fact, unless one takes the
limit σ → 0, the diffusion matrix will depend, in addition to N , also on the specific choice
of σ. To be more precise, we have three parameters (k, N and σ) related by k = kσ = σaH.
We may interpret the time evolution in two different ways:

◦ We keep the comoving wavenumber k = kσ = σaH fixed. In this case the value of
σ is not fixed, but to each N will correspond a different σ such that the condition
k = kσ = σaH is verified. The outcome of this procedure is illustrated in the left
panel of figure 7 where we plot the components of D(N) as a function of N for the
representative value k = 5 × 1010 Mpc−1. This choice corresponds to a mode which
crosses all three relevant regions in its dynamical evolution after horizon crossing (which
happens at Nk ' 28, before the beginning of the USR phase). For each N on the
bottom-side x-axis the corresponding σ is shown on the top-side x-axis. To guide the
eye, one can just draw a horizontal line in the left panel of figure 6 at the specific value
of k analyzed, and see at which N each value of σaH is crossed. This way of reasoning
can be useful for the computation of the power spectrum since the latter is evaluated
as function of the comoving wavenumber k.

It is worth pausing for a number of comments. In region I (that is for N . 36, before
the beginning of the USR phase) we have a sizable value of σ. Consequently, the
approximation given in table 1 in which Dφφ = H2/4π2 and Dφπ = Dππ = 0 is not
valid since it is obtained in the σ → 0 limit (and for constant H in the toy model,
while in the numerical model the evolution of H is not neglected). Nevertheless, notice
that the numerical result satisfies the expected analytical hierarchy since at the lowest
non-vanishing order in σ one finds Dφπ = O(σ2) and Dππ = O(σ4). As an additional
interesting observation, notice that for k = 5 × 1010 Mpc−1 the modes travel through
the USR phase and enter region III (that is, for N & 40) for relatively small values of σ,
namely σ . 10−5. These values of σ are so small that our analytical approximations,
strictly valid in the σ → 0 limit, are now perfectly recovered (see table 1). The same is
true for the analytical results obtained in region II during which the USR takes place.
This is shown by the dotted lines in the right panel of figure 6.

◦ We keep σ fixed. In this case the value of k is not fixed, but to each N will correspond a
different k according to k = kσ = σaH. The outcome of this procedure is illustrated in
the right panel of figure 7 for the specific value σ = 10−3. For each N , the corresponding
k is indicated on the top-side x-axis. In other words, instead of following a horizontal
line for fixed k, we are now moving in diagonal for fixed σ in the left panel of figure 6.
Notice that in this case we are considering a sizable value of σ. Indeed, in region III
we find that the analytical approximation in table 1, obtained in the σ → 0 limit, does
not match the numerical result.

These numerical results for the diffusion matrix D(N) fully confirm our numerical estimate.
The main result of this analysis is the following: in the presence of an USR phase, taking the
diffusion matrix to be as if slow-roll applied (that is Dφφ = H2/4π2 and Dφπ = Dππ = 0) is
incorrect.8 On the contrary, we find that the noise correlation functions drop exponentially
fast during USR. Our physical interpretation of this result is given in section 4.1. The
USR dynamics tend to stop the “inflow” of modes that transit from the short- to the long-
wavelength part of the inflaton field fluctuations, and delay it until after the end of the

8This is, for instance, what was done in ref. [4].
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Figure 7. Left panel. Elements of the diffusion matrix D(N) in eq. (4.15) computed for the numerical
model discussed in ref. [9]. We fix k = 5 × 1010 Mpc−1 and show our results as function of N
(equivalently, as function of σ). The dashed part of Dφπ indicates negative values. Right panel. Same
as in the left panel but for fixed σ = 10−3. See text for discussion. The dotted black lines correspond
to the analytical results in table 1 derived in the σ → 0 limit.

USR phase. This is because the classicalization of the quantum modes does not follow the
usual horizon-crossing condition in the presence of USR but gets completed only after the
latter ends.

Our results for the diffusion matrix disagree with those found in ref. [5] in which Dφφ

features a peak (instead of an exponential suppression) when the USR phase is crossed.
In addition, we have been able to recover the alleged enhancement of the power spectrum
from quantum diffusion reported in [5] by computing the spectrum at the horizon crossing
condition k = aH (that is, for σ = 1). As we have discussed, this prescription is incorrect
and, instead, a sufficiently small value of σ must be taken for each mode. Indeed, we can
evaluate the power spectrum in the stochastic approach (at small σ) for the numerical model
by means of eq. (4.32). In particular, we can compute the contribution given by Dφφ/(2ε).
To this end, for a given comoving wavenumber k we just need to evaluate, as explained in
the discussion below eq. (4.32), the value of Dφφ corresponding to the number of e-folds fixed
by the choice of σ. The plot in the left panel of figure 7 is particularly illustrative. For
k = 5× 1010 Mpc−1, we can read immediately the value of Dφφ for a given N (equivalently,
σ). From this plot, we also see that for σ . 10−5 (or smaller) the value of Dφφ follows the
expected functional form ∝ e−2ηN ; consequently, the ratio Dφφ/(2ε) settles to a constant
value independent of σ since ε evolves in the same way as Dφφ after the USR phase (and the
exponential dependence on N cancels out in the ratio).

In the right panel of figure 6 we show the outcome of this procedure for different values
of σ. For σ . 10−4 we find sizable deviations with respect to the power spectrum obtained
by solving the Mukhanov-Sasaki equation. These deviations are concentrated between the
dip and the peak of the power spectrum. Inspecting the left panel of figure 6, this is not
surprising since for σ & 10−4 we are including in the computation modes which are not yet
classical. On the other hand, if we take σ . 10−5 we find that Dφφ/2ε quickly recovers the
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Figure 8. Left panel. Numerical solutions of eqs. (4.16), (4.17), (4.18) for the numerical model
discussed in ref. [9]. We fix k = 5× 1010 Mpc−1 and show our results as function of N (equivalently,
as function of σ). The dashed part of 〈δφstδπst〉 indicates negative values. Right panel. Time evolution
of the two terms 〈δφstδπst〉 and (ε− η)〈δφ2st〉 for k = 5× 1010 Mpc−1.

expected power spectrum. These numerical results confirms what we found analytically in
eqs. (4.33), (4.35).

What remains to be checked is the contribution coming from the combination 〈δφstδπst〉−
(ε− η)〈δφ2

st〉 which vanishes in the analytical approximation. In order to do so, we solve nu-
merically the system formed by eqs. (4.16), (4.17), (4.18). We use vanishing initial conditions
for the fields but we checked that our conclusions are not affected by this choice. Compared to
eqs. (4.26), (4.27), (4.28) (obtained in the limit σ → 0), the situation is now more complicated
because we work at finite σ, and the solutions 〈δφ2

st〉, 〈δφstδπst〉 and 〈δπ2
st〉 will in general

depend on N and σ. As before, it is instructive to fix the value of k and consider the solutions
as functions of N (and thus σ). In the left panel of figure 8 we show 〈δφ2

st〉, 〈δφstδπst〉 and
〈δπ2

st〉 as functions of N for k = 5×1010 Mpc−1. The logic of the plot follows what we already
discussed for the left panel of figure 7. In region III, after the USR phase, the solutions settle
down to their analytical estimates given in eqs. (4.26), (4.27), (4.28). In the right panel of
figure 8 we investigate the behavior of the combination 〈δφstδπst〉 − (ε − η)〈δφ2

st〉. For defi-
niteness, we fix again k = 5×1010 Mpc−1 and plot separately 〈δφstδπst〉 and (ε−η)〈δφ2

st〉 (see
labels in the figure). The take-home message of this plot is clear. After crossing the transition
time into the classical regime after the end of the USR phase, 〈δφstδπst〉 and 〈δφ2

st〉 settle
to their asymptotic functional forms ∝ Ne−2ηN and the difference 〈δφstδπst〉 − (ε− η)〈δφ2

st〉
recovers the cancellation discussed in the analytical model. For the mode under consider-
ation (k = 5 × 1010 Mpc−1) this requires σ . 10−5. If one takes a value of σ that is too
large (say, σ ' 10−4 in this specific case) the difference 〈δφstδπst〉 − (ε − η)〈δφ2

st〉 gives a
non-vanishing contribution to the power spectrum. This is a spurious contribution to the
power spectrum since, as it is clear from the left panel of figure 6, this amounts to including
modes that are still sizably affected by the USR phase. Such a choice of not-small-enough σ
is at odds with the very logic of stochastic inflation in which the effect of quantum corrections
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perturb the coarse-grained field configuration only after their classicalization, when they can
be interpreted as classical noise as we have argued in previous sections.

This analysis can be repeated without surprises for all modes that contribute to the
enhancement of the power spectrum. After the end of the USR phase, when modes affected
by the USR phase freeze to their final constant value and the quantum-to-classical transition
takes place, the difference 〈δφstδπst〉 − (ε − η)〈δφ2

st〉 gives a vanishing contribution as we
already found in the analytical discussion. The precise value of σ at which this happens
depends on the specific k analyzed, as it is clear from the left panel in figure 6. For instance,
modes close to the peak only require values as small as σ = 10−4, but for modes close to
the dip, even smaller values are needed. In conclusion, the numerical analysis of the model
introduced in ref. [9] confirms our analytical results derived for the toy model.

The bottom line is that the power spectrum of comoving curvature perturbations com-
puted in stochastic inflation at the linear order matches precisely the result obtained by solv-
ing the Mukhanov-Sasaki equation within the more conventional analysis based on the per-
turbative approach. This result is not surprising per se, since it was already well-established
in the context of slow-roll inflation, see e.g. [32]. The non-trivial point of our analysis is that
we have extended its validity to the case in which an USR phase is present, which is relevant
for the formation of PBHs in many models of inflation. As a byproduct of our analysis, we
have also clarified the role of the stochastic noise and the issue of the quantum-to-classical
transition in this scenario.

4.5 Non-Gaussianities

So far the discussion has been focused on the two-point statistical correlators. This is enough
to compute the power spectrum of comoving curvature perturbations but it is legitimate to
ask what changes when higher-order correlators are included in the analysis. Unfortunately,
the approach developed in section 4.2 and applied in section 4.3 to the computation of the
power spectrum is not well-suited here. The reason is that section 4.2 is based on the linear
expansion φ̄ = φcl +δφst and π̄ = πcl +δπst while non-Gaussianities, measure deviations from
linearity. One can check that a generalization of eqs. (4.16), (4.17), (4.18) to the third and
fourth order in the statistical moments leads to the solutions 〈δφ3

st〉 = 0 and 〈δφ4
st〉 = 3〈δφ2

st〉2
which is precisely what we expect for a Gaussian statistic.9 This implies that the comoving
curvature perturbation, defined at this order by R = δφst/

√
2εcl, is Gaussian.

The formalism adopted so far, therefore, is totally fine as long as we are only interested
in the computation of the power spectrum but, to gain some insight about non-Gaussianities,
we need to stray from the beaten path. One obvious way to overcome this issue would be
to extend our analysis to the second order in the stochastic perturbative expansion of the
coarse-grained fields. Let us sketch what would be the result if such approach were pursued.
We consider the second-order expansion φ̄ = φcl + δφst,1 + δφst,2, where φcl, together with
πcl, solves the deterministic Langevin equations without the noise term while the quantities
δφst,1 and δφst,2 are stochastic variables of, respectively, first and second order in the noise.
We write

R = (δφst,1 + δφst,2 − 〈δφst,2〉)/
√

2εcl (4.38)

so that 〈R〉 = 0. Furthermore, based on the previous consideration, the first-order term
RG ≡ δφst,1/

√
2εcl is Gaussian. In the expression eq. (4.38) we have a Gaussian term plus a

9This is in contrast with the findings of ref. [5], which also uses the linear expansion.
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correction which is formally, and by construction, of order δφst,2 − 〈δφst,2〉 ∼ O(δφ2
st,1). We

can recast eq. (4.38) in the conventional form

R = RG +
3fNL

5

(
R2
G − 〈R2

G〉
)
, with RG =

δφst,1√
2εcl

, f2
NL =

25

9
(2εcl)

[
〈δφ2

st,2〉 − 〈δφst,2〉2

〈δφ4
st,1〉 − 〈δφ2

st,1〉2

]
.

(4.39)

From this simple analysis we learn a number of things. First, it confirms that non-
Gaussianity of the comoving curvature perturbation emerges as a non-linear effect that can be
captured only going beyond the first order in the stochastic perturbative expansion. Second,
implementing the expansion φ̄ = φcl + δφst,1 + δφst,2 seems to capture only a specific kind
of non-Gaussianities, that are of the so-called local type (defined by the first expression in
eq. (4.39) [37]). Let us consider the three-point correlation function in momentum space:

〈Rk1Rk2Rk3〉 = (2π)3δ(3)(~k1 + ~k2 + ~k3)BR(k1, k2, k3) , (4.40)

where BR(k1, k2, k3) defines the bispectrum. As it is well-known, local-type non-Gaussianities
leave a specific imprint in the bispectrum and a direct computation in Fourier space gives

B loc
R (k1, k2, k3) = (6fNL/5)[∆R(k1)∆R(k2) + ∆R(k1)∆R(k3) + ∆R(k2)∆R(k3)] . (4.41)

In the local limit, therefore, the bispectrum acquires a simple factorizable form. Furthermore,
in the squeezed limit (k1 = k2 ≡ k � k3) two of the three momenta are indistinguishable,

and we have Bloc,sq
R (k, k, k3) = (12f̃NL/5)∆R(k)∆R(k3).

Notice that, to the best of our knowledge, describing non-Gaussianities in the local
limit seems to be a limitation of the stochastic inflation approach. For instance, ref. [32]
computed non-Gaussianities in the context of stochastic inflation by means of the so-called
δN formalism (see ref. [38] for a review) but also in this case the computation is limited to the
local bispectrum and, furthermore, is not valid for arbitrary configurations of the momenta
since the squeezed limit is assumed.10 However, whether the presence of a USR phase gives
rise to non-Gaussianities which are exclusively of local type (and, therefore, computable
within the formalism of the second-order expansion φ̄ = φcl + δφst,1 + δφst,2 by means of
eq. (4.39) which would give the value of fNL in eq. (4.41)) is not something that can be a
priori established.

A different approach to the problem has been pursued in refs. [10, 40]. The idea is
to compute directly the probability distribution function (PDF) of the comoving curvature
perturbation R, abandoning the perturbative approach described before. In the stochastic
δN formalism the comoving curvature perturbations can be related to the variations in the
number of e-folds of expansion induced by the quantum fluctuations of the inflation. In
practice, the PDF of R is obtained from the PDF of the number of e-folds, and the latter is
computed solving a Fokker-Planck equation. Following this method and focusing on slow-roll
dynamics, ref. [10] finds that the PDF of R has highly non-Gaussian tails, which can not
be described with standard non-Gaussian expansions. This implies that the abundance of
PBHs largely deviates from the estimates obtained with the Gaussian statistics. It would be
interesting to extend the analysis of ref. [10] to the class of models discussed here, featuring
an epoch of slow-roll violation. The role of non-Gaussianities in the context of inflationary
models with an USR phase deserves a dedicated analysis which will be presented elsewhere.

10See, however, ref. [39] in which the author discuss, in the context of the δN formalism, a general way
that allows to obtain more generic bispectra (that is, without assuming the local limit but still working in the
squeezed configuration).
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5 Summary and conclusions

In this work we have analyzed the role of quantum diffusion during inflation. More specifically
we have focused on an inflationary scenario featuring an USR phase, which is relevant for
the production of PBHs. Below we summarize the main findings and novelties of our study.

◦ The back-reaction of quantum fluctuations on the inflationary dynamics is described in
the context of stochastic inflation. In this approach the long wavelength perturbations
of the inflaton are sourced by the modes which cross a coarse-graining scale, k . kσ =
σ aH with σ < 1, and become semi-classical, behaving as an external noise source, see
eqs. (3.3), (3.4), (3.5). In this way the evolution of the inflaton is treated as a diffusion
process. Clearly, to properly model the stochastic dynamics it is crucial to understand
the quantum-to-classical transition. We have considered two diagnostic tools to study
such a regime, namely the time-dependent occupation number and a quantity related
to the anti-commutator of the field perturbation operator and its conjugate momentum
(see section 4.1 and appendix A for details). For each comoving wavelength k, these
functions vanish in the original Minkowski vacuum and, in standard slow-roll, take
large values once the mode crosses the Hubble horizon, a signal of classicalization.
We have shown that this picture can be significantly altered in presence of an USR
phase. For peaked spectra and for comoving scales from around the dip and up to
the peak of the power spectrum of comoving curvature perturbations, the quantum-
to-classical transition is delayed, and completes only when the USR phase ends. This
goes in parallel with the evolution of the comoving curvature perturbation Rk, which,
for these modes, freezes to a constant value only when the USR phase is over.

◦ We have solved the classical dynamics in eqs. (3.3), (3.4) expanding at first order the
coarse-grained inflaton field φ̄ and its conjugate momentum π̄ around their classical
trajectories, φ̄ = φcl + δφst and π̄ = πcl + δπst. The evolution of the perturbations δπst

and δφst is governed by the noise correlation matrix. The latter, at leading order in
σ and in standard slow-roll, has a simple structure: it is constant in time and non-
vanishing only in the φφ direction. Once again, this result dramatically changes during
the USR phase. We have found that during this stage of the inflationary evolution, the
inflaton diffuses in all three directions in phase-space, and the noise correlation functions
fall exponentially fast. The reason is that, as explained above, classicalization is delayed
during the USR phase, and this implies that the inflow of modes which source the noise
correlation functions is stopped.

◦ Finally, we have computed the power spectrum of comoving curvature perturbations
at linear order in stochastic inflation. We have demonstrated that it matches the
standard result obtained with the more conventional approach based on the splitting
into background and perturbations. This outcome was already known in the case of
slow-roll inflation. We have shown that it holds also in presence of an USR phase, which
is the key ingredient for the formation of PBHs in a broad class of models of single-
field inflation. A proper treatment of the quantum-to-classical transition is crucial to
understand this result. We reiterate that in presence of an USR phase, the usual horizon
crossing condition is not a good proxy for the classicalization of the modes. Indeed,
we have shown that following this incorrect prescription (i.e. σ = 1), spurious features
appear in the power spectrum of comoving curvature perturbations, as it occurs in
ref. [5]. Notice also that the power spectrum does not depend on the coarse-graining
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parameter σ (as it should be) as long as this quantity is taken small enough to guarantee
the classicalization of the modes.

Our results have been obtained in the context of an analytical model, which, despite
its simplicity and approximations, captures remarkably well the inflationary dynamics
with a transient USR phase, and allow for a transparent treatment. We have then
confirmed our results by means of a full numerical analysis, performed in the context
of a concrete inflationary model which generates all the DM in the form of PBHs.

An analysis of the power spectrum of curvature perturbations in stochastic inflation at
linear order in fluctuations for η = 3 was performed in ref. [6]. We agree with the conclu-
sion expressed in ref. [6] that the power spectrum of comoving curvature perturbations
is not altered by the stochastic dynamics with respect to standard perturbation theory.
Notice, however, that the results for the noise correlation matrix of ref. [6] match the
ones we have obtained for Region I, shown in table 1. We have extended their analysis
by including the Regions II and III, relevant for PBH formation.

◦ The focus of our work has been the calculation of the two-point function in stochastic
inflation. It would be interesting to extend the analysis to higher order correlators,
in order to determine the non-Gaussian corrections. For this purpose, one should go
beyond the linear expansion that we have adopted in this paper. Its is worth mentioning
a couple of possible directions. One possible strategy could be the one discussed in
section 3. One could solve multiple times the Langevin eqs. (3.3), (3.4) and from these
stochastic realizations infer the PDF of the field fluctuations (similarly to ref. [4] but
implementing our results for the two-point correlators of the noise function). Another
approach, adopted in ref. [10] in the context of slow-roll inflation, is to compute the
PDF of the comoving curvature perturbations using the stochastic δN formalism. It
would be worthwhile to extend the analysis of ref. [10] to scenarios where slow-roll is
violated, as would be the case in presence of an USR phase. We leave these studies for
future work.
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A Quantization of scalar perturbations in the Heisenberg picture
and quantum-to-classical transition

Consider the field perturbation u(τ, ~x) that satisfies, in position space, the equation of motion

(
d2

dτ2
−4− 1

z

d2z

dτ2

)
u(τ, ~x) = 0 . (A.1)

To quantize the system, one first notices that this equation of motion can be derived —
modulo a total derivative — from the action11 (interchangeably, in the following we shall
also use the short-hand notation ′ ≡ d/dτ and (∂u)2 = (∂iu)(∂iu))

S2 =
1

2

∫
dτd3~x

[(
u′ − z′

z
u

)2

− (∂u)2

]
. (A.3)

Defining the conjugate momentum p = δS2/δu
′, we obtain p = u′ − (z′/z)u. Consequently,

the Hamiltonian is

H(τ) =
1

2

∫
d3~x

[
p2 + (∂u)2 +

2z′

z
pu

]
. (A.4)

We promote u(τ, ~x) and p(τ, ~x) to quantum operators û(τ, ~x) and p̂(τ, ~x) with equal-time
commutation relations [û(τ, ~x), p̂(τ, ~x′)] = iδ(3)(~x−~x′). In Fourier space, we find the following
Hamiltonian operator12

Ĥ(τ) =
1

2

∫
d3~k

{
p̂(τ,~k)p̂†(τ,~k) + k2û(τ,~k)û†(τ,~k) +

z′

z

[
p̂(τ,~k)û†(τ,~k) + û(τ,~k)p̂†(τ,~k)

]}
,

(A.6)

with commutation relations [û(τ,~k), p̂(τ,~k′)] = iδ(3)(~k+~k′) and [û(τ,~k), p̂†(τ,~k′)] = iδ(3)(~k−
~k′). We study the evolution of the system in the Heisenberg picture. To this end, we introduce

11We use the identity

(u′)2 +
z′′

z
u2 =

(
u′ − z′

z
u

)2

+

(
z′

z
u2

)′
. (A.2)

12We use the following 2π-convention for the Fourier transform

f̂(τ, ~x) =

∫
d3~k

(2π)3/2
f̂(τ,~k)ei

~k·~x . (A.5)

For operators describing real fields (i.e. f̂(τ, ~x) = f̂†(τ, ~x)) we have f̂(τ,~k) = f̂†(τ,−~k).
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the time-dependent ladder operators13

û(τ,~k) =
1√
2k

[
a~k(τ) + a†

−~k
(τ)
]
, (A.9)

p̂(τ,~k) = −i
√
k

2

[
a~k(τ)− a†

−~k
(τ)
]
, (A.10)

which have equal-time commutation relations [a~k(τ), a†~k′
(τ)] = δ(3)(~k−~k′). The Hamiltonian

takes the form

Ĥ(τ) =
1

2

∫
d3~k

{
k

[
a~k(τ)a†~k

(τ)+a†
−~k

(τ)a−~k(τ)

]
+
i

z

dz

dτ

[
a†
−~k

(τ)a†~k
(τ)−a~k(τ)a−~k(τ)

]}
.

(A.11)

The Heisenberg equations can be written, in close matrix form

d

dτ

 a~k(τ)

a†
−~k

(τ)

 =

−ik z′/z
z′/z ik


 a~k(τ)

a†
−~k

(τ)

 . (A.12)

The off-diagonal terms are responsible for particle creation in curved space-time. To solve
this system, we use a Bogoliubov transformation. Starting from some given initial condition
at conformal time τ?, the ladder operators at conformal time τ can be written as:

a~k(τ) = y~k(τ)a~k(τ?) + w~k(τ)a†
−~k

(τ?) , (A.13)

a†
−~k

(τ) = y∗~k(τ)a†
−~k

(τ?) + w∗~k(τ)a~k(τ?) , (A.14)

with the condition |y~k(τ)|2 − |w~k(τ)|2 = 1 which follows from the fact that the commutation
relations among ladder operators must be preserved during the unitary evolution. From
eqs. (A.9), (A.10), we find

û(τ,~k) = u~k(τ)a~k(τ?) + u∗~k(τ)a†
−~k

(τ?) , (A.15)

p̂(τ,~k) = −i
[
p~k(τ)a~k(τ?)− p

∗
~k
(τ)a†

−~k
(τ?)

]
, (A.16)

where we defined

u~k(τ) ≡ 1√
2k

[
y~k(τ) + w∗~k(τ)

]
, (A.17)

p~k(τ) ≡
√
k

2

[
y~k(τ)− w∗~k(τ)

]
. (A.18)

13Eqs. (A.9), (A.10) follow from the usual form of the lowering operator

a~k(τ) =

√
k

2
û(τ,~k) +

i√
2k
p̂(τ,~k) , (A.7)

after noticing that

a†~k(τ) =

√
k

2
û†(τ,~k)− i√

2k
p̂†(τ,~k) =

√
k

2
û(τ,−~k)− i√

2k
p̂(τ,−~k) , (A.8)

where the last step follows from the comment below eq. (A.5).
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It is easy to see that u~k and p~k satisfy the following equations

d2uk
dτ2

+

(
k2 − 1

z

d2z

dτ2

)
uk = 0 , with uk(τ?) =

1√
2k

, (A.19)

pk(τ) = i

[
duk
dτ
− 1

z

dz

dτ
uk

]
, with pk(τ?) =

√
k

2
. (A.20)

Notice that from the condition |y~k(τ)|2−|w~k(τ)|2 = 1 we have, by means of eqs. (A.17), (A.18),
the Wronskian condition

pk(τ)u∗k(τ) + p∗k(τ)uk(τ) = 1 =⇒ i

[
duk(τ)

dτ
u∗k(τ)−

du∗k(τ)

dτ
uk(τ)

]
= 1 . (A.21)

The strategy is to solve eqs. (A.19), (A.20) and reconstruct — by inverting eqs. (A.17), (A.18)
— the evolution of the ladder operators in eqs. (A.13), (A.14). In eqs. (A.19), (A.20) we
switched to the notation u~k → uk and p~k → pk since the mode functions only depend on the

modulus of ~k (the same is true for y~k and w~k). The initial conditions for uk and pk follow
trivially from eqs. (A.13), (A.14). As far as the initial value τ? is concerned, we assume,
as customary in the context of inflation, that the system starts in the vacuum state |0〉
defined by the condition a~k(τ?)|0〉 = 0. We are now in position to compute the occupation
number used in section 4.1. The time-dependent occupation number nk(τ) is defined, for
each mode k, by the expectation value in the original vacuum state of the time-dependent
particle number operator a†~k

(τ)a~k(τ). We obtain

n̄k(τ) = 〈0|a†~k(τ)a~k(τ)|0〉

= 〈0|
[
y∗k(τ)a†~k

(τ?) + w∗k(τ)a−~k(τ?)
] [
yk(τ)a~k(τ?) + wk(τ)a†

−~k
(τ?)

]
|0〉 = (A.22)

= |wk(τ)|2δ(3)(0) ≡ nk(τ)δ(3)(0) , (A.23)

where the δ(3) in momentum space at zero argument has the usual interpretation of spatial
volume and arises because we are computing the total number of particles rather than the
number density, the latter thus being nk(τ) = |wk(τ)|2. Summarizing, if we solve the system
in eqs. (A.17), (A.18) for w∗k and use the Wronskian condition, the occupation number density
can be written as:

nk(τ) =
k

2
|uk(τ)|2 +

1

2k
|pk(τ)|2 − 1

2
. (A.24)

In the following we shall consider another tool to investigate the quantum-to-classical
transition. Let us start from the following definition

∆û(τ,~k) ≡ û(τ,~k)− 〈0|û(τ,~k)|0〉 , (A.25)

together with the analogue expression involving p̂(τ,~k). We can compute the following ex-
pectation values

〈0|∆û(τ,~k)∆û†(τ,~k′)|0〉 = |uk(τ)|2δ(3)(~k − ~k′) ≡ ∆u2
k(τ)δ(3)(~k − ~k′) , (A.26)

〈0|∆p̂(τ,~k)∆p̂†(τ,~k′)|0〉 = |pk(τ)|2δ(3)(~k − ~k′) ≡ ∆p2
k(τ)δ(3)(~k − ~k′) . (A.27)
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Therefore we find ∆u2
k(τ)∆p2

k(τ) = |uk(τ)|2|pk(τ)|2 ≡ |Jk(τ)|2. By using the square of the
Wronskian condition in eq. (A.21), it is easy to see that

0 6 |uk(τ)p∗k(τ)− u∗k(τ)pk(τ)|2 = 4|Jk(τ)|2 − 1 =⇒ |Jk(τ)|2 > 1/4 . (A.28)

By combining this result together with eqs. (A.26), (A.27) we find the analogous of the
Heisenberg uncertainty relation

∆u2
k(τ)∆p2

k(τ) = |Jk(τ)|2 > 1/4 . (A.29)

As a consequence of eqs. (A.19), (A.20), we trivially see that the uncertainty is minimized, as
it should be, in the original vacuum state. Furthermore, we can also compute the expectation
value of the commutator and anti-commutator

〈0|û(τ,~k)p̂†(τ,~k′) + p̂†(τ,~k)û(τ,~k′)|0〉 = i [uk(τ)p∗k(τ)− u∗k(τ)pk(τ)]︸ ︷︷ ︸
≡〈{û(τ,~k),p̂†(τ,~k)}〉

δ(3)(~k − ~k′) , (A.30)

〈0|û(τ,~k)p̂†(τ,~k′)− p̂†(τ,~k)û(τ,~k′)|0〉 = i [uk(τ)p∗k(τ) + u∗k(τ)pk(τ)]︸ ︷︷ ︸
≡〈[û(τ,~k),p̂†(τ,~k)]〉

δ(3)(~k − ~k′) . (A.31)

Using the Wronskian condition one gets:∣∣〈{û(τ,~k), p̂†(τ,~k)
}〉∣∣2 = 4|Jk(τ)|2 − 1 , (A.32)∣∣〈[û(τ,~k), p̂†(τ,~k)
]〉∣∣2 = 1 , (A.33)

where the last condition is of course compatible with the commutation relations below
eq. (A.6). The quantity |Jk(τ)|2, therefore, can be considered as measuring the “classicality”
of the vacuum state during its evolution. At τ = τ?, |Jk(τ?)|2 = 1/4 and the anti-commutator
vanishes. In this case the state has a pure quantum interpretation. During standard slow-
roll inflationary dynamics, |Jk(τ)|2 grows exponentially after horizon crossing, and the state
quickly becomes semi-classical. The uncertainty relation in eq. (A.29) also grows ∝ |Jk(τ)|2.
This is because the uncertainty in the field position |uk(τ)|2 (defined in eq. (A.26)) grows
exponentially while the uncertainty in the conjugate momentum |pk(τ)|2 remains fixed14 with
the phase space density that, consequently, exhibits high squeezing. Notice that, in light of
eq. (A.33), eq. (A.29) can also be formally written in the form

∆u2
k(τ)∆p2

k(τ) >
1

4

∣∣〈[û(τ,~k), p̂†(τ,~k)
]〉∣∣2 , (A.35)

which is the analogous of the Heisenberg uncertainty principle.
To be more concrete, we consider now, in the spirit of the model discussed in section 2,

an explicit computation which is relevant for the analysis presented in section 4.1. We con-
sider modes with comoving wavenumber such that they cross the Hubble horizon before the

14This follows from the exact solution of eq. (A.19) during inflation with vanishingly small Hubble param-
eters,

uk =
1√
2k
e−ik(τ−τ?)

(
1− i

τk

)
, (A.34)

with the initial time τ? defined by the flat-space limit kτ? → −∞ where we can unambiguously identify the
minimum energy state (Bunch-Davies vacuum).
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beginning of the ultra-slow-roll phase, Nk � Nin. As we shall see, this working assumption
allows us to study, by means of simple analytical expressions, the issue of classicalization for
modes with k � kin (thus, for instance, for modes close to kdip). We start from the evolution
equation for the mode uk, eq. (A.19). We shall consider the super-Hubble limit and neglect
the k2 term, which leads to:

d

dτ

[
z2 d

dτ

(uk
z

)]
= 0 =⇒ uk

z
= C1(k) + C2(k)

∫ τ

τref

dτ ′

z(τ ′)2
, (A.36)

where in the τ -dependent part of the solution for uk/z we integrate starting from some
reference time τref . The computation of the conjugate momentum in eq. (A.20) is a bit
more subtle because it requires to include in eq. (A.36) the first k2 correction. The reason
is the following. Consider for simplicity the standard scenario of slow-roll inflation with
ε ' η � 1. In this case the first term of the solution in eq. (A.36) is the constant mode while
the second is the decaying one. If one just takes these two solutions in eq. (A.36), it follows,
by means of eq. A.20, that zpk = iC2(k). Therefore, disregarding at late time the decaying
solution, one would find |Jk|2 = |C2(k)|2|C1(k)|2 which is just a constant value. This incorrect
procedure does not describe the exponential growth of |Jk|2. To capture this behavior, we
need to include the O(k2) correction to the constant mode uk/z = C1(k). To this end, we
write for the constant mode the ansatz uk/z = C1(k)[1 + F (τ)k2] using k2 as expansion
parameter. It follows that the function F (τ) solves at order k2 the differential equation
F ′′(τ)+(2/z)z′F ′(τ)+1 = 0. We do not need to solve this equation since F (τ) only enters in
the computation of pk through its first derivative, namely zpk = iC2(k) + iC1(k)z2k2F ′(τ).
Solving for F ′(τ), we find

zpk = iC2(k)− iC1(k)k2

∫ τ

τref

dτ ′z(τ ′)2 . (A.37)

Since in the standard scenario of slow-roll inflation under consideration z(τ) grows with time,
now we see that the second term in eq. (A.37) contributes to the exponential growth of |Jk|2.

In the following, let us move to the case in which the inflationary dynamics features
an ultra-slow-roll phase. Compared to the previous scenario, in the presence of an ultra-
slow-roll phase the second term in the solution in eq. (A.36) represents a growing — rather
than decaying — mode. On the contrary, the second term in eq. (A.37) decays instead of
growing. Based on these differences, we expect — at the qualitative level — the following
time evolution for |Jk|2

|Jk(N)|2 =
NNinregion I region II region IIINend

exp growth ultra-slow-roll
eventually a new
exp growth takes over

(A.38)

For N < Nin, |Jk|2 grows exponentially as just discussed in the standard case (remember
that Nk < Nin). What happens during the ultra-slow-roll phase for Nin 6 N 6 Nend depends
on the details of the model and, consequently, on the explicit computation of the coefficients
C1,2(k). The final exponential growth sets in only after the end of the ultra-slow-roll phase
when the second term in eq. (A.37), computed for N > Nend, starts dominating. Let us try
to explore more quantitatively region II. Consider our reference model in section 2. Using
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the number of e-folds as time variable and for Nin 6 N 6 Nend, in region II we find

uk
z

∣∣∣
II

=
iH√
4εIk3

{
1−

(
k

kin

)2 1

(2ηII − 3)

[
e(2ηII−3)(N−Nin)︸ ︷︷ ︸
exponential growth

−1

]}
, (A.39)

zpk|II =

√
εIk3

H

(
kin

k

){
1 +

1

(1− 2ηII)

[
e(1−2ηII)(N−Nin)︸ ︷︷ ︸
exponential decay

−1

]}
'
√
εIk3

H

(
kin

k

)
. (A.40)

The exponential growth (for uk/z) and decay (for zpk) anticipated before are now evident
(remember that ηII > 3/2). The growing solution is suppressed by (k/kin)2. This means that
if the duration of the ultra-slow-roll phase is not enough to compensate for this suppression,
in region II |Jk|2 will remain basically constant (and equal to the value reached at Nin as a
consequence of the exponential growth in region I, see the schematic in eq. (A.38)). After
Nend, |Jk|2 grows exponentially again as a consequence of the second term in eq. (A.37).
This is the typical behavior that we expect for modes with comoving wavenumber k . kth

which are not affected by the ultra-slow-roll phase (see figure 2). In practice for these
modes classicalization is reached, as in the standard picture, soon after their horizon crossing
before Nin.

Consider now modes with kth < k � kin whose comoving curvature perturbation — by
definition of kth, see section 2 — is affected by the ultra-slow-roll phase. In this case the
exponential growth in eq. (A.39) becomes sizable and compensate the (k/kin)2 suppression
as N increases towards Nend. From eq. (A.39) we see that uk/z (and thus |Jk|2) actually
vanishes for

N0 = Nin +
1

(2ηII − 3)
log

[
1 +

(
kin

k

)2

(2ηII − 3)

]
, (A.41)

which is within the ultra-slow-roll phase if (k/kin)2 > (2ηII−3)[e(2ηII−3)∆N −1]−1. Of course,
the fact that |Jk|2 vanishes is an artifact of the approximation used since, as we discussed,
|Jk|2 > 1/4. Nevertheless, the previous observation remains qualitatively true also in more
complete computations where one finds that during the ultra-slow-roll phase |Jk|2 may drop
down to its minimum value |Jk|2 = 1/4 for N close to N0 in eq. (A.41). We shall see an
explicit example in a moment. Consider now region III. We find

uk
z

∣∣∣
III

=
iH√
4εIk3

{
1− x2

(2ηII−3)

[
e(2ηII−3)∆N −1

]
− x

2e(2ηII−3)∆N

(2ηIII−3)

[
e(2ηIII−3)(N−Nend)︸ ︷︷ ︸

exponentialdecay

−1

]}
,

(A.42)

zpk|III =

√
εIk3

H

1

x

{
1+

e(1−2ηII)∆N

(1−2ηIII)

[
e(1−2ηIII)(N−Nend)︸ ︷︷ ︸

exponentialgrowth

−1

]
Fk
}
, (A.43)

with

Fk ≡ 1− x2

(2ηII − 3)

[
e(2ηII−3)∆N − 1

]
. (A.44)

These expressions look complicated but they are actually simple to interpret. We basically
have two possibilities, depending on the exact value of k and, consequently, the value of Fk.
These two cases are summarized in figure 9.
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Figure 9. Explicit representation of the schematic illustrated in eq. (A.38) for two different modes
with comoving wavenumbers kth < k � kin. The solid lines follow the approximation discussed in
section A (see eqs. (A.36), (A.37)) while, for comparison, the dashed lines are obtained with the
analytical solutions derived in section 2.

1. In the first case the value of k, say k1, is such that N0 lies within the ultra-slow-roll
phase. This means, as already discussed, that the duration of the ultra-slow-roll phase
is such that e(2ηII−3)∆N compensates the suppression given by x2. In this case we can
safely approximate

Fk1 ' −
x2

1

(2ηII − 3)
e(2ηII−3)∆N , (A.45)

which as we can see is large and negative. As far as the other terms in eqs. (A.42), (A.43)
are concerned, we can further approximate (neglecting the decaying mode and consid-
ering e(2ηII−3)∆N � 1)

uk1

z

∣∣∣
III
' iH√

4εIk3
1

[
1− x2

1e
(2ηII−3)∆N

(2ηII − 3)

]
= constant , (A.46)

zpk1 |III '
√
εIk3

1

H

1

x1

[
1− x2

1e
−2∆N

(2ηII − 3)
e(1−2ηIII)(N−Nend)︸ ︷︷ ︸

final exp growth

]
. (A.47)

We find that |Jk1(N)|2 in region III stays constant until the exponential growth of zpk1

takes over. Before this happens, however, another dip is expected for values of N such
that the square bracket in eq. (A.47) vanishes as the consequence of the negative sign
that is acquired by Fk1 in eq. (A.45). This behavior is shown in the left panel of figure 9.

2. In the second case the value of k, say k2, is such that N0 > Nend. This means that
the duration of the ultra-slow-roll phase is such that e(2ηII−3)∆N is not enough to fully
compensate the suppression given by x2. In this case we can approximate

Fk2 ' 1 . (A.48)

Right after Nend, |Jk2(N)|2 still decreases (down to some value that depends on the
specific choice of k2) but it settles exponentially fast to a constant value which is
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maintained until the final exponential growth sets in. This is because in this case we
can further approximate (using eq. (A.48) and disregarding the exponentially decaying
solution)

uk2

z

∣∣∣
III
' iH√

4εIk3
2

(A.49)

zpk2 |III '
√
εIk3

2

H

1

x2

[
1 +

e(1−2ηII)∆N

(1− 2ηIII)
e(1−2ηIII)(N−Nend)︸ ︷︷ ︸

final exp growth

]
. (A.50)

Notice that in this case we do not expect the presence of a dip in region III. This
scenario is shown in the right panel of figure 9.

This explicit — even though simplified — computation shows that the issue of quantum-
to-classical transition in the presence of an ultra-slow-roll phase is anything but trivial. Let
us try to draw some conclusions. If we consider the condition |Jk(τ)|2 � 1 as a test for
classicality, it is evident from our analysis that for modes which are affected by the presence
of the ultra-slow-roll phase the only robust statement that one can do is that only after the
end of the ultra-slow-roll phase the condition |Jk(τ)|2 � 1 can be unambiguously satisfied as
a consequence of its final exponential growth. The details of what happens during the ultra-
slow-roll phase depend — as discussed in depth by means of the analytical approximation
exploited in this section — on the specific value of the comoving wavenumber analyzed. At
the qualitative level, this result remains valid if one considers the large occupation number
condition nk(τ) � 1 as a test for classicality. From the expression for nk(τ) in eq. (A.24)
and the explicit form of the solutions for uk and pk in eqs. (A.36), (A.37) we find that it is
only after the end of the ultra-slow-roll phase that the condition nk(τ)� 1 remains fulfilled.
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[12] J. Garćıa-Bellido and E. Ruiz Morales, Primordial black holes from single field models of
inflation, Phys. Dark Univ. 18 (2017) 47 [arXiv:1702.03901] [INSPIRE].

[13] M.P. Hertzberg and M. Yamada, Primordial black holes from polynomial potentials in single
field inflation, Phys. Rev. D 97 (2018) 083509 [arXiv:1712.09750] [INSPIRE].

[14] M. Cicoli, V.A. Diaz and F.G. Pedro, Primordial black holes from string inflation, JCAP 06
(2018) 034 [arXiv:1803.02837] [INSPIRE].
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