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The coupling between the angular momentum of a compact object and an external tidal field gives rise to
the “rotational” tidal Love numbers, which affect the tidal deformability of a spinning self-gravitating body
and enter the gravitational waveform of a binary inspiral at high post-Newtonian order. We provide
numerical evidence for a surprising “hidden” symmetry among the rotational tidal Love numbers with
opposite parities, which are associated to perturbations belonging to separate sectors. This symmetry,
whose existence had been suggested on the basis of a Lagrangian description of the tidal interaction in a
binary system, holds independently of the equation of state of the star.
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I. INTRODUCTION AND SUMMARY

When immersed in an external tidal field, a self-
gravitating object gets deformed. The “susceptibility” to
a tidal deformation is measured by the so-called tidal
Love numbers (TLNs) [1,2], which depend on the internal
structure of the deformed body. The TLNs play a crucial
role in gravitational-wave (GW) astronomy, most notably
to, (i) constrain the equation of state (EoS) of neutron
stars (NSs) through GW measurements of the tidal deform-
ability in the last stages of the inspiral [3–21] (see
Refs. [22,23] for some recent reviews) (ii) constrain alter-
native theories of gravity in an EoS-independent fashion
[24,25] (see Ref. [26] for a review); (iii) test the nature
of black holes with GWobservations [27,28] (see Ref. [29]
for a review).
Clearly, the recent detections of coalescing NSs by

LIGO/Virgo [15,30] give strong motivation for further
developments on this topic. In particular, several binary
NSs and mixed black hole-NS binaries will be detected in
the future LIGO/Virgo observation runs, possibly with
higher signal-to-noise ratio than GW170817. While this
will allow us to put better constraints on the NS TLNs (and
hence, on the NS EoS), it makes it also urgent to develop
waveform models that can accurately take into account all
possible effects related to the tidal deformability of NSs
[31–36].
Surprisingly, more than ten years after the seminal

work by Flanagan and Hinderer [37,38], some properties
of the TLNs are still being discovered and are still not

totally understood, in particular for what concerns the
magnetic1 TLNs [39,40]. Furthermore, it was recently
realized that the magnetic TLNs depend also on the
assumptions on the dynamics of the fluid within the
star, namely whether the fluid is irrotational or static
(see Sec. II C for explicit definitions), with the former
assumption being more physically sound [39,41,42].2

In this context, most of previous work on the tidal
deformability had focused on nonspinning objects. In
recent years, there has been remarkable progress in extend-
ing the analysis to spinning compact objects. The coupling
between the object’s angular momentum and the external
tidal field introduces new families of so-called “rotational”
TLNs (RTLNs) [41,43–46].
Tidal deformations of slowly spinning black holes were

studied in Refs. [47,48], which found that the (R)TLNs of a
black hole are zero [49–55] also in the spinning case, at
least to the quadratic order in the spin in the axisymmetric
case [43,48] (see also [41,44]), and also in the nonaxisym-
metric case to a linear order in the spin [47]. Recently, using
analytical-continuation methods, it has been argued that the
tidal field affects the nonaxisymmetric multipole moments
of a spining BH, already to the linear order in the spin
[56,57]. However, as remarked in [58], the nonvanishing
quantities found in [56] are associated with dissipative
interactions, usually referred to as tidal heating [59,60], and
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1The TLNs can be divided into two categories: electric (or
even parity), which are related to the mass multipole moments
induced by the tidal field; and magnetic (or odd parity), which are
related to the induced current multipole moments and do not have
an analog in Newtonian theory. See below for a formal definition.

2We shall call static (irrotational) Love numbers those asso-
ciated with a static (irrotational) fluid.
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do not concern the conservative tidal deformability para-
meter which, as shown in [58], identically vanish for
Kerr black holes (see also [54,55,61] for literature on this
topic). This provides an ideal baseline for tests of the Kerr
hypothesis with GWs [27]. More generally, recent results
[40,62] show that, when the tidal field depends on time
or is not axisymmetric, the general picture of TLNs is
more complicated than previously expected. In this article,
we shall only consider a stationary, axisymmetric tidally
deformed star, leaving the more general case to a future
analysis [63].
Computing the RTLNs is rather involved, since it

requires us to work out the linear (gravitational and fluid)
perturbations of a spinning compact object and to solve the
corresponding coupled system numerically. Thus, it might
not be surprising that preliminary numerical computations
of the RTLNs by different groups did not agree with each
other. In particular, the analysis in Ref. [46] found disagree-
ment with the RTLNs previously computed by some of
us [43] (hereafter, paper I), especially for low-compactness
NSs. We have found that the source of disagreement is
twofold. First, we have found an error in the numerical
implementation of the equations in paper I (now corrected
in the computation presented below). Second, the authors
of [46] studied the irrotational RTLNs, arguing that in some
cases they coincide with the static RTLNs studied in paper
I. However, in general the irrotational RTLNs cannot be
computed under the assumption of stationarity. Properly
including (slowly varying) tidal perturbations allows us to
resolve the ambiguity found in Ref. [46] and gives different
irrotational RTLNs that do not coincide with the static ones
(although the differences are smaller than 5%). This point
will be discussed in detail in a separate publication [63],3

while in this article, we focus on the static RTLNs.
Although NS coalescing binaries are expected to have

irrotational perturbations, static perturbations are useful to
elucidate a surprising feature of the RTLNs, which we
unveil in this work. Paper I introduced four independent
RTLNs to fully characterize the (quadrupolar and octupo-
lar) tidal deformability of a spinning NS to a linear order in
the spin and in the axisymmetric case, while the effective-
field-theory Lagrangian developed in Ref. [31] (hereafter,
paper II) contains only two parameters that govern the
coupling between the (quadrupolar and octupolar) tidal
deformations of the body, its spin and the external tidal
field. Thus, as argued in paper II, the Lagrangian approach
seems to predict that the four RTLNs are not independent:
they should be related by two algebraic relations, and in
fact two of them are simply proportional to the other two.

From a Lagrangian point of view, it is natural to expect
that opposite sectors are coupled to each other. Indeed, a
single interaction term in the schematic form,

LðA; ∂A;P; ∂PÞ ⊃ αAP; ð1Þ

in the Lagrangian L gives rise—using Euler-Lagrange
equations—to related coupling terms in the field equations4

for A and P, which are both proportional to the single
coupling constant α.
It is natural to ask whether similar relations are satis-

fied by the RTLNs, which are computed by solving the
perturbation equations of a single NS perturbed by a
generic tidal source. Our analysis shows that this is indeed
the case: we computed static RTLNs (as we discuss in this
paper, the Lagrangian constructed in paper II describes
only static perturbations) with different parities for various
choices of the EoS and of the compactness, finding that
the algebraic relations derived in paper II are always
satisfied, within the numerical errors, for low compactness
and for any EoS (see Fig. 2). When the compactness is
large, there is still an EoS-independent (within numerical
errors) relation between the RTLNs, but it deviates from the
theoretical value predicted in paper II by up to 6%.
These relations—which are exact for low compactness

and any EoS—imply the existence of a “hidden symmetry”
among perturbations with even and odd parities. We use the
term “hidden symmetry,” which is stronger than “universal
relation” (see [26] for a review) because, besides being
EoS-independent within numerical uncertainties, this sym-
metry is theoretically predicted by a Lagrangian post-
Newtonian (PN) approach. Nonetheless, we stress that this
hidden symmetry is truly unexpected and nontrivial from a
perturbation-theory point of view: the RTLNs that turn out
to be proportional to each other belong to opposite parity
sectors, so there is a priori no reason why they should be
related. This is analogous to the symmetry between axial
and polar perturbations of a Schwarzschild black hole
found by Chandrasekhar [64], with the major difference
that the perturbation equations of compact stars depend on
the EoS, making an analytical interpretation much more
challenging than in the case of black holes. We argue that
this symmetry should also affect irrotational perturbations,
although in that case, it is likely to appear in a more
involved form, requiring a more detailed study in order to
be elucidated [63]. In the case of large compactness, the
hidden symmetry is only approximate, but an accurate
universal relation is still present.
The rest of this paper is organized as follows. In Sec. II

we review paper I—where the RTLNs are introduced and

3By correcting the numerical implementation of paper I and
integrating the field equations obtained with the assumptions of
[46], we find perfect agreement between the two approaches, up
to numerical errors.

4We denote schematically the fields as A, P because, later on,
we will consider fields with axial and polar parities. In that case,
the coupling α in Eq. (1) is linear in the spin, thus preserving the
parity invariance of the Lagrangian.
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the procedure for their numerical computation in terms
of perturbations of a stationary NS is described—and
paper II—where the effective Lagrangian describing
two tidally interacting NSs is discussed. We also briefly
discuss, in Sec. II C, the difference between static and
irrotational perturbations. Then, in Sec. III, we discuss
the numerical computation of the (static) RTLNs, showing
that the afrorementioned hidden symmetry is satisfied for
different choices of the EoSs and of the compactness.
We conclude in Sec. IV, where some open issues are
discussed. Appendix A gives the explicit expressions of the
coefficients appearing in the perturbation equations, and
Appendix B gives the conversion factors between different
(R)TLNs used in the literature.

A. Notation and conventions

We denote the speed of light in vacuum by c and set the
gravitational constant G ¼ 1. We shall mostly use units
such that c ¼ 1, unless explicitly stated. Latin indices run
over three-dimensional spatial coordinates and are con-
tracted with the Euclidean flat metric δij; the antisymmetric
Levi-Civita symbol in the Euclidean space is denoted by
ϵijk. Greek indices run over four-dimensional, spacetime
coordinates.
Following the notation in [65] (see also [66]), we use

capital letters in the middle of the alphabet L, K, etc., as
shorthand for sets of indices a1…al, b1…bk, etc. Round (),
square ½�, and angular hi brackets enclosing the indices
indicate symmetrization, antisymmetrization, and trace-
free symmetrization, respectively. We call symmetric
trace-free (STF) those tensors Ta1���al that are symmetric
on all indices and whose contraction of any two indices
vanishes. For a generic vector ua, we define uab���c ¼
uaub…uc and u2 ¼ uaua.
Functions and tensor fields on the two-sphere can be

expanded in terms of tensor spherical harmonics: the
scalar spherical harmonics Ylmðθ;φÞ, the vector spherical
harmonics with even and odd parity, ðYlm

;θ ; Y
lm
;φ Þ and

ðSlmθ ;Slmφ Þ¼ð−Ylm
;φ =sinθ;sinθYlm

;θ Þ, respectively, etc. They
can also be expanded in terms of the STF tensors
nL ¼ na1 � � � nal , where na ¼ ðsinθ cosϕ; sinθ sinϕ;cosθÞ.
Indeed, Ylmðθ;ϕÞ ¼ Ylm

a1���aln
a1���al , where Ylm

a1���al are con-
stant coefficients. Thus, any function fðθ;ϕÞ can be
expanded as

fðθ;φÞ ¼
X
lm

flmYlmðθ;φÞ ¼
X
l

fa1���aln
a1���alðθ;φÞ; ð2Þ

therefore, fa1���al ¼
P

m flmYlm
a1���al .

We denote the Geroch-Hansen multipole moments
[67,68] by ML (mass) and JL (current), and the Thorne
multipole moments [65] byQL (mass) and SL (current); see
also [69]. They are related by [70]

ML ¼ ð2l − 1Þ!!QL;

JL ¼ 2l
lþ 1

ð2l − 1Þ!!SL: ð3Þ

We remind that the Geroch-Hansen multipole moments
are defined in a coordinate-independent way, as tensors
at infinity generated by a set of potentials, while the
Thorne moments are defined in terms of the asymptotic
behavior of the spacetime metric in asymptotically
Cartesian mass-centered coordinates. We shall mostly
use the Geroch-Hansen definition.
When the spacetime is symmetric with respect to an axis

k̂, the multipole moments can be written as Mi1���il ¼
ð2l − 1Þ!!Mlki1���il , Ji1���il ¼ ð2l − 1Þ!!Jlki1���il , and thus,

Qi1���il ¼ Mlki1���il

Si1���il ¼ lþ 1

2l
Jlki1���il : ð4Þ

In this case, under the further assumption of symmetry with
respect to the equatorial plane, the nonvanishing mass
multipole moments have even l, and the nonvanishing
current multipole moments have odd l. When the space-
time is axial and equatorial symmetric, the Geroch-Hansen
multipole moments can be also computed using Ryan’s
approach [71], in terms of the geodesic properties of the
spacetime metric.
The mass of a body and its angular momentum coincide

with their l ¼ 0mass and l ¼ 1 current multipole moments,
M ¼ M0 ¼ Q0, J ¼

ffiffiffiffiffiffiffiffi
JiJi

p
¼

ffiffiffiffiffiffiffiffi
SiSi

p
, respectively. We also

define the dimensionless spin parameter of the body as
χ ¼ J=M2, and the compactness as C ¼ M=R, where R is
the stellar radius, defined by the location in which the
pressure of the fluid inside the star vanishes. Derivatives
with respect to t and r are denoted with an overdot and a
prime, respectively.

II. REVIEW OF PREVIOUS WORK

Here, we summarize the results of paper I and paper II.
Since the notations and formalisms of these two papers are
different, we need to describe them in some detail, in order
to compare, in Sec. III, the results of the numerical
computation of the RTLNs, performed in the framework
of paper I, with the theoretical predictions of paper II.
We remark that RTLNs have also been introduced, with a

different notation, in [41,42,44–46,72], which focus on the
irrotational RTLNs. A complete treatment of the irrota-
tional RTLNs requires including slowly varying perturba-
tions and will be discussed in details in a forthcoming
publication [63].

A. Pani et al. (paper I)

In paper I (see also Ref. [48]), tidal deformations of
rotating compact stars are studied by considering stationary
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perturbations of a stationary, rotating star up to linear order
in the spin [i.e., neglecting Oðχ2Þ terms]. The perturbed

metric can be written as gμν ¼ gð0Þμν þ δgμν, where g
ð0Þ
μν is the

background, whereas δgμν is the tidal perturbation. The
background is described by Hartle’s metric [73,74]),

dsð0Þ2 ¼ gð0Þμν dxμdxν ¼ −eνdt2 þ eλdr2

− 2sin2θωr2dtdφþ r2dΩ2; ð5Þ

where xμ ¼ ðt; r; θ;φÞ, dΩ2 ¼ dθ2 þ sin2 θdφ2, eλ ¼
ð1 − 2M=rÞ−1, and the (radial) metric functions satisfy
the set of ordinary differential equations,

M0 ¼ 4πr2P; ð6Þ

ν0 ¼ 2Mþ 4πr2P
ðr − 2MÞ ; ð7Þ

P0 ¼ −
Pþ ρ

2
ν0; ð8Þ

ω̃00 ¼ 4πrðPþ ρÞðrω̃0 þ 4ω̃Þ
r − 2M

−
4

r
ω̃0; ð9Þ

where ω̃ ¼ Ω − ω, Ω is the fluid angular velocity, PðrÞ and
ρðrÞ are the pressure and energy density of the fluid,
respectively. The background four velocity of the fluid is
uð0Þμ ¼ e−ν=2ð1; 0; 0;ΩÞ, and its stress-energy tensor is
Tð0Þμν ¼ ðρþ PÞuμuν þ Pgð0Þμν. In vacuum, MðrÞ ¼ M
and ωðrÞ ¼ 2J=r3.
The perturbations of the metric and of the fluid four

velocity are expanded in tensor spherical harmonics, and
are decomposed in even (or electric, or polar) and odd (or

magnetic, or axial) perturbations, δgμν ¼ δgðevenÞμν þ δgðoddÞμν ,
with (in the Regge-Wheeler gauge [75]),

δgðevenÞμν dxμdxν ¼ eνHlm
0 Ylmdt2 þ 2Hlm

1 Ylmdtdr

þHlm
2 Ylmdr2;

δgðoddÞμν dxμdxν ¼ ðhlm0 dtþ hlm1 drÞðSlmθ dθ þ Slmϕ dφÞ; ð10Þ

and uμ ¼ uð0Þμ þ δuμ. In paper I, the perturbations were
assumed to be static (see Sec. II C), i.e., δgμν;0 ¼ 0 and
δui ¼ 0 (i ¼ 1, 2, 3). Thus, the perturbations with even
parity are described by the functions ½H0ðrÞlmðrÞ; Hlm

1 ðrÞ;
Hlm

2 ðrÞ; KlmðrÞ�, and those with odd parity are described
by the functions ½hlm0 ðrÞ; hlm1 ðrÞ�. It was also assumed that
the perturbations are axisymmetric, and thus, they have
m ¼ 0 (with symmetry axis parallel to the body’s angular
momentum); we remark that m ≠ 0 tidal perturbations of
a spinning object would induce precession and hence, a
weak time-dependence of the perturbed system [76]. Thus,
assuming static perturbations implies m ¼ 0.

The field equations at first order in the spin mix the
perturbations having a given (polar or axial) parity and
harmonic index l with those having opposite parity and
harmonic index l� 1 (see Ref. [77] for a review). Thus, it is
possible to define “polar-led” and “axial-led” perturbations;
the former are induced by a purely electric tidal field, the
latter by a purely magnetic tidal field. The polar-led system
has the form (leaving implicit the index m ¼ 0),

DpolðlÞ½Hl
0� ¼ 0;

Daxðlþ1Þ½hlþ1
0 � ¼ SpolðlÞþ ½Hl

0�;
Daxðl−1Þ½hl−10 � ¼ SpolðlÞ− ½Hl

0� ð11Þ

where

DpolðlÞHl
0 ¼

d2Hl
0

dr2
þ CpolðlÞ

1 ðrÞ dH
l
0

dr
þ CpolðlÞ

0 ðrÞHl
0 ð12Þ

DaxðlÞhl0 ¼
d2hl0
dr2

þ CaxðlÞ
1 ðrÞ dh

l
0

dr
þ CaxðlÞ

0 ðrÞhl0: ð13Þ

The perturbation Hl
0 is at a zero order in the spin, while the

perturbations hl�1
0 are at first order in the spin, and vanish in

the Ω → 0 limit. The other perturbation functions can be
obtained from Hl

0 and hl�1
0 through algebraic relations.

Similarly, the axial-led system has the form,

DaxðlÞ½hl0� ¼ 0;

Dpolðlþ1Þ½Hlþ1
0 � ¼ SaxðlÞþ ½hl0�;

Dpolðl−1Þ½Hl−1
0 � ¼ SaxðlÞ− ½hl0�: ð14Þ

In this case, hl0 is at zero order in the spin, while the
perturbations Hl�1

0 are at first order in the spin, and vanish
in the Ω → 0 limit. The explicit forms of the coefficients

CpolðlÞ
0;1 , CaxðlÞ

0;1 and of the sources SpolðlÞ� , SaxðlÞ� are given in
Appendix A. The other perturbation functions can be
obtained from hl0 and Hl�1

0 through algebraic relations.
The source of the perturbations is an asymptotic tidal

field, described by the electric and magnetic tidal tensors,

EðlÞ
m and BðlÞ

m , respectively. The leading-order asymptotic
expansion of the metric (as r ≫ M) in terms of these
tensors reads

gtt → −
X
l≥2;m

2

lðl − 1Þ E
ðlÞ
m YlmðθÞrl

gtφ →
X
l≥2

2

3lðl − 1ÞB
ðlÞ
m Slmφ ðθÞrlþ1: ð15Þ

In the case of an axisymmetric perturbation, only them ¼ 0

tidal fields, EðlÞ
0 , BðlÞ

0 , contribute. Note that the metric (15)
is not asymptotically flat. Indeed, it only describes the
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spacetime at r≲ rts, where rts is the location of the generic
source of the tidal field.
As a result of the tidal field, the mass and current

multipole moments are deformed; in linear perturbation
theory, these deformations are proportional to the tidal
fields themselves. At zeroth order in the spin, the electric
(magnetic) tidal field affects the mass (current) multipole
moment with the same value of l. The proportionality
constants,

λðlÞE ≡ ∂Ml

∂EðlÞ
0

;

λðlÞM ≡ ∂Jl
∂BðlÞ

0

; ð16Þ

are the relativistic TLNs [49,50]. At first order in the spin,
the tidal field with a given parity and harmonic index l
affects the tidal field with opposite parity and harmonic
index l� 1. The proportionality constants,

λðll
0Þ

E ¼ ∂Ml

∂Bðl0Þ
0

;

λðll
0Þ

M ¼ ∂Jl
∂Eðl0Þ

0

; ð17Þ

with l0 ¼ l� 1, are called relativistic RTLNs; see, e.g.,
paper I and [41,44,48].

Since ½EðlÞ
0 �¼ ½BðlÞ

0 �¼ ðmassÞ−l, ½Ml� ¼ ½Jl� ¼ ðmassÞlþ1,
and the RTLNs are proportional to the dimensionless spin,
the dimensionless TLNs and RTLNs can be defined as

λ̃ðlÞE=M ≡ λðlÞE=M
M2lþ1

;

λ̃ðll
0Þ

E=M ≡ λðll
0Þ

E=M

χMlþl0þ1
: ð18Þ

Note that the dimensionless RTLNs defined above are also
independent of the spin. In terms of these quantities, the
axisymmetric deformations of the quadrupole and octupole
moments, to linear order in the tidal tensor and to linear
order in the spin, are

M2

M3
¼ λ̃ð2ÞE Ẽð2Þ

0 þ χλ̃ð23ÞE B̃ð3Þ
0

M3

M4
¼ λ̃ð3ÞE Ẽð3Þ

0 þ χλ̃ð32ÞE B̃ð2Þ
0

J2
M3

¼ λ̃ð2ÞM B̃ð2Þ
0 þ χλ̃ð23ÞM Ẽð3Þ

0

J3
M4

¼ λ̃ð3ÞM B̃ð3Þ
0 þ χλ̃ð32ÞM Ẽð2Þ

0 ; ð19Þ

where we defined the dimensionless tidal tensors ẼðlÞ
m ¼

EðlÞ
m Ml and B̃ðlÞ

m ¼ BðlÞ
m Ml. Note that if the system is

symmetric with respect to the equatorial plane, M3 ¼
J2 ¼ Eð3Þ

0 ¼ Bð2Þ
0 ¼ 0.

The Love numbers can be computed by solving the
systems in Eqs. (11) and (14) for l ¼ 2, 3 with the tidal

sources Eð2Þ
0 , Eð3Þ

0 , Bð2Þ
0 , Bð3Þ

0 . The analytic solution outside
the star has been explicitly derived in Ref. [48], in terms of
a set of integration constants. Solving the equations inside
the star, with the assumptions of regularity at the center and
smooth boundary conditions at the surface r ¼ R of the
star, fixes the integration constants, and thus, gives the
explicit value of the TLNs and of the RTLNs, which depend
on the EoS of the star.

B. Abdelsalhin et al. (paper II)

In paper II (see also Ref. [78]), the leading-order
contribution of the RTLNs to the PN waveform of
coalescing compact binaries was computed, together with
the spin corrections to the tidal deformability terms. These
terms appear at 6.5 PN order (i.e., they are suppressed by a
factor v13, where v is the orbital velocity of the binary)
relative to the leading-order contribution to the GW phase
(and by a factor v3 relative to the leading-order TLN term
entering at 5 PN order); they are obtained by generalizing
previous results [5,7], where the 6 PN tidal term in the GW
phase of nonrotating compact coalescing binaries was
derived.
The motion of the binary is described in terms of a

Lagrangian function,

L ¼ Lðzi; _zi; ̈zi;MA; JA;QL
A; _Q

L
A; SLA; _S

L
AÞ: ð20Þ

Here, zi ¼ zi1 − zi2 is the relative position of the binary in
the harmonic, conformally Cartesian coordinate frame
(defined everywhere outside the strong-field region of
the compact bodies) in which the PN approximation is
defined; an overdot denotes a derivative with respect to the
coordinate time in this frame; the index A ¼ 1, 2 refers to
the two bodies in the binary.5

Each body is characterized by its massMA, by its angular
momentum JA and by the higher-order multipole moments
QL

A, S
L
A (with l ≥ 2), using Thorne’s definition (see Sec. I A),

which are induced by the tidal field of the companion. The
multipole expansion is truncated to the octupole (l ¼ 3), and
the rotation is included at first order in the spin. The next-to-
leading order quadrupolar contributions are included,
whereas the octupolar contributions are truncated at the
leading order. This truncation is sufficient to determine the

5Note that units used in paper II are such that G ¼ 1, while the
speed of light c is retained as a dimensionful quantity in order to
keep track of the different PN orders [terms of the nth PN order
are Oðc−2nÞ].
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tidal waveform up to 6.5. PN order. Moreover, for simplicity
the quadrupole and octupole moments of body 1 are set to
zero, thus including only the multipole moments induced
from body 1 to body 2; the moments induced from body 2 to
body 1 can be obtained a posteriori with a simple exchange
of indices. Thus, the quadrupole and octupole moments are
simply denoted as QL ≡QL

2 and SL ≡ SL2 , respectively.
The Lagrangian can be written as the sum of an orbital

Lagrangian, which depends on the orbital motion and on
the multipole moments, and an internal Lagrangian, which
depends on the internal degrees of freedom of body 2 only,

L ¼ Lorbðzi; _zi; ̈zi;MA; JA;Qab; _Qab;Qabc; Sab; SabcÞ
þ Lint

2 ðQab;Qabc; Sab; SabcÞ: ð21Þ

We remark that the terms in _Qab in Lorb contribute to
the next-to-leading order corrections to the gravitational
waveform. The time derivatives of the other moments are
subleading.
The expression of the orbital Lagrangian is uniquely

determined by imposing that its variation with respect to
the coordinate separation leads to the PN orbital equations of
motion. The variation of the orbital Lagrangian with respect
to the multipole moments gives the electric and magnetic
tidal tensors, which are denoted byGL andHL, respectively,

Gab ¼ ∂Lorb

∂Qab −
d
dt

∂Lorb

∂ _Qab

Gabc ¼ ∂Lorb

∂Qabc

Hab ¼ ∂Lorb

∂Sab
Habc ¼ ∂Lorb

∂Sabc ; ð22Þ

and are defined, as in paper I, from the asymptotic behavior of
the metric around each of the bodies composing the system.
For each body, one can define a “buffer region,” far enough
from the body so that the gravitational field isweak, but close
enough so that the effect of the other body appears as a tidal
field. In the buffer region around the body A, xi ¼ ziA þ yi,
and the tidal contribution to the metric is [see Eqs. (1.63),
(1.76) in paper II],

gtt ¼ …þ
X
l≥2;m

2

l!
GlmYlmðθÞrl

gti ¼ … −
X
l≥2;m

1

ðlþ 1Þ!H
lmSlmφ ðθÞrlþ1; ð23Þ

where GlmYlm ¼ Ga1���alna1���al , HlmYlm ¼ Ga1���alna1���al ;
see Eq. (2). Note that this is equivalent to Eq. (15) but with
a different notation; see Appendix B.

At first order in the perturbation, the multipole moments
are linear in the tidal tensors which induce them; at linear
order in the spin, they can be written (keeping factors of c
for clarity),

Qab ¼ λ2Gab þ λ23
c2

JcHabc;

Qabc ¼ λ3Gabc þ λ32
c2

JhcHabi;

Sab ¼ σ2
c2

Hab þ σ23JcGabc;

Sabc ¼ σ3
c2

Habc þ σ32JhcGabi; ð24Þ

where λl, σl are the electric and magnetic TLNs, and λll0 , σll0
are the electric and magnetic RTLNs. They are defined with
a different normalization with respect to those introduced in
paper I and in Sec. II A; the conversion factors among them
are (see Appendix B)

λ2 ¼ −
4

3

ffiffiffi
π

5

r
M5λ̃ð2ÞE

λ3 ¼ −
4

5

ffiffiffi
π

7

r
M7λ̃ð3ÞE

σ2 ¼ −
1

2

ffiffiffi
π

5

r
M5λ̃ð2ÞM

σ3 ¼ −
1

5

ffiffiffi
π

7

r
M7λ̃ð3ÞM

λ23 ¼ −
ffiffiffi
π

7

r
M4λ̃ð23ÞE

λ32 ¼ −
3

4

ffiffiffi
π

5

r
M4λ̃ð32ÞE

σ23 ¼ −2
ffiffiffi
π

7

r
M4λ̃ð23ÞM

σ32 ¼ −16
ffiffiffi
π

5

r
M4λ̃ð32ÞM : ð25Þ

Equations (24) are called adiabatic relations because
the TLNs and the RTLNs are assumed to be constant,
neglecting the oscillatory response to a variation of the tidal
field; this adiabatic approximation is violated in the final
stages of the coalescence [79,80]. Note that (at variance
with paper I) in paper II, the multipole moments and the
tidal tensor can change with time; so, for instance, the
orbital Lagrangian (but not the internal Lagrangian, see
Sec. II C) depends on the multipole moments and on their
time derivatives. However, in the adiabatic approximation,
the time dependence of the tidal fields is neglected. This
implies that the nonaxisymmetric contribution of the tidal
fields and of the multipole moments vanishes, since sta-
tionary perturbations must be axisymmetric. In the general
case (not discussed in this paper), the TLNs and the RTLNs
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are matrices in the STF framework, which correspond, in
the harmonic basis, to Love numbers depending on the
indices l and m [56].
The internal Lagrangian Lint

2 ðQab;Qabc; Sab; SabcÞ only
depends on the internal degrees of freedom of the body 2
and is determined by imposing that the variation of L ¼
Lorb þ Lint

2 with respect to the multipole moments yields
the adiabatic relations (24). This gives

Lint
2 ¼ −

1

4λ2
QabQab −

1

12λ3
QabcQabc −

1

6σ2
SabSab

−
1

16σ3
SabcSabc þ αJa2Q

bcSabc

þ βJa2S
bcQabc; ð26Þ

where α and β are related to the RTLNs. Indeed, using
Eqs. (22), the variation of the Lagrangian with respect to
the multipole moments gives Eq. (24), with

λ23 ¼ 2λ2σ3α λ32 ¼ 6λ3σ2β

σ23 ¼ 3λ3σ2β σ32 ¼ 8λ2σ3α: ð27Þ
Remarkably, Eqs. (27) lead to

σ32 ¼ 4λ23; σ23 ¼
1

2
λ32; ð28Þ

which, in the notation of paper I [see Eqs. (25)], gives

λ̃ð32ÞM ¼ 9

4

ffiffiffi
5

7

r
λ̃ð23ÞE ; ð29Þ

˜
λð23ÞM ¼ 1

3

ffiffiffi
7

5

r
λ̃ð32ÞE : ð30Þ

We stress that the above relations among the RTLNs
follow from the use of the Lagrangian formulation, which
is also instrumental to obtain the gravitational waveform.

Remarkably, the magnetic-led RTLN σ32 (i.e., λ̃
ð32Þ
M ) and the

electric-led RTLN λ23 (i.e., λ̃ð23ÞE ) are obtained from
equations involving perturbations with opposite parities.
Therefore, from the perturbation theory point of view, there
is a priori no reason to expect these pairs of RTLNs to be
related. Nonetheless, in the next section, we will confirm
that Eqs. (29) and (30) hold true by computing the RTLNs
of a spinning NS. As discussed in the Introduction, this
relation reveals the existence of a new type of hidden
symmetry in the structure of compact stars: a universal
relation satisfied for any EoS, which is exact for small
compactness and weakly violated at large compactness.

C. Static and irrotational relativistic TLNs

In paper I, it was assumed that the fluid is static; i.e.,
δui ¼ 0. More recently, it was found that the appropriate
stationary limit of a time-dependent compact star has an

irrotational fluid [41], in which δgμν;0 ¼ 0 as for static
perturbations, but δui can have an azimuthal component. In
the irrotational case, the perturbation of the vorticity tensor,

ωαβ ¼ ∇αðhuβÞ −∇βðhuαÞ; ð31Þ
(with h ¼ ðρþ PÞ=n, n baryonic number density) identi-
cally vanishes. Conversely the static fluid, although math-
ematically consistent (it is an admissible solution of the
field equations), cannot be retrieved as the static limit of a
time-dependent solution and thus, should not be considered
as physically sound.
For a nonrotating NS the irrotationality condition simply

reduces to the vanishing of the covariant velocity pertur-
bation, δui ¼ 0 [39,41], leading to δuϕ ∝ δgtϕ. As dis-
cussed in Ref. [39], this choice corresponds to the magnetic
TLNs computed by Damour and Nagar [50]. For a rotating
star, the irrotational condition is much more involved; it
does not reduce to a simple condition on the four-velocity
components (see, e.g., [81]).
As noted in [82], this characterization of static and

irrotational fluid configurations can be easily rephrased
in a Lagrangian framework. If the internal Lagrangian
does not depend on time, its variations yield the static
perturbations. The irrotational perturbations, instead, are
the zero-frequency limit of the equations obtained from a
time-dependent Lagrangian.
In paper II, it was assumed that the Lagrangian Lint,

describing the internal degrees of freedom of the star,
depends on the multipole moments but not on their time
derivatives:Lint ¼ LintðQL

A; S
L
AÞ; see Eq. (26). Therefore, the

adiabatic equations (24), arising from thevariations∂L=∂QL
A

and ∂L=∂SLA, correspond to static perturbations. Thus, the
hidden symmetry (29)–(30) refers to static perturbations as
well. In order to extend the results of paper II to irrotational
perturbations, we should consider an internal Lagrangian,
which depends (like the orbital Lagrangian) to _QL

A; _S
L
A as

well, compute the variations with respect to the multipole
moments, and finally, consider the zero-frequency limit; we
leave this computation for future work [63].

III. HIDDEN SYMMETRY OF THE RTLNs

We shall now explicitly compute the static RTLNs for
different EoSs. We shall then verify whether the relations
(29), (30) are satisfied.

A. Computation of the static RTLNs

In order to compute the magnetic RTLNs (17),

λðll
0Þ

M ¼ ∂Jl
∂Eðl0Þ

0

; ð32Þ

with l0 ¼ l� 1, and the rescaled quantities λ̃ðll
0Þ

M ¼ λðll
0Þ

M =
ðMlþl0þ1χÞ, we have to determine the current multipole
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perturbations Jl induced by an electric tidal field Eðl0Þ
0 (15);

thus, we have to find the axial parity perturbations hl0
induced by polar parity perturbations Hl0

0 , by solving the

polar-led equations (11). For λ̃ð23ÞM , we have to consider the
perturbations h20 induced by H3

0, and Eqs. (11) reduce to

Dpolð3Þ½H3
0� ¼ 0 ð33Þ

Daxð2Þ½h20� ¼ Spolð3Þþ ½H3
0�; ð34Þ

while for λ̃ð32ÞM , we have to consider the perturbations h30
induced by H2

0, and Eqs. (11) reduce to

Dpolð2Þ½H2
0� ¼ 0 ð35Þ

Daxð3Þ½h30� ¼ Spolð2Þþ ½H2
0�: ð36Þ

Similarly, to compute the electric RTLNs (17),

λðll
0Þ

E ¼ ∂Ml

∂Bðl0Þ
0

; ð37Þ

with l0 ¼ l� 1, and the rescaled quantities, λ̃ðll
0Þ

E ¼ λðll
0Þ

E =
ðMlþl0þ1χÞ, we have to determine the mass multipole

perturbations Ml induced by a magnetic tidal field Bðl0Þ
0

(15). Thus, we have to find the polar parity perturbations
Hl

0 induced by axial parity perturbations h
l0
0 , by solving the

axial-led equation (14). For λ̃ð23ÞE , we have to consider the
perturbations H2

0 induced by h30, and Eqs. (14) reduce to

Daxð3Þ½h30� ¼ 0 ð38Þ

Dpolð2Þ½H2
0� ¼ Saxð3Þþ ½h30�; ð39Þ

while for tildelambdað32ÞE , we have to consider the per-
turbations H3

0 induced by h20, and Eqs. (14) reduce to

Daxð3Þ½h20� ¼ 0 ð40Þ

Dpolð3Þ½H3
0� ¼ Saxð2Þþ ½h20�: ð41Þ

The explicit form of Eqs. (36)–(41) is given in Eqs. (12),
(13) and in Appendix A.
For concreteness, let us consider a quadrupolar electric

tidal perturbation, Eð2Þ
0 (the computation of other multipoles

follows straightforwardly). In practice, we start by solving
Eq. (35) and then use its solution to source Eq. (36).
Outside the star, we can solve the entire system analytically,
obtaining a solution that satisfies the asymptotic behavior
(15). The full treatment of the separation of the tidal and

response parts of the solutions, as well as the definition of
the solutions’ free constants, is the same as in paper I.
The interior solutions have to be computed numerically.

We start by performing an asymptotic expansion of Eq. (35)
at r ¼ 0 to obtain the initial conditions (up to an overall
constant) and integrate up to the radius of the star. We then
match the two (interior and exterior) solutions and their first
radial derivatives at the radius R, obtaining values for the
free constants of the exterior solution (specifically, γ2 and
α2 as defined in paper I) with which we compute the (l ¼ 2,

electric) TLN of the nonspinning star, λ̃ð2ÞE . Solving Eq. (36)
follows a similar procedure, with the difference that—being
an inhomogeneous equation—its full solution is obtained
as a linear combination of a particular solution and the
solution of the corresponding homogeneous equation. The
arbitrary multiplicative factor in front of the homogeneous
part—as well as the value of the free single constant of the
exterior solution (γ�32 as defined in paper I)—can be
obtained via the matching at the radius of the star R.
After this procedure, one can simply extract the corre-

sponding RTLN, λ̃ð32ÞM .
We compute the electric and magnetic RTLNs with

l; l0 ¼ 2, 3 and l; l0 ¼ 3, 2 for different values of the
compactness C ¼ M=R, for a sample of EoS consisting
in the polytropic EoS with n ¼ 0.5, 1, 2,6 and the APR4
EoS [83]. The results of the computation (multiplied by C6)
are shown in Fig. 1. We stress that the computations
presented here correct some errors in the numerical
implementation of paper I.

B. The hidden symmetry

Equations (29), (30) imply that the ratios of the RTLNs

λ̃ðll
0Þ

E , λ̃ðll
0Þ

M with l; l0 ¼ 2, 3 and l; l0 ¼ 3, 2, are constant

R1 ≡ λ̃ð32ÞM

λ̃ð23ÞE

¼ 9

4

ffiffiffi
5

7

r
≃ 1.902; ð42Þ

R2 ≡ λ̃ð23ÞM

λ̃ð32ÞE

¼ 1

3

ffiffiffi
7

5

r
≃ 0.394; ð43Þ

regardless of the NS mass and of the EoS. In Fig. 2, we
show the ratiosR1,R2 as functions of the compactness, for
the sample of EoS considered in this paper (polytropic EoS
with n ¼ 0.5, 1, 2 and APR4 EoS), together with the
theoretical prediction (43).
Note that the theoretical prediction from the Lagrangian

PN approach [Eq. (43)] is precisely satisfied in the small-
compactness limit. When C≲ 0.1, the ratios R1, R2

coincide with the theoretical prediction within 1%, whereas
for C ∼ 0.2–0.3, the discrepancy increases (approximately)

6Note that, at variance with paper I, we use the polytropic EoS
of the form P ¼ Kρ1þ1=n

0 , ρ ¼ ρ0 þ nP.
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quadratically in C up to ∼6%. We have verified that this
discrepancy is significantly larger than the numerical
errors, so it does not look as a numerical artifact.
Moreover, for any compactness, the ratios R1, R2 are
independent on the EoS within 0.2% (i.e., within the
numerical error).

IV. DISCUSSION

Our results imply that a hidden symmetry among the
static RTLNs with opposite parity actually exists, as
suggested by the PN Lagrangian formulation of paper I.
This symmetry is exactly satisfied in the small-compact-
ness limit and is therefore stronger than other approxi-
mately EoS-independent relations between the (spin- and
tidal-induced) multipole moments of a NS [26]. For large
values of the compactness, the hidden symmetry is weakly
violated, but an EoS-independent (within numerical errors)
relation is still present.

The very existence of this hidden symmetry is highly
nontrivial and deserves further studies. In particular, it is
not clear which is its underlying reason. From a Lagrangian
point of view, it is natural to expect that opposite sectors are
coupled to each other, since a single interaction term in the
form of Eq. (1) gives rise to related coupling terms in the
field equations forA and P, which are both proportional to
the single coupling constant α. On the other hand, justify-
ing the origin of this symmetry from a pertubation-theory
point of view is challenging, since there is a priori no
reason why perturbations belonging to opposite parity
sectors should be related to each other. This symmetry is
somehow reminiscent of the relation between axial and
polar perturbations in Schwarzschild black holes found by
Chandrasekhar [64], although in this case, it involves the
matter sector as well.
Another point that deserves future investigation is the

dependence on the compactness. The latter does not enter

FIG. 2. Ratios of RTLNs R1 (left panel) and R2 (right panel) [see Eq. (43)] as a function of the compactness C, for a polytropic EoS
with n ¼ 0.5, n ¼ 1, n ¼ 2, and for the APR4 EoS. The horizontal line denotes the theoretical prediction from the Lagrangian
formulation [Eq. (43)].

FIG. 1. Electric-led and magnetic-led RTLNs for a static fluid with polytropic EoS with n ¼ 1. These results are obtained after
correcting the numerical implementation of paper I.
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directly in the Lagrangian formulation of paper II, being
encoded in the (R)TLNs. Our results suggest instead that
the prediction from the PN expansion is valid only for low-
compactness objects, and it acquires small corrections at
large compactness.
Finally, in agreement with the framework of paper II,

we have focused on static perturbations. We anyway
expect that qualitatively similar (but quantitatively differ-
ent) relations exist among the irrotational RTLNs. In
order to extend our results to the more realistic, irrota-
tional case, one should include time dependence (and,
possibly, nonaxisymmetry) in the tidal field, both in the
Lagrangian and in the perturbation-theory formulations.
This interesting problem will be discussed in a future
work [63].
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APPENDIX A: EXPLICIT FORM OF THE
COEFFICIENTS AND THE SOURCE IN THE

RTLN EQUATIONS

In this Appendix, we give the explicit form of the
coefficients in the definition of the operators DpolðlÞ,
DaxðlÞ given in Eqs. (12), (13), and of the source terms
appearing in Eqs. (11), (14). We have

CpolðlÞ
1 ¼ eλðrÞ½4πr2ðPðrÞ − ρðrÞÞ þ 1� þ 1

r
ðA1Þ

CpolðlÞ
0 ¼ 4πeλðrÞðPðrÞ þ ρðrÞÞ

dP
dρ

−
ð8πr2PðrÞ þ 1Þ2e2λðrÞ

r2

−
eλðrÞ½−4πr2ð13PðrÞ þ 5ρðrÞÞ þ l2 þ l − 2� þ 1

r2

ðA2Þ

CaxðlÞ
1 ¼ −4πreλðrÞðPðrÞ þ ρðrÞÞ ðA3Þ

CaxðlÞ
0 ¼ −

eλðrÞ½8πr2ðPðrÞ þ ρðrÞÞ�
r2

−
eλðrÞ½l2 þ l − 2� þ 2

r2
; ðA4Þ

and

SpolðlÞþ ¼ 1

ðlðlþ 1Þ − 2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4lðlþ 2Þ þ 3

p
c2sðr − 2MÞ2 ½κð2 − lðlþ 1ÞÞr3ðr − 2MÞðPþ ρÞðω̃þΩÞHðlÞ

0

− c2sðHðlÞ
0 ð2rMð−κr2ρðð5lðlþ 1Þ − 22ÞΩþ ðlð5lþ 9Þ − 6Þω̃Þ − 2ðlðlðlþ 1Þ − 4Þ − 2ÞðΩ − ω̃Þ

þ κr2PðΩð3lðlþ 5Þ þ 32κr2ρþ 14Þ þ ð14 − lð13lþ 25ÞÞω̃Þ þ 24κ2r4ΩP2 þ 8κ2r4Ωρ2Þ
þ r2ðκr2Ωðρð5lðlþ 1Þ þ 16κr2Pðκr2P − 1Þ − 14Þ þ Pð4κr2Pðlðlþ 3Þ þ 4κr2P − 2Þ þ ðl − 3Þl − 6Þ
− 8κr2ρ2Þ þ ω̃ðκr2ðPð−4κlðlþ 3Þr2Pþ lð9lþ 13Þ − 14Þ þ ðlð5lþ 9Þ − 6ÞρÞ − 2lðlðlþ 1Þ − 2ÞÞ
þ 2lðlðlþ 1Þ − 2ÞΩÞ þ 4M2ðððl − 1Þl − 4ÞðΩ − ω̃Þ − 4κr2ΩðPþ ρÞÞÞ
þ 2rðr − 2MÞHðlÞ

0

0ððlðlþ 1Þ − 2Þrðω̃ − ΩÞ þMððlð3lþ 5Þ − 4ÞðΩ − ω̃Þ þ 4κr2ΩðPþ ρÞÞ
þ κr3Pðlðlþ 3ÞðΩ − ω̃Þ þ 4κr2ΩρÞ þ 4κ2r5ΩP2ÞÞ�; ðA5Þ

SpolðlÞ− ¼ 1

ðlðlþ 1Þ − 2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4l2 − 1

p
c2sðr − 2MÞ2

½c2sð2rðr − 2MÞHðlÞ
0

0ðMðð3lðlþ 1Þ − 6ÞðΩ − ω̃Þ þ 4κr2ΩðPþ ρÞÞ

þ rðκr2Pððlðl − 1Þ − 2ÞðΩ − ω̃Þ þ 4κr2ΩρÞ − ðlðlþ 1Þ − 2ÞðΩ − ω̃Þ þ 4κ2r4ΩP2ÞÞ
þHðlÞ

0 ð4M2ððl2 þ 3l − 2ÞðΩ − ω̃Þ − 4κr2ΩP − 4κr2ΩρÞ þ 2rMðκr2Pð−ð13lðlþ 1Þ − 26Þω̃
þ ð3l2 − 9lþ 2ÞΩþ 32κr2ΩρÞ − κr2ρðð5lðlþ 1Þ − 10Þω̃þ ð5l2 þ 9l − 18ÞΩÞ
þ 2ðl3 þ 2l2 − 3l − 2ÞðΩ − ω̃Þ þ 24κ2r4ΩP2 þ 8κ2r4Ωρ2Þ þ r2ðκr2Pðð9l2 þ 5l − 18Þω̃
þ ðl2 þ 5l − 2ÞΩ − 16κr2ΩρÞ þ 4κ2r4P2ðð−lðlþ 1Þ þ 2Þω̃þ ðlðl − 1Þ − 4ÞΩþ 4κr2ΩρÞ
þ κr2ρðð5lðlþ 1Þ − 10Þω̃þ ð5l2 þ 9l − 10ÞΩÞ − 2ðl3 þ 2lðl − 1Þ − 2ÞðΩ − ω̃Þ þ 16κ3r6ΩP3 − 8κ2r4Ωρ2ÞÞÞ
þ κðlðlþ 1Þ − 2Þr3ðr − 2MÞðPþ ρÞðω̃þΩÞHðlÞ

0 �; ðA6Þ
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SaxðlÞþ ¼ 2e−νffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4l2 þ 8lþ 3

p
r2c2sðr − 2MÞ2 ½c

2
sðrðr − 2MÞhðlÞ0 0ð−2Mðrω̃0ðlðlþ 1Þ þ 2κr2Pþ 2κr2ρþ 3Þ

þ ω̃ð3lðlþ 1Þ − 4κr2P − 4κr2ρÞ − 3lðlþ 1ÞΩÞ þ rð2κr2Pðlðlþ 1ÞΩ − ω̃ðlðlþ 1Þ − 4κr2ρÞÞ þ l2rω̃0

− 2l2Ωþ lrω̃0 þ 2lðlþ 1Þω̃ − 2lΩ − 2κ2r4P2ðrω̃0 − 4ω̃Þ þ 2κr3ρω̃0Þ þ 10M2ω̃0Þ
þ hðlÞ0 ðr2ðκr2Pð2ω̃ðlðlþ 1Þ þ 12κr2ρÞ − 2ω̃0ðlr − 4κr3ρþ rÞ − 5lðlþ 1ÞΩÞ þ κr2ρð2lðlþ 1Þω̃
− 5lðlþ 1ÞΩ − 4rω̃0Þ þ 2lðlþ 1Þ2ðΩ − ω̃Þ − 20κ3r6P3ω̃ − 4κ2r4P2ðω̃ð5κr2ρ − 4Þ − 3rω̃0Þ þ 8κ2r4ρ2ω̃Þ
− 2rMð−2l3ω̃þ 2l3Ωþ κr2Pð2ω̃ðlðlþ 1Þ þ 22κr2ρþ 2Þ þ 2rω̃0ð4κr2ρ − 5 − lÞ − 5lðlþ 1ÞΩÞ
þ κr2ρð2ðlðlþ 1Þ þ 2Þω̃ − 5lðlþ 1ÞΩ − 12rω̃0Þ − 2l2ω̃þ 2l2Ωþ lrω̃0 þ 12κ2r4P2ðrω̃0 þ 3ω̃Þ
þ 8κ2r4ρ2ω̃ − 5rω̃0Þ − 4M2ðrω̃0ð−lþ 8κr2Pþ 8κr2ρþ 10Þ þ ω̃ð−2lðlþ 1Þ þ κr2Pþ κr2ρÞ þ 2lðlþ 1ÞΩÞ
þ 40M3ω̃0ÞÞ − κr2ðPþ ρÞhðlÞ0 ð−2rMðlðlþ 1ÞΩ − 4κr2Pω̃Þ þ r2ðlðlþ 1ÞΩþ 4κ2r4P2ω̃Þ þ 4M2ω̃Þ�; ðA7Þ

SaxðlÞ− ¼ 2e−νffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4l2 − 1

p
r2c2sðr − 2MÞ2

½c2sðhðlÞ0 ðr2ð−κr2Pð2ω̃ðlðlþ 1Þ þ 12κr2ρÞ þ 2rω̃0ðlþ 4κr2ρÞ − 5lðlþ 1ÞΩÞ

þ 2l2ðlþ 1ÞðΩ − ω̃Þ þ κr2ρð−2lðlþ 1Þω̃þ 5lðlþ 1ÞΩþ 4rω̃0Þ þ 20κ3r6P3ω̃

þ 4κ2r4P2ðω̃ð5κr2ρ − 4Þ − 3rω̃0Þ − 8κ2r4ρ2ω̃Þ þ 2rMð2l3ω̃ − 2l3Ωþ κr2Pð2ω̃ðlðlþ 1Þ þ 22κr2ρþ 2Þ
þ 2rω̃0ðlþ 4κr2ρ − 4Þ − 5lðlþ 1ÞΩÞ þ κr2ρð2ðlðlþ 1Þ þ 2Þω̃ − 5lðlþ 1ÞΩ − 12rω̃0Þ þ 4l2ðω̃ −ΩÞ
− lrω̃0 þ 2lω̃ − 2lΩþ 12κ2r4P2ðrω̃0 þ 3ω̃Þ þ 8κ2r4ρ2ω̃ − 6rω̃0Þ þ 4M2ðrω̃0ðlþ 8κr2Pþ 8κr2ρþ 11Þ
þ ω̃ð−2lðlþ 1Þ þ κr2Pþ κr2ρÞ þ 2lðlþ 1ÞΩÞ − 40M3ω̃0Þ − rðr − 2MÞhðlÞ0 0ð−2Mðrω̃0ðlðlþ 1Þ
þ 2κr2ðPþ ρÞ þ 3Þ þ ω̃ð3lðlþ 1Þ − 4κr2P − 4κr2ρÞ − 3lðlþ 1ÞΩÞ
þ rð2κr2Pðlðlþ 1ÞΩ − ω̃ðlðlþ 1Þ − 4κr2ρÞÞ þ l2rω̃0 − 2l2Ωþ lrω̃0 þ 2lðlþ 1Þω̃ − 2lΩ

− 2κ2r4P2ðrω̃0 − 4ω̃Þ þ 2κr3ρω̃0Þ þ 10M2ω̃0ÞÞ þ κr2ðPþ ρÞhðlÞ0 ð−2rMðlðlþ 1ÞΩ − 4κr2Pω̃Þ
þ r2ðlðlþ 1ÞΩþ 4κ2r4P2ω̃Þ þ 4M2ω̃Þ�; ðA8Þ

where κ ¼ 4π and cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dP=dρ

p
is the sound speed in the

fluid.

APPENDIX B: COMPARISON BETWEEN
DIFFERENT CONVENTIONS FOR THE (R)TLNs

We shall compare the definitions and notations of TLNs
and RTLNs in paper I and in paper II, in order to find the
rescaling factors appearing in Eq. (25). For the reader’s
convenience, we repeat here some of the relations that appear
in the main text, so that the derivation is self-contained.
In paper I, the adiabatic relations among multipole

moments read [see Eq. (19)]

M2

M3
¼ λ̃ð2ÞE Eð2Þ

0 M2 þ χλ̃ð23ÞE Bð3Þ
0 M3

M3

M4
¼ λ̃ð3ÞE Eð3Þ

0 M3 þ χλ̃ð32ÞE Bð2Þ
0 M2

J2
M3

¼ λ̃ð2ÞM Bð2Þ
0 M2 þ χλ̃ð23ÞM Eð3Þ

0 M3

J3
M4

¼ λ̃ð3ÞM Bð3Þ
0 M3 þ χλ̃ð32ÞM Eð2Þ

0 M2; ðB1Þ

where Ml, Jl are the Geroch-Hansen multipole moments

and EðlÞ
0 , BðlÞ

0 are the tidal tensor components defined from
the asymptotic limit of the metric in Eq. (15). Conversely,
in paper II, they read (24) (in c ¼ 1 units)

Qab ¼ λ2Gab þ λ23JcHabc;

Qabc ¼ λ3Gabc þ λ32JhcHabi;

Sab ¼ σ2Hab þ σ23JcGabc;

Sabc ¼ σ3Habc þ σ32JhcGabi; ðB2Þ

where QL, SL are Thorne’s multipole moments, and GL,
HL are the tidal tensor components, defined (in spherical
harmonic notation) from the asymptotic limit expansion
(23). In order to express Eqs. (B2) in terms of spherical
harmonics components, we note that [see Sec. I A]

Qab ¼
X
m

Q2mY2m
ab ¼ Q20Y20

ab

Qabc ¼
X
m

Q2mY3m
abc ¼ Q30Y30

abc; ðB3Þ
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where we have assumed axisymmetry; the same applies to
the current multipole moments Sab, Sabc and to the tidal
tensor components. Moreover, Ja ¼ χkaM2. Therefore,

Q20Y20
ab ¼ λ2G20Y20

ab þ λ23χM2H30Y30
abck

c

Q30Y30
abc ¼ λ3G30Y30

abc þ λ32χM2H20Y20
habkci

S20Y20
ab ¼ σ2H20Y20

ab þ σ23χM2G30Y30
abck

c

S30Y30
abc ¼ σ3H30Y30

abc þ σ32χM2G20Y20
habkci: ðB4Þ

Since Ylm
abY

�lm0
ab ¼ N−1

l δmm0
with Nl ¼ 4πl!=ð2lþ 1Þ!!,

we find

Q20 ¼ λ2G20 þ λ23χM2H30KN2

Q30 ¼ λ3G30 þ λ32χM2H20KN3

S20 ¼ σ2H20 þ σ23χM2G30KN2

S30 ¼ σ3H30 þ σ32χM2G20KN3; ðB5Þ

where we defined K ¼ Y30
abck

cY�20
ab . Since [2] Y20

ab ¼
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5=ð16πÞp

δab and Y30
abck

c ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7=ð16πÞp

δab,

K ¼ 3

16π

ffiffiffiffiffi
35

p
: ðB6Þ

The Thorne multipole moments are related to the Geroch-
Hansen multipole moments by Eq. (4),

Qi1���il ¼ Mlki1���il ; Si1���il ¼ lþ 1

2l
Jlki1���il ; ðB7Þ

thus, since [see Sec. I A] Qi1���ilni1���il ¼
P

m QlmYlm ¼
Ql0Yl0 and the same applies to Si1���il ,

Mlki1���ilni1���il ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
Ql0Plðcos θÞ

lþ 1

2l
Jlki1���ilni1���il ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
Sl0Plðcos θÞ; ðB8Þ

where Pl are the Legendre polynomials. Then, since [2]
ki1���ilni1���il ¼ l!=ð2l − 1Þ!!Plðcos θÞ,

Ql0 ¼ l!
ð2l − 1Þ!!

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r
Ml

Sl0 ¼ ðlþ 1Þ!
2lð2l − 1Þ!!

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r
Jl: ðB9Þ

Moreover, by comparing Eqs. (15), (23), we find that the
tidal tensor components in the notations of paper I and of
paper II are related by

Glm ¼ −ðl − 2Þ!EðlÞ
m

Hlm ¼ −
2

3
ðlþ 1Þðl − 2Þ!BðlÞ

m : ðB10Þ

By replacing Eqs. (B9), (B10) in Eq. (B5), we find

M2 ¼ −
3

2

ffiffiffiffiffiffi
5

4π

r
λ2E

ð2Þ
0 −

32π

15

ffiffiffiffiffiffi
5

4π

r
χM2Kλ23B

ð3Þ
0

M3 ¼ −
5

2

ffiffiffiffiffiffi
7

4π

r
λ3E

ð3Þ
0 −

8π

7

ffiffiffiffiffiffi
7

4π

r
χM2Kλ32B

ð2Þ
0

J2 ¼ −4
ffiffiffiffiffiffi
5

4π

r
σ2B

ð2Þ
0 −

16π

15

ffiffiffiffiffiffi
5

4π

r
χM2Kσ23E

ð3Þ
0

J3 ¼ −10
ffiffiffiffiffiffi
7

4π

r
σ3B

ð3Þ
0 −

6π

7

ffiffiffiffiffiffi
5

4π

r
χM2Kσ32E

ð2Þ
0 : ðB11Þ

By comparing with Eq. (B1) and replacing Eq. (B6), we
finally obtain Eqs. (25), i.e., the relation between TLNs and
RTLNs in the notations of paper I and paper II.
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