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Abstract  

An in-depth study is presented on some numerical formulations used to reproduce damping 

of motion in solid continua. The focus is addressed in particular to those formulations that in 

the finite difference geotechnical code FLAC can be exploited to perform linear analyses. 

The numerical investigations are performed through a simple 1D model of a homogeneous 

soil deposit interested by a shear wave motion coming from the bedrock, and a gravity dam 

model subjected to seismic excitations in presence of dam-water-foundation interaction. The 

Rayleigh damping method is tested in particular to find an appropriate choice of the control 

frequency in order to minimize the problems of high-frequency overdamping. The analyses 

also investigate two other formulations (the local damping and its variant, the combined 

damping) that present the major advantages in providing a frequency independent action 
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and in needing not significant computational resources. Limits and principal drawbacks of 

their possible use are highlighted. 
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CRITICAL DAMPING RATIO; RAYLEIGH DAMPING; LOCAL DAMPING; DYNAMIC 
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List of symbols 

[C] viscous damping matrix of a multiple degree of freedom system 

[K] stiffness matrix of a multiple degree of freedom system 

[M] mass matrix of a multiple degree of freedom system 

A displacement amplitude of a single degree of freedom system 

cm viscous coefficient for a node of FLAC with mass proportional damping 

D material critical damping ratio 

F resultant force 

Fd damping force 

f* frequency used in a single control frequency approach to the Rayleigh 
damping formulation 

f0 first natural (fundamental) frequency of a soil deposit 

fm mean frequency of the input motion as in Rathje et al. (1998) 

fmin frequency at the minimum modal damping in the Rayleigh formulation 

fp predominant frequency of an earthquake motion 

ft tensile strength of the concrete 

G shear stiffness modulus 

H thickness of a soil deposit 

K bulk elastic modulus 

k stiffness of a single degree of freedom system 

m mass 

T period 

𝑢    component i (i =x,y) of the velocity of a node of FLAC at time t 

𝑢    component i (i°=x,y) of the displacement of a node of FLAC at time t 

v0 initial velocity 

VS shear wave velocity 

WE maximum elastic energy accumulated 
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α coefficient of the local damping formulation 

αR mass proportional damping coefficient of the Rayleigh formulation 

βR stiffness proportional damping coefficient of the Rayleigh formulation 

γ unit weight 

Δt timestep length in FLAC calculation 

Δw energy dissipated during each quarter of a cycle 

ΔW energy dissipated during the whole cycle 

Δσij,v increment of stress of a single zone of FLAC with stiffness proportional 
damping 

ξ*,D* target critical damping ratio that is to be modelled 

ξj critical damping ratio for vibrational mode j of a multiple degree of freedom 
system 

σij stress tensor of a single zone in FLAC 

ω* circular frequency used in a single control frequency approach to the Rayleigh 
damping formulation 

ω0 first natural circular frequency of a soil deposit or natural frequency of a single 
degree of freedom system 

ωα modified circular frequency of a single degree of freedom system damped 
through the local formulation 

ωj circular frequency for vibrational mode j of a multiple degree of freedom system 

ωm, ωn frequencies used in a two control frequencies approach to the Rayleigh 
damping formulation 

 

1. Introduction 

The energy dissipation in soils and rocks is related to inner friction phenomena and to the 

hysteretic behavior under cyclic loading. In time-domain site response analyses it could be 

ideally represented by an appropriate nonlinear constitutive model. However, these models 

tend to be complex, embodying many material parameters, expensive to be calibrated in 

practice. At small to medium strain levels is usual to simulate the behavior of the materials 

through a linear constitutive model (with an appropriate choice of the stiffness) associated 

to an additional damping formulation. 

Differently, if medium to large strain levels are attained, simple elasto-plastic (e.g. Mohr-

Coulomb) or hyperbolic models (Hashash and Park, 2001; Matasovic, 2006) can be used, 
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that provide no energy loss at very small strains and therefore require an amount of damping 

to be added in the analyses. 

The additional damping can be introduced in time-domain dynamic analyses in different 

ways, but the most used is the viscous Rayleigh Damping, hereafter RD (Chopra, 2007; 

Lanzo et al., 2003; Park and Hashash, 2004). This approach can be easily implemented in 

finite elements and finite difference analyses. 

Attention here is focused on the 2D finite difference FLAC code (Cundall, 2006; Itasca, 

2011). The additional damping can be added in the FLAC analyses through the classic 

viscous Rayleigh Damping, or the alternative formulations named Local Damping, hereafter 

LD, and its variant, the Combined Damping, hereafter CD (Itasca, 2011). All these are built-

in formulations. A further numerical technique was recently advanced, using a combination 

of one or more Maxwell components in parallel to the material stiffness, with a preliminary 

application to the 3D version of the code (Dawson & Cheng, 2021). 

The use of RD, common in time domain analyses, is characterized by two major drawbacks: 

a rate-dependent damping (conversely to what is experimentally observed for soils in the 

frequency range excited by earthquakes) and a severe reduction in the timestep length 

(therefore a severe increment of time running) for explicit codes. On the contrary, LD and 

CD formulations are frequency independent, and they do not significantly affect the runtime; 

however, the use of LD and CD is only partially documented in the literature and there is 

evidence to suggest that, for irregular waveforms, local damping underdamps the high 

frequency components and may introduce high frequency noises (Itasca, 2011; Manica et 

al., 2014). 

The aim of the paper is to gain insight into the different damping formulations that are 

implemented in the FLAC code, focusing on Rayleigh, Local and Combined Damping 

formulations when they are applied to linear analyses. Parametric linear analyses were first 

conducted on an ideal soil profile excited by several accelerograms with different frequency 
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content. A real case is then addressed, i.e. the seismic analysis of a concrete gravity dam, 

modelled through FLAC taking into consideration simultaneously the dam-water-foundation 

interaction. A linear model has been adopted for the dam body using RD, LD and CD 

formulations to model all the amount of material damping; this choice allowed to better 

highlight the differences between the three formulations. 

Some practical recommendations are finally provided for FLAC users, in particular: i) criteria 

for selecting control frequencies and target damping in Rayleigh damping formulation. ii) 

advantages and drawbacks of RD, LD and CD formulations and suggestions for selecting 

the appropriate choice of additional damping by balancing accuracy and speed of the 

analysis. 

 

 

2. Damping models in FLAC  

2.1. Introduction 

A brief recall of the numerical background of the stress-strain analysis through the finite 

difference method is needed to understand the differences in damping formulations. The 

FLAC code solves the dynamic equilibrium equations of a continuous medium by dividing 

the 2D space into a mesh of quadrilateral zones with nodes at the vertexes (Itasca, 2011). 

Each zone is composed by two overlaid pairs of adjacent constant-strain triangular 

elements. For each node a pertaining area can be outlined as the sum of portions of the 

triangular elements converging to it. 

At a generic time t of the analysis the resultant out-of-balance force vector F(t) on each node 

is calculated through integration of both the body force field and the stress tensor gradient 

over the area pertaining to the node; for nodes on the boundaries also possible surface 

forces contribute to F(t). 
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Each node will be accelerated according to the explicit finite difference form of Newton’s 

second law of motion, that has the following form for each component (in the 2D formulation 

i=x,y): 

𝑢     
∆

   𝑢    
∆  

  𝐹 𝛥𝑡
𝑚

                    1  

where ui  is the nodal velocity and the superscripts denote the time at which the 

corresponding variable is evaluated, m is the lumped mass pertaining to the node and Δt is 

the timestep length. Once the velocity has been updated for each node, the strain rates 

tensor of each triangular elements can be calculated through integrating the velocity flow 

across its perimeter. The constitutive model applied in each zone gives the new stress rate 

tensor. This requires an update of the previous nodal force balances and another cycle can 

be initiated. 

 

 

 

2.2. Rayleigh Damping (RD) 

The Rayleigh damping is a well-known formulation in modal analysis of structural systems 

and in the finite element method of continuum analysis (Chopra, 2007, Zienkiewicz et al., 

2005). In these fields the Rayleigh damping is generally expressed in matrix form as a linear 

combination of both mass [M] and stiffness [K] matrices (full Rayleigh formulation): 

𝐶 𝛼  𝑀  𝛽  𝐾                              2  
where [C] is the damping matrix, αR and βR are the mass and stiffness damping coefficients, 

respectively. In the finite difference framework, the mass proportional term is obtained 

through a viscous dashpot connecting every FLAC node to “ground” (i.e. to a fixed reference 

frame). The viscous coefficients of dashpots are cm=αꞏm, being m the mass lumped to the 

node. The node force balance (1) will be so changed in:  
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t	‐	
∆t	
2 	 + Fi

	(t) 𝑐 𝑢
∆ Δt

m
                    3 	

The stiffness proportional term of the Rayleigh Damping is not directly calculated as a further 

force acting on the node. Just after the new stress tensor σij,new is computed through invoking 

the constitutive model of each zone at the end of each timestep, a further viscous stress 

increment Δσij,v is added: 

∆𝜎 ,
𝛽
∆𝑡

𝜎 , 𝜎 ,                 4  

where σij,o is the original value of the stress tensor, prior to invoking the constitutive 

relationship. The viscous stress increment for each zone concurring to the single node is 

taken into account in the successive nodal force balance to compute F(t) but it is not 

accumulated to the current stress state of the zone. 

Bathe and Wilson (1976) showed that this formulation provides a different critical damping 

ratio ξj for each vibrational mode of a continuous system: 

𝜉  
1
2

 
 𝛼
𝜔

 𝛽 𝜔         5  

where ωj is the circular frequency for mode j. Therefore, if a material with a certain “target” 

damping ratio ξ* is to be simulated (generally the soil damping ratio D), determination of the 

proper αR and βR coefficients can follows two approaches. The first approach uses a single 

control frequency ω*	 that could represent the main frequency of interest for the system. 

Assuming that the material damping ratio is equally divided between the mass-proportional 

component and the stiffness-proportional one, from Equation (5) follows that: 

𝛼   ξ*ω*       𝛽   ξ*  ω*⁄                      6  
Hence the modal damping ratio ξj can be rewritten: 

ξj  
ξ*

2
 

 ω* 
ωj

ωj  
ω* 

    7  
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The relation between ξj  and ωj	 is presented in Figure 1a with a bold line. This figure shows 

that ξj attains its minimum value ξ* 	 at the control frequency ω* while all other frequencies 

are more heavily damped. In site response analyses it is often assumed that ω* is equal to 

the first natural circular frequency of soil deposit ω0. 

In the two control frequencies approach, if the target damping ratio is attained at the two 

modes m and n with circular frequencies ωm and ωn (i.e. ξm = ξn = ξ*), the expressions for αR 

and βR are: 

𝛼 𝜉∗ 2𝜔 𝜔
𝜔 𝜔

                      𝛽 𝜉∗ 2
𝜔 𝜔

                   8  

 

and the modal damping ratio ξj for the jth mode is given by:  

ξj  
ξ*

ωm ωn
 

 ωmωn 
ωj

 ωj                 9  

The relationship between modal damping ratio ξj and natural frequency ωj is shown in Figure 

1b. It is observed that for the frequencies between ωm and ωn, damping ratio is slightly less 

than ξ* while for frequencies outside of this range larger damping ratios are obtained. The 

appropriate selection of modes m and n for which the specified damping ratio value ξ* is 

assumed should guarantee reasonable constant damping in all the modes contributing 

significantly to the response (Kwok et al., 2007). In site response analyses, one control 

frequency is usually set at ω0  while the second one is a multiple of ω0. As an example, in 

QUAD4M the two control frequencies are automatically fixed by the code such that the first 

one is the fundamental frequency of the whole system (ω1= ω0) while for the second one it 

is assumed ω2=n ω0 with n being the smallest odd integer such that ω2 exceeds the 

predominant frequency (ωp) of the earthquake motion provided by the user (Lanzo et al., 

2003, 2004). 
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The same modal damping distribution associated to the two control frequencies ωm and ωn 

can be obtained through an equivalent single control frequency approach. In fact, once the 

coefficients αR and βR are calculated through Equations (8), Equations (6) allow to obtain 

the coordinate of the minimum of the distribution that are the equivalent parameters to be 

specified: 

Dmin 𝛼R 𝛽R,       𝜔  
𝛼R

𝛽R
                10  

A last approach rarely used in dynamic analyses is the simplified Rayleigh formulation. It 

corresponds to the limit case of the Rayleigh damping formulation with αR=0 in Equation (2) 

(i.e., only stiffness-proportional damping). In this case the coefficient βR is given by: 

𝛽  2ξ*  ω*⁄                11  
 

while the modal damping ratio ξj linearly increases with frequency according to: 

ξj  ξ* ω*⁄   ωj          12  
 

as shown in Figure 1c. The damping ratio is therefore highly overestimated for frequency 

higher than ω*. Generally, in the practice it is suggested to set ω* = ω0 and ξ* =D. 

The nonlinear finite difference FLAC code uses the full Rayleigh formulation with a single 

control frequency. To obtain reliable results it is necessary to choose suitable values for the 

target damping ratio ξ* and the control frequency ω*. 
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Figure 1. Full Rayleigh damping formulations with (a) single control frequency and (b) two control frequencies; Simplified 
Rayleigh damping formulation (c). 

 

2.3. Local Damping (LD) 

To overcome the problems associated to the Rayleigh damping, a form of damping called 

non-viscous local damping has been implemented in FLAC. It was originally designed to 

provide a numerical damping to the motion that is generated by the dynamic formulation of 

the solution in static or quasi-static simulations. 

In this condition Equation (3) is replaced by the following equation: 

ui 
t  ∆t

2    ui 
t -  ∆t

2   Fi
 t 𝐹  Δt

𝑚
        13  

 
where 

𝐹   𝛼 𝐹  𝑠𝑔𝑛 𝑢
∆

      14  

 
is the damping force component, α is a constant, sgn is the sign function. It is evident 

immediately from Eqs. (13) and (14) that the damping force on a node has a magnitude 

proportional to the size of the unbalanced force and a direction such that energy is always 

dissipated (i.e. opposite to the current velocity component). With these features the 

formulation of the LD can be considered equivalent to apply the original resultant force Fi to 

the gridpoint i having a mass modified following the factor (1±α)-1, the sign depending on the 

velocity versus (see Appendix A). 
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The amount of damping is controlled by the coefficient  which is related to the soil damping 

ratio D by the following equation (Itasca, 2011):  

 πD 15  
A theoretical framework on the source of this expression is provided in Appendix A. The use 

of local damping is obviously simpler than Rayleigh damping, because it is rate (i.e. 

frequency) independent and needs no estimate of the natural frequency of the modelled 

system. 

However, from Equation (14) it is apparent that the nodal damping force can change its sign 

(depending on the velocity sign) also having a finite, not null, modulus (depending on the 

out-of-balance force modulus), thus imposing a discontinuity in the node acceleration 

histories. As a consequence, a high frequency "noise" is introduced in the acceleration time 

histories and the high frequency damping is not well simulated (Itasca, 2011; Liu et al., 2014; 

Manica et al., 2014). 

The effectiveness of the LD formulation for damping stress-strain waves in the continuum is 

strictly linked to the existence of zero-crossing instants in the time histories of the velocity 

components. If the velocity components of the nodes oscillate without sign changing the 

effect of Equation (14) is only to consider the lumped masses of nodes permanently 

augmented (or diminished) by a fraction. In other words, the “local” character of LD cannot 

recognize oscillating strains of a region when the whole region is involved into a global uni-

directional (even if not uniform) motion. This case can be easily encountered for example in 

presence of a plastic flow but also when, in a multiple degrees of freedom system, the motion 

associated to a high frequency is overlaid to the motion of a low frequency harmonic with 

high amplitude. The high frequency harmonic can be hidden with respect to the local 

damping action and a high frequency overestimation results. 

 

2.4. Combined Damping (CD) 
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In order to develop a more general damping formulation that works also in presence of global 

mass movements, sgn(F) can replace sgn(u) in the damping force expressed by Equation 

(14), thus obtaining: 

𝐹   𝛼 𝐹  𝑠𝑔𝑛 𝐹 

∆
 

     16  

 

 

For a single degree of freedom system this formulation is perfectly coincident to that of the 

LD (Equation (14) ). In fact in this case the unbalanced force F corresponds to the elastic 

recall force F = -ku, whose sign is opposite to the displacement u sign. Therefore sign of F 

is opposite to u sign. In general, for systems with multiple degrees of freedom, the change 

of sign of F is equal to change of sign in the oscillating part of the velocity, independently 

from its mean value that can have permanent either positive or negative value. This damping 

force is independent of velocity and is therefore not as efficient as the local damping. In 

order to combine the advantages of both expressions of local damping, in FLAC a 

combination of both Fd formulas in equal proportions has been implemented:  

 

𝐹  𝛼 𝐹  
𝑠𝑔𝑛 𝑢

∆  𝑠𝑔𝑛 𝐹 

∆  

2        17  

and it is known as Combined Damping. 

Despite the similar behavior in elementary systems, for multiple degrees of freedom systems 

the CD formulation has a further advantage respect to the LD. It allows to distribute the 

acceleration discontinuities over a higher number of time instants (i.e., when either velocity 

or unbalanced force rate change sign). Therefore Equation (17) entails a higher number of  

acceleration discontinuities, each one of a smaller amount with respect to Equation (14). A 

significant fading of the high frequency noise is therefore obtained. 
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Two final notes should be highlighted about the overestimation of the high frequencies for 

both the LD and CD formulations. 1) the amplification of the high frequencies motion is 

partially reduced in the velocity and the displacement time histories, whose integration is 

weakly affected by the acceleration discontinuities. 2) a significant fraction of the high 

frequency motion is constituted by a numerical fast vibration of the grid nodes, without a 

spatial coherency; therefore this part can be significantly reduced if the mean motion of a 

set of near nodes is considered rather than the motion of a single node. 

In order to test the different damping formulations, the damped free vibration of a single 

square zone (side l=1 m long) of a visco-elastic material with density ρ=1600 kg/m3 and 

shear modulus G=0.64 MPa (first mode frequency 4.5 Hz) was studied (Fig. 2). The zone is 

subjected to a single sinusoidal horizontal acceleration pulse at the bottom and the response 

at the higher side is recorded. The critical damping ratio has been set to 5% and the three 

damping formulations described above were employed (RD with control frequency 4.5 Hz, 

LD and CD). The horizontal acceleration and the Fourier amplitude are reported in Figure 2. 

Minor differences can be observed among the different damping schemes. A small amount 

of noise at selected frequencies (about 13.5 and 22.5 Hz) is introduced by Local and 

Combined Damping thus resulting in a small overestimation of peak response in time 

domain. 
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Figure 2. Dynamic response of a single zone to a sinusoidal pulse adopting the different FLAC damping formulations. 
Time domain response of acceleration (a) and amplitude Fourier spectra (b) 

 

3. Parametric study on a virtual soil deposits  

3.1. Introduction  

To quantitatively evaluate the performance of the different damping formulations 

implemented in FLAC, parametric 1D linear visco-elastic analyses were initially performed 

on a homogeneous virtual soil deposits. A single soil layer with thickness H = 30 m, unit 

weight γ= 20 kN/m3, shear wave velocity VS=300 m/s and damping ratio D=5% has been 

first analyzed, thus resulting in a fundamental frequency f0 =2.5 Hz (T0=0.4 s). The analyses 

were then repeated on the same model using a shear wave velocity VS = 100 m/s for the 

deposit, thus resulting in a fundamental frequency f0 = 0.83 Hz (T0 = 1.2 s). The underlying 

bedrock is characterized by γ = 22 kN/m3 and VS = 1000 m/s. A compliant (i.e. elastic) base 

scheme was adopted in the analyses by applying at the bottom of the mesh the input motion 
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in terms of shear stress time-histories (Joyner and Chen, 1975) coupled with Lysmer-

Kuhlemeyer viscous boundary conditions (Lysmer and Kuhlemeyer, 1969). Six real 

accelerograms have been selected to cover a wide predominant frequency range, from 0.9 

to 8.5 Hz (Tab.1) thus exciting different modes of vibration of the soil deposit. These signals 

were scaled to an outcropping PGA = 0.2g. 

The purpose of these analyses was twofold: 1) to identify a strategy to select the target 

damping ratio D and the control frequency f* in full Rayleigh formulation with single control 

frequency for FLAC analyses; 2) to evaluate the performance of FLAC Local/Combined 

damping formulations with respect to the “standard” Rayleigh damping. The seismic 

responses obtained by using a frequency domain code (thus implementing a frequency 

independent damping) has been assumed as reference. In particular, these reference 

analyses were carried out by the frequency-domain ProSHAKE code (EduPro Civil System, 

1998), which applies a frequency-independent damping.  

Table 1. Accelerograms employed for comparative analyses 

# station component earthquake, year 
mean 

frequency 
fm (Hz)

predominant 
frequency 

fp (Hz)

Two-control 
equivalent freq. 

fmin (Hz) 
1 Port Island NS Kobe 1994 0.68 0.91 2.5 

2 Taft S69E Kern County 1952 1.87 2.27 2.5 

3 Sturno NS Irpinia 1980 1.44 2.63 4.33 

4 Gilroy2 90 Loma Prieta 1989 1.30 3.33 4.33 

5 Gilroy2 50 Coyote Lake 1979 2.69 5.56 4.33 

6 Tarcento NS Friuli 1976 2.70 8.33 5.59 

 

 

3.2.  Performance of single control frequency RD formulation  

A first set of FLAC analyses has been carried out by setting the target damping ratio equal 

to the soil damping ratio (D*=5%) and adopting four different strategies to fix the control 

frequency: f* has been assumed in succession equal to the soil deposit fundamental 

frequency f0, the predominant frequency fp, the mean frequency fm of the input motion 

(Rathje et al. 1998), and the fmin, corresponding to the approach equivalent to the two control 

frequencies formulation (computed according equations 10 and 8 with the two control 



16 

 

frequencies selected according to the QUAD4M procedure described at paragraph 2.2).  In 

this latter approach D* has been set to Dmin computed according to (10). The values of the 

values of control frequency f* are reported in Table 1 while according to eq. (10) is Dmin=5% 

for input #1-#2, 4.33% for input #-3-#5 and 3.73% for input #6. 

The results of the parametric FLAC analyses, for all selected input accelerograms, are 

compared with the reference results in terms of PGA profiles along depth and response 

spectra at soil surface, in Figures 3 and 4 respectively. No significant differences among the 

different strategies for setting f* can be observed for the results obtained with input from #1 

to #4 where the reference solution (Proshake) is satisfactorily matched both in terms of PGA 

profiles and response spectra at surface. Only a slight underestimation of high frequencies 

with respect to Proshake can be observed (Figure 4). Higher differences can be observed 

for input #5 (Gilroy 2-50) and #6 (Tarcento NS) where the reference solution is poorly 

approximated especially in the high frequency range (including the PGA profile). For these 

two inputs, characterized by fm > f0, slightly better approximation of the reference solution is 

achieved by setting f*=fm.  

In order to quantitatively identify the most appropriate choice for f*, i.e. the choice that 

minimizes the differences with respect to the reference solution, a synthetic parameter RSS 

(Residual Sum of Squares) has been introduced: 

𝑅𝑆𝑆  𝑦 𝑦 ,            18  

 where yi is the value of ground motion parameter (PGA or spectral acceleration) predicted 

with FLAC analysis and yref,i is the reference value of the parameter computed using 

frequency-domain code while n is the total number of estimations (i.e., either the number of 

PGA values along the profile or the number of period values at which the response spectrum 

is defined). Obviously the lower the value of the RSS parameter the better the agreement 

of FLAC predictions with the reference results. 
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Table 2. RSS values computed for FLAC analyses to evaluate the performance of single control frequency Rayleigh 
formulation with respect to frequency independent solution. Minimum values are highlighted in bold text. 

 
control 

frequency 
#1 #2 #3 #4 #5 #6 

RSS from 
PGA Profile 

f0 0.0010 0.0023 0.0083 0.0036 0.0185 0.0777 

fp 0.0002 0.0020 0.0096 0.0033 0.0553 0.0930 

fm 0.0008 0.0017 0.0126 0.0072 0.0176 0.0747 

fm / Dmin 0.0010 0.0023 0.0165 0.0078 0.0283 0.1018 
        

RSS from 
Response 
Spectra 

f0 0.0251 0.0497 0.0853 0.0904 0.1933 0.4545 

fp 0.0306 0.0460 0.0894 0.1322 0.5195 1.3920 

fm 0.0546 0.0488 0.1479 0.1643 0.1881 0.4393 

fmin / Dmin 0.0251 0.0497 0.2653 0.2769 0.3978 1.3976 

 

From RSS values reported in Tab. 2, two different scenarios can be outlined. 

For input #1-#4 characterized by fm < f0 no appreciable influence of f* selection is observed: 

f0 or fp generally provide the best performance but the performance of the different f* is 

comparable as observed in Figures 3-4 previously discussed. On the contrary, for input #5-

#6 (fm >f0), selecting f*=fm seems the best choice to match the frequency independent 

reference solution, even if also f0 provide satisfactory matching.    
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Figure 3. FLAC single control frequency Rayleigh formulation: comparison of PGA profiles for all selected input 
accelerograms (D* =5% and different strategies for setting the control frequency) – Vs=300 m/s homogeneous soil 
deposit (f0=2.5 Hz) 

 

Figure 4. FLAC single control frequency Rayleigh formulation: comparison of response spectra at the surface of soil deposit 
for all selected input accelerograms (D* =5% and different strategies for setting the control frequency); fundamental, 
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minimum, mean and predominant frequencies (f0, fmin, fm and fp) are highlighted in the plots – Vs=300 m/s homogeneous 
soil deposit (f0=2.5 Hz) 

 

In order to further explore these findings, additional analyses have been then carried out on 

the previous deposit in which Vs has been updated to 100 m/s. The deposit is now 

characterised by a fundamental frequency f0 =0.83 Hz (T0=1.2 s) and all the input 

accelerograms have fm > f0. The results of the parametric FLAC analyses, for all selected 

input accelerograms, are compared with the reference results in terms of PGA profiles along 

depth and response spectra at soil surface in Figures 5 and 6 respectively.  

The analyses show that the results for input characterized by fm>f0 are highly sensitive on 

the value adopted for the control frequency. The choice of f*=f0 generally underestimates 

the ground motion both in time and frequency domains. This underestimation is particularly 

severe for motion characterized by predominant frequency well above f0 or, in general, by a 

rich energy content at frequency higher than f0 exciting the vibration mode higher than first 

(see for example Sturno NS, Gilroy 2-50, Tarcento NS inputs). Only for Port Island input, for 

which the response is essentially conditioned by the first mode of vibrating, all the curves 

coincide with the frequency independent response. A better performance has been obtained 

assuming a control frequency more representative of input motion as fm or fp. The 

comparison with ProSHAKE reference solution is very satisfactory for all selected inputs 

except for Tarcento high-frequency input motion. Finally the adoption of fmin and Dmin, (i.e., 

approach equivalent to the full Rayleigh formulation with two control frequencies) provides 

results that are consistent with the results by frequency independent damping analyses for 

all selected input motions; the maximum differences between the two reference codes are 

generally lower than 10 % and 20 %, looking at the results expressed in time and frequency 

domains, respectively. 
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From RSS values reported in Tab. 3, the best performance in terms of PGA profiles and 

response spectra at surface is obtained for fmin - Dmin strategy while fm generally perform 

better than f*=fp and  f*=f0.  

 

Figure 5.  FLAC single control frequency Rayleigh formulation: comparison of PGA profiles for all selected input 
accelerograms (D* =5% and different control frequencies) – Vs=100 m/s homogeneous soil deposit (f0=0.83 Hz) 
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Figure 6. FLAC single control frequency Rayleigh formulation: comparison of response spectra at the surface of soil deposit 
for all selected input accelerograms (D* =5% and different control frequencies); fundamental, mean and predominant 
frequencies (f0, fm and fp) are highlighted in the plots – VS=100 m/s homogeneous soil deposit (f0=0.83 Hz) 

 

Table 3. RSS values computed for FLAC analyses to evaluate the performance of single control frequency Rayleigh 
formulation with respect to frequency independent solution. Minimum values are highlighted in bold text. 

 
 control 

frequency
#1 #2 #3 #4 #5 #6 

RSS from 
PGA Profile 

 f0 0.0020 0.0391 0.0676 0.0185 0.0623 0.2167 
D*=5% fp 0.0019 0.0135 0.0188 0.1080 0.0115 0.0519 

 fm 0.0002 0.0134 0.0178 0.0126 0.0088 0.0747 
Dmin fmin 0.0015 0.0046 0.0064 0.0096 0.0018 0.0076 

D* from 
Equation(19) 

fm 0.0002 0.0069 0.0020 0.0037 0.0014 0.0139 
         

RSS from 
Response 
Spectra 

D*=5% 

f0 0.0636 0.5982 1.3150 0.4330 1.1308 0.9565 

fp 0.0538 0.2177 0.8224 4.2299 1.0512 0.4024 

fm 0.0598 0.6948 0.3568 0.2592 0.2685 0.2086 
Dmin fmin 0.0439 0.0753 0.1221 0.0412 0.0447 0.1602 

D* from 
Equation(19) 

fm 0.0600 0.0750 0.0993 0.1030 0.0861 0.0760 

 

In order to further improve the performance of the approach with f*=fm, a reduction of target 

damping value, D* with respect to actual soil damping ratio, D can be considered. This 

should balance the overdamping observed with respect to reference solution (Figures 5 and 

6).  
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The FLAC analyses were therefore repeated by setting f*=fm and assuming a different target 

damping ratio D* for each input motion, as computed through the following expressions: 

 

𝐷∗  

⎩
⎪
⎨

⎪
⎧ 𝐷 

𝑓 𝑓
𝑓 𝑓
𝑓

𝑓 ⇔  𝑓 ∈  𝑓 , 𝑓
 
 

𝐷 ⇔  𝑓  ∉  𝑓 , 𝑓

         19  

 
𝑓 𝑓

 𝑓 𝑛𝑓      with n closest odd integer greater than  
𝑓
𝑓

 

 
In other words, the target damping ratio is forced to assume at the control frequency (f*=fm) 

the same value it would have at the same frequency in a two control frequencies approach 

(see Equation (9)). The resulting damping variation with frequency and a comparison with 

the two control frequencies approach is shown as an example in Figure 7 for input Gilroy2-

90 which provided a target parameter D*=3.97%. The target parameters for each input are 

shown in Table 4. 

Table 4. Results from Equation (19) 

Input 
accelerogram 

fm fp f0 f1 f2 D D* 

 (Hz) (Hz) (Hz) (Hz) (Hz) (%) (%) 

#1 0.68 0.91 0.83 0.83 2.49 5.00 5.00 

#2 1.87 2.27 0.83 0.83 2.49 5.00 4.48 

#3 1.44 2.63 0.83 0.83 4.15 5.00 3.85 

#4 1.30 3.33 0.83 0.83 4.15 5.00 3.97 

#5 2.69 5.56 0.83 0.83 5.81 5.00 3.38 

#6 2.70 8.33 0.83 0.83 9.13 5.00 2.76 

 

The results of the FLAC analyses with f*=fm and D* evaluated according to the proposed 

expression in Equation (19) are compared with the reference results in terms of PGA profiles 

and response spectra at soil surface in Figures 8 and 9 respectively. In the same figures the 

results obtained with f*=fm and D*=5%, previously discussed, are also reported for 

comparison. As expected, a target damping ratio reduced with respect to the actual value 

of soil, significantly improve the prediction with respect to D*=5% as confirmed also by the 
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lower values of RSS in Table 3. The single control frequency approach using the proposed 

values of D* and f*=fm lead to results comparable with those obtained with the fmin - Dmin 

approach or even better: as matter of fact the RSS associated to D*-fm strategy are minimum 

for 4 and 3 cases (over 6) for PGA and response spectra, respectively (Table 3). 

Equation (19) can be used for any soil profiles, also multi-layered, after the value of the 

fundamental frequency f0 has been assessed. The f0 assessment is straightforward for an 

uniform deposit, but for any other layout it can be found through the calculation of the 

transfer function of the ground motion with respect to the input motion. 

 

Figure 7. Proposed procedure for the definition of target damping ratio D* in single control frequency approach (input 
#4: Gilroy2-90) 
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Figure 8. FLAC single control frequency Rayleigh formulation: comparison of PGA profiles for all selected input 
accelerograms (f*=fm and different D* values) – VS=100 m/s homogeneous soil deposit (f0=0.83 Hz) 
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Figure 9. FLAC single control frequency Rayleigh formulation with reduced nominal damping (f*=fm and D*): comparison 
of response spectra at the surface of soil deposit for all selected input accelerograms – VS=100 m/s homogeneous soil 
deposit (f0=0.83 Hz) 

 

3.3. Comparison between Local/Combined and Rayleigh damping 

The second goal of the parametric analyses on the virtual soil deposit has been the 

quantitative evaluation of the performance of the Local/Combined damping formulations with 

respect to the “standard” Rayleigh damping, previously presented for a shear wave velocity 

of VS=100 m/s. 

The frequency independent LD and CD formulations were employed by using D=5% to 

compute the coefficient α (see Equation (15)). The results in terms of PGA profiles and 

response spectra at soil surface are compared with Rayleigh results (using fm and D*) in 

Figures 10 and 11 respectively for the six input motions. The comparison clearly highlights 

the overestimation of the response at medium-to-high frequencies by Local/Combined 

formulations with respect to Rayleigh analyses; this behavior is particularly pronounced per 

T < 0.2 s and for the LD formulation. On the contrary at longer periods Local/Combined 
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spectral accelerations satisfactorily match the values predicted by Rayleigh formulation. The 

overestimation at medium-to-high frequencies greatly affects the peak accelerations thus 

resulting in Local/Combined PGA profile shifted on the right with respect to Rayleigh 

analyses (Fig. 10). The PGA overestimation along the profile with respect to the Rayleigh 

solution is on average 20% and 60% for CD and LD formulations, respectively. The 

Combined formulation therefore gives results more comparable with the reference as also 

testified by the lower values of RSS (assuming Rayleigh as reference) with respect to Local 

damping reported in Table 5. Finally, the Table 6 summarizes the numerical timestep 

durations pertaining to the analyses carried out with the different FLAC damping 

formulations. Timestep in Local/Combined analyses (which is the same) is on average a 

factor 10 higher than in Rayleigh analyses which in turns leads to 10 times faster analyses.  

The analyses therefore showed that in the face of an overestimation of the high frequencies 

(limited within 20% for CD), the frequency-independent formulations have an undoubted 

benefit in terms of significantly faster analysis times. 
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Figure 10. Comparison of PGA profiles for all selected input accelerograms (Rayleigh, local and combined formulations) 
– VS=100 m/s homogeneous soil deposit (f0=0.83 Hz) 
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Figure 11. Comparison of response spectra at soil deposit surface for all selected input accelerograms (Rayleigh, local 
and combined formulations) – VS=100 m/s homogeneous soil deposit (f0=0.83 Hz) 

 
Table 5. RSS values computed for FLAC analyses to evaluate the performance of Local/Combined damping formulations 
with respect to single control frequency Rayleigh formulation (f*=fm and D= D*) 

 
 

#1 #2 #3 #4 #5 #6 

RSS from 
PGA Profile 

local damping 6.11 3.56 10.68 3.82 1.80 1.76 

combined damping 2.17 0.91 2.56 1.91 0.57 0.70 
    

RSS from 
Response Spectra 

local damping 0.50 0.52 1.78 0.60 0.37 0.30 

combined damping 0.19 0.05 0.20 0.16 0.032 0.02 

 

Table 6. Comparison of time step durations for FLAC analyses carried out with Rayleigh and Local-Combined damping 
formulations 

  #1  #2  #3  #4  #5  #6 

Rayleigh Damping 7.55E-06 2.30E-05 2.07E-05 1.81E-05 4.31E-05 5.23E-05 

Local-Combined Damping 1.89E-04 1.89E-04 1.89E-04 1.89E-04 1.89E-04 1.89E-04 

duration ratio (LD&CD/RD) 9.95 16.18 18.11 20.52 8.56 7.02 

 

 

 

4. FLAC seismic analyses of a concrete gravity dam 

Licodia Eubea dam is a 65-m-high concrete gravity dam located in South-eastern Sicily 

(Southern Italy). This area is one of the most seismically active areas of Italy; seismotectonic 
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studies highlights that two tectonic features are the most critical for the seismic hazard at 

the site with maximum magnitude estimated to be 6.4 and 6.8 and distance 13 and 5 km, 

respectively. 7 natural accelerograms were selected as input and scaled such that their 

average horizontal spectrum (critical damping ratio 5%) reasonably matched the target 

response spectrum, i.e. the NTC08 National code spectrum on rigid horizontal outcrop 

having a return period of 1460 years (Collapse Limit State with a residual probability of 5% 

over a reference period of 75 years). 

Figure 12 shows the numerical model of the tallest monolith of the dam subjected to a 

maximum operating level of the reservoir (328 m a.s.l.). The dam is founded on calcareous 

sound rock layers intercalated with marly-clayey layers. Structural and geotechnical 

campaigns included extensive in situ investigations and laboratory testing on concrete and 

foundation materials (Lanzo et al., 2017). Selected cores of concrete and foundation 

material were tested to determine physical and mechanical properties of interest; 

geophysical tests were also conducted both within the dam body and at the bedrock to 

obtain shear and compressional wave velocities. The physical and mechanical properties 

adopted in the modelling are summarized in Table 7. The dam body was divided into two 

zones, an upper one extending approximately from the crest to the mid height and a lower 

one going down to the bottom of the dam, this latter part being slightly stiffer than the former 

as resulted from the dam body surveys. Analogously, for the foundation rock two layers have 

been considered, i.e. a deeper rock mass stiffer than the superficial one, the latter being 

affected by an higher degree of jointing at lower confining stress. The surficial rock mass 

immediately below the foundation was assumed as stiff as the deep rock layer due to 

grouting interventions carried out before the dam body construction. The recent lacustrine 

infilling at the reservoir bottom, consisting of silty-clayey soils, have been characterized by 

assigning physical and mechanical values from literature studies. 
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Table 7. Material properties assumed for dynamic analyses of Licodia Eubea concrete dam  

Material  (kN/m3) VS (m/s) VP (m/s) Edyn (GPa)  (-) D (%) D*(%) 

dam 
upper zone 

23.4 
2020 3800 25.6 

0.30 8.0 8.5 
lower zone 2140 4000 28.4 

foundation 
shallow not consolidated layer

23.0 
600 1500 2.4 

0.40 
1.0 1.1 

deep layer/consolidated zone 900 2200 5.3 0.5 0.53 

infilling sediments  15.7 150 1440 0.1 0.495 2.5 2.6 

The values of D* are computed according to Equation (19) using f0= 3 Hz as fundamental frequency of the foundation-dam-sediment-
reservoir system and fm=2.7 Hz as mean frequency of  Vasquez Rocks P  input motion adopted for the analysis 

 

The numerical procedure developed in two steps: 1) initial static analysis of the dam-

foundation rock system; 2) linear dynamic analysis of the dam-water-sediments-foundation 

rock system (Verrucci et al., 2017). 

The static analysis (step 1) aimed at computing the response of the dam-foundation rock 

system to both the self-weight of the dam and the hydrostatic forces. Static linear elastic 

properties have been selected, within the range of values obtained from test results. To this 

aim a calibration was carried out through matching the computed displacements to the 

displacements measured  during the variations of the water levels in the reservoir.  

For the dynamic analyses (step 2), viscous dashpots are placed at the bottom boundary in 

order to take into account radiation damping. "Free-field" conditions are ensured at the two 

lateral boundaries thus reproducing the 1-D type of motion produced far from the dam by 

in–plane vertically incident SV waves on horizontally stratified half-space (Fig. 12). A linear 

elastic medium was assumed for both the body of the dam and the foundation rock. All the 

amount of material damping is therefore modelled using either Rayleigh or Local/Combined 

damping formulations without introducing hysteretic damping due to the nonlinear behavior 

to model. This is a standard choice in dynamic analysis of concrete dams at least in a first 

verification phase and it is justified by the high stiffness of concrete. Further nonlinear 

analyses are usually scheduled only if some performance parameters are not reached in 

the first linear ones. For the purposes of the present paper the linear analyses allow to better 

highlight the differences between the damping formulations.   
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A perfect adhesion at concrete-rock interface was considered. Interface elements simulated 

the dam-water and the foundation-water contacts; these elements are characterized by null 

shear resistance and normal tensile strength equal to cavitation threshold. The water of the 

reservoir was treated as a compressible fluid (bulk modulus K=2∙109 Pa), with a negligible 

shear modulus, producing hydrodynamic pressures that are dependent on the excitation 

frequency. Damping ratio (D) assumed for concrete is 8%, which is in the range suggested 

for dynamic analyses of dams for high seismic loadings (USACE, 1999). For surficial and 

deep/consolidated rock the damping ratio was assumed equal to 1.0% and 0.5% 

respectively. 

The three different formulations here studied were adopted to model damping properties for 

the dam body, the bedrock and the reservoir bottom infilling: 1) Rayleigh damping using D* 

computed for each material through Equation (19) and assuming f0= 3 Hz as fundamental 

frequency of the foundation-dam-sediment-reservoir system (Verrucci et al., 2017), 2) Local 

and 3) Combined damping, both with coefficient computed using Equation (15) and D=8% 

for dam, 0.5-1% for foundation rock and 2.5% for sediments. The values of D* assumed for 

Rayleigh damping analyses are also reported in Table 7. 

 

Figure 12. Numerical model of the dam-reservoir-sediment-foundation system for Licodia Eubea concrete gravity dam. 
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Spectral acceleration values computed at the outcrop (point O) and at typical zones of the 

dam (crest, C; upstream and downstream toes T1 and T2) are represented in Figure 13. 

Among the 7 signals employed in the analyses results are shown for the input acceleration 

time history for which most critical results has been obtained (Vasquez Rocks P station, 

Northridge 1994 earthquake, component NS, scaled by 3.5, fm=2.7 Hz and fp=5 Hz, Lanzo 

et al., 2017). The different damping formulations predict a very similar response at the 

downstream rock outcrop that is justified by the very low damping ratios adopted for the 

foundation rock mass (0.5 - 1.0%). High discrepancies can be observed on the dam body, 

especially for the LD formulations that significantly overestimates the accelerations in the 

medium-to-high frequency range (T < 0.2 s) in agreement with the numerical results 

obtained on the ideal soil deposit. On the contrary the CD  provides a more satisfactory 

performance being spectral accelerations closer to the RD results. The numerical 

overestimation of the high frequencies can be significantly reduced through calculating the 

mean of the acceleration time histories of close nodes adjacent to the same zone of the 

finite difference mesh. The results obtained through this elaboration are shown with the red 

point lines in Figure 13 for the LD formulation only. The CD results obtained with the same 

procedure are not reported because they are practically coincident to the RD spectra. 

An analogous effect can be observed in terms of horizontal relative crest-toe displacements 

(Figure 14a). The elastic displacement oscillations (less  than 2 cm wide) develop without 

significant differences between the different damping formulations and the Fourier 

amplitudes show that the high frequency overestimation observed in  the punctual 

acceleration time-histories is almost disappeared in the relative displacement time histories 

(Fig. 14b). The effect is drastic for the combined damping analysis but it is also significant 

for the local damping one. 
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Figure 13. Acceleration response spectra computed in typical points according to the three different damping 
formulations. 

 

Figure 14.  Relative crest-toe displacement compute according to the three different damping formulations. 
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Figure 15 shows the contour lines of the maximum temporal value (upper envelope) of the 

principal tensile stress reached in the dam body. Separate plots are reported for the three 

different damping formulations adopted in the analysis. 

The qualitative pattern of the local maximum tensile stresses is quite similar for the different 

damping formulations: the plots confirm that higher tensile stresses develop at the heel and 

at the toe of the dam as well as near the changes of slopes of upstream and downstream 

faces. The largest values occur at the heel of the dam, where the allowable tensile strength 

(ft =1.25 MPa based in available data) is exceeded only in localized areas. Figure 16 shows 

the time histories of the maximum principal stress (either maximum tensile stress or 

minimum compressive stress) computed at two representative zones located at the heel 

(point H) and at the downstream face (point P) in the strongest time interval of the 

earthquake. The oscillations of the tensile stress are very similar among the three damping 

formulations and minor differences can be observed only in correspondence of the peaks. 

The peaks are reached alternatively in the heel and in the downstream zones, thus reflecting 

the global oscillation of the dam body characteristic of the first vibration mode. The maximum 

value of a peak is reached indifferently by one of the three formulations. The absolute 

maximum value is reached for both the observation points by the LD formulation but with a 

not significant excess with respect to the second lower peak. This apparent similarity 

indicates that the irregularities induced by the acceleration discontinuities in the LD and CD 

formulations are dramatically reduced. In fact strains, then also stresses, arise from the 

gradient of the displacement field whose time histories are noticeably smoothed with respect 

to the acceleration ones (see Appendix A).  

The amplitude differences between the stress histories can be effectively not negligible, in 

particular around the peaks. Nevertheless these should be considered preliminary analyses 

with the aim of assessing the effective need of further non-linear analyses. Therefore the 

performance should be judged on the base of global evaluations. For the seismic 
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performance assessment and damage estimation, some performance indices proposed by 

the USACE guidelines (2007) can be employed. In this approach, once defined a “local” 

index as the stress demand-capacity ratio DCR (i.e., the ratio between the calculated 

maximum tensile stress in a point and the tensile strength of the concrete), a global 

performance test is shown in Figure 17. It represents the fractions of the dam body section 

over which an increasing demand-capacity ratio is reached (i.e. the area on which the tensile 

strength is exceeded with a DCR increasing from 1 to 2). In this context a nearly 

indistinguishable performances obtained through RD e CD formulations is verified, while the 

LD formulation is slightly disadvantageous, exceeding at DCR=2 the limit state represented 

by the red line (USACE, 2007). More details on dam performance can be found in Lanzo et 

al., (2017) which reports also more advanced nonlinear analyses showing an acceptable 

margin of safety of the dam under the selected CLS scenario. 

In conclusion, the use of combined damping formulation allowed to perform an accurate 

estimation of the seismic performance of the concrete dam, taking advance with respect to 

the Rayleigh damping analyses of an increased time step length. In the blow-up window of 

Figure 16, values at each effective time step are marked for both the LD and  CD 

formulations, while only one value every five time steps are marked for the RD formulation. 

Time step in the analysis of both LD and CD formulations (3.0E-3),  is long about 150 times 

the time step in the RD formulation (2.2E-5). This means, for the input motion here 

considered (25 s long), a time analyses of about 40 minutes instead of 3 days for a calculator 

equipped with a 2.50 GHz CPU processor, RAM 16 GB.  
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Figure 15. Contours of principal tensile stress envelopes in the dam body for the 3 damping models (most severe input 
motion) – stresses are expressed in Pa 
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Figure 16. Time histories of the principal tensile stress computed at two representative elements of the dam body for the 
three adopted damping formulations 

 

Figure 17. Fraction areas of the dam body section that area stressed over the tensile strength vs. the demand capacity 
ratio. 

 

 

5. Conclusions  

The performance of the different damping formulations implemented in FLAC code, namely 

Rayleigh, Local and Combined, has been analysed in the paper. These formulations are 

generally adopted to model either the full damping properties of materials in linear analyses 

or the small-strain damping in elastoplastic and hyperbolic (hysteretic) nonlinear analyses. 

The focus was addressed to the linear analyses that are adequate to assess the dynamic 
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behaviour of a system for low to medium strain levels and that are also used as preliminary 

analyses to assess the necessity of further nonlinear ones. 

After a theoretical background of the different formulations in the finite difference code 

FLAC, linear dynamic analyses on ideal homogeneous soil deposits excited by different 

accelerograms are presented. As a first check, by setting a soil damping of 5%, the PGAs 

profiles and response spectra obtained using Rayleigh damping with different single control 

frequencies f* were compared with results from a frequency domain code assumed as 

reference (frequency-independent damping solution). These analyses highlight that for input 

characterized by mean frequency fm < f0 (fundamental frequency of deposit) no appreciable 

influence of f* selection is observed; a simple f*=f0 can be recommended.  On the contrary 

for input characterized by fm above f0, the use of target D and f* values producing the same 

damping-frequency curve of the two-control frequencies QUAD4M approach (Dmin and fmin) 

allows to minimize the differences with the reference to the frequency-independent damping 

solution.  Further analyses have been carried out by using f*=fm and varying the target 

damping D*. An expression for the evaluation of D* to minimize the overdamping of the 

highest frequency is proposed for practical use. The results of the analyses show that 

Rayleigh formulation with fm and proposed D* give results in a satisfactory agreement with 

the frequency-independent damping solution and sometimes even better than the fmin-Dmin 

approach. Subsequently, a series of analyses have been performed using Local and 

Combined damping frequency-independent formulations implemented on FLAC, comparing 

them with the best Rayleigh formulation (fm, D*) assumed as reference. The analyses have 

shown that both Local/Combined formulations introduce noises at high frequencies, but 

significantly reduce calculation times by a factor of 7 to 20. Between the two formulations, 

the Combined formulation seems more reliable with an average overestimation of about 

20% in terms of PGA. 
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Finally, 2D dynamic analyses were conducted on the seismic response of a concrete gravity 

dam. A linear model has been assumed and therefore all dissipative properties of the 

concrete dam were modelled through Rayleigh/Local/Combined damping to focus on the 

differences among the different formulations. The comparison has been presented in terms 

of response spectra, displacements, tensile stress time histories at selected points and 

contours of envelopes of principal tensile stresses in the dam body. The results show that 

Combined damping formulation satisfactorily approximates the results of the more rigorous 

Rayleigh damping formulation. Dynamic analyses with Rayleigh method carried out with a 

typical personal computer (2.50 GHz CPU processor, RAM 16.0 GB) need 60-70 hours for 

each accelerogram of the input suite of signals while the Local/Combined analyses only 

require 20-40 minutes of running.  

As a conclusion all the comparative analyses prove that the frequency-independent LD and 

CD formulations provide significantly faster running times in dynamic analyses with respect 

to the “standard” Rayleigh formulation but produce an overestimation of the spectral 

acceleration at high frequencies as drawback. The CD formulation is effective in reducing 

significantly this overestimation, providing results that in general stay between those of the 

LD and RD formulations. The overestimation can be further diminished if an averaging 

procedure is applied on the time histories of a set of adjacent nodes (for example the nodes 

at the vertexes of a single zone). Furthermore the strain and stress histories are much less 

disturbed than the acceleration histories because they are calculated from the displacement 

histories, weakly influenced from the discontinuities of acceleration time histories. Therefore 

the seismic performance in term of strain-stress is practically coincident to that obtained by 

the Rayleigh formulation especially for the those systems that are primarily governed by the 

low frequency vibration modes. 

The seismic behaviour of the analyzed systems is clearly captured by the Combined 

damping (CD) formulation which is therefore suitable for time consuming sensitivity analyses 
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in the first phases of a study or for projects whose running times should be limited to 

acceptable values (3D models, large 2D models, soil-foundation-structure dynamic 

interaction analyses among others). However the users should be aware of the limitations 

associated with the combined damping which may have discrepancies of acceleration 

spectrum at high frequencies against the results by the reference Rayleigh damping.   
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Appendix A 

Relation between local damping coefficient  and material critical damping ratio D 

The harmonic motion of a linear single degree of freedom system with undamped natural 

circular frequency ω0 is characterized by the following time histories of displacement, u, 

velocity, u and elastic force, F (Fig. A1): 
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𝑢 𝑡 𝐴 sin 𝜔 𝑡     𝐴. 1  

𝑢 𝑡 𝐴𝜔 𝑐𝑜𝑠 𝜔 𝑡     𝐴. 2  

𝐹 𝑡 𝑘𝑢 𝑘𝐴 sin 𝜔 𝑡     𝐴. 3  

A and k being the displacement amplitude and the elastic constant respectively. If a local 

damping is applied as in (15) using a coefficient α <1 the damping force is: 

𝐹 𝛼|𝐹|𝑠𝑔𝑛 𝑢 𝛼𝑘|𝑢|𝑠𝑔𝑛 𝑢     𝐴. 4  

 

 

Figure A1. Motion of a free linear elastic single degree of freedom system and the associated damping force in the LD 
formulation 

 

The equilibrium is: 

𝐹 𝐹 𝑚𝑢    𝐴. 5  

that can be expressed as: 

𝑚
1 𝛼

𝑢 𝑘𝑢 0    𝐴. 6  

the higher and lower signs in the acceleration coefficient are valid when the damping force 

is negative (first and last quarters of each cycle) and positive (central quarters of each cycle) 
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respectively. It is apparent that the Equation (A6) is that of an undamped system having a 

mass modified by the factor 1/(1±α) and a modified circular frequency ωα: 

𝜔
𝑘 1 𝛼

𝑚
     𝐴. 7  

For example, the motion of a free single degree of freedom system damped through the 

local damping formulation is shown in Fig A2. The input parameters are mass m= 1 kg, 

natural undamped period T0= 1.2 s, critical damping ratio D= 10%, initial velocity v0= 1 m/s. 

The motion of a traditional viscous damped system with the same parameters is shown 

through the gray dotted lines. In Figure A3 the time histories of both the elastic force and 

the damping force are shown. 

 

Figure A2. Free motion of a linear elastic single degree of freedom system damped through the LD formulation (critical 
damping ratio, D=10%) in terms of displacement u, velocity u and acceleration u. Dotted lines represent the response of 
a viscously damped system with same damping ratio. Grey and white coloured areas indicate time ranges for which the 
LD formulation is equivalent to a free motion with a mass diminished or increased, respectively. 
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Figure A3 Damping force and elastic force of the single degree of freedom system damped through the LD formulation 
(D=10%). 

 

The damping force is always opposite respect to the velocity and the energy dissipated 

during each quarter of the period Tα is constant and can be calculated for the first quarter 

(when and Fd=-αku) as: 

∆𝑤 𝐹  𝑢 𝑑𝑡 𝛼𝑘𝐴 sin 𝜔 𝑡 𝐴𝜔∗ cos 𝜔 𝑡 𝑑𝑡
𝛼𝑘𝐴

2
    𝐴. 8  

Therefore the work dissipated in the whole cycle: 

∆𝑊 4∆𝑤 2𝛼𝑘𝐴    𝐴. 9  

The maximum elastic energy WE accumulated at the displacement peak umax is: 

𝑊
1
2

𝑢 𝐹
1
2

𝑘𝐴      𝐴. 10  

and the critical damping ratio D can be calculated: 

𝐷
∆𝑊

4𝜋𝑊
𝛼
𝜋

     𝐴. 11  
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