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Abstract: As a motivating problem, we aim to study some special aspects of the marginal distributions of the
order statistics for exchangeable and (more generally) for minimally stable non-negative random variables
Ty, ..., Tr. In any case, we assume that Ty, ..., Tr are identically distributed, with a common survival func-
tion G and their survival copula is denoted by K. The diagonal sections of K, along with G, are possible tools
to describe the information needed to recover the laws of order statistics.

When attention is restricted to the absolutely continuous case, such a joint distribution can be described in
terms of the associated multivariate conditional hazard rate (m.c.h.r.) functions. We then study the distribu-
tions of the order statistics of Ty, ..., Tr also in terms of the system of the m.c.h.r. functions. We compare and,
in a sense, we combine the two different approaches in order to obtain different detailed formulas and to an-
alyze some probabilistic aspects for the distributions of interest. This study also leads us to compare the two
cases of exchangeable and minimally stable variables both in terms of copulas and of m.c.h.r. functions. The
paper concludes with the analysis of two remarkable special cases of stochastic dependence, namely Archi-
medean copulas and load sharing models. This analysis will allow us to provide some illustrative examples,
and some discussion about peculiar aspects of our results.

Keywords: Minimally stable random vectors, diagonal sections of survival copulas, diagonal dependence,
t-exchangeability, absolute continuity, Archimedean copulas, load-sharing models
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1 Introduction

Concerning the basic role of the concept of copula and of the Sklar’s theorem in the analysis of stochastic
dependence, a main issue is the study of the distributions of the order statistics X.r, ..., Xy:r for a set of in-
terdependent random variables X1, ..., X;. On the one hand, the condition of exchangeability is specially
relevant (see in particular Galambos [11]) in such a study. On the other hand, the marginal distributions
of X1.r, ..., Xr.r are strictly related to the diagonal sections of copulas (see, e.g., Jaworski [12], Durante and
Sempi [9]). For these reasons, in the theory of order statistics, the study of diagonal sections of copulas has
been mainly concentrated on the case of exchangeable random variables.
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Really, in such a study, the assumption of exchangeability can at any rate be replaced by the more gen-
eral condition that, for d = 2, ..., r — 1, all the diagonal sections of the d-dimensional marginal copulas do
coincide. Such a condition has been attracting more and more interest in the recent literature, where it has
been however designated by means of different terminologies. In fact, such a condition can actually manifest
under different mathematical forms, as we will discuss in details. For our purposes it is specially convenient
to look at it as the condition that X, ..., X, are minimally stable (see Definition 3 below).

In this note we concentrate attention on the case of non-negative, minimally stable, random variables
which we denote by T4, ..., Tr.

Generally, concerning with non-negative random variables, stochastic dependence can also be conve-
niently described in terms of stochastic intensities of related counting processes. See in particular Arjas [1],
Bremaud [3], Arjas and Norros [2]. Such a description, in particular, can be based on the knowledge of the
so-called multivariate conditional hazard rates (m.c.h.r.) functions, when attention is restricted to the abso-
lutely continuous case (see in particular the papers by Shaked and Shanthikumar [26—28]). In such a case the
family of those functions gives rise to a method to describe a joint distribution, which is alternative to the one
based on copulas and marginal distributions or on the joint density function.

From an analytical view-point the two methods are actually equivalent: on the one hand the family of the
m.c.h.r. functions can be obtained in terms of the joint density function, on the other hand the joint density
can be recovered when the m.c.h.r. functions are known. As a matter of fact, however, the corresponding
formulas are not easily handleable in general cases. The two methods, furthermore, are respectively apt to
explain completely different aspects of stochastic dependence.

In this paper we aim to establish a bridge between the two different approaches. Maintaining the atten-
tion focused on the minimally stable case, then, we are primarily interested in the relations tying the system
of the diagonal sections with the system formed by the m.c.h.r. functions. Such relations will allow us to de-
tect, both in terms of copulas and in terms of the m.c.h.r. functions, which are the minimal sets of functions
able to convey sufficient information to recover the family of the marginal distributions of the order statistics
Ti.rseees Trere

In such a framework, interesting questions also concern with understanding the real difference between
the cases when T4, ..., T; are exchangeable and when they are minimally stable. On this purpose, the dif-
ferences between the two properties will be detailed both using the language of copulas and the language
of the m.c.h.r. functions. Still by using and combining the two approaches, we will also face the problem of
constructing examples of random variables T4, ..., Tr which are minimally stable but not exchangeable.

More in details, the plan of this paper goes as follows.

In Section 2 we introduce some needed notation and then we review basic facts about distributions of
order statistics, about diagonal sections of copulas, and about the relations tying these two families of objects.
We also show in details the equivalence among different forms under which one can represent the condition
that T, ..., Tr are minimally stable. Some relevant remarks are given and an example is presented concerning
the construction of random variables which are minimally stable but not exchangeable.

In Section 3 we will first recall, in general, the definition and some basic aspects of the family of the
multivariate conditional hazard rate functions. We will then show special features of the cases where the
lifetimes T4, ..., Tr are exchangeable or minimally stable. In this frame, the results of Section 2 will emerge
as natural tools to obtain, in Section 4, the relations existing among diagonal sections of copulas, the dis-
tributions of order statistics, and a special subclass € of multivariate conditional hazard rates (see (37) and
(39)), corresponding to the (unconditional) one-dimensional hazard rates of min(T4, ..., Ty),¢=1, ..., 1. See
in particular Propositions 18 and 19.

In order to demonstrate some special aspects of the results presented in the Sections 3 and 4, Section 5 will
be devoted to a detailed discussion of the remarkable cases of Archimedean copulas and of minimally stable
time homogeneous load-sharing models. Some more general examples will be presented in the Appendix.

Often, along the paper, the term lifetime will be used as a short-hand for "non-negative random variable".

Notation: For any natural number n, we set [n] := {1, 2, ..., n}.
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For any subset ] C [n], we denote by |J| the cardinality of ], and as usual we denote by J¢ the comple-
mentary set of ], i.e., the set of indices [n] \ J. Furthermore, for any k < |J| we denote by

Hk(]) = {(jl’ ---,jk) :jZ S ]’ Vi = 1’ .oy k’ j@ #jh’ N4 7£ h}’
the set of k-permutations of /. When k = |J| we drop the index k and write simply II(J). The symbol
(M) :=n(n-1)---(n-(k-1))) = [ILi([n])|

denotes the number of k-permutations in IT;([n]).

For any subset A = {ji,...,j;} C [n] we denote by e, the vector whose i-th component is equal to 1 if
i € A, and is equal to 0, otherwise.

2 Diagonal sections and distributions of order statistics

Let T4, ..., Tr denote r non-negative random variables, defined on a same probability space (Q, F, P), with
joint survival function
F(ty, ooy ty) :=P(Ty > ty, 0, Tr > tr),

and survival copula K : [0, 1]" — [0, 1].

All over the paper we generally assume the following conditions, unless specified otherwise,

(H1) therandom variables T4, ..., Tr are identically distributed with common one-dimensional marginal sur-
vival function G, i.e.,

G(t):=P(T;>t), forj=1,...,randfort>0.
(H2) G(t) is continuous, strictly positive, and strictly decreasing on (0, o).
(H3) the random variables T4, ..., Tr are no-ties, i.e., P(T; = Tj) = O, for i #j.
Since T4, ..., Tr are non-negative, condition (H2) implies that G(0) = 1 and that G(¢) is invertible. Though (H2)
is not strictly necessary (as, for example, in Proposition 8), we assume it for simplicity’s sake (for example
we use (H2) in Proposition 5, Remark 6 and Corollary 9, within this section and somewhere else, within the
other sections). Condition (H3) allows the order statistics Ty.;, ..., Tr.r of (Tq, ..., Tr) to be defined without
ambiguity. We denote by

G1(t) :==P(T1.p > )y oeey Gror(t) := P (Tyr > 1) (1)

the corresponding marginal survival functions.
Note that the order statistics T;.y, ..., Tr:;r may be considered as the jump times of the counting process

r
N(t) = Z 1{T,-St}

i=1

i.e., the process such that N(t) = k for t € [Ty.,, Tg.1.,), Wwhere we have set Ty., = 0 and Ty,1., = oo.
Before continuing we recall the following definition.
Definition 1. For a r-dimensional copula C the diagonal section is the function
8¢: (0,11 = [0,1]; u— 6W) = Clu,u, ..., u)

Furthermore, for any A C [r], by 5;{ we denote the diagonal section of the marginal copula, corresponding to
the A-components, i.e., the function

85: 0,11 > [0,1];  u s 85(w) = Clue, +e4e).
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In particular we refer to the functions

¢ times r-{times

6[Cg](u) =C(u,...,u,1,...,1), 2<tl<r

as the diagonal sections associated to C.
For the functions S[CZ] we will also use the shorter notation 65, namely
6g(u) = 6[%](11), 2</l<r,

and the shorter term diagonal sections of C. Such terminology turns out to be convenient for the ensuing
arguments. It is clear that, for A C [r], with |A| = ¢ and A # [¢], the two functions 6§ and 6¢ are generally
different.
It is also clear that 65(u) is an increasing function and that 65(u) = 65(u) = ... = 8(u). Conditions, for a
function 6 : [0, 1] — [0, 1] to be the diagonal section of a copula, are given, in particular, in Jaworski [12],
and Durante and Sempi [9].

In what follows, when dealing with the diagonal sections associated to the survival copula K of T4, ..., Ty
we drop the superscript, i.e., we set

6o(u) := 5§(u), 2</l<r.

Assume for the moment that the joint survival function F(t1, ..., t,) is exchangeable, namely
F(t1, ..., tr) =K (G(t1), ..., G(ty)), forty,...,t >0,

with K permutation-invariant.

As well-known, a direct relationship can be established between 6, and the probability law of the minimal
order statistics T.,, in fact one immediately obtains, for ¢ > 0,

G1(t) =P(T1 > t, ..., Tr > £) = 5:(G(t)). 0)
By taking into account exchangeability of T4, ..., Tr one can similarly write

P(Tj, >ty ey Tjy > t) = P(T1 > b0, Ty > 0),
= F(t,...,t,0,...,0) = K (G(t), ..., G(1), 1, ..., 1) = 6,4(G(1)), 3)

ford =1, 2,...,r—1 and for any subset of indices J = {j1, .., jq} C [r] of cardinality d. Whence one can write

G (= Y ()t (;) (2:2) 8u(G(), £=1,..,r. (4)

h=r-£+1

In fact, by using (3), the latter formula is readily obtained from the formula expressing the survival func-
tions of the order statistics of exchangeable variables in terms of the survival functions of the minima within
subsets of the same variables (see in particular David and Nagaraja, p. 46 [5], Jaworski and Rychlik [13], Rych-
lik [22]).

As we will see in Proposition 7, formula (4) for G,.,(t) is still valid when the joint distribution of T4, ..., Ty
satisfy the specific symmetry conditions recalled in Definitions 2 and 3, below. Such conditions are actually
weaker than exchangeability, and turn out to be equivalent each other (see Proposition 5 below).

Definition 2. We will say that the random variables T+, ..., Tr are t-Exchangeable if for every t > O, the binary
random variables X;(t) = 1 (Tt} i=1,...,r, are exchangeable, or equivalently the events {T; > t},i =1, ..., T,

are exchangeable.

We will briefly refer to the previous property as t-EX.
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Definition 3. The random variables T+, ..., T, are said minimally stable, when, for any ¢ = 1, ..., r and for
any subset A = {j1, ..., j¢} C [r]

P(Tj, >ty T, > t) =P(T1 > £, Ty > ), VE>0, ®)
namely P (Tj, > t,..., Tj, > t) = F(¢, ..., t,0,...,0), Vt > 0.
] N—— ——

0 times r-{ times

Finally we recall the strictly related concept of diagonal dependent copulas (see Navarro and Fernandez-San-
chez [17]). Such a concept can be obtained as a special case of the one of k-diagonal dependence, for k < r,
as introduced by Okolewski in [21].

Definition 4. Let C be an r-dimensional copula C. The copula C is said to be a k-diagonal dependent copula,
with k < r, if for any subsets A, B C [r], with |A| = |B| < k

85(u) = 65w), Vuelo,1]. ©)
When k = r, the copula C is said diagonal dependent.

As in Navarro and Fernandez-Sanchez [17] we briefly refer to the property of diagonal dependence as DD.
The following result can be obtained by taking into account basic and well known properties of exchange-
able binary random variables originally obtained by de Finetti (see [6]). See also Navarro et al. [18].

Proposition 5. Under the conditions (H1)-(H3) the following properties are equivalent
(i) The random variables T4, ..., Ty, are t-Exchangeable;
(ii) Forall H,H' C {1,2, ..., r}, with |H| = |H'|

P(T;>t,Vje H,T;<t,vig H) =P(T;>t,Vje H,T; < t,Vi¢ H'). @)
(iii) The random variables T, ..., Tr are minimally stable;
(iv) The random variables T+, ..., Tr are identically distributed and their survival copula K is diagonal depen-

dent.

Proof. Properties (i) and (ii) are clearly equivalent: indeed
P(Tj>t,vje H,Ty<t,vi¢ H) =P(X;(t) = 1,Vj € H,X;(t) = 0,Vi ¢ H).

Similarly properties (iii) and (iv) are equivalent: indeed if Ty, ..., Tr are minimally stable, then by taking
¢ = 1in (5), they are identically distributed, and therefore for all A C [r] with |A| = ¢

P(T; > t, Vi € A) = K(G(t)e, + e4c) = 6,(G(t)), Vt=0,

and G(t) is invertible, in view of the regularity condition (H2).
Finally (iv) is equivalent to (ii), in view of the inclusion-exclusion formula.
O

Remark 6. The previous result (Proposition 5) holds true also without the regularity assumption (H2) on G, but
in the general case an extension of the notion of Diagonal Dependence is needed (see Navarro et al. [18]).

The interest for the properties (i) and (iv) had independently emerged in the two papers Marichal et al. [15]
and Navarro and Fernandez-Sanchez [17] with reference to the field of systems’ reliability. Still in the same
framework, furthermore, the study of conditions for the equivalence between (i) and (iv) has been developed
in Navarro et al. [18]. See Remark 14 below for details about the connections with system reliability.

We are now in a position to establish the following result.
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Proposition 7. Assume (H1)-(H3) and any condition among (i)—-(iv). Then the equations (4) hold.

Actually the validity of (4) hinges on the Eq. (3), which only requires the DD property of the survival copula
and the identical distribution of T;, i = 1, ..., 1.
From now on we make the following further assumption

(H4) the random variables T4, ..., T; are minimally stable.
Namely we assume the condition (iii) of Proposition 5 and, at a time, we highlight that such a result just
ensures the validity of the equivalence among all the conditions (i)-(iv), under our standing hypotheses
(H1)-(H3).

Under the assumptions (H1)-(H4) we thus proceed to establish detailed results concerning the relations
between the following families of functions

A= {E; 62, ...,(Sr}, B = {El:r,...,ér;r}. (8)
Since the marginal survival functions Gy., ..., Gr.r are determined by the knowledge of the joint distribution
of Ty, ..., T; then, in principle, the family B should depend on the survival copula K and the common sur-

vival marginal G(t). Actually the full knowledge of K is not necessary, since the knowledge of the associated
diagonal sections is sufficient as shown by the formula (4). More precisely the families A and B convey the
same amount of information concerning the joint distribution of T4, ..., Tr, as we point out in details in what
follows and summarize in Proposition 10.

To this end we start by recalling that when Gj., ..., Gr.r are known, we can easily recover the common
marginal survival function G(¢). Indeed, the random variables T4,..., T are identically distributed and there-
fore

60 = 1 3 Ginl0), ©)
k=1

as immediately follows by observing that 37 _; 1(7,5 = Y121 1{1,,56}-
Furthermore the same formula (4) would permit to recover, step-by-step, the functions 685, ..., 6;. Here
we follow a different path and the detailed formula is given in the Corollary 9 of the following result.

Proposition 8. Under the conditions (H1)-(H4), for every d € [r], and J C [r], with |J]| = d

r

P(Tj >t Vj € ]) = Z % (Er—h+1:r(t) - Er—h:r(t)) (10)
h=d 4
d r-d+1 -
oM ; (r-Kg-1 Gy, (O, t>0, (11)

where by convention Go..(t) = 0, for t > 0.

Also for what concerns the proof of Proposition 8, similarly to what we mentioned for Proposition 5, one could
apply well-known and simple results (see, e.g., de Finetti [6]) about exchangeable binary random variables.
For the ease of the reader we give a self-contained, and detailed, proof at the end of this section. Here we only
point out that the most important ingredient of the proof amounts to the validity of the following identity for
any subset J C [r]:

P(Tj>t,vje])= > P(Tj>t,¥jeJUK, Ti<t,Vi¢ JUK) 12)
K:KCJe
or equivalently
P(Tj>t,Vje])= Y P(Tj>t, VjeH, Ti<t,Vi¢gH). (13)
H:HDJ

From Proposition 8 we get the expression of §; in terms of the marginal survival functions G,.,(t), k= 1, ..., .
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Corollary 9. Under the conditions (H1)-(H4), for every d € {1, 2, ..., r}, the following equalities hold

r

Saw) =) % (E,_hﬂ:,(é‘l(u)) - Er—h:r(g_l(u))> (14)
hed
r-d+1
= % > (r=h)gy Gur(G '), uelo,1l. (15)
d ha

Indeed, this result is a consequence of equations (10), (11), and (3), since, as already observed the condition
appearing in (3) also holds for minimally stable variables.

The above results, concerning the relations tying the families A and B, will be now summarized by means
of the following proposition.

Proposition 10. Under the conditions (H1)-(H4), the family of the survival functions B = {51:,, . Er;r} is
determined by the family A = {E, 62y e 5,} by means of formula (4). Viceversa the family A is determined by
the family B by means of formula (14) (or (15)) and formula (9).

Remark 11. For non-exchangeable, but minimally stable lifetimes T+, ..., T, there still exist exchangeable life-
times Tl, .o, Ty, such that IP’(T]- >t)=P(7T; > t) = G(t), and the diagonal sections Sg(u) associated to their
survival copula K coincide with the diagonal sections 6,(u) associated to the survival copula K. Indeed K may
be constructed by symmetrizing K:

~ 1
K(uq,...,ur) = = Z K(ug,, ..., Ug,).
" oen([r)

The above construction can be of help in obtaining the explicit form of P(T; > t, Vj € A) in some special cases
(see in particular Subsection 5.2).

Remark 12. The problem of constructing examples of vectors which are not exchangeable, but still minimally
stable, naturally arises. Since minimally stable variables T+, ..., Tr are identically distributed, constructing such
examples is equivalent to constructing diagonal-dependent copulas, which are not exchangeable. In the fol-
lowing Example 13 we present a simple path to such a construction. Other examples can be found in Navarro,
Fernandez-Sanchez [17], and Navarro et al. [18]. See also Example 31 in the Appendix.

Example 13. First of all we notice that, when r = 2, then any pair (T1, T>) of identical distributed random
variables is minimally stable, but in general is not exchangeable. Similarly, and trivially, any 2-dimensional
copula C is minimally stable. Indeed §5(u) = C(u, u), and 6$(u) = C(u,1) = C(1,u) = u. Starting from the
copula C one may define two 3-dimensional copulas as follows

1
Ca2,3)(1, Uz, u3) 1= 5 [Cur, u2)us + Clua, uz)uy + Clus, upuy]

1
3
respectively obtained as the symmetric mixture over the cyclic permutations of (1, 2, 3) and the cyclic permu-
tations of (3, 2, 1). Notice that when C is non-exchangeable, then C(y , 3) and C , ;) are non-exchangeable:
indeed if u, v € (0, 1) are such that C(u, v) # C(v, u) then, for example,

Ci,2,1) U1, Uz, u3) = 5 [Cluz, uz)uy + C(uz, ur)us + Clug, us)us|

CazW,v,1):= % [C(u,v) + C(v, Du + C(1, u)v]| = % Clu,v) + % uv,

which is clearly different from

1 1 2
Canz,u,1):= 3 [Cv,u) + C(u, v + C(1,v)u| = 3 Clv,u) + 3 Uvs
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thus C(y , 3 is non-exchangeable, though the 2-dimensional marginal distributions are all equal, namely

1 2
Ca,23)M,v,1)=Cq 13V, 1,u)=Cq,3,uv)= 3 Clv,u) + 3 uv.

By iterating the above construction, one can also obtain a DD, non-exchangeable, copula which is n-
dimensional. Details can be found in the Appendix (see Example 30).

Remark 14. As already mentioned, the topics developed in the papers Marichal et al. [15], Navarro and
Fernandez-Sanchez [17], and Navarro et al. [18] are motivated by questions arising in the field of systems’ re-
liability. More precisely these papers deal with the so-called signature representation for the survival function
R(S‘p)(t) of the lifetime T of a binary coherent system S, made with r binary components, with structure function
@, and for which the random variables T4, ..., Tr have the meaning of the components’ lifetimes. The signature
of S is a probability distribution s@) .= (s(l‘p), ey sg‘p)) over [r] which is a combinatorial invariant associated to
@ (see in particular Samaniego [24]). The signature representation means that the equation

R (1) = Gy, (t) (16)
h=1

holds for any t > 0.

Under our standing hypotheses (H1)—(H4), the properties (i) and (iv) are equivalent and also imply the signa-
ture representation (16) for the survival function R(S‘p)(t). When the functions Gi.y, ..., Gr.r are known, one can
then recover from (16) the function R(S‘”)(t), relatively to any structure ¢ for which the signature s'?) is known. At
the same time the family of all the functions Rg"’)(t) in particular contains the family B = {G1.;, ..., Grr}. Infact,
the survival functions Gy., can be seen as the reliability functions of the coherent systems of the type k-out-of-r,
fork=1,...,r.

We end this section with the afore announced proof of Proposition 8.

Proof of Proposition 8. We start by recalling that N(t) = 217:1 171,<y and observing that

PINO=r-h) = > P(Tj>t,Vje], Ti<t,Vig¢])
J:lJ|=h

so that, thanks to Eq. (7)

P(N(t)=r-h) = (;) P(T; > t, Vje{1,2,..,h}, Ti<t, Vie{h+1,...,1}),

or equivalently, for any H C [r], with |H| = h

1

P(Tj>t,vjeH, Ty<t,Vi¢ H) = 0 P(N(t) = r - h). (17)
h
On the other hand, we observe that
PIN{#) =r-h) =P(T,_p, <t < Ty_pyq.y)
=IFD(Tr—h+1:r >t - IFD(Tr—h:r > t) = Er—h+1:r(t) - Er—h:r(t)- (18)

Then the thesis follows immediately: indeed, forevery J c {1, 2, ..., r} with |J| = d, Eq.s (17) and (18), together
with (12), imply (with the convention that (§) = 1)

IP)(Tj >t, V)€ ]) = Z <;l:(di> 6 (Erchrl:r(t) _Erfh:r(t)) s

h=d
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and formula (10) follows by observing that

(ra) _ (Mg
() Ma

Finally, from (10), taking into account the convention that Go.,(t) = 0, one obtains

r r-1
(MaP(T;> t, ¥ €]) = > (MaGyhry:r® = > (M)aGrpr(8)
h=d h=d
r-1 o r-1 o
= Z (k +1)qGy_pr() = Z(h)dGr—h:r(t)
k=d-1 h=d
r-1
= dlEr—(d—l):r(t) + Z [(k + 1)d - (k)d] Er—k:r(t)'
k=d

Therefore, by observing that

(k+1)g = (K)g = (K)g-1 [k +1-(k-(d-1)]=(K)g-1d,

one gets
d « _
P(Tj>t, vje]) = R > (941G (D),
Ma k=d-1
Then formula (11) follows by setting h = r — k in the last sum. O

3 The use of multivariate conditional hazard rates

In this section attention will be restricted to random vectors of lifetimes with absolutely continuous joint
distributions, so that their probabilistic properties can be alternatively described in terms of the multivariate
conditional hazard rate (m.c.h.r.) functions. In a first part of this section we recall the definition of the m.c.h.r.
functions associated to generic random variables {V}, j € [n]}, reviewing related properties and providing
some references. Furthermore, for A C [n], we focus attention on the joint distributions of { V;, j € A}.Inpar-
ticular we analyze the probability distributions of their minima by means of the m.c.h.r. functions associated
to {V;, j € A}. In the second part, coming back to our lifetimes T4, ..., Tr, and adding absolute continuity
condition to our standing hypotheses, we characterize both the exchangeability and the minimal stability
conditions by means of the m.c.h.r. functions associated to {Tj, j € [r]}.

3.1 Multivariate conditional hazard rates and distribution of minima

In this subsection we briefly recall some definitions and basic properties of multivariate conditional hazard
rate functions for n non-negative random variables V1, ..., V, with an absolutely continuous joint distribu-
tion whose joint density function is denoted by fy. For simplicity’s sake we will assume moreover that there
exists a version of the joint density which is strictly positive on RY, i.e., fy(v1, .., vn) > 0, when v; > 0, for all
i=1,2,...,n.

Fork =1, ...,n- 1, and for any k-permutation j = (j1, ..., ji) € IIx([n]), the symbol V; denotes the vector
of lifetimes (V},, - - -, V;,); for any subset J C [n] we denote

Vig:=minV; 19
= min?, 19)
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furthermore, if j € I1(J), for 0 < v; < - - - < v} < v the symbol
V] =V; V1:]c >V (20)
briefly denotes the observation
Vi =vy,++, Vi =v,, minV;>v.
J1 1 Jk k jeJe J

The observation V; = v; Vi > vin (20) is often called a “dynamic history".
For the given k = 1, ] C [n], with |[J| = k,j = (1, ..., ji) € HJ), v > 0,0 < vy < -+ < v s v,j ¢ ], the
multivariate conditional hazard rates (m.c.h.r.) function v — )lm(v\vl, -+, V) is defined by the limit (where

it exists)
P(Vj<v+A|Vj=V;Vige > V)
A )
Note that the above m.c.h.r. functions A;;, | _; depend also on the version of the conditional probability.
Furthermore, for any j € [n], the m.c.h.r. function /l)-m(v) : [0, o) — [0, o0) is defined by the limit (where
it exists)

a.e. (21)

Ay WYL oo, Vi) 2= lim

P(Vj<v+A|Vyp > V)

Ajjp(v) = Ali)n& 7 , a.e. 22)
In the sequel we will use the convention
Ajjjy, i VIVL, - Vi) = Ajjp(v),  when k = 0. (23)

The above limits make sense in view of the assumption of absolute continuity of the joint distribution of
V1, ..., Vy and the m.c.h.r. functions can be seen as direct extensions of the common concept of hazard rate
function of a univariate non-negative random variable.

For the random vector V. = (Vy, ..., Vy), the system of the m.c.h.r. functions in (21) and (22) can be
computed in terms of the joint density fy. It is remarkable the circumstance that the function f;, can be ob-
tained from the knowledge of the set of all the m.c.h.r. functions in terms of a formula, that we are going
to recall next. Preliminarily, we first notice an obvious difference between fy and the functions A;;, . (v|
V1, ..., V): while the arguments v, ..., vy of fi are generally not ordered, the arguments v, ..., v of the
functions Ay;,,_j (v|v1, ..., vi) are necessarily listed in increasing order by definition. Furthermore, for given
non-ordered values v, ..., vn, we denote by vi.p, ..., Vn:n the same values rearranged in increasing order.
Then the following formula holds: for (vq, ..., va), letj = (j1,...,jn) @ permutation in II([n]) such that
Viin =Vj, <SVoan = Vi, S <Vpin = Vis

fo iy e Vi) = g Ay Wi Vs e Vi)

v
J
. 67 fv-k Afl ~~~~~ ik,l(u‘vi1 ""’Vl'k,l)du

Jk-1 ’ (24)

where we have set v;, =0,
Ailwu;ik—l (u|vj1, cre ka—l) = Z A}\}l ..... Jik-1 (H‘Vh LR ] V]'k,l)’ (25)
JE{j1seeerik-1}

and we have used the convention that, when k = 1,

Ajlis e WlVigs w5 Vi) = Ay (),

Aj i, vy, v ) 1 Ag(u) = Z Ajjp ). (26)
j€ln]
For proofs, details, and for general aspects of the m.c.h.r. functions see Shaked, Shantikumar [26, 27].
See also the reviews contained within the more recent papers Shaked, Shantikumar [28], Spizzichino [30].

Forany subset ofindices A = {hy, ..., hi4|} C [n], one canalso consider joint density of the random vector
(Vh,s ... Vh‘ A ). Such a density may be defined by means of a different family of m.c.h.r. functions, related to the
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choice of the set A. Namely for any k < |A| and for any k-permutation (ji, ..., jx) € Hx (A), j € A\{j1, ---» ji }>
0 < vy <+ <V <V, we can consider the m.c.h.r. functions defined as follows

P(Vysv+AlVy=v; Vigy,, iy > V)

/\lA\jl ..... Vv, e ) o= Aan&+ 3 , a.e. (27)
and, forje A,v>0
P(V;cv+A|Vi.a>V
/l%(v) := lim v Viaa ), a.e. (28)
] A=50 A

In view of the characterization of minimal stability, we are interested in the distributions of minima over
different subsets of [r]. It is therefore relevant to highlight that, in particular, the functions Ajm(v), forj e [n],
are strictly related to the marginal law of the minimal order statistic V1., = Vy,[,) = minj_y ., V}. In this
respect the following identity holds:

v

P(Vi.p > V) = exp { —/ZH:Ajm(s)ds} = exp{ - /A@(s)ds}. (29)
o J=t

0

(See, e.g., De Santis et al. [7], where a more detailed description of the probabilistic behavior of V;.,, in terms
of Ajm(v), forj ¢ [n], is pointed out). Similarly, we can also consider the survival function of V., the minimal
order statistic among the variables V;, with j € A, for A C [r]. With the notation introduced so far, one can
write

P(Vi4 >V) = exp{ —/Z/\ﬁw(s)ds} = exp —/A‘g(s) ds p, (30)
o JEA 0
where
AG(8) =" My (0. (1)
jeA

Notice that therefore the functions Ay(t) and A‘q‘}(t) can be respectively interpreted as the “usual” hazard rate
functions for the random variables V., and V;.4. This observation will be a key point for the discussion in
Section 4.

3.2 The m.c.h.r. functions and characterizations of Exchangeability and of Minimal
Stability

Here we come back to our lifetimes T4, ..., Ty. We maintain the condition (H1), whereas the conditions (H2)
and (H3) are replaced by the following stronger condition:
(H5) The joint distribution of Ty, ..., Ty is absolutely continuous, with the joint density such that

fr(ty, .., tr) >0, a.e.inR}

We start with the exchangeable case, noticing that such a case leads to a remarkable simplification of nota-
tion, technical results, and conceptual aspects concerning the m.c.h.r. functions.

First notice that the symmetry conditions among the different random variables, as requested by
exchangeability, imply a specially simple form for the m.c.h.r. functions. More precisely, the functions
Ajjiy,....in(Eltiys - - -, ;) cannot depend on the index j ¢ {i1,...,{;}. Furthermore all the k-permutations
(i1, ..., iy) are to be considered as similar one another and thus the dependence of a m.c.h.r. function w.r.t.
to (iy, ..., i) is encoded in the number k. For the present exchangeable case, forany t > 0,0 < t; < --- <
ty < t, we then introduce the symbols u(t|k;t1,..., t;) and u(t|0) with the following meaning: for any
j =01, i) € IU)

Ajjj o, Bt ., t) = ultlks ty, ..o, £, Ajm)(t) = u(t|0). (32)
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Thus, for any (¢4, ..., t;) € R}, and denoting by t;.,, ..., tr,r the values t4, ..., t; rearranged in an increasing
order, by Eq. (24), fr takes the form

—(r— O r .
fT (t1yeees tr) = H;;%) ],l(tk+1:r|k; t1.rs eees tk:r)e (-l f‘k:r y(s‘k’h"""’tk")ds, (33)

where we used the further convention that ¢, = O.

On the other hand, when the form (32) is assumed for the family of the m.c.h.r. functions, the consequent
formula (33) shows that fy actually depends on the arguments tq, ..., t; only through the ordered values
ti.r, ..., tr.r and thus it is necessarily exchangeable. In conclusion, the following characterization of exchange-
ability holds (see also Spizzichino [29], chap.2).

Proposition 15. Non-negative random variables T4, ..., Tr with a strictly positive joint density are exchange-
able if and only if the corresponding m.c.h.r. functions are of the form (32).

As far as minimal stability is concerned, one can find natural conditions involving the hazard rates functions
Ag(t) of the minima T1.4, for A C [r]. See in particular Lemma 17 in the next Section 4, where this topic is
dealt with in some details. Here we point out that the functions A‘Q‘)l (t) can be recovered once the m.c.h.r. func-
tions Aﬁm(t), associated to the random variables {Tj, j € A}, are known (see (31)). However in general, when
the distribution of Ty, ..., Tr is specified in terms of the associated m.c.h.r. functions A;;, i (tlt, oy £y, it
is not easy to recover the m.c.h.r. functions Aj%(t) associated to {T}, j € A}. Therefore it is useful to find
conditions for minimal stability expressed directly in terms of the m.c.h.r. functions A;;, __; (¢]t1, ..., t;). On
this purpose, taking into account the equivalence between condition (7) and minimal stability (i.e., between
conditions (ii) and (iii) of Proposition 5), it is relevant to express

P(T;> t,vje A, Ti<t,vie[r]\A)
in terms of the m.c.h.r. functions. To this end for any d-permutation j = (j1, ..., j4), we set

q’(t; [T],i) :=P(Tj1 < sz <eee < Tid <t, T; > tvi ¢ {jl, ,]d})

t Sq S2
) / ds, / dsg_y - / dsy e Jia eiaTlstsa)dr,
0 0 0
d

S

= JE Ay i (T]S1yeees Sp-1)dT
T o Sels1, s spg)e” Feia B Elotsildr, (34)
£=1

Then, for any subset A C [r], we can write
P(Tj>t, e A, Ti<t,viell\A) = > Wt j). (35)
jen([r\4)

The above Eq. (35), together with Eq. (34), and Proposition 5 can be used to get the following characteri-
zation of minimal stability.

Proposition 16. Non-negative random variables T+, ..., Tr with a strictly positive joint density are minimally
stable if and only if the corresponding m.c.h.r. satisfy the condition that whenever A, B C [r], with|A| = |B| < r-1,
then

S owsii= Y w6, t>o, (36)
jem(4) j’em(B)

where we have used the notation (34).

Observe that the exchangeability condition implies the identity ¥(¢;[r],j) = W(¢;[r],§’) for any pair of d-
permutations j, j’, so that condition (36) is trivially satisfied.

The characterization of Proposition 16, besides its conceptual meaning, reveals to be effective in some special
cases. In particular we will use it when dealing with a subclass of Load Sharing models (see Subsection 5.2).
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4 Relations among diagonal sections of DD copulas, distributions
of order statistics, and hazard rates of minima

Concerning with the joint distribution of minimally stable lifetimes T4, ..., Ty, it has been pointed out in
Proposition 10 that the two systems of functions A = {G; 8>, ..., 6;} and B = {G1.,, ..., Gr.r} convey the same
information about the joint distribution of T4,...,Tr and that they can be then recovered one from the other.
Like in Subsection 3.2 we assume (H1) and (H5), where the joint distribution of T4,...,T; can be described in
terms of the corresponding m.c.h.r. functions. In terms of those functions, we aim to single out characteristics
of the joint distribution, whose knowledge may be equivalent, under the condition (H4), to that of the systems
of functions A and B defined in (8). It will emerge that the information contained in the systems .A and B is
equivalent to the knowledge embedded in the systems of functions defined by

e={all, ..., Al 37)

Such equivalence is demonstrated by the relations tying € with A and B. Such relations will be detailed below
by means of the following Propositions 18 and 19. More precisely, in Proposition 18 we express each of the
families A and B in terms of C, whereas in Proposition 19 the family C is expressed in terms of A and in terms
of B.

We start by giving a characterization of minimal stability in terms of the hazard rates of minima. As al-
ready observed (see Eq.s (28) and (30)) the m.c.h.r. functions Aﬂw(t), j € A, are related to the law of the
minimum on an arbitrary set A C [r], indeed

t
P(Tq.4 > t) = exp {—/Aé(s) ds} , t>0, (38)
0

where AG() = 3., }l]/.‘lw(t) is the one-dimensional failure rate of T;.4. Concerning with this notation, ob-
serve that the failure rate A[@’](t) coincides with Ay(t) = Z]f:l Aj‘@(t), so that G1.,(t) = P(Ty, > t) =
exp{ - fot Ay(s) ds}, (see also Eq. (29)). Equation (38) leads immediately to the following simple charac-
terization of minimal stability.

Lemma 17. Assume condition (H5) and assume that the hazard rates A‘é(t) of the minima T., are known, for
every non-empty subset A C [r]. Then each of the following conditions is necessary and sufficient for the minimal
stability condition (H4):

vAcld, Aj©=A0 ae.,t>0 whered=|A], (39)
and
t
VA Cr], P(Ty4>t)=exp {—/Agﬂ(s) ds} , t>0, whered=|A|. (40)
0

Proof. Conditions (39) and (40) are clearly equivalent to each other, and if (40) holds then (H4) is immedi-
ate. Viceversa, by the assumption of minimal stability we may restrict attention on the subset of variables
T4, ..., T4, which are minimally stable, as well. Indeed, since P(T1.4 > t) = P(Tq.5 > t) forany A, B C [r] such
that |A| = |B|, then (40) follows, and therefore also (39) holds. O

Clearly when the m.c.h.r. functions Aﬁw(t) are known, for every non-empty subset A C [r], then (39) is equiv-
alent to

d d
VA C[rl, ZAﬁ@(t)=ZA][f@1(t), a.e., t>0, whered =|A|, (41)
j=1 j=1

Proposition 18. Assume the minimal stability condition (H4), and the joint absolute continuity condition (H5).
Assume furthermore that the family C of the hazard rate functions A{b‘i](t) is known. Then



DE GRUYTER Diagonal sections, mchr, order statistics = 407

(i) the family A is given by:

t
G(t) = exp {— /A%”(s) ds} , foranyt> 0, (42)
0
andford=2,...,rand foranyu € [0, 1],
Glw
54u) = exp { - / A9 as b “3)
0

(ii) the family B is given by:
fort=1,...,randforanyt > 0,

r t
GO = 3 (1t <;> (ﬁ :2) exp {— / AM(s) ds} . (4t)

h=r-¢+1 0

Proof of (i). Due to minimal stability the random variables T; share the marginal survival function with T,

i.e.,
t t
exp < — /\im(s) ds} = exp {— )llm(s) ds} , t>0.
g /

Therefore Ai\@)(t) = Al‘@(t) = A[@ﬂ(t), for any t > 0, and (42) follows.

As already observed, we may concentrate attention on the random variables T4, ..., T;. Therefore to
prove (43), on the one hand one has

¢
P( min T; > t) =exp {—/A([Dd](s) ds} .
i=1,...,d

0

.....

Thus Eq. (43) is immediately achieved by comparing the preceding two formulas and recalling that condition
(H5) implies condition (H2), which in its turn implies that G is invertible.

Proof of (ii). Taking into account Proposition 7, Eq. (44) is immediately achieved by combining Eq. (43) with
Eq. (4). O

Proposition 19. Assume the minimal stability condition (H4), and the joint absolute continuity condition (H5).
(i) If the family A = {G, 6, ..., 8;} is known, then, setting 61(u) = u,

‘ d =
A = -7 log [6,G®)], ae.t>0, £=1,2,..,r. (45)

(ii) Ifthefamily B = {51:,, oo Em} is known, then, respectively denoting by g1.;, ..., 8r.r the probability density
of the order statistics T1.r, ..., Tr.r,
Z;:g(h)é (gr—h+1:r(t) - gr—h:r(t))
St (Gronir) = Gyoper))
-0 810
Z;;(f_l)(r = K)p-1 G ()

sy =
A =

ae. t>0, ¢=1,2,...,r. (46)
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Proof of (i). For ¢ = 1 Eq. (45) follows immediately by Eq. (42). For ¢ = 2,...,r, Eq. (45) is immediately
achieved by inverting the Eq. (43).

Proof of (ii). Eq. (46) is obtained by resorting to Eq. (45) and Proposition 8, together with the circumstance
that P(Ty.4 > t) = 84(G(0)). O

These results can be further specialized to the case of exchangeable times T4, ..., Tr. Forany d = 1, ..., r, the
exchangeable random lifetimes T4, ..., T4, are characterized by the m.c.h.r. functions y[d](t\k; t1, .., ty) for
k=0,...,d-1,0< t] <--- <t <t, and therefore (see (32) and Proposition 15 for r = d)

A = du(t|0). (7)

In view of this remark, the set of functions € is equivalent to the set of functions

e = (u(t0), ..., ul(e0)1, (48)
which is therefore equivalent also to the systems of functions A and B.
More precisely, when Ty, ..., T; are exchangeable and satisfy (H5), then, with the above notation,
Eq.s (42), (43) and (44) can be rewritten as
t
G(t) = exp {— /}1[1](5\0) dS} , t>0, (49)
0
Glw
S4(w) =exp< -d / y[d](s\o) dsy, uelo,1],d=2,...,r, (50)
0
and
4 h-1 t
= _ _qyher-14e [ T - _ [h]
Ger0= 3 (1) <h> <,_ e) exp { ~h / u(sjo) ds . (51)
h=r—{+1 0
Similarly Eq.s (45) and (46) take the form
pue0) = —% %log [6:G®)], ae.t>0, ¢=1,2,..,r, (52)

1 Z}r'[:e(h)é (gr—thl:r(t) - gr—h:r(t))

¢ Z;=£(h)£ (Er—hﬂ:r(t) - Er—h;r(ﬂ)

1 0 - R 810
¢ er(_:(lé_l)(r - k)@—l Ek:r(t) ’

u(0) =

ae. t>0, ¢(=1,..,r. (53)

5 Special cases

The arguments developed in the previous sections will now be illustrated by considering in Subsections 5.1
and 5.2 the two remarkable classes of models respectively defined by Archimedean copulas and by multi-
variate conditional hazard rate functions satisfying the load-sharing condition. These choices in a sense cor-
respond to the simplest possible forms admitted in the two types of descriptions of a joint distribution for
lifetimes, respectively.
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In particular, the analysis of these classes will allow us to obtain some examples of application for some
of the results derived so far, by showing the special form taken by related formulas. Subsection 5.1is tailored to
illustrate basic aspects of the exchangeable case. On the other hand the arguments in Subsection 5.2 permit to
pave the way for a better understanding of the differences between exchangeability and minimal stability, and
to present some heuristic ideas at the basis of the construction of minimally stable, but non-exchangeable,
multivariate models.

5.1 Archimedean Copulas

Let us consider the case when the survival copula K of T4, ..., Ty is Archimedean with generator 1. For sim-
plicity’s sake we assume that K is a strict Archimedean copula, i.e., the generator ) is a strictly decreasing,
continuous and convex function, such that (1) = 0 and (0*) = oo, so that K = Cy, with

Cpur, ooy ur) i= 9~ (Pur) + -+ + Pluy)).

Itisimportant to recall that the function Cy, is an r-dimensional copula if and only if the inverse function Plis
r-monotonic (see Theorem 6.3.6 in Schweizer and Sklar [25], Nelsen [20], see also Mc Neil and NeSlehova [16]).
By Definition 1 it is immediately seen that the diagonal sections associated to K = Cy, assume the form

6o(u) = lp’l(ﬁlp(u)), 2</l<r.

Furthermore, the survival copula K being symmetric, the model T4, ..., Tr is exchangeable when the lifetimes
share the same common marginal survival function G, i.e., under condition (H1). Therefore, once 1 and G
are given, then the family A in (8) coincides with the family {G(¢), ¥ *(2yp(w)), ..., Y1 (rp(u))}. From Eq. (4)
(see also Proposition 10) we know how the family B is generally obtained from A. In the present case, one
can more precisely write

Gy = (—1)’”“‘@ (’;:;) Y PG, 1<lsr.

h=r-{+1
Moreover, under the further regularity condition (H5), by Eq. (52) one can get the m.c.h.r. functions

1d

WA(el0) = —; T log [ (p(G()],  ae.

1 S
- — Y (G() g(t), a.e. (54)
W (¥ (p(G) ) (60)

Conversely, when the family B of the survival distribution functions Gy., is given, then we can recover the
family A. In this respect we stress that, even if the explicit expression of the generator i is not known, still
by Corollary 9 (see also Proposition 10), from B we immediately get the diagonal sections 6,(u), d = 2, ..., r.
Then the following question naturally arises:
Does the knowledge of B allow us to identify the generator 1?

In other words we wonder whether the identity §4(u) = ¥~ (d(u)) forany d = 2, ..., r is sufficient to identify
1. We briefly discuss about this problem in Remark 20 below. To this end it is useful to write down explicitly
thecased =r:

P rp) = 6:) = G1 (G ' W),

and thecased = r - 1:
W= DY) = 51 = 2 (0 ) + (1- 1) 81

Remark 20. [t is interesting to point out (see Jaworski [12]) that when r > 2 the generator ) is uniquely de-
termined (up to a multiplicative constant) by the pair &, and 6,_1, though the proof of the latter claim is not
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constructive. On the other hand in general one cannot uniquely determine ) only from 8;, when r > 2, since
there may exist infinite generators with the same diagonal section 6, (see again [12]). However, when the diag-
onal 8, satisfy the condition §,(17) = r, then Erderly et al. [10] show that ) is uniquely determined (up to a
multiplicative constant) by 8, and, furthermore, ) can be approximated thanks to the following formula:

Y) o lim r™(1-6;"(w)),
where 6;™ is the composition of §; with itself m times.

A further particular case within Archimedean models is the Schur-constant case, i.e., when
]P(Tl > tl,...,Tr > tr)=6(t1+"'+tr), (55)

corresponding to the choice G = 1! (see, e.g., [29]). In this case both the diagonal sections &;, and the survival
functions G,., are determined by the marginal survival function G(¢):

8,(G(1) = Y~ (hp(G(t)) = G(ht) (56)
= ’ r h-1
Ger(t) = > (D) <h> (r ) G(ht), 1s<tsr.
h=r-£+1
Furthermore, in view of the particularly simple form (56) of the diagonal sections, Eq. (52) can be rewritten as
[ 14d glet)
tj0) = -= —log|G(¢ 57
pwo) =~ giog [Gen) = £, (57)

Note that for Schur-constant models one could get the above results also directly, taking into account that
(55) implies
P(Ty>t, e, To> ) =P(T1 > t, ..., Ty >t, Tpe1 >0, ..., Tr >0) = G(£ ).

Example 21. In order to illustrate how to compute the m.c.h.r. functions for Archimedean models, in this exam-
ple we consider two special cases within the class of Archimedean models sharing the same generator
Yu) = - 1)%, a>0,B>1.

Note that the inverse function ~1(t) = C tﬁ+1)a
The first case is the Archimedean model with G(t) = e™". Then, for any A C [r] with |A| = ¢, one has

P(T1.a > 0) = 84(G(0) = ¥~ ((G(¢)))
1 _ 1

((Z(eta - 1)%)13 + 1)a ) (fﬁem — 0B+ 1)“'

Therefore by (54) and taking into account that
Y = —gu @ @ -1

is completely monotonic, so that Cy, is a copula for any r 2 2.

we get
et (eat _ 1) 31

,u[e](l‘\()) _ - - T
(Beta - ¢B + 1) ((zﬂem — 1) - 1) ’

As a second case, we consider the Schur-constant model with the same generator ), which corresponds to the
choice

E(t) _ lp*l(t) _ 1 (t) B aﬁ tﬂ*l
Then by Eq.s (56) and (57) we get
]P(leA > t) = ;, H[e](tlo) - aﬁ (Kt)lLl

(Cet)f + 1)“ (B +1°
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5.2 Time homogeneous load-sharing models

Load sharing models are characterized by the condition that the m.c.h.r. functions depend on current time
and on the set of failed components at the current time, but do not depend on the failure times. Load sharing
models are well known and recurrently studied in the reliability literature (see, e.g., Spizzichino [30], Rychlik
and Spizzichino [23], and the references cited therein). In particular the joint and marginal distributions of
the order statistics have been studied in some details. For what concerns the special case of exchangeability
see also Kamps [14].

In the literature it is also assumed that the m.c.h.r. functions do not depend on the order of failures, however it
is interesting here to extend such a definition to a generalized class of models in which instead also the order
of failure times may influence the m.c.h.r. functions. Actually some of the existing results on load sharing
models can be easily extended to this class.

Definition 22. The joint distribution of the random variables T+, ..., Tr is an Order Dependent Load Sharing
model (ODLS) if it is absolutely continuous, and the m.c.h.r. functions do not depend on the failure times, i.e., for
any k=0,1,...,r- 1, there exist (,Z)k!(r - k) functions v — A; ik(V) such that, forany Q < vy < -+ < vy < v,
and (jy, ..., ji) € IM([r])

jtsees

Ajljy i VIV s vid = Ay (V).
The model is said simply Load Sharing (LS) model when the m.c.h.r. functions depend neither on the failure
times nor on the order of failures, i.e., for any k = 0, 1, ..., r-1, there exist (}) (r - k) functions v — Aiigissnniiy @)
such that, forany 0 < vy < -+ < vy < v, and (j1, ..., ji) € I ([r])
Ao VIVL =5 Vi) = A iy -
When furthermore the functions v — Ay;, 5 (v) = Ay, i (respectively, the functions v — A, . i3(V)

are constant w.r.t. time v, then the model T+, ..., T; is said an Order Dependent Time Homogeneous Load
Sharing model (ODTHLS) (respectively, a Time Homogeneous Load Sharing model (THLS)).

Clearly a Load Sharing model is also an Order Dependent Load Sharing model. To distinguish between the
two cases, we will sometimes say that a model is a strictly Order Dependent Load Sharing model when the
m.c.h.r. functions do depend on the order. From an engineering-oriented viewpoint, strictly ODLS models do
not seem very significant for applications in the field of reliability. However models with this property may
emerge in different fields, as shown in De Santis, Spizzichino [8] in the analysis of aggregation paradoxes.
See also Example 29 below, where the condition of load sharing must be limited to strictly ODTHLS models
on the purpose of finding among uniform frailty models (see (76)) those which are minimally stable, without
falling in the exchangeable case.

Concerning the analysis of the minimal stability, it is important to stress that, in general, d-marginal
models of load sharing models are not load sharing. This fact entails that the m.c.h.r. functions /\ﬁm are in
general not easy to compute, even in the exchangeable case. In the latter case however we will be able to
compute such functions explicitly by using the results of Section 4. On the contrary in the non-exchangeable

case, we will give minimal stability conditions in terms of the m.c.h.r. functions A;;, ;..

Exchangeable THLS models. An exchangeable load sharing model clearly cannot be strictly order depen-
dent, in that its m.c.h.r. functions are such that u(t|k; t1, . . . , t;) = u(t|k). Furthermore it is time homogeneous
if and only if for any k = 0, 1, .., r - 1 there exists a constant L(r - k) such that A, __; (t) = L(r - k) and

L(r-k)
r-k

.....

u(k) = . (58)

In such a case it is easily seen that

= _ (X X o X
GO =P(i5 + g+ * Tty > )

where X; ~ EXP(1),i=0,1, 2...,r—1, are independent random variables (see in particular Spizzichino [30],
Kamps [14], Cramer and Kamps [4], and references therein). In other words, forany k = 1, .., r, the distribution
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of Ty., coincides with the distribution of the sum of k independent exponential distributions of parameters
= L(r), ....,7%x = L(r — (k — 1)). In the literature such a distribution is known as Generalized Erlang or
Hypoexponential distribution: for a fixed vector v = (v1, ..., 7r) € R},

GY(D) = (Z M) (59)
for Y4, ..., Y;, independent and standard exponential random variables.

When ~ = (y1, ..., ¥) is such that »; # ~; for all i # j, the above distribution is referred to as Hyperexpo-
nential, and furthermore (see, e.g., Cramer and Kamps [4] and references therein) the survival function and
the probability density are respectively given by

k
E,Z(t)=z( 11 %) et

j=1 \helk\{j}

and

k
g1 )
helk\{j} J

j=1
Therefore, denoting by L the vector
= (L(r)s L(r - 1)’ ceey L(l))’

in the exchangeable case we can write .
Gier(t) = G (D). (60)
Furthermore, on the one hand formula (9) takes the special form

r r

G L X X Xy It

G(t) = S P(Ey+ Bt i oY) = = > Gi(. (61)
k=1 k=1

On the other hand, taking into account (11), for any A C [r], with |A| = d, one has

r-d+1

d
P(T1.4 > t) = 84(G(1)) = Z (r=Raa P({G+ iip + o+ oty > )

d r-d+1 1
= 0a ; (r - k)g-1 Gk (t) (62)

and consequently, recalling the notation in (47), (53) becomes

1 50097 - K 8E(0)
7L .

4 (9,4 Gy(O)

In particular, assuming that L(i) # L(j) for i # j, and setting

Iy = H Lir-h)-L(r-¢’
he{0,...,k-1}\{¢}

pl(t0) = (63)

one has
k

_ 1< Lir-(h-1)) —Lr—(-1)t
G(t)= = Z H . e

r &2\, L= G- 1) - 10 -G - 1)

1 r-1 r

— ? ( 3%,1() e—L(r—(Z)t’
=0 \k=£+1
d r-d /r-d+1
P(T]_:A > t) = @ Z (r— k)d—lgél,k> e*L(r—Z)t
=0 \k=(+1
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and

i (Shdi 0= R 9Fy) Lir- g et

1
T (S - Rtk ) o

Note that, when d = r, then we obviously get that the function ¢ — u"l(¢|0) is constant and u"l(¢[0) =
% L(r), whereas for d < r the function t — y[d](t|0) is not constant.
This fact is somehow related to the afore-mentioned circumstance that the d-dimensional marginal distribu-
tions of a load sharing model is generally not load sharing.

Before passing to the non-exchangeable case, we observe that in the present THLS exchangeable case
the function ¥(t; [r], j) defined in (34) can be explicitly computed:

l[/(t; [I’],i) = ]P)(Th < sz <eee L Tid <t< Tiy Vi ¢ {jly ,]d})

_ %P(T,— << Ty, V)€ {jasemmsials Vi€ {j1seemsia})
1 1 1 —L I
= @P(N(t) =d) = (5, [6an(0-Ga(0), (64)

where we have used the notation introduced in (59). In view of Proposition 16, expression (64) turns out to
be useful also in the analysis of minimal stability conditions. Indeed even for any ODTHLS model one has

Y(t;[r],§) =P(Tj, < Tj, <++- < Tj, < t < Ty, Vi ¢ {j1, ..., ja})

d
ZHAth ...... je-1 '/dsd/dsd 1 /dsl
=1 0 0 0
d
|:e(t5d)/1j1 ,,,,,, jd He’(sé’séfl)/ljl ,,,,,, j(1:| (65)
£=1
42 [tsermsiecr A —A
=I5 [Gan(0) - Ga(t)], (66)

=1 J1seeees Je-1

WhereA= (AQ)’Ajl""’Afl ,,,,, jk""’Afl ..... jr—l)'

In the following Example 23, for the case r = 3, we will analyze two different THLS models: an exchange-
able THLS model and a minimally stable (non-exchangeable) THLS model which is trivially not strictly order
dependent. On this purpose we will compute the survival functions of minima on sets of size d = 1, 2, 3 and
the marginal survival functions of order statistics. We will focus both on the common features and on the
differences between the two models.

Example 23. We start by considering the non-exchangeable model: let r = 3 and let T1, T,, T3 be lifetimes
jointly distributed according to a THLS model with m.c.h.r. functions given as follows:

1
A1jo(8) = A31p(O) = A3)9() = 3
A3\1(t):% A2|1(t): 1_7) /‘1|2(t):71 A3\2 :1_7 /\2|3(t)=% Al\}(t): 1_71
for a fixed value v € (%, 1) and finally
A1)2,3(0 = Ag3,2(8) = Agy1 3(8) = Agy3,1(6) = A3)1,5(0) = A3p2,1(O) = 2.
For this model one has

(1) AQ) = 1’ A]l = 1’ Aj1,fz = 2’ foranyjl #]2 S {1’ 2’ 3}-
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Furthermore we consider lifetimes Ty, T>, T3 jointly distributed according to the exchangeable THLS model
defined by

(i) Ag=LB)=1, Aj, =L2)=1, 4, =L() =2, foranyji #j € {1,2,3},

or, equivalently (recall (58) with r = 3), such that u(0) = %, u(1) = %, u2) = 2.

As we are going to see below, the two models share the same marginal survival functions of the order statis-
tics. Before checking this property, we point out a main difference between the two models: for the exchangeable
model one obviously has

[ =

IP)(FTJI < T]Z < T]B) = 1° for any (jlst’j3) S H([B])’

w

whereas, for instance, one has

1;7=IP’(T1<T2<T3)<IP>(T1<T3<T2)=%.

The above inequality is implied by the observation that for THLS models one has (see, e.g., Spizzichino [30])
Ah\@ Aiz\]'l A

J3lin)2
Ay A

P(Th < sz < Tj3) = A

J1 Jis2

The above inequality shows also that T, T», T5 is a non-exchangeable THLS model. However the random vari-
ables Ty, T,, T3 are minimally stable. Indeed by the previous values in (i), and by Eq. (65), one has:
foranyji € {1, 2,3},
Y(t:181j1) =P(Tj, < t, Tj > t,j # j1)
t t
- /)ljlme_m“’ e (=5 gs = / % eSe 9 gs = % te’l; (67)
0 0

for any (jlyjz) S HZ([B])r

¥ (t; 3], G1,J2)) =P(Tj, < Tj, < t, Tj, > t)
t s
=/ds / ds’ e—(t—s)Ang Ah\@/\jz\jl e—S’Am e-(s_S/)A,-1 ds
0 0
t

1 -2t s 1 ~ty_ ot 2t
=3 Aialis @ /se ds = 3 Ay (eft-et+e ™).
0

Taking into account that, for any (j1, j2)

Ajliy + iy = v+ (1=7) = 1,

we may apply Proposition 16 to conclude that T1, T,, T5 are minimally stable. Furthermore we get that, for any
(1, J2,J3) € I([3]),

P(Tj, <t,Tj, < t, Tj, > t) = % (e't-et+e?). (68)
From the previous computations, and in particular (67) and (68), we get explicitly the following survival functions

P(Ty 1,03 > =P(T1 >, Ta>t, T3> )= e
P(Tyq1,y > O =P(T1 >, Ta> ) =P(T1 >, Ta > t, T3 > 1)

+P(Ty >t, T, > t, T3st)=e"t+%te_t=e_t (1+§),
G)=P(T1>8)=P(T1 >t, To>t, T3> ) +P(Ty >t, T, >t, T3<t)
+]P(T1>t, Ts > t, TzSt)+]P(T1>t, TzSt,T3St)

t ¢, 1 o

-t t ¢+, 1 ¢ ot -2ty _ 2 - - -
- P 2 (tet- - < ¢ =
et+23e +3(e et +e ) 3¢ ttelrse
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To see that the families of the marginal survival functions of the order statistics coincide for the two models,
we take into account that in general, even withr > 3,

Gia(t) = e Jo 20 ds _p(N() = 0), and Gy, () = P(N(£) < £ - 1).

We notice furthermore that, for minimally stable models, Eq. (17) (withh = r —kand H = {k + 1, ..., r}) and
Egq. (35) imply that

r

P(N(t) = k) = (k

> P(Ty<t,Vie{1,2,..k}, Tj>t, Vje{k+1,..,1})

- (IZ) Z Y(t;[r], Giaj2s o)), Lsksr.
(1

,,,,,, jel (k)

Thus, comparing Eq. (66) with Eq. (64) for minimal THLS models, and taking into account that A = L, i.e.,
= L(r - k), we obtain the afore mentioned conclusion, i.e., that for both models one has

.....

Gis(®)=el=et, Gos()=€et(1+1), G33()=2e"t+e 2.

We will see moreover that even the respective joint distributions of the order statistics do coincide for the two
models. Actually the latter circumstance is a consequence of the condition that the functions (jy, ..., ji)
A;, ;. are constant, only depending on k (see Remark 27 below and condition (80) in Example 32 in the Ap-
pendix).

Minimally stable ODTHLS models. We start our discussion with a simple necessary condition for minimal
stability of ODTHLS models.
Lemma24. Let Ty, ..., Tr be an ODTHLS model. If Ty, ..., Tr are minimally stable then necessarily

Ai|(2) = Aif'@ and A=Ay, Vie [r]

Proof. By Proposition 5 we know that when Ty, ..., Ty are minimally stable, for any ¢ > O the probabilities
P(T; < t, T; > t,Vj # i) necessarily assume the same value for any i € [r]. Taking into account that (see (65)
and (66))

t
P(T; < t, Tj > t,Vj # i) =/li|w/e’A‘”se’A"(t’s)ds
0

one immediately gets that

Ai‘@tei/lmt if A; = Ay.
]P(TiSt, T1>t,V]7£l)= At ot
e it —e 0 .
g ———— ifA; #A
Al\@ A@ _Ai 1 1 # 0

If there exists iy € [r] such that A;, = Ay then necessarily A; = Ay, for any i € [r]. Consequently, also
Aijg = Ayg)0-
Viceversa if there exists i € [r] such that A;, # Ay, then necessarily A; # Ay, for any i € [r]. Furthermore

one necessarily has

e—Ai[ _ e—A@t e—Alt _ e—AQ)t

A P L T

Then the thesis follows by the linear independence of the functions t — e® for different valuesofa ¢ R. [



416 —— Rachele Foschi, Giovanna Nappo, and Fabio L. Spizzichino DE GRUYTER

In the next result (see Proposition 25 below) we show that the survival functions Gy, of a minimally stable
ODTHLS model is a mixture of Hypoexponential distributions.

Before stating formally our result we need to introduce some further notation. Let T4, ..., Tr be an
ODTHLS model. For any permutation j = (j1, ..., jr) € II[r] we will write A;, _; to denote the vector

Ay o= gy Ay s Ay s s A

We will also use the shorter notation A; instead of A;,
Then we consider the partition of II[r] generated by the equivalence relation

If we define
Cim {L: 3j ) with A~ L) )

then the elements of the partition may be labeled by the vectors L € £L:

a(r]) = U a([r]; L),
Les
where
I([r]; L) := {j € I([r]) such that A; = L}. (70)

For our purposes it is convenient to label the coordinates of the vectors in £ as follows:
L= (L(,L(r-1),...,L(1)).

When Ty, ..., Ty are minimally stable, then, in view of Lemma 24, L(r) takes on the same value for any
L € £, and the same happens for L(r — 1). More precisely one has

L(l’)=A@, L(T—1)=A1=Ai, VIE[T]

Proposition 25. Let T4, ..., Tr be a minimally stable ODTHLS model. Then, with the notation introduced above,
the survival functions Gy.,, £ = 1, ..., r, can be obtained as the following mixture of Hypoexponential survival
functions

— IH([r]; L)| =L

Gty = Y2 TUEDN G, @

Lel

Before giving the proof of the previous proposition, it is convenient to present the following remarks.

Remark 26. The previous expression (71) of G,.,(t) is alternative to the expression (44) given in Proposition 18.
The main difference is that in (44) we need to know explicitly the hazard rates A[Qh] of the minima, but we need not
to know explicitly the m.c.h.r. functions Ay;, . ;. , while, viceversa, in (71) we need to know explicitly the m.c.h..
functions, but we need not to compute the hazard rates A([Dh] of the minima.

Remark 27. Note that (see (60)) the functions Eﬁ(t) are the survival functions of the order statistics of an ex-
changeable THLS model with u(k) = L(r — k)/(r - k). Therefore the r.h.s. of (71) can be interpreted as a mixture
of the survival functions of exchangeable models. In the model T, T», T of Example 23 the mixture turns out to
be degenerate, since the set L is the singleton {(1, 1, 2)}. The latter circumstance explains the reason why the
two models in Example 23 share the same family {G1.3, G2.3, G3:3}.

Proof of Proposition 25. Consider a random permutation o4, ..., 0r, uniformly distributed in II([r]). Then
To,s ..., To, is the symmetrized model of T4, ..., Ty, denoted by Tl, ceey T, in Remark 11.

Clearly the two models share the same distributions for the order statistics, and the joint distribution of
Ty, ..., Tr is the mixture over L € £ of the exchangeable THLS models with m.h.c.r. functions

L(r-k)

u(k) = —

’
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with mixture weights given by w Forany L € £, the survival functions of the order statistics of the above

exchangeable THLS model is Elﬂ:,(t), and therefore the marginal survival functions of the order statistics of
the model Ty,..., Ty are given by

= H([r]; L)| =L
BTy, > 0= Y TUEDIGE o),
Les
whence the thesis follows. O

Similarly to (71) one obtains that for minimally stable ODTHLS models the {rlarginal survival function and the
survival functions of the minima are mixtures over k € [r] and L € £ of Gx(t). More precisely by (9) one gets
immediately that

G - Z o L)l r] L)‘ GLo 72)
)
and, furthermore, by (11) one gets
r-d+1
P(Tpa > t) = 64(G(D)) = Z r-Ras 3 MG ©. 73)
LeL

As a generalization of the arguments presented in Example 23, we now characterize the set of all mini-
mally stable ODTHLS models T;, T, T3 in terms of the m.c.h.r. functions.

Example 28 (Minimally stable ODTHLS with r = 3). Let us consider the ODTHLS model with T+, T,, T3 whose
joint distribution is given in terms of the m.c.h.r. functions A; 9, A, jj,» Aj,j, j,» J15J25J3 € {1,2,3}, 2 # J1,
Jj3 #J1sJ2-

We are going to prove that T1, T», T3 are minimally stable if and only if conditions (A1) and (A2) below hold,
together with either condition (A3) or condition (A3)’, where

(A1) there exists a value L(3) such that
L(3).

Ao =Az0 =30 = =

(A2) there exists a value L(2) such that
Ay = Q) + A5 = Ay = Aqpp + A3 = A3 = Ayj3 + Ay 3 = L(2);
(A3) there exists a value L(1) such that
Ajsljno = L), Y (i1, j2,3) € O([3)),
and there exist two values v, and ~, (possibly equal) such that
s Ay} = {01272} forany {ja, 2}, (74)

and
11 +72 = L(2); (75)

(A3) there exist two values L'(1) # L" (1) such that
Aialib}'z € {L/(l)’ L//(l)}’ V(jl’jZ!j3) e (3D,
there exist two values 1 and v, (possibly equal) such that (74) and (75) hold, and furthermore

Al =715 Ajyjjv, = L' ifandonlyif A jj, =72, Ay, = L7 (D).
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Note that the model is strictly order dependent only under condition (A3)'.

Conditions (A1) and (A2) are the necessary conditions of Lemma 24 with L(3) := Ay and L(2) := A, and
guarantee that the following probabilities (see (65) and (66)) take the same value for any j; € {1, 2, 3},

t
W(081,1) =P(T), <t, Tj > t,j #j1) = /Ahme‘“@ e 9 gs.
0

Furthermore for any (j1, j,) € II,([3]), we get

¥(t:31, G1,32)) =B(Tj, < Tj, < £, Tj, > t)
S

t
) / as / ds' e "M 4y Ay, €70 e ds
0 0

whereas

S

t
(6131, (s o)) = / @ / ds' A, oy, j, € () g7 o755,
0 0

Proposition 16 guarantees that T1, T, T3 are minimally stable if and only if for any t > O the following proba-
bilities take on the same value for any {ji1, j>} C {1, 2, 3}:
IFD(T] <t, Tiz <t, T}'3 > t) = l{l(t; [3], (jl,jz)) + l1”(1'; [3], (jz,j1)).

Taking into account the necessary conditions (A1) and (A2), and that when r = 3, then A, = /\is\il,iz the

previous condition is equivalent to requiring that, for any t > 0 the following sums take on the same value for
any {j1,j»} C {1,2,3}:

t S
Ajslin / ds / ds' e s ts) o LB’ gL @)s=s)
0 0

t s
Al /ds / ds' ez (t79) 7LOK' o L2Ns=s"),
0 0

In its turn the above requirement is equivalent to either condition (A3) or (A3)'.

As a generalization of the previous example, in Example 32 (see the Appendix), we characterize the minimal
stability property for ODTHLS models whose £ is a singleton.

Among load sharing models, an interesting subclass is the class of the so-called uniform frailty models,
whose m.c.h.r. functions are such that, forany k=0,1, 2,...,r-1,

A]|]1 Jk = jl:”’jk s V(jl, ...,jk) S Hk([r])' (76)

.....

We conclude this section by analyzing the property of minimal stability for the model of the previous Exam-
ple 28, under the additional assumption of uniform frailty.

Example 29. Let us consider the model T,, T,, T3 of the previous Example 28. If besides minimal stability,
we impose the uniform frailty condition, then the model T, T,, T3 turns out to be non-exchangeable only if it is
strictly order dependent. Indeed when condition (A3) holds, then the additional uniform frailty condition implies
that v1 = v, = L(2)/2 and therefore the model is exchangeable: for any (j1, j», j3) € II([3])

L3 ,  _L@

A]'W): 3’ jalin T T 0 ]'3|]'1,]'2=L(1)'
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On the contrary, when condition (A3)’ holds, the model is strictly order dependent. Then the uniform frailty and
the minimal stability conditions together become: for any (j1, j2, j3) € H([3])

L3) L(2)
Ao = =37 i = 5 sl Al ) = {2, L7}

A More general examples

Example 30 (A procedure to construct DD, not exchangeable, n-dimensional copulas). Our aim is to prove a
generalization of Example 13. We start by proving that, given a DD n — 1-dimensional copula C,_1, then it is pos-
sible to construct a n-dimensional copula Cyn which is DD. Subsequently we show that by using this construction
recursively, starting with a 2-dimensional not symmetric copula, the copulas Cn are not exchangeable.

Given the DD copula C,_,, we define a n-dimensional copula Cy, as

Cn(uy,y ..oy Un-1, Un)
:=% [Cno1(U1, ooey Uno1) = Un + Croy (U, ooy Upo, Un) - Ug + 0
v+ o+ Cpog(Un-1, Uny Uy ovey Un-3) = Un—p + Cpog (Un, Uy ooy Un2) * Una |,
Namely Cp, is obtained as the symmetric mixture of the copulas over the n cyclic permutations of (1, 2, ..., n)

0,=01,2,..,n), and oy, = (k, k+1,...,n,1,..,k-1), 2<ks<n,

n
1
Cr,(ul, ooy Up-1, un) = H ; Cn_l(uok(l), ceey Llak(nfl)) . ugk(n). (77)

It is easy to see that Cy is DD, with diagonal sections
83" (u) = Cn(u, ooy uyu) = 857 (W) - u,  67"(w) = u
and

d

8q W) =" 8gw) u+ (1 - g) 8§ (w), 2sdsn-1. (78)

Indeed when (uy, ..., Up_1, Un) = (Uey +e4c), with A C [n], and |A| = d, then, forany k = 1, ..., n, one can write
the n — 1-dimensional vectors appearing in (77) as

(Ug,(1)> Ugy2)s +++» Ugy(n-1)) = (Ui U1 s +ees Uny -0y Ujp) = (U€B + €5C),

where B is a suitable subset of [n — 1]. Furthermore the cardinality |B| takes on either the value d or the value
d - 1, depending on the value of uj_,, namely

d ifugk(n) = Up_1 = 1
1B| = ,
d-1 ifugm =uxq=1U,

where we have used the convention that ug = un.
Starting from (78) one can easily prove that
62"(11) =g ul +(1- an.q4) Clu, wWu??, 1sdsn,

with
d d
an1 =1, aygq= 7 dn-1,d-1+ 1- o) @n-1,d-
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Starting from a fixed permutation (n(1), ..., n(n)) ¢ {0y, k = 1, ..., n}, a similar procedure can be used
to construct another DD n-dimensional copula (possibly different from Cp), by using the n cyclic permutations
ox € IIe(1,2,...,n):

n
1
Crn(U, voos Un-1, Un) 1= >~ Cno1 (Un(oy (1)) Un(o2))> ++5 Unton(n-1))) * (o (m)-
k=1

When the procedure is implemented recursively starting with a fixed permutation 1 € I1([n]), and with a not-
symmetric copula C,(u, v) = C(u, v), as in Example 13, denote by Uy, ..., Uy the random variables associated
to the copula of Cn,z, n = 3. Then for any fixed i = 1, ..., n the 2-dimensional marginals of U;, U;,1 (with the
convention that Uy, = Uy) are obtained recursively as

n-2 n-3

Cn,n(u; V’ 1’ LR 1)= % (n_z)cn—l,ﬂ(u’vy 1’ AR 1)+2uV ’ u,VE [01 1]’

and therefore are all equal, i.e.,
Cn,n(ue{i} + VE{i+1} + e[n]\{i,i+1}> . Cn,n(u, v, 1,...., 1)

Notice that therefore
Cﬂ,ﬂ(uy v, 1’ eorey 1) # Cn,n(v, u, 17 ceeey 1))

so that the copulas Cn,; are not symmetric.

Since we are particularly interested in examples with absolutely continuous joint and marginal distributions,
observe that if we start this procedure with a absolutely continuous copula we get absolutely continuous
copulas.

Furthermore we recall the class of absolutely continuous examples given in Navarro and Fernandez-San-
chez [17] (see in particular Proposition 1 therein). The class in [17] may be seen as a particular case of the
larger class considered in the next example.

Example 31 (Negative mixtures of DD copulas are DD). Suppose that D(uy, ..., uy) is an absolutely continu-
ous exchangeable copula with probability density d such that

0< dp(uly eeey u?’) < d(uly eeey u?’),

for some positive function p and some positive constant d.
Let C;i(uy, ..., ur), i = 1, 2, be two different copulas which are DD, but non-exchangeable, and absolutely con-
tinuous, with probability density c;(u1, ..., ur) such that, for some positive constant ¢

0= ci(ug, ...,ur) =cplug, ..., ur).
Assume also that the function ¢, (uy, ..., ur) — c2(Uy, ..., ur) is not symmetric, and define

Ko(uy, ..., ur) := D(uy, ..., uy) + a[C1(u1, ..., ur) = Co(us, ..., wr)]. (79)

If a is strictly positive and sufficiently small, then K, is an absolutely continuous DD copula, but not ex-
changeable.

We now proceed with the proof of the previous statement.

The function K, defined in (79) has a density

ka(uh seey ur) = d(uly seey ur) + a[cl(uly eeey u?’) - Cz(uly eeey ur)} ’



DE GRUYTER Diagonal sections, mchr, order statistics =— 421

such that the integral
ka(ui, ..., ur)duq - - - dur = 1.
[0,1]"
Therefore k4 is a probability density, if and only if ka(uy, ..., ur) = 0 for any (uy, ..., ur) € (0, 1)". The condition
ca < d implies that
ka(uy, ...,ur) 2dp(uq, ..., ur) +a[0-Cp(uyg, ..., ur)] 20
The assumption on the densities may be weakened, for instance, it is clearly not necessary any assumption on
the density of C1. Furthermore the example could be generalized to the case

m
Kay,oooay U1y ooy tr) := DUy, ..., ur) + Zak [C1a(ur, ooy tr) = Co Uy, ..., ur)],
k=1
with suitable conditions on a; and C; , fork =1, ...,m,i=1, 2.
Finally it is interesting to note that K, is a negative mixture of copulas, and that negative mixture of i.i.d.
random variable are linked to finite exchangeability, and the problem of extendibility.

Example 32. (Minimally stable ODTHLS models sharing the joint distribution of the order statistics with an
exchangeable THLS model) Let us assume that T+, .., Ty, with r > 3, is an ODTHLS model described by the
m.c.hr. functions Ay, ., d = 1,..,1, (1 eesja-1,J) € I([r]) with the usual convention that when d = 1
then Aj;, ..., = Ajjo- We are going to characterize all the minimally stable ODTHLS models in the particular
case when the set £ is the singleton {L = (L(r), L(r - 1), ..., L(1)) }, i.e.,

Jlseeosfk Z Aj\h ,,,,, jk =L(r—k), Vk=0,1,...,r—1. (80)
JE ek}

By Proposition 25, for all the above minimally stable ODTHLS models, one has Gy., = Eﬁ, k=1,2,...,r,ie.,the
same Hypoexponential marginal survival functions of the exchangeable THLS model (58). The characterization
of the condition that T, ..., Tr are minimally stable is then a consequence of Proposition 16 together with the
comparison between (66) and (64): the m.c.h.r. functions satisfy the following system of equations

Z]g i Ajjjy,ejar = Lr=(d-1)), {1srjary Clrl
{ }

Zieﬂ([) Hﬁﬂ Ajplitseojnn = é H(ei=1 L(r-(-1)), foranyI C [r],with|I| =d,
d=1,...,r.
This characterization yields that there exist infinitely many minimally stable ODTHLS models satisfying condi-

tion (80). This statement is a consequence of the observation that one can see the previous system as a family
of nested linear systems:

{Zjem Ajjo = L),
Ajg = 3 L(); jelrl

once AJ'I(Z) are given, then /\j2 i, are the solutions x;, ;,, j» # j1, of

iz Anj0%Xj,, = L(r= 1), Vi e [r]
A3 10 Xj1 o + Ajy 10 Xy g = é L(NL(r-1);  Y{j1,j2} CIr];

are given, then A;

once Ay and A; J31i1.)2

i are the solutions x;, ;, ;, of
2je i} Nz = L= 2), Vit < I,

Do)k kanks 1) A 101 X o s

= (—1) L L(r-1L(r-2);  V{ki, ko, k3} C[r];
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and so on. Since the above nested systems always admit the solutions xj,, . j.j = Ajjj,,.j, = L(ri‘kk), then there
are infinite solutions.
We end this example by observing that under condition (80) all the ODTHLS models (not necessarily mini-

mally stable) share with the exchangeable THLS model (58) not only the marginal distributions but also the joint

distribution of the order statistics. More precisely the joint distribution of (le,, ooy Tm) coincides with the joint
distribution of
Y() Yo Y1 YO Y1 Yr—l
0 0 L, e L , 81
(L(r) I L1 I " Ior-1 L(1)) (81)
where Y,k =0,1,...,r—1, arei.i.d. standard exponential. Indeed, one can easily extend Corollary 3 in Rychlik

and Spizzichino [23] for THLS models, to ODTHLS ones: for any permutation (j1, ..., jr) € II([r]), the conditional
joint distribution of (Ty.y, ..., Tr.r) given the event {Tj, < Tj, < --- < T}, }, coincides with the law of

(& Yo ,1n Yo £+...+L)

Ay’ 7 Ajl""’A@+A 1 (82)

jl ]llyn"jrfl
and by (80), the random vectors in Eq.’s (81) and (82) do coincide.
Finally we observe that, as a consequence, these models satisfy also the following condition: for any per-

mutation (j1, ..., jr) € I([r]),
P(Tyy > t|Tj, < Tj, <-++ < Tj) = P(Typ > t) (83)
Indeed, in the case of ODTHLS models, we have just seen that condition (80) implies an even stronger property:
P(Tpy >t k=1,2,.,7|Tj, <Tj, <o+ <Tj)) = P(Tpeer > ty, k= 1,2, ...7). (84)

Condition (83) emerges in a natural way even in more general settings beyond load-sharing, as pointed out in
Navarro et al. [19], where it has been referred to as a condition of weak exchangeability (see also Navarro et
al. [18]).

In the frame of load-sharing models, condition (80), (and therefore also (84) and (83)) emerges in De Santis and
Spizzichino [8], where it plays an important role for the special type of problems studied therein.
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