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Abstract: Natural disasters happen without warning; it is normally impossible to predict when they
will occur, but it is necessary that rescue services reach the disaster site and manage the emergency.
This paper proposes an innovative methodology to summarize seismic effects on road, building, and
land factors in urban areas. The existing road network is modelled through the graph theory: the arcs
represent the main infrastructures, while the nodes represent both the primary strategic buildings and
the intersections between the main roads. Therefore, the quantitative approach takes into account
the existing road network, the focal areas that play a strategic role during emergency, and their
relationship with buildings and territory. The results enable the identification of the minimum urban
structure (MUS) with total connectivity at maximum availability. These structures were composed of
the paths that will be the priority choice for emergency vehicles after an earthquake. The proposed
approach has been implemented to identify the MUS in a medium-size Italian urban center (Pomezia)
in the event of a critical earthquake. The methodology is easy to apply and could represent an ideal
tool in the preliminary phase of analysis of an urban road network to define new city plans through
targeted territorial design, to facilitate decision makers in investment choices, to increase the road
network consistency, and to implement emergency plans after natural disasters.

Keywords: city emergency plan; urban seismic risk; city resilience; road network; urban emergency

1. Introduction
1.1. Natural Risks and Urban Development

The norms laid down in the Athens Charter (1933) [1] are a staple of town planning
identifying four pivotal functions of existence (i.e., home, work, leisure, and movement).
In the late 1970s, the scientific community understood the role played by technological
innovations on the urbanistic and logistic development of towns. Subsequently, a fourth
dimension (i.e., time) was applied to describe urban phenomena [2]. Indeed, the time
dimension is crucial to analyze evolutionary processes and manage anthropic and natural
risks because it plays a central role in public services [3,4]. Firstly, the seismic risk was
analyzed because of its great impact on public health and costs. Later, other kinds of
natural risk were also considered (e.g., atmospheric, hydrologic, volcanic, and wildfire
phenomena) [5]. In recent decades, town planning strategies have aimed to reduce urban
vulnerability, overcome rigidity, and guarantee access and escape in the event of an emer-
gency [6]. Entry into, movement around, and exit from the town should be guaranteed to
all the user categories [7,8], whatever condition. Strategies to reduce urban vulnerability
are based on studies of an area in order to identify the most probable natural disaster and
its effects on goods and people [9]. Research to date demonstrates that prevention costs
for reducing possible damage to buildings, goods, and people are far less than those for
rebuilding and returning to the pre-crisis scenario [10–12]. Moreover, reconstruction often
results in modification of the layout and organization of a settlement, adding social to
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economic costs [13]. A town has a dynamic texture that depends on the availability of
public services [14]. Indeed, public services fill a strategic role: they should work both
in ordinary moments and after collapse because all emergency activities need lifelines
that join various spatial areas [15] that are affected by an emergency [16]. Public services
ensure essential and indispensable services for people’s survival (e.g., transport, water
and sewage, telecommunication, fuels, and electricity) [17]. The road network is among
the most important lifelines as most maintenance and repair operations of other lifelines
require the use of road infrastructure [18]. However, the functionality of road lifelines may
not be effective after a natural disaster [19]. Although the on-ground transport network
may be seriously damaged, escape routes from the disaster area should be guaranteed
to ensure a sure path for access to safe areas [18,20]. Moreover, escape routes ensure
access for the emergency services that reach people; in a later phase, they are essential to
the restoration process. Therefore, public services are a system that contributes to town
safety [21], and risk becomes an aspect of land-use management [22].

1.2. Risk Analysis

Risk analysis takes into account the correlation between territory, its anthropization,
and natural risks [23], such as the morphology of the territory, the typology of the inhabited
centers, and how the settlements organization interrelate. Therefore, detailed zoning regu-
lations should be adopted to manage data for current and future safety of settlements. In
Italy in particular, the city emergency plan (CEP) is an operational tool that contains all the
procedures to deal with any expected or unforeseen disasters in a municipality, allowing
the authorities to prepare and coordinate rescue interventions [24]. Its main goal of imple-
mentation is to protect people and maintain a dignified quality of life when disasters occur.
Therefore, risk reduction affects territorial policies of a settlement. As such, the layout of
central and suburban areas, the position of public and rescue services (e.g., hospitals and
transportation nodes), and administrative competencies in disaster management cannot be
overlooked. Particularly, the typological character of a center (e.g., its value concentrated
in or spread over an area [25]), the connection between settlements [26,27], and their envi-
ronmental morphology affect the continuity of a territory and its vulnerability [28]. Indeed,
both punctual services (e.g., education, production, administrative, health, and strategic
services) and network services (e.g., transportation, fuels, energy, and communication)
contribute to risk analysis at an urban level.

1.3. Minimum Urban Structure

In an urban context, essential spaces are composed of linear elements where users
move and strategic areas where public services are available [29,30]. In particular, to ensure
economic, social, and relationship activities, the system of routes, spaces, urban functions,
and strategic buildings that are necessary during and after an emergency [31] compose
the minimum urban structure (MUS). The main components of an MUS are the primary
routes, main road and railway nodes (e.g., junctions, main nodes, urban gates, and stations),
escape routes and safe open spaces, and nerve centers (governing bodies, health facilities,
civil protection, and firefighters) [32]. Moreover, cultural and economic–productive focal
points can be included in the MUS to overcome a crisis.

This paper is organized as follows: Section 2 describes the innovative methodology
defined by the authors to identify the MUS in a medium-size Italian town in the event of a
critical earthquake. Section 3 shows the results from the implementation of the described
methodology with regard to the seaside urban center of Pomezia, in central Italy [33].
Pomezia belongs to seismic zone 2B, where the horizontal peak ground acceleration with
10% exceedance probability in 50 years (ag) is lower than 0.20 g, and the reference horizontal
peak ground acceleration (ag/g) is 0.25 [34]. Section 4 highlights the potential of the
proposed tool in the preliminary phase of analysis of an infrastructural network, in order to
facilitate decision maker’s investment choices and the implementation of emergency plans
following natural disasters. Indeed, the proposed approach takes into account both the
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existing spaces and typical seismic damage to buildings in order to identify the strategic
road network. These results contribute to prevention and protection strategies such as pre-
emergency planning territory and seismic retrofitting, and during emergency management
of rescue services. Finally, Section 5 presents our conclusions.

2. Methods

The definition of MUS requires a network analysis about spatial and functional ele-
ments that is formalized through the graph theory [35]. A graph is a mathematical structure
formed by a finite number m of vertices (or nodes) and a finite number E of segments (arcs)
that connect nodes to each other [36]. Each path is a sequence of consecutive arcs from the
initial node (i.e., origin) to the end node (i.e., destination). The network of the MUS could
be represented by the “undirected graph” technique (i.e., a set of arcs and nodes where
the arcs represent the main infrastructures while the nodes represent both the primary
strategic buildings and the intersections between the main transport infrastructures). The
graph elements have been treated by the construction of a squared adjacency matrix (A)
where each entry indicates whether pairs of vertices are adjacent or not in the graph. The
entries aij are 1 if there exists a direct connection between the vertex i-th and the vertex j-th;
otherwise, the entries of not-connected vertices are 0. A is symmetric with respect to the
main diagonal, which is 0 (Equation (1)).

A =
a11 a1j a1m
ai1 aij aim
am1 amj amm

=
0 a1j a1m

0 aim
sym 0

(1)

The matrix A allows the morphogenesis of the road network to be distinguished
(e.g., urban sprawl if the majority of entries are not null) [37]. However, the adjacency
matrix does not describe the interaction of the road network with the built environment [38]
and the seismic effects on the transport infrastructure. Indeed, debris due to the earthquake
could interfere with the arcs’ availability both during and after a crisis [39]. Therefore,
in this study, the post-seismic functionality (dij) of each non-zero entry in A has been
calculated according to Equation (2):

di,j = ∏
q

ki,j,q (2)

where ki,j,q is a parameter ranging between 0 and 1 attributed to each of q variables (i.e., s:
cross sections, b: buildings, f: street furniture) assumed in this study. They refer to vul-
nerability of road cross sections, overlooking buildings, and street furniture (e.g., lighting,
vertical signs, and trees) along the arc.

For each i,j arc and q variable, the parameter ki,j,q,m has been calculated according to
Equation (3):

ki,j,q =
∑m ki,j,q,m lm

∑m lm
(3)

where m is the number of sections that form the arc and lm is the length of each section;
each section is not more than 1 km long.

With regard to the vulnerability of road cross sections, Tables 1 and 2 list the vulnera-
bility criteria defined by the authors for embankment and trench cross sections (ki,j,s).
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Table 1. Vulnerability criteria for embankment cross sections.

Criterion
Vulnerability Class

Very Low Low Moderate High Very High

embankment height
(m) <1 1–3 3–5 >5 with berm >5 without berm

natural soil slope (%) <10 10–
15 15–20 >20 with

benching
>20 without

benching
maximum side slope

(%) <2/3 =2/3 =2/3 >2/3 >2/3

shoulder width (m) <0.5 0.5–
1 0.5–1 >1 > 1

natural soil silt clay granular soil fractured
rock intact rock

Table 2. Vulnerability criteria for trench cross sections.

Criterion
Vulnerability Class

Very Low Low Moderate High Very High

trench height (m) <1 1–3 3–6 6–9 >9
maximum side slope

(%) <1/1 =1/1 =1/1 >1/1 with
protection

>1/1 without
protection

shoulder width (m) <0.5 0.5–1 0.5–1 >1 >1

natural soil silt clay granular soil fractured
rock intact rock

Data in Tables 1 and 2 permitted the authors to quantify ki,j,s according to Table 3.

Table 3. Vulnerability classes for road cross sections.

ki,j,s Most Frequent or Best Vulnerability Class

0.2 very high
0.4 high
0.6 moderate
0.8 low
1 very low

Equation (4) presents the method adopted to assess the vulnerability of arcs due to
overlooking buildings ki,j,b.

ki,j,b =
GVI BDI

L
(4)

where GVI is the geometric vulnerability index obtained for each pair of overlooking
buildings along the arc according to Equation (5):

GVI = minL − max(H1 + H2) (5)

where L is the distance between a pair of two overlooking buildings that could vary along
the arc (Figure 1) and BDI is the building damage index.

BDI depends on the volume and extension of the debris of collapsed buildings [40]; it
has been defined by the authors according to [41]. The materials, technology, and type of
structure affect its values. Table 4 lists the adopted criteria.
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Table 4. BDI values for different types of structure.

Type of Structure Structure Type
BDI

0.15–0.25 0.35–0.45 0.55–0.65 0.75–0.85 0.95–1

Masonry

dry masonry x
simple stone x

unreinforced with reinforced concrete
floors x

massive stone/reinforced or confined x

Reinforced concrete

structures without
earthquake-resistant design (ERD) x

structures with moderate level of ERD x
structures with high level of ERD x

Steel structures x

Timber structures - x

BDI is assumed equal to 1 if no buildings are along the section.
Finally, the authors defined five vulnerability classes to take into account the effects of

street furniture on the arc availability. Table 5 lists the proposed values of ki,j,f.

Table 5. Vulnerability classes for street furniture.

Scenario ki,j,f

furniture’s collapse occupies the carriageway and disrupts circulation 0.2
furniture’s collapse occupies a large part of carriageway permitting only

one-way circulation 0.4

furniture’s collapse occupies only shoulders 0.6
furniture’s collapse occupies only road margins 0.8

no effects of furniture’s collapse or no furniture on the road 1.0

Each dij value ranges between 0 and 1:1 means the maximum availability, while 0 is
the opposite. the obtained dij values define the availability matrix (D) and contribute to the
identification of the minimum network with total connectivity at maximum availability
that joins all nodes without redundancies. For undirected connected graphs, this network
consists of n-1 arcs, where n is the number of nodes [42] with the highest availability
values. The best-performing arcs should connect all the identified strategic buildings
and road intersections, ensuring the most available acyclic path between them without
redundances. The number of arcs that should be disregarded to identify the minimum
network is a measure of the network resilience: its entity depends on arcs whose function
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can be performed by one or more alternative arcs. The minimum network with total
connectivity at maximum availability has been identified using an iterative routine written
with Visual Basic programming language:

1. all the arcs have been sorted in descending order of dij;
2. the network topology of the first n-1 arcs has been analyzed in order to verify if it was

complete (i.e., there was a path between every pair of vertices). If at least one node
or strategical building was not included in the identified network, the graph was
re-analyzed to modify its configuration and link all the nodes/strategical buildings.

Finally, the path analysis allows the identification of the tracks with decreasing avail-
ability and prioritization in journey choices under emergency. The availability of each
journey tkl depends on dij of each arc between departure and arrival nodes (i.e., k and l in
Equation (6)):

tkl = ∏ dij (6)

The proposed quantitative methodology that assesses the vulnerability of road sections
following an earthquake is innovative and fills a gap in the literature. The holistic approach
synthesizes different approaches (i.e., structural, transport, and urban environment) to
identify the MUS of Pomezia, because its seismic and urbanistic features are representative
of many flat Italian urban centers. The birth of the town is relatively modern: its urban
aggregate was built in 1938 during the Pontine marshes redemption, in order to find a city
between Rome and the Southern Lazio region (i.e., Latina, Sabaudia, and Pontinia).

3. Case Study and Results

The implementation of the proposed methodology allows the identification of MUS to
safely manage a post-seismic emergency in Pomezia. With regard to the primary strategic
buildings, the identified focal areas are:

1. Entry Point 1 (EP1): a safe open space 17 km from Pomezia where logistical support
and rescue services from the north could be hosted;

2. Entry Point 2 (EP2): the second headquarters 15 km from Pomezia where logistical
support and rescue services from the south could be hosted;

3. GF-ASL: three strategic buildings (i.e., a health unit, a pharmacy, and the board of the
Customs corps) are in this area;

4. Centro: there are four strategic buildings (i.e., the town hall, the police office, the
board of the local police, and a pharmacy);

5. VVFF: hosts a fire station,
6. ASL: hosts a health facility;
7. Pratica di Mare: a military area where there is an airport;
8. Litorale Torvajanica: includes five strategic buildings (i.e., two pharmacies, two police

offices, and a fire station).

The existing road network has been modeled by an undirected graph whose nodes are
joined by bidirectional arcs. The most important road infrastructures have been identified
on the basis of:

• geometric characteristics (e.g., carriageway width, and longitudinal slopes);
• net paths compliant with the width of emergency vehicles: enrolling in curves with

small radius should ensure the residual functionality (i.e., availability”) after a seismic
event;

• MUS connection to two peripheral entry points where rescue services would be placed.

Figure 2 shows the m-by-m matrix A, where m (equal to 28) is the number of nodes
(i.e., focal areas and road intersections) that compose the graph, while the entries’ sum
(i.e., 39) is equal to the arcs of the graph in Figure 3.
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The authors surveyed all the urban centers and acquired information through the
geolocation of a mobile GPS device that tracked and shared the routes [43]. Figure 3
represents the graph of the overall road network: the focal areas are the big points, while
small nodes are road intersections identified by numbers ranging from 1 to 19 and the
name Ardea that identifies a town 10 km to the south. Each arc is identified by the name of
the existing road.

Given the graph in Figure 3, the minimum network with total connectivity is composed
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of 27 arcs; two arcs are essential for MUS (i.e., the arc between node 4 and the focal area
“Pratica di Mare”, and that between EP2 and node 19). The analysis of the overall network
availability gives D in Figure 4. Each non-null entry returns the availability of the arc that
joins the nodes.
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Sorting in descending order, the availability of the arcs allows the identification of the
minimum network. The first 27 arcs identified the highest network availability (Table 6a),
but the total network connectivity (i.e., the inclusion of all focal areas and road intersections)
should be verified. This first solution does not satisfy the goal of total connectivity because
node 10, GF-ASL, and Centro focal areas are not linked. Therefore, the analysis of the graph
by parts forced the reduction of more available arcs and added less available ones, both to
obtain the minimum network without redundancies and to ensure the total connectivity.
Arcs 25, 26, and 27 were substituted by arcs 30, 31, and 36 (red and green cells in Table 6b),
respectively.

Therefore, the network in Table 6b ensures the total connectivity because it includes
all the focal areas and road intersections. Finally, the tkl values were considered to identify
the paths (from the two entry points EP1 and EP2 to the other nodes) that maximize the
availability performance of the overall network. The analysis of the journeys identified the
most available path for each connection from each EP to the j-th focal area (bold values of
tkl in Table 7), with respect to all identified acyclic paths.
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Table 6. Descending availability of arcs. (a) Theoretical highest availability network (incomplete); (b)
effective highest availability network (complete).

# Arc Availability # Arc Availability

1 EP1–12 0.999 1 EP1–12 0.999
2 1–2 0.999 2 1–2 0.999
3 1–3 0.999 3 1–3 0.999
4 3–4 0.999 4 3–4 0.999
5 4–5 0.999 5 4–5 0.999
6 5–6 0.999 6 5–6 0.999
7 6–7 0.999 7 6–7 0.999
8 14–19 0.999 8 14–19 0.999
9 EPZ–19 0.999 9 EPZ–19 0.999

10 EP1–1 0.999 10 EP1–1 0.999

11 4–Pratica di
Mare 0.999 11 4–Pratica di Mare 0.999

12 6–ASL 0.999 12 6–ASL 0.999
13 16–ASL 0.999 13 16–ASL 0.999
14 11–13 0.998
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18 14–Ardea 0.990   18 14–Ardea 0.990   
19 15–16 0.990   19 15–16 0.990   
20 Ardea–15 0.980   20 Ardea–15 0.980   
21 15–18 0.980   21 15–18 0.980   

22 
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Torvajanica 0.980   22 
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Torvajanica 0.980   

23 8–9 0.970   23 8–9 0.970   
24 EP1–2 0.930   24 EP1–2 0.930   
25 9–12 0.930   25 9–12 0.930   
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Torvajanica 0.980 22 16–Litorale

Torvajanica 0.980

23 8–9 0.970 23 8–9 0.970
24 EP1–2 0.930 24 EP1–2 0.930
25 9–12 0.930 25 9–12 0.930
26 Ardea–19 0.930 26 Ardea–19 0.930
27 3–17 0.900 27 3–17 0.900
28 9–11 0.900 28 9–11 0.900
29 12–13 0.850 29 12–13 0.850
30 7–GF,ASL 0.800 30 7–GF,ASL 0.800
31 7–Centro 0.800 31 7–Centro 0.800

32 17–Litorale
Torvajanica 0.750 32 17–Litorale

Torvajanica 0.750

33
Litorale

Torvajanica–
18

0.750 33 Litorale
Torvajanica–18 0.750

34 5–8 0.700 34 5–8 0.700
35 GF,ASL–9 0.600 35 GF,ASL–9 0.600
36 10–11 0.500 36 10–11 0.500

37 Centro–
VVFF 0.300 37 Centro–VVFF 0.300

38 9–10 0.200 38 9–10 0.200
39 10–Centro 0.200 a 39 10–Centro 0.200 b
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Table 7. Path analysis from EPs.

Departure Entry Point Destination Focal Area Intermediate Nodes tkl

EP1

Pratica di Mare
1-3-4 0.867

2-8-5-4 0.017
12-13-14-19-Ardea-15-16-ASL-6-5-4 0.003

GF,ASL

1-3-4-5-6-7 0.135
1-3-4-5-8-9 0.004
1-2-8-5-6-7 0.011

1-2-8-9 0.017
12-9 0.030

12-13-11-9 0.003

VVF
1-2-8-9-11-13 0.010

12-13 0.086
1-3-4-5-6-ASL-16-15-Ardea-14-13 0.020

Centro

1-3-4-5-6-7 0.129
1-2-8-9-GF-7 0.0004

1-2-8-9-11-13-VVF 0.001
12-9-GF-7 0.001

12-9-11-13-VVF 0.001

ASL
1-3-4-5-6 0.711

1-2-8-9-11-13-14-Ardea-15-16 0.001
12-13-14-Ardea-15-16 0.009

Litorale Torvajanica

1-3-17 0.030
1-3-4-5-6-ASL-16 0.170

12-13-14-Ardea-15-16 0.003
12-13-14-Ardea-15-18 0.001

EP2

Litorale Torvajanica 19-Ardea-15-16 0.014
19-Ardea-15-18 0.005

VVF
19-14-13 0.301

19-Ardea-14-13 0.032

Centro
19-14-13-VVF 0.017

19-Ardea-15-16-ASL-6-7 0.004

ASL
19-Ardea-15-16 0.035

19-14-Ardea-15-16 0.080

GF,ASL
19-14-Ardea-15-16-ASL-6-7 0.010

19-14-13-12-9 0.003
19-14-13-11-9 0.012

Pratica di Mare 19-14-Ardea-15-16-ASL-6-5-4 0.060

Red arcs in Figure 5 compose the minimum network with total connectivity at maxi-
mum availability.
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4. Discussion

Recent research has concluded that the concept of safety for towns depends on three
factors: the town, the urbanization networks, and the risk reduction. Components and
strategic elements leading towards an emergency plan should be identified where urbaniza-
tion infrastructures (e.g., road network) are the primary strategic elements, while buildings
are the secondary elements. Preliminary operative choices should localize services and
structures essential for the town, identify the existing transport networks and safe areas,
and evaluate construction techniques of buildings. Therefore, planning and risk reduction
both contribute to safety and health in each urban context because the minimum network
with total connectivity at maximum availability is necessary to handle emergencies. The
proposed methodology summarizes road, building, and land data to identify the journeys
that would be the priority choice of emergency vehicles during an emergency. The vulner-
ability classes (ki,j,q,m) defined by the authors can be adapted and modified according to
different conditions and contexts (e.g., dimension of town, type of settlement, availability of
open spaces or safe areas, road network, orography and territorial location, and emergency
traffic demand). The defined process to identify the MUS gives the opportunity to be
easily adapted to other scenarios. Moreover, the obtained results provided for secondary
options when primary ones were not available. The methodology has been implemented to
identify the minimum network with total connectivity at maximum availability in Pomezia,
a medium-sized Italian town. The iterative process to identify the MUS permitted opti-
mized journeys with an unbiased approach, excluding paths that appeared safe but had
problems. In order to obtain an increase in network performance, further analysis could
focus on the most fragile arches in a journey from EPs to each focal area. In this way, the
available resources are allocated for practical targets, optimizing the use of public finances,
scheduling works to improve strategic parts of the graph, and increasing the road network
consistency. The available works could reduce both criticalities related to the mobility
system (e.g., rehabilitation of road sections, tunnels, and bridges) and vulnerability of
buildings facing the journeys (e.g., seismic retrofitting).

5. Conclusions

In recent decades, the evaluation of natural disasters is changing the approach to
emergency plans, from a simple prefiguration of the future layout to land management
answering fixed objectives. “Emergency services” (e.g., people, goods, and vehicles) need
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transport infrastructure to reach the disaster site. As such, essential routes should be able
to resist any event of crisis to guarantee safe and regular connections. An emergency plan
is pivotal to manage a crisis when the municipal response is not sufficient; primary road
arcs should be available to oncoming services. The proposed methodology aimed to verify
the residual functionality of a strategic road network after a seismic event and to identify
the most available journeys accessible to emergency vehicles. It takes into account input
data about structural, transport, and urban environments to assess the vulnerability of
road sections following an earthquake and plan emergency journeys. The holistic approach
combines issues from different subject areas to identify the MUS of Pomezia. The identified
network is composed of roads and strategic buildings that ensure emergency management
in the post-event phase. This network could be represented by a graph (i.e., a system of
nodes and arcs) whose availability depends on the vulnerability of road cross-sections,
overlooking buildings, and street furniture (e.g., lighting, vertical signs, and trees) along the
arcs. The analytical approach allows the quantification of the redundancy of the network
(i.e., the higher the degree of redundancy, the greater the resilience), identifying the best-
performing arcs and their alternatives. This then allows planning strategies to improve the
current road network consistency. A new hierarchy for the road network has thus been
created where the less vulnerable elements are the most important for survival and for
continuous road operativity.

The proposed methodology has been implemented to distinguish the minimum net-
work with total connectivity at maximum availability in Pomezia, an urban center located
in the Lazio region, south of Rome, Italy. However, the proposal could be used to analyze
the road network of bigger urban areas and contribute to define an MUS at a regional
scale. These results may be integrated into an emergency plan because they enable the
identification of primary (and secondary, with decreasing availability) safe paths and areas
for inhabitants and emergency services. On the other hand, further development of the
proposed methodology should consider bridge and tunnel road cross-sections that have,
so far, not been analyzed.
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