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Abstract In complex vibrating systems, contact and
friction forces can produce a dynamic response of the
system (friction-induced vibrations). They can arise
when different parts of the system move one with
respect to the other generating friction force at the con-
tact interface. Component mode synthesis and more
in general substructuring techniques represent a useful
and widespread tool to investigate the dynamic behav-
ior of complex systems, but classical techniques require
that the component subsystems and the coupling con-
ditions (compatibility of displacements and equilib-
rium of forces) are time invariant. In this paper, a sub-
structuring method is proposed that, besides accounting
for the macroscopic sliding between substructures, is
able to consider also the local vibrations of the con-
tact points and the geometric nonlinearity due to the
elastic deformation, by updating the coupling condi-
tions accordingly. This allows to obtain a more reli-
able model of the contact interaction and to analyze
friction-induced vibrations. Therefore, the models of
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the component substructures are time invariant, while
the coupling conditions become time dependent and a
priori unknown. The method is applied to the study of
a finite element model of two bodies in frictional con-
tact, and the analysis is aimed to the validation of the
proposed method for the study of dynamic instabilities
due to mode coupling.
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1 Introduction

In complex mechanical systems, the relative motion
among components generates contact and friction
forces at the contact interfaces. These forces produce
a dynamic response of the system, known as friction-
induced vibrations [1,2], i.e., vibration and noise that
in certain conditions can become relevant in terms of
both structural integrity and comfort [3].
Friction-induced vibrations, and more generally
contact problems, are naturally prone to be tackled
using dynamic substructuring, because at least two
different bodies in contact need to be considered. In
fact, the aim of dynamic substructuring is to predict
the dynamic behavior of a system made by compo-
nent subsystems, starting from their dynamic behav-
ior which is assumed to be known. A review on
dynamic substructuring is provided in [4], where a
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general framework to set up substructuring problems
is proposed. The main advantages of the substruc-
turing approach are: to allow the use of a differ-
ent kind of model for each substructure (finite ele-
ment model or experimental model) in order to predict
the dynamic behavior of the coupled structure [5]; to
allow the use of reduced order models by condens-
ing the system matrices with the only requirement
of retaining the interface degrees of freedom [6,7];
to assess the effects of subsystem modifications on
the dynamics of the entire model; and to identify the
dynamic behavior of substructures from coupled sys-
tem data [8—11]. With regard to friction-induced vibra-
tions, a substructuring approach is applied in [12]
to a time-invariant brake system showing its advan-
tages in terms of computational burden without losing
accuracy.

Although originally conceived for time-invariant
systems, dynamic substructuring has been adapted with
few modifications to a significant subset of time-variant
systems built from time-invariant substructures sub-
jected to time-variant coupling conditions [13—15] or
to predict position-dependent dynamics of systems
that change their configuration over time [16,17]. The
numerical analysis of configuration-dependent prob-
lems in the framework of dynamic substructuring pro-
vides interesting results with relatively low computa-
tional effort.

However, in the approach presented in [15], the time-
variant compatibility and equilibrium conditions aris-
ing from sliding contact are assumed to be known a
priori. This is a limitation because it does not allow
to account for the relative displacement at the contact
interface due to the system deformation. In dynamic
contact problems [18], the relative displacement due to
the elastic deformation is the main cause of friction-
induced vibrations phenomena such as dynamic insta-
bilities [19-21], stick-slip [22,23] or sprag-slip [24,
25].

In this paper as in [15], sticking and detachment
are not considered. However, the time-variant coupling
conditions due to sliding are not anymore assumed
to be known a priori, but they are estimated account-
ing for the deformation of the contacting bodies: This
allows to account for the effects of such deformation
on the relative displacement and, moreover, it intro-
duces geometric nonlinearities. The sliding contact can
be without or with friction. With friction, the set of
degrees of freedom to which equilibrium conditions
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apply includes the tangential directions at the contact
interface, which are not considered in the compati-
bility conditions because of sliding. This is in fact a
non collocated interface as defined in decoupling prob-
lems [10,26].

The proposed approach is applied to a beam-
on-beam system [27] described by a finite element
model and by considering a single contact point. This
allows to evaluate the effectiveness of the approach
in both stable and unstable conditions and to envis-
age possible applications to more complex
systems.

The problem is tackled in the time domain using dual
assembly: However, in this case a singularity problem
arises that can be overcome by adapting the forward
increment Lagrange multipliers method [28] to obtain
a nonlinear forward increment dual assembly. The har-
monic content of transient responses is compared with
the results of time-dependent complex eigenvalue anal-
ysis and with the results of time-dependent frequency
response function. Time-dependent complex eigen-
value analysis is performed using primal assembly.
Time-dependent frequency response function (FRF) is
defined by assuming that the rate of variation of system
configuration is low with respect to the characteristic
frequencies.

2 Contact problems using dynamic substructuring

A coupled structural system composed of n connected
subsystems is considered. The equation of motion of
the rth linear time-invariant subsystem can be written
as follows:

MPi) + Car)™
+Kun)" =f 0" +g0)" (1)

where M), C") and K@) are the mass, damping and
stiffness matrices of subsystem r; u(t)") is the vector
of displacements of subsystem r; f ()" is the vector
of external forces on subsystem r; g(¢)" is the vector
of connecting forces with other subsystems (internal
constraint forces).

The equation of motion of the n independent sub-
systems before coupling can be expressed in a block
diagonal format as:

Mii(t) + Cu(t) + Ku(t) =f(t) +g(t) 2)
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with:
MO c®
M(’l) C(n)
KO u(®)®
K= u() =\ : 3)
K® u(r)™
VIOK g™
f@)y=1: g(r) =
F™ g™

Compatibility requires that a given pair of matching

DoFs at time ¢, e.g., DoF [ on subsystem r and DoF m
on subsystem s, must share the same displacement, that
is ul(r) (t)— uf,f) () = 0. This condition can be generally
written as:
Bce(@u(t) =0 “)
where each row of B¢ (7) defines compatibility between
a pair of matching DoFs at time ¢. B¢ (¢) can be written
by splitting the contribution of the different subsys-
tems:

Bc(r) = [ch“) Bc<r><">]. )

Equilibrium of internal constraint forces, associated
with the compatibility conditions and possibly with
sliding friction, requires that the sum of connecting
forces at a pair of matching DoFs at time ¢ is zero,
e.g., gl(r)(t) + g,(,f)(t) = 0: This holds for any pair of
matching DoFs at time 7. Furthermore, for any non-
connecting DoF k on subsystem ¢ at time ¢, it must
be g,i’”(t) = 0. When friction occurs, the equilibrium
condition applies also to the tangential direction at the
contact interface, which is not included among the com-
patibility DoFs whenever sliding occurs. This defines
a so-called non-collocated interface.

The resulting set of equilibrium conditions can be
expressed as:

Le()g(t) =0 ©)

Note that the number of rows of Lg(7)” is given by
the sum of the number of non-interface DoFs and of
the number of pairs of equilibrium interface DoFs.

Equations (2—6) can be gathered to obtain the so-
called three-field formulation, i.e., the overall system
of equations representing the coupled system:

Mii(r) + Cit() + Ku(r) =f (1) + g(t)

Bc(u() =0 (N

Le()'gt) =0

Note that the three-field formulation is very simi-
lar to that describing a coupled system with a time-
invariant interface, the difference being represented
by B¢ and Lg which now depend on time ¢. Since
time-variant coupling conditions are involved, the time-
domain approach is the most appropriate. Substructur-
ing in time domain has been tackled by Rixen and van
der Valk [29,30], by using impulse response functions,
but the coupling conditions (compatibility and equi-
librium) have been assumed as time invariant. If the
solution is approached in the time domain, both primal
assembly and dual assembly could be used [4,31].

2.1 Primal assembly in time domain

In the primal assembly, a unique set of interface DoFs
is selected and the interface forces are automatically
canceled by enforcing the equilibrium condition. The
unique set of DoFs ¢ includes also non-interface DoFs
and satisfies:

u(t) = Lc()q(r) ®)

where L (¢) differs from the matrix Lg(¢) introduced
previously when friction forces exist at the interface.
Since Eq. (8) states that the DoFs of all subsystems are
obtained from the unique set ¢, compatibility holds for
any setgq, i.e.,

Be(Hu(t) = Be()Lc()gq() =0 Vq. ©)
Therefore,
Be()Lc () = 0. (10)

Since Eq. (9) is satisfied by the choice of the unique
set ¢, the system of equations (7) becomes:

MLc(1)§(t) + CLc(1)q(1)
+KLc(0)gq(t) =f (1) +g(1) 1D
Lg()'gt) =0
By pre-multiplying the dynamic equilibrium equa-
tion by Lg(#)7 and by noting that Lg ()" g(t) = 0,
Eq. (11) reduces to:

Lg(t)"MLc(1)§(t) + L))" CLc(1)§(1)

+Lg ()" KLc(1)q(1)
=L f(0), (12)
1.e.,
M(1)§(1) + C(1)q(1) + K(1)q(t) = f (1) (13)
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where

C(1) =Le()" CLc(t)
FO) =Le®Tf@). (14)

Equation (13) can be recast in state space form:

{q(z) } B 0 [1] {q(t) }
g0 | | -M@)'K(r) —M(@)"'C@) | | §(0)

M(t) = Lg(t)"MLc (1)
K(r) = Le() " KLc(1)

0
N 15
+ { M)~ (0) } (13)
1.€e.,
30 = AWy() + F(1). (16)

Being A(t) a time-dependent matrix, Eq. (16) cannot
be solved analytically but requires numerical time step
integration that involves the computation and inversion
of matrix M at each time step. The computational bur-
den prevents from using primal assembly for time inte-
gration. Primal assembly, however, can be used to for-
mulate a time-dependent complex eigenvalue problem
starting from Eq. (13) with Lg(¢) and L¢(¢) computed
without accounting for the geometric nonlinearity due
to the elastic deformation of the system.

2.2 Dual assembly in time domain

In dual assembly, each interface DoF is considered
as many times as there are substructures connected
through that DoF. At time ¢, the equilibrium condition

g,(r)(t) + g% () = 0 at a pair of interface DoFs can

be ensured by setting gl(r)(t) = —A\ and g,(,f)(t) = A
Therefore, equilibrium at all the interface DoFs can be
ensured by writing the connecting forces in the form:

gt) = —Be() 1) (17)

where A are Lagrange multipliers corresponding to con-
necting force intensities and Bg (7) is different from the
matrix B¢ (¢) previously defined to enforce the compat-
ibility condition, because B (¢) must also account for
the equilibrium of friction forces at the interface.

The interface equilibrium condition (6) is thus writ-
ten:

L) g(t) = —Le()"Be(®)"A1) =0  VA. (18)
Therefore,

Le()"Be()" =0. (19)
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Since Eq. (18) is always satisfied by any set of con-
necting force intensities A, the system of equations (7)
becomes:

{ Mii(r) + Cu(r) + Ku(t) + BgT ()X () =f(1)

Bc(Hu(t) =0 (20)

and in block matrix format:
M 0] | i) n C O [a@)
0 0] |A@) 0 0] |A@)
K Bg" 0] [u@)]| _ [f@)
* |:Bc(z) o [lao[= 1o [ @V
Equation (21) cannot be explicitly solved in the time
domain due toits singularity. An approach similar to the

forward increment Lagrange multipliers method [28]
can be used to overcome the singularity problem.

2.2.1 Nonlinear forward increment dual assembly

This formulation relates constraints in the deformed
position at time t,4+1 = t, + h, where & is the integra-
tion time step, with Lagrange multipliers at time #,. In
this case, the geometric nonlinearity due to the elastic
deformation of the system is accounted for. The equa-
tion of motion becomes:

{Mu + City + Kuy, +Bg!_ Ay =f,

22
Beprittnyr =0 22)

In this notation, the subscripts n and n 4 1 indicate the
functions at time #,, and #,,41.
The first equation of (22) can be rewritten as:

ii, =M™ I:fn — Ci, — Ku,, — BE'{'HX":I ’ (23)

For explicit integration of the equation, the Newmark
B> scheme can be used, that for o = 0.5 reduces to
the central difference scheme:

.. 1
iy = 77 Wng1 = 2un + Un—1) - (24)

To ensure the stability of the Newmark central differ-
ence scheme, the time step # must satisfy the following
inequality:

1Y
h < ’\E (\/ 1= G — ;Max) (25)

where [ is the minimum distance between two adjacent
nodes, p is the mass density, E is the Young’s modulus,
and {Max is the maximum value of the modal damping
factor.
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By substituting the central difference expression of
ii,, in the equation of motion (23), and by using u, =
(u, —uy—1) / h, one obtains:

1
Upy) = WM~} |:fn — ZC W, —u,_1) — Ku,,]

+2uy — uy—y — W*M7'BgL, Ay (26)

The displacement u at time n 4 1 can be rewritten as
. N ¢ -
the sum of a predictor u;, , | and a corrector u, , , i.e.,

ppl = Uy U 27
where
. _ 1
Uy = h*M! |:fn - ZC (wy —up—1) — Kun]
+2u, —u,_q (28)
and
ul, = —h*M'Bgl %, (29)

The predictor u}, | can be directly evaluated since it
depends on the displacements of the system at times ?,
and t,_1, but it does not account for contact forces A.
The corrector u; | ; depends on the matrix Bg evalu-
ated at time #,41 and represents an incremental dis-
placement associated with the contact forces A. It is
unknown because contact forces A,, must be estimated
and constraints Bg,,; | must be defined.

Contact forces can be estimated, by first substituting
Eq. (27) in the second line of Eq. (22) that expresses
the compatibility condition:

Beui {up gy +up ) =0; (30)
then, by substituting Eq. (29) in Eq. (30):
Beuitthy ) =Beuh”M ™' Bg ], A, 31)

from which, A,, can be obtained as

-1
A, = (thC,,HM*‘BEZH) Beapiul,, (32

and it depends on matrices Bg and B¢ defined at time
t,+1- In a previous work, the authors proposed an esti-
mation of matrices Bg and B¢ based on the assumption
that the compatibility and equilibrium conditions, aris-
ing from sliding contact, are a priori known. In that
case, the time dependency is obtained by assuming a
rigid relative motion between component subsystems
due to the time-dependent boundary conditions. In this
paper, a better estimation is obtained by giving up the
assumption of rigid relative motion and accounting also
for system deformation. The system position U* at time

.41 1s estimated using the predictor of displacements
.
u,, e,

Up =X+u, (33)

where X represents the undeformed position. Since the
system deformation affects the coupling conditions, the
coupled system is geometrically nonlinear. Moreover,
by considering system deformation, the variation of the
tangential displacement at the contact can be observed,
thus allowing to account for friction-induced vibra-
tions.

Finally, by substituting A, in Eq. (29), the incre-
mental displacement u, | due to the contact forces is

n+
evaluated and the displacement u, 4 is obtained.

2.2.2 Contact algorithm

To enforce compatibility and equilibrium, the position
of the contact point must be defined. To this aim, a con-
tact algorithm is proposed according to the well-known
master element—slave node approach [32]. To identify
the system configuration at time #,,4 1, the system posi-
tion Uy, |, in Eq. (33), is used. Figure 1 shows a target
element defined by nodes 7' and 7> and a contact node.
The position of contact node C* is given only by the
predictor; hence, it does not necessarily lie on the target
element. It is assumed that the position of contact point
C is given by the normal projection of the node C* on
the target element. The distance between node 77 and
point C can be expressed as:
—>* —
lhe = T,C*-Th'T» (34)
2

where /17 is the length of the target element, i.e., the
distance between nodes 77 and 7>.

The target element in contact is the one that satisfies
the following conditions:

—

.
* .
T\C*-Th'T» -

cos(¥) = T (35)

e <2

T
- Cc*
Fig. 1 Master element and slave node

@ Springer



3306

J. Brunetti et al.

gca
” T:
/? 2
IT1e | ™y T
- Ty 912y
Phe T gcy
-
e 9griy

(a) Forces acting on the contact element and on the

contact node.
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(b) Contact forces on the contact node C.

Fig.2 Equilibrium of forces and compatibility of displacements
for a contact node and a target element

where /¢ is the distance between nodes 77 and C*.
Finally, the adimensional relative position « of the
slave node C along the target element is given by:

_he

o = .
l12

(36)

2.2.3 Compatibility and equilibrium for dual
assembly

Using dual assembly, all the elements of u are retained.
In order to evaluate the time response of the sys-
tem, the explicit time integration method in Sect. 2.2.1
requires the time-variant matrices B¢ (#) and Bg(¢) to
be defined. In fact, they are needed to evaluate the con-
tact forces A, in Eq. (32), and the incremental displace-
ment u¢ associated with the contact forces, in Eq. (29).
Figure 2a shows the connecting forces acting on the
target element and on the contact node.

The equilibrium of forces shown in Fig. 2a along the
x and y directions and around node 77 is:

ZFx =gT1x+gT2x+ng:O

ZFy =gT1y+gT2y+gCy=0

> Mgy =liccos(y)gcy + liacos(y)gray
—=licsin(y)gcx — liasin(y)grax =0

(37

For a given friction coefficient > 0 and a relative
velocity v_r) Fig. 2b shows the normal and tangential
component, respectively, Fy and Fr, of the contact
force between the contact node and the target element.
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The directions of Fy and Fr in Fig. 2b are those arising
when the two bodies are pressed against each other, and
the relative velocity T; is directed as shown.

The connecting force components gc, and gcy on
the contact nodes can be expressed by the projection of
Fy and Fr on the x and y directions.

gcy = Fy cos(y) £ Frsin(y)
where the &+ accounts for the inversion of relative veloc-
ity E) that causes the inversion of the tangential force
Fr too.

If a constant Coulomb friction law is considered, i.e.,
|Fr| = wu|Fn]|, the connecting forces on the contact
node can be expressed as:

{ng = [— sin(y) &+ ucos(y)] Fy =1Fy
8Cy = [COS(]/) + /_LSIH()/)] FN = FZFN

where I'1 and I collect all the friction and geometric
parameters.

By combining Egs. (36), (37) and (39), the nonzero
elements of the connecting force vector g can be
expressed as:

(39)

grix =—U —a)gex =—( —a)[1FN
griy =—(1—a)gcy = —(1 —a)[2Fy

8rox = —agex = —alFy (40)
812y = —agcy = —alrFy

gcx =IFy

gcy = InFN

Hence, by considering A = Fy, the set of equa-
tions (40) can be rewritten in matrix form as:

8T1x (I—o)l7
8Tly (I—-a)?
8T2x al’

- - A 41
8T2y al? @1
gCx =I
8Cy —I

and according to Eq. (17), the vector on the right-hand
side of Eq. (41) contains the nonzero elements of Be!.

(I =)l
(I =)l
OlFl
aly
_1—'1
_FZ

Bf = (42)

As stated in Sect. 2.2, the matrix B is different from
the matrix B¢ because it accounts for friction forces at
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the interface, while the compatibility is enforced only
along the direction normal to the contact (i.e., normal
to the target element). However, for © = 0 the two
matrices are the same as in the collocated problem,
B¢ = Bg/|u—o.

The factors I” for a nil friction coefficient are:

{ Tilp=0 = —sin(y)

43
I | =0 = cos(y) )

By substituting the previous equation into the
Eq. (42), the nonzero elements of the matrix B¢” , used
to enforce compatibility, are:

—(1 —a)sin(y)
(1 —a)cos(y)
—a sin(y)
acos(y) ’ “44)
sin(y)
—cos(y)

ST
BC—

According to the definition of A before Eq. (41), the
contact assumption is verified, if the normal contact
force Fy acting on node C is positive, thatis if A > 0.

2.3 Time-dependent frequency response function

The time-dependent frequency response function, intro-
duced by the authors in [15], gives an idea of the influ-
ence of the time-dependent interface on the dynamics
of the system at different frequencies. For systems com-
posed of time-invariant substructures with time-variant
contact interfaces, the matrices B¢ and Bg are con-
figuration dependent, i.e., they depend on the relative
position of the contacting bodies. If the elastic defor-
mation of the system is neglected, the matrices B¢ (¢)
and BE (¢) can be estimated a priori as function only of
the time-dependent boundary conditions [15].

The time-dependent frequency response function
matrix is expressed as [15]:

H  (jo, 1) = H(jo) — H(jw)Bg(1)"
-1
(chH(jw)BE(t)T) Bc(HH(jw). (45)

It provides, with a much smaller computational effort
than that required to compute the time response, a result
that is qualitatively equivalent to the time-frequency
analysis of the linear system response.

3 Application

The approach proposed in the previous section is here
applied to a beam-on-beam system, similar to that
described in [27]. Beam-on-beam models are often
used as benchmark systems for contact problems. The
objective of the study is the verification of the abil-
ity of the substructuring-based procedure to cope with
friction-induced vibrations. The system is relatively
simple, but the procedure here proposed could be
applied to systems composed of more complex sub-
structures to deal with engineering applications. In fact,
engineering systems with sliding contact interfaces are
often affected by friction-induced vibrations. There-
fore, numerical methods must necessarily be able to
reproduce these phenomena in order to be able to repro-
duce the actual dynamic behavior of mechanical system
with sliding contact interface.

3.1 Numerical model

The mechanical system shown in Fig. 3ais made by two
contacting beams forming an angle ¥ of 30°. The hor-
izontal beam (2) is made of polycarbonate and is fixed
at the left end B. The oblique beam (D) is made of alu-
minum alloy. The contact between the beams at point
C is ensured by a vertical load Fy applied at the upper
end A of beam (1), whereas the relative motion between
the two beams is provided by setting the upper end A in
motion with a horizontal velocity v,. The amount of the
horizontal velocity is selected to be much lower than
15.24 m/s, that is the critical speed of a moving load in
the horizontal direction. A sliding friction coefficient
o is assumed between the two beams. Furthermore,
the initial position of the contact point C is denoted
as so. Geometrical dimensions, mechanical properties
and boundary conditions are shown in Tables 1 and 2.

Different values of friction coefficient p are used
in order to induce both stable and unstable system
responses.

Moreover, in order to simulate roughness at the
contact interface, a vertical force—defined as a band-
limited white noise—is applied on point C. The two
beams are modeled by 350 plane stress elements, 531
nodes and 1062 DoFs. The substructure () has 456
DoFs, while the substructure 2 has 606 DoFs. To
reduce the computational effort, a modal reduction is
performed on the two substructures.
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Table 1 Geometrical properties of the model

Dimensions Beam 1 Beam 2
Length, L (mm) 75 100
Thickness, b (mm) 1.5 2
Width, a (mm) 10 20
Angle, 9 (o) 30 0

Table 2 Mechanical properties and boundary conditions of the
model

Quantity Beam 1 Beam 2
Young mod, E (GPa) 71 2.38
Poisson’s ratio, v 0.33 0.40
Density, p (kg/m3) 2770 1200
M prop. damping, o (s™1) 0.2 40
K prop. damping, S (s) 4.0e—8 4.0e—8
Friction coefficient, u 0.30
Force, Fy (N) —-0.20
Velocity, vy (mm/s) 30

|

%

@T

l2, b2, a9

N2 c

(a) Sketch of the beam-on-beam system.

@
LSS e

(b) Finite element model of the beam-on-beam system.
Red dots represent the boundary nodes of the substruc-
ture (O, Blue dots represent the boundary nodes of the
substructure (2

Fig. 3 Beam-on-beam model
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3.1.1 Craig—Bampton reduction

For substructure (), 4 boundary nodes (8 DoFs) are
necessary, i.e., the contact node and the three nodes
on the upper right edge where the boundary conditions
are imposed. For substructure 2), 100 boundary nodes
(200 DoFs) are necessary, i.e., the nodes on the upper
edge of the beam (Fig. 3b). Furthermore, 20 fixed inter-
face modes are selected for substructure (D) (including
modes up to 150 kHz) and 20 free interface modes are
selected for substructure (2). Overall, after the reduc-
tion, substructure (1) has 28 DoFs (#1) and substructure
® has 220 DoFs (u5). To solve the contact problem,
master elements are the top edges of the elements of
the horizontal beam (2) and the slave node is the bottom
corner C of the inclined beam (D).

4 Results

The substructuring method presented in Sect. 2 is used
to investigate the dynamic behavior of the beam-on-
beam system in different conditions. Once the geomet-
rical characteristics and mechanical properties of the
system have been selected, the stability of the system
may basically depend on the friction coefficient and on
the position of the contact point.

Generally when dealing with time- or position-
dependent dynamic behavior, a system is stable when
the real parts of its eigenvalues are negative at any time
instant or at any position. Conversely, a system is unsta-
ble when the real parts of its eigenvalues become posi-
tive during a time interval or within a range of positions.
In the proposed case study, the system’s configuration
changes with time due to the displacement of the con-
tact point from the fixed end to the free end of the hor-
izontal beam. The continuous configuration change is
sampled to obtain a finite set of configurations. For each
configuration, the two substructures are coupled using
primal assembly as shown in [15] and complex eigen-
value analysis is performed, providing the correspond-
ing complex eigenvalues. Therefore, the definition of
stable or unstable system is extended to the whole set of
considered configurations. If the real parts of the sys-
tem’s eigenvalues are all negative, the system is stable;
otherwise, if at least one of the system’s eigenvalues
has a positive real part for at least one configuration,
the system is unstable.
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Fig. 4 Locus plot of the 20 lowest eigenvalues

Figure 4 shows the locus plots of the eigenvalues of
the coupled system, corresponding to all the sampled
positions of the contact node C during the sliding from
the constrained end B to the free end T of the horizon-
tal beam. The variation of each complex eigenvalue
due to the displacement of the contact node C along
the horizontal beam is represented with a colored line
on the complex plane. Dotted lines represent the locus
of the complex eigenvalues of each subsystem: They
depend only on proportional viscous damping, i.e., on
the values of coefficients o and 8 in Table 2, and the
eigenvalues of the uncoupled subsystems would lie on
that lines. It is expected that the eigenvalues of the cou-
pled system lie between the dotted lines unless mode
coupling is present.

Two typical results are shown in Fig. 4, one cor-
responding to a friction coefficient £ = 0.1 and the
other corresponding to a friction coefficient © = 0.3.
The locus plot of the eigenvalues highlights that all

eigenvalues have negative real part for © = 0.1 (stable
behavior), while the real part of some eigenvalues may
reach positive values when i = 0.3 (possible instabili-
ties at some positions of the contact point). Specifically,
instabilities may occur around 7 kHz and 10.5 kHz.
Hence, transient analyses have been performed for
two different values of the friction coefficient u in order
to show stable or unstable behavior. Moreover, analy-
ses have been performed both without and with rough-
ness. When roughness is present on the upper edge of
the beam, the contact node C follows the asperities of
the profile during the sliding. Hence, vertical acceler-
ation arises at the contact interface and inertia forces
appear on both substructures that cause a variation of
the normal contact force to ensure the dynamic equi-
librium. Therefore, roughness is simulated as a force
acting on the contact node C in vertical direction having
a band-limited white spectrum with standard deviation
o as a fraction of the vertical preload Fy [27]. In the
following, four different cases are considered:

1. Stable smooth, u = 0.1and o =0

2. Stable rough, © = 0.1 and 0 = 0.5% of F)

3. Unstable smooth, u = 0.3 ando =0

4. Unstable rough, © = 0.3 and 0 = 0.5% of F).

Figure 5 shows the vertical accelerations of the free
end of the horizontal beam in the four considered cases.
When the friction coefficient is low, the system is sta-
ble and the accelerations in Fig. 5a remain on limited
values for both the smooth and the rough case. For a
higher value of the friction coefficient (1x = 0.3), dur-
ing sliding the system runs through instability zones,
the acceleration in Fig. 5b reaches the limit values and
then decreases when the contact point changes its posi-
tion. The maximum acceleration depends both on the
presence of roughness, modeled as a wide-band ran-
dom force, and on the amount of the preload Fy.

Figure 6 shows the spectrogram of the vertical accel-
eration of the free end of the horizontal beam for the two
cases with roughness. The roughness acts as a wide-
band excitation, and the spectrogram in Fig. 6a shows,
for the stable case, the resonances of the system and
how they change when the contact point travels along
the horizontal beam. For the case in Fig. 6b, besides
the response to the wide-band excitation, the spectro-
gram highlights the frequency and time intervals within
which the response increases because the system runs
through instabilities. The spectrogram of the response
highlights two instabilities of the system, one at around
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Fig. 5 Vertical acceleration of the free end of the horizontal
beam

10.5 kHz (at around 1.5 s) that was identified also on
the locus plot in Fig. 4b, and another one at 3.5 kHz
(at around 2.8 s) that was not identified by the complex
eigenvalue analysis. Recalling that complex eigenvalue
analysis is linear, i.e., it considers the coupled system
in the undeformed position, the effect can be ascribed
to the geometric nonlinearities due to the deforma-
tion of the system, because it modifies the direction of
the normal and tangential contact forces. Furthermore,
no instability can be observed around 7 kHz probably
because the real part of the eigenvalue is too low to
trigger it.

Figure 7 shows the spectrum of the vertical accelera-
tion of the free end of the horizontal beam in the unsta-
ble rough case for three time intervals corresponding to
three bursts of the response in Fig. 5b. The results agree
with those observed in the spectrogram. Furthermore,
during the last burst it can be clearly observed that the
frequency around 10.5 kHz appears in the spectrum
besides the main frequency around 3.5 kHz.
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Fig. 6 Spectrogram of the vertical acceleration of the horizontal
beam free end

30 -
......... 1.460< t <1.660
— - - - 2515< t <2.715
§ — 2.860< t <3.060
N )
=
e}
2
@
-
S 10 N
Q
Q
Q
=<
ol NS SN
0 5 10 15

Frequency [kHz]

Fig. 7 Discrete Fourier transform of the bursts of the vertical
acceleration of the tip of the horizontal beam

Since the proposed method requires that the two
bodies are in sliding contact, the relative velocity and
the normal force at the contact must be monitored dur-
ing the simulation. The simulation must be stopped in
two cases: (i) If the sticking could occur, i.e., if the
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Fig. 8 Contact status verification

relative velocity crosses the zero; (ii) if detachment
tends to occur, i.e., if A < 0. The horizontal velocity
of the contact point C is a good estimation of the rela-
tive velocity. For the unstable case with roughness, the
horizontal velocity of the contact point C is shown in
Fig. 8a and the normal contact force is shown in Fig. 8b.
The normal contact force is positive during the entire
simulation time, i.e., the contact hypothesis is always
verified and no detachment occurs. Moreover, the hor-
izontal velocity of the contact point oscillates around
the value of 30 mm/s, that is the horizontal velocity
v, imposed on the upper beam, and never changes its
sign. [t means that the sliding occurs always in the same
direction and that unstable vibrations do not produce
an inversion of motion.

Finally, Eq. (45) is used to compute time-dependent
FRFs of the coupled system when the upper beam is
sliding along the horizontal beam with the same speed
v, as in the transient simulation and a friction coeffi-

o)
[}

(|H|) [dB]

Time [s]

100
| ..
—50

Frequency kHz]

Fig. 9 Time-dependent FRF for u = 0.1

cient © = 0.1 that corresponds to the stable conditions.
The time and frequency intervals are [0.20, 3.13] s
and [0, 20] kHz. Time and frequency increments are

= 5e — 3s and Af = 5 Hz. Figure 9 shows the
time-dependent FRFs by considering an input force
acting at the contact point C in vertical direction and
the vertical acceleration of the tip T of the horizon-
tal beam. The results show a pattern with reference to
the high levels that is very similar to the pattern of
the two spectrograms in Fig. 6a, associated with the
response of the stable system to the wide-band excita-
tion. Furthermore, the time-dependent FRF highlights a
low-level pattern that accounts for time-dependent anti-
resonance locations. Nevertheless, the time-dependent
frequency response function computed for a friction
coefficient © = 0.3 is very similar to that shown in
Fig. 9 and it does not provide clear information about
the instabilities of the system: For this reason, it is not
shown.

4.1 Convergence check of the solution

In order to check the convergence of the obtained
results, the response has been compared with that
obtained using a finer discretization of the horizontal
beam. The refinement is applied only on the finite ele-
ment model of the horizontal beam. In fact, the Craig—
Bampton reduction applied to the inclined beam model
maintains only its end nodes and the first 20 fixed
interface modes, that are derived from a finite element
model that ensures an adequate spatial discretization.
Therefore, a finer discretization of the inclined beam
would not significantly modify its reduced model. Con-
versely, the increase in the number of elements used to
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Fig. 11 Convergence of the vertical acceleration spectrogram of the free end of the horizontal beam

discretize the horizontal beam results in an increased
number of target elements of the reduced model, thus
affecting the proposed numerical method, whose con-
vergence is hereafter verified.

The results previously discussed, obtained using 100
target elements (i.e., using 100 plane elements along the
longitudinal direction of the beam), are here compared
with the results of the same simulation using 150 target
elements. The time step adopted to solve the analysis
with the finer model must be reduced in order to respect
the stability condition in (25). The comparison is per-
formed considering the “Unstable smooth” case, i.e.,
friction coefficient «© = 0.3 and absence of roughness-
related contact noise.

Figure 10 compares vertical acceleration of the free
end of the horizontal beam obtained using the two mod-

@ Springer

els. The results highlight a substantial similarity of the
two responses: Except at# >~ 1.5 s, the vibration bursts
associated with the crossing of the instability regions
appear at the same time and have very similar ampli-
tude.

However, the small burst around 1.5 s is not very
significant, as confirmed by the time—frequency analy-
sis of the acceleration responses in Fig. 11, where the
frequencies of the main bursts in the two spectrograms
are the same.

5 Concluding remarks
In this paper, the general framework for dynamic

substructuring is extended to time-variant interfaces
among coupled substructures in order to observe the
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onset of friction-induced vibrations. Specifically, a
time-variant interface due to a sliding contact is consid-
ered that is able to take into account the oscillations of
the contact point in the formulation of the compatibility
and equilibrium conditions used in the transient analy-
sis. The proposed solution approach in time domain
uses a nonlinear forward increment dual assembly,
adapting the forward increment Lagrange multiplier
method to the substructuring framework. The main fea-
ture of the proposed method is the definition of the com-
patibility and equilibrium matrices that are estimated
according to the framework of dynamic substructuring
but accounting for the deformation of the contacting
bodies. This technique highlights some mode coupling
instabilities that are not detected using the linear time-
dependent complex eigenvalue analysis because they
are due to geometric nonlinearities. At this stage of
development, the proposed method is valid only if the
substructures are in relative sliding. The sliding condi-
tion is verified during the simulation, and if sticking or
detachment occurs the simulation is stopped. Results
on the beam-on-beam system described by finite ele-
ment model highlight the effectiveness of the proposed
approach in both stable and unstable scenarios, and the
possible application to more complex systems.
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