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Abstract. Brain-derived neurotrophic factor (BDNF), a protein belonging to the neurotrophin family, is known to be heavily
involved in synaptic plasticity processes that support brain development, post-lesion regeneration, and cognitive performances,
such as learning and memory. Evidence indicates that BDNF expression can be epigenetically regulated by environmental
stimuli and thus can mediate the experience-dependent brain plasticity. Environmental enrichment (EE), an experimental
paradigm based on the exposure to complex stimulations, constitutes an efficient means to investigate the effects of high-
level experience on behavior, cognitive processes, and neurobiological correlates, as the BDNF expression. In fact, BDNF
exerts a key role in mediating and promoting EE-induced plastic changes and functional improvements in healthy and
pathological conditions. This review is specifically aimed at providing an updated framework of the available evidence on
the EE effects on brain and serum BDNF levels, by taking into account both changes in protein expression and regulation
of gene expression. A further purpose of the present review is analyzing the potential of BDNF regulation in coping with
neurodegenerative processes characterizing Alzheimer’s disease (AD), given BDNF expression alterations are described in
AD patients. Moreover, attention is also paid to EE effects on BDNF expression in other neurodegenerative disease. To
investigate such a topic, evidence provided by experimental studies is considered. A deeper understanding of environmental
ability in modulating BDNF expression in the brain may be fundamental in designing more tuned and effective applications
of complex environmental stimulations as managing approaches to AD.
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NEUROPLASTICITY AND30

ENVIRONMENTAL ENRICHMENT31

Neuroplasticity is the ability of nervous system to32

change its structure and function as a result of the33

experience [1]. Such a brain prerogative is the basis34

of its ability to successfully adapt to the environment,35

a fundamental property in both ordinary learning pro-36

cesses and extraordinary phases, such as those linked37

to brain development and repair [2].38

Accordingly, evidence has been provided that39

individuals with dissimilar life experiences differ-40

ently cope with brain damage and degeneration. This41

concept has been structured in the reserve hypothesis42

[3, 4] that posits that the experience-induced plastic43

changes are able to constitute a cerebral reserve that44

supports the individual in demanding conditions.45

Such a cerebral reserve is developed at three levels,46

such as: brain reserve – referred to the structural47

equipment of an individual, consisting of brain48

volume, number and morphological features of49

neurons, glial cells, and synapses, circulatory and50

neurotransmitter systems, etc.; cognitive reserve51

– referred to cognitive strategies engaged in per-52

formances and tasks; neural reserve – referred to53

the efficient recruitment of neural circuitries [4–7].54

More recently, another level has been added, namely55

the brain maintenance, referred to the ability of56

maintaining the nervous system integrity [8, 9].57

Three experiential factors have been identified as58

the ones that potentiate the nervous system struc-59

ture and function: the social factor – regarding all60

the ties that insert an individual in a thick social net-61

work (such as familiar status, friendship, etc.) [10,62

11]; the cognitive factor – regarding all the mentally63

demanding activities that involve an individual (such64

as education and work, but also a number of cogni-65

tive leisure activities, multilingualism, etc.) [12–15];66

the physical factor – regarding all the components of67

a healthy lifestyle (such as motor activity, salubrious68

diet, etc.) [16–19].69

To investigate the effects of the experience on the70

nervous system, the three enlisted experiential factors71

are mimicked in animal studies by using the classical72

experimental paradigm of environmental enrichment73

(EE), which is based on advanced social, cognitive,74

and physical stimulations [20, 21]. Such a protocol is75

commonly used with rodents, by enhancing labora-76

tory housing condition on several dimensions in order77

to mimic the three human lifestyle factors that are78

indicated as reserve-builders. The rearing in groups of79

animals more numerous than the regular ones mimics80

the social factor; the complex and always-changing 81

environment—created by placing, repositioning, and 82

often renewing a large amount of objects in the 83

cage—mimics the cognitive factor; and, finally, the 84

large cages provided with ladders, running wheels, 85

and shelves that allow and stimulate exploration and 86

motor activity, sometimes in combination with the 87

offer of supplementary nutrients, mimic the physi- 88

cal factor [22]. EE paradigm allows evaluating the 89

effects of a single factor among the cited ones or of 90

more than one factor in combination; modifying the 91

age of the animals at the starting of the exposure and 92

the duration of the exposure; primarily stimulating a 93

single sensory channel or more than one in combi- 94

nation; enriching animals in healthy or pathological 95

state. On the whole, EE allows a high-level control 96

and manipulation of the single involved variables, a 97

possibility hardly achievable in human studies [6, 23]. 98

Animal studies based on the exposure to EE con- 99

sistently demonstrate that enriched rodents show 100

improved performances in multifarious behavioral 101

and cognitive tasks, both in healthy conditions and in 102

the presence of neural damage and cognitive decline 103

[24–28]. In correlation, large evidence has been pro- 104

vided that EE induces a reinforcement of neural 105

structure, circuitries, and processes ([29–34]; for a 106

review, see [35]), among which the expression of 107

neurotrophic factors [36, 37]. 108

BRAIN-DERIVED NEUROTROPHIC 109

FACTOR 110

Brain-derived neurotrophic factor (BDNF), firstly 111

isolated in the eighties from pig brain [38], belongs 112

to the neurotrophin family of growth factors, together 113

with the homologs nerve growth factor (NGF) and 114

neurotrophins 3, 4, 5, and 6 [39]. Neurotrophins are 115

synthetized mainly in the central nervous system, but 116

also in non-neural cells (such as lymphocytes, mono- 117

cytes, vascular endothelial and muscle cells) [40], and 118

fundamentally support and regulate neural growth, 119

differentiation, survival, and plasticity both in central 120

and peripheral nervous system [41]. 121

In the adult brain, BDNF is the predominant mem- 122

ber of the neurotrophin family, and it is expressed 123

in several areas, with the highest levels in hip- 124

pocampus, and then in cerebral cortex, amygdala, 125

and cerebellum. However, BDNF expression has also 126

been described in hypothalamus, striatum, midbrain, 127

pons, and medulla oblongata [40, 42]. It has been 128

reported that BDNF is expressed by glutamatergic 129
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neurons and glial cells, such as astrocytes and130

microglia [43]. Recently, it has been reported that131

it may also be expressed by inhibitory cells [44].132

BDNF is synthetized as pro-BDNF precursor, and133

it is then converted in mature BDNF at both intra-134

and extracellular levels [45]. Both pro-BDNF and135

mature BDNF are expressed in activity-dependent136

way, but they provoke opposite effects on cellular137

functioning, following two different pathways [46,138

47]. Pro-BDNF induces long-term depression and139

apoptosis, by preferably binding p75NTR receptor;140

conversely, mature BDNF supports long-term poten-141

tiation, synaptogenesis, and neuronal survival, by142

selectively binding to tyrosine kinase receptor [42,143

48, 49]. In particular, several studies assigned to144

BDNF a prominent role in modulating synaptic plas-145

ticity and strength, affecting N-methyl-D-aspartate146

(NMDA) receptor expression [50], dendritic spine147

density and morphology [51, 52], and neurogenesis148

[53]. At a functional level, BDNF expression sup-149

ports and modulates cognitive functioning, namely,150

the learning and memory processes [54, 55].151

Such BDNF actions support its potentially ben-152

eficial role in neurodegeneration, and specifically153

in Alzheimer’s disease (AD). In AD patients’ post-154

mortem brains, BDNF mRNA and BDNF protein155

levels are reduced; a similar decrease is present156

also in mild cognitive impairment (MCI) [39]. It157

has been reported a negative interaction between158

amyloid-� (A�) senile plaques and BDNF expres-159

sion linked to the downregulation of axonal transport160

and the inhibition of the conversion from pro-BDNF161

to mature BDNF [56–58]. However, findings related162

to BDNF serum levels in AD patients are still con-163

flicting, since decreased [59], equal [60], and even164

increased [61] levels have been found in comparison165

to healthy controls. A recent meta-analysis confirmed166

that BDNF serum level is reduced in AD, but not167

in MCI patients [62]. Methodological biases have168

been advanced as the cause of this conundrum [63].169

Moreover, it is worth noting that animal studies sug-170

gest that changes in central mature BDNF protein are171

not always reflected by changes in peripheral mature172

BDNF levels [64].173

EPIGENETIC REGULATION OF BDNF174

EXPRESSION175

In humans, the BDNF gene is located at chromo-176

some 11, region p13-14 [65]. The BDNF gene has177

a very complex structure that encompasses eleven178

different exons in humans and nine different exons 179

in rodents. However, in both humans and rodents 180

only the last exon—that is the exon IX— is the 181

coding one at the 3′-end [43, 66]. Anyway, nine of 182

the eleven exons contain nine alternative promoters, 183

in both humans and rodents. This quite exceptional 184

characteristic of BDNF gene has probably the role to 185

finely regulate its complex expression in both spa- 186

tial and temporal sense [43, 65, 67]. In fact, the 187

existence of multiple promoters determines tissue- 188

specific expression of BDNF transcripts [66]. In the 189

brain, all exons are expressed, but different degrees 190

of expression are found in different regions and in 191

different developmental stages [43]. Moreover, the 192

multiple promoters support the high and specific 193

responsiveness of BDNF to a large variety of environ- 194

mental stimuli, on the basis of a number of regulatory 195

elements recruiting proper transcription factors that 196

modulate their activity. As a consequence, since 197

BDNF promoters mediate differential BDNF isoform 198

expression in diverse brain areas, the environment- 199

induced changes in their activity are able to modulate 200

cellular and behavioral phenotypes [43]. 201

A fundamental epigenetic mechanism involved in 202

BDNF gene expression regulation is DNA methy- 203

lation, which is able to modulate gene silencing 204

throughout lifespans by triggering dynamic and 205

reversible processes. A relevant role in this process 206

has been attributed to the methyl-CpG-binding pro- 207

tein 2 (MeCP2), which is able to act on chromatin 208

structure by recruiting transcriptional repressor com- 209

plexes in an activity-dependent manner [65, 68, 69]. 210

Moreover, in consequence of environmental stimu- 211

lations BDNF expression levels are also modulated 212

by histone post-translational modifications, mediated 213

by a number of processes, such as methylation and 214

acetylation [67, 69]. Post-transcriptional regulation 215

of BDNF mRNA levels may be mediated by non- 216

coding RNAs, such as microRNAs. In fact, the BDNF 217

3’-untraslated region contains up to twenty binding 218

sites for thirteen different families of microRNAs that 219

can modulate BDNF mRNA expression and protein 220

synthesis [65, 69]. 221

At the translational level, the BDNF protein is 222

firstly synthesized in the endoplasmic reticulum as 223

a precursor protein, the pre-pro-BDNF, that is suc- 224

cessively converted in pro-BDNF by the cleavage of 225

its signal [43, 66]. However, it has been advanced 226

that four different pre-pro-BDNF protein isoforms 227

could be synthesized, showing different length of 228

the pre-domain according to the transcribed exon. 229

The length of the pre-domain may be able to affect the 230
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intracellular BDNF trafficking, and a greater length231

may promote the secretion of the immature isoform232

[65]. In the brain, pro-BDNF can indeed undergo edit-233

ing in Golgi and be secreted as mature BDNF protein;234

in alternative, it can be secreted as immature molecule235

and then be cleaved as mature BDNF in the synaptic236

space; finally, it can also be secreted as pro-BDNF237

without further digestion. Environmental stimuli can238

affect differential expression of BDNF transcript also239

modulating the pro-BDNF/mature BDNF ratio [65].240

Given that, as said above, pro- and mature BDNF241

provoke opposite effects on cellular functioning, fol-242

lowing two different pathways [46, 47], this is a key243

issue to be investigated.244

ENVIRONMENTAL ENRICHMENT245

AND BDNF246

Given the BDNF role in promoting neuroplasticity247

and supporting neuroprotection [42, 48–55] and the248

changes in brain and serum BDNF levels reported in249

consequence of stimulations of various nature (e.g.,250

[37, 70, 71]), BDNF is considered a good candi-251

date in mediating EE neuroprotective action, in both252

healthy and pathological conditions [72, 73]. Accord-253

ingly, as it will be shown below, a great number254

of studies have been carried out to investigate the255

EE effects on BDNF expression in the central and256

peripheral nervous system, and a number of epige-257

netic mechanisms have been suggested to be involved258

in the EE-dependent modulation of BDNF expres-259

sion. Kuzumaki and colleagues [74] showed that a260

4-week exposure to EE induces in the adult mouse261

hippocampus a significant increase in tri-methylation262

of histone H3 at lysine 4, an activated histone mod-263

ification marker, at the BDNF P3 and P6 promoters.264

In addition, a significant decrease in repressive his-265

tone modification markers, such as tri-methylation of266

histone H3 at lysine 9 at the BDNF P4 promoter and267

of histone H3 at lysine 27 at the BDNF P3 and P4268

promoters was found. Neidl et al. [75] reported that269

BDNF Exon-1 transcripts appear significantly upreg-270

ulated in aged rats exposed to EE for 6 months. Also,271

Morse et al. [76] demonstrated that learning increases272

tri-methylation of histone H3 at lysine 4 levels around273

the BDNF Exon-IV promoter in the hippocampus of274

aged rats previously exposed to EE for five weeks275

(1 h/day).276

However, a comprehensive framework on the277

effects of the exposure to EE in central and periph-278

eral nervous system BDNF levels is still lacking.279

Despite the repeated observations that environmental280

experiences (physical exercise, cognitive training, 281

etc.) are able to modulate BDNF expression, in 282

human studies, evidence is controversial [77–80]. 283

Taking into account the significance of this topic 284

and the confounding data present in literature, we 285

systematically analyze the effects of environmental 286

stimulations on BDNF expression. It is important to 287

consider that only in animal studies it is possible to 288

manipulate genetic and environmental factors inde- 289

pendently from each other and therefore disentangle 290

the single environmental factors that may influence 291

the direction of the changes in brain BDNF levels. 292

Thus, it appears just an occasion in which it is worth 293

following the approach “from bedside to bench and 294

back to bedside”: the brain and cognitive reserve 295

hypothesis (developed in humans) is modeled in ani- 296

mals to achieve a high-level control of the involved 297

variables; then, evidence obtained in animal models 298

can provide useful indications to be applied in human 299

pathology. On such a basis, the present review has col- 300

lected and synthesized the evidence on EE effects on 301

brain and serum BDNF expression in animal mod- 302

els, with a particular focus on the effects reported 303

in healthy subjects and AD models, to investigate if 304

the exposure to EE is systematically accompanied by 305

increased BDNF expression in a brain region-specific 306

manner and/or in serum, and which factors influence 307

the association between exposure to EE and BDNF 308

expression in brain and serum. 309

To provide a broad overview on this topic, a 310

methodical literature search was conducted in Pub- 311

Med, by screening all titles and abstracts obtained by 312

searching for the combination of the “environmen- 313

tal enrichment” OR “enriched environment” AND 314

“brain-derived neurotrophic factor” OR “BDNF” 315

keywords. Moreover, full texts and reference lists 316

were screened to identify further potentially rele- 317

vant articles. Articles fulfilling the following criteria 318

were included in the present overview: 1) as popula- 319

tion of interest, we selected rodents, and in particular 320

healthy subjects and AD models; 2) as intervention 321

of interest, we selected the exposure to multidimen- 322

sional EE or unidimensional EE when the articles 323

presented relevant cases that provide indications on 324

multidimensional EE components’ effects; 3) as con- 325

trol group of interest, we selected animal reared in 326

standard laboratory conditions; 4) as outcomes of 327

interest, we selected brain and serum BDNF gene 328

and BDNF protein levels, regardless of the determina- 329

tion method. No language limitation was selected. No 330

publication period limitation was selected. Records 331

indexed up to June 2021 have been screened. 332
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Consequently, 35 relevant papers (31 on healthy333

subjects and 4 on AD models) that met the criteria334

were included in the present review.335

We collected the following data: authors; year336

of publication; animal species; AD model, when337

present; animals’ age or weight at the start of the338

exposure to EE; EE type (by specifically noting if339

the paradigm encompasses running wheels and nov-340

elty manipulation); EE duration; animal age at BDNF341

expression determination; EE effects on BDNF gene342

or BDNF protein levels. As for BDNF expression343

data, we registered the method used for BDNF344

expression determination, the cerebral areas in which345

the findings have been obtained, and the direction346

(increased/unchanged/decreased) of the changes in347

BDNF expression. Moreover, when specific analyses348

were performed on single or both BDNF isoforms349

(pro-BDNF and mature BDNF), we registered the350

data for them. Where not specified, we assumed that351

the analysis was conducted on BDNF mature isoform,352

and so it is to be understood in the manuscript.353

All data collected are illustrated in Tables 1 and 2.354

ENVIRONMENTAL ENRICHMENT355

EFFECTS ON BDNF EXPRESSION IN356

HEALTHY ANIMALS357

Details on data regarding EE effects on brain and358

serum BDNF levels in healthy animals are provided359

in Table 1.360

The majority of the studies conducted on healthy361

rodents (24 out of 31) evaluated EE effects on BDNF362

expression in the hippocampus, the cerebral region in363

which EE effects are mostly investigated, given it is364

heavily involved in learning and memory, emotion,365

motivation, and stress responses [73]. On the whole,366

most studies (19 out of 24) report an EE-dependent367

increase of BDNF protein and BDNF gene levels368

in the hippocampus [36, 64, 74–76, 81–94], while369

none of these studies reports a decrease in BDNF370

expression after the exposure to EE. Noteworthy, an371

appreciable number of studies (11 out of 24) reports372

the absence of EE effects in BDNF expression (i.e.,373

[74–76, 83, 89, 94–99]) in both protein and gene374

levels. In some cases, the same study reports both375

increased and unchanged hippocampal BDNF levels376

after exposure to EE, in association with disparate377

factors, such as the age at the start of the exposure378

to EE [94], duration of the exposure to EE [74],379

presence of physical enrichment [89], hippocampal380

areas analyzed [83], and kind of analysis performed381

[75, 76].382

Similarly, increased BDNF protein [36, 82] and 383

BDNF mRNA [86, 100] levels have been found 384

in neocortex after the exposure to EE, but also 385

unchanged gene and protein levels have been reported 386

[83, 86, 95, 99]. 387

After the exposure to EE, enhanced BDNF mRNA 388

expression has been reported in the hypothalamus 389

[101, 102], even if a significant number of studies 390

found unchanged gene and protein levels [86, 99, 391

102]. A study investigating the effects of singularly 392

manipulating social or physical variables revealed 393

no changes due to the mono-dimensional stimula- 394

tion, and increased BDNF protein expression after the 395

combined exposure to social and physical enhanced 396

stimulations [103]. 397

As for the cerebellum, both unchanged [83, 104] 398

and increased [36, 104] BDNF protein levels have 399

been reported. Vasquez-Sanroman and colleagues 400

[104] reported different results in the cerebellum 401

(likely linked to the different durations of the 402

exposure to EE and techniques of BDNF level deter- 403

mination). An investigation carried out on the entire 404

hind brain area revealed increased BDNF protein lev- 405

els [82]. 406

When the basal forebrain area has been ana- 407

lyzed, increased BDNF protein expression has been 408

revealed [82]. 409

As for the amygdala, unchanged BDNF gene 410

[99, 102] and BDNF protein [83] expression has 411

been reported in enriched animals, even if decreased 412

BDNF protein expression has been also reported 413

[105]. As for the striatum, some studies described 414

no effects of EE on BDNF gene and BDNF protein 415

levels [99, 106], although decreased protein lev- 416

els have been also reported [36]. In raphe nuclei, 417

unchanged BDNF gene levels have been found after 418

exposure to EE [99]. Thus, these brain areas might be 419

less involved in BDNF-mediated EE neuroprotective 420

effects. 421

As for the effect of the exposure to EE on BDNF 422

protein levels in serum, unchanged [64, 95] or 423

decreased [105] levels have been reported. 424

ENVIRONMENTAL ENRICHMENT 425

EFFECTS ON BDNF EXPRESSION IN THE 426

PRESENCE OF ALZHEIMER’S DISEASE 427

(AD) 428

A small proportion (4 out of 35) of the analyzed 429

studies investigated the effects of EE on BDNF levels 430

in rodent models of AD. Details on data reported are 431

provided in Table 2. 432
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Table 1
Studies on the environmental enrichment effects on BDNF levels in healthy animals

Reference Species (age or
weight at the start
of the environ-
mental enrichment)

Environmental enrichment type
(duration)

Age at BDNF level
determination

Environmental enrichment
effects on BDNF level
(determination method)

Angelucci et al.,
2009 [36]

Male Wistar rats
(postnatal day 21)

Environmental enrichment –
with running wheels and
novelty manipulation

(20 weeks)

About 5,5 months Hippocampus; frontal cortex;
cerebellum:

increased BDNF protein (+)
Striatum:
decreased BDNF protein (−)
(ELISA)

Babri et al., 2018
[105]

Male Wistar rats
(at weaning)

Environmental enrichment –
with running wheels and
novelty manipulation

(98 days)

About 4 months Amygdala:
decreased BDNF protein (−)
Serum:
decreased BDNF protein (−)
(ELISA)

Bardi et al., 2016
[97]

Male Long-Evans
rats

(about 30 days)

Environmental enrichment
(natural; artificial; mixed) –
without running wheels; with
novelty manipulation

(6 weeks)

About 10 weeks Hippocampus:
unchanged BDNF

immunoreactivity (=)
(immunohistochemistry)

Bechara and
Kelly, 2013
[89]

Male Wistar rats
(3 months)

Environmental enrichment –
without running wheels; with
novelty manipulation

(3 weeks)/

About 15 weeks Hippocampus:
unchanged BDNF mRNA (=)/

increased BDNF mRNA (+)/
increased BDNF mRNA (+)

(quantitative real-time PCR)Physical enrichment – treadmill
(1 week)/ Environmental

enrichment – without running
wheels; with novelty
manipulation+ Physical
enrichment – treadmill

(3 weeks with physical
enrichment in the last week)

Candemir et al.,
2019 [99]

Male and female
CD1 mice

(at birth)

Environmental enrichment –
without running wheels; with
novelty manipulation

(6–8 weeks)

6–8 weeks Hippocampus; frontal cortex;
hypothalamus; amygdala;
striatum; raphe nuclei:

unchanged BDNF gene (=)
(quantitative real-time PCR)

Cao et al., 2014
[81]

Male Wistar rats
(3 weeks)

Environmental enrichment –
without running wheels; with
novelty manipulation

(7 weeks)

10 weeks Hippocampus:
increased mature BDNF (+) and

unchanged pro-BDNF (=)
proteins

(western blot)
Chourbaji et al.,

2012 [86]
Male and female

C57BI6/N mice
[wild-type of
BDNF+/−]

(4 weeks)

Environmental enrichment –
without running wheels and
novelty manipulation

(7–8 weeks)

11–12 weeks Hippocampus:
increased BDNF protein and

BDNF mRNA (+)
Frontal cortex:
unchanged BDNF protein (=);

increased BDNF mRNA (+)
Hypothalamus:
unchanged BDNF protein and

BDNF mRNA (=)
(ELISA; quantitative real-time

PCR)
Foglesong et al.,

2016 [101]
Male C57BL/6 mice
(3 weeks)

Environmental enrichment –
with running wheels; without
novelty manipulation

(6 days/4 weeks)

4 weeks/7 weeks Hypothalamus:
increased BDNF mRNA (+)/

increased BDNF mRNA (+)
(quantitative real-time PCR)

(Continued)
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Table 1
(Continued)

Reference Species (age or
weight at the start
of the environ-
mental enrichment)

Environmental enrichment type
(duration)

Age at BDNF level
determination

Environmental enrichment
effects on BDNF level
(determination method)

Giacobbo et al.,
2019 [64]

Male Wistar rats
(6/17 months)

Environmental enrichment –
without running wheels; with
novelty manipulation

(90 min/day; 12 weeks)

9/20 months Hippocampus:
increased mature BDNF and

pro-BDNF proteins (+)/
increased mature BDNF and
pro-BDNF proteins (+)

Serum:
unchanged mature BDNF

protein (=)/ unchanged mature
BDNF protein (=)

(ELISA; western blot)
Gualtieri et al.,

2017 [98]
Female ICR mice
(13 weeks)

Environmental enrichment –
with running wheels; without
novelty manipulation

(8 days)

14 weeks Hippocampus:
unchanged BDNF

immunoreactivity (=);
unchanged BDNF gene (=)

(immunohistochemistry;
quantitative real-time PCR)

Heinla et al.,
2015 [91]

Male C57BL/6 and
129Sv mice

(at weaning)

Environmental enrichment –
with running wheels and
novelty manipulation

(7–8 weeks)

10–11 weeks Hippocampus:
increased BDNF mRNA (+)
(quantitative real-time PCR)

Ickes et al., 2000
[82]

Male
Sprague–Dawley
rats

(2 months)

Environmental enrichment –
with running wheels and
novelty manipulation

(12 months)

14 months Hippocampus:
Increased BDNF protein (+)
Cerebral cortex:
Increased BDNF protein (+)
Basal forebrain:
increased BDNF protein (+)
Hind brain area:
Increased BDNF protein (+)
(ELISA)

Kazlauckas et al.,
2011 [84]

Male albino CF1
mice

(2 months)

Environmental enrichment –
with running wheels and
novelty manipulation

(2 months)

4 months Hippocampus:
increased BDNF protein (+)
(western blot)

Kobilo et al.,
2011 [85]

Female C57B1/6
mice

(5 weeks)

Environmental enrichment –
without running wheels; with
novelty manipulation /
Environmental enrichment –
with running wheels and
novelty manipulation/ Physical
enrichment – continuous
access to running wheels

(43 days)

About 11 weeks Hippocampus:
unchanged mature BDNF

protein (=)/ increased mature
BDNF protein (+)/ increased
mature BDNF protein (+)

(western blot)

Kondo et al.,
2012 [87]

Male C57BL/6J mice
(3–4 weeks)

Environmental enrichment –
with running wheels; without
novelty manipulation

(1/2/3/4 weeks)

4–5/5–6/6–7/7–
8 weeks

Hippocampus:
increased BDNF mRNA (+)/

increased BDNF mRNA (+)/
increased BDNF mRNA (+)/
increased BDNF mRNA (+)

(semiquantitative real-time
PCR)

Kuzumaki et al.,
2011 [74]

Male C57BL/6J mice
(18–23 g)

Environmental enrichment –
with running wheels; without
novelty manipulation

(1/2/3/4 weeks)

- Hippocampus:
1–2 weeks:
unchanged BDNF mRNA

(=)/3–4 weeks:
increased BDNF mRNA (+)
(quantitative real-time PCR)

(Continued)
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Table 1
(Continued)

Reference Species (age or
weight at the start
of the environ-
mental enrichment)

Environmental enrichment type
(duration)

Age at BDNF level
determination

Environmental enrichment
effects on BDNF level
(determination method)

McMurphy et al.,
2018 [102]

Female C57Bl/6 mice
(10 months)

Environmental enrichment –
with running wheels; without
novelty manipulation

(6 weeks/12 months)

11,5 months/
22 months

Hypothalamus:
increased BDNF mRNA (+)/

unchanged BDNF mRNA (=)
Amygdala:
unchanged BDNF mRNA (=)/

unchanged BDNF mRNA (=)
(quantitative real-time PCR)

McQuaid et al.,
2018 [100]

Male CD-1 mice
(at weaning)

Environmental enrichment –
with running wheels; without
novelty manipulation

(6 weeks)

9 weeks Prefrontal cortex:
increased BDNF mRNA (+)
(reverse

transcription-quantitative
real-time PCR)

Meng et al., 2015
[92]

Male C57BL/6J mice
(5 weeks)

Environmental enrichment –
with running wheels and
novelty manipulation

(about 5 months)

About 6 months Hippocampus:
increased BDNF mRNA (+)
(reverse

transcription-quantitative
real-time PCR)

Morse et al., 2015
[76]

Male Fischer-344 rats
(3/19–22 months)

Environmental enrichment –
without running wheels; with
novelty manipulation

(1 h/day; 5 weeks)

About 4 months/20–
23 months

Hippocampus:
unchanged BDNF Exon IX

mRNA (=); increased BDNF
mRNA in CA1 pyramidal
neurons (+)/ unchanged BDNF
Exon IX mRNA (=); increased
BDNF mRNA in CA1
pyramidal neurons (+)

(quantitative real-time PCR)
Neidl et al., 2016

[75]
Female Long-Evans

rats
(18 months)

Environmental enrichment –
without running wheels; with
novelty manipulation

(6 months)

24 months Hippocampus:
unchanged total BDNF mRNA

(=); increased BDNF Exon-I
(+); unchanged BDNF Exon
IV and Exon VI (=)

(quantitative real-time PCR)
O’Connor et al.,

2019 [106]
Mice
(at birth)

Environmental enrichment –
with running wheels and
novelty manipulation

(8/10/15 days)

Postnatal days
8/10/15

Striatum:
unchanged BDNF protein (=)/

unchanged BDNF protein (=)/
unchanged BDNF protein (=)

(ELISA)
O’Leary et al.,

2019 [94]
Male Sprague

Dawley rats
(4/8 weeks)

Physical enrichment –
continuous access to a running
wheel

(4 weeks)

11/15 weeks Hippocampus:
increased BDNF mRNA (+) /

unchanged BDNF mRNA (=)
(quantitative real-time PCR)

Pietropaolo et al.,
2004 [103]

Male CD-1 mice
(postnatal day 35)

Social enrichment – rearing in
pairs compared to isolation/
Physical enrichment - plastic
compartments joined by
tunnels and a running wheel/
Social and physical enrichment

(5 days)

About 4 months Hypothalamus:
unchanged BDNF protein (=) /

unchanged BDNF protein (=) /
increased BDNF protein (+)

(ELISA)

Ramı́rez-
Rodrı́guez
et al., 2014 [90]

Female BalbC mice
(6 months)

Environmental enrichment –
with running wheels and
novelty manipulation

(45 days)

7,5 months Hippocampus:
increased BDNF protein (+)
(ELISA)

Sheikhzadeh
et al., 2015 [96]

Male Wistar rats
(250 ± 50 g)

Physical enrichment – treadmill
(2/8 weeks)

Adult Hippocampus:
unchanged BDNF protein (=)/

unchanged BDNF protein (=)
(ELISA)

(Continued)
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Table 1
(Continued)

Reference Species (age or
weight at the start
of the environ-
mental enrichment)

Environmental enrichment type
(duration)

Age at BDNF level
determination

Environmental enrichment
effects on BDNF level
(determination method)

Vazquez-
Sanroman et al.,
2013 [104]

Male Balb/c AnNHsd
mice

(postnatal day 21)

Environmental enrichment –
without running wheels; with
novelty manipulation

(1/4/8 weeks)

4/7/11 weeks Cerebellum:
unchanged pro-BDNF and

mature BDNF proteins (=);
increased BDNF
immunoreactivity at granular
layer (+) / increased BDNF
immunoreactivity at granular
and Purkinje layers (+)/
increased pro-BDNF and
mature BDNF proteins (+);
increased BDNF
immunoreactivity at granular
and Purkinje layers (+)

(western blot;
immunohistochemistry)

Vedovelli et al.,
2011 [95]

Male Wistar rats
(40 days)

Environmental enrichment –
without running wheels; with
novelty manipulation

(2 months)

About 3,5 months Hippocampus; frontal cortex;
serum:

unchanged BDNF protein (=)
(ELISA)

Williamson et al.,
2012 [88]

Male Sprague-
Dawley rats

(67 days)

Environmental enrichment –
with running wheels; without
novelty manipulation

(12 h/day; 7 weeks)

About 4 months Hippocampus:
increased BDNF mRNA (+)
(quantitative real-time PCR)

Zhang et al., 2016
[93]

Male Wistar rats
(adult; 220–250 g)

Environmental enrichment –
with running wheels and
novelty manipulation

(30 days)

Adult Hippocampus:
increased BDNF protein (+)
(western blot)

Zhu et al., 2006
[83]

Male and female
C57BL6/J mice

(postnatal day 21)

Environmental enrichment –
with running wheels and
novelty manipulation

(about 4 months)

About 5 months Hippocampus:
ventral area – increased BDNF

protein (+)
dorsal area; entorhinal cortex –

unchanged BDNF protein (=)
Frontal cortex; Amygdala;

Cerebellum:
unchanged BDNF protein (=)
(ELISA)

The characterization reported for the environmental enrichment paradigm specifies the variables manipulated, when variations on the classical
paradigm (described in the paper) are involved, and in particular when only one enriching variable is manipulated. Presence or absence of
running wheels in the paradigm is recorded; presence or absence of the explicit reporting of novelty manipulation is also recorded.

In the four analyzed studies, three AD trans-433

genic models are used, namely APP23, 5xFAD,434

and APPswe/PS1�E9 transgenic mice. The amyloid435

precursor protein (APP23) transgenic mouse model436

is based on the expression of the human APP751437

with the Swedish double mutation. APP23 mice are438

characterized by augmented A� plaque formation,439

neuronal loss, and progressive age-related cognitive440

decline [107]. 5xFAD model exhibits AD hallmarks441

of amyloid violent burden and cognitive decline442

already in the early phases [108]. APPswe/PS1�E9443

model resembles the initial stages of AD, with A�444

deposit appearing from 4 to 6 months of age, and445

plaques from 9 months [109]. However, it is worth446

noting that in three of the studies included in this 447

review [110–112], the pathological conditions were 448

characterized by the lack of the alterations in the 449

BDNF expression levels conversely reported in AD 450

patients. Wolf and colleagues (2006) did not investi- 451

gate the possible presence of alterations in BDNF 452

expression in APP23 mice compared to controls 453

[107]. 454

Prolonged (starting from the age of 10 weeks 455

and maintained for about 15 months) exposure to 456

EE increased hippocampal BDNF mRNA levels in 457

female APP23 mice [107]. Conversely, the mere 458

physical stimulation by free access to a running 459

wheel for the same period did not change BDNF 460
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Table 2
Studies on the environmental enrichment effects on BDNF levels in Alzheimer’s disease animal models

Reference Species and
Alzheimer’s
disease model

(age or weight at the
start of the
environmental
enrichment)

Environmental enrichment type
(duration)

Age at BDNF level
determination

Environmental enrichment
effects on BDNF level

(determination method)

Griñán-Ferré
et al., 2018
[112]

Female 5xFAD mice
(4 months)

Environmental enrichment
(novel objects paradigm) –
without running wheels; with
novelty manipulation

(2 months)

6 months Hippocampus:
unchanged BDNF mRNA (=)
[pathological condition:
unchanged BDNF mRNA (=)]
(quantitative real-time PCR)

Hu et al., 2013
[110]

Male
APPswe/PS1�E9
mice

(21 days)

Environmental enrichment –
with running wheels and
novelty manipulation

(3 h/day; 1 month)

2 months (before the
onset of pathology)

Hippocampus:
increased BDNF mRNA and

BDNF protein (+)
[pathological condition:
unchanged BDNF mRNA and

BDNF protein (=)]
Cortex:
unchanged BDNF protein (=)
[pathological condition:
unchanged BDNF protein (=)]
(ELISA; reverse

transcription-Quantitative
real-time PCR)

Stuart et al., 2017
[111]

Male
APPswe/PS1�E9
mice

(6 months)

Environmental enrichment –
with running wheels; without
novelty manipulation

(6 months)

12 months Hippocampus:
increased BDNF protein (+)

[pathological condition:
unchanged BDNF protein (=)]
Neocortex:
unchanged BDNF protein (=)

[pathological condition:
unchanged BDNF protein (=)]
(ELISA)

Wolf et al., 2006
[107]

Female APP23 mice
(10 weeks)

Environmental enrichment –
without running wheels and
novelty manipulation/ Physical
enrichment - running wheel

(about 15 months)

17 months Hippocampus:
increased BDNF mRNA (+)/

unchanged BDNF mRNA (=)
Cortex:
unchanged BDNF mRNA

(=)/decreased BDNF mRNA
(−) [pathological condition:

not specifically investigated]
(reverse

transcription-quantitative
real-time PCR)

The characterization reported for the environmental enrichment paradigm specifies the variables manipulated, when variations on the classical
paradigm (described in the paper) are involved, and in particular when only one enriching variable is manipulated. Presence or absence of
running wheels in the paradigm is recorded; presence or absence of the explicit reporting of novelty manipulation is also recorded.

mRNA levels. As for the cortical levels of BDNF461

mRNA, EE did not exert any effect, whereas the462

physical stimulation with running wheel induced463

decreased BDNF mRNA level. Differently, 2 months464

of exposure to EE did not modulate the hippocampal465

BDNF mRNA levels in 4/6-month-old 5xFAD mice466

[112].467

The other two studies were based on APPswe/468

PS1�E9 mice. Hu and colleagues [110] exposed469

the animals to EE for 1 month starting at weaning.470

Note that EE treatment and BDNF evaluation 471

occurred before symptomatology onset. EE treat- 472

ment increased BDNF mRNA and protein expression 473

in the hippocampus but did not change BDNF pro- 474

tein expression in the cortex. Differently, Stuart and 475

colleagues [111] exposed mice to EE from 6 to 12 476

months of age. The exposure to the enriched envi- 477

ronment resulted in increased BDNF protein level in 478

the hippocampus, and unchanged BDNF protein level 479

in the neocortex. 480
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Notably, since the basal alterations in BDNF481

expression were not present or not investigated in the482

used models, the translational value of the not uni-483

vocal increase in the brain BDNF expression appears484

rather weak.485

It is worth noting to add here that conflicting486

indications are retrievable also by looking at some487

studies specifically investigating the effects of the488

only physical activity on BDNF expression in rodent489

AD models. Liu et al. [113] exposed APP/PS1 trans-490

genic mice to treadmill running for 5 months (from491

the third to the eighth months of age). Hippocampal492

BDNF mRNA levels (examined by real-time PCR493

analysis) increased in AD mice as compared to con-494

trols but decreased in exercised AD mice as compared495

to the non-exercised ones. In another study based on496

a different AD model [114], Tg-NSE/hPS2m mice497

were exposed to treadmill running for 3 months,498

starting from 24 months of age. In this case, hip-499

pocampal BDNF protein levels (examined by western500

blot analysis) decreased in AD mice as compared to501

controls and increased in exercised AD mice as com-502

pared to the non-exercised ones. In a recent study,503

Naghibi et al. [115] exposed male and female Wis-504

tar rats (11–12 months of age) to treadmill running505

for 12 weeks, 8 weeks before and 4 weeks after506

the stereotaxic induction of AD by microinjections507

of streptozocin. AD did not affect BDNF protein508

levels (examined by ELISA analysis) in both the hip-509

pocampus and prefrontal cortex of male and female510

non-exercised rats. Exercise increased BDNF protein511

levels in the hippocampus of the only female rats,512

regardless of the presence of AD. A similar absence513

of AD effects in hippocampal BDNF protein expres-514

sion (examined by ELISA analysis) was found by515

Bashiri et al. [116] in a study based on the same516

model but realized in adult male NMRI mice (13–14517

weeks of age). After a week from the AD induction,518

mice were exposed to a 4-week swimming exercise519

program. Exercise did increase hippocampal BDNF520

protein levels in AD mice.521

ENVIRONMENTAL ENRICHMENT522

EFFECTS ON BDNF EXPRESSION IN THE523

PRESENCE OF NOT-AD524

NEURODEGENERATION525

Given the lack of clearness of the EE effects on526

BDNF expression in AD models, it may be interest-527

ing to look at the evidence available on this topic528

in models of some other neurodegenerative diseases,529

such as Parkinson’s disease (PD) and Huntington’s530

disease (HD). Once more, the picture that emerges 531

from such an analysis provides not univocal although 532

interesting suggestions. 533

Some interest has been directed to the EE effects 534

on brain BDNF expression in rodent models of PD. 535

In a study on mice treated with the pro-parkin- 536

sonian neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetra- 537

hydropyridine (MPTP), Bezard et al. [117] reported 538

increased striatal BDNF mRNA levels (as revealed 539

by in situ hybridization) after about 2 months of 540

exposure to EE started on weaning. Such an upregu- 541

lation was retained to mediate the EE neuroprotective 542

effects against MPTP neurodegenerative actions. 543

Faherty et al. [118] more directly addressed this issue 544

by investigating BDNF expression in the substantia 545

nigra pars compacta and striatum of MPTP-treated 546

female mice previously exposed to EE or only to 547

physical activity (wheel-running) for about 3 months 548

starting at 2–3 months of age. However, BDNF 549

mRNA levels of MPTP-treated mice were unchanged 550

in both the analyzed regions. The only signifi- 551

cant result found was an EE-induced decrement in 552

substantia nigra pars compacta BDNF mRNA lev- 553

els (examined by real-time PCR analysis). More 554

recently, Campêlo et al. [119] investigated the effects 555

of a prolonged EE (from 2 to 5 months of age) on pre- 556

frontal cortex and striatum BDNF levels (examined 557

by immunohistochemistry) in male mice submitted 558

to a progressive model of PD (induced by repeated 559

treatment with a low doses of reserpine). The only sig- 560

nificant result found in analyses on combined lesion 561

and EE influences was a lesion-induced decrement 562

in the striatum, while no significant effects of EE 563

were revealed. Further studies specifically investi- 564

gated the effects of exercise (treadmill-running) in 565

different models of PD. Tajiri et al. [120] investi- 566

gated striatal BDNF protein levels (by western blot 567

analysis) in adult female rats unilaterally treated with 568

6-hydroxydopamine (6-OHDA) in the striatum and 569

then exposed to compulsive running 5 days a week 570

for 4 weeks. BDNF levels decreased in the striatum 571

of the lesioned side, but this effect was reversed by 572

exercise. A concordant result was found by Tuon et al. 573

[121] in unilaterally treated with 6-OHDA adult male 574

rats after the exposure to compulsive running 4 days 575

a week for 8 weeks. BDNF levels (examined by west- 576

ern blot analysis) decreased in the striatum of lesioned 577

animals, but this effect was not present in previously 578

exercised animals. Finally, in a study focused on neu- 579

roinflammation, which is implied in the development 580

of PD, Wu et al. [122] exposed 2-month-old male 581

mice to compulsive running 5 days a week for 4 582
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weeks and then treated them with an intraperitoneal583

lipopolysaccharide injection to induce neuroinflam-584

mation. BDNF levels (examined by ELISA analysis)585

decreased in the substantia nigra of the injected ani-586

mals, but this effect was not present in the previously587

exercised animals. Notably, only an enhancing exer-588

cise effect was found on striatal BDNF levels, without589

any significant effect of neuroinflammation.590

Interesting indications could be provided also by591

studies on rodent HD models, since alterations in592

BDNF expression are reported also in this neu-593

rodegenerative disorder [123]. Spires et al. [124]594

investigated by western blot analysis the striatal,595

antero-medial cortex, and hippocampal BDNF lev-596

els in male and female R6/1 transgenic mice exposed597

to EE from one to five months of age. They found598

that striatal and hippocampal BDNF levels were599

decreased by HD, but this decrement was rescued600

by EE. No significant effects were found in the601

antero-medial cortex. This datum has been further602

investigated by Zajac et al. [125], who in a relevant603

study in the same HD model analyzed hippocampal604

exon-specific BDNF mRNA expression (by real-605

time PCR analysis) separately in 12-week-old males606

and females after the exposure to wheel-running (8607

weeks) or EE (4 weeks). On the whole, they found608

that HD reduced total hippocampal BDNF mRNA609

levels in both male and female mice, wheel-running610

reversed this datum in female but not in male mice,611

and EE did not reverse this datum. The analysis612

on BDNF I, II, III, IV, and VI transcripts showed613

sex-specific changes due to both HD and housing con-614

dition. Interestingly, the authors demonstrated that615

the reported wheel-running and EE effects were not616

linked to DNA methylation. Finally, further inter-617

esting suggestions come from a study [126] that618

investigated BDNF both protein (by ELISA analy-619

sis) and mRNA (by real-time PCR analysis) levels620

in the anterior cortex, striatum, and hippocampus of621

10-week-old R6/1 transgenic mice exposed to wheel-622

running for 10 weeks. BDNF protein levels were623

increased by HD in frontal cortex, and this finding624

was unaffected by the exercise. As for the BDNF625

mRNA levels, they were reduced in all the analyzed626

brain areas of HD mice, and the reduction was rescued627

by exercise only in the striatum.628

DISCUSSION629

On the whole, the framework offered by the liter-630

ature on healthy animals does not allow to achieve631

a clear indication about the EE effects on BDNF 632

expression, and the hypothesis that EE may induce 633

an increase in brain and serum BDNF expression is 634

not univocally confirmed in any brain areas. 635

Anyway, when all the available results are con- 636

sidered as a whole, it turns out that the studies that 637

report a decrease in BDNF levels following the expo- 638

sure to EE are really scarce in comparison to the 639

ones that report an increase. Thus, a qualitative sug- 640

gestion that supports the increasing effect of EE on 641

BDNF expression may be advanced, especially for 642

the hippocampus and, even if in a more cautious man- 643

ner, for the neocortex, cerebellum, and hypothalamus. 644

Nevertheless, even this idea needs to be definitively 645

validated. Moreover, appears to be very interesting 646

to identify factors able to influence the association 647

between EE and BDNF expression. 648

By splitting up results on BDNF protein and 649

BDNF gene levels, findings appear rather incon- 650

sistent in all investigated areas. A slightly more 651

informative observation may derive by splitting up 652

the results on the basis of the technique used to 653

determine BDNF expression levels. In fact, when 654

BDNF expression was determined by means of 655

immunohistochemistry, univocal results in two brain 656

areas are obtained. Namely, Bardi et al. [97] and 657

Gualtieri et al. [98] indicated the absence of changes 658

in BDNF immunoreactivity in hippocampus after 6 659

weeks and 8 days of exposure to EE respectively, 660

in both healthy rats and mice. By using the same 661

technique, Vasquez-Sanroman et al. [104] found 662

increased BDNF expression in the cerebellum in mice 663

exposed to EE for 4, 7, and 11 weeks. Studies using 664

PCR [99, 102] found unchanged BDNF gene expres- 665

sion in amygdala after the exposure of mice to EE. 666

Studies using ELISA and western blot in the different 667

brain areas once more provided not univocal findings. 668

Unfortunately, similarly not univocal frames are 669

obtained even when other factors, as animals’ species, 670

age and so on are considered. 671

As for the rodent species, 14 studies have been car- 672

ried out in rats and 17 studies have been carried out 673

in mice, but inconsistent results are obtained within 674

each species. The only specific indication that is pos- 675

sible to obtain is that the decreased levels of BDNF 676

expression in amygdala [105] and striatum [36] are 677

obtained only in rats, while in mice no changes are 678

found after the exposure to EE [83, 99, 102]. 679

As for the age of the animals at the start of the 680

exposure to EE, it is worth noting that the studies in 681

which the exposure started at the birth did not find any 682

change in BDNF expression after 8, 10, 15 [106], or 683
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49 [99] days of exposure to EE. Conversely, a rel-684

evant number of studies based on the exposure of685

the animals to EE from weaning (about 21 days of686

age) onward found increased BDNF expression in687

the hippocampus [36, 81, 83, 87, 91, 100], regard-688

less of the exposure duration (from 7 to 140 days).689

Once again, when the EE is started after weaning, the690

studies provide conflicting results.691

As for duration of EE exposure, it is possible to note692

that the hypothalamic BDNF expression increased693

after 5 to 42 days of exposure to EE [101–103],694

whereas after longer exposures (49 to 360 days) no695

changes have been reported [86, 99, 102].696

To evaluate if habituation to the enriched environ-697

mental conditions played a role in eliciting BDNF698

level changes, the explicit notifications of novelty699

manipulation in the EE paradigm were evaluated.700

Namely, we recorded when the authors explic-701

itly reported that enriching objects were regularly702

changed throughout the EE period or when the object703

arrangement was regularly changed in the cages.704

Anyway, this factor did not significantly influence705

BDNF expression, since increased or unchanged706

BDNF levels have been found after the exposure to707

EE with or without novelty manipulation, regardless708

the brain area considered.709

Finally, even by considering a key-component of710

the EE paradigm, namely the presence or absence of711

physical activity, and in particular of running wheels712

[84], it is not possible to identify its role on BDNF713

expression changes, since increased or unchanged714

BDNF levels have been found after the exposure to715

EE with or without running wheels.716

It may be interesting to add that in healthy ani-717

mals, when both the above cited conditions (novelty718

manipulation and running wheels presence) are met,719

the hippocampal BDNF levels were always increased720

[36, 82–85, 90–93]. This consideration might suggest721

that the combination of such key components of cog-722

nitive and physical stimulation could exert a powerful723

role in steadily promoting hippocampal neuroplastic-724

ity. However, further studies are needed to support725

this insight, since sometimes increased BDNF levels726

are reported also when only one of such EE compo-727

nents is present.728

A specific consideration has to be made for the729

conflicting findings obtained in AD models. A key730

issue regards the basal BDNF expression, which is731

not evaluated or does not result altered in the used732

models. It is possible that such confusing frame-733

work is linked to the lack of systematization in734

the studies based on divergent methods in type and735

duration of EE, animals’ age at the moment of EE 736

starting and BDNF expression determination, BDNF 737

expression indices investigated, and so on, even if 738

none of these factors seems to consistently influ- 739

ence the association between the exposure to EE 740

and BDNF expression changes. As shown above, 741

literature evidence on some other neurodegenera- 742

tive disorder did not succeed in shedding light on 743

this conundrum, since the multifarious characteris- 744

tics of the experimental designs once more led to 745

inconsistent results. However, the specific analyses 746

concurrently conducted on both BDNF protein and 747

BDNF mRNA expression, exon-specific transcripts, 748

epigenetic mechanisms, and different populations 749

and EE-types provide precious indications on the con- 750

venience of studying this topic in a more deep and 751

articulate manner. 752

Finally, it is worth mentioning a not yet suffi- 753

ciently investigated question, namely the specific 754

effects of EE on the two different BDNF isoforms, 755

and in particular on the ratio between the two. In 756

fact, as reported above, both the precursor pro-BDNF 757

molecule and the mature BDNF protein are expressed 758

in activity-dependent way, but they provoke oppo- 759

site effects on cellular functioning, following two 760

different pathways [44, 45]. Unfortunately, to date 761

scarce studies have specifically analyzed the EE 762

effects on the conversion of pro-BDNF to BDNF. 763

Cao and colleagues [81] suggested that the EE upreg- 764

ulated matrix metalloproteinase-9 levels within the 765

hippocampus might facilitate the conversion of pro- 766

BDNF to BDNF. In fact, they found that in rats after 767

the EE exposure from weaning to ten weeks of age 768

a remarkably enhanced ratio of BDNF to pro-BDNF 769

was observed. However, similar studies on pro- and 770

mature BDNF proteins [64, 104] found enhanced 771

both the isoforms after the exposure to EE. Given the 772

negative interaction between A� senile plaques and 773

BDNF expression linked to the inhibition of the con- 774

version from pro-BDNF to mature BDNF [56–58], 775

EE potential effects on this process constitute a key 776

issue to be clarified. 777

CONCLUSIONS 778

As it is clear from such detailed evidence, the 779

findings regarding EE effects on BDNF expression 780

are not univocal, and it cannot be certainly affirmed 781

that EE induces an increase in central and peripheral 782

BDNF expression. Although some specific observa- 783

tions are proposed in the above synthesis (such as in 784
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particular that the majority of the studies analyzed the785

hippocampus and in the most cases found increased786

expression of hippocampal BDNF, both in healthy787

and AD subjects, and that this is true especially if the788

EE starts from weaning, and if both running wheels789

and novelty manipulation are included in the EE790

paradigm), it is difficult to attribute a real meaning791

to indications that appear sporadic and not integrated792

in a univocal frame. Thus, the main achievement of793

this work is the collation of the disparate evidence794

on such a topic indicating the strong need of further795

primary studies and quantitative systematic investiga-796

tions able to reply to the questions remained open and797

to overcome the multiple limitations of the analyzed798

studies.799

In particular, the analysis of the specific effects of800

EE on the two different isoforms of BDNF and on801

the ratio between the two, is a key issue, given the802

different action pathways of pro- and mature BDNF803

and the yet inconsistent data available on this point.804

In addition, systematic studies deeply analyzing at805

which level of BDNF gene transcription and transla-806

tion EE-mediated epigenetic mechanisms should be807

conducted, in order to provide powerful insights on808

the processes on which neuroprotective actions may809

be directed. A specific attention has also to be devoted810

to the effects of the exposure to complex environ-811

mental stimulations in AD models, to support a more812

tuned and effective application of such stimulations813

as neuroprotective and rehabilitative approaches to814

AD. The data analyzed in the present review provide815

open perspectives for the future studies. Although816

addressing such a topic in animals poses a number817

of challenging issues, effective studies carried out818

with this aim could make a significant translational819

contribution to the managing of AD.820
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Bevilaqua LR, Cammarota M (2017) BDNF controls1037

object recognition memory reconsolidation. Neurobiol1038

Learn Mem 142, 79-84.1039

[56] Poon WW, Blurton-Jones M, Tu CH, Feinberg LM,1040

Chabrier MA, Harris JW, Jeon NL, Cotman CW (2011)1041

�-Amyloid impairs axonal BDNF retrograde trafficking.1042

Neurobiol Aging 32, 821-833.1043

[57] Ye X, Tai W, Zhang D (2012) The early events of1044

Alzheimer’s disease pathology: From mitochondrial dys-1045

function to BDNF axonal transport deficits. Neurobiol1046

Aging 33, 1122.1047

[58] Gerenu G, Martisova E, Ferrero H, Carracedo M,1048
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M (2018) Environmental Enrichment improves cogni-1308

tive deficits, AD hallmarks and epigenetic alterations1309

presented in 5xFAD mouse model. Front Cell Neurosci1310

12, 224.1311

[113] Liu HL, Zhao G, Cai K, Zhao HH, Shi LD (2011) Tread-1312

mill exercise prevents decline in spatial learning and1313

memory in APP/PS1 transgenic mice through improve-1314

ment of hippocampal long-term potentiation. Behav Brain1315

Res 218, 308-314.1316

[114] Um HS, Kang EB, Koo JH, Kim HT, Jin-Lee, Kim EJ,1317

Yang CH, An GY, Cho IH, Cho JY (2011) Treadmill exer-1318

cise represses neuronal cell death in an aged transgenic1319

mouse model of Alzheimer’s disease. Neurosci Res 69,1320

161-173.1321

[115] Naghibi S, Shariatzadeh Joneydi M, Barzegari A, Davood-1322

abadi A, Ebrahimi A, Eghdami E, Fahimpour N, Ghorbani1323

M, Mohammadikia E, Rostami M, Salari AA (2021)1324

Treadmill exercise sex-dependently alters susceptibility1325

to depression-like behaviour, cytokines and BDNF in the1326

hippocampus and prefrontal cortex of rats with sporadic1327

Alzheimer-like disease. Physiol Behav 241, 113595.1328

[116] Bashiri H, Enayati M, Bashiri A, Salari AA (2020) Swim-1329

ming exercise improves cognitive and behavioral disorders1330

in male NMRI mice with sporadic Alzheimer-like disease.1331

Physiol Behav 223, 113003.1332

[117] Bezard E, Dovero S, Belin D, Duconger S, Jackson-1333

Lewis V, Przedborski S, Piazza PV, Gross CE, Jaber1334

M (2003) Enriched environment confers resistance to 1-1335

methyl-4-phenyl-1,2,3,6-tetrahydropyridine and cocaine:1336

Involvement of dopamine transporter and trophic factors.1337

J Neurosci 23, 10999-11007.1338

[118] Faherty CJ, Raviie Shepherd K, Herasimtschuk A, Smeyne 1339

RJ (2005) Environmental enrichment in adulthood elimi- 1340

nates neuronal death in experimental Parkinsonism. Brain 1341

Res Mol Brain Res 134, 170-179. 1342
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