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SUMMARY: Earthquakes create significant volumes of rubbles and waste (CDWs- Construction 
and Demolition Wastes), strongly impacting the environment and posing health risks. This paper 
investigates an automatic sensor-based approach finalized to identify and classify different post-
disaster CDWs in order to be recycled as second raw material. The investigated CDWs were 
generated at Amatrice and Norcia areas (central Italy) in 2016 and 2017. The study presents a 
methodology based on a combination of two analytical techniques, HyperSpectral Imaging (HSI) in 
the SWIR range (1000-2500 nm) and X-ray fluorescence (XRF), in order to discriminate different 
samples compositions – e.g. Concretes, Roof Tiles, Bricks, as well as the recognition of 
contaminants – e.g. cement matrix on the surface of the samples. Results can represent an important 
starting point for further development of fully optical HSI based recognition CDWs procedures to 
be utilized both off-line (i.e. laboratory scale) and on-line (i.e. sorting level at industrial scale). 

1. INTRODUCTION 

Construction and demolition wastes, or CDWs, arise from construction sites and in the total or 
partial demolition of buildings and infrastructures. CDWs represents the largest waste worldwide at 
around 30 to 40%: 36% in the European Union, and close to 67% in the United States (Ruiz L. et 
al., 2020), and at present, in the EU over 800 million tonnes are produced every year (Eurostat, 
2017). CDWs are composed of different quantities of concrete, cement, bricks, gypsum products, 
ceramic products (e.g. tiles), glass, asphalt, wood, but also some hazardous materials like asbestos, 
etc. . The presence of dust and the consequent fine powder inhalation, especially of asbestos, causes 
breathing problems and continuous exposure can lead to cancer (Olsen et al., 2011). Even though 
these hazardous materials are banned, they do exist in old buildings as well as in buildings that did 
not follow regulations at the time of construction (Ginga C.P. et al., 2020).  

Natural disasters create enormous amounts of CDWs (Akhtar A. et al., 2018) through the 
destruction of buildings and infrastructure in a short time (EPA, 2008; FEMA, 2007). Therefore, 
CDWs management after a disaster is more difficult than ordinary CDWs management, due to its 
complexity and contamination with hazardous materials. Moreover, the disaster debris impacts not 
only on the environment but also on rescue and emergency services, on the provision of lifeline 
support and on the socio-economic recovery of the affected areas (Brown et al., 2011). Thus, the 
management of wastes created by disasters has become an increasingly important issue that needs to 
be correctly addressed when responding to a disaster (Thummarukudy, 2012).  

The volume of waste, its assortment in terms of constituting materials and environmental health 
hazards, the areal extent of the waste, the community priorities, the existing and disaster-specific 



 
 

regulations, all need to be assessed to determine the feasibility of disaster waste-recycling 
programmes (Brown and Milke, 2011). Hence, post-disaster CDWs management is one of the most 
crucial activities during the recovery period (Karunasena G. et al., 2013). 

A correct approach needs to be developed to set up an automatic and non-destructive system able 
to classify and separate different materials, without human support, in order to use these products as 
secondary raw material. Research works have already highlight the great difficulty to separate  
CDWs constituents (Bonifazi G. and Serranti S., 2014; Bonifazi et al., 2015; Bonifazi et al., 2019; 
Serranti S. et al., 2015) due to the high variability in composition and characteristics.  

The main aim of this study was to develop an automatic system able to identify and to classify 
different CDWs, in particular inert CDWs collected from the collapse of building generated by 
Amatrice earthquake (2016-2017). To that purpose, a classification method was applied, starting 
from XRF analysis of inert samples and the utilization of HyperSpectral Imaging (HSI), working in 
the Short-Wave InfraRed (SWIR) range (1000-2500 nm). The chemical maps obtained by XRF 
were compared with the acquired hyperspectral images in order to validate the results, obtained by 
optical sensing. The acquired HSI images were processed adopting chemometric techniques, in 
order to identify different type of class of materials, e.g. tile-Brick, and eventually contaminant. The 
proposed strategy can represent a valid and efficient method that can support a fast and reliable 
identification of material for the recycling and recovery of CDWs material. 

2. MATERIALS AND METHOD  

2.1. Materials 
 
Seventy inert CDWs samples, collected in various cities and towns in the area of Amatrice (RT), hit 
by the earthquake in 2016-2017, were investigated. The samples are thus representative of 
construction waste material coming from a natural disaster. In particular, the CDWs samples are 
composed of fragments of Brick, Tile, Concrete, Perforated Brick, Stone, and Roof Tile. 

The different samples have been identified and characterized by XRF and divided into datasets 
to build the HSI classification model. More in details, for the training datasets 9 particles of 
Concrete, 9 Stones, 9 Roof Tiles, 9 Perforated Bricks, 9 Tiles and 6 Bricks (Figure 1a) were 
selected. For the validation dataset, samples were divided into 4 samples of Concrete, 3 Stones, 3 
Roof Tiles, 3 Perforated Bricks, 3 Tiles and 3 Bricks (Figure 1b). 
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Figure 1. RGB colour images of the acquired Construction and Demolition Waste (CDWs) samples:   
calibration dataset (a) and validation dataset (b). 



 
 

2.2. Methods 

2.2.1 X-ray Fluorescence 

The samples were analysed by Xray- fluorescence (XRF) to evaluate the chemical composition and 
element distribution. XRF analysis was obtained using a Bruker Tornado M4 equipped with an Rh 
tube, operating at 50 kV, 200 μA, with 25 μm spot obtained with poly-capillary optics. Mapping 
acquisition conditions are 10 ms/pixel and step size 100 μm in vacuum condition at 25 mBar. 

 
2.2.2 Hyperspectral imaging analysis 

The HyperSpectral images were acquired using the SISUChemaXLTM Chemical Imaging 
Workstation (Specim, Finland), equipped with an ImSpectorTM N25E imaging spectrograph 
(Specim, Finland) working in the short-wave infrared range (SWIR: 1000-2500 nm). The analytical 
station is controlled by a PC unit equipped with specialized acquisition/preprocessing software 
(ChemadaqTM), to handle the different units and the sensing device constituting the platform and 
perform the acquisition and the collection of spectra. 

Samples were acquired with a macro lens of 15 mm and a field of view of 10 cm, and the 
spectral resolution was 6.3 nm. Calibration for black and white references was automatically 
performed. Spectral data were first analysed adopting the PLS_Toolbox (Eigenvector Research, 
Inc.) under Matlab® environment (The Mathworks, Inc.) to perform PCA and Statistics and 
Machine Learning Toolbox™ for kNN classification model. 

The Principal Component Analysis (PCA) was applied for exploratory data analysis, to define 
classes and to perform the calibration dataset. Data were pre-processed in order to remove 
scattering and emphasize spectral variation. This techniques is a powerful and versatile method 
capable of providing an overview of complex multivariate data. PCA can be used for revealing 
relations between variables and relations between samples (e.g. clustering), detecting outliers, 
finding and quantifying patterns, generating new hypotheses as well as many other things (Bro and 
Smilde, 2014). It was used to decompose the “processed” spectral data into several principal 
components (PCs) (linear combinations of the original spectral data) embedding the spectral 
variations of each collected spectral data set. According to this approach, a reduced set of factors is 
produced. Such a set can be used for discrimination since it provides an accurate description of the 
entire dataset. Samples characterized by similar spectra, belonging to the same class of products, are 
grouped in the same region of the score plot related to the first two or three PCs, whereas samples 
characterized by different spectral features will be clustered in other parts of this space. 

The Principal Component Analysis based k-Nearest Neighbor (PCA-kNN) method was applied 
for classification models. PCA-kNN classification is one of the most fundamental and simple 
algorithms used in classification methods, in particular, it is a powerful non-parametric 
classification system based on no prior knowledge about the data distribution (Parvin et al., 2008). 
KNN classification was developed from the need to perform discriminant analysis when reliable 
parametric estimates of probability densities are unknown or difficult to determine (Parvin et al., 
2008). kNN classification algorithm tries to find the k nearest neighbours of a query vector and uses 
a majority vote to determine its class label, among the predefined classes. Without prior knowledge, 
the kNN classifier usually applies Euclidean distances as the distance metric. The performance of a 
kNN classifier is primarily determined by the choice of k and the applied distance metric 
(Imandoust & Bolandraftar, 2013). This number decides how many neighbours (where neighbours 
are defined by a distance metric) influence the classification. kNN classification approach has been 
widely used in various types of classification tasks. This classification approach has gained 
popularity due to its low implementation cost and a high degree of classification efficiency. 
However, its sample similarity computing is very large, which limits its applications in some cases 
characterized by high dimensional spaces or very large training sets (Du & Chen, 2013).  In order to 



 
 

reduce the computation time and memory requirement, without decreasing classification capability, 
the kNN algorithm was applied  to  the score matrix T computed by  PCA model (Capobianco et al., 
Table 1. Results of mass percentage (%) of the major elements belonging to each class constituting the 
calibration dataset. 

Class Ca Si Fe Al K Mg Ti Mn S Sr 
Concrete 72.51 13.49 5.80 4.17 2.03 - 0.61 0.19 0.88 0.32 
Brick 37.52 34.08 10.97 9.65 4.27 1.38 1.13 0.29 0.71 - 
Aggregate/Stone 41.05 43.44 4.32 5.55 3.40 0.25 0.60 1.00 0.26 0.13 
Perforated Brick 42.17 26.21 12.97 8.46 3.68 - 1.12 0.34 5.05 - 
Roof tile 43.91 29.05 11.50 8.52 3.96 - 1.15 0.33 1.58 - 
Tile 14.96 48.98 8.69 17.24 6.79 0.19 1.37 1.39 0.39 - 

 
2017). Classification models were then evaluated using the following parameters: Sensitivity and 
Specificity in calibration (Cal) and cross-validated (CV): 

Sensitivity: TP/(TP + FN)         (1) 
Specificity: TN/(TN + FP)         (2) 

being TP the true positive and FN the false negatives. The best models are obtained when similar 
values are obtained for Sensitivity and Specificity in Cal and CV, thus demonstrating the robustness 
of the developed model (Kimuli D. et al., 2018). 

3. RESULTS AND DISCUSSIONS 

The investigated samples were first analysed, as previously outlined, by XRF  and then according to 
the results divided into six classes generating a calibration and a validation dataset. For the 
calibration dataset were thus acquired six hyperspectral images representative of each group – e.g. 
Brick and tile, a mosaic procedure was then applied to obtain a single hypercube (Figure 2a). A 
single acquisition has been done for the validation dataset. In Table 1, the XRF average values of 
the different elements detected in the different individuals constituting the calibration set are 
reported. 

Samples composed of concrete show a large amount of calcium in the cement matrix, 
represented by more than ~72 % of Ca, with a large and visible aggregate/stone immersed in the 
matrix, characterized by high porosity. In Figure 2b, the high presence of silicon or calcium in class 
aggregate/stone is due to calcite (CaCO3) or flint (SiO2), which are the most aggregate utilised in 
the construction sector. The cement matrix is also present on the surface of some samples as a 
contaminant. Tiles are mainly composed of silicon, aluminium and potassium (Figure 2c). This is 
because tiles are mainly composed of quartz and cristobalite, plus minor plagioclase and a variable 
amount of non-crystalline phases (Fiori C. et al., 1989). Brick samples show a matrix characterized 
by low porosity. A high presence of calcium, silicon, iron and aluminium is detected, moreover 
there is a high presence of magnesium compared to other classes. Finally, Perforated Bricks and 
Roof Tiles present similar composition in term of mass percentage, but with different distribution 
on the surface. Moreover, in perforated Brick a high presence of sulphur is detected. Hazardous 
minerals such as asbestos have not been detected. 

An exploratory data analysis based on PCA was carried out. Different pre-processing methods 
have been adopted in order to highlight the spectral differences among samples. In particular, the 
following algorithms pre-processing chain was applied: Smoothing, Multiplicative Scatter 
Correction (MSC) (Median, no intercept), Detrend, Mean Center (MC). In Figures 3a and 3b, the 
average raw and pre-processed spectra of the analysed samples are reported. The absorption 
features, visible around 1400 nm and 1900 nm, in the spectra are due to the O-H stretching and H-



 
 

O-H bending vibrations in the water molecules (Crowley et al., 2003). Moreover, the absorption in 
aggregate spectra  at 2350 nm could identify calcite which is one of the ingredients of cement in the  
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Figure 2. Calibration dataset, six classes have been defined inside the dataset (a), 
XRF results of calibration dataset, distribution of Si-Ca (b) and XRF map representative of Fe-Al (c). 
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Figure 3. SWIR average spectra of the different classes selected as results of PCA application 
to samples constituting the calibration dataset before (a) and after (b) pre-processing. 

Applied pre-processing sequence: Smoothing, MSC, Detrend and MC. 
 
form of limestone and other forms of calcium carbonate (Goetz et al., 2009). Tile seems to have 
more accentuate absorption around 2200 nm, this characteristic could be attributed to a higher 
content of Al as observed by XRF map results. In fact, a combination band related to Al-O-H bond 
is detected in the SWIR range between 2180 nm and 2230 nm (Herrmann et al., 2001). After pre-
processing, an exploratory data analysis based on PCA was carried out. PCA model requires 6 PC 
to express a total captured variance of 95.96% and shows a complex clusters scenario. The high 
variability is due to the heterogeneity and complexity of the dataset due to sample variability in 
terms of composition, morphologies and textures (e.g. different high and roughness of the surfaces). 



 
 

Some spectral signatures show similar absorption. To improve the separation three score plots, 
better evidencing PCA differences (e.g. different clouds assessments), were analysed and reported 
in the following. 

 

 

 

 

 

 

 

 

 

Figure 4. Calibration datasets and score plots: PC1-PC2 representative of classes Brick-Perforated Brick (a), 
PC1-PC4 representative of classes Roof Tile-Tile (b) and PC1-PC4 representative of classes 

Aggregate/Stone-Cement Matrix (c). 
 
The first score plot (Figure 4a) does not realize a good discrimination between Bricks and 

perforated Bricks sample, due to samples fingerprints similarity, for this reason one sample of Brick 
and one of perforated Brick are not correctly recognised (i.e. individuals surrounded by red circles 
In Figure 4a). The analysis of the second score plot (Figure 4b), shows a high variability due to the 
different type of materials, in this case Roof Tiles and Tiles. The PC4 score plot shows seven 
cluster due to the relative variability. In detail, four groups represent Tile class characterized by  
high variance and three groups of Roof Tile. Finally, the third score plot (Figure 4c) shows the 
separation between Cement Matrix and Aggregate/stone classes. In particular, through PC4, the 
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Aggregate/stone is clustered in two groups, related respectively to aggregates high in silicon and 
high in calcium. 
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Figure 5. XRF map representative of Ca-Si (a), XRF map representative of Al-Si (b) 
and prediction maps obtained as result of PCA-kNN (c). 

 
After PCA, the PCA kNN classifier was built and applied to the validation dataset. The result of 

the classification is reported, in term of a prediction map (Figure 5a). Results show as all the 
investigated classes are correctly identified and classified and in order to validate them the chemical 
maps obtained by XRF (Figures 5b and 5c) were compared with the prediction map obtained by 
optical sensing. Compositional and textural attributes, as investigated by XRF, confirm the 
variability detected by HSI device, evidencing the presence of common elements in all inert CDWs 
samples but with different distribution and concentration (Table 2). The model shows just a few 
misclassification errors for all six classes. The very few classification errors are always related to 
the morphology of the samples and the different high. 
 
Table 2. Results of mass percentage (%) of the major elements belonging to each class in validation dataset. 

Class Ca Si Fe Al K Mg Ti Mn S Sr 
Concrete 79.66 10.42 3.71 3.15 1.03 0.44 0.39 0.17 0.83 0.20 
Brick 37.76 33.82 10.8 9.14 4.21 2.51 1.03 0.23 0.34 0.16 
Aggregate/Stone 53.27 45.17 0.68 - 0.34 - 0.17 0.11 0.26 - 
Perforated Brick 34.95 29.28 13.34 9.58 4.59 - 1.27 0.41 6.35 0.23 
Roof Tile 40.36 28.16 11.05 9.21 3.82 0.28 1.23 2.76 3.13 - 
Tile 15.46 51.69 5.89 16.47 6.00 2.43 1.55 0.13 0.38 - 

 
The results in terms of Sensitivity and Specificity (Table 3) confirm the good quality of the 

model, with values ranging from 0.82 to 1.00 and 0.81 to 1.00 respectively, both in calibration and 
cross-validation. 

 



 
 

4. CONCLUSIONS 

The study was carried out to investigate the combined utilization of X-ray fluorescence (XRF) and 
HyperSpectral Imaging (HIS) to perform  a characterization  of  inert CDWs samples.  A model was  
Table 3. Sensitivity and Specificity of calibration (Cal) and cross validation (CV) of the PCA-kNN model. 

Class Sensitivity (Cal) Specificity (Cal) Sensitivity (CV) Specificity (CV) 
Aggregate/stone 0.94 0.99 0.93 0.99 
Background 0.97 1.00 0.97 1.00 
Brick 0.89 0.98 0.89 0.98 
Roof Tile 0.82 0.98 0.81 0.98 
Cement matrix 0.90 0.97 0.89 0.97 
Perforated Brick 0.88 0.99 0.88 0.99 
Tile 0.89 0.99 0.89 0.99 

 
developed to evaluate the possibility to classify different inert CDWs with similar chemical 
composition and to recognize the presence of contaminant, e.g. the residue of cement matrix on the 
surface of the sample. Results showed that the proposed approach can be used for detection and 
characterization of inert CDWs, thus confirming the potentialities of the HSI method. Moreover, 
this approach represents a fast and non-destructive tool that can be utilized to develop and 
implement the waste management after a post-disaster. This method could be further implemented 
at the recycling plant level, in order to develop fully optical HSI based recognition CDWs 
procedures to be utilized both off-line (e.g. the analytical level at laboratory scale) and on-line (e.g. 
sorting level at industrial scale). Future developments will be addressed to increase performance for 
the identification of the different type of material in the same class in construction and demolition 
waste, e.g. ceramic tile to porcelain tile. 
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