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Abstract 

High-risk environments such as healthcare, transport and air traffic control are characterised 

by highly dynamic, unpredictable, and uncertain events. A human operator's presence is 

necessary to monitor and control the system when critical events occur in these contexts. At 

the same time, the system should monitor the operators' functional status and support him when 

necessary. The proposed research activity investigates the spatial distribution of eye fixations 

as a real-time measure of mental workload. Ocular activity is known to be sensitive to 

variations in mental workload. Many attempts have been made to derive a stable measure of 

the cognitive resources allocated to a task using eye-trackers' information.  

Recent studies have successfully related the distribution of eye fixations to the mental load. 

The scope of this research project is to devise a set of experiments for separating the 

contribution of three types of tasks demands (i.e., temporal, mental, and physical) and, to 

determine which of these (and when) should be considered for using an index of spatial 

distribution as a trigger in ocular-based adaptive systems.  

The project has three different objectives: 1) assessing the sensitivity of the proposed measure 

to different types of tasks demands with a large sample and a within-subject design; 2) evaluate 

the effectiveness of the proposed measure as a trigger for adaptive automation and 3) using 

more complex algorithms to provide a more stable measurement over time and investigate 

variations in the frequency domain. 

The first chapter provides a review of the theoretical models proposed in the literature about 

automation, highlighting the relationship between machine and operator, and the cognitive 

processes involved. The second chapter describes the physiological indicators of mental 

workload present in the literature, focuses on measures derived from ocular parameters such as 

pupillary diameter, saccades, fixations and scanpath analysis. In the last two chapters, four 

experimental studies are described and discussed. The aim was to evaluate how the visual 

exploration strategy changes with different mental workload levels and task demands. The 

index used to analyse the visual strategy, the nearest neighbour index, was then investigated as 

a trigger in an adaptive automation system. The results indicated the high diagnostic power of 

the measure and provided the background for future applications. 
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Introduction: High-Risk Environments 

In high-risk environments characterized by highly dynamic, unpredictable, and uncertain 

events, many visual elements displayed in the complex control interfaces (e.g., monitoring 

sensors and warning indicators) need operator's attention causing cognitive overload. The 

organisations should aim to minimise the risk of accidents by creating procedures that the 

operator must perform correctly: the "Standard Operating Procedures" (Degani & Wiener, 

1994). In the context of commercial aviation, the pilot's skill to make "good decisions" is 

acquired through an intensive training period in a high-procedural environment. Errors caused 

by the operator usually occur in terms of deviation from the procedure. The deviations are not 

visible for operational management and are left unresolved, but these become evident following 

an accident. Lautman and Gallimore (1987) conducted a study of aircraft accident reports to 

understand the causes better. They analysed 93 fuel loss accidents that occurred between 1977 

and 1984. Their study’s leading crew-caused factor was "pilot deviation from basic operational 

procedures" (Figure 1). A model for making operations safe emerges based on the data 

discussed above and on the history of industrial disasters (where the lack of procedures or rules 

to follow has played an important role) (Furuta et al., 2000; Dekker, 2003): 

● The procedures should be the best way to perform the job. 

● The procedures are based on a simple "if-then" logic. 

● The security of the system is based on the following procedures. 

● Organisations must invest in the knowledge of these and ensure that they are performed 

correctly. 

However, despite rigorous procedures the ability to cope with unpredictable situations is 

required (which may be caused by environmental factors external to the system). 
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Figure 1: Significant factors caused by the crew in 93 hull damage incidents. Source: Lautman and Gallimore 

(1987) 

The operators' ability to monitor the system is a key element. Monitoring is defined as a 

repeated assessment of the system status and is essential to detect, evaluate and recognise 

unexpected changes in many areas with high safety standards (Brookhuis et al., 2003; Metzger 

& Parasuraman, 2001). In recent years, inadequate system analysis has been identified as one 

of the main causes of loss-of-control events (Dutch Safety Board, 2010; NTSB, 2013a, 2013b). 

This activity is directly related to a well-known concept in literature called "Situation 

awareness", defined by Endsley (1988) as "the perception of the elements in the environment 

within a volume of time and space, the comprehension of their meaning and the projection of 

their status in the near future". This implies the detection of critical factors,  understanding their 

meaning about the objectives to be achieved, and the projection of future state changes. 

Situation Awareness plays a crucial role in those systems where an error can led to severe 

consequences and, where only a human operator can perform control tasks interpreting and 

managing unexpected events correctly.  

The restricted attentional capacity of the humans constitutes a well-known "bottleneck" that 

has been the object of many studies on human information processing (Tombu et. al., 2011; 

Marois & Ivanoff, 2005; Wolfe, Reinecke & Brawn, 2006) and on operator functional state, 
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that is “the intrinsic relationship between human task performance and the background state of 

the individual.” (Hockey, Gaillard & Burov, 2003).  

The high complexity of these organisations involves a multitude of aspects. In 1967, Thompson 

argued that "uncertainty appears to be the fundamental problem for complex organisations, and 

managing it is at the basis of the administrative process". Galbraith (1973) defines uncertainty 

as to the absence of information: "the difference between the amount of information needed to 

perform a task and the amount of information already in the organisation's hands". In a 

“decision making” context, uncertainty can be caused by incomplete information, 

misinterpretation of the available information and the presence of indistinct alternatives (i.e. 

alternatives that are equally attractive or not; Lipshitz & Strauss, 1997). It may concern the 

probability of an event (uncertainty of the state), lack of information about its outcome and 

underlying cause-effect relationships (uncertainty of the effect), or lack of knowledge about 

response options and their likely consequences (uncertainty of the response) (Milliken, 1987). 

At an individual level, the system must communicate effectively and efficiently the information 

required by the operator.  

The main objective of studies on human performance and information processing is to reduce 

the possibility of cognitive overload as much as possible. In the early 90s, Wickens (1992) 

highlighted the importance of achieving the highest compatibility between the operator's 

capabilities and the characteristics of the surrounding environment. A mismatch between the 

machine and the operator can lead to a deterioration of performance and an increase in the 

workload (Gaillard & Wientjes, 1994; Hockey, 1986). To avoid this, finding real-time indexes 

of the operator functional state has become crucial. Also, this should be accomplished by using 

effective and non-intrusive tools to be applied in high-risk environments. 

The use of modern technologies has caused an increase in cognitive demand and a decrease in 

physical demand. Tasks of monitoring and information processing have led to the need to 

understand how the mental workload affects the performance of the operator, a relevant issue 

in the study of human factors (Flemisch & Onken 2002; Loft et al., 2007; Parasuraman & 

Hancock 2001; Tsang & Vidulich 2006; Wickens 2008). The mental workload (MWL) is a 

multidimensional construct that considers different factors such as the person, the task to be 

performed and its environment. Young and Stanton (2005) suggest that MWL reflects the level 

of attentional resources required to meet performance standards, which could be affected by 

the task difficulty, external support, and operator experience. In this definition, attentional 

resources have a limited capacity over which performance degradation occurs. However, the 

amount of resources invested depends on the user’s willingness, who manages them to maintain 
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an optimal performance level. The goal is to establish a relationship between MWL and 

performance. Probably, the workload is not optimal when the performance level is slightly 

below a minimum value standard. The words "Not optimal" may mean overload or underload 

(Brookhuis & De Waard, 2000). The first can happen when too many stimuli are present, and 

the operator's attention is "diverted" from the primary information. 

On the contrary, the second can be caused by the absence of stimuli, leading to boredom and 

sleepiness. Both cause a deviation between the operator's abilities and the characteristics of the 

system. One of the most widespread solutions proposed to decrease a mismatch’s probability 

is to increase computer control or automate more tasks. 

Chapter 1- Automation 

Historical notes 

Today, there are decision-support systems, communication tools available for automation in 

marketing and sales processes, and suppliers' relations. All these attempts aim to automate the 

industry in the production and distribution processes (supply-chain), ranging from the 

acquisition of raw material to delivering the final product to the consumer, having as main 

objective to offer the customer a more excellent experience. Technology is the foundation of 

all these developments, causing disturbances in the industry and generating revolutions 

(Viswanadham, 2002).  

Initially, people saw automation with scepticism. In the early 1800s, “Luddite movement” was 

the first significant demonstration of negative social impact caused by labour-saving machinery 

(Brain, 1998). During this period, British workers tried to destroy textile machinery to prevent 

their use in industries. In the 1950s, Diebold coined the term automation as a new word that 

denotes both automatic operation and the process of doing things automatically (Diebold, 

1983). He wrote in 1952 the text entitled  Automation: the advent of the Automatic Factory. 

The author presented his vision of the use of programmable electronic systems in the economic 

field. Automation became part of the manual work context and, the machines acquired the 

functions and operations previously performed by man. This change is supposed to benefit 

from eliminating many manual jobs and developing productivity in terms of material and 

energy savings, increasing quality and accuracy (Vagia, Transeth & Fjerdingen 2015). 

Sheridan and Verplank (1978) state that automation shifts the operator's role from manual work 

to a supervisor.  
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Definition 

Parasuraman and Riley (1997) define “automation” as: "A machine that performs the functions 

previously performed by one or more humans". Underlining that automation will change and 

evolve. This does not replace individuals, but it changes the nature of their activities. The tasks 

in which the operator is engaged become primarily of monitoring. The individual has become 

a detector of system status, at least until unexpected events, emergencies, alarms, malfunctions, 

or failures occur. "Automation is proposed to reduce mental workload, increase productivity 

and reduce errors. Consequently, generating new types of cognitive workload and errors" (Di 

Nocera, 2011). 

Therefore, Automation can be described as a machine agent capable of performing the 

functions usually performed by a person (Parasuraman & Riley, 1997). For example, a car's 

automatic gearbox manages to press the clutch and scaling or increasing the gear in use.  

Levels of automation 

The most common automation systems are called "static": the task is permanently assigned to 

the machine or operator without the possibility of switch roles during activity. Human-machine 

interaction can be expressed through one or more levels of automation (LOA). On the one hand, 

we have the operator who independently manages all activities (Level one: “absence of 

automation”). On the other hand, it is the machine that controls all phases of the production, 

limiting the operator to the monitoring of the system. The automation level refers to the 

organisation of tasks and the level of performance achieved between a human operator and a 

computer in controlling a complex system (Billings 1991, Kaber 1997). Sheridan (1997) 

discussed the various degrees of automation that have been defined in terms of system 

autonomy in information detection and task execution. 

Sheridan and Verplank (1978) proposed a taxonomy in the context of teleoperators in 

submarine monitoring. This hierarchy includes various tasks to determine options and their 

implementation. The different LOA have been differentiated in terms of decisional functions 

and action selection. These have been built on the amount of information that the system must 

provide to the operator and the transmission mode. Sheridan and Verplank aimed to define 

"who" (between the operator and the computer) has the greater responsibility in the control of 

the system, without explicitly describing how to share the information processing between the 

components (Table 1). 
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Table 1: Taxonomy proposed by Sheridan and Verplank (1978) 

Subsequently, in 1987, Endsley developed a taxonomy relating to support systems for human 

decision-making processes. This hierarchy established that a task could be performed using:  

1. manual control, without assistance. 

2. decision support provides by system through recommendations. 

3. consensual artificial intelligence (AI), where the system selects the action to perform 

after authorisation by the operator. 

4. monitored artificial intelligence, where the system automatically acts unless the 

operator blocks it. 

5. complete automation without operator interaction. 

This list applies to cognitive tasks, where the operator's ability to make decisions is critical to 

overall performance. Subsequently, Ntuen and Park (1988) developed a five-level taxonomy 

in the context of teleoperations. Both these taxonomies can be considered like the hierarchy 

levels provided by Sheridan and Verplank. Based on this work, Endsley and Kaber (1997, 

1999) propose a 10-levels taxonomy to provide broader applicability with tasks that require 

real-time control within several domains, including air traffic control, aircraft piloting, 

advanced production and teleoperations. These domains have many common features: multiple 

competing goals; multiple tasks competing for an operator's attention, each with different 

relevance to the system's goals; high demands on jobs with limited time resources. Four 

functions related to these domains at the basis of the taxonomy in question have therefore been 

identified:  

● monitoring - acquire all relevant information to perceive the state of the system 

correctly. 

● generation - formulation of options and strategies for achieving the objective. 

● selection - choice of action or strategy. 

● execution - implementation of the selected operation through the control interface. 
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So, ten levels of automation have been built to assign these functions to human or computer or 

a combination of the two: 

1. manual - The operator performs all the tasks of monitoring the system’s status, defining 

possible options, selecting and achieving them. 

2. action support - The operator monitors the system, which assists him in acting. 

3. block processing - The operator selects several options that will then be performed 

automatically by the machine. Automation consists of the physical execution of the 

tasks. 

4. shared control - Both operator and machine generate several choices. However, the 

operator chooses the final option that will be carried out shared with the device. 

5. decision support - The computer generates a list of options from which the operator 

can choose or develop his options. Once the human has selected an alternative, the 

computer performs it. This level represents many expert systems or decision support 

systems that guide the possibilities that the operator can use or ignore when performing 

a task. This level is indicative of a decision support system that is also capable of 

performing tasks, while the previous level (shared control) is not. 

6. mixed decision making - The computer generates a list of options, which it selects and 

executes after the operator's consent. Besides, the operator can choose a different option 

that will be completed by the machine. 

7. rigid system - The computer provides a limited set of actions from which the operator 

must choose, without the possibility of generating others. The machine will then 

perform the selected action. 

8. automated decision making - The system selects and performs the best option from a 

list of alternatives that it generates (increased by the possibilities suggested by the 

operator). 

9. supervisory control - The system generates, selects and implements the action. The 

human operator monitors the three steps and can intervene by developing and selecting 

a different option. 

10. complete automation - The system performs all the actions. The man is entirely out of 

the control circuit and cannot intervene. This level is representative of a fully automated 

system in which human processing is not considered necessary. 

This taxonomy provides some advantages over the previous ones. It offers numerous 

combinations of the four functions mentioned above and on which it is based. For each level, 
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the "who does what" is well defined and is applicable in several contexts (since they are not 

built for a specific sector). 

Choosing the right LOA is a complex process that considers several factors such as human 

performance, reliability, and automation costs (Parasuraman et al. 2000). In the context of 

Human-centred design, the effect of this choice on information processing and performance is 

relevant, regardless of the application context. The human operator's ability to detect and take 

over after a failure is the crucial point of the out-of-the-loop (OOTL) error problem. Therefore, 

it should be central in decisions regarding LOA choices. OOTL issues are characterised by a 

decrease in the operator's ability to intervene in the system control loop and take over manual 

control if necessary (Louw & Merat, 2017; Endsley & Kiris, 1995). The concept of adaptive 

automation (AA) has been introduced to overcome limits due to applying a single LOA. AA is 

also defined as the dynamic allocation of functions. If the user is going to overload, a controlled 

mechanism to dynamically balance the work between user and machine should reduce the 

attentional demand imposed by the task on the operator and optimise the performance. In other 

words, the "division of labour" is dynamically assigned according to the task requests and the 

user's capabilities to achieve an optimal level of performance (Byrne & Parasuraman, 1996). 

This system is designed to be the best solution to the problem of allocation of functions and 

tasks, overcoming the limits linked to static automation. Dynamic assignment necessarily 

requires studies to be evaluated by trying to answer four questions:  

1. What is automated?  

2. How is it automated?  

3. What task can be shared between the machine and the operator?  

4. When do these parameters have to change? 

The system must measure performance values, the user's capabilities, and mental state to 

implement these features. In the literature, it is possible to trace different activation criteria, 

also defined as "triggers," to adapt the system based on the theoretical model used.  

Adaptive automation 

It is possible to highlight three main models (Parasuraman et al., 1992; Rouse, 1988): 

1. Critical event model: If an "x" event occurs, the system should perform the 

corresponding "x" action. An example of adaptive automation based on critical events 

is conflict detection aids for air traffic controllers. The load imposed by the task and/or 
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the traffic complexity can be predicted partially (e.g., based on the number of aircraft 

in the analysed area and other "dynamic density" measures; Smith et al., 1998). So, the 

system could be adaptively provided such aids only in case of high traffic. However, 

this model is limited because it cannot always anticipate critical events. Another 

disadvantage of this method is its possible insensitivity to the human operator's real task 

resolution performance. The critical event model will invoke automation regardless of 

whether the operator requires help (e.g., due to high workload) when the critical event 

occurs (Hancock & Szalma, 2008). 

2. Programmed model: automation is programmed a priori based on a model relating to 

optimal operator performance (Inagaki, 2003; Parasuraman, Bahri, Deaton, Morrison, 

& Barnes, 1992; Prinzel, 2003).  

3. Continuously measured model: automation is adjusted based on continuous 

monitoring of the operator's mental and physical state (Byrne & Parasuraman, 1996), 

based on the performance level (Kaber & Endsley, 2004), or based on a combination of 

both (Wilson & Russell, 2003). 

Conceptually the three models may have aspects in common and a combination of these, 

through hybrid logic, has been recommended as the best way to create an adaptive system 

(Parasuraman et al., 1992). 

Subsequently, Scerbo (1996) in the review "Theoretical Perspectives on Adaptive Automation" 

describes several adaptability strategies proposed by the literature. 

● Performance: the operator's interactions with the system can be monitored and 

evaluated into a standard to determine when to change the automation level. The main 

issue concerns the definition of a reference standard against which to assess operator 

performance. To apply this, it is necessary to build a performance model. Several 

authors (Geddes, 1985; Rouse, Geddes, & Curry, 1987) propose a model that considers 

the system's current state, external events, and expected operator actions. 

● Workload: Hancock and Chignell (1988) provide a model where tasks are assigned to 

the operator or system based on present and future workload levels. Again, current 

workload levels are determined in part by deviations from an ideal model. 

● Biometric measurements: In this model proposed by Morrison and Gluckman (1994), 

the idea is that physiological signals reflecting the activity of the autonomic nervous 

system (e.g., heartbeat, galvanic response, pupil diameter) or the brain presumably 

change concerning the workload level and could be used as automation activators. 
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Several important factors need to be considered to develop the models, including the system's 

reactivity. The system's response time is a determining element in usability and user acceptance 

(Bailey, 1982). This becomes more critical in adaptive automation. Successful automation will 

require adequate timing, as well as the right amount of automated processes. Under high-risk 

conditions, instant system response is needed. Several authors argue that such speed is only 

possible by predicting the system's future state in terms of performance level and workload 

(Greenstein & Revesman, 1986; Rouse, Geddes, & Curry, 1987).  

Chapter 2 - Eye movement 

Physiological workload indicators 

Several psychophysiological measures have been studied for identifying new real-time 

indicators of operator functional state. Mehler, Reimer, Coughlin, and Dusek (2009) conducted 

a research study on a sample of 121 participants with the aim of examining the sensitivity of 

parameters such as heart rate variability, skin conductance and respiratory rate as continuous 

measures of workload in a simulated driving environment. The analysis showed a significant 

effect of the difficulty level in all the psychophysiological parameters. A more recent study 

(Pakarinen, Korpela, Torniainen, Laarni, & Karvonen, 2018) examined the relationship 

between the mental workload and the response to the physiological stress of nuclear power 

plants operators, who were assigned the task of managing the simulation of a large-scale 

accident through the control room. Records of heart rate and heart rate variability (respectively) 

were used to measure stress on a sample of 22 volunteer operators. The results showed a 

relation between the psychophysiological measures and the increase in workload experienced 

during a high accident risk scenario. In addition, these findings confirmed the data from self-

report measures (NASA-TLX) and corroborated previous research results (Bernardi et. al., 

2000; Reimer & Mehler, 2011; Hwang et al., 2008). More specifically, many studies in the 

literature have investigated the relationship between neurophysiological measures and mental 

workload, such as electroencephalography (EEG) (Brookings, Wilson, & Swain, 1996; Gevins 

& Smith, 2003; Borghini et al., 2014), functional Near-InfraRed Spectroscopy (fNIRS), and 

functional Magnetic Resonance Imaging (fMRI) (Gabbard, Fendley, Dar, Warren, & Kashou, 

2017; Liu, Ayaz & Shewokis, 2017; Ranchet, Morgan, Akinwuntan & Devos, 2017). In a study 

by Aricò et. al. (2016), a workload index based on EEG measurements was used as a trigger in 

an adaptive automation system implemented in a realistic Air Traffic Control Environment. 
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Eye movements as a behavioural measure 

With the continuous development of technology and automation, human information 

processing has changed. Pilots, for example, have different tools available to monitor the 

environment. The task of monitoring and interpreting these information has become primary 

compared to the past. In the absence of these devices, the operator had to independently acquire 

this information by placing the attention outside the cockpit. In the aviation sector, visual data 

processing remains one of the critical elements of the system's safety and effectiveness. 

The oculomotor system provides a lot of information about the person's cognitive processes 

and mental effort during a task’s execution. Eye trackers allow the measurement of the ocular 

parameters: the direction of gaze, pupil diameter changes, and the eyeblinks. Analyses of this 

data provide various numerical indices (e.g., number of fixations and amplitude of the 

saccades) and allow us to obtain graphical representations (Figure 2) that can be used to 

interpret a person's behaviour. Moreover, it is essential to emphasise that research in this field 

has continued to evolve thanks to continuous technological advances, which have led to 

increasingly advanced, less intrusive, and more accurate ocular activity monitoring tools 

(Marshall, 2007). 

 

Figure 2: Speed and position of gaze-points in relation to the x-axis. Peaks in the calculated speed can be used 

to identify the saccades between one fixation and the next. 

Several attempts have been made to find an ocular index as a continuous measure of the 

operator's mental state. Below, the most common among these has been analyses, highlighting 

the strengths and weaknesses of each. 
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Pupillary diameter and workload 

Several authors have shown that pupil dilation may be related to cognitive processing and to 

the mental effort required to perform a given task (Othman & Romli, 2016; van der Wel & van 

Steenbergen, 2018; Kosch, 2018). This relation has been analysed in various tasks including 

short-term memory (Peavler, 1974) and visual search tasks (Porter, Troscianko, & Gilchrist, 

2007), but also in air traffic control (Hilburn et al., 1997) and driving (Razaei and Klette, 2011). 

Just and Carpenter (1993) identified changes in pupil diameter when understanding single 

sentences with different degrees of difficulty. Iqbal, Adamczyk, Zheng, and Bailey (2004) 

confirmed a correlation between pupil variation and mental workload, when participants were 

asked to perform various tasks including text comprehension, mathematical reasoning, target 

stimulus research and object manipulation. Already in 1966, Beatty and Kahneman had 

detected a 10% dilation of the pupil diameter during the first half-second after the presentation 

of a stimulus (corresponding to a familiar name) that required the subject to issue a verbal 

response (the corresponding phone number). The two authors performed an accurate analysis 

of pupil diameter variation. Beatty defined it: "pupillometric analysis of task-evoked pupillary 

response in a short-term memory task" (1982, p. 277). The analysis was conducted by asking 

subjects to write sequences of numbers of different length (from 3 to 7 digits) presented a few 

seconds earlier by auditory means. The pupil diameter graph clearly showed an increase during 

the presentation of the stimuli and a decrease during the writing of digiting. Also, the pupil 

diameter variation occurred as a function of the stimulus's length (greater when they had to 

rewrite seven digits; Kahneman & Beatty, 1966). Later Just and Carpenter (1993) identified 

pupil diameter variations during the understanding of single sentences with different degrees 

of difficulty. Iqbal and colleagues (2004) confirmed a correlation between pupil variation and 

mental workload: subjects were required to perform various tasks, including understanding a 

text, mathematical reasoning, finding a target stimulus and manipulating objects. In an 

application context, it was observed that this measure increases as a function of the density of 

targets present in the visual scene (Van Orden et al., 2001). In 2010, Palinko and colleagues 

associated the variation in pupil diameter with driving activity, finding an increase in pupil 

diameter when subjects were required to drive with a simulator compared to when they sat on 

the passenger seat.  

The pupil diameter has been reported to be very promising as a measure of mental workload. 

However, an important limitation of this measure is the difficulty of keeping constant the 

brightness of the environment in which the task is performed. The amount of light reaching the 
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eye causes rapid changes in pupil diameter and this can limit the benefits of this metric in 

working environments. In fact, unlike controlled laboratory settings, the brightness of the 

working environment (e.g. the brightness of the displays or the room) is variable. Changes in 

pupil diameter may be due partly to physical components in the environment and partly to 

workload, making it difficult to isolate a valid and reliable measure of cognitive effort. 

Eyeblink and workload 

Eyeblink describes the rapid closure of the eyelids and provides three metrics: frequency, 

duration and latency. In 1988 Stern described the blink with the term "mental punctuation". 

Specifying that is necessary at the end of a cognitive process, for the analysis of a stimulus. He 

was arguing how this parameter is influenced by the complexity of the information presented. 

Starting from these arguments Boehm-Davis, Gray and Schoelles (2000) examine the 

relationship between the difficulty of the task and the frequency of eyelid closure, using a 

sample of 64 university students. The researchers hypothesise that the eyeblink frequency is 

reduced during the information processing and increases subsequently. The subjects had to 

monitor a series of elements present within a radar and acquire specific information from each 

one with the mouse cursor. The participant had to correctly classify the elements by assigning 

each one a risk value from 1 to 7. The number of elements was manipulated to create two 

conditions with different difficulty: 9 targets in the first and 18 in the second. The results 

confirm the hypothesis, suggesting that the eyeblink is suppressed when the task has a large 

amount of information to analyse. It is also noted that the frequency of eyeblink increases after 

the end of the cognitive processing phase compared to baseline values. The literature describes 

three types of eyeblink: corneal, voluntary and endogenous reflex. The endogenous blink is 

spontaneous and is not caused by environmental stimuli (Neumann and Lipp, 2002). It is 

possible to measure the frequency and duration of this type of eyeblink. Generally, the former 

decreases in conditions with high visual and/or cognitive load, such as driving a car in the city 

rather than on the highway (Pfaff, Fruhstorfer, & Peter, 1976). Considering that eyeblink 

inevitably causes the interruption of visual inputs, the reduced frequency of eyeblink allows 

for the better and constant analysis of the information present in a specific area of space, 

especially in high mental workload conditions. For the same reason, the duration of the blink 

also decreases as the visual load increases. In 1987 Wilson and colleagues observed that the 

duration is shorter during a real flight execution rather than simulated. In 1988, Sirevaag et al. 

found lower blink duration values in the double task condition than in the single-task condition 
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(Wilson, Purvis, Skelly Fullenkamp, & Davis, 1987; Sirevaag, Kramer, DeJong, & Mecklinger, 

1988). Conversely, blink frequency increases when subjects need to move the gaze from one 

instrument to another in rapid sequence. The closing of the eyelids helps to point out the end 

of acquiring an information set (Fogarty & Stern, 1989). Wierwille, Rahimi, & Casali (1985) 

observe an increase in frequency with an increase in navigation demand during a flight mission 

simulation. Orchard and Stern (1991) argue that an endogenous blink is directly related to 

perception and information processing. If the task requires a high level of attention, the blink 

frequency will decrease. Also, if a motor action has to be performed to a specific stimulus, the 

blink may be inhibited until it is completed. Stern et al. (1984) observe that an increase in 

latency in the blink corresponds to increased mental workload. The delay in the corneal reflex, 

following the presentation of a relevant stimulus, increases according to the volume of 

information to remember (Bauer, Goldstein, & Stern, 1987). Also, the delay increases when 

the subject has to respond to a sound discrimination task (Goldstein, Walrath, Stern, & Strock, 

1985). However, blink also occurs as a pupillary reflection, involuntarily, following a sudden 

and sufficiently intense stimulus such as loud noises or a flash. Pupillary diameter and blink 

are measurements directly provided by the most common eye-tracker models. Their use in an 

adaptive system does not require raw data processing algorithms. However, it is not possible 

to do the same when we talk about Fixations and Saccades, since these measurements are 

obtained by analysing the distribution of individual gaze-points defined as the projection on 

the visual scene, having coordinate 'x' and 'y', given by the direction of the gaze. 

Fixations and Saccades 

The movements of the ocular muscles bring specific portions of the image to the fovea. The 

foveal area offers a high visual acuity and allows to capture image details very accurately. 

Therefore, it is possible to distinguish between periods in which the eyes’ position is kept 

stable, defined by the term "Fixation", and periods in which there are rapid eye movements that 

direct the gaze toward a new area, defined as "Saccade". The saccade is considered one of the 

fastest movements of the human body, that varies in amplitude, duration and maximum angular 

velocity (defined as peak velocity). The relationship of these three parameters has been defined 

as "the main sequence", indicating that the peak velocity value and the saccade duration 

increase systematically with the same amplitude (Di Stasi et al. 2010). Looking at a graphical 

representation (Figure 2) of an eye-tracker’s raw data, it is relatively easy to identify and 

distinguish these two events. However, the high sampling rates and the huge amount of raw 
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data provided by eye-trackers make it necessary to use specific software to analyse and apply 

automatic classification algorithms. These consist of search and categorisation rules. The first 

aims to split the fastest "periods" (saccades) from the slowest "periods" (fixations). The second 

aims to accept or reject, divide and/or merge possible events (saccades and fixations) based on 

a set of criteria (e.g. minimum time of fixation or maximum duration of a saccade) (Hessels, 

R. S., Niehorster, D. C., Kemner, C., & Hooge, I. T., 2017). For example, speed-based 

algorithms emphasise this value, assuming that fixations are positively correlated with a 

slowing down of movements (Salvucci, 2000). The criteria can be chosen based on the 

algorithm used (Holmqvist et al., 2011) or directly by the experimenter based on the task, such 

as reading a text or a visual research task (Rayner, 2009). The analysis and, consequently, the 

raw data reduction is useful for the following reasons: during a saccadic movement, it is not 

possible to process visual information. For this reason, the image portions where saccades are 

performed are typically irrelevant in the application of many searches. In addition, micro-

movements recorded during a fixation such as a tremor or rapid movements away from the 

focus (flicks), often count for little during high-level analysis (Salvucci, 2000). The 

mathematical definition of Fixation and Saccade allowed researchers to study new indexes and 

then observe how they vary according to mental workload.  

Visual search strategy and workload 

Fixations’ duration, frequency, amplitude, and velocity of the saccades constitute the entire 

visual research strategy adopted to complete a specific task. In 2009, De Greef et al. explored 

how these parameters vary according to the system's mental workload. The study involved 18 

subjects, who were asked to identify themselves in an operator's role, responsible for managing 

a combat workstation, on board a military ship. The interface included a schematic visual 

representation of the ship's area, built with real data from a radar system. Each subject had to 

monitor, classify and identify the different elements present in the scene (aeroplanes and/or 

ships). Each time an element was heading towards "its" position (corresponding to the centre 

of the radar), thus presenting a hostile behaviour, the operator was required to perform three 

tasks: Acquisition of information of the single element (Track), partly provided by the radar 

and partly obtained through the communication tools that allowed the subject to get in contact 

with the "Track", the air control or the coast guard. With this information, the subject had to 

finally classify the element as a friend, enemy or neutral. If it was confirmed as "enemy", it 

was necessary to perform the last action of engaging the weapons and, consequently, its 
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elimination. To create three mental workload conditions, the researchers manipulated the 

number of elements present in the radar and the percentage of these that had a special 

behaviour, forcing the user to perform more operations. The authors confirm a significant 

difference in the subjects' mental workload in all three conditions (under load, normal and 

overload). Consequently, the results show a positive correlation of the workload with the 

fixations duration, as confirmed by previous researches (Tole, J.R., Harris, R.L., Stephens, 

A.T., Ephrath, A.R., 1982; Callan, 1998). More recently, Di Stasi et al. (2016) investigated the 

effects of simulated flights' duration on the speed of saccadic movements made by pilots. The 

objective was to investigate how the saccades' speed varies according to the fatigue experienced 

by the subjects during long periods of flight, and therefore the potential application of this 

parameter to evaluate the physical and mental state of the operator before and during flight 

operations. To verify this hypothesis, a sample of 26 pilots was used, divided into two 

experimental groups who were asked to perform a simulated flight with an average duration of 

54 minutes for the first group, and 109 minutes for the second group. The results show that the 

time spent on the task increases together to the subject's perceived fatigue and so, the speed of 

the saccadic movements decreases. This suggests that ocular metric can be a behavioural index 

of fatigue (Di Stasi et al., 2016). The study takes into consideration separately the parameters 

derived from eye movements. However, some research shows a systematic relationship 

between the fixations duration and the saccadic amplitude. In 1974, Antes was one of the first 

researchers to analyze how the duration of fixations and saccades varies during the free 

exploration of an image. He noted that the fixations duration increases and the saccade 

amplitude decreased in the first seconds of observation. Karpov, Luria and Yarbus (1968) 

attribute this effect to initial and final phases of global visual exploration in the same period. 

These results are also explained as an adaptation in the exploration strategy used to perform 

the task. Similar results were reported by Galpin and Underwood (2005) in a comparative 

visual research task. The authors proposed that the initial model of short fixations and long 

saccadic functions find an optimal point in the visual scene to start the search task. The 

relationship between fixations duration and saccadic amplitude is of particular interest for its 

possible diagnostic value related to the two main modes of visual processing (Unema et al., 

2005; Velichkovsky, Dornhoefer, Pannasch, & Unema, 2000; Velichkovsky, Rothert, Kopf, 

Dornhoefer, & Joos, 2002). The experiments carried out by Velichkovsky in 2005 show that 

the differences in the mode of recognition of visual stimuli are manifested in the fixations 

duration and the amplitude of the saccades adjacent to them. Therefore, the results show that a 



21 

higher performance was correlated with longer fixation times and saccadic with amplitude < 

5°, rather than short fixations and large saccades.  

Scanpath analysis 

Regarding scanpath, fewer researchers have investigated the ocular activity about other factors, 

such as mental workload. The topography of the visual scanning, as well as its dynamics, was 

quantitatively approached in two studies by Tole, Stephens, Vivaudou, Ephrath & Young 

(1983) and Harris, Glover & Spady (1986) who suggested using the entropy rate of the visual 

scanning for discriminating between different levels of mental workload. Their results 

suggested that scanpath tends to be cluttered and random when the workload is low. Instead, it 

would become regular and predictable as the demand increases. Although very appealing, 

entropy has seldom been used as a measure of workload and therefore its properties have not 

been properly tested. 

Moreover, entropy is limited by the need to rely on predefined Areas Of Interest (AOIs) to 

compute transitions between them: in many operational settings visual scanning happens 

outside specific AOIs, or the AOIs change dynamically. To overcome this limit, Di Nocera, 

Camilli and Terenzi (2007), introduced an alternative approach based on the spatial distribution 

analysis of fixations through the Nearest neighbour Index (NNI). The spatial distribution 

appeared sensitivity to changes in mental workload. Earlier studies on its functional 

significance suggest that scanpath appears to be more scattered when the temporal demand 

increases (as the time pressure). On the other hand, a higher concentration of fixations in 

specific areas depends on the visuospatial demand (Camilli, Nacchia, Terenzi & Di Nocera, 

2008). It is similar to the concept of an ordered scanpath provided by the entropy rate measure. 

Entropy is based on transitions between AOIs and has been applied in scenarios with high 

visuospatial demand. However, the two metrics have never been compared. The analytical 

details of the two approaches are described in the following sections. 

Entropy rate 

Entropy can be defined as a measure of the disorder found in any physical system and this 

concept was then applied by Tole et al. (1983) to eye movements. When the individual looks 

at all the quadrants in the scene and crosses all the potential combinations of stimuli with a 

stable frequency, the entropy will increase. Instead, the entropy value will be lower when the 

individual focuses attention on a narrower range of possible areas of interest. That happens 
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because the frequency of transitions from one area to another decreases. A regular and 

systematic visual exploration strategy is shown in a condition of low entropy, which 

corresponds to a more orderly passage to other areas. The principal benefit of this analysis is 

the possibility to "summarize" the visual strategy using a single value. The first step in 

estimating the amount of entropy is to identify the areas of interest in the visual field, and then 

computing the proportion of time taken by the participant to look at each of these areas:  

𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝒓𝒂𝒕𝒆 =  ∑[(𝑬 𝑬_𝒎𝒂𝒙⁄ )/𝑫𝑻𝒊]

𝑫

𝒊=𝟏

 

𝑬 =  − ∑ 𝑷𝒊𝒍𝒐𝒈𝟐𝑷𝒊

𝑫

𝒊=𝟏

 

where E represents the value of the observed average entropy, E _max is the maximum entropy 

value computed from the total number of AOIs in the scene (it constitutes the entropy value 

when all AOIs are accessed with the same probability), Pi represents the probability that the 

sequence i occurs, DTi is the average duration of fixation for the i-th sequence when the 

individual is visually exploring the scene, and D expresses the number of the distinct sequences 

in the scanpath. The index is indicated in bits/second. 

NNI 

The Nearest Neighbour Index (NNI) provides data on the distribution of points in space. The 

average distance between the fixations collected during the execution of a task and the average 

distance between the fixations expected in a random distribution are taken into account in the 

application of the NNI to eye movements. The result is represented by a single value where 1 

indicates that the empirical and the random distribution are not different; values above 1 

indicate dispersion, while values below 1 show clustering. The index can be computed for small 

epochs if sufficient fixations are available (about 50 as a rule of thumb) and then analyzed as a 

time series, therefore offering information on the temporal variations of distribution of fixation 

points. A methodological study (Camilli, Terenzi & Di Nocera, 2007) supports the validity of 

this algorithm as a measure of mental workload, highlighting the consistency of the index with 

subjective and psychophysiological measures. To estimate the index it is first necessary to 

calculate the Nearest Neighbour distance or d(NN): 

𝑑(𝑁𝑁) =  ∑[𝑚𝑖𝑛
(𝑑𝑖𝑗)

𝑁
]

𝑁

𝑖=1

, 1 ≤  j ≤  N, j ≠  i 
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where min (dij) represents the distance existing between each point i and the nearest point j 

(with the j value between 1 and N and different from i), and N corresponds to the number of 

points in the distribution. The next step is calculating the average random distance or d(ran) to 

obtain the second element of the equation; this value would represent the value of d(NN), 

supposing that the distribution of the points were totally random:  

𝑑(𝑟𝑎𝑛) = 0.5√
𝐴

𝑁
 

where A indicates the polygon, area delineated by the most extreme fixations and N represents 

the number of points. The NNI value is then calculated by dividing the Nearest Neighbour 

Index distance, d(NN), by the average random distance, d(ran): 

𝑁𝑁𝐼 =
𝑑(𝑁𝑁)

𝑑(𝑟𝑎𝑛)
 

Chapter 3 - Experimental studies 

Study one 

The objective of this experiment was to test the sensitivity and diagnosticity (see Wierwille & 

Eggemeier, 1993) of the NNI, that is how changes in the visual exploration strategy due to 

different workload levels and different types of demand imposed by the task are captured by 

the distribution of fixations. This aspect has been previously approached by Camilli, Terenzi 

and Di Nocera (2008) in a between-subject design, comparing the effects of the mental and 

temporal demands on the distribution of fixations. 

Tools and software 

Experimental software development 

The Tetris game used in this study was coded using JavaScript and GoogleScript. The gaming 

area consisted of 300 cells deployed on a grid of 15 columns by 20 rows. Each tetromino (piece) 

was randomly extracted from a pool composed of 7 different tetrominos types and it descended 

at a constant speed. With the aim of creating three experimental conditions, specific variables 

have been modified to induce a different type of task demand. In Condition 1, speed of falling 

pieces has been manipulated to generate time pressure (temporal demand); in Condition 2, 

direction of pieces has been reversed to increase mental demand (each piece appears in the 
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lower part of the game area and then rises to the top); in Condition 3, the interaction with pieces 

was occasionally blocked, therefore forcing the user to press the control keys several times to 

move the pieces (physical demand).  

The manipulations were coherent with the NASA-TLX definition of mental, temporal and 

physical demand. Mental demand: "How much mental and perceptual activity was required? 

Was the task easy or demanding, simple or complex?"; Temporal demand: "How much time 

pressure did you feel due to the pace at which the tasks or task elements occurred? Was the 

pace slow or rapid?"; Physical demand: "How much physical activity was required? Was the 

task easy or demanding, slow or brisk, slack or strenuous, restful or laborious?". Therefore, we 

consider the visuo-spatial demand imposed here as an expression of the mental demand. 

In our version of Tetris, the "game-over" consisted of the exhaustion of the playing area given 

by the excessive accumulation of pieces but did not represent the end of the game. When the 

event occurs, the program automatically resets the entire area deleting all the accumulated 

pieces and allowing the user to continue the game until the end of the experiment. The number 

of pieces accommodated and the number of completed lines were used as performance 

measures. The number and shape of the pieces, the size of the playing area, and the difficulty 

between levels were based on the original version of the Tetris. 

Ocular activity recordings 

The Gazepoint GP3HD eye-tracking system was used to record ocular activity. This system 

allows the researcher to collect ocular data without using invasive and/or uncomfortable head-

mounted instruments. Gazepoint, the eye tracker manufacturer, claims accuracy within 0.5 to 

1.0 degrees and reads data at a rate of 150Hz. The eye tracker was calibrated using the default 

9-point calibration test using Gazepoint’s included software. 

Participants 

Thirty university students (19 women and 11 males, M = 25 years old, SD = 3.6) volunteered 

and participated in the experiment. All participants had a normal or corrected-to-normal vision 

and were naïve as to the aims of the experiment. This research study was completed with the 

tenets of the Declaration of Helsinki and was approved by the Institutional Review Board of 

the Department of Psychology, Sapienza University of Rome. Informed consent was obtained 

from each participant. Participants received a € 20.00 worth bookstore gift card. One subject 

was excluded from the data analysis due to the low quality of recorded eye movements. 
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Procedure 

Participants were tested in a within-subject design in which the same task was manipulated -in 

three different sessions- for manipulating the mental, the temporal, and the physical demand. 

Participants played a custom coded version of the Tetris game, a commonly known tile-

matching puzzle videogame successfully used in a variety of studies (e.g., Trimmel & Huber, 

1998). For experimental purposes, the game restarted from a blank screen each time the stack 

of Tetrominoes reached the top of the gaming area and no new Tetrominoes were able to enter. 

This condition commonly denotes the end of the game, whereas in this experiment it was scored 

as a loss (performance measure). Participants were instructed to gain as many points as possible 

(i.e., complete lines and avoid losses). 

Training session 

Before the experimental session started, each participant performed a training session, whose 

scope was to familiarize the participants with the experimental setting. To this aim, each 

participant played the Tetris game starting from a low difficulty level and moving on to 

Baseline, Temporal demand (TD), Mental demand (MD) and Physical demand (PD) 

conditions. The training had a 5-minute duration and did not include the evaluation of the 

participants’ performance level in this phase. The scheme of the training session is reported 

below: 

● One minute of gameplay at Level 1 (drop speed: 1250 ms per block), with the aim of 

verifying the correct understanding of the game rules and allowing the participant to 

familiarize with the use of directional keys. 

● Baseline condition: one minute, configured at level 6 (drop speed: 208 ms per block). It 

was used to acquire the baseline for the experimental session. 

● TD condition: one minute, set at level 8 (drop speed: 156 ms per block). 

● MD condition: one minute, during which the entire playing area was rotated by 180° and 

each Tetromino appeared on the bottom side and went up, accumulating on the top of the 

gaming area. 

● PD condition: one minute, in which the participant needed to press the directional keys 

repeatedly to move the piece quickly in the chosen direction (instead of keeping the key 

pressed). 
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The difficulty level of the conditions, as determined by the drop speed of the pieces, was 

defined on the basis of previous studies (Camilli, Terenzi & Di Nocera, 2008; Camilli, Terenzi 

& Di Nocera, 2007). 

Experimental session 

After the calibration of the eye-tracker, participants were instructed to play the game earning 

as many points as possible (i.e., complete lines and avoid losses). Each condition lasted 10 

minutes and the order of presentation was randomized across participants. After completing 

each condition (Baseline vs. TD vs. MD vs. PD), participants were requested to fill in the 

NASA-TLX (Hart & Staveland, 1988). 

Data analysis and results 

Performance data 

A performance index was computed based on the number of lines completed in relation to the 

maximum number of lines that could be completed. The maximum value is obtained by the 

total number of Tetrominoes that the participant managed in each condition (For example, with 

60 pieces it was possible to complete a total of 16 lines if managed in an optimal way). The 

index goes from 0 to 1, where 1 means that the player has obtained the maximum achievable 

score. The performance index was used as dependent variable in a repeated measures ANOVA 

design, using Condition (Baseline vs. TD vs. MD vs. PD) as repeated factor. Results showed a 

main effect of the condition [F3, 84 = 16.88, p < .001] (Figure 3). The faster (TD) and Reversal 

conditions (MD) were associated with the worse performance with respect to the baseline 

(Table 2). Overall, performance is low in all conditions. This could indicate either a limited 

ability of the subjects in the Tetris game or a wrong selection of difficulty levels (described in 

the previous paragraph). However, the baseline is easier than the experimental conditions 

(excluding the PD condition), which allows us to read the results obtained from the subjective 

and ocular measures in line with the starting hypotheses. 

 TD MD PD 

Baseline .001 .011 .285 

TD  .01 .001 

MD   .001 

Table 2: Post hoc analysis carried out through the Duncan test. Pairwise comparison among PI scores and 

conditions (*p < .05). 
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Figure 3: The performance index shows the overall strategy used by participants. It is the ratio of the number of 

completed lines to the number of pieces that appeared during the game. Values close to 1 means an optimal 

game with a high number of lines completed. 

Subjective measure 

NASA-TLX weighted ratings were used as dependent variables in a repeated measures 

ANOVA design using Condition as repeated factor. Results showed a main effect of Condition 

[F3, 84 = 11.11, p < .001] (Figure 4, Table 3), consistent with those obtained for the performance 

index. Although analyses on the single items are questionable from a statistical standpoint, it 

is worth noting that TD, MD, and PD conditions showed higher values for temporal, mental 

and physical demand scales respectively (Figure 5, Table 4-6). These results show that the 

manipulations made with the Tetris have indeed taxed specific aspects or resources. 
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 TD MD PD 

Baseline .001 .001 .51 

TD  .153 .001 

MD   .01 

Table 3: Post hoc analysis carried out through the Duncan test. Pairwise comparison among NASA-tlx scores 

and conditions (*p < .05). 

 

 

 

 

 

 

 

 

Figure 4: NASA-tlx values (weighted scores) separately for the conditions. Error bars denote .95 confidence 

intervals. 
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 TD MD PD 

Baseline .001 .829 .917 

TD  .001 .001 

MD   .765 

Table 4: Post hoc analysis carried out through the Duncan test. Pairwise comparison among Temporal demand 

scale scores of NASA-tlx and conditions (*p < .05). 

 

 

 

 

 TD MD PD 

Baseline .05 .001 .612 

TD  .01 .016 

MD   .001 

Table 5: Post hoc analysis carried out through the Duncan test. Pairwise comparison among Mental demand 

scale scores of NASA-tlx and conditions (*p < .05). 

 

 

 

 

 

 

 TD MD PD 

Baseline .882 .66 .001 

TD  .583 .001 

MD   .001 

Table 6: Post hoc analysis carried out through the Duncan test. Pairwise comparison among Physical demand 

scale scores of NASA-tlx and conditions (*p < .05). 
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Figure 5: NASA-TLX subscales values (Temporal (A)[F3, 84 = 14.36, p < .001], Mental (B)[ F3, 84 = 12.685, p < 

.001] and Physical (C) [F3, 84=13.27, p < .001] demand) separately for the conditions. Error bars denote .95 

confidence intervals. 

Number and duration of fixations 

The number and duration of fixations were computed on epochs of 1 minute for each participant 

and then averaged. Averaged number and duration of fixations were used as dependent 

variables in a repeated measures ANOVA design using Condition as the repeated factor. No 

significant differences between conditions were found (Figure 6-A and 6-B; Table 7-8) 

[Fixations number: F3, 84 =.365, p > .05] [Fixations duration: F3, 84 = .798, p > .05]. 
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 TD MD PD 

Baseline .36 .78 .61 

TD  .49 .64 

MD   .79 

Table 7: Post hoc analysis carried out through the Duncan test. Pairwise comparison among fixations number 

and conditions (*p < .05). 

 

 TD MD PD 

Baseline .48 .46 .71 

TD  .18 .69 

MD   .30 

Table 8: Post hoc analysis carried out through the Duncan test. Pairwise comparison among fixations duration 

and conditions (*p < .05). 

Amplitude of saccades 

The amplitude of saccades was computed on epochs of 1 minute for each participant and then 

averaged. The averaged amplitude of saccades was used as dependent variable in a repeated 

measures ANOVA design using conditions as repeated factor (Figure 6-C). Results showed a 

main effect of condition [F3, 84 = 12.84, p < .001]. 

 

 TD MD PD 

Baseline .60 .001 .19 

TD  .001 .08 

MD   .001 

Table 9: Post hoc analysis carried out through the Duncan test. Pairwise comparison among amplitude of 

saccades and conditions (*p < .05). 
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Figure 6: Averaged number (A) and duration (B) of fixations, and amplitude of saccades (C), for the conditions 

compared with the baseline. Error bars denote .95 confidence intervals. 

Nearest neighbour Index (NNI) 

The NNI was computed on epochs of 1 minute (Di Nocera, Ranvaud & Pasquali, 2015) for 

each participant and then averaged . Averaged NNI values were used as the dependent variable 

in repeated measures ANOVA using conditions as the repeated factor. Results showed a main 

effect of Condition [F3, 84 = 12.31, p < .001]. TD condition showed higher NNI values (i.e., a 

more dispersed distribution of fixations) than the baseline (Figure 7-A), while in the MD 

condition NNI values were the lowest (Figure 7-B) (Table 10). 
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Figure 7: Average NNI for the conditions compared with the baseline separately. Error bars denote .95 

confidence intervals. Baseline Vs TD (A); Baseline Vs MD (B); Baseline Vs PD (C); all condition (D). 

 

 TD MD PD 

Baseline .018 .01 .072 

TD  .001 .49 

MD   .001 

Table 10: Post hoc analysis carried out through the Duncan test. Pairwise comparison among NNI and 

conditions (*p < .05). 

Discussion 

This first study aimed at investigating how the visual exploration strategy changes both along 

with the task-load and with the type of task demand. The results showed an increase in the 
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NASA-TLX values of the single subscales (mental demand, physical demand, and temporal 

demand) matching the respective manipulation. Overall, we observed a greater workload in the 

MD and TD conditions compared to the control and PD conditions. The latter has shown higher 

values in the corresponding NASA-TLX scale, but the manipulation of the physical demand 

did not affect the overall self-reported workload. Finally, and more important to our aims, the 

analysis of the fixations pattern showed high clustering when the task-load increment was 

obtained by changing the mental (visuo-spatial) demand, and low clustering when it was 

obtained by changing the temporal demand. 

Study two 

The entropy-based analysis of the scanpath and the spatial distribution of fixations points are 

reported to be good indices of mental workload. However, they have never been directly 

compared. The aim of this second study is to perform such a comparison. 

Tools and software 

Stimuli 

To induce high visual-spatial demand and to assess how that affects visual search, a single pair 

of black and white pictures (figure 8 and 9). Pictures were rich in details so that the numerous 

elements would engage participants in a long visual exploration session. The size of each 

picture was 9.8 x 5.5 inches, and both featured thirty-five subtle differences but were otherwise 

identical. The two images were aligned horizontally and in full-screen mode on a 27” display. 

Ocular activity recordings 

Prior recording, participants performed a nine-point calibration and then their eye movements 

were recorded through the Pupil Labs system with binocular 120 Hz Eye Tracking Camera 

(Pupil Labs GmbH, Germany) claims accuracy of 0.6 degree. 

Participants 

The experiment involved fourteen university students (9 women and 6 males, mean age = 24 

years, S.D. = 2.6) who participated on a voluntary basis. All participants had a normal or 

corrected-to-normal vision and were naïve as to the aims of the experiment. This study was 

compliant with the principles of the Declaration of Helsinki and was the protocol approved by 

the Institutional Review Board of the Department of Psychology, Sapienza University of 

Rome. Each participant provided informed consent. 
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Procedure 

The experiment was conducted in a dark room and participants were seated at approximately 2 

ft. from a computer screen. During the task, they had to find as many differences as they could 

between the two images in a 24-minute session. They were requested to click with the mouse 

on each difference they identified. The differences found were highlighted with a circle 

throughout the session. Participants were also asked to provide a subjective evaluation of 

mental workload on a 2-minute schedule (Instantaneous Self-Assessment (ISA): Tattersall & 

Foord, 1996). 

 

Figure 8: Left panel. Artwork by Benoit Tranchet (reproduced with permission). 
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Figure 9: Right panel. Modified version of the original artwork with 35 differences. 

Data analysis and results 

Performance and self-reporting measures 

The whole activity was split into 12 periods of two minutes each, to match performance and 

subjective evaluations. The number of differences identified by each subject in each epoch was 

used as a performance indicator. The number of differences identified, and the ISA scores were 

used as dependent variables in two repeated measures ANOVA designs using Epoch as 

repeated factor. A main effect of Epoch was found both on the number of differences [F11, 143  

= 16.52, p < .001] (figure 10) and the ISA scores [F11, 143 = 15.50, p < .001] (figure 11). Plots 

reveal Duncan post-hoc testing revealed asymptotic pattern for both the performance measure 

and the workload estimates starting from the twelfth minute (Table 11; Table 12). 
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Figure 4: Task performance (number of differences found) along time. Error bars denote .95 confidence 

intervals. 

Epoches 2 3 4 5 6 7 8 9 10 11 12 

1 .079 .201 .001 .001 .001 .001 .001 .001 .001 .001 .001 

2  .561 .004 .001 .001 .001 .001 .001 .001 .001 .001 

3   .001 .001 .001 .001 .001 .001 .001 .001 .001 

4    .642 .061 .048 .055 .007 .017 .002 .002 

5     .131 .113 .125 .023 .048 .010 .008 

6      .829 .908 .362 .533 .231 .201 

7       .908 .448 .642 .296 .263 

8        .405 .588 .263 .231 

9         .728 .728 .665 

10          .516 .467 

11           .908 

Table 11: Post hoc analysis carried out through the Duncan test. Pairwise comparison among Number of 

differences identified and Epoches (*p < .05). 
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Figure 11: Subjective workload (ratings from 1 to 5) along time. Error bars denote .95 confidence intervals. 

 

Epoches 2 3 4 5 6 7 8 9 10 11 12 

1 .028 .006 .001 .001 .001 .001 .001 .001 .001 .001 .001 

2  .529 .036 .003 .001 .001 .001 .001 .001 .001 .001 

3   .116 .016 .001 .001 .001 .001 .001 .001 .001 

4    .345 .074 .019 .009 .001 .001 .001 .001 

5     .345 .138 .085 .012 .005 .011 .009 

6      .529 .377 .100 .056 .093 .085 

7       .753 .270 .174 .257 .238 

8        .397 .270 .377 .345 

9         .753 1.000 1.000 

10          .770 .779 

11           1.000 

Table 12: Post hoc analysis carried out through the Duncan test. Pairwise comparison among ISA scores and 

Epoches (*p < .05). 
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Nearest neighbour Index (NNI) 

For each participant, the NNI was calculated taking into account 1-minute epochs (Di Nocera, 

Ranvaud & Pasquali, 2015). Average NNI values were used as dependent variables in a 

repeated measures ANOVA design using Epoch as repeated factor. A main effect of the Epoch 

was found [F11, 143 = 4.41, p < .001] (Figure 12). Duncan post-hoc testing showed that the visual 

strategy applied in the first two minutes significantly differs from all other periods (Table 13). 

 

 

 

 

 

 

 

 

Figure 12: NNI values along time. Error bars denote .95 confidence intervals. 
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Epoches 2 3 4 5 6 7 8 9 10 11 12 

1 .003 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 

2  .163 .131 .046 .154 .253 .197 .172 .165 .099 .021 

3   .869 .513 .953 .683 .829 .923 .969 .751 .347 

4    .591 .907 .589 .723 .808 .847 .857 .408 

5     .536 .315 .411 .474 .501 .692 .728 

6      .653 .794 .884 .927 .782 .364 

7       .819 .732 .700 .495 .197 

8        .890 .850 .618 .269 

9         .948 .696 .317 

10          .732 .338 

11           .487 

Table 13: Post hoc analysis carried out through the Duncan test. Pairwise comparison among NNI scores and 

Epoches (*p < .05). 

Entropy rate 

The whole visual area has been divided into two Areas of Interest (AOI), namely the two 

images displayed. For each minute, the maximum number and duration of fixations made on 

each AOI were assessed. For these AOIs, the entropy rate has been adopted as a measure of 

scan randomness (Tole et. Al., 1983). The entropy rate (H-rate) is expressed in units of bit / s 

(i.e. the information given by each observation, assessed in bits over seconds). A random 

pattern is represented by a high H-rate. In this study, all the scanpaths performed by the 

participants were used to compute the entropy rate. The entropy rates (H_rate) of the sequences 

of one length for the two images used were computed as a measure of the randomness of the 

scan. Average H_rate values were used as dependent variables in a repeated measures ANOVA 

design using the epoch as repeated factor. A main effect of time [F11.143 = 3.69, p < .001] was 

found (Figure 13). Duncan post-hoc testing showed a steady pattern in the first two minutes of 

visual exploration, consistently with that obtained with the NNI (Table 14). 
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Figure 13: Entropy rate values along time. Error bars denote .95 confidence intervals. 

Epoches 2 3 4 5 6 7 8 9 10 11 12 

1 .007 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 

2  .337 .110 .097 .432 .412 .381 .132 .137 .129 .046 

3   .481 .444 .825 .837 .843 .534 .537 .530 .280 

4    .929 .379 .387 .393 .894 .863 .914 .660 

5     .346 .353 .358 .836 .807 .854 .702 

6      1.000 .999 .426 .434 .422 .209 

7       .999 .440 .453 .432 .214 

8        .449 .466 .439 .218 

9         .960 .972 .593 

10          .937 .572 

11           .604 

Table 14: Post hoc analysis carried out through the Duncan test. Pairwise comparison among H-rate scores 

and Epoches (*p < .05). 
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Discussion 

This second study aimed at comparing two scanpath analysis methods that have been 

previously reported to be sensitive to changes in the task-load: Entropy rate and Nearest 

Neighbour Index. Results showed an overall increase of difficulty after the first few minutes 

of the task. The entropy rate confirms the presence of a less random and more stereotyped 

pattern starting from the second minute of recording. A similar trend was found for the NNI. 

The average NNI values in the first two minutes of activity were significantly higher than in 

the following epochs, therefore showing a change towards fixations grouping as the task-load 

increased. This study was designed to evaluate the potential of these two measures under the 

effect of increasing visual-spatial demand. The results showed the same trend, therefore 

confirming that the two indices are sensitive to changes in the visuo-spatial demand. However, 

unlike the entropy rate, the NNI is also suitable for estimating changes due to the temporal 

demand (see Study 1). This is an aspect that could not be accommodated by the entropy rate, 

which is based on the transitions between AOIs, hence it is completely based on the visuo-

spatial performance. 

Study three 

The third studio aims to investigate the possibility of using the Nearest neighbour Index as a 

trigger within an adaptive automation system, through two steps: i) identifying the right 

modality of automation, verifying if it is helpful for the individual; ii) observing if NNI values 

return to the baseline after the implementation of the automation support. 

An automation system was embedded in the Tetris version described in the first study, as it was 

a necessary condition to carry out the next steps of the research project. An "autopilot", able to 

take total control of the system, was designed as the best solution to avoid game-over in critical 

situations. Therefore, a function has been added to detect alignment errors and calculate the 

best possible combination. The automatic positioning is done by simulating in the background, 

all combinations between the piece played and those previously (accumulated in the lower part 

of the area). The system selects the optimal combination, calculated considering the maximum 

size of the piece surface that touches the bottom of the play (an example is shown in figure 14). 
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Figure 14: an example of the different combinations, calculated in the background, for the autopilot. The second 

image represents an incorrect positioning, while in the third image, we see the best combination compared to 

the one shown in image 1. 

Experimental design 

The design involved the use of two independent variables at two levels, including four 

experimental conditions. The “Difficulty” variable (i.e., Easy, Hard) and the “Manual 

Automation” variable (i.e. Present, Absent). All subjects performed the 4 conditions in random 

order (Table 15). For each condition, physiological, objective and subjective measures were 

acquired: NNI, performance and NASA-TLX respectively. Automation consists of the 

activation of the autopilot that takes the game control until the user turns it off. In order to keep 

the user engaged, during the automation mode, it changed tasks and reported each time the 

piece (controlled by the PC) turned white for 200 milliseconds. This can be considered a blink, 

the interval between blinks varies between 3 and 6 seconds. The study aimed to determine if 

the NNI can be used as a trigger in an adaptive automation system and whether the autopilot is 

an optimal automation level for the purpose. Therefore, we have tried to verify this by the 

following assumptions: i) Subjects will perceive the hard condition as more complex than the 

easy one. This simply confirms that the two conditions have a different mental workload, both 

in terms of NNI, NASA-TLX and performance and ii) The easy condition will not be different 

from conditions with manual automation, both in terms of NNI, NASA-TLX and performance. 
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 Manual automation 

Present Absent 

Difficulty 

Easy Condition 1 (EMA) Condition 2 (EN) 

Hard Condition 3 (HMA) Condition 4 (HN) 

Table 15: Two independent variables at two levels, including four experimental conditions. 

Tools and software 

The Gazepoint GP3HD eye-tracking system was used to record ocular activity. This system 

allows the researcher to collect ocular data without using invasive and/or uncomfortable head-

mounted instruments. Gazepoint, the eye tracker manufacturer, claims accuracy within 0.5 to 

1.0 degrees and reads data at a rate of 150Hz. The eye tracker was calibrated using the default 

9-point calibration test with Gazepoint’s included software. 

Participants 

Eighteen university students (10 women and 8 males, mean age = 27.3 years, St. dev. = 3.5) 

volunteered in the experiment. All participants had a normal or corrected-to-normal vision, and 

they were naïve as to the aims of the experiment, its expected outcomes, and its methodology. 

This research complied with the tenets of the Declaration of Helsinki and was approved by the 

Institutional Review Board of the Department of Psychology, Sapienza University of Rome, 

Italy. Informed consent was obtained from each participant. 

Procedure 

Four conditions have been created (Table 15): 

1. EN: Easy level of difficulty, without automation 

2. HN: Hard level of difficulty, without automation 

3. EMA: Easy level of difficulty, with manual activation automation 

4. HMA: Hard level of difficulty, with manual activation automation 

After the eye-tracker's calibration, the subjects were explained that their task was to play the 

game earning as many points as possible (i.e., complete lines and avoid losses). Each condition 

lasted 10 minutes, and the order of presentation was randomized across participants. In 

conditions where manual automation was present, subjects received instruction to activate it 
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by pressing the “CTRL key”, any time they perceived a too high difficulty level. Then, the 

autopilot took control of the game until the subject deactivated it using the same input (i.e., 

CTRL key). To keep the subject engaged during the autopilot execution, a secondary detection 

task was asked to be performed: in this phase, the piece, controlled by the computer, turned 

white for 200ms at intervals between 3 and 6s. The task consisted of pressing the spacebar, as 

soon as possible, every time this happened. 

After completing each condition (i.e., EN vs HN vs EMA vs HMA), participants were 

requested to fill in the NASA-TLX (Hart & Staveland, 1988).  

Data analysis and results 

Performance data 

To better analyze the performance between different conditions, we computed a Performance 

Index (PI). The PI was based on the number of lines completed in relation to the maximum 

number of lines that can be performed. The maximum value is obtained by the total number of 

pieces that the subject managed in each condition (For example, with 60 pieces it is possible to 

complete a total of 16 lines if managed in an optimal way). The index goes from 0 to 1, where 

1 means that the player has obtained the maximum achievable score. The performance values 

were used as dependent variables in a two-factor repeated-measures ANOVA design, using 

difficulty level (easy or hard) and present/absent automation as factors. The interaction effect 

was not significant [F1, 17 =.389, p > .05]. However, the results showed a main effect of the 

difficulty [F1,17 = 25.37, p < .001] and automation factors [F1,17 = 15.86, p < .001]. The 

conditions with the presence of automation (EMA and HMA) were associated with high 

performance, with respect to the absence of automation (EN and HN) (Figure 15). Moreover, 

according to the assumptions, better performance is observed under easy conditions (EN and 

EMA) than under the difficult ones (HN and HMA) (Figure 16). 
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Figure 15: Performance index, the main effect of automation factor. Error bars denote .95 confidence intervals. 

 

 

Figure 16: Performance index, the main effect of the difficulty factor. Error bars denote .95 confidence 

intervals. 

Subjective measure 

NASA-TLX weighted ratings were used as dependent variables in a two-factor repeated-

measures ANOVA design, using difficulty level (easy or hard) and present/absent automation 
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as factors. The results did not show an effect of interaction [F1, 17 =.68, p > .05]. We observe a 

significant main effect of the difficulty factor [F1,17 = 22.73, p < .001] (Figure 17), consistent 

with the performance results. However, there are no differences between conditions with and 

without automation [Automation factor: F1, 17 = .152, p > .05]. The latter suggests that 

automation has not changed the perception of difficulty provided by the subjects, although the 

objective performance values are consistent with the assumptions made. 

 

Figure 17: NASA tlx score, the main effect of the difficulty factor. Error bars denote .95 confidence intervals. 

Ocular metrics: Nearest neighbour Index analysis 

The NNI was computed on epochs of 1 minute for each participant. Averaged NNI values were 

used as dependent variables in a two-factor repeated-measures ANOVA design, using 

difficulty level (easy or hard) and present/absent automation as factors. The results showed a 

significant interaction effect between difficulty and automation factors [F1,17 = 14.78, p < .01] 

(Figure 18). In conditions where automation (EMA and HMA), NNI values are not different 

between difficulty levels. Moreover, these are very similar to EN conditions. The hard 

condition, without automation, results in the highest NNI values (Table 16).  
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Figure 18: NNI values, the interaction effect between difficulty and automation factors. Error bars denote .95 

confidence intervals. 

 Automation Absent Present Present 

Automation Difficulty Hard Easy Hard 

Absent Easy .001 .064 .177 

Absent Hard  .015 .004 

Present Easy   .515 

Table 16: Post hoc analysis carried out through the Duncan test. Pairwise comparison among NNI scores and 

Conditions (*p < .05). 

Ocular metrics: Number of triggers, classifying of NNI values. 

The NNI points were classified by a threshold value obtained from the EN condition. This 

threshold was calculated per subject, and it considered the average plus one standard deviation 

of the NNI scores in the “Easy-Without Automation” condition. Subsequently, for all 

conditions, the total number of values that exceeded this limit was calculated. This analysis is 

based on the idea that the NNI points set up a range of “Normality” in the optimal condition. 

Therefore, in the non-optimal conditions, the scores can be expected outside this range, 

indicating a change in the subject's visual exploration strategy during a critical situation. NNI 

scores over the threshold, which is defined in a version of the task with an optimal difficulty 

level, could be used as powerful triggers in an automation system. The total number of NNI 

values over the threshold were used as dependent variables in a two-factor repeated-measures 
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ANOVA design, using difficulty level (easy or hard) and present/absent automation as factors. 

The results showed a significant interaction effect between difficulty and automation factors 

[F1,17 = 9.07, p < .01] (Figure 19). In difficult condition, without automation (HN), the results 

show the highest number of trigger values than EN and HMA conditions. However, HN was 

not different from EMA condition (Table 17). 

 

Figure 19: The total number of NNI values over the threshold (Number of triggers), the interaction effect 

between difficulty and automation factors. Error bars denote .95 confidence intervals. 

 Automation Absent Present Present 

Automation Difficulty Hard Easy Hard 

Absent Easy .001 .151 .406 

Absent Hard  .068 .02 

Present Easy   .475 

Table 17: Post hoc analysis carried out through the Duncan test. Pairwise comparison among Number of 

triggers and Conditions (*p < .05). 

Discussion 

This study aimed to test the effectiveness of the autopilot as an automation system. So, 

objective (i.e., performance at the task), subjective (i.e., questionnaires on mental workload) 

and physiological (i.e., ocular metrics) measures were compared among different conditions. 

The first hypothesis was based on previous studies. All measurements confirm a higher level 

of difficulty in the HN condition than in the EN. Subsequently, the analyses on NNI and 

performance values showed a trend in line with the second hypothesis. Regardless of the 
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difficulty level, automation conditions are not harder than the easy one without automation 

(EN), set to be an optimal game condition. However, the subjective measurement of NASA-

TLX is not consistent with this result. Here, the hard conditions (with and without automation) 

do not show significant differences. 

On the one hand, automation seems to be an effective aid in terms of performance, on the other 

hand, it does not seem to affect the perception of the overall difficulty. This can be explained 

by the frequent switching between manual and autopilot driving. As several studies in the 

literature suggest, frequent switching between automation levels could increase mental 

workload.  

Study four 

The study aims to validate NNI as a trigger in an adaptive automation system. The experiment 

did not provide a real "adaptivity", rather the automation was activated/deactivated according 

to a schedule defined a priori by the investigator, and that varies for each subject. Therefore, a 

series of “3-min units” was defined, allowing us to observe what happens, in terms of ocular 

strategies, before and after the present/absence of automation. The effectiveness of the 

automation itself was verified, which consists of a real autopilot, through subjective 

measurements (i.e., NASA-TLX), performance (i.e., the number of lines performed) and ocular 

metrics (NNI). 

Participant 

Thirty university students (i.e., 17 women and 13 males, mean age = 26.3 years, St. dev. = 3.2) 

volunteered in the experiment. All participants had a normal or corrected-to-normal vision, and 

they were naïve as to the aims of the experiment, its expected outcomes, and its methodology. 

This research complied with the tenets of the Declaration of Helsinki and was approved by the 

Institutional Review Board of the Department of Psychology, Sapienza University of Rome, 

Italy. Informed consent was obtained from each participant. 

Apparatus 

The Gazepoint GP3HD eye-tracking system was used to record ocular activity. This system 

allows the researcher to collect ocular data without using invasive and/or uncomfortable head-

mounted instruments. Gazepoint, the eye tracker manufacturer, claims accuracy within 0.5 to 

1.0 degrees and reads data at a rate of 150Hz. The eye tracker was calibrated using the default 

9-point calibration test with Gazepoint’s included software. 
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Procedure 

The experiment included two game sessions of 10 and 31 minutes, respectively. In the first 10-

minute session, a baseline of eye movements was calculated, thus defining the threshold given 

by the average NNI values ±1 standard deviation. Subsequently, it was used to identify the 

periods of high complexity (when the NNI values exceeded this threshold). The 10 minutes 

were divided into two 5-minute units, one with automation and the other without random order. 

As in previous studies, the entire session was set to an easy level of play, level 6: with a drop 

speed of 208 ms per block. In the second 31-minute phase, automation was 

activated/deactivated based on a schedule set by the experimenter and customized for each 

subject. The schedule was created using a partial randomization method: each 31-min session 

contained a total of fifteen “3-minute trials” (defined as “series”), where the third minute 

corresponds to the first of the next series. Only half of the series included the autopilot's use, 

provided only in the second minute of each one (figure 20). This session was set to a hard level 

of play (level 8: with a drop speed of 156 ms per block) to increase the mental workload. At 

the end of each phase (the first and last 5 minutes of the training session and the 31-minute 

session), NASA-TLX was administered. 

 

 

Figure 20: Graphic representation of the setting. 

Data analysis and results 

Performance data: Tetris score 

The Performance Index (PI) was calculated as in previous studies. The performance values 

were used as dependent variables in a two-factor repeated-measures ANOVA design, using 

sessions (training and “31 minutes” sessions) and present/absent automation as factors. The 

interaction effect was significant [F1, 29 = 40.85, p < .001]. The results showed that subjects 

achieve lower performance when automation is absent. In addition, there is a difference 
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between the training session and the experimental session (i.e., 31 minutes: “31-min”), again 

when automation is absent (Table 18). Subjects play better during the training phase, which is 

set to be easier, according to the assumptions above (better performance is observed under easy 

conditions (Figure 21).  

 

 

Figure 21: Performance index, the interaction effect between sessions and automation factors. Error bars 

denote .95 confidence intervals 

 

 Automation Present Absent Present 

Automation Session Training 31-min 31-min 

Absent Training .001 .001 .001 

Present Training  .001 .001 

Absent 31-min   .001 

Table 18: Post hoc analysis carried out through the Duncan test. Pairwise comparison among PI score and 

Conditions (*p < .05). 

Subjective measure 

NASA-TLX weighted ratings were used as dependent variables in repeated measures ANOVA 

design using three conditions as the repeated factor: First and last 5-minutes of the training 

session and the 31-min session. Results showed a main effect of the condition [F2, 58 = 104.78, 

p < .001] (Figure 22; Table 19), consistent with the performance index and previous studies.  
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Figure 22:  NASA-TLX values (weighted scores) separately for the conditions. “Baseline: First 5 min” refers to 

the first 5 minutes of the training session, while “Baseline: Last 5 min” refers to last minutes of the same. Error 

bars denote .95 confidence intervals. 

 

 

Session 
Training 

(With Automation) 
31-min 

Training (no Automation) .001 .001 

Training (With Automation)  .001 

Table 19: Post hoc analysis carried out through the Duncan test. Pairwise comparison among NASA-TLX score 

and Conditions (*p < .05). 

Performance data: blinks reaction time 

To keep the subject engaged during the autopilot execution, a secondary detection task was 

asked to be performed: in this phase, the piece, controlled by the computer, turned white for 

200ms at intervals between 3 and 6 seconds. The task consisted of pressing the spacebar, as 

soon as possible, every time this happened. The values of average reaction times were used as 

dependent variables in a repeated-measures ANOVA design, using conditions with automation 

(last 5-minutes of training and “31 minutes” sessions) as repeated factors. Results showed a 

main effect of the condition [F1, 29 = 93.49, p < .001], the reaction times increased in the 31-

min session with respect to the training session with automation (last 5-minutes) (Figure 23).  
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Figure 23: Comparison of average reaction times between the training phase and the 31-minute experimental 

session. Error bars denote .95 confidence intervals. 

Ocular metrics: Proportion of NNI values within the range 

Classification of ocular data 

The presence or absence of automation support was classified with four categories:  

● Adaptively (NP): in the first minute of series, the NNI was out of range and, in the next 

minute, the automation was present. 

● Invalidly (nNP): in the first minute of series, the NNI was in the range and, in the next 

minute, the automation was present.  

● Not provided when needed (NA): In the first minute of series, the NNI was out of range 

and, in the next minute, the automation was absent. 

● Not provided when not needed (nNA): in the first minute of series, the NNI was in the 

range and, in the next minute, the automation was absent.  

The proportion of within-range values is expected to be significantly higher in the valid 

conditions (NP and nNA) rather than in the invalid conditions (NA and nNP).  

Results 

The NNI values obtained in the 31-minute session were used to catalogue the single series in 

NP, nNP, NA, nNA categories. Those four conditions were used as factors in a repeated 

measure ANOVA design. The results did not show significant differences [F3,81 = 1.35, p > 
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.05] (Figure 24). Furthermore, the comparison between valid and invalid conditions, as two 

different groups, did not show significant differences [F1, 29 =3.56, p = .069] (Figure 25). This 

result is not in line with the initial assumptions but shows a compatible trend, and it is possible 

that more trials may decrease data variability and provide stronger results. 

 

Figure 24: Comparison of NP, NA, nNP, nNA conditions. 

 

Figure 25: Comparison of conditions Valid (NP, nNA) and Invalid (NA, nNP). 
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Discussion 

In this study, the autopilot was applied to compare its effect on eye behaviour among different 

trials. In particular, the 31 minutes were divided into 15 trials, each composed of 3 minutes of 

detection: in the first minute, the autopilot was absent. In the second minute, this could be 

present or absent. The presence of automation in the second minute of each trial was random, 

and therefore, it was presented after a game session in which the subject had shown a high 

mental workload, operating as adaptive automation. In other cases, it was presented after a 

game session in which the subject had not shown a high mental workload (NNI within the 

baseline range), not operating as adaptive automation. The results showed high variability, 

probably caused by the low number of occurrences for each category (NP, nNP, NA, nNA) and 

the high dynamism of the task, where a single error can lead to game-over. However, it should 

be noted that this experiment was based on the calculation of a 10-minute baseline that allowed 

us to calculate threshold values. Future studies should consider a more durable baseline to 

provide more accurate values for each subject. 

New methods to analyse NNI and scanpath. 

Introduction 

Algorithms like Nearest neighbour index, rarely consider the temporal dimension and 

sequentiality of points in a trajectory. Linking spatial variation to eye movements over time 

has been done by determining the distribution of fixations separately in each temporal period 

(on minute) (Di Nocera, Ranvaud & Pasquali, 2015). Also, the sequence of eye movements 

can be analyzed by comparing graphical representations of scanpaths. Di Nocera & Bolia 

(2007) analyzed pilots' scanpaths using stochastic PERT networks to gather detailed 

information on the processes underlying the ocular activity. One of the goals of this thesis is to 

link human performance to Spatio-temporal patterns in eye-movement data. The number of 

statistics that could be used (and have never been used) in the spatiotemporal analysis of the 

scanpath is very large (Stark & Young, 1981; Smith, 1998). For example, in 1975, Pinder and 

Witherick, proposed an adaptation of the NNI algorithm, for linear one-dimensional situations. 

Unlike Clark & Evans (1954) original study, the authors do not consider the area occupied by 

the points in space, but the line that connects them. In this way, they try to meet some sectors' 

needs, including the study of archaeological sites or cities arranged, for example, along a 

waterway. 
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Research questions 

The first goal was to obtain a more stable NNI measure over time that can filter out the peaks 

due to fixations far from the interaction area, often caused by sampling errors or elements 

outside the task’s area that catch the subject's attention. The previous analyses have always 

considered the average of more values, showing how this varies with the mental workload. In 

an application context, each minute's value should be the result of the NNI net of the "noise" 

mentioned above.  

Next, the NNI was analysed in the frequency domain. This second goal focused on examining 

the NNI from a new perspective, trying to detect "outlier" frequencies in comparison with 

frequencies generated by an optimal condition. To realize it, the data from the first study were 

reused as the basis for the new analyses. 

Data analysis and results 

K-Nearest neighbour algorithm 

The k-nearest neighbours (k-NN) is an algorithm used to classify objects, based on the 

characteristics of items near the targeted one (Figure 26). An item is classified based on the 

majority vote of its k neighbours. K is a positive integer, typically not very high. If “K = 1”, 

then the object is assigned to the class of its neighbour one. In a binary context where there are 

only two classes, it is appropriate to choose k odd to avoid ending up in a position of equality. 

The K-NN classification algorithm decides the output based on the most represented class 

among the K neighbours. If the output is continuous, the decision to the majority does not have 

more sense (the values can be all different). In this case, the K neighbours' average can be 

assumed as the output value (Imandoust & Bolandraftar, 2013). Considering only the votes of 

K neighbouring objects, there is the drawback due to the predominance of classes with more 

objects. In this case, it may be useful to weigh the neighbours' contributions to give, in the 

calculation of the average, greater importance according to the distance from the object 

considered. The choice of K depends on the characteristics of the data. Generally, as K 

increases, the noise that compromises the classification is reduced, but the criterion of choice 

for the class becomes more labile. The choice can be made through heuristic techniques 

(Manning & Schuetze, 1999).  
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Figure 26: If k = 3 (i.e., the 3 closest objects are considered), then the green dot is placed in the same class as 

the red triangles because 2 triangles and 1 square are present. If k = 5 then it is placed in the same class as the 

blue squares because 3 squares and 2 triangles are present. 

The two algorithms, NNI and K-NN, have two different purposes: the former describes the 

distribution of points as clustered or dispersed, the latter is a classification algorithm. There is 

no use in the literature of the variable K within the NNI algorithm as described in the first study 

of this thesis. Given that the NNI is a continuous measure, K was integrated into the algorithm 

as follows: The ratio of 1) the minimum average distance of a point to its K nearest points and 

2) the minimum average distance between points if they were perfectly distributed within the 

area. It should be kept in mind that by using the K, the NNI can greatly exceed the expected 

limit value of 2.15. This latter effect is caused by the denominator of the equation, where the 

K is not applicable. In this sense, using a K greater than 1 can reduce the "noise" of the 

instrument given by the calculation of fixations (e.g., fixations that are too short and too close 

together).  

The K-NN was computed in epochs of 1 minute for each participant with a second (K = 2) and 

third-order k (K = 3). One subject was excluded from the data analysis due to the low quality 

of recorded eye movements. Averaged K-NN values were used as the dependent variable in 

repeated measures ANOVA using conditions as the repeated factor. With K = 2, results showed 

a main effect of condition [F3, 87 = 13.09, p < .001] (Figure 27; Table 20). TD condition showed 
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higher K-NN values (i.e., a more dispersed distribution of fixations) than the baseline, while in 

the MD condition, we obtained lower values. 

 

Figure 27: Average K-NN value (K=2) for the conditions compared with the baseline separately. Error bars 

denote .95 confidence intervals. 

 TD MD PD 

Baseline .021 .002 .056 

TD  .001 .609 

MD   .001 

Table 20: Post hoc analysis carried out through the Duncan test. Pairwise comparison among K-NN (K=2) 

scores and conditions (*p < .05). 

 

With K = 3, results showed a main effect of condition [F3, 87 = 13.09, p < .001] (Figure 28; 

Table 21). TD condition showed higher K-NN values (i.e., a more dispersed distribution of 

fixations) than the baseline, while in the MD condition, we obtained lower values. 
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Figure 28: Average K-NN value (K=3) for the conditions compared with the baseline separately. Error bars 

denote .95 confidence intervals. 

 TD MD PD 

Baseline .002 .119 .824 

TD  .001 .002 

MD   .092 

Table 21: Post hoc analysis carried out through the Duncan test. Pairwise comparison among K-NN (K=3) 

scores and conditions (*p < .05). 

Figure 29 compares the results obtained with second-and third-order K-NN versus the classical 

NNI algorithm used in the first study. The plot shows 3 very similar trends, especially in 

relation to NNI and second-order K-NN, where the significance values are equivalent. 

However, in the third-order K-NN plot, a more pronounced change and loss of significance are 

observed than in the previous ones. 
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Figure 29: Comparison of values obtained by varying the K factor: NNI (K = 1) vs K = 2 vs K = 1. 

Spectral analysis 

The focus of this analysis was the quantitative time evolution of NNI as a task is carried out. 

To this purpose, data from the first study were further analysed using spectral analysis, which 

is appropriately and commonly used in studying measurements collected at regularly spaced 

intervals of time. As described previously, in the first study, subjects performed 4 sessions of 

10 minutes each. Therefore, A total of 40 NNI points were calculated for each subject. To 

obtain a more detailed plot for each condition, NNI values were recalculated using a 60-second 

moving window with 1-second steps. In this way, we were able to obtain a total of 542 NNI 

points for each condition. Figure 31 shows the average power spectra for each condition. Visual 

inspection of individual spectrograms showed that the 4 conditions provide almost identical 

spectral power.  
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Figure 30: Power spectra representation of each condition 

This result suggests that there are no observable differences in the frequency domain. However, 

it should be mentioned that experiments designed to study ultradian rhythms usually last for 

hours and make use of much longer series than those described here. The main limitation of 

the present account is the fact that the sessions lasted only 10 minutes. 

Discussion 

This latest study aimed to analyse the NNI from new perspectives, obtain new information for 

its interpretation concerning mental workload, and improve it by providing a more stable 

measure over time. In the first step, the parameter K was added to the basic algorithm. The 

second-and third-order K-NN was calculated to obtain a more defined outcome. The results 

with K = 2 showed a very similar trend compared to the classical NNI. However, it should be 

noted that the second-order K-NN provides data relative to the minimum average distance 

between a point and its k nearest points. Thus, it may be assumed that this result is more filtered 

(less affected by data noise) than the classical minimum average distance (Distance between a 

point and its nearest point). This data is certainly less sensitive to outside single fixations or 
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data considered "dirty". In some contexts, this adjustment (K=2) may have benefits. Next, we 

observe that as K increases, the differences between conditions tend to decrease. The choice of 

the parameter K is crucial to obtain a valid result. The K should be based on the area's size, the 

type of task that may affect the fixation parameters and their sampling. Validation studies will 

be needed to define this process better. 

Regarding spectral analysis, previous studies (Di Nocera, Ranvaud & Pasquali, 2015) report 

differences between low, mid, and high frequencies during flight operations. Different spectra 

have been observed about different flight phases, on total recordings of 38 minutes each. 

However, as already highlighted by the authors, usually spectral analysis is performed using a 

much longer time series, ranging from a few hours to several recordings. The result obtained 

in the latter analysis thus suggests that NNI does not vary in terms of frequency between 

conditions with the low or high mental workload. Future studies should be designed to 

specifically approach the oscillatory pattern examined here and compare it with that observed 

in prolonged vigilance tasks. This could be accomplished, for example, by adding a secondary 

reaction time task to understand whether or not the cyclic patterns in eye movements and 

performance data are comparable. 
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Chapter 4 - Discussions & Conclusions 

One of the most important challenges for research in human-computer interaction is the 

creation of systems capable of understanding human behaviour because, in high-risk 

environments such as those mentioned above, unexpected events can only be dealt with by an 

operator. Therefore, it is essential to have continuous monitoring of the latter's mental and 

physical state, with the aim of the system to act where necessary. 

The parallel measurement of all ocular indices is particularly relevant if we consider the ocular 

activity like similar of multidimensional nature of the mental workload (Neumann and Lipp, 

2002). The application of ocular indices in real-world settings (e.g., in air traffic control) is 

minimal. Studies in the literature, in most cases, have focused on exploring the effects of the 

task on the visual search strategy. Furthermore, very few studies have investigated these effects 

outside of simulated environments. 

Much research has been done to find a relationship between operator psychophysiology and 

perceived mental workload. As mentioned earlier, all of the indices investigated cannot be 

directly related to the workload. Therefore, to obtain an objective and reliable indicator, it is 

necessary to work towards a model that integrates several psychophysiological measures. 

However, such a model's construction is complex because the reliability and relative 

importance of the different measures are difficult to define. Eye-tracking can provide a valuable 

addition to the determination of the level of automation. However, when it concerns the 

practical application of the idea, several problems arise because many factors influence eye 

movements' workload and properties. In fact, during an experiment, these aspects can be kept 

as constant as possible. In a real environment, we cannot expect the operator to avoid drinking 

caffeinated beverages during a navigation operation. These aspects affected the workload 

indices, such as pupillary diameter. 

 

This thesis reported a set of four studies designed to shed light on the relationship between 

mental workload and ocular scanning. This topic has been covered in the Human Factors / 

Ergonomics literature by using different approaches, but a complete understanding of that 

relationship is still a long way off. Previous studies of our laboratory have explored the 

opportunity to use the distribution of eye fixations as an indicator of mental workload. The 

Nearest Neighbour Index, a spatial statistic providing information about the distribution of 

points into a 2-dimensional space, was found to be sensitive to variations in mental workload. 

However, results obtained using the NNI were apparently different from those obtained in 
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accredited studies using scanning randomness or entropy for summarizing the scanpath, 

therefore questioning the value of this approach. Di Nocera and Bolia (2007) have initially 

speculated that two processes respectively contribute to dispersion and grouping of the 

fixations: the temporal demand (that was manipulated in the NNI studies) and the visuo-spatial 

demand (that was manipulated in other studies, including those featuring entropy). That idea 

was partially tested by Camilli, Terenzi, and Di Nocera (2008) in a small between-subject 

study, but never deepened since then.  

Indirect measures of mental workload (they all are) can be sensitive to variations in the task-

load imposed on the individual. Many of them can provide only a coarse distinction between 

task-load levels, others have been reported to be more fine-grained. Nonetheless, sensitivity to 

task-load variation is not the only important property of a successful indicator: sensitivity to 

different types of task demands is also important. Indeed, what we call mental workload 

(independently of its conceptualization) may be generated in response to changes in the task-

load that may be due to changes in the visuo-spatial component of the task (i.e. the task 

becomes more demanding because the individual need to look more, to find more, to 

discriminate more) or the task-load may be due to changes in the temporal component of the 

task (i.e. the task becomes faster, the interval between incoming stimuli becomes shorter, the 

time pressure for responding increases). The different types of demand are well represented by 

the NASA-TLX that features three scales named mental demand, temporal demand, physical 

demand (while the other three scales represent the individual reaction in terms of performance, 

effort, and frustration). 

The first study reported here was designed to test the diagnosticity of the NNI, that is how the 

fixations distribution varied not only along with the task-load but also with the type of task 

demand. The results showed high clustering when the task-load increment was obtained by 

changing the mental (visuo-spatial) demand, and low clustering when it was obtained by 

changing the temporal demand. The physical demand, instead, did not affect the scanpath, 

possibly because our manipulation of this dimension was not appropriate or because the ocular 

behaviour is not sensitive to the manipulation of the physical component. Albeit results showed 

a significant increase in the subjective estimates of physical demand, the effect did not extend 

to the overall workload ratings nor to the analysis of the scanpath. Likely, the Tetris game 

involved minimal physical effort and the manipulation was not effective. To overcome this 

limitation, future studies could consider several options. One potential solution could be to 

manipulate the game controls producing frequent keypress failures in the high task-load 
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condition. Alternatively, the keypress force could be manipulated in the high task-load 

condition to make the task more effortful. 

In the second study, instead, the NNI was directly compared to the entropy approach that is 

considered one of the most prominent techniques for studying the scanpath in the HF/E domain. 

Results showed an overall increase of difficulty after the first few minutes of performance that 

reflected in both measures of mental workload. After two minutes, the search task generated 

both a stereotyped dwell pattern (consistent with the entropy prediction) and fixations grouping 

(consistent with the fixations distribution prediction). In other words, the two indices were 

found to be both sensitive to changes in the visuo-spatial demand and the plots were highly 

overlapping. Such a result sorts out the issue of the differences found between the two 

indicators, showing how that exclusively depends on the type of demand imposed. Also, results 

demonstrated that a dispersed fixation pattern (or moderately grouped) is not equivalent to high 

randomness in visual exploration. The two scanpath analysis algorithms show the same trend. 

From the post-hoc analyses, a cut-off of the values is observed starting in the fourth minute. 

However, compared to the performance and mental workload data, the cut-off occurs only after 

the sixth minute of activity. This difference suggests that the change in visual exploration 

strategy anticipated the decline in-game performance on the fourth minute. Further studies 

should be conducted to confirm this effect. In high-risk settings, the anticipation of critical 

events and the operator's mental state is essential. 

In the third study, the autopilot function was introduced, to test the right level of automation 

and mental workload effects (calculated by performance measures, Nasa-TLX and NNI). The 

goals were 1) to determine whether the scanpath analysis via NNI could be used as a trigger 

for adaptive automation, and 2) to identify the optimal level of automation to be applied. An 

"autopilot", able to take total control of the system, was designed as the best solution to avoid 

game-over in critical situations. The study's design involved the use of two independent 

variables at two levels, including four experimental conditions. The “Difficulty” variable (i.e. 

Easy, Hard) and the “Manual Automation” variable (i.e. Present, Absent).  

Following the first two studies, it is possible to observe a significant difference given by the 

Difficulty factor, in both performance and mental workload (obtained via Nasa-TLX). 

However, there is no difference in the scores of the Nasa-TLX between the conditions with and 

without automation. This result is partially in conflict with the hypotheses. In the conditions 

with autopilot, better performance and lower mental workload were expected. While in 

performance terms, the result matches the assumption, subjects do not perceive differences 

between the conditions with and without automation. However, it should be noted that while 
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subjects could switch automation on/off at any time by pressing the CTRL key (only in the 

conditions where available, EMA and HMA), not all were able to use it correctly. The autopilot 

was often activated in highly critical situations, and this did not allow the automation to avoid 

game over. On the other hand, the NNI analysis results showed a significant interaction effect 

between the difficulty factor and automation. From the post-hoc analyses, we can observe that 

autopilot conditions (easy and hard) do not differ from the easy condition without automation 

(EN). This suggests that automation was effective in helping the subject in terms of 

performance and NNI.  

The fourth study aimed to further verify the use of NNI as a possible trigger in adaptive 

systems. Unlike the previous one, single values were considered and not the average of the 

whole session. Therefore, a series of “3-min units” was defined, allowing us to observe what 

happens, in terms of ocular strategies, before and after the present/absence of automation. The 

presence or absence of automation support was classified with four categories: Provided when 

needed (NP); Provided when not needed (nNP); Not provided when needed (NA); Not 

provided when not needed (nNA). The proportion of within-range values is expected to be 

significantly higher in the valid conditions (NP and nNA) rather than in the invalid conditions 

(NA and nNP). The results showed high variability, probably caused by the low number of 

trials (only 15) and the high dynamism of the task, where a single error can lead to game-over. 

However, it should be noted that this experiment was based on the calculation of a 10-minute 

baseline that allowed us to calculate threshold values. Future studies should consider a more 

durable baseline to provide more accurate values for each subject. 

In conclusion, two new methods of NNI analysis were tested. The first one considered the K-

NN algorithm as a starting point. The K-factor was then introduced within the NNI algorithm 

to define the minimum average distance between points as "the minimum average distance 

between a point and its K closest points". This analysis aimed to optimize the calculation of 

NNI scores by limiting the effect caused by "wrong" fixations often caused by sampling errors. 

The analyses compared NNI scores with those measured by first- and second-order K-NN. The 

results with K = 2 showed a very similar trend compared to the classical NNI. Instead, with K 

= 3 the differences between conditions tend to decrease. The choice of the parameter K is 

crucial to obtain a valid and indicative result. This should be based on the area's size, the type 

of task that may affect the fixation parameters and their sampling. Subsequently, NNI points 

(provided by 60s moving windows with step of 1s) are being used in a spectral analysis. The 

result suggests that NNI does not vary in terms of frequency between conditions with the low 

or high mental workload. However, as already highlighted in a previous study (Di Nocera, 
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Ranvaud & Pasquali, 2015), usually spectral analysis is performed using much longer time 

series ranging from a few hours to several days of recordings. 

 

The NNI seems to be a good indicator of mental workload, but only under specific conditions: 

1) First, it is necessary to estimate a single operator's baseline while performing a specific 

task (i.e., air traffic control). It should be considered that the interfaces have different visual 

characteristics. For example, during a driving task, the driver has to watch the fuel level, a 

navigation system, mirrors, and road. These elements require his attention and, therefore, 

the generated fixations will draw a specific visual area of that task. The baseline aims to 

identify the visual exploration strategy used during an optimal condition of the task 

(neither too easy nor too hard) and the subject's psychophysical state.  

2) Subsequently, the scanpath is monitored and processed in real-time (minute by minute) 

using the Nearest neighbour Index. The values thus obtained are compared with the 

average value provided by the baseline. Considering the fourth study described here, the 

NNI values analyzed separately fluctuate within a wide range, causing a large variability 

without the possibility to distinguish the different conditions. However, when we analyze 

the average of 10 NNI values (provided by 10-minute sessions), a more stable result allows 

us to distinguish the difficult conditions (compared to the baseline) and the type of task 

demand imposed. In a realistic context, using more values generated every 5 or 10 minutes, 

it would provide a more accurate and stable data, less affected by sampling errors or 

extraneous visual elements. Supervision and control tasks that may last several hours are 

mentioned in many high-risk contexts, such as those mentioned at the beginning of this 

document. The NNI should be able to monitor the level of vigilance and mental workload 

perceived by the operator. To accomplish this, a psychophysiological measure generated 

every 10 minutes should be sufficient to reduce the risk of incidents in these contests. 

3) The last recommendation concerns the proper level of automation to be applied when an 

anomaly in the NNI plot is detected. In the Tetris used here, the right automation would 

be slowing down the piece's descent (using the same speed as the easy level as set out in 

study 1, 3, and 4). However, this system does not seem realistic outside of a laboratory 

setting. In addition, any automation changes the nature of the task, and risks to invalidate 

the previously calculated baseline. A possible solution is to calculate a second baseline, to 

be used when the automation is active. Future studies should consider these aspects, to use 

the NNI as a trigger in an adaptive automation system.  
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