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Abstract: Nowadays, optimizing wind farm configurations is one of the biggest concerns for energy
communities. The ongoing investigations have so far helped increasing power generation and
reducing corresponding costs. The primary objective of this study is to optimize a wind farm layout
in Manjil, Iran. The optimization procedure aims to find the optimal arrangement of this wind farm
and the best values for the hubs of its wind turbines. By considering wind regimes and geographic
data of the considered area, and using the Jensen’s method, the wind turbine wake effect of the
proposed configuration is simulated. The objective function in the optimization problem is set in
such a way to find the optimal arrangement of the wind turbines as well as electricity generation
costs, based on the Mossetti cost function, by implementing the particle swarm optimization (PSO)
algorithm. The results reveal that optimizing the given wind farm leads to a 10.75% increase in power
generation capacity and a 9.42% reduction in its corresponding cost.

Keywords: wind farm; optimization; particle swarm optimization; wind farm layout optimization

1. Introduction

Concerns over climate change as well as the dwindling resources of fossil fuels have
made experts replace renewable energy sources more than before [1–5]. Therefore, the
recent years have seen a rapid climb in the number of renewable energy-based power
plants. Among all types of renewable energy resources, wind energy plays a crucial role
in technical and economic approaches. Over the recent years, wind energy has become
a promising alternative renewable resource for fossil fuels [6–10]. In this regard, wind
farms or wind power plants have been developed all over the world to utilize this cost-
effective energy source even in remote areas with high potentials [11–13]. The applications
of wind energy are growing rapidly. However, there are still some challenges facing
these applications. The main issue associated with wind energy is that the actual power
generated by wind farms is less than its theoretical power capacity due to the wake effect,
wind velocity variations, angle variations, wind turbine inefficiencies, and transmission
line problems [14–16]. The wake effect can be characterized as wind speed reduction and
turbulent flow creation downstream of wind turbines [17–20]. As a result, this impact can
reduce power generation by 10–20%. An enhanced layout of wind turbines can significantly
improve power output and reduce its associated charges [14,21]. The power generated
in a wind turbine is related to the perfect square of the receiving wind speed. Thus, the
wind speed reaching each turbine is preferred to the extent its maximum. Nevertheless,
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the wind speed reaching downstream turbines is reduced in magnitude, causing a sharp
drop in power generation of those turbines (as they are being under the wake effect of
upstream turbines). Therefore, the layout of wind turbines should be arranged in a way
to minimize the impact of the wake effect. This procedure is known as wind farm layout
optimization (WFLO) [22–26]. By doing so, the generated power from each turbine can
reach a maximum value with lower associated costs.

The first priority in constructing a wind farm is to find a proper location [25,27–29].
This is due to the scarcity of lands and shortage of capital [30–32]. Consequently, wind
turbine positioning comes next. As a result, to harness the highest possible power from
a certain power plant, a comprehensive assessment on the placement of wind turbines
should be taken into account. Wind farm layout optimization is a crucial subject in wind
energy literature [33–35]. At this point, numerous researchers have been concentrated on
the WFLO problem [16,36–38].

Patel [39] stated that in designing a wind farm layout, appropriate distances between
wind turbines should be estimated. According to Patel’s study, the optimal arrangement is
in rows of 8–12 rotor diameters separately along the wind direction and 1.5–3 rotor diame-
ters apart along the crosswind direction. One of the first research attempts for optimizing a
wind farm layout was made by Mossetti et al. [40]. By using the genetic algorithm, they
minimized the objective function value, which was the unit cost per power production.
They implemented a simple, empirical cost model. In 2013, Samorani et al. [41] underlined
the importance of the optimization of wind farm configurations involving optimally place-
ment of wind turbines to diminish the wake effect. This problem has drawn the attention
of the scientific community. However, existing approaches are not fully responding to the
needs of wind farm developers, mainly since they do not usually address the challenges as-
sociated with construction and logistics. Eroğlu et al. [42] used a particle filtering approach
to achieve an optimal layout of a specific wind farm. The boundary of the wind farm and
distances between turbines were regarded as two main constraints. The results indicated
that the particle filtering approach can compete with the ant colony and evolutionary
strategy algorithms. Chen et al. [43] investigated the effect of using wind turbines with
different hub heights on the overall output power. The nested genetic algorithm was used
to analyze three different wind conditions. The results of this study demonstrated that by
using different hub heights of wind turbines, power generation increased (compared with
a wind farm having the same number of turbines). Shakoor et al. [44] proposed a novel
method called definite point selection (DPS) that could find the optimum placement of
turbines. The DPS method was approved to be more effective than the earlier proposed
methods. Gao et al. [22] presented a 2D analytical wake effect model based on the Jensen’s
wake model and Gaussian function. In this study, wind farm efficiency dropped to 77.83%
from 96.83% for a collection of 38 wind turbines within a large wind farm. Wang et al. [45]
addressed more complex wind farm boundaries by which a new constraint handling
method was introduced. This study stated that the unrestricted coordinate method, under
the sequential land plot scenario, generates optimal outcomes, with the lowest energy cost
and highest efficiency. Parada et al. [46] used the Gaussian wake model to calculate wind
speed loss. In this study, the cost of energy was optimized by the genetic algorithm. They
asserted that the use of a more robust wake model in the WFLO problem did not lead to
greater efficiency in real wind farm cases.

Sun et al. [47] adopted a conceptual 2D wake model to calculate wind losses caused by
the wake effect. In this study, the cost of energy (COE) was used as a criterion to compare
the effectiveness of this novel method. The results indicated that the optimization method
used in this study can reduce the COE down to 1.02 HK$/kWh.

Vasel Behagh et al. [48] studied the effect of height optimization of turbines on the
annual energy production (AEP). In this study, they compared two wind farms with an
equal number of turbines (also similar types and positions). In one wind farm, all turbine
heights were identical, while the other one had alternating rows of tall and short wind
turbines. The results exhibited that the vertically staggered configuration generated more
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power output by 5.4%. Hou et al. [49] proposed an optimization technique for offshore
wind farms. In this study, they attempted to find the optimized layout of turbines in
order to achieve maximized power generation. The PSO algorithm with multiple adaptive
methods (PSO-MAM) was used as an optimization algorithm. The results of this study
indicated that the aforementioned method can suggest a layout that increases the power
output by 3.84%. Tian et al. [50] investigated the optimal tip speed ratio and pitch angle for
wind turbines by an exhaustive search (a brute-force search). A solution for this problem
was introduced considering the estimation error of the wake model, which was to yield the
optimal control curves for each wind turbine. In that study, the annual energy production
was increased by 1.03%. Mir Hassani et al. [51] studied the effect of using different hub
heights on the total power generation of a wind farm. They presented a mathematical
model for wake effects considering wind turbines with different hub heights as well as a
new optimization model. Abdelsalam et al. [52] aimed to optimize a wind farm layout by
the binary real coded genetic algorithm (BRCGA) based on a local search (LS), gathering
robust single wake models with suitable wake interaction modeling. The model used in
this study was the Jensen wake model alongside the sum of squares model.

Kirchner-Bossi et al. [53] introduced a new technique for wind farm layout problems
using the Gaussian wake model. This methodology was applied to two real wind farms
and was also compared with the Jensen model. Stanley et al. [54] optimized some wind
farms using a coupled optimization method. The coupled optimization led to a reduction
in the cost of energy by 2–5% compared to sequentially optimization of wind farms with
turbine spacing of 8.5–11 rotor diameters. Some of the wind farms in that study also
exhibited an additional 10% reduction of energy costs.

Pratt et al. [55] compared several wake effect models using analytical and CFD meth-
ods for a wind farm at Block Island. The results showed that a value in the higher range
of the examined WDC (0.06 and 0.07) and TI (12% and 14%) values represented a better
comparison to the observed data. Diaz et al. [56] developed the actuator disc (AD) model
which was the most common simplified wind turbine model, based on the Open FOAM
open-source software. Results demonstrated that values for low and high wake impact
situations were improved with 2.5% and 1.3%, respectively. Patel et al. [57] introduced
a novel method called the geometrical pattern-inspired placement methodology to find
the layout of turbines with maximum total power output at Kutch-India. The enhanced
passing vehicle search (PVS) algorithm was used in this study. The results showed that the
power output was improved by 4.29%.

The purpose of this original research is to optimize the 3D layout of turbines at the
Valfajr Wind site in Manjil, Iran. In other words, this is an attempt to identify the best
placement of turbines and their heights as the power plant reaches its optimal operating
level [58]. Initially, by considering the wind and geographic information of the region, the
wake effect is analyzed with the Jensen method [59,60]. Next, the objective function, which
is the cost of total power generation [40,61,62], will be estimated. Finally, the objective
function will be optimized using the particle swarm optimization algorithm.

2. Materials and Methods

In this study, the Jensen’s method is used to model the wake effect. As shown
in Figure 1, when wind passes through a rotor blade, its speed falls and the waking
zone spreads from the wind flow, similar to a cone [63–65]. The radius of this cone can
be calculated.

As shown in Figure 1, if the wind turbine zone is located downstream of the wake
cone, the wake and the downstream turbine will overlap. In case the region is generated by
an upstream wind turbine, the wind speed will experience reduction [6,66]. Additionally,
Figure 2 presents the wake shadow area.



Appl. Sci. 2021, 11, 9746 4 of 19

Figure 1. The wake effect produced by a downstream unit of shadow caused by the existence of an
upstream wind turbine unit.

Rw = Rr + kx (1)

In the above equation, R is rotor’s radius, x. is the distance of turbines, and k is the
expansion rate that takes a value between 0.04 to 0.08 which is calculated by [67,68]:

k =
0.5

log
(

z
z0

) (2)

where z is the hub height and z0 is the roughness length. Wind flow velocity of the wake is
computed as [69,70]:

Vsingle = V0

(
1 −

(
1 −

√
1 − CT

)( Rr

Rw

)2(Ashad(ud)
A0

)(
Vz

Vre f

))
, k =

0.5

log
(

z
z0

) (3)

where A0 is the area created by the rotor blade system and Ashad(ud) refers to an area
covered by the downstream turbine and the shaded area of the upstream turbine, which is
calculated by Equation (4) [71]:

Figure 2. Wake shadow area [71].

Ashad(ud) =


πR2 d < Rw − R

1
2 R2(θr − sin θr) +

1
2 R2

w(θw − sin θw) Rw − R < d < Rw + R
0 d > Rw + R
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θr = 2 cos−1 R2 + d2 − Rw
2

2Rdw
θw = 2 cos−1 Rw

2 + d2 − R2

2Rwd
(4)

For calculating wind speed originated from multiple upstream turbines reaching a
downstream wind turbine, the following equation is used (Equation (5)):

Vd = Vin

(
1 − ∑

(
1 −

√
1 − CT

)( R
Rw

)2(Ashad(ud)
A0

)(
Vz

Vre f

))
(5)

Shaded wind turbines and the number of shaded units are different and they both
depend on the wind direction and the geometrical layout of wind turbines. It is illustrated
in the following figure for two different directions of wind. As shown in Figure 3, the area
covered by the vortex cone changes with wind direction [51].

Figure 3. The effect of wind direction on the wake effect by upstream wind turbines for two different
wind directions [51].

The wake factor can be defined as [37,72]:

Cw =
Total power o f wind f arm considering wake e f f ect

Total power o f wind f arm without wake e f f ect
(6)

which can be formulated as:

Cw =
∑n

j=1 ∑m
i=1 P

(
Vij
)

mn × Pn
(7)

where m is the number of turbines in a row, n is the number of rows, and Vij is the wind
speed fraction perpendicular to the i-th turbine in the j-th row. In addition, Pn stands for
the power generated by a turbine with wind speed of Vij. When the wake factor is equal to
one, it means there is no wake effect.

The following relation is used to obtain wind speed at any hub height [66,73]:

Vz = Vre f
log z

z0

log
zre f
z0

(8)

where Vre f represents the reference wind speed and z0 is the roughness length.
The cost function considered in this study is the same as Mossetti et al. [40]. Through

this function, the annual plant’s total cost by using the number of turbines (Nt) can be
calculated with decent accuracy.

Costtot = Nt

(
2
3
+

1
3

e−0.00174N2
t

)
(9)
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The objective function for the optimization problem in this study is defined as:

ObjectiveFunction =
Costtot

Ptot
(10)

where Ptot stands for the total power generation in the wind farm and can be calculated as:

Ptot =
Nt

∑
i=1

Pi (11)

where:
Pi =

1
2

ρπR2V3
inCp (12)

where ρ is air density, R is the rotor radius, Vin is wind speed, and Cp is the power coefficient
of the wind turbine.

3. Particle Swarm Optimization

In this research, particle swarm optimization is used to optimize the objective function.
Due to the appropriate and adapted nature of the algorithm to achieve an optimal solution,
the algorithm has fast speed [4,66]. Figure 4 indicates the motion pattern in the particle
swarm algorithm.

Figure 4. The motion pattern in the particle swarm algorithm [74].

In each step, the velocity of particles becomes updated from the following relationships:

Vi(t) = w × Vi(t − 1) + c1 × rand1 × (Pi.best − Xi(t − 1)) + c2 × rand2 ×
(

Pg.best − Xi(t − 1)
)

(13)

Xi = Xi(t − 1) + Vi(t) (14)

In Equation (13), w is the inertia weight factor which indicates the effect of the iteration
speed vector Vi(t) on the velocity vector in the current iteration Vi(t + 1), c1 is the constant
learning coefficient moving in the direction of the best personal particle value, c2 is the
constant learning coefficient moving along the path of the best particle found among the
entire population, and rand1 with rand2 are two random numbers with uniform distribution
from 0 to 1.
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Steps of the Implementation of the Particle Swarm Algorithm

(1) Random production of particles: the stochastic production of the initial popu-
lation is simply the random assignment of particles with uniform distribution in the
solution space.

(2) Purpose of the objective function: At this stage, each particle representing a
problem-solving must be evaluated. Depending on the provided equation, the evaluation
method will be different.

(3) Recording the best location for each particle and the best position among the whole
article: at this step, the amount of target function obtained for all particles is compared
with the best amount of cost obtained for each particle.

(4) Updating the speed vector of all particles: after calculating the best particle for
each this method, the velocity vector available for each particle is updated by the best
position of each particle, the current position, and the best position among all particles.

(5) Convergence test: There are various methods for investigating the algorithm.
For example, a certain number of iterations can be found from the beginning. Another
method often used for convergence test of the algorithm is that if there is no change in the
value of the best particles in a sequence of consecutive iterations, then the algorithm ends.

4. Manjil Wind Farm

In this study, the Valfajr wind site at Manjil wind farm is investigated. The site was
built on a site with an approximate size of 2 × 2 km2. There are 21 Nordtank wind turbines
at the site. Of those, one has 500 kW, 5 have 550 kW, and the rest has 300 kW power
generation capacity [75]. Wind rose shows prevailing wind direction from north to south.
In most cases (27%), the wind blows from the northern areas of Alborz Mountain to the
southern regions. Furthermore, it does not speed up in 40% of the time. In the city of
Manjil, the maximum wind speed experienced in the year is 18 m/s. Based on Ref. [75],
the overall average wind speed in the year is 15 m/s. The associated wind rose is illustrated
in Figure 5. In addition, Table 1 presents the detailed specifications of the wind turbines.

Figure 5. Wind Rose [76].
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Table 1. Detailed specifications of the wind turbines.

Turbine Specifications

Rotor radius 50 m
Reference temperature 293 K
Reference air density 1.225 kg/m2

Roughness length 0.075 m
Thrust coefficient 0.025
Power coefficient 0.45

In this research, the GID software was first used; the grid required for the plant and
the placement of turbines were specified. Then, by using MATLAB, the required values for
computing input values were set, and the initial population was generated to optimize the
particle swarm optimization algorithm. The associated flowchart of PSO can be found in
Figure 6. Next, making sure that the criteria point subsequent populations were produced.
Finally, after accomplishing the criteria point, the results were achieved.

Figure 6. Particle swarm optimization (PSO) Flowchart.

5. Validation

The detailed specifications of wind turbines from the literature are presented in
Table 2. To verify the accuracy of the algorithm used in this study, the obtained results are
compared with the literature [43]. In that study, they analyzed a plant with a dimension of
1000 × 1000 m2 and wind turbines with 21 kW power generation capacity.

Table 2. The detailed specifications of wind turbines from the literature [43].

Turbine Specifications

Roughness length 0.3 m
Rotor radius 40 m

Power coefficient 0.4
Thrust coefficient 0.8888

Wind speed 13 m/s

In the first scenario of this study, the speed and direction of wind are considered
constant. The results are listed in Table 3. As can be seen, there are less than 5% difference
between the two results.
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Table 3. The validation of the objective function for cost per power in the first scenario.

Number of Turbines Song Function
(Cost/Power)

Present Research’s
Function Error (%)

10 1.005687 1.045914 4
15 1.011899 1.06047 4.8
20 1.033428 1.037166 2.3
25 1.09575 1.136856 3.75

In the second scenario, 36 wind directions with different wind speeds and probability
are considered. The wind directions are uniformly distributed with intervals of 10 degrees
and the wind speed of 12 m/s. The results are shown in Table 4. From the error column,
it is plain to see that the results obtained in this study are in a good agreement with that
of [43].

Table 4. The validation of the objective function for cost per power in the second scenario.

Number of Turbines Song Function
(Cost/Power)

The Function of This
Research Error (%)

10 1.234943 1.25964 2
15 1.308199 1.6736 5.1
20 1.397825 1.480278 5.7
25 1.504184 1.562847 4

6. Results and Discussion

In this research, three scenarios with different number of turbines (i.e., 10, 15, and 21)
are considered. Wind speed is assumed to be 15 m/s, and the value each parameter of PSO
takes is shown in Table 5. The size of the plant is 2 × 2 km2 for all scenarios. Due to the
minimum rate of turbines at a length of 4 times the radius of rotors, equivalent to 100 m,
the grid is divided into 100 points. Furthermore, possible heights of turbines are 40, 50,
and 60 m. The criteria point is where the wake factor becomes 100%.

Table 5. The PSO specification for the optimization procedure.

PSO Specifications

C1 1
C2 1
W 0.05

Number in the population 5

6.1. First Case

In this case, there are 10 wind turbines, with the characteristics stated before. The place-
ments and the corresponding height of turbines are shown in Figures 7 and 8, respectively.
In this case, Table 6 provides the coordination of each turbine.

Table 6. Turbine coordinates in Case 1.

Turbines Coordinates in Case 1

Number of Turbine X (m) Y (m) Z (m) Number of Turbine X (m) Y (m) Z (m)

1 350 0 40 6 0 1000 40

2 900 200 50 7 300 850 50

3 150 250 50 8 600 950 40

4 450 400 40 9 600 400 50

5 850 700 50 10 750 700 40



Appl. Sci. 2021, 11, 9746 10 of 19

Figure 7. Turbine placements in Case 1.

Figure 8. Heights of turbines in Case 1.

As shown in the figure, due to the low number of turbines and the abundant space
between them, five turbines were placed with 40 m space between each and five other
turbines were positioned with 50 m space. The objective function is 1.7214 megawatts per
year and the total annual power generation is 5.5 megawatts.

6.2. Second Case

There are 15 turbines in this scenario and their positions and heights are displayed in
Figures 9 and 10, respectively. In this case, Table 7 provides the coordination of turbines in
Case 2.

Figure 9. Position of turbines in Case 2.
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Figure 10. Height of each turbine in Case 2.

Table 7. Turbine coordinates in Case 2.

Turbines Coordinate in Case 2

Turbine Number X (m) Y (m) Z (m) Turbine Number X (m) Y (m) Z (m)

1 1850 400 50 9 1000 950 50

2 1600 0 60 10 1200 700 40

3 1900 900 50 11 700 2000 50

4 300 850 40 12 950 1750 40

5 750 950 40 13 1350 750 50

6 500 500 50 14 1600 600 50

7 850 500 50 15 0 250 40

8 900 0 40

The objective function is 1.784 per year per megawatt and the total power generation
is 7.5 megawatts. There are eight turbines with a height of 50 m, 6 turbines with 40 m, and
there is only one turbine with 60-m height. By comparing this case with Case Three, the
power is decreased by 0.25 MW (equivalent to 3.22%), but the cost becomes 20% lower,
which makes it cost-effective.

6.3. Case Three

In this case, there are 21 turbines in the Valfajr site in Manjil. The objective function
is 2.2251 per year per megawatt. Because of a larger number of turbines compared to the
previous cases, there are two turbines with a 60 m height, four with a 50 m height, and the
rest have a height of 40 m. The total generated power is 7.75 megawatts. Figures 11 and 12
illustrate the placement and height of turbines in Case 3. In this case, Table 8 provides the
coordination of turbines in Case 3.

Figure 11. Position of turbines in Case 3.
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Figure 12. Height of turbines in Case 3.

Table 8. Turbine coordinates in Case 3.

Turbines coordinate in Case 3

Number of Turbine X(m) Y (m) Z (m) Number of Turbines X (m) Y (m) Z (m)

1 1850 400 50 12 1750 950 40

2 1600 500 40 13 1350 750 40

3 1900 900 60 14 1600 600 40

4 300 850 40 15 1350 250 40

5 750 950 60 16 350 0 40

6 1400 500 50 17 450 400 40

7 850 700 40 18 0 1150 50

8 900 200 50 19 1350 1200 40

9 1000 950 40 20 1200 400 40

10 1200 700 40 21 1550 800 40

11 2000 700 40

Here, according to Bousejin et al. [76], as the layout of the turbines is not optimized,
wind speed becomes reduced by 0.5 m/s due to the wake effect while the average speed is
14.5 m/s. In this case, the power generation is 6.77 megawatts and the objective function is
2.54 per year per megawatt. This means that optimization gives rise to a 10.75% increase
in power generation and a 9.42% reduction in cost per unit of power. To compare power
production at different speeds, the following diagram (Figure 13) is derived.

Figure 13. Total power for different wind speeds.
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Moreover, the amount of energy unit cost is in correlation with wind speed. For the
wind speed of 1 m/s, the unit cost of power becomes 320 per MW, which is quite high.
As the wind speed increases to 10 m/s, the cost reduces drastically to 8.62 per MW, and
as wind speed gains its rated value, which is 15 m/s, the unit cost reaches a minimum of
2.22 per MW (Figure 14). This implies that receiving high wind speeds are crucial for the
wind farm to operate cost-effectively.

Figure 14. The unit cost of power with different wind speeds.

The 2-D Layout

In this section, the hub heights are considered constant and layout optimization for
21 turbines according to what was described in the previous section will be performed
(Figure 15).

Figure 15. Layout of the 2-D case.

By comparing this layout with the previous one, it is obvious that there are 800 × 2000 m2

of free space in 3-D optimization. The coordinates of the 2-D layout are given in Table 9.
By investigating and comparing the three scenarios, the following results achieved.

The Mossetti’s cost function is completely dependent on the number of turbines. It can be
stated that by increasing the number of turbines the value of this function also increases,
while the relationship between them is characteristically nonlinear. Furthermore, as the
number of turbines grow, the function rises at a lower rate (Figure 16).

In comparison, the amount of linear growth between the increase in the number of
turbines is determined. By increasing the number of turbines from 10 to 15, the wind
turbine numbers are multiplied by 1.5, but the cost is multiplied by 1.335, which is less
than a linear growth. Another discussion is about the objective function considered for this
study. A general survey of the three scenarios is evaluated (Figure 17).
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Table 9. Turbine coordinate in the 2-D case.

Turbine Coordinates in the 2-D Case

Number of Turbine X (m) Y (m) Number of Turbine X (m) Y (m)

1 1850 400 12 1750 1700

2 1600 100 13 1350 750

3 600 800 14 100 600

4 300 850 15 1350 250

5 750 950 16 350 1400

6 1400 1850 17 450 400

7 850 1500 18 0 1150

8 900 200 19 1350 1200

9 1000 950 20 600 400

10 1150 700 21 1550 800

11 2000 700

Figure 16. Cost of the wind farm in all cases.

Figure 17. The objective function of three cases.

It is observed that the main objective function in this study decreases with the number
of turbines. The reason is that the objective function is defined as the cost per power.
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As the number of turbines increases, the generated power will increase. Considering that
this number is in the denominator, as the number increases, the denominator will see a
substantial growth, while the numerator, which is the Mossetti cost, is growing less steeply.
Regarding power generation, by increasing the number of installed turbines, the total
power will increase. This, however, creates a higher amount of wake effect, but when the
layout optimized for zero wake effect, power generation would be even higher (Figure 18).

Figure 18. Power generation in all three cases.

7. Conclusions

The total power generated by wind farms is smaller than their theoretically calculated
output. This is mainly because of the wake effect. In order to increase the actual output
power of wind farms, the existing wake effect should be minimized. This puts a premium
on the placement of wind turbines. In this study, the Valfarjr site of Manjil wind farm’s
layout is optimized in 3-D. In other words, wind turbine positions, wind farm configuration,
and heights have been selected to be optimized in order to minimize the wake effect. Firstly,
by considering the regime of wind and geographic data of the region, the wake effect is
modeled by the Jensen’s method. After that, the objective function, which is the cost to
energy output, is calculated according to the method proposed by Mossetti. In the end, the
objective function is optimized by employing the particle swarm optimization algorithm.

By setting optimal turbine coordinates, power generation increased by 10.75% and
decreased the cost by 9.42%. Moreover, by using 15 turbines of 500 kW, installed in optimal
positions and heights, power generation decreased by 3.22%, while the cost decreased
by 20%.

For future studies, the economic aspect of the plant by using different economic
methods could be investigated. Moreover, to achieve more accurate results, turbulent flow
impacts can also be scrutinized.
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Nomenclature

Acronyms

AD Actuator Disc Nt Number of Turbines

AEP Annual Energy Production R Rotor’s Radius (m)

BRCGA Binary Real Coded Genetic Algorithm V Velocity (m/s)

CFD Computational Fluid Dynamic Vij. Fraction Perpendicular

COE Cost of Energy Pn Power (kW)

LS Local Search x Distance (m)

PSO Particle Swarm Optimization y Vector

PVS Passing Vehicle Search z Hub Height (m)

WFLO Wind Farm Layout Optimization z0 Roughness Length (m)

Symbols

A Area (m2) Greek symbols, Subscripts and Superscripts

c Constant Learning Cfficient θ Angle (degree)

Cp Power Coefficient ρ Air Density

Cw Wake Factor . Rate

k Expansion Rate (-) 0 Ambient Conditions

m Number of Turbines in a Row shad Covered Area

n Number of Rows
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