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ABSTRACT ARTICLE HISTORY
We carry out Direct Numerical Simulation (DNS) of flows in closed Received 8 January 2020
rectangular ducts with several aspect ratios. The Navier-Stokes Accepted 11 May 2020
equations are discretised through a second-order finite difference KEYWORDS

scheme, with non-uniform grids in two directions. The duct cross- Direct Numerical Simulation;
sectional area is maintained constant as well as the flow rate, which rectangular ducts; transition;
allows to investigate which is the appropriate length scale in the wall turbulence
Reynolds number for a good scaling in the laminar and in the fully

turbulent regimes. We find that the Reynolds number based on the

half length of the short side leads to a critical Reynolds number which

is independent on the aspect ratio (Ag), for ducts with Az > 1. The

mean and rms wall-normal velocity profiles are found to scale with

the local value of the friction velocity. At high friction Reynolds num-

bers, the Reynolds number dependence is similar to that in turbulent

plane channels, hence flows in rectangular ducts allow to investi-

gate the Reynolds number dependency through a reduced number

of simulations. At low Re, the profiles of the statistics differ from those

in the two-dimensional channel due to the interaction of flow struc-

tures of different size. The projection of the velocity vector and of

the Reynolds stress tensor along the eigenvectors of the strain-rate

tensor yields reduced Reynolds stress anisotropy and simple turbu-

lence kinetic energy budgets. We further show that the isotropic

rate of dissipation is more difficult to model than the full dissipation

rate, whose distribution does not largely differ from that of turbu-

lence kinetic energy production. We expect that this information

may be exploited for the development of advanced RANS models for

complex flows.

1. Introduction

Many efforts have been directed to understanding laminar, transitional and turbulent flows
near walls. The turbulent channel has been largely considered in Direct Numerical Sim-
ulations (DNS), where two homogeneous directions allow to get satisfactory statistics
profiles with a limited number of fields. This flow cannot be exactly reproduced in lab-
oratory experiments where the effects of the lateral walls cannot be eliminated. Several
studies, for instance the most recent by Vinuesa et al. [1] and Vinuesa et al. [2], were
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devoted to investigating differences between ideal two-dimensional turbulent channels
and rectangular ducts with high and low aspect ratios. The simulations and the experi-
ments were performed at intermediate Reynolds number (Re; ~ 500). The transitional
regime for the square duct was considered numerically by Uhlmann et al. [3] and exper-
imentally by Owolabi et al. [4]. Numerically it is easy to relate the friction Re; = u;L/v,
with L the length of the side of the square duct and u; the mean friction velocity, to the
bulk Reynolds number Re;, = U,L/v. They found that the turbulent regime is observed
above Re;, = 1077, and up to Rey, = 2000 there is a linear relationship between the two
Reynolds numbers. The value Re;, = 1077 does not differ too much from that in circu-
lar pipes (Rec = 1125 by [5]) and in a plane channel (Rec = 1000 by [6]). Orlandi et al.
[7] through DNS of Poiseuille and Couette flows observed a jump on the total turbulence
kinetic energy respectively at Re ~ 1800 for Poiseuille and Re = 1000 for the Couette
flows. These Reynolds numbers are defined as Re = UyH/v with H half channel width
and Uy the maximum of the laminar parabolic Poiseille profile and the wall velocity for
Couette. It is important to recall that the initial amplitude of disturbances in numerical
experiments or the inlet conditions in laboratory experiments can affect the value of the
critical Reynolds. The sensitivity to the disturbances was carefully investigated by Fitzger-
ald [8] reporting the results of sophisticated experiments in circular pipes [9], showing
that reduction of the amplitude of the disturbance may lead to an increase of the transition
Reynolds number up to Re = 18, 000, much greater than the value obtained by Reynolds
[10]. Orlandi [11] performed numerical experiments to further analyse the influence of the
initial disturbances in circular pipes. From the observation that there are no large differ-
ences in the critical Reynolds number between flows with well-localised secondary flows
and flows without it (circular pipe and plane channel) it is worth analysing also in rectan-
gular ducts which is the appropriate length scale giving a fixed transition Reynolds number,
or whether a dependence on the aspect ratio exists. Tatsumi and Yoshimura [12] performed
a linear stability analysis observing that the flow is stable for any aspect ratio Az > 3.2. On
the other hand, DNS by Takeishi et al. [13] has shown that the transition Reynolds num-
ber slightly depends on Ag for Ag < 5, and it becomes constant at higher Ag. An effect
of the initial conditions is apparent in those studies, hence in the present simulations we
have decided to assign initial velocity distributions different from realistic conditions. The
influence of the initial conditions explains why a section is here dedicated to analyse the
trend towards statistically steady conditions.

In non-circular ducts, several length scales can be defined. One largely used is the
hydraulic diameter Dy, = 4A/P, with P the perimeter and A the cross-section area of the
duct (Rep = UpDy,/v). In the present simulations, the reference length is assumed to be
the radius of an equivalent pipe, r, (A = nrﬁ), hence the relevant computational Reynolds
number is Re = Uyrp/v. This choice fixes A = 7, which is maintained for all cases. A fur-
ther length scale can be taken to be the length of either the short or long sides of the duct,
here respectively denoted as L3 and L,(= AgrL3), related through L,L3 = 7. The former
has greater relevance in rectangular ducts, as it becomes the channel height in the limit of
infinite aspect ratio. As a first check of the differences in the profiles of the friction fac-
tor Cy = 2u? /U} versus the three Reynolds numbers above reported can be obtained by
using equation (3-48) at p.113 of White [14]. The analytical linear profiles, confirmed by
the present simulations, allow to see different trends of C; with the Reynolds numbers,
and good collapse of the linear profiles with Res, namely the Reynolds number based on
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the shorter side half-length (L3/2). Takeishi et al. [13] also adopted L3 /2 as the reference
length to evaluate the transitional Reynolds number. Simulations at higher Reynolds num-
ber show that after the critical one good collapse of the friction coefficient with the duct
aspect ratio is found, regardless of the length scale used in the definition of Re.

The secondary motions, widely analysed in several DNS papers, starting from [15] at
low Re, and ending with [16] at much higher Re, is rather weak with respect to the main
motion, hence it is likely that they do not alter substantially the statistical profiles with
respect to canonical wall-bounded flows. In particular, this should be the case at high val-
ues of the Reynolds numbers, at which the strongest streamwise vorticity becomes localised
in a smaller and smaller region [16]. Secondary motions have been deeply investigated by
Joung et al. [17], and a clear picture of its effect can be observed in their figure 6 report-
ing undulations of t,,/T,, near the corner, with differences among the profiles at different
Reynolds numbers. The reduction of friction approaching the corner should also appear on
the shape and size of the streamwise vortical structures, and therefore on the distribution
of the turbulence kinetic energy. The decrease of the wall shear stress should be different
along the short and long sides of the rectangular duct. The present simulations are focused
to investigate the variations with the Reynolds number and with the aspect ratio of sev-
eral statistics in particular to demonstrate whether the wall scaling with the averaged or
the local friction velocity hold. In the corners the local Re; decreases, and therefore, in
the same flow it is possible to investigate whether the Reynolds number dependence of the
statistics in wall units shown by Orlandi et al. [7] for the plane channel is also recovered.

Projection of the velocity vector and of the Reynolds stress tensor along the eigenvectors
of the strain-rate tensor yields reduced Reynolds stress anisotropy, and simpler turbulence
kinetic energy budgets. We further show that the isotropic rate of dissipation is more dif-
ficult to model than the full dissipation rate, whose distribution does not largely differ
from that of turbulence kinetic energy production. We expect that this information may
be exploited for the development of advanced RANS models for complex flows. Often the
budgets of turbulence kinetic energy are evaluated through converged statistics. However,
turbulence kinetic energy budget evaluated during the initial transient reveals that far from
equilibrium local variations of the turbulence kinetic energy are strictly related to those of
the convective term, with much activity in the bulk flow. On the other hand, under statis-
tically steady conditions the effect of the convective terms is reduced, and all the activity
tends to be concentrated near the walls

The mean and rms wall-normal velocity profiles are found to scale with the local value of
the friction velocity. At high friction Reynolds numbers, the Reynolds number dependence
is similar to that in turbulent plane channels, hence flows in rectangular ducts allow to
investigate the Reynolds number dependency through a reduced number of simulations.
At low Re, the profiles of the statistics differ from those in the two-dimensional channel
due to the interaction of flow structures of different size.

In plane channel, DNS are often performed by pseudospectral methods, similar or equal
to that described in [18]. These results can be considered as reference solutions to validate
those obtained by other numerical methods. However, Bernardini et al. [19] demonstrated
that by using the same resolution the streamwise spectra by second-order schemes were as
good as those by pseudospectral methods in a convecting reference frame.

However, in the steady reference frame the profiles of the statistics did not show any
appreciable difference with those by pseudospectral methods. The improvement achieved
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in the convective reference frame was detected in the streamwise velocity spectra, at
high wavenumber with low energy content. Based on these observations, in the present
study a second-order staggered finite-difference scheme is used, with the further advan-
tage of using non-uniform grids in two space directions, adapted from a code previously
developed for the simulations of Poiseuille and Couette flows.

Another possible alternative is the use of compressible flow solvers adapted for low-
Mach-number flows [16], which were shown to yield nearly identical solutions as incom-
pressible solvers.

2. Flows set-up

A large number of flow cases have been simulated, with resolution depending on the
Reynolds number. At low and intermediate Re the computational mesh used is 161 X
161 x 161, up to 513 x 385 x 257, respectively in the streamwise x;, lateral x, and ver-
tical x3 directions. The smaller number of points in x3 than those in x; is due to the
reduction of L3 with the increase of the aspect ratio Ag. In the present simulations, the
tlow rate is maintained constant by adding at each time step a mean pressure gradient
IT balancing the friction losses due to the walls. In the evaluation of the flow rate, the
cross-sectional area appears which has been maintained constant. At each Re, several Ag
were considered, namely 1, 2, 4, 5, 6, 7. Simulations with Ar = 1.5 were also performed
in a range of Re close to the critical one. For the governing equations, the reader may
refer to Orlandi [20, Chapter 9], with no-slip boundary conditions imposed at the duct
walls.

The same procedure of low-storage Runge-Kutta time integration of the nonlinear
terms, and implicit treatment of the viscous terms was also used. The fundamental dif-
ference from the method developed for flows with two homogeneous directions (spanwise
and streamwise) resides in the solution of the elliptical equation. In the case of two homo-
geneous direction, the use of two Fast Fourier Transforms (FFT) and a tridiagonal solver
(see [20, Chapter 9]) allows to numerically solve Poisson equation within round-off errors.
In order to get a fast solution at high Reynolds numbers, a large number of processors
can be used through the MPI (Message Parallel Interface) directives, by subdividing the
computational domain into pencil-shaped sub-domains. In the presence of two directions
with grid non-uniformity, the Poisson equation can be solved either through a multigrid
method [17], or direct solvers based on the cyclic reduction algorithm as FISHPACK,
developed at NCAR by Adams et al. [21]. The convergence of multigrid algorithms is
strongly connected to coordinate stretching, which sets the eigenvalues of the associated
matrices. Hence, to avoid possible slow convergence, the FISHPACK subroutine is a good
choice, clearly less efficient than FFT-based direct solvers. The main disadvantage of the
FISHPACK consists in a limitation of the number of processors, since the computational
domain can only be divided into slabs along the streamwise direction.

The initial distribution of the streamwise velocity is irrelevant to establish the flow statis-
tics at the final steady state. However, it is mandatory that U, = [/ u; dx; dx, dx3/(Li L,
L3) = 1. To be more precise our initial streamwise velocity is

ur(x2,x3) = CH —d) d=(H— |x2])* + (H— |x3]))* ford <H (1)



JOURNAL OF TURBULENCE (&) 5

Figure 1. Contours of mean streamwise velocity < Uq(xz,x3) > for DNS of ducts at Re = 5000, for (a)
Ag =1,(b) Ag = 2,(c) Ag = 6,inincrements A = 0.1Up, the black line is (U1 (x2,x3)) = Up.

(H = L;/2) and u; = 0 elsewhere. Random disturbances are added, hence the other two
velocity components are obtained from the divergence-free condition. The constant C is
such that U, = 1. This distribution is concentrated at the centre of the duct, and velocity
is very small near the vertical walls.

We have found that within two time units the field adjusts by conforming to the shape of
the duct. Previous DNS [3] showed that for square ductsand for L; /(0.5L3) > 10, the mean
wall shear stress does not change. In the present simulations for all Ag, we use L1 /r, = 16,
hence at Ag = 1 we have L;/(0.5L3) = 18.05. For high Ag, L3 decreases and since, as later
on shown, Lj is the relevant length scale, the duct is long enough to resolve the energy-
containing longitudinal structures. This streamwise length is satisfactory at intermediate
values of Re, but not enough at Re close to the critical value, at which localised turbulent
structures may form as those see in flow visualisations in domains three times longer than
the present one [13].

Depending on Ag and on the value of Re the simulations evolve for a different time.
At high Reynolds number, the transient time to reach the instant at which IT oscillates
around the averaged TI is short. However, the simulations must evolve for a sufficient time
in order to have distributions of the statistics in the x, — x3 planes respecting as much as
possible the geometrical symmetries. At low Re, and, in particular, under laminar condi-
tions a long initial transient is necessary to damp the initial disturbances through viscous
diffusion. The averaged wall shear stress T, calculated through 7,, = TIL,L3/(Ly + L3),
allows to define the averaged friction velocity #; = /7, and the friction coefficient,
Cy = 27,/ U}

The shapes of the duct sections are depicted in Figure 1 through contour plots of
the mean streamwise velocity component at Re = 5000. The plots are shown only for
Apr = 1,2, 6 to appreciate how L3 reduces and L, increases. Although the simulations have
been carried out with constant duct area, in the figure we keep the same L3 for greater
clarity. The mean quantities, here indicated with capital letters, are evaluated by averag-
ing in the streamwise direction x; of the duct, and in time. The averages in time were
estimated by storing a sufficient number of fields saved every 1.0 time units. It may be
argued that to reproduce the expected geometrical symmetries a huge number of realisa-
tions are necessary, however, Figure 1 shows that a rather good distribution is achieved
by the number N in Table 1. Higher-order statistics may require an even greater number
of samples, hence further averaging is carried out by quarters of the cross section. This
is similar to what done in plane channels, in which statistics are averaged between the
two walls.

A list of the global results for the flow cases herein simulated and the corresponding
mesh properties is given in Table 1.
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Table 1. List of parameters for the turbulent cases, the first number after A indicates Ag, the subscript
indicates the Re number given in the first column. N¢ is the number of fields used to evaluate the statistics.
Ny, Ny, N are the number of grid points in the axial, in the wider lateral direction and in the shorter vertical
direction. The area is fixed and equal to 7. The total friction is indicated by IT and the contribution of the
longer side is ;. Rep is the Reynolds number based on the hydraulic diameter, and Res is the Reynolds
number scaled with the shorter side half-length (L3/2).

Flow case Re Re; N¢ Ny Ny N, /Tl 10TT Rep Res
Al 2500 172 969 193 193 193 0.50 0.338 2500 2216
A2k 2500 172 701 193 193 193 0.69 0.358 2357 1567
A5k 2500 177 701 193 193 193 0.87 0.480 1863 991
A7 2500 162 701 193 193 193 0.92 0.451 1654 837
Alsg 5000 323 939 257 257 193 0.50 0.295 5000 4431
A2s¢ 5000 328 528 257 257 193 0.69 0.323 4714 3133
A5sk 5000 340 475 257 257 193 0.87 0.440 3727 1982
A7s¢ 5000 342 418 257 257 193 0.91 0.501 3307 1675
Al 7750 474 694 385 257 193 0.50 0.266 7750 6868
A27¢ 7750 481 41 385 257 193 0.69 0.290 7307 4856
A57 7750 503 359 385 257 193 0.87 0.400 5777 3071
A77k 7750 509 283 385 257 193 0.90 0.463 5126 2596
Alqsk 15,000 859 305 513 385 257 0.50 0.232 15,000 13,293
A2y 15,000 872 141 513 385 257 0.69 0.254 14,140 9400
A51s¢ 15,000 915 121 513 385 257 0.87 0.353 11,180 5945
A71s¢ 15,000 927 118 513 385 257 0.91 0.409 9922 5024
3. Results

3.1. Path to the steady-state regime

There could be different views on the tendency towards the statistical steady state at low
and high Reynolds numbers, depending on the initial conditions. In the present simula-
tions, large disturbances at both large and small scales are imposed at t = 0, resulting in
large turbulence kinetic energy and friction. The disturbances are damped at a different
rate, depending on viscosity, and in particular friction initially decays. At a certain time,
which is a function of duct shape and Reynolds number, all flow scales have little energy
remaining. At Reynolds numbers lower than the critical one then disturbances keep decay-
ing, eventually leading to a laminar state. At Re higher than the critical value, the strength
of the structures instead grows exponentially for a short time, and a peak of the pres-
sure gradient is reached, at which near-wall structures of the ‘right’ size form, as typical
of wall-bounded flows. Animations of the instantaneous vorticity fields averaged in the
streamwise directions [22] describe this process quite well. A global view of the complex
flow dynamics may be drawn from the time evolution of IT in the early stages of evolution,
reported at Re = 2500 in Figure 2(a) and at Re = 7750 in Figure 2(c).The correspond-
ing time evolutions in the last 300 time units, after a statistical steady state is reached, are
given in Figure 2(b) and 2(d), respectively. The observed oscillations of I for certain values
of Ag are typical of marginally turbulent flows, which are entirely suppressed for Ag = 7
and Re = 2500, as expected in the laminar regime. At high Reynolds number, the long-
time evolution of I shows that amplitude and frequency of the oscillations do not change
with the aspect ratio, whereas flow resistance increases with Ag. Figure 2(c) shows that
at Re = 2500 the initial velocity field yields larger resistance the higher is Ag. In a few
time units IT rapidly reaches a minimum, which is then followed by a short time inter-
val with sharp growth of I, which is steeper the higher is Ag, and a relative maximum is
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Figure 2. Time evolution of mean pressure gradient: (a) and (c) with time axis in log scale to emphasise
the initial stages of transition to turbulence; (b) and (d) with time axis in linear scale, to focus on the last
300 time units and emphasise frequency and amplitude of the excursions. Data at Re = 2500 are shown
in (@) and (b), and at Re = 7750 in (c) and (d). Aspect ratios are shown in panel (c).

reached. The subsequent decay yields a state in which IT oscillates around a mean value. At
Re = 2500 the evolution is similar, but a laminar condition is reached for Ag = 7 (black
line in Figure 2 b). This figure further shows that the large scales near the walls induce low-
frequency, large-amplitude excursions of I1. When Ay, is reduced, the frequency increases
and the amplitude decreases.

In wall-bounded flows, there is a close connection between friction and turbulence
kinetic energy. In fact, the highest levels of turbulence kinetic energy are located near the
wall, where it is produced by interaction of the mean shear with the turbulent stresses. The
equation for the time evolution of the turbulence kinetic energy g = u;u;/2 over the duct
cross-section (here the overline indicates averages in the periodic streamwise direction)
describes the complex mechanisms of production, dissipation and transfer from one to
another region [23, p.315]

d 10w 1 0wy 9 1 —— aU;

M- _- k i i_p +—u;V2u; — Uil — . (2)

ot 2 oxx 2 0xk 0x; Re Xk
— — —

Cx Tk Dk Py

The correlations between velocity fluctuations (indicated in small letters in this equation)
contribute to the evolution of turbulence kinetic energy, and velocity fluctuations yield
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Figure 3. Time evolution of turbulence kinetic energy at Re = 2500 (a) and Re = 7750 (b), and budget
of K at Re = 5000 for Ag = 1(c) and Ag = 7 (d). Each budget term is indicated in the legend of panel (c).

increase or decrease of the streamwise velocity gradients near the walls, resulting in the
behaviour of IT shown in Figure 2. Hence, it may be expected that a similar time evolu-
tion is also encountered for the total turbulence kinetic energy K = (q) = (uju;/2), where
carets now denote averaging over the duct cross-section, (A) = (1/L,L3) f f Adx; dxs. A
similar behaviour is observed at low and high Reynolds number, as shown in Figure 3(a,b),
and similarity with the pressure gradient in Figure 2 is also evident. Both quantities in fact
attain a maximum at early times, and after a decrease enter a final stage characterised by
oscillations around their steady-state value. The complex flow physics in the initial stages
of flow development can be investigated by looking at the evolution of the various terms
in Equation (2). The integrated budgets are shown in Figure 3(c,d), in which only Pk and
Dk yield non-zero contribution. These figures have been evaluated at Re = 5000, interme-
diate between those considered in Figures 2, 3(a) and 3(b). In the first 15 time units (Px)
exceeds (Dk), hence K grows exponentially up to ¢ & 10. Later on (Px) and (Dg) reach
a maximum, which is soon followed by the maximum of K. For Ar = 7 the behaviour
is similar, but in this case the values of (Px) and (Dg) are larger, promoting more rapid
increase and decrease of K. This is reasonable, since the shorter side of the duct is driving
the process, hence energy grows in a large number of small-sized structures in the duct
cross section. The final result, for any aspect ratio, is that after the transient (Px) and (Dx)
equilibrate, and dK/dt becomes small.
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Figure 4. Contours of budget terms in equation (2) att = 15, for Az = 1, Re = 5000. (a) C, (b) Tx7 (c)
Tkp, (d) Dy, (e) Py, (f) dg/dt; red positive, blue negative, spaced by A = 0.02.

Deeper insight into the flow dynamics is provided by the maps of the budget terms
in the duct cross section, shown in Figure 4 at t = 15, and in Figure 5 at t = 60, for the
case Ag = 1, Re = 5000, which allows clearer visualisation of the flow structures. These
figures clearly show that, although their integrated contribution is zero, large values of the
convective (Ck) and of the turbulent diffusion (Tx = Txr + Tkp) terms occur. Among
these contributions, the one associated with the triple velocity correlations Txr is largest.
Whereas at steady state the flow structures are located near the walls, a much more uniform
distribution is observed at t &~ 15. Figure 4 shows that, with the exception of Ck, all the
other terms are distributed over the entire cross section of the duct. The regions with high
production (Figure 4(e)) coincide quite well with regions of high dissipation (Figure 4(d)),
as can be more clearly observed in the region close to the right top angle.

The correlation coefficient between T, = dg/dt and each budget term of equation (2)
allows to quantify the different contributions. We have then evaluated TCx = Cx + Tk,
PDg = Px + Dk, T, at each point over the duct cross. Their fluctuations with respect to
the averaged values, namely TC;, = TCx — (TCx >, PD}, = PDg — (PDk >, Té =T,
(Ty), allow to evaluate the correlation coefficients

(T'TC,) (T PD,)
Crr=—1"8_ Cp=—0lF
(T2)(TCR) (T2)(PDR)

At t = 15, we find Crr = 0.96, Crp = 0.39, which implies that the point-wise variations
of g are mainly due to transfer of turbulence from one region of the duct to another.
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Figure 5. Contours of budget terms in equation (2) att = 60, for Ag = 1, Re = 5000. (a) Cx, (b) Tk7 ()
Tkp, (d) Dy, (e) Py, (f) dg/dt; red positive, blue negative, spaced by A = 0.02.

Figure 6. Contours of budget terms in equation (2) at t = 15 (left) and at t = 60 (right), for Az = 7,
Re = 5000. (a) and (b) TCx, (c) and (d) PDy, () and (f) T; red positive, blue negative, spaced by A = 0.02.

Figure 5, at the end of the initial transient, shows a completely different scenario. In
fact, as expected in any kind of wall-bounded flows, the flow dynamics is concentrated
near walls. Figure 5 shows that Cx and Txp reduce in amplitude, whereas the contribution
of the triple correlations Tk is still large, being quite similar to the distribution of T4. Px
and Dk are mainly concentrated near the walls, which implies local equilibration between
production and rate of turbulence kinetic energy dissipation. At this time, the values of the



JOURNAL OF TURBULENCE 11

correlation coeflicients are Crr = 0.86, Crp = 0.54, implying again that local time varia-
tion of kinetic energy is linked to transfer, rather than to the net effect of production and
dissipation. Minor differences are found in the case of rectangular ducts, for which the val-
ues of the correlation coefficients are Crr = 0.91, Crp = 0.45 at t = 15, and Cyr = 0.79,
Crp = 0.62 att = 60.

Similarities and differences between square and rectangular ducts may be traced by
looking at Figure 6, in which we show the distributions of TCk, PDx and Ty for a rect-
angular duct with AR = 7. Clear association between transport term and time variation of
q is also observed in this case, both at early and at late times. Turbulence in this case is seen
to form initially in the duct core and away from the short sides, and to migrate towards all
four walls at later times. Interestingly, at early times we find excess of production over dis-
sipation near the walls, and the opposite in the duct centre, whereas the opposite is found
at later times.

3.2. Friction factor

We previously mentioned that in rectangular channels the Reynolds number based on the
short side half length marks the transition from the laminar to the turbulent regime. To
demonstrate that Cy has a nearly universal behaviour with Re; both in the laminar and in
the turbulent regime, in Figure 7 we show the maps of Cs versus the three Reynolds number
indicated in Table 1. The common feature is a satisfactory collapse of the data in the fully
turbulent regime, regardless of the definition of the Reynolds number. The present results
show the same trend as those in laboratory experiments at higher Reynolds number [24]
and also agree with previous numerical simulations at intermediate Rez for Ag = 1 — 7 [1].
On the other hand, in the laminar regime the poorest scaling is obtained with Re (Figure 7
a), which may be understood because the choice of a reference length based on the radius
of an equivalent pipe does not account for the shape of the duct. In the three figures, lines
with the same colour as the solid symbols are evaluated from the analytical expression (3-
48) given at p.113 of White [14]. Also the classical Reynolds number based on the hydraulic
diameter is not suitable to account for the shape of the duct cross section, as may be inferred
from Figure 7(b). On the other hand, the choice of the short side as the reference length
yields good collapse both in the laminar and in the turbulent regime. Regardless of the
aspect ratio, the transitional Reynolds number is found at Rez &~ 850, as may be seen in
the inset of Figure 7(c). This value is not very different from that reported by Takeishi
et al. [13], who found transition to occur at Rez ~ 700, regardless of the duct aspect ratio.
The difference may be due to the different initial conditions and to the shorter streamwise
duct length. In this figure, it may be noticed that the behaviour for Ag = 1 (the red solid
symbols) is a bit different, which probably implies that the absence of symmetry about the
corner bisector in rectangular ducts generates stronger disturbances due to the secondary
motion, which cause earlier transition.

3.3. Wall friction and secondary motions

In the subsequent part of the paper, all statistical quantities are evaluated by performing
averages in the streamwise directions and in time, with the number of realisations Ny given
in Table 1. Local wall units are indicated with the + superscript.
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Figure 7. Rectangular ducts: friction coefficient ¢ versus (a) computational Reynolds number Re; (b)
Reynolds number based on the hydraulic diameter Rep; (c) Reynolds number based on the short side
half-length. The aspect ratio Ag is indicated in the legend of panels (a) and (b), and a zoom around the
transitional Re is shown in panel (c); the solid lines correspond to equation (3-48) of White [14]; in (a) the
open symbols are taken from Hartnett et al. [24], triangles Az = 10, squares Az = 5; in (c) open triangles
are taken from Vinuesa et al. [1].

To understand the previously discussed behaviour of the mean friction coeflicient, it is
worth analysing the distributions of the secondary stream function and the local wall shear
stress in the passage from laminar through the transitional to the fully turbulent regimes. In
particular, in Figure 8 we show the profiles of the wall shear stress, 7,, = S, /Re, and of the
wall-normal velocity gradient, S,, = dU;/dn|,, as a function of the distance from the cor-
ner (s). Data are shown here for the representative case of a square duct, all other cases being
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Figure 8. Square duct (Ag = 1): profiles of (a) wall shear stress, 7,, and (b) wall-normal velocity gradient,
Sn, at the wall, versus the distance from the corner (s), at different Re, as listed in the legend of panel (b);
in the inset of (a) we show the gradient of t,, at s = 0, and in the inset of (b) we show S, ats = 0.

quite similar. Figure 8(a) shows that t,, is zero at the corner (s = 0), and the secondary
motions dictate different trends near the corners. As expected, the velocity gradients in
the laminar regime do not depend on the Reynolds numbers. In particular, Figure 8(b)
shows that at Re = 1300, S, is in perfect agreement with the analytical expression given
at p. 113 of White [14]. On the other hand, in the transitional and turbulent regime, S,
grows with different trends depending on the Reynolds number. The slope near the corner
is plotted in the inset of Figure 8(b), which shows a growth proportional to Re*/>. Accord-
ingly, the gradient of t,, grows as Re!/? in the fully turbulent regime, as shown in the inset
of Figure 8(a). In the transitional regime, the variation of dt,,/dr|s=0 with Re equals that
in the laminar regime, as given by the red line in the inset of Figure 8(a). The transitional
regime ends at Re = 1600, and from Re = 1750 the values of dt,,/dr|s—¢ are aligned with
those at higher Re. Strong shape variation in the various flow regimes are apparent. In
the laminar regime, 7,, decreases linearly, as predicted by equation (3-47) of White [14,
p.113]. In the transitional regime, a maximum of t,, occurs at distance s = 0.5 from the
corner (red dots in in Figure 8 a). Increasing Re two peaks appear, which are well depicted
by the blue and black dots in Figure 8(a). One of the peaks moves closer to the corner
at higher Re, whereas the other nearly remains at the centre of the duct side, with small
oscillations in a region which becomes wider at higher Re. At sufficiently high Re, the wall
friction profiles shown in Figure 8(a), are equivalent to those at higher Re, as reported by
Pirozzoli et al. [16].

To better understand the differences noted above, and see whether the statistical quan-
tities reproduce the expected symmetries it is worth looking at the contours of the stream-
function of the mean secondary motion superimposed to the mean vorticity components
((22) = U, /0x3, (—S23) = 0U;/0x2), divided by the Reynolds number, over the entire
duct cross section. It is important to keep in mind that the (2;) contribute to turbulence
kinetic energy production, to be discussed later on. When averaged on all the duct walls,
viscous strain returns the wall shear stress distributions shown in Figure 8(a). The pro-
files of t,, along the whole duct perimeter are shown in Figure 9, under the corresponding
stream function and vorticity contours. In the laminar regime (Figure 9 a), characterised
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Figure 9. Iso-lines of Q,/Re and Q23 /Re (with spacing A = 0.001 green positive dotted, black negative
solid), superimposed to iso-lines of the secondary stream-function y (with spacing A = 0.0005 thin up
t0.002 from 0.025 thick lines red positive blue negative), at different Re. In panel (a), Ay = 107%. The
small figures under each panel show 7, along the perimeter of the duct. The Reynolds numbers are (a)
1350, (b) 1370, (c) 1430, (d) 1750, (e) 2500, (f) 5000.

by the absence of secondary motions, the U; contours do not change with Re. The mean
strain decreases moving from the walls towards the central region. Immediately after the
critical Reynolds number, Rec ~ 1350, the secondary motion consists of four recirculat-
ing regions, that, at high Re, yields the well documented pattern with eight eddies. In
Figure 9, the increments of the stream-function contours have been maintained fix for
all the Reynolds numbers, hence the comparison among the different regimes leads to the
conclusion that the strength of the secondary motion decreases in the transitional and in
the fully turbulent regimes by increasing Re, up to Re = 5000. At higher Re, the strength
does not change very much. To emphasise that the flow structures change in a sharp range
of Reynolds number near Rec, visualisations are shown at Re = 1370 in Figure 9(b), and
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at Re = 1430 in Figure 9(c). These figures demonstrate that there is an equal probability
to have secondary structures in one or in the other side, depending on the growth of dis-
turbances either near one or the other side, during the initial transient. Animations allow
to see the different time history, and where disturbances form and grow. A slight increase
of Reynolds number (Re = 1430) yields a secondary motion with four pairs of large-scale
structures, two strong and two weak (Figure 9(c)). It has been observed by the time history
of the mean pressure gradient IT and of the total turbulence kinetic energy K = (u/u})/2,
that the convergence to a steady state requires simulations lasting for very long time. At
Re = 1750, Figure 9(d) shows that the intensity of the four couples tends to be the same,
and that the magnitude of 7,, along the perimeter is slightly reduced with respect to that at
Re = 1430. At this Re, the inset of Figure 2(a) shows the start of the tendency towards the
Blasius law corresponding to a fully turbulent regime, which is characterised by a secondary
motion with four pairs of recirculating regions. The size of the secondary structures is com-
parable to half of the wall length, hence they can transport U; towards the wall at r = L, /4
and far from the wall at r = L, /2. Further increase of the Reynolds number (Re = 2500)
yields (Figure 9(e)) reduction of the strength of the secondary structures, which in addi-
tion become confined to the duct corners. Two maxima appear in the profiles of t,,, and
their amplitude decreases as was observed in Figure 8(a). The thickness of the vorticity
layers in Figure 9(f), at Re = 5000, reduces, implying that the near-wall turbulence is not
largely affected by secondary motion. This behaviour continues by increasing the Reynolds
number.

The influence of the duct aspect ratio on the structure of the secondary flow and on
the wall shear stress in the fully turbulent regime (Re = 5000) is analysed in Figure 10. In
that figure both directions are normalised by L3 /2, hence the vertical coordinate ranges
from —1 to +1. Comparison between Figure 10(a) (for Ax = 1) and Figure 10(b) (for
Ap = 2) shows that the recirculating region near the short vertical wall reduces in size and
strength. On the other hand, the recirculating region near the horizontal wall increases in
size and strength. This asymmetry causes the formation of strong disturbances propagat-
ing from the corner towards the central region, which explains why the critical Reynolds
number in square ducts is higher than in rectangular ducts. The growth of the stronger
recirculation and the location of the maximum is fixed, which suggests that L3 is the
appropriate length scale at low Reynolds numbers. However, transition to the turbu-
lent regime does not occur without the small recirculating region near the short side.
This was observed in similar plots at Re = 2500 (not shown) and is corroborated by
the Cy plots of Figure 7, where the black dots corresponding to Ag =7 at Re = 2500
are aligned with the laminar values. Although barely visible in the profiles of 7,,(s) for
Ap =7, at Re < 2500 there is only one peak along the short side, whereas at Re = 5000
there are two peaks which are associated with the secondary recirculating regions near
the short side. At Re = 2500, Ag = 6, two peaks with small undulations arise, which are
sufficient to have Cf in Figure 7 no longer aligned with the laminar trend. At Ag =5,
the two peaks are visible in Figure 10 of 7,,(s) at Re = 2500, hence the correspond-
ing value of Cy in Figure 7 coincides with the values of the simulations with smaller
aspect ratio. At Agp =5 the profiles of 7,,(s) only have one peak in the short side at
Re = 1750, which is found also for Agr = 4, and two peaks finally form for Ar = 2 as con-
firmed in Figure 7(a), where at Re = 1750 the value of C; is not aligned with the laminar
trend.
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Figure 10. Rectangular ducts: contours of vorticity components w; and w3, superimposed to the sec-
ondary stream-function v at Re = 5000 and various aspect ratios, (a) Ag = 1, (b) Ag = 2, (c) Agp = 4,(d)
Ar =5, (e) Ag = 6, (f) Ag = 7.The small panels under each figure show the wall shear stress (t,,) along
part of the duct perimeter, to show more clearly the behaviour along the short side. The data are shown
at Re = 1750 (black), at Re = 2500 (green), Re = 5000 (blue), Re = 7750 (cyan).

3.4. Mean flow

The flow near the corner in rectangular ducts does not change dramatically from the case of
square ducts. Contours of U, q+ a)fr and ¥ in the corner regions are shown in Figure 11,
at fixed Re = 5000, for different values of the aspect ratio, superimposed to each other to
have a global picture of whether the behaviour is drastically affected. The two space coordi-
nates and all quantities are here scaled with the averaged friction velocity. The contours of
U, (Figure 11a) are superimposed each other, especially near walls, whereas some differ-
ence may be appreciated far from the walls near the shorter side. Increasing the aspect ratio
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Figure 11. Rectangular duct: contours of (a) U1+, green 2 black 4 blue 6 cyan 10 mag 12 red 14; (b) g™
green 1 black 2 blue 3; () a)?r green .01 black .02 blue .03 cyan .04 mag .05 red .06; (b) v+ green 1 black
2 blue 3 cyan 4 mag 5. All data are shown at Re = 5000 for A = 1,Ap = 2,Ap =4,AR =5AR =6,
Ag = 7. Space coordinates are scaled with respect to the averaged friction velocity, uz.

to Ag = 4 the U1+ = 14 iso-line (red) moves parallel towards the central region. Further
increasing Ag, the U;” = 14 iso-line near the bisector moves towards the short side of the
duct. In the long side region, the contours are flat near the wall, and undulations appear far
from the wall. The turbulence kinetic energy distributions near the walls are independent
of the aspect ratio, as shown by the green lines (g™ = 1) in Figure 11(b). On the other hand,
the blue contours (g = 3), in the long side region move far from the corner by increasing
Ag. In this region, also the black contours (g = 2) shrink indicating large variations of the
turbulence kinetic energy distribution. In the short side region, small variations are seen
in Figure 11(b). This behaviour might be ascribed to the effect of the secondary motion,
but in fact the contours of @] in Figure 11(c) show only marginal variation with Ag. This
vorticity component is linked to the small scales in the near-wall region. The strong vor-
ticity layers attached to the horizontal and vertical walls are found to scale well with the
averaged friction velocity. The large-scale secondary motion depicted through the stream
function in Figure 11(d), consists on two recirculating regions of different size, the bigger
one along the long side. It is important to stress that asymmetry appears only for Ag > 1,
and in agreement with the previous discussion, disappears at Ap = 1.

At statistically steady state, it is interesting to analyse the profiles of the mean streamwise
velocity U; in wall units to see whether they behave as those in the two-dimensional tur-
bulent plane channel. For square ducts [16] reported similar profiles scaled both with the
mean u; and with the local u; with the result to have in the latter case a better scaling. Here
we would like to see whether the local scaling gives good scaling both for the profiles along
the long and short walls. For the square duct, the profiles are evaluated starting from the
wall ending to the bisector. For the symmetry, no differences should be expected between
the two walls. In the rectangular channel, the profiles along the short side end on the bisec-
tor, on the other hand along the long wall, for a distance equal to that of the short wall
end on the bisector, later on end on the middle line. Therefore along the long wall a greater
number of profiles is plotted, in accordance with the values of the blue symbols given in the
legend of Figure 12. Orlandi et al. [7] reported the profiles in wall units for the canonical
channel up to R; = 4000 showing that is parabolic up to R; ~ 77, and at slightly greater
R; (R; = 180) attains larger values than those at higher Re;, for the same value of y™.At
this Reynolds number, there is no separation between outer and near-wall structures, and a
single very large unsteady eddy is present, causing the overshoot with respect the canonical
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Figure 12. Profiles of the mean velocity in wall units (here the t varies along the walls accordingly to
the profiles of 7, in Figure 10) at Re = 15, 000; top figures profiles along the long the wall, bottom along
the short wall, each black line is for profiles separated by d*+ = 25 wall units, the solid symbols are for
profiles at the distance d given in the legend, the duct with the following aspect ratio were considered:
(ae)Ag = 2,(bf) Ag = 4,(c,9) Ag = 5, (d,h) Ag = 6.

logarithmic velocity profile. From the data at Re = 2500, not reported, the same overshoot
occurs in ducts at all locations, hence also at a position corresponding to Re; = 25, which
would be too low to have fully turbulent flow in a two-dimensional channel. The forma-
tion of a mean velocity profile similar to that of fully turbulent flows is therefore due to the
dynamics of the near-wall structures produced in the neighbouring regions. This explains
why the U;" profile at Re; = 25 obtained from the simulation at Re = 15, 000 does not
show the overshoot in Figure 12. Some difference may be observed in the wake region,
mainly due to evaluation of the profiles up to the diagonal line in the rectangular duct in
particular at high Agr. The global result is that indeed for rectangular ducts, at high Re, a
good scaling with the local u; is found and that flows in rectangular ducts allow to inves-
tigate the Reynolds number dependency through a reduced number of simulations. The
validity of local wall scaling was originally discussed by Gavrilakis [15] at low Re, and by
Pirozzoli et al. [16] at much higher Re, for the case of square duct. Here we confirm that it
also holds for rectangular ducts. At low Re, the mean velocity profiles differ from those in
the two-dimensional channel due to the interaction of flow structures of different size.

3.5. Turbulence kinetic energy budgets

The good scaling in wall units of the mean motion U;', of the secondary motion through
o, and of the turbulence kinetic energy g™, and their rather good independence on the
aspect ratio, is also found for each term of the simplified turbulence kinetic energy budget,
shown in Figure 13. This budget is given by an equation similar to that in Equation (2)

0= Cx + Tx + Dg + Px (3)

the hat, omitted in the rest of the paper, indicates averages in x;, among the four quadrants
and in time with realisations taken after the transient, described in Section 3.1. In this way,
the left-hand side is null. The DNS results depict the occurrence of large values for Dy
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Figure 13. Rectangular duct: contours of (a) P} ; (b) D5 () TS + C;F, green == = .0125, black &= = .025,
blue + = .0375, cyan &+ = .05, magenta £+ = .0625, red + = .075, solid positive and dotted negative;
(d) e,'(". In panels (a), (b) and (d) green £ = .05, black + = .1, blue & = .15, cyan + = .2, magenta
+ = .25,red £ = .3, solid positive dotted negative. All data are shownatRe = 5000forAg = 1,Ag = 2,
Ar =4, Ag =5, Ag = 6, Ag = 7. Space coordinates are scaled with respect to the averaged friction
velocity, U;.

and P; near the walls, with those of D; closer to the walls than those of P;. The latter
has its peak far from the corner at a distance from the walls approximately 15 wall units.
The good equilibrium between production and total dissipation is corroborated by the
small values of T + Cif. Figure 13(c) further shows alternation of negative and positive
layers near the walls, depending on the relative magnitude of P} and Dj-. The rather good
scaling of the isotropic dissipation rate €; in wall units arises in Figure 13(d). Comparison
between this figure and Figure 13(b) demonstrates that modelling D should be easier than
modelling €.

To investigate whether the scaling in wall units holds by increasing the Reynolds num-
ber, in Figure 14 we show the contours, of mean velocity, turbulence kinetic energy and
terms of the turbulence kinetic energy budget, for Ag = 1. Comparison of the U;" con-
tours demonstrates that the distortion is greater at lower Re, implying that the influence
of the secondary motion is stronger, in large part of the quadrant. At high Reynolds num-
bers (Re = 7750 and 15,000) the contours are quite similar, and similar variations of g
may be observed at all Re. The panels reporting P¢ and DZ show once more good balance
between turbulence kinetic energy production and total dissipation. The regions with Dy
higher than P} correspond to the thin regions with negative C;f near the two walls. Far
from the corner and in the region close to the corner bisector Dy, slightly overcomes P,j,
however, this is a region with weak turbulence according to the contours of g*. The results
shown in Figure 14 emphasise a good scaling in wall units of mean motion, turbulence and
budgets in a square duct. Linear scales used here allow to analyse the behaviour far from
the corner.

It is thus worth analysing whether mean and turbulent quantities also scale with the
mean friction velocity for A # 1. A rectangular duct with Ar = 7 has been considered to
compare the distribution of the various quantities with those in Figure 14, at Re = 7750
and Re = 15, 000. However, for Ag = 7, Re = 2500, the flow is laminar, as may be argued
from the C¢ shown in Figure 7(a) (black dots). On the other hand, turbulent flow is found at
AR = 6,Re = 2500, thus in Figure 15 we show the behaviour of the quantities at Re = 2500
for AR = 6. At thislow Re, the choice to analysea 100" x 100" box around the corner leads
to a vertical size in the top panels of Figure 15 which is shorter than the horizontal one,
in fact L;r /2 = 61, whereas L) /2 = 367. These differences, in particular in the turbulence
kinetic energy, lead to different distributions close to the horizontal and vertical walls. The
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Figure 14. Rectangular duct (A = 1): contours of U (a,fk); g™ (b,g)), CF + T, (¢hm), P (d,in), D
(e,j,0), at Re = 2500 (a—e), Re = 7750 (f-j), Re = 15000 (k-0). Only a 100" x 100* box is shown near
the corner. Positive contours are shown in red, and negative in blue, with increments A = 1 for UT and
g*,and A = .001 for the budgets terms. The blue line denotes g™ = 1.

blue line in Figure 15(b), corresponding to g™ = 1, near the vertical wall is localised in a
smaller region than that near the horizontal wall. This is corroborated by the contours of
P;g in Figure 15(d) and of D} in Figure 15(e). The total dissipation D}; near the vertical wall
does not overcome P}, whereas this occur near the horizontal wall, and this difference may
be also inferred from the contours of Cf + T} in Figure 15(c). At Re = 7750, L} /2 = 170,
hence the 100" x 100" box should not show large differences near the walls. Indeed, both
the contours of U;” and q* in the middle panels show better symmetry around the corner
bisector. Symmetry is further supported by the distributions of the three terms in the tur-
bulence kinetic energy budget, which are very similar to those at the same Re in Figure 14.
Visualisations in a wider region show that at larger wall distances than 100, all quantities
do not change and behave similarly near walls. This explains why Cy in the fully turbu-
lent regime scales well regardless of the definition of Reynolds number. At Re = 15, 000,
Ly /2 = 310, hence in bottom figures the contours close to the corners show better sym-
metry than that at Re = 7750. From Figure 15, it may be asserted that at high Reynolds
number, that is in the fully turbulent regime, mean and turbulent motion scale well with
the averaged friction velocity also for rectangular ducts. Under these conditions, the cor-
rections caused by the corner are concentrated in a small region, and large part of the duct is
occupied by turbulent flow not different from a canonical planar channel. Completely dif-
ferent is the behaviour near the transitional Reynolds number, in which the corner bisector
symmetry is lost. In ducts with high aspect ratios, the near-wall structures are constrained
near the short side, thus turbulence is not sustained, and although the other side is long
enough, g* remains nearly zero.
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Figure 15. Rectangular duct: contours of U (afk); g+ (b,gl), CF + T (chm), P{ (din), D (ej0),
at Re = 2500, Ap = 6 (a—e), Re = 7750, Ag = 7 (f-j), Re = 15000, Az = 7 (k-0). Only a 100™ x 100™
box is shown near the corner. Positive contours are shown in red, and negative in blue, with increments
A = 1for UT and g*,and A = .001 for the budgets terms. The blue line denotes g* = 1.

3.6. Turbulent stresses in principal mean strain axes

The profiles of the rms velocity fluctuations in channels and ducts show large anisotropy,
which may be ascribed to differences in the respective production, resulting from interac-
tion of the mean strain-rate tensor S;; = (dU;/dx; + dU;/9x;)/2, and the Reynolds stress
tensor R; = —(u;u;). In particular, the production term in the turbulent stresses trans-
port equation is P;j = —(Rix(dU;/dxx) + RjxdU;/0xx)), hence it may be stated that the
large scales due to the mean motion are responsible for creating turbulence anisotropy
in wall-bounded flows. It may then be interesting to evaluate the eigenvalues of S;; (say
extensional, S, > 0, intermediate, Sg, and compressional, S, < 0), and project the flow
statistics along the eigenvectors of S;;. Evolution equations for the vorticity components
in the local strain-rate eigenvector basis were given by Nomura and Post [25], applied to
the case of homogeneous turbulence. Orlandi [26] exploited channel flow DNS at high
Reynolds numbers [27-29], to evaluate the Reynolds stresses in the mean strain-rate eigen-
vector basis. In channel Sg = 0, hence one of the Reynolds stresses is unchanged, whereas
the difference between the other two is reduced. The turbulence kinetic production in the
mean strain-rate eigenvector basis is Py = —(Py + Pg + P)), with Py, = Ry Se > 0, and
P, =R,,S, <0, larger than P in absolute value. In channels it was found that at any
Reynolds number the compressive strain generates more kinetic energy than is destroyed
by extensional one. These results may be useful to construct more reliable turbulence clo-
sures. For duct flows, it is difficult to get satisfactory results with models based on the linear
eddy viscosity assumption [30]. Therefore the evaluation of the Reynolds stresses in the ref-
erence system based on the eigenvalues of S;; may be of interest. A comparison between the
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Figure 16. Contours of turbulent stresses in wall units at Re = 7750, in Cartesian basis (top), and in the
mean strain-rate eigenvector basis (bottom); Red lines are spaced by A = 0.1, and blue lines start from 1
and are spaced by A = 2.(a) R11 (6. 28) ( ) R22(1.52), () R33(1.67) for Ag = 2 (d) R11(5.6), (e) Ry2(1.15),
(f)R33(1.16) for Ag = 7 (9) Rwa (2.68), (h) Ry, (3.90), (i) Rgs (1.66) for Ag = 2, (j) Rue (2.39), (K) R, (3.42),
(D Rep(1.16) forAg = 7.

stresses in the Cartesian basis and those in the new basis is shown in Figure 16 at Re = 7750
for rectangular ducts with Ag = 2 and with Ag = 7. The contours for the square duct were
shown in [22] by using a logarithmic scale for the distances from the corner to empha-
sise the near-wall behaviour. In all the cases, wall units are based on the mean friction
velocity uz, that is also used to scale the normal stresses. The results at Re = 7750 may
be regarded as representative of flows at high Reynolds number. A tendency towards an
isotropisation and a symmetric distribution around the bisector was depicted in the new
basis. In Figure 16, a linear scale for the coordinates, limited to a size of 200 wall units,
is used. These plots, therefore allow to see the behaviour near the walls and in the outer
region. The red contours are separated by A = 0.1, blue contours starting from unit value,
and separated by A = 1 allow to emphasise the tendency towards an isotropisation in the
mean strain-rate eigenvector basis, and to see whether a decrease of their level occurs by
increasing the aspect ratio. To corroborate these occurrences, the maximum values are
given in the caption. In the top figures, it is clear the strong stress anisotropy, and the high
values at Ap = 2 with respect to those at Ag = 7. The anisotropy and the absence of any
symmetry around the bisector make difficult their reproduction by RANS models. On the
other hand, the bottom panels of Figure 16 show that turbulent stresses become symmetric
with respect to the bisector in the mean strain-rate eigenvector basis also for A = 7. The
anisotropy level is also reduced, in fact only the compressive stress in Figure 16(h,k) has
two blue contours. As found by Orlandi [26] in two-dimensional channels, R, is found
to be larger than R, leading to greater turbulence kinetic energy production through P,
than the destruction by the extensional strain, P,,.

4. Concluding remarks

In this paper, we have reported results obtained from DNS of flow in rectangular ducts
with different aspect ratios in the laminar, transitional and fully turbulent regimes. The
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case of a square duct, largely investigated in real and numerical experiments has been pre-
liminarily considered to validate the numerical method. The results compared well with
those available in the literature. Particular attention has been directed to the time evolution
towards a statistically steady state. We have found that the initial time units are necessary to
destroy the unphysical flow structures related to the initial random disturbances. The anal-
ysis of the unsteady budget of the turbulence kinetic energy budget allows to understand
the physics of wall turbulent flows. In fact, in the first period flow structures are generated
in the entire duct, which are then convected by mean motion and transferred from one
region to another by high-order velocity correlations, in addition to being produced and
dissipated. Globally, the time variation of turbulence kinetic energy is associated with slight
unbalance between production and dissipation. On the other hand, local variation of tur-
bulence kinetic energy is strongly correlated with the local turbulent diffusion, with strong
reduction of the turbulence kinetic energy in the central region of the duct at early times.
At later times, kinetic energy is mainly produced near the walls and there locally dissipated,
nevertheless large correlation between the local decay rate of turbulence kinetic energy and
turbulent transport is still observed. This behaviour is typical of wall-bounded turbulent
flows, and it corroborates the view that in turbulent flows local interaction is mainly driving
the flow dynamics.

The wall profiles of t,, increase starting from the corners, reaching a nearly flat distri-
bution profile in a large part of the duct at sufficiently high Reynolds numbers. In addition,
we have found that secondary motions are stronger at low than at high Reynolds number.
Hence, at low Re secondary motions can be potentially exploited to improve mixing or
heat transfer. At high Re, the reduction of the strength and the shrinking of the secondary
motions to a small region near the corner yields a behaviour of Cy, as well to profiles of the
mean motion and the turbulent statistics similar as in canonical two-dimensional channels.
At high Re, there is no large difference on the definition of the reference length in plotting
the Cs versus the bulk Reynolds number. On the other hand, in particular in the pres-
ence of rectangular ducts with Ag > 1, the transitional Reynolds number is independent
of the aspect ratio by taking as reference length half of the shorter side. Having observed
that for a square duct the critical Re is different from that for Ag > 1, we argue that for
ducts with Ag > 1, asymmetric disturbances emanating from the corner act as a tripping
device. At low Re, the shorter side plays an important role, and if the friction Reynolds
number based on the short side is low, turbulence cannot be sustained and the flows remain
laminar.

Scholars interested in applying RANS closures to simulate flows in practical applications
for rectangular ducts are aware of the difficulties to reproduce anisotropy and asymmetries
of the turbulent Reynolds stresses. In this paper, we have shown that by projecting the
stresses along the mean strain eigenvectors, the anisotropy is reduced, and that the normal
stresses become symmetric with respect the corner bisectors. This observation may be use-
ful in constructing more reliable RANS closures. The further result that the behaviour of
the total dissipation is simpler to model than the isotropic rate of turbulence kinetic energy
could also be exploited in RANS closures.

In rectangular ducts at high Reynolds numbers, it has been found that the mean motion,
the turbulence kinetic energy as well as its budget collapse well with the Reynolds number
when expressed in wall units scale. These quantities also do not vary in the region near the
corner as the aspect ratio is varied.
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