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Simple Summary: Over the last couple of decades, the prognostic stratification systems of differenti-
ated thyroid cancer (DTC) patients have been revised several times in an attempt to achieve a tailored
clinical management reflecting the single patients’ needs. Such revisions are likely to continue in the
near future, since the prognostic value of a number of promising clinicopathological features and
new molecular biomarkers are being evaluated. Here, we will review the current staging systems
of thyroid cancer patients and discuss the most relevant clinicopathological parameters and new
molecular markers that are potentially capable of refining the prognosis.

Abstract: Over the last few years, a great advance has been made in the comprehension of the
molecular pathogenesis underlying thyroid cancer progression, particularly for the papillary thyroid
cancer (PTC), which represents the most common thyroid malignancy. Putative cancer driver
mutations have been identified in more than 98% of PTC, and a new PTC classification into molecular
subtypes has been proposed in order to resolve clinical uncertainties still present in the clinical
management of patients. Additionally, the prognostic stratification systems have been profoundly
modified over the last decade, with a view to refine patients’ staging and being able to choose a
clinical approach tailored on single patient’s needs. Here, we will briefly discuss the recent changes in
the clinical management of thyroid nodules, and review the current staging systems of thyroid cancer
patients by analyzing promising clinicopathological features (i.e., gender, thyroid auto-immunity,
multifocality, PTC histological variants, and vascular invasion) as well as new molecular markers
(i.e., BRAF/TERT promoter mutations, miRNAs, and components of the plasminogen activating
system) potentially capable of ameliorating the prognosis of PTC patients.

Keywords: thyroid cancers; molecular pathogenesis; prognosis; therapy; TNM; tumor molecular
profiling; BRAF; TERT promoter; plasminogen activating system; miRNA; estrogen receptor

1. Introduction

Thyroid cancer (TC) derived from the follicular thyroid cell represents the principal
endocrine malignancy. It occurs more commonly in women than in men, and it is the fifth
most common cancer in the female population of the United States [1,2]. Over the last two
decades, the age-standardized incidence rate showed an upward trend, mainly because of
the improved ability to diagnose malignant transformation in small non-palpable thyroid
nodules [3–5]. Most of the epithelial TC have a histologically differentiated phenotype
(DTC) and are denoted as differentiated papillary (PTC) and follicular (FTC) TC, which
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are thought, following dedifferentiation, to give rise to the more aggressive poorly DTC
(PDTC), and the incurable anaplastic TC (ATC) [6–10]. Although derived from the same
cell type, different TC show definite histological features, biological activities, and degree
of differentiation as a consequence of peculiar genetic modifications [6,11]. Established risk
factors for TC include radiation exposure, family history of TC, lymphocytic thyroiditis,
reduced iodine intake, and female gender [12,13]. Earlier studies, performed on PTC, the
most common thyroid malignancy, identified about 70% of the driver mutations impli-
cated in thyrocyte malignant transformation [14–19]. The most frequent of these included
activating mutations of genes encoding for proteins involved in the mitogen-activated
protein kinase (MAPK) signaling pathway (i.e., BRAF and RAS genes), or fusions involv-
ing RET and NTRK1 genes [14–19]. The progression from DTC to the more aggressive
PDTC and ATC is triggered by the occurrence of additional mutations, such as those of
the p53 and the telomerase reverse transcriptase (TERT) genes [20–23]. As for other types
of solid cancers, the genetic instability is thought to represent the driving force by which
transformed thyrocytes accumulate additional gene mutations during disease progres-
sion [24,25]. In fact, a sequential increase in chromosomal abnormalities was observed
from well-differentiated PTC to PDTC and ATC, in terms of both number and frequency of
detectable abnormalities [24]. Over the last years, with the advent of the next generation se-
quencing that allowed straightforward investigation of the whole genome, a great advance
in the comprehension of the molecular pathogenesis underlying PTC progression has been
made [11]. In particular, The Cancer Genome Atlas (TGCA) Research Network identified
new oncogenic drivers and new driver events in known cancer genes, and considerably
extended the somatic genetic landscape of PTC [11]. This further information was used to
propose a reclassification of PTC into molecular subtypes with the aim to improve PTC
staging and clinical management [11].

2. Thyroid Nodules

Thyroid nodules are very common in the adult population, with a prevalence of 19% to
67% [26–28]. Most of them are clinically silent, and only 5% harbor a malignant lesion [26–28].
Hence, ruling out malignancy by means of ultrasonography (US) and fine-needle aspiration
cytology (FNAC) is the main task in their clinical management [26–28]. After the initial
assessment of the presence of TC risk factors, US represents the first imaging technique in
thyroid nodule evaluation, in that it detects a number of nodule characteristics known to
be associated with malignant lesions [29]. These include internal structure of the nodule
(solid, mixed, or cystic), echogenicity (hyper-, iso-, hypoechoic or markedly hypoechoic),
nodule margins (regular, microlobulated, irregular), presence of calcifications (micro- or
macrocalcifications), and shape (taller-than-wide or wider-than-tall) [29]. The US param-
eters are included in the Thyroid Imaging Reporting and Data System (TI-RADS) score,
which shows, compared to the single ultrasound features, greater accuracy in identifying
suspicious nodules to be further evaluated by fine needle aspiration cytology (FNAC). To
date, FNAC remains the gold standard technique in the evaluation of both palpable and
non-palpable thyroid nodules [25–28]. However, in recent years US evaluation of thyroid
nodules has been greatly improved with the introduction of new US software, such as
the contrast-enhanced ultrasound (CEUS) and US-elastography (USE) [29]. In particular,
USE has emerged as a valuable tool to discriminate malignant from benign nodules, with
diagnostic accuracy greater than TI-RADS, and it should become an additional tool for
evaluating thyroid nodule differentiation in combination with conventional US and FNAC,
as indicated by the World Federation for Ultrasound in Medicine and Biology (WFUMB)
and the European Federation of Societies for Ultrasound in Medicine and Biology (EF-
SUMB) [29–32]. Moreover, new elastic imaging technologies, such as the shear-wave
elastography and the strain ratio elastography, seem to be more efficient in characterizing
thyroid nodules reported as indeterminate in FNAC, and their use is expected to increase
in the coming years [33]. As mentioned, at present, FNAC represents the gold standard in
the diagnosis of thyroid nodules because of its accuracy, reproducibility, and cost effective-
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ness [25]. Specifically, FNAC-based diagnosis of thyroid tumors shows a sensitivity ranging
from 65% to 98%, specificity of 72–100%, and accuracy of 84–95% [26,34–37]. The Bethesda
System for Reporting Thyroid Cytopathology (BSRTC) classifies the FNAC outcome in
6 diagnostic categories including: (1) non-diagnostic; (2) benign; (3) atypia/follicular lesion
of undetermined significance (AUS/FLUS); (4) follicular neoplasm or suspicious for follic-
ular neoplasm (FN/SFN); (5) suspicious for malignancy; (6) malignant [38]. Among these,
AUS/FLUS and FN/SFN represent a grey zone in which the cytology cannot accurately
discriminate malignant from benign lesions, inasmuch they exhibit a malignancy risk of
5–15% and of 15–35%, respectively, based on histological outcome. Thus, a considerable
number of patients might undergo unnecessary thyroid surgical procedures [26,39,40]. In
this context, the great advance in the comprehension of the molecular pathogenesis of
thyroid cancer progression has led to the generation of new molecular approaches capable
of ameliorating the diagnostic accuracy of FNAC alone, and to support therapeutic deci-
sions [41–46]. In particular, two distinct molecular tests to evaluate FNA samples have
entered clinical practice for the management of thyroid nodules [42,44]. The first one is
the ThyroSeq v3 genomic classifier; it analyzes 112 genes seeking for more than 12,000 mu-
tation hotspots and 120 fusion types most frequently present in DTC. It is designed to
differentiate benign from malignant lesions and possesses a very high predictive value
for malignancy [42,43]. The second molecular approach, named gene-expression classifier
(GEC) (Veracyte Afirma GSC), was designed to identify benign, rather than malignant,
nodules, through the analysis of the expression level of 167 genes in the RNA extracted
from FNA biopsies [43,44]. From both tests, a negative result effectively refines the risk of
malignancy of AUS/FLUS and FN/SFN diagnostic categories to about 3–4%, comparable
to that observed for a benign BSRTC diagnosis [45,46]. Thus, the evaluation and clinical
management of thyroid nodules with indeterminate cytology (AUS/FLUS and FN/SFN)
should comprise, besides cytology, clinical (i.e., personal or family history of thyroid cancer,
lesion size, US features, and elastography) and possibly molecular information. This could
lead to a reduction in the number of diagnostic thyroidectomy positively affecting patient’s
quality of life [28,43–46]. It is finally worth considering that the accurate diagnosis of
suspicious cervical lymph node (CLN) metastasis is also of great importance in guiding
the primary surgical approach, as well as the prognostic stratification and follow-up of TC
patients [28,47,48]. As for thyroid nodules, CLN are also evaluated by means of FNAC.
However, this task could be challenging as CLN may be a metastatic site of different
extrathyroidal malignancies or be affected by diverse non-tumor illnesses [49,50]. In ad-
dition, poor cellularity or non-representative sampling, especially in presence of cystic
lymph nodes, preclude diagnosis in approximately 20% of cases [51,52]. Thyroglobulin
protein and/or mRNA detection in the washout of fine-needle aspirates from CLN was
shown to ameliorate the diagnostic accuracy of FNAC alone [28,53–59]. Furthermore, the
same technique may be employed to detect calcitonin, protein, and/or mRNA in case of
suspicious metastatic CLN from medullary thyroid carcinomas [28,59].

3. Thyroid Cancer Therapy

Thyroid surgery represents the first line therapeutic approach for DTC patients [60–62].
Although conventional open thyroidectomy is still the main intervention, over the last
decades alternative surgical procedures have been established in order to achieve more
pleasing cosmetic results, especially in young women worried about the neck scar [60].
These include the minimally invasive video-assisted thyroidectomy (MIVAT), introduced
in the late 1990s, the robot-assisted transaxillary thyroidectomy (RATT), first reported in
2001, and the most recent transoral endoscopic thyroidectomy with vestibular approach
(TOETVA) [63–66]. The surgical treatments of DTC have changed following the introduc-
tion of new guidelines by the American Thyroid Association (ATA) in 2015, and by the
National Comprehensive Cancer Network (NCCN) in 2018 [26,28,67]. While in the past
total thyroidectomy (TT) followed by adjuvant therapy with 131I was the treatment of
choice for most DTC patients, according to the new guidelines thyroid lobectomy may
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be offered to low-risk DTC patients [28,68]. More specifically, lobectomy is considered
sufficient for patients having small (<1 cm), unifocal, intrathyroidal carcinomas in the
absence of prior head and neck radiation, familial history of thyroid carcinoma, or clin-
ically detectable CLN metastases. In addition, some patients with thyroid cancer size
ranging from 1 cm and 4 cm without extrathyroidal extension and without any detectable
CLN metastases may be selected for lobectomy. In cases where it represents an adequate
treatment, unilateral ablation offers the benefits of avoiding hypoparathyroidism, and a
lower risk of iatrogenic lesion of the recurrent nerve and permanent chordal paralysis with
dysphonia [69]. Following TT, radioactive iodine (RAI) adjuvant therapy is recommended
for ATA high-risk patients and should be considered for ATA low to intermediate-risk
patients by evaluating individual cases. After RAI remnant ablation or treatment, a whole-
body scan should be performed to inform disease staging and document the RAI avidity
of any residual disease [26]. Thyroid hormone replacement therapy should be provided
in order to maintain TSH level below 0.1 mU/L in high-risk PTC patients, and between
0.1–0.5 mU/L in intermediate-risk PTC patients. For low-risk patients, TSH level can be
in the range 0.5–2 mU/L [26,70]. Afterwards, patient follow-up consists of periodic US
evaluation of the thyroid bed and CLN compartments, and determination of basal and
recombinant human TSH-stimulated thyroglobulin serum level [26,28,70].

The increased knowledge of the molecular mechanisms involved in thyroid cancer
progression allowed the development of new therapeutic agents targeting specific path-
ways involved in disease progression, including RET, BRAF, RAS, epidermal growth factor
receptor (EGFR), and vascular endothelial growth factor (VEGF) receptor (VEGFR) [71–73].
To date, a number of FDA approved tyrosine kinase inhibitors such as Lenvatinib, Van-
detanib, Sorafenib, and Cabozantinib entered clinical practice for the treatment of more
aggressive and RAI resistant TC [73–77].

4. Thyroid Cancer Patient’s Staging

Although the prognosis of the majority of DTC patients is satisfactory, with 10-years-
survival rate of approximately 90%, nearly one third of them face the morbidity of disease
recurrences and TC-related deaths [26,28]. The worst outcomes are usually observed in
patients with PDTC and ATC, in which the reduced expression of natrium/iodide sym-
porter (NIS) gene renders the RAI treatment less effective or useless. In this context, new
hopes arose from a recent study demonstrating that knockdown of STIM1 (stromal inter-
action molecule 1) in TC cells restored NIS expression and significantly improved iodine
uptake, sensitized cells to chemotherapeutic drugs, and significantly reduced xenograft
tumor growth [78]. Thus, a precise staging of DTC patients is of crucial importance to
ensure the more suitable therapeutic strategy, follow-up, and patients’ quality of life [26].
Different staging systems able to forecast the risk of disease-related death or disease re-
lapse/persistence are accessible [79]. Among these, the most widely employed is the
Tumor-Node-Metastasis (TNM) classification elaborated by the American Joint Committee
on Cancer (AJCC) [80]. Conceived to predict disease-specific patient’s survival, the TNM
staging system remains, however, poorly informative in the prediction of long-term disease
outcome [26,81–83]. This is because it only incorporates information collected in the period
before and immediately after the intervention, and thus provides a rough prediction of can-
cer mortality over time, grouping in the same risk category patients having very different
disease-free and disease-specific survival [28]. In 2009, the American (ATA) and European
Thyroid Association (ETA) validated a risk-stratification system for DTC recurrences, in
which TNM parameters were implemented by further clinicopathological features such as
tumor histology, vascular invasion, radioactive iodine uptake, post-operative thyroglob-
ulin serum level, and others, aimed to distribute patients in three risk-categories: low,
intermediate and high [79,84,85]. However, even this revised stratification system has
a very low positive predictive value, and individuals included in the same risk group
can show very different disease-free intervals (DFI) [86]. In 2015 the ATA substituted the
three risk-category model, with a continuum risk model varying from very low to high
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risk of recurrence [26,86]. In the latter, beside TNM and clinicopathological parameters,
mutations of BRAF and TERT genes were included [26,80]. This new stratification system,
originally validated in several retrospective single-center studies, has proven to be a reliable
predictor of short-term outcomes (12 months follow up after the initial treatment) in a
real-world clinical setting by a recent multicenter study enrolling more than 2000 patients
with DTC [87]. Hereafter, we will first review the major clinicopathological parameters
affecting the current TNM staging system to end with the molecular risk stratification of
DTC patients.

4.1. Clinicopathological Features Affecting the Prognosis of DTC Patients

As stated above, the TNM staging system elaborated by the AJCC on the basis of
clinicopathological features is the most commonly used approach to forecast thyroid cancer
survival, but it is much less reliable in discerning patients with higher risk of rising relapses
over time [26,80]. The TNM staging has been extensively revised in 2016 (8th edition) in
the attempt to achieve a more personalized approach to cancer staging [26,79,87]. This new
TNM edition downstages a significant number of patients by increasing the age cut-off
from 45 to 55 year and by eliminating the regional lymph node metastases and microscopic
extrathyroidal extension from the T3 category [83,86–90]. Although the ability of the new
TNM staging to better predict the disease-specific survival (DSS) in DTC patients has been
documented, some concerns remain for patients in the 45–54 years range, classified in
stages III or IV by the previous TNM classification, but currently considered in stages I or
II by the new one, for whom the severity of the disease could be underestimated [88–90]. It
is worth mentioning that in the latest TNM staging edition it has been suggested to take
note, on patient’s record, of molecular data and further clinicopathological parameters
in order to evaluate them as potential additional staging factors to include in the next
edition [80,88–90]. In this context, we next discuss the available clinical evidence supporting
the prognostic value of some clinicopathological features for PTC recurrences, i.e., gender,
autoimmune thyroid disease (AITD), histological variants, multifocality, and vascular
invasion.

Gender—Thyroid cancer is more frequently observed in women. However, males tend
to develop more aggressive tumors and to have poorer survival [91–103], although there is
no general agreement on this matter [92–100]. Guo and Whang reported in 2014 the results
of a meta-analysis performed on 13 studies involving 7048 patients [95]. They concluded
that the male sex actually represents a risk factor influencing PTC recurrences [95]. In this
regard, the observation of Choi and colleague is of interest, which analyzed 3147 PTC pa-
tients treated at the Seoul National University Hospital between 1962 and 2009 [100]. They
reported that the risk of poor survival and recurrence associated with male sex decreased
over time, while the risk related to other clinicopathological parameters remained the same
or increased. These trends might be associated with recent changes in the characteristics of
thyroid cancer, especially considering the increasing number of PTC diagnosed as micro-
carcinomas [3,100]. Moreover, a recent multivariate analysis demonstrated that, although
PTC recurrence and death were more common in male than in female patients, there was
no difference in DFI between genders in papillary thyroid microcarcinoma (PTMC) [101].
In this study, male gender was not an independent prognostic factor of recurrence in
PTMC [93]. Analogous results were obtained in more recent studies [83,102].

AITD—A number of studies described the correlation of AITD, and in particular
of chronic lymphocytic thyroiditis (CLT), with PTC [83,104–111]. In one of these, TSH
serum level and thyroid autoantibodies were evaluated in 13,738 PTC patients, of whom
3914 under thyroxine treatment and 9824 untreated [106]. The findings showed that the
prevalence of PTC was higher in patients affected by CLT and was associated with in-
creased TSH levels [106]. In several studies, both AITD and elevated TSH levels were
found to represent independent risk factors for thyroid malignancy [107]. More recently,
Moon and colleagues reported the results of a meta-analysis evaluating the effects of CLT
on the clinical outcome of PTC patients [108]. The authors examined 71 articles for a total
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of 44,034 patients, among which 11,132 had CLT. They observed a negative association
between CLT and extrathyroidal extension, lymph node metastases, distant metastases,
and disease recurrence [108]. This evidence was further corroborated by a recent study per-
formed on 2070 PTC patients, showing that those who were positive for thyroid peroxidase
antibodies (TPOAb) before surgery had a significantly longer DFI compared to patients
negative for TPOAb [109]. In addition, the presence of preoperative TPOAb was found
to be an independent prognostic factor of persistent/recurrent disease after adjustment
for major preoperative risk factors such as age at diagnosis, gender, and tumor size [111].
In addition, Myshunina and colleagues reported that the presence of chronic thyroiditis
in DTC patients had a positive impact on the course of the disease [112]. In particular,
DTC patients with thyroiditis showed reduced tumor size, invasion of extrathyroidal struc-
tures, and lateral CLN metastasis compared to patients without thyroiditis [112]. These
observations are in agreement with a suggested protective role of autoimmunity against
cancer [113–115]. Thus, it appears worthwhile to consider AITD as a possible additional
prognostic factor for the prediction of both PTC-specific survival and recurrences.

Histological variants—Several investigations evaluated the prognostic value of the
major PTC variants [11,116]. As will be discussed later on, in the framework of The Cancer
Genome Atlas (TCGA) project, a comprehensive multiplatform analysis was carried out to
determine the genomic landscape of 496 PTC, and a reclassification of PTC into molecular
subtypes was proposed in order to improve clinicopathological grading and management
of patients [11]. In this study, the lowest thyroid differentiation score (TDS) was assigned
to a tall cell-like tumor cluster, which was associated with more advanced stage and higher
risk, while the classical PTC (CPTC) had an intermediate TDS, and the follicular variant
(FVPTC) maintained a high TDS [11]. These results were corroborated by a subsequent
multicenter retrospective study, including 6282 cases of PTC [116]. Differential risk patterns
of disease recurrence and patient mortality were determined for the three major PTC
variants, with increasing aggressiveness from the FVPTC to the CPTC, up to the tall cell
PTC (TCPTC) variant [116]. A significantly worst prognosis associated with the TCPTC
variant was recently confirmed on a case study of 1148 PTC patients [83].

Multifocality—Some studies indicated that multifocality is present in about 30–37% of
PTC patients [83,117–125]. However, whether it may represent an independent risk factor
for disease recurrence and overall mortality is still a matter of debate, because different
reports produced conflicting results [117–124,126]. In particular, in a large multicenter
study performed on 2638 PTC patients, multifocality was not found to be an independent
prognostic marker for either PTC recurrence or death [124]. In addition, the lack of
prognostic value of multifocality emerged from the analysis of 89,680 PTC patients entered
in the Surveillance, Epidemiology, and End Results (SEER) database [124]. Similar results
were recently obtained from the largest UK series of PTC collected to date, showing
that multifocality was not an independent predictor of outcome on multivariate Cox
proportional hazards regression analysis [125]. Nevertheless, multifocality is currently
included in the ATA continuous risk scale for PTC relapse risk assessment [26].

Vascular invasion—Vascular invasion (VI) is frequently observed in DTC, and several
investigators attempted to evaluate its prognostic role, but the available data are controver-
sial [83,127–132]. VI rate is higher in FTC than in PTC, explaining why FTC metastasizes to
distant organs more frequently than PTC does. However, the impact of VI on recurrences
has not yet been defined. From a recent meta-analysis, which included 26 studies compris-
ing 11,961 DTC patients, a significant association of VI with tumor persistence and worse
DSS was evidenced [132]. VI has already been included among the parameters of the ATA
continuous risk scale for PTC recurrence and could be considered for integration in the
next TNM staging edition [26].

4.2. Molecular Risk Stratification of DTC Patients

As mentioned above, the TGCA research network, taking advantage of multiplatform
‘omics’ methodologies such as next-generation DNA and RNA sequencing, copy-number
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analysis, transcriptomic, methylomic and proteomic assays, performed a comprehensive
molecular characterization of 496 PTC and normal thyroid tissues [11]. Following the identi-
fication of 71-genes signature panel, PTC were divided into two categories: BRAFV600E-like
and RAS-like tumors. The former mainly includes the classical and tall cells PTC variants
and shows a lower thyroid differentiation score (TDS) and a higher risk of recurrences.
This group, according to the different data set analyzed (i.e., proportion of driver mu-
tations, gene fusions, histology, age, TDS, etc.), could be further divided into different
non-overlapping subtypes [11]. One of these, namely the tall cell PTC variant (TCV),
showed the highest frequency of TCV and BRAFV600E mutations, the lowest TDS, and
was associated with more advanced stages and higher risk [11]. On the other hand, the
RAS-like PTC mainly include the follicular variant of PTC (FVPTC), and associate with
younger patient’s age, high TDS, and relatively low risk of recurrences [11]. Later on, these
observations were confirmed by Yoo and colleagues who analyzed the transcriptional
and mutational landscape of 180 TC, including 30 minimally invasive FTC (miFTC) and
25 follicular adenomas (FA), along with 77 classical PTC and 48 FVPTC [133]. The anal-
ysis of gene expression profiles confirmed the BRAF- and RAS-like molecular subtypes
previously identified by TGCA and distinguished a third molecular subtype defined as
Non-BRAF-Non-RAS (NBNR), comprising FA and miFTC [133]. At present, however,
classification of DTC into 3 molecular groups does not seem to improve the prognostic
stratification of patients [134]. Recently, using information on the PTC patients’ cohort
available in the TCGA data portal, we sought to verify whether DFI prediction, provided
by clinicopathological parameters such as lymph node metastasis or age could be im-
proved by molecular variables such as number of total non-silent mutations, number of
CpGT mutations, BRAF-RAF score, ERK score, miRNA and RPPA clusters, ploidy, and
TDS [11,83,135,136]. However, none of these was found to be a significant predictor of DFI
in the Cox regression model, with lymph node involvement being the best predictor of DFI,
and with the N1b category showing the highest odds ratio [83]. On the whole, a number of
molecular parameters have been considered in the prognostic stratification of DTC patients
over the last couple of decades. The clinical evidence supporting a prognostic value for
some of them will be reviewed below, starting from the BRAFV660E and TERT promoter
mutations currently included in the ATA prognostic stratification of DTC patients [26].

4.2.1. BRAFV600E Mutation

The BRAFV600E mutation is the most prevalent genetic alteration (up to 80%) found
in PTC tissues [11]. However, whether it could represent a reliable prognostic marker is
highly debated [134]. Several studies reported an association between BRAFV600E mutation
and PTC recurrences, presence of lymph node metastasis, advanced tumor stage and worse
prognosis [137–143]. Xing and colleagues, in a large multicenter study including more
than 2000 patients, demonstrated an independent prognostic value of BRAFV600E mutation
for PTC recurrences even in patients with low TNM stage and micro-PTC [144]. These
observations however, were not confirmed by other studies [145,146]. In a recent meta-
analysis, BRAFV600E mutation showed its prognostic value only in short/medium-term
follow-up [147]. Moreover, in PTC patients the frequency of BRAFV600E mutation (up to
80%) is high, while the prevalence of a negative outcome (10–15%) is low [132,138]. As
a consequence, based only on the analysis of BRAF mutation a considerable number of
patients would face the risk of over- or undertreatment. Thus, BRAFV600E mutation should
be considered one of the factors influencing the prognosis of PTC patients, but it should be
evaluated together with other prognostic factors [145,146,148–150].

4.2.2. TERT Promoter Mutations

Unrestricted cell proliferation, along with telomerase activation, represent well-known
hallmarks of cancer, including TC [151,152]. Mutations of the promoter region of the TERT
gene (TERTp) have been shown to occur in several cancer types [153]. They arise in
two hot spots of the TERTp and are thought to generate E-twenty-six/ternary complex
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factors (Ets/TCF) consensus binding sites (GGAA) conferring enhanced TERT promoter
transcriptional activity [154,155]. These mutations have a low prevalence in PTC but
strongly associate with aggressive forms, being highly frequent (up to 50%) in PDTC and
ATC [156,157]. Actually, TERTp mutations have been related to poor clinical outcomes of
TC characterized by increased recurrence rate and disease related mortality [158–164]. Such
evidence demonstrates a primary oncogenic role of TERTp mutation in the progression
towards the most aggressive TC.

4.2.3. The Connection BRAFV600E-TERTp Mutations

Since their initial identification in TC, it was evident that TERTp mutations, besides
being more common in the most aggressive TC (i.e., TCPTC, PDTC, ATC), are associated
with BRAFV600E PTC [20]. In particular, the TERTp mutation C228T showed a significant
higher prevalence in BRAFV600E PTC (18.3%), compared to BRAF wild-type PTC (7.2%).
Knowing the oncogenic role of BRAFV600E and TERTp mutations, it was soon demonstrated
that the concurrent presence of the two mutations had a strong prognostic value for
aggressive TC [20,155,159,160,162–164]. These data were taken into consideration by the
ATA, which incorporated the BRAF and/or TERTp status in the continuous risk scale for
PTC relapse risk assessment [26].

4.2.4. MicroRNAs

MicroRNAs (miRNAs) are versatile regulators of gene expression in higher eukaryotes.
They consist of short (~17–22 nt) single-stranded ribonucleic acids able to bind their target
mRNAs, usually in their 3′ untranslated regions (UTRs), inhibiting translation or inducing
mRNA degradation or deadenylation (Figure 1) [165]. As reported in Figure 1, miRNA
biogenesis is a multistep process. The primary transcripts (pri-miRNA) generated by the
RNA polymerase II or III are first cleaved by the concerted action of the nuclear endori-
bonuclease Drosha and the ds-RNA binding protein DGCR8 (DiGeorge critical region 8).
The released pre-miRNA is then exported to the cytoplasm by the Exportin-5 (Exp5) where
the endoribonuclease Dicer generates a ~17–22 nt RNA duplex, which is bound by the
Argonaute (Arg) protein. The complementary target mRNA strand is selected to form the
mature miRNA effector as part of a miRISC (miRNA-induced silencing complex), while the
remaining strand is degraded (Figure 1) [165]. In physiological conditions miRNAs operate
a temporally and tissue-specific controlled post-transcriptional regulation of gene expres-
sion, and not surprisingly their dysregulation was shown to be involved in cell malignant
transformation owing to the downregulation of tumor suppressor genes and/or upregu-
lation of oncogenes [166,167]. A number of miRNA genome-wide studies, performed in
different human malignancies, evidenced the presence of selective groups of distinct miR-
NAs (miRNA fingerprints) dysregulated in specific tumor types [165]. From these studies,
the clinical utility of miRNA expression determination in cancer tissues also emerged, as
they were found to be significantly associated with diagnosis, prognosis, and response to
clinical therapies [11,166]. Several studies attempted to characterized miRNA profile in TC,
and the most consistently upregulated miRNAs were found to be the miR-146b, miR-221,
and miR-222 [11,167,168]. The levels of miR-146b were reported to be significantly higher
in PTC tissues with extrathyroidal invasion, and to have a direct correlation with tumor
size and higher TNM stage [169]. Chou and colleagues demonstrated that PTC patients
with higher miR-146b expression were characterized by worst overall survival [170]. In
addition, they reported that its overexpression increased cell migration and invasiveness,
and resistance to chemotherapy-induced apoptosis. In multivariate analysis, miR-146b was
shown to represent, along with advanced tumor stage and cervical lymph node metastases,
an independent risk factor for poor prognosis in PTC [170].
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These observations were corroborated by the findings of the TGCA network, reporting
a high miR-146b expression in PTC tissues and its correlation with DNA methylation,
BRAFV600E-RAS score, and TDS [11]. The miR-221 and miR-222, encoded on chromosome
X (Xp11.3), share the same seed sequence and thus are thought to influence the same target
mRNAs, including the cell cycle regulator p27 [169,171,172]. They are often deregulated in
different malignancies, and in PTC they are both upregulated and associated with poorly
differentiated tumor tissues [11]. Mardente and colleagues demonstrated, in primary
cultures and cell lines derived from PTC, that miR-221 and miR-222 overexpression entailed
increased cell growth and motility [172]. The prognostic value of miR-221 and miR-222 was
recently evaluated in a large meta-analysis, including fifty studies for a total of 6086 patients
with different non-thyroid cancer types [169]. From this work, it emerged that high miR-
222, but not miR-221 expression, represents a biomarker of poor prognosis in terms of both
overall survival and secondary outcomes, e.g., DFI [169]. These findings should warrant
further studies aiming to assess the prognostic relevance of miR-221 and miR-222 in TC
patients. In a very recent study, Akyay and colleagues analyzed the global transcriptome
and miRNA profile of three groups of PTC tissues: PTC localized to the thyroid; PTC with
extrathyroidal progression; PTC with distant metastasis [173]. By comparative analysis
of differentially expressed miRNAs, the authors identified the miR-193-3p, miR-182-5p,
and miR-3607-3p as associated with PTC metastasis, suggesting that they could serve as
new biomarkers for the identification of PTC patients at risk of disease progression or
metastatization [173]. Besides those described, a number of other miRNAs have been
shown to be deregulated and potentially capable of affecting TC progression, including
miR-181p, miR-182, miR-183, miR-204, miR-206, miR-128-3p, miR-375, and others [11]. For
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these, more extensive and in-depth investigations aimed to clarify their potential prognostic
value are needed.

4.2.5. Components of the Urokinase Plasminogen Activating System

The urokinase plasminogen activating system (uPAS) includes the urokinase plasmino-
gen activator (uPA), the plasminogen activator inhibitors 1 (PAI-1) and 2 (PAI-2), and the
uPA cell membrane receptor (uPAR) (Figure 2) [174]. It is involved in many physiological
and pathological processes, including wound healing, tissue regeneration, angiogenesis
and, along with the matrix metalloproteases (MMPs), extracellular matrix (ECM), and
basement membrane (BM) remodeling [174]. A number of observations documented the
ability of the uPAS to affect several malignant cell features, including proliferation, migra-
tion, adhesion, intravasation and extravasation and tumor neoangiogenesis, and to play
a prominent role in cancer invasion and metastatization (Figure 1) [174,175]. In addition,
high tumor tissue levels of one or more uPAS components associate with poor prognosis
in several human malignancies [174]. This is particularly evident in breast cancer, where
uPA and PAI-1 represent potent prognostic factors, with a predictive value stronger than
those of patient age, tumor size, estrogen, and progesterone receptors, HER-2/neu, or p53
expression [175,176]. Actually, evaluation of uPA and PAI-1 protein levels in extracts of
breast cancer tissue is recommended to identify patients prone to a worse outcome [177].
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Figure 2. Depiction of the urokinase plasminogen activating system. uPA, urokinase plasminogen
activator, uPAR, uPA receptor, PAI-1, plasminogen activator inhibitor-1. As it may be appreciated
in the figure, plasmin induces extracellular matrix degradation directly and indirectly, through the
activation of extracellular matrix bound MMPs (matrix metalloproteinases). Similarly, plasmin may
activate latent mitogenic and motogenic growth factors associated with the extracellular matrix, thus
promoting tumor cell proliferation and invasion.

Experimental evidence documented an increased expression of uPAS components
during TC progression [174,178]. An early study reported the association of high uPAR
expression in PDTC, indicating this protein as a putative biomarker [179]. A subsequent
study showed that the levels of uPA and PAI-1 proteins displayed the lowest values in
adenomas and the highest in anaplastic carcinomas [180]. Among DTC, uPA and PAI-1
were found higher in tumors with extrathyroidal invasion or distant metastasis. More
interestingly, the survival analysis revealed a significant impact of both uPA and PAI-1 on
the progression-free survival rate [180]. An increased uPA, uPAR, and PAI-1 expression was
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also reported in TC-derived cell lines and PTC tissues compared to normal human thyrocyte
cultures or matched normal thyroid tissues, respectively [181]. In addition, a correlation
was found between tumor size and uPA expression, and higher levels of uPA and uPAR
were detected in metastatic PTC [181]. These observations were corroborated by another
study, showing the association between uPAR and disease-specific survival in a case study
encompassing PTC, MTC, FTC, and ATC patients [182]. Later on, our group demonstrated
that the increased gene expression of uPA and uPAR in PTC tissues was associated with
tumor invasiveness, advanced stages, and shorter DFI, and that this association was even
stronger in TNM stage I patients, currently considered at low risk of recurrences [145,183].
Finally, a significantly higher uPA and uPAR expression in BRAFV600E-positive PTC was
also reported, compared to those bearing the wild type BRAF [145]. On the whole, these
findings clearly indicate a correlation between the increased expression of one or more
uPAS components and a worst prognosis in TC patients, which should encourage larger
case studies to validate the prognostic value of uPAS in TC.

4.2.6. Other Possible Biomarkers

Several experimental and clinical data suggest that other molecules may have a role
in the prognostic stratification of TC patients. These include immune checkpoint factors
and immune-related signature (IRS), estrogen receptors, Vitamin D, tumor angiogenic
microenvironment, circular RNAs, long noncoding RNAs, and the angiotensin converting
enzymes ACE and ACE2 [184–194]. However, all of them are awaiting validation in large
case studies.

5. Conclusions and Perspectives

The characterization of the molecular pathogenesis underlying thyroid cancer progres-
sion is expected to shed light on some critical issues still present in the clinical management
of thyroid cancer patients. To date, the molecular diagnosis has been shown to ameliorate
the diagnostic performance of fine-needle aspiration cytology, reducing the number of un-
necessary thyroidectomies and improving quality of life in a significant number of patients.
In addition, the inclusion of TERTp mutations in tumor staging, alone or in combination
with BRAFV600E, is emerging as a useful tool in refining the prognostic classification of
DTC patients. It is likely that in the near future, the TNM classification systems will be
further implemented with additional clinicopathological and molecular features, actually
under evaluation, capable of ameliorating the prognosis of these patients.
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149. Czarniecka, A.; Oczko-Wojciechowska, M.; Barczyński, M. BRAF V600E mutation in prognostication of papillary thyroid cancer
(PTC) recurrence. Gland. Surg. 2016, 5, 495–505. [CrossRef] [PubMed]

150. Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The Next Generation. Cell 2011, 144, 646–674. [CrossRef]
151. Pacini, F.; Cantara, S.; Capezzone, M.; Marchisotta, S. Telomerase and the endocrine system. Nat. Rev. Endocrinol. 2011, 7, 420–430.

[CrossRef]
152. Vinagre, J.; Almeida, A.; Pópulo, H.; Batista, R.; Lyra, J.; Pinto, V.; Coelho, R.; Celestino, R.; Prazeres, H.; Lima, L.; et al. Frequency

of TERT promoter mutations in human cancers. Nat. Commun. 2013, 4, 2185. [CrossRef]
153. Heidenreich, B.; Rachakonda, S.; Hemminki, K.; Kumar, R. TERT promoter mutations in cancer development. Curr. Opin. Genet.

Dev. 2014, 24, 30–37. [CrossRef] [PubMed]
154. Xing, M. Genetic-guided Risk Assessment and Management of Thyroid Cancer. Endocrinol. Metab. Clin. N. Am. 2019, 48, 109–124.

[CrossRef]
155. Liu, R.; Xing, M. TERT promoter mutations in thyroid cancer. Endocr. Relat. Cancer 2016, 23, R143–R155. [CrossRef] [PubMed]
156. Sohn, S.Y.; Park, W.-Y.; Shin, H.T.; Bae, J.S.; Ki, C.-S.; Oh, Y.L.; Kim, S.W.; Chung, J.H. Highly Concordant Key Genetic Alterations

in Primary Tumors and Matched Distant Metastases in Differentiated Thyroid Cancer. Thyroid 2016, 26, 672–682. [CrossRef]
157. Bu, R.; Siraj, A.K.; Divya, S.P.; Kong, Y.; Parvathareddy, S.K.; Al-Rasheed, M.; Al Obaisi, K.A.S.; Victoria, I.G.; Al-Sobhi, S.S.;

Al-Dawish, M.; et al. Telomerase reverse transcriptase mutations are independent predictor of disease-free survival in Middle
Eastern papillary thyroid cancer. Int. J. Cancer 2017, 142, 2028–2039. [CrossRef]

158. Xing, M.; Liu, R.; Liu, X.; Murugan, A.K.; Zhu, G.; Zeiger, M.A.; Pai, S.; Bishop, J. BRAF V600E and TERT Promoter Mutations
Cooperatively Identify the Most Aggressive Papillary Thyroid Cancer with Highest Recurrence. J. Clin. Oncol. 2014, 32, 2718–2726.
[CrossRef]

159. Jin, L.; Chen, E.; Dong, S.; Cai, Y.; Zhang, X.; Zhou, Y.; Zeng, R.; Yang, F.; Pan, C.; Liu, Y.; et al. BRAF and TERT promoter
mutations in the aggressiveness of papillary thyroid carcinoma: A study of 653 patients. Oncotarget 2016, 7, 18346–18355.
[CrossRef] [PubMed]

160. Landa, I.; Ganly, I.; Chan, T.A.; Mitsutake, N.; Matsuse, M.; Ibrahimpasic, T.; Ghossein, R.A.; Fagin, J.A. Frequent Somatic TERT
Promoter Mutations in Thyroid Cancer: Higher Prevalence in Advanced Forms of the Disease. J. Clin. Endocrinol. Metab. 2013, 98,
E1562–E1566. [CrossRef]

161. Liu, R.; Bishop, J.; Zhu, G.; Zhang, T.; Ladenson, P.W.; Xing, M. Mortality Risk Stratification by Combining BRAF V600E and
TERT Promoter Mutations in Papillary Thyroid Cancer. JAMA Oncol. 2017, 3, 202–208. [CrossRef]

162. Shen, X.; Liu, R.; Xing, M. A six-genotype genetic prognostic model for papillary thyroid cancer. Endocr.-Relat. Cancer 2017, 24,
41–52. [CrossRef]

163. Shi, X.; Liu, R.; Qu, S.; Zhu, G.; Bishop, J.; Liu, X.; Sun, H.; Shan, Z.; Wang, E.; Luo, Y.; et al. Association of TERT promoter
mutation 1,295,228 C>T with BRAF V600E mutation, older patient age, and distant metastasis in anaplastic thyroid cancer. J. Clin.
Endocrinol. Metab. 2015, 100, E632–E637. [CrossRef] [PubMed]

164. Yates, L.; Norbury, C.J.; Gilbert, R. The Long and Short of MicroRNA. Cell 2013, 153, 516–519. [CrossRef]
165. Di Leva, G.; Croce, C.M. miRNA profiling of cancer. Curr. Opin. Genet. Dev. 2013, 23, 3–11. [CrossRef]
166. Zhang, B.; Pan, X.; Cobb, G.; Anderson, T. microRNAs as oncogenes and tumor suppressors. Dev. Biol. 2007, 302, 1–12. [CrossRef]
167. Cao, J.; Zhang, M.; Zhang, L.; Lou, J.; Zhou, F.; Fang, M. Non-coding RNA in thyroid cancer—Functions and mechanisms. Cancer

Lett. 2020, 496, 117–126. [CrossRef] [PubMed]
168. Chou, C.-K.; Yang, K.D.; Chou, F.-F.; Huang, C.-C.; Lan, Y.-W.; Lee, Y.-F.; Kang, H.-Y.; Liu, R.-T. Prognostic Implications of

miR-146b Expression and Its Functional Role in Papillary Thyroid Carcinoma. J. Clin. Endocrinol. Metab. 2013, 98, E196–E205.
[CrossRef] [PubMed]

169. Mardente, S.; Mari, E.; Consorti, F.; Di Gioia, C.; Negri, R.; Etna, M.P.; Zicari, A.; Antonaci, A. HMGB1 induces the overexpression
of miR-222 and miR-221 and increases growth and motility in papillary thyroid cancer cells. Oncol. Rep. 2012, 28, 2285–2289.
[CrossRef]

170. Ravegnini, G.; Cargnin, S.; Sammarini, G.; Zanotti, F.; Bermejo, J.L.; Hrelia, P.; Terrazzino, S.; Angelini, S. Prognostic Role of
miR-221 and miR-222 Expression in Cancer Patients: A Systematic Review and Meta-Analysis. Cancers 2019, 11, 970. [CrossRef]
[PubMed]

171. Wang, Z.; Zhang, H.; He, L.; Dong, W.; Li, J.; Shan, Z.; Teng, W. Association between the expression of four upregulated miRNAs
and extrathyroidal invasion in papillary thyroid carcinoma. OncoTargets Ther. 2013, 6, 281–287. [CrossRef]

172. Akyay, O.Z.; Gov, E.; Kenar, H.; Arga, K.Y.; Selek, A.; Tarkun, I.; Canturk, Z.; Cetinarslan, B.; Gurbuz, Y.; Sahin, B. Mapping
the Molecular Basis and Markers of Papillary Thyroid Carcinoma Progression and Metastasis Using Global Transcriptome and
microRNA Profiling. OMICS J. Integr. Biol. 2020, 24, 148–159. [CrossRef] [PubMed]

173. Ulisse, S.; Baldini, E.; Sorrenti, S.; D’Armiento, M. The Urokinase Plasminogen Activator System: A Target for Anti-Cancer
Therapy. Curr. Cancer Drug Targets 2009, 9, 32–71. [CrossRef] [PubMed]

http://doi.org/10.1507/endocrj.K08E-208
http://www.ncbi.nlm.nih.gov/pubmed/18840924
http://doi.org/10.1007/s00428-013-1521-2
http://doi.org/10.21037/gs.2016.09.09
http://www.ncbi.nlm.nih.gov/pubmed/27867864
http://doi.org/10.1016/j.cell.2011.02.013
http://doi.org/10.1038/nrendo.2011.52
http://doi.org/10.1038/ncomms3185
http://doi.org/10.1016/j.gde.2013.11.005
http://www.ncbi.nlm.nih.gov/pubmed/24657534
http://doi.org/10.1016/j.ecl.2018.11.007
http://doi.org/10.1530/ERC-15-0533
http://www.ncbi.nlm.nih.gov/pubmed/26733501
http://doi.org/10.1089/thy.2015.0527
http://doi.org/10.1002/ijc.31225
http://doi.org/10.1200/JCO.2014.55.5094
http://doi.org/10.18632/oncotarget.7811
http://www.ncbi.nlm.nih.gov/pubmed/26943032
http://doi.org/10.1210/jc.2013-2383
http://doi.org/10.1001/jamaoncol.2016.3288
http://doi.org/10.1530/ERC-16-0402
http://doi.org/10.1210/jc.2014-3606
http://www.ncbi.nlm.nih.gov/pubmed/25584719
http://doi.org/10.1016/j.cell.2013.04.003
http://doi.org/10.1016/j.gde.2013.01.004
http://doi.org/10.1016/j.ydbio.2006.08.028
http://doi.org/10.1016/j.canlet.2020.08.021
http://www.ncbi.nlm.nih.gov/pubmed/32949678
http://doi.org/10.1210/jc.2012-2666
http://www.ncbi.nlm.nih.gov/pubmed/23264400
http://doi.org/10.3892/or.2012.2058
http://doi.org/10.3390/cancers11070970
http://www.ncbi.nlm.nih.gov/pubmed/31336701
http://doi.org/10.2147/OTT.S43014
http://doi.org/10.1089/omi.2019.0188
http://www.ncbi.nlm.nih.gov/pubmed/32073999
http://doi.org/10.2174/156800909787314002
http://www.ncbi.nlm.nih.gov/pubmed/19200050


Cancers 2021, 13, 5567 19 of 19

174. Duffy, M.J. Urokinase-type plasminogen activator: A potent marker of metastatic potential in human cancer. Biochem. Soc. Trans.
2002, 30, 207–210. [CrossRef]

175. Look, M.P.; Van Putten, W.L.J.; Duffy, M.J.; Harbeck, N.; Christensen, I.J.; Thomssen, C.; Kates, R.; Spyratos, F.; Ferno, M.;
Eppenberger-Castori, S.; et al. Pooled Analysis of Prognostic Impact of Urokinase-Type Plasminogen Activator and Its Inhibitor
PAI-1 in 8377 Breast Cancer Patients. J. Natl. Cancer Inst. 2002, 94, 116–128. [CrossRef]

176. Barzaman, K.; Karami, J.; Zarei, Z.; Hosseinzadeh, A.; Kazemi, M.H.; Moradi-Kalbolandi, S.; Safari, E.; Farahmand, L. Breast
cancer: Biology, biomarkers, and treatments. Int. Immunopharmacol. 2020, 84, 106535. [CrossRef]

177. Baldini, E.; Sorrenti, S.; D’Armiento, E.; DI Matteo, F.M.; Catania, A.; Ulisse, S. The urokinase plasminogen activating system in
thyroid cancer: Clinical implications. G. Chir. 2012, 33, 305–310.

178. Ito, Y.; Takeda, T.; Kobayashi, T.; Wakasugi, E.; Tamaki, Y.; Umeshita, K.; Monden, T.; Shimano, T.; Monden, M. Plasminogen
activation system in active even in thyroid tumors; an immunohistochemical study. Anticancer Res. 1996, 16, 81–89.

179. Herceg, G.H.; Herceg, D.; Kralik, M.; Bence-Zigman, Z.; Tomić-Brzac, H.; Kulić, A. Urokinase-type plasminogen acti-vator and its
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