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Abstract: Resource prediction algorithms have been recently proposed in Network Function Virtual-
ization architectures. A prediction-based resource allocation is characterized by higher operation
costs due to: (i) Resource underestimate that leads to quality of service degradation; (ii) used cloud
resource over allocation when a resource overestimate occurs. To reduce such a cost, we propose a
cost-aware prediction algorithm able to minimize the sum of the two cost components. The proposed
prediction solution is based on a convolutional and Long Short Term Memory neural network to
handle the spatial and temporal correlations of the need processing capacities. We compare in a
real network and traffic scenario the proposed technique to a traditional one in which the aim is to
exactly predict the needed processing capacity. We show how the proposed solution allows for cost
advantages in the order of 20%.

Keywords: Network Function Virtualization; computing resources; machine learning; long short
term memory; convolutional network

1. Introduction

The main advantages of NFV is the flexibility in allocating processing and bandwidth
resources [1,2] and the possibility of running the Virtual Network Function Instances
(VNFIs) where and when needed and appropriately dimensioning their memory, disk
and processing resources. This increased flexibility allows to efficiently handle the traffic
variations and it is achieved by applying some techniques: (i) The vertical scaling [3],
whereby cloud resources are reconfigured, e.g., by changing the number of processing
cores to the VNFIs as traffic changes; (ii) the VNFI migration [4], whereby the NFVI-PoP
executing the VNFI is changed over time with the possibility of performing resource
consolidation and consequently achieving cost saving.

We have proposed the Asymmetric Traffic Prediction-based Allocation (ATPA) algo-
rithm [5–7] in which the resources are allocated on the basis of a traffic prediction based on
both resource allocation and QoS degradation costs. The allocation cost is the rent cost of
the processing cores. The QoS penalty cost is a compensation cost for the user when cloud
resources are under-allocated and QoS degradation (i.e., packet loss or delay increase)
occurs. The prediction models used in [5] are based on both traditional (i.e., Seasonal
AutoRegressive Integrated Moving Average) and Artificial Intelligence (AI)-based (i.e.,
Long Short Term Memory) models.

In this paper we follow a different approach and we propose the Asymmetric Process-
ing Resource Prediction-based Allocation (APRPA) algorithm. Based on the measurement
of processing capacities required by the VNFIs in measurement periods, APRPA evaluates
the processing capacities to be allocated to the VNFIs in time instants after the measurement
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times. Unlike all the solutions proposed in the literature, APRPA does not aim at predicting
the needed processing capacities (it would be impossible to exactly do that because of the
non-predictable components of traffic) but at over-allocating or under-allocating the cloud
resources according to the values of the allocation and QoS penalty costs.

The advantages of APRPA with respect to ATPA are the following:

• its resource-based prediction allows for a more implementable and European Telecom-
munications Standards Institute (ETSI)-compliant solution; in particular we highlight
which are the ETSI functional blocks that may be involved in the allocation and
prediction procedure;

• APRPA is based on a convolutional and Long Short Term Memory (LSTM) neural
network able to handle both spatial correlations of the processing capacities of the
VNFIs located in each NFVI-PoP and the temporal correlation in a single VNFI;
conversely ATPA performs a simple traffic prediction with a LSTM neural network
able to handle temporal correlation only;

• APRPA allows for a more accurate prediction, consequence of multiple SFCs sharing
a single VNFI that leads to the prediction of an aggregated requested processing
capacity; conversely ATPA predicts the traffic of a single SFC.

The main contributions of the manuscript are the following: (i) a resource allocation
framework aiming at allocating the cloud resources so as to minimize a cost function
depending on both the allocation and QoS degradation costs; (ii) a simulation study of the
proposed allocation framework and its effectiveness evaluation with respect to the ATPA
algorithm and the Symmetric Processing Resource Prediction-based Allocation (SPRPA)[8]
benchmark algorithm in which the allocation is performed by applying a traditional
approach in which the aim is to exactly predict the needed processing capacity and based
on the minimization of the Root Mean Squared Error.

The related work and the research contributions are illustrated in Section 2. The
NFV architecture with Artificial Intelligence (AI)-based resource allocation is discussed in
Section 3. We describe the cost-aware convolutional and LSTM-based resource allocation
framework in Section 4. The main numerical results are shown in Section 5. We report the
main conclusions in Section 6.

2. Related Work and Research Contribution

The evolution towards high bandwidth and QoS services drives technological evolution
towards the design and implementation of fifth generation (5G/6G) broadband wireless
networks. Ref. [9] Among these technologies, NFV is one of the most important and consists
in decoupling the software running the service functions from the hardware platform.

NFV is now considered a key technology for the development of access [10] and
core [1] network segments. Since the NFV paradigm has been introduced by ETSI [11,12],
many resource orchestration algorithms have been proposed and investigated [13,14].
Most of them are based on knowledge of traffic and solving optimization problems and/or
heuristics. Offline [15] and Online [16,17] algorithms have been considered. When traffic
variations occur, resource reconfiguration algorithms [18] have been proposed. Most of
them are based on a reactive approach according to which resources are reconfigured as
soon as traffic changes are detected. These solutions have proven to be ineffective due
to the high time required to reconfigure cloud resources which can be in the order of ten
minutes [19]. Recently prediction-based proactive approaches have been proposed [19,20].
Both traditional and Artificial Intelligence techniques are used to estimate traffic and/or
needed resources.

Tang et al. [21] propose a traffic prediction method for scaling resources in NFV envi-
ronments based on traffic modeling with an Autoregressive Moving Average (ARMA); the
predicted traffic values are obtained by minimizing the Root Mean Squared Error (RMSE).

Oliveira et al. [22] present a joint approach of an Adaptive Demand Forecasting model
and an Slice Allocation algorithm in softwarized networks; they apply three of the most
popular forecasting techniques: Autoregressive Integrated Moving Average (ARIMA),
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Holt-Winters and Neural Network Auto-Regressive (NNAR); all of the three forecast
methodologies are based on the minimization of the RMSE.

Among the solutions based on the prediction of the resources to be allocated, Farah-
nakian et al. [23] propose regressive algorithms for estimating memory and processing
consumption in cloud datacenters. Some solutions [19,24,25] have been proposed on the
prediction of host load in cloud infrastructures; these solutions are based on time series
forecasting with LSTM recurring neural networks; however, all are based on minimizing
the RMSE.

Subramanya et al. [26] propose prediction-based VNFI scaling solutions in virtualized
Mobile Edge Computing (MEC) environments; the prediction is performed by applying
some types of neural networks (convolutional and LSTM) and with the application of
federated machine learning; the objective is to scale the resources by either maximizing
the Quality of Service or minimizing the operational cost of the service provider; the
optimization is performed by minimizing symmetric loss function as the RMSE, MAE
(Mean Absolute Error) and Huber function.

We have proposed the ATPA algorithm based on Seasonal Auto-Regressive Integrated
Moving Average (SARIMA) [5,6] prediction with asymmetric loss function; because esti-
mation errors are inevitable and because the error sign can have an impact on the network
cost depending on the resource allocation and QoS degradation costs, we have proposed a
solution in which the defined loss function gives higher (lower) weight to errors that result
in a higher (lower) network cost. We have shown how the proposed solution allows for
30% network cost reduction with respect to the case in which a symmetric cost function as
RMSE is chosen.

Moreover, all the necessary cloud resource prediction techniques proposed in literature
are always based on symmetrical cost functions i.e., RMSE and MAE. For this reason we
propose the APRPA algorithm in which the allocation is based on both the VNFI processing
capacities prediction and a convolutional and LSTM resource allocation framework in
which the cloud resources are allocated based on the minimization of a asymmetric cost
function depending on the cloud resource allocation and QoS degradation costs. The
solution may be extended to any prediction framework. Finally we also show an extension
of the ETSI NFV architecture supporting the proposed solution.

3. NFV Network Architecture with AI-Based Resource Allocation

An example of ETSI compliant NFV network [11,12] is reported in Figure 1. It is
composed by NFVI-PoPs interconnected by a network infrastructure. The interconnec-
tion of the NFVI-PoPs is accomplished by means of either electrical [27] or optical [28,29]
networks. Let Ḡ = (Ū, L̄) denote the graph in which Ū = ŪNP ∪ ŪS characterizes the
set of NFVI-PoPs (ŪNP) and the set of network switches (ŪS) and L̄ characterizes the set
of network links. We assume that the NFVI-PoP ū ∈ ŪNP is equipped with Nū cores.
In view of a multi-provider scenario we assume that the processing resource costs may
be different for the various NFVI-PoPs and denote with cū

core the cost of renting one core
per one hour ($/h) for the NFVI-PoP ū ∈ ŪNP. The NFVI-PoPs are able to instantiate
VNF Instance (VNFI) than can execute a given Service Function (SF), i.e., Firewall, Proxy,
DPI,. . . We assume that the VNFIs can belong to Q types; the i-th (i ∈ [1..Q])) type VNFI is
characterized by the allocation of nc

i processing cores when the maximum processing ca-
pacity (Gbps) Cpr,max

i is provided by the VNFI. The traffic variation is handled by a vertical
scaling technique [3] that assigns more/less cores when the traffic increases/decreases. In
particular we assume that the i-th (i ∈ [1..Q]) type VNFI can work in nc

i operation modes.
The j-th (j ∈ [1..nc

i ]) operation mode is characterized by the allocation of j cores and the

guarantee of a processing capacity of Cpr
i,j = j Cpr,max

i
nc

i
.
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Figure 1. ETSI Compliant NFV Network Architecture with AI-based Resource Allocation.

The instantiated VNFIs are shared for the execution of SFs belonging to a set given of
N Service Function Chains (SFC). The i-th (i ∈ [1..N]) SFC is characterized by an ordered
set of Mi SFs.

The following functional blocks are reported in Figure 1 [11]:

• the VNF Manager (VNFM) manages the lifecycle of VNFIs; it is provided with a Moni-
toring Agent (MA) whose task is to measure the processing capacity used by the VNFI;

• the Virtual Infrastructure Manager (VIM) controls and manages the NFVI-PoP re-
sources; it is provided with an Allocation Agent (AA) whose task is to collect the
data measured by the VNFIs and execute the algorithm for evaluating the processing
capacities to be allocated to the VNFIs;

• the NFV Orchestrator (NFVO) manages the lifecycle of Network Services; it is pro-
vided with a Reconfiguration and Placement Agent (RPA) whose task is to execute an
algorithm for the resource reconfiguration and the VNFI placement on the basis of the
processing capacities to be allocated to the VNFIs.

The proposed procedure consists of four main steps:

• Step-1: The MAs continuously monitor on a periodic basis with duration Tm and using
the Ve-Vnfm-vnf ETSI interface [12] the processing capacity required by the VNFI; let
us consider the reference NFVI-PoP ū ∈ ŪNP of Figure 1 and let Nū

VNFI be the number
of instantiated VNFIs. Next we denote with cū

h,j (ū ∈ ŪNP; h ∈ [1..Nū
VNFI ]; j ∈ [1..∞))

the processing capacity measured for the h-th VNFI in the j-th Monitoring Interval
(MI) that is in t ∈ [(j− 1)Tm, jTm);

• Step-2: The measured processing capacities cū
h,j are retrieved on the Vi-Vnfm ETSI inter-

face [12] from the AA that trains a neural network in order to determine the processing
capacity to be allocated to the VNFIs; we assume the allocation procedure is performed
on a periodic basis with duration Ta; we denote with S the ratio of Ta to Tm and with
ĉū

h,nS (ū ∈ ŪNP; h ∈ [1..Nū
VNFI ]; n ∈ [1..∞)) the processing capacity to be allocated to

the h-th VNFI in t ∈ [nTa, (n + 1)Ta]; ĉh,nS is evaluated by a neural network based on
knowledge of the required processing capacities required and measured in L previous
MIs that is the values {cū

h,j, h ∈ [1..Nū
VNFI ]; j ∈ [nS..nS− L + 1]}.

• Step-3: The NFVO receives on the Or-Vi interface [12] from all of the VIMs the
processing capacities ĉū

h,nS (ū ∈ ŪNP; h ∈ [1..Nū
VNFI ]; n ∈ [1..∞)) to be allocated and

decides if new VNFI placement, VNFI migration and updating of processing capacity
allocated to the VNFI have to be performed.

• Step-4: The placement and reconfiguration operations are conducted through the VIM
and using the Or-Vi and Nf-Vi interfaces.
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The determination of the processing capacities ĉū
h,nS (ū ∈ ŪNP; h ∈ [1..Nū

VNFI ];
n ∈ [1..∞)) to be allocated to the VNFIs are determined by a convolutional and LSTM
neural network and trained by minimizing the network cost. Such a cost is characterized
by two components: The first one is the cloud resource allocation cost; the second one
occurs when the resources are under-allocated and QoS degradation is introduced for a
fraction of the offered traffic.

Finally many reconfiguration and placement algorithms have been proposed in lit-
erature [30]. The goal of this paper is not to propose a new one. We adopt a simple
reconfiguration algorithm, inherited from [27] in which migrations are not involved and
allowing us to verify the effectiveness of the proposed allocation procedures.

4. Convolutional/LSTM-Based Resource Allocation Framework

The loss function depends on two factors: The first one is the cloud resource allocation
cost; the second one is the QoS degradation cost which occurs when the resources are
under-allocated and QoS degradation is introduced for a fraction of the offered traffic.

To express the allocation cost we introduce the parameter Cū
RA,i (i ∈ [1..Q]; ū ∈ ŪNP)

which is referred to as allocation cost per Mb of traffic, it is expressed in ($/Mb) and it
characterizes the cost of processing one Mb of traffic for the i-th type VNFI in the NFVI-PoP
ū ∈ ŪNP; its expression is given by:

Cū
RA,i = cū

core
nc

i

Cpr,max
i

i ∈ [1..Q] ū ∈ ŪNP (1)

The QoS degradation cost characterizes the compensation cost due to a user when the
processing resources are under-allocated; the QoS degradation may involve the loss and/or
the delay of processing tasks and the service providers have to compensate a user when
the task average delay, a given delay percentile or the loss are increased with respect to the
ones agreed in the Service Level Agreement; the expression of the QoS degradation cost
is complex and depends on the several factors: (i) The chosen task queuing model; (ii) the
traffic model at packet level that is trivial to assume, as often done in the literature, according
to exponential distributions; (iii) a cost model which translates the QoS degradation in a
monetary cost. The definition of these aspects is out of the scope of the paper and we assume
a simple cost model in which the QoS degradation cost in an allocation interval depends
linearly on the following parameters: (i) the unallocated processing capacity (Mbps); (ii) the
duration of the interval; (iii) the degradation cost CQoS per Mbit of traffic which is expressed
in ($/Mb) and characterizes a compensation cost due to a user when one Mb of traffic does
not receive the agreed QoS. We will carry out an analysis in which the parameter CQoS is
varied so as to evaluate scenarios with more or less monetary penalty when QoS constrains
are not satisfied. Finally we point out that the solution can easily be extended to the case
where more sophisticated QoS cost models are used.

Next we propose a neural network trained with a loss function that takes into account
both resource allocation and QoS degradation costs. The inputs of the neural network are
the measured VNFI processing capacities in an NFVI-PoP. The outputs are the processing
capacities to be allocated in an allocation period. These capacities will be supported by
allocating a sufficient number of cores to the VNFIs.

The considered neural network is composed by two main stages: (i) a convolutional
layer able to handle the spatial correlations among the processing capacities required by
the VNFIs running in a same NFVI-PoPs; (ii) an LSTM layer able to handle the temporal
correlation of processing capacities of a same VNFI in different monitoring periods.

We describe the neural network architecture in Section 4.1, while the structure of the
loss function used for the training is described in Section 4.2.
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4.1. Convolutional/LSTM Neural Network

The neural network architecture is illustrated in Figure 2. It is composed by six
stages referred to as normalization, convolutional, flatten, LSTM, feed-forward and de-
normalization.

Figure 2. Convolutional/LSTM neural network for the processing resource allocation in the NFVI-PoP ū ∈ ŪNP.

The normalization layer provides to normalize in the range [0, 1] the measured
processing capacities; Let us denote with cū

j and cū,nor
j the vector of the measured processing

capacities and the one of their normalization, respectively, in the j-th MI for the NFVI-PoP
ū ∈ ŪNP. The normalized processing capacity vector cū,nor

j is evaluated according to the
following expression:

cū,nor
j =

1
Cmax − Cmin

(cū
j − CminoNū

VNFI
) (2)

j ∈ [n..n− L + 1]

where oNū
VNFI

denotes a ones’ vector of size Nū
VNFI , Cmin and Cmax denote the minimum

and maximum processing capacities, respectively.
The 1-D convolutional layer aims at extracting the spatial features; convolutions are

performed between the normalized capacity vector cū,nor
j and NF Kernel filters referred

to as ki i ∈ [1..NF]. The convolution vectors dū
j,i are evaluated according to the following

expression:

dū
j,i = cū,nor

j ⊗ ki j ∈ [n..n− L + 1]; i ∈ [1..NF] (3)

where the symbol ⊗ denotes the convolution operator. The size of the vectors dū
j,i (j ∈

[n..n− L + 1]; i ∈ [1..NF]) equals Nū
VNFI − SF + 1 if Kernel of size SF are used. The outputs

of the 1-D convolutional layer are the matrices Dū
j j ∈ [n..n− L + 1]; each of them has as

rows the convolution vectors evaluated in the corresponding monitoring interval.
As the input of each LSTM cell accepts only vectors, the LSTM layer is preceded by a

flatten one whose function is to place for the j-th monitoring interval the rows of the matrix
Dū

j in the vector xj of size (Nū
VNFI − SF + 1)NF.

The LSTM layer is used to handle the temporal correlations. LSTM is a variant of
the recurrent neural network (RNN), has special designs for overcoming the gradient
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vanishing problem that troubles conventional RNNs. LSTMs have shown their strength
in handling sequential data, and have been applied successfully in various tasks, such as
image captioning,language modeling, video analysis [31] etc. The LSTM layer has as inputs
the vectors xj (j ∈ [nS..nS− L + 1]). The final output hnS is processed by a feed forward
neural network which evaluates the vector ĉū,nor

nS of normalized processing capacity values.
In the LSTM Cell Block LCBj, shown in Figure 3, the state variable sj (j ∈ [nS..nS− L + 1])

in the j-th MI is updated according to the knowledge of the spatial feature xj evaluated in the
j-th MI, the output hj−1 and the state variable sj−1 of the LSTM Cell Block LCBj−1. The LSTM
innovative idea is to introduce the forget and input gates that decide which components of the
state vector have to be deleted (forget gate) and preserved (input gate). An output gate is also
introduced that controls what information encoded in the state variable is sent to the output hj
of the LSTM Cell Block LCBj. The updating of the state sj and the evaluation of the output hj
are performed according to the following expressions:

Figure 3. LSTM Cell Block LCBj.

 ij
fj
oj

 = σ

 Wix Wih
W f x W f h
Wox Woh

[ xj
hj−1

]
+

 bi
b f
bo

 (4)

sj = fj � sj−1 + ij � ϕ(Wghhj−1 + Wgxxj + bg) (5)

hj = oj � ϕ(sj) (6)

where Wix, Wih, W f x, W f h, Wox, Woh, Wgx, Wgh are weight matrices for the corresponding
inputs, bi, b f , bo and bi are the bias vectors, � denotes the Hadamard product, ϕ(•) and
σ(•) denote the tanh and sigmoid activation functions.

Finally the Feed Forward layer outputs the normalized processing capacities ĉū,nor
nS

and the de-normalization one provides the not normalized processing capacities ĉū
nS to be

allocated in the allocation period. They are achieved from the following expression:
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ĉū
j = CminoNū

VNFI
+ ĉū,nor

j (Cmax − Cmin) (7)

j ∈ [n..n− L + 1]

4.2. Training Algorithm

Though the model is composed of two different kinds of network architectures, i.e.,
the Convolutional and LSTM Neural Networks, it can be jointly trained with one loss
function. In order to our neural network to predict by taking account the sign of prediction
error, its loss function cannot be symmetrical as in classical predictors such as Root Mean
Squared Error (RMSE) or the Mean Absolute Error (MAE). We define an asymmetrical one
that weighs allocation errors eh,nS+j = cū

h,nS+j − ĉū
h,nS (h ∈ [1..Nū

VNFI ]; j ∈ [1..S]) differently.
In particular a positive error corresponds to resource under-allocation and leads to QoS
degradation with a cost penalty of CQoS for each Gbit not allocated. Conversely negative
errors lead to over-allocation problems and to higher costs of allocated capacity resources;
in particular for each Gbit of over-allocated capacity the cost is given by Cū

RA,i expressed
by (1) for the i-th (i ∈ [1..Q]) type VNFI belonging to the NFVI-PoP ū ∈ ŪNP. For this
reason the expression of the loss function J is the following:

J =
1
‖P‖ ∑

n∈P
JnS (8)

JnS =
1

SNū
VNFI

Nū
VNFI

∑
h=1

S

∑
j=1

(CQoS I(eh,nS+j)eh,nS+j (9)

− C(∗),ū
RA,h I(−eh,nS+j)eh,nS+j)

where JnS denotes the average weighted error in the allocation period t ∈ [nTa, (n + 1)Ta),
P denotes the collection of time points when the allocations are conducted of training
samples, ‖P‖ denotes the number of training samples, I(x) is the indicator function and
C(∗),ū

RA,h depend on the VNFI type and can expressed as:

C(∗),ū
RA,h =

Q

∑
i=1

Cū
RA,iα

ū
i,h h ∈ [1..Nū

VNFI ] ū ∈ ŪNP (10)

where αū
i,h is a binary variable assuming the value 1 if the h-th VNFI of the NFVI-PoP

ū ∈ ŪNP is of i-th type; otherwise its value is zero
Finally the training of the neural network is performed by applying the RMSprop

algorithm proposed by Tieleman and Hinton [32].

5. Numerical Results

The performance of the APRPA algorithm is compared to the ones of two benchmark
algorithms: (i) SPRPA in which the allocation is performed by applying a traditional
approach with the objective to exactly predict the needed processing capacity and based on
the minimization of the Root Mean Squared Error; (ii) ATPA [5,6] in which the resources
are allocated on the basis of a traffic prediction based on both resource allocation and QoS
degradation costs.

The comparison is carried out for the USAnet network of Figure 4 with 24 switches
and 47 links.

It is equipped with five NFVI-PoPs, all provided with the same number Ncore = 48
of cores. The core costs are chosen according to real prices [33] and their values are differ-
entiated and equal to c(1)core = 4.56 · 10−3$/h, c(2)core = 6.40 · 10−3$/h, c(3)core = 8.95 · 10−3$/h,
c(4)core = 1.25 · 10−2$/h and c(5)core = 1.75 · 10−2$/h for the NFVI-PoP1, NFVI-PoP2, NFVI-
PoP3, NFVI-PoP4 and NFVI-PoP5, respectively. We assume that Q = 4 types of VNFIs
can be instantiated. The i-th type VNFI is executing Firewall (FW), Intrusion Detection
System (IDS), Network Address Translator (NAT) and Proxy SFs for i equal to 1, 2, 3 and 4,



Future Internet 2021, 13, 316 9 of 16

respectively. We report in Table 1 the processing capacity and the allocated cores for the
various operation modes of the VNFIs.

Figure 4. USAnet network equipped with five NFVI-PoPs.

Table 1. Four VNFI types are considered. The maximum processing capacities Cpr,max
i (i ∈ [1..Q])

are 900 Mbps, 600 Mbps, 900 Mbps and 600 Mbps when the number of cores allocated nc
i (i ∈ [1..Q])

equals 4, 8, 2 and 4, respectively. The table reports the processing capacities Cpr
i,j (i ∈ [1..Q], j ∈ [1..nc

i ])
expressed in Mbps when vertical scaling techniques are applied and for the various operation modes
of the VNFIs.

Number of Allocated Cores 1 2 3 4 5 6 7 8

1-st type VNFI (Firewall) 225 450 675 900 — — — —

2-nd type VNFI (IDS) 75 150 225 300 375 450 525 600

3-rd type VNFI (NAT) 450 900 — — — — — —

4-th type VNFI (PROXY) 150 300 450 600 — — — —

The chosen core cost leads to the values Cū
RA,j (j ∈ [1..Q]; ū ∈ ŪNP) of resource

allocation costs reported in Table 2 for the various VNFI types and NFVI-PoPs. The costs
are evaluated according to the expression (1).

Finally the network links are provided with a capacity of 100 Gbps.

Table 2. Values of the resource allocation costs Cū
RA,j (j ∈ [1..Q]; ū ∈ ŪNP) expressed in $/Gb.

NFVI-PoP1 NFVI-PoP2 NFVI-PoP3 NFVI-PoP4 NFVI-PoP5

1-st type VNFI (Firewall) 5.64 · 10−6 7.90 · 10−6 1.11 · 10−5 1.55 · 10−5 2.17 · 10−5

2-nd type VNFI (IDS) 1.69 · 10−5 2.37 · 10−5 3.32 · 10−5 4.64 · 10−5 6.50 · 10−5

3-rd type VNFI (NAT) 2.82 · 10−6 3.95 · 10−6 5.53 · 10−6 7.74 · 10−6 1.08 · 10−5

4-th type VNFI (PROXY) 8.46 · 10−6 1.18 · 10−5 1.66 · 10−5 2.32 · 10−5 3.25 · 10−5

The SFC bandwidths are characterized by real traffic values extracted by the database [34]
with average bandwidths evaluated in intervals of duration 10 min. The SFCs are offered for
each tuple of nodes of the USAnet network and are composed by four SFs executed according
to the following order: Firewall, IDS, NAT and PROXY.
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The SFCs are routed by applying the heuristic proposed in [27] aiming at minimizing
the cloud resource cost and respecting the processing and bandwidth capacity constraints.
The application of the heuristic also allows for the VNFI placement by determining how
many VNFIs to use and where to instantiate them.

The monitoring procedure is performed by the MAs every Tm = 10 min. The VIM
determines the processing capacities to be allocated to the VNFIs of an NFVI-PoP for a
time period Ta equal to 10 min, 30 min and 60 min to which correspond values of the
parameter S equal to 1, 3 and 6, respectively. The high number of hyperparameters makes
their optimization not as simple as in [35]. Their choice has been optimized for each of the
five NFVI-PoPs and for each value of S. It has been performed as follows:

• the look-back parameter L has been choice by studying the partial autocorrelation
function (PACF) [36] of the processing capacities of the training set; it has been chosen
the first value in which the PACF has a negligible value (10−2);

• the Kernel filter size SF has been chosen equal to the number of VNFIs executing in
each NFVI-PoP;

• the remaining hyperparametrs (the number Nnr of neurons of the LSTM layer, the
number NF of Kernel filters and the batch size Nsz) have been chosen by performing
a sensitivity analysis with the KerasTuner software [37]. KerasTuner is an easy-to-
use, scalable hyperparameter optimization framework that solves the pain points of
hyperparameter search. Easily configure the search space with a define-by-run syntax,
then leverage one of the available search algorithms to find the best hyperparameter
values for the models. We have chosen the KerasTuner option that performs the
hyperparameter optimization with the Hyperband algorithm.

We report in Table 3 the values of the optimized hyperparameters for each of the five
NFVI-PoPs and a value S equal to 1.

Table 3. Values of Optimized Hyperparameters for each of the five NFVI-PoPs of Figure 4 and a
value of S equal to 1.

Nnr L NF SF Nsz

NFVI-PoP1 33 40 8 10 24

NFVI-PoP2 19 40 16 10 24

NFVI-PoP3 38 40 32 10 24

NFVI-PoP4 34 40 32 10 24

NFVI-PoP5 39 40 16 8 24

Finally the total number Nep of epochs is determined by applying a early stopping
procedure and using the validation set. The effectiveness of the APRPA algorithm is
studied in Figure 5 where we report over time (expressed in multiples of Tm) the required
processing capacity and the ones to be allocated to a Firewall VNFI in the NFVI-PoP1.
The allocation time Ta is chosen equal to 60 min that leads to a value of S equal to 6.
We report four allocation curves: (i) the first one when SPRPA is applied and the loss
function of the Convolutional/LSTM neural network is characterized by the conventional
Root Mean Squared Error (RMSE); (ii) the other three are ones achieved by applying the
APRPA solution and characterized by the Asymmetric Mean Absolute Error (AMAE) that
appropriately weights the resource allocation and QoS degradation costs. The choice
of the core costs and the VNFI type leads to an average allocation cost C̄RA equal to
1.86 ∗ 10−5 $/Gb. The QoS degradation cost CQoS is chosen equal to 9.30 ∗ 10−6 $/Gb,
9.30 ∗ 10−5 $/Gb, 9.30 ∗ 10−4 $/Gb for the three curves, respectively, that is values lower
than, equal to and higher than the average allocation cost of the NFVI-PoP1. From Figure 5
we can remark that: (i) when the QoS degradation cost CQoS equals the average resource
allocation cost we have similar values of allocated capacities for the APRPA and SPRPA
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algorithms; (ii) when the QoS degradation cost is lower (higher) than the average allocation
cost, we can observe that APRPA solution tends to allocate less (more) processing resources
with respect to the SPRPA one.

Figure 5. Required and allocated capacities over time to a Firewall VNFI in the NFVI-PoP1. Mon-
itoring and Allocation Times Tm and Ta are chosen equal to 10 min and 60 min, respectively.
Four allocation curves are reported: The one based on RMSE and the ones based on AMAE with
CQoS = 9.30 · 10−6 $/Gb, CQoS = 9.30 · 10−5 $/Gb and CQoS = 9.30 · 10−4 $/Gb.

We report in Figure 6 the total network cost as a function of the QoS degradation cost
CQoS for the RMSE and AMAE solutions when the allocation time Ta is chosen equal to
10 min, 30 min and 60 min to which correspond values of the parameter S equal to 1, 3
and 6, respectively. The total network cost is given by the sum of the costs of the VNFIs
executed in all of the NFVI-PoPs. The values of normalized RMSE and AMAE of the
SPRPA and APRPA algorithms for the five NFVI-PoPs are reported in Table 4 to show the
prediction effectiveness in the case of S equal to 1, 3 and 6 and QoS degradation costs CQoS
equal to 1.85 · 10−5 $/Gb, 1.85 · 10−4 $/Gb, 5.56 · 10−4 $/Gb and 9.26 · 10−4 $/Gb.
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Table 4. Values of normalized RMSE and AMAE of the APRPA and APRPA algorithms, respectively, in the case of S
equal to 1, 3 and 6 and QoS degradation costs CQoS equal to 1.85 ∗ 10−5 $/Gb, 1.85 ∗ 10−4 $/Gb, 5.56 ∗ 10−4 $/Gb and
9.26 ∗ 10−4 $/Gb.

SPRPA (S = 1) APRPA (S = 1) SPRPA (S = 3) APRPA (S = 3) SPRPA (S = 6) APRPA (S = 6)

CQoS = 1.85 · 10−5 2.29 · 10−1 3.04 · 10−3 3.23 · 10−1 4.45 · 10−3 3.67 · 10−1 5.09 · 10−3

CQoS = 1.8 · 10−4 2.29 · 10−1 7.07 · 10−3 3.23 · 10−1 1.09 · 10−2 3.67 · 10−1 1.25 · 10−2

CQoS = 5.56 · 10−4 2.29 · 10−1 7.55 · 10−3 3.23 · 10−1 1.09 · 10−2 3.67 · 10−1 1.43 · 10−2

CQoS = 9.26 · 10−4 2.29 · 10−1 7.65 · 10−3 3.23 · 10−1 1.11 · 10−2 3.67 · 10−1 1.35 · 10−2

We also report the two total resource allocation and QoS degradation cost components
in Figures 7 and 8, respectively. We show the results in the case of interest in which the
QoS degradation cost CQoS is higher than the average allocation cost C̄RA.

We can observe that for both SPRPA and APRPA solutions a decrease in Ta leads to
lower total costs. As a matter of example, when CQoS equals 7.41 ∗ 10−4 $/Gb and the APRPA
solution is applied, the total cost equals 219 $, 255 $ and 266 $ for Ta equal to 10 min, 30 min
and 60 min, respectively. The reason of this cost decrease is consequence of the possibility to
allocate cloud resources so as to appropriately follow the required processing capacity.

Figure 6. Comparison of the SPRPA and APRPA algorithms in terms of total cost as a function of
the QoS degradation cost CQoS when the MI duration Tm equals 10 min and the allocation time Ta is
chosen to be 10 min (S = 1), 30 min (S = 3) and 60 min (S = 6).
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Figure 7. Comparison of the SPRPA and APRPA algorithms in terms of total allocation Cost as a
function of the QoS degradation cost CQoS when the MI duration Tm equals 10 min and the allocation
time Ta is chosen to be 10 min (S = 1), 30 min (S = 3) and 60 min (S = 6).

Figure 6 again confirms how the minimization of a loss function taking into account
both the allocation and QoS degradation costs allows for better performance in term of total
network cost. For instance when Ta and CQoS are equal to 60 min and 4.63 ∗ 10−4 $/Gb,
respectively, the total network cost is equal to 425 $ and 248 $, respectively, for SPRPA and
APRPA. The only minimization of the RMSE may lead to worse performance because of
the error sign that differently impacts on the total network cost when the allocation and
QoS degradation costs are different.

In particular we can notice from Figure 6 how the increase in CQoS leads to a rapid
increase in the total network cost in the SPRPA solution because it is not able to limit the
total QoS degradation cost as highlighted in Figure 8. Conversely the APRPA solution is
able to apply the appropriate countermeasures, to over-allocate the processing resource
and to reduce the total QoS degradation cost as highlighted in Figures 7 and 8 where we
notice an increase in total resource allocation cost (due to the resource over-allocation) and
a decrease in total QoS degradation cost.

Finally the APRPA algorithm is compared with our previous ATPA solution [5,6] in
Figure 9 in which traffic prediction is only performed. We can observe the better perfor-
mance of APRPA with 10% gain. The main reason is that APRPA performs a prediction
on processing capacities requested by aggregated traffic; convesely ATPA performs the
forecast on the single SFC only.
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Figure 8. Comparison of the SPRPA and APRPA algorithms in terms of total QoS degradation Cost
as a function of the QoS degradation cost CQoS when the MI duration Tm equals 10 min and the
allocation time Ta is chosen to be 10 min (S = 1), 30 min (S = 3) and 60 min (S = 6).

Figure 9. Comparison of the ATPA and APRPA algorithms in terms of total Cost as a function of
the QoS degradation cost CQoS when the MI duration Tm equals 10 min and the allocation time Ta is
chosen to be 10 min (S = 1), 30 min (S = 3) and 60 min (S = 6).
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6. Conclusions

A Convolutional/LSTM neural network for the processing capacity prediction in NFV
networks has been proposed and evaluated. We have described how the prediction proce-
dure may be supported in an ETSI NFV architecture. The allocation framework decides the
amount of processing resources to allocate to each VNFI based on the monitoring of the pro-
cessing capacities required by the VNFIs in past time intervals. The Convolutional/LSTM
neural network is characterized by a loss function that allows for a minimization of the
allocation and QoS penalty cost. We have shown how the proposed solution outperforms
the traditional ones.
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