
1

Vol.:(0123456789)

Scientific Reports |        (2021) 11:22297  | https://doi.org/10.1038/s41598-021-01730-4

www.nature.com/scientificreports

The performance of a flapping foil 
for a self‑propelled fishlike body
Damiano Paniccia1,2*, Luca Padovani1,2, Giorgio Graziani1,2 & Renzo Piva1,2

Several fish species propel by oscillating the tail, while the remaining part of the body essentially 
contributes to the overall drag. Since in this case thrust and drag are in a way separable, most 
attention was focused on the study of propulsive efficiency for flapping foils under a prescribed 
stream. We claim here that the swimming performance should be evaluated, as for undulating fish 
whose drag and thrust are severely entangled, by turning to self‑propelled locomotion to find the 
proper speed and the cost of transport for a given fishlike body. As a major finding, the minimum 
value of this quantity corresponds to a locomotion speed in a range markedly different from the one 
associated with the optimal efficiency of the propulsor. A large value of the feathering parameter 
characterizes the minimum cost of transport while the optimal efficiency is related to a large effective 
angle of attack. We adopt here a simple two‑dimensional model for both inviscid and viscous flows to 
proof the above statements in the case of self‑propelled axial swimming. We believe that such an easy 
approach gives a way for a direct extension to fully free swimming and to real‑life configurations.

The self-propulsion of certain fishes may be reduced to the study of the oscillatory motion of the caudal fin. For 
instance, a tunniform swimmer uses the tail to generate most of the propulsive force, while the anterior part 
of the body provides essentially a viscous resistance. In these cases since it is possible, as a first approximation, 
to separate drag and thrust, in the past it was considered more convenient to study the tail as an isolated flap-
ping foil, i.e. with a combined heave and pitch motion. Actually, most of the attention was paid to the study of a 
flapping foil under a uniform incoming stream to evaluate the fluid-induced thrust which is able to counteract 
the unavoidable body resistance. Hence, the Froude efficiency � = TU∕P (T thrust, P input power and U inflow 
velocity) was used as a measure for the performance of the propulsion system, repeatedly analyzed in many 
contributions either  analytical1,2,  numerical3,4 or  experimental5,6. However, the primary interest remains the 
evaluation of self-propelled swimming properties like the locomotion speed and the energy consumption hence 
we propose here to recover the approach properly adopted when the whole body is cooperating for the genera-
tion of the required thrust. This is the case of undulatory swimming, where a wave travelling from head to tail is 
involving a significant part of the body consistently with the fish’s shape and swimming style (e.g. anguilliform, 
carangiform, etc.). For these reasons, a clear identification of the propulsive efficiency is  prevented7–9 and, after 
a few initial studies with a prescribed  stream10,11, the self-propelled locomotion velocity was obtained by leav-
ing the fish completely free to swim according to the forces exchanged with the surrounding  fluid12–15. When at 
steady state thrust and drag balance exactly, the Froude efficiency loses its meaning and a proper concept like 
the cost of transport COT = P∕U  , or its inverse as introduced by von Kármán and  Gabrielli16, should be con-
sidered  instead17,18. By proceeding in an analogous way for oscillatory swimming, we intend to investigate the 
axial self-propulsion of a flapping foil pushing a fishlike body which, in a way passive with respect to the thrust, 
may be approximated by defining only its mass and its resistance, i.e. a virtual body as proposed by  Akoz19. 
These assumptions, due to the known resistance and to the axial motion of the virtual body, allow for the evalu-
ation of the cost of transport as a measure for the self-propelled swimming performance, but also for a clear-cut 
evaluation of the Froude efficiency providing an easy comparison between the optimal conditions for the two 
performance measures. By following other suggestions from the seminal work of Schultz and  Webb20 and later 
by Gazzola et al.21, we prefer to concentrate our attention on two dimensional simulations to achieve a sharp 
understanding of the complex phenomena just described. A cartoon for the virtual body and its tail propulsor 
with a sketch representing the exchanged forces and the oscillatory trajectory for the tail pivot point is reported 
in Fig. 1. The animation reported in the Supplementary Video online gives a first glance insight of the swimming 
fishlike model and of the related vortex wake.
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Results and discussion
A test for zero resistance. As a preliminary step, we like to consider the self-propelled axial motion of 
a virtual body having zero  resistance22–25, a sort of ideal case, to highlight in the most simple and neat way the 
possible analogies with the undulatory swimming mode. For instance, we like to understand if an asymptotic 
locomotion velocity occurs also for a flapping foil and how to find a good approximation of its value. This is feasi-
ble if the pitch motion about the leading edge, with an angular frequency ω and a small amplitude �0 , anticipates 
the heave motion, with amplitude h0 , by a phase angle � = �∕2 . With these assumptions, we may express the 
flapping motion of a foil with chord l as

which may be assimilated to an undulatory motion of amplitude A and wavenumber k.
When the wavelength 𝜆 = 2𝜋∕k ≫ l , this motion may be expressed as

and, by identifying the single terms of (1) and (2), we obtain for the phase velocity

Intuitively, if 𝜆 ≫ l , the foil itself acts as a small portion of the wave whose undulating motion is perceived, 
instantaneously, as a local oscillation given by the heave and pitch motions.

Consistently with the assumption of small �0 , the above analogy becomes more and more accurate as the 
wavelength � is greater than the tail length. This phase velocity gives us the opportunity to recall the proportional-
feathering parameter Θ = �0U∕�h0 , as ingeniously suggested by  Lighthill26, to qualify the propulsive perfor-
mance of flapping foils. Actually, the expression for � results to be the ratio between the locomotion velocity 
U and the phase velocity c given by (3), to match the concept of slip velocity usually adopted in undulatory 
 swimming27.

For the analysis of the numerical results in the self-propelled case, since both the Strouhal number 
St = �lATE∕(2�U) and the reduced frequency kr = �l∕U  contain the forward velocity U which is part of the 
solution, we should select new parameters strictly based on the assigned data. To this purpose, we introduce the 
non-dimensional trailing edge peak-to-peak oscillation amplitude ATE in terms of the foil chord l and the pure 
heave non-dimensional peak-to-peak amplitude defined as Ah = 2h0∕l . For a given value ATE , which for small 
values of �0 may be approximated by 

√

(2�0)
2 + A2

h
 , the ratio Ah∕ATE is the parameter that we are going to use 

to analyze the results. It represents the fraction of the trailing edge amplitude due to heave, so as Ah∕ATE = 0 for 
pure pitch and 1 for pure heave.

The time history of the forward locomotion velocity obtained by a standard inviscid numerical procedure 
for the zero resistance virtual body is reported in fig.2a for ATE = 1 and three different values of Ah∕ATE . From 
the figure we may appreciate how the acceleration during the transient is increasing with the heave amplitude 
to reach anyhow, even in the absence of a viscous resistance, an asymptotic velocity which is going to infinity 
for pure heave. We like to notice that the forward velocity oscillations appearing in the figure are very small 
and their global effect on swimming performance is quite negligible as assumed in a previous work on recoil 
 motions28 and confirmed by a present simulation reported in the Supplementary Material (see  also17  and29). The 

(1)y(x, t) = h0 sin(�t) − x sin(�(t)) ≈ h0 sin(�t) − �0x cos(�t) 0 ≤ x ≤ l

(2)y(x, t) = A sin(�t − kx) ≈ A sin(�t) − Akx cos(�t) 0 ≤ x ≤ l

(3)c =
�

k
≈ �

h0
�0

Figure 1.  A cartoon for the virtual body (gray) and the tail propulsor (red) with a sketch of the exchanged 
forces and the oscillatory trajectory of the tail pivot point. The details of the flapping motion are reported in the 
inset. See also the animation of the swimming fishlike model and the related vortex wake in the Supplementary 
Video online.
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mean forward velocity at the steady state, for ATE equal to 1 and 1.5, is plotted against Ah∕ATE in Fig. 2b together 
with the phase velocity c which is only a function of the ratio Ah∕ATE . Let us remark that the selected values of 
ATE correspond nearly to 0.15 − 0.2 in terms of the ratio between the tail-beat amplitude and the body length L, 
as frequently observed in  nature30. As anticipated above, for small pitch angles, i.e. for Ah∕ATE going to one, the 
prediction of the asymptotic velocity equal to c is confirmed by the numerical results which also show how the 
locomotion speed is practically independent of the trailing edge amplitude ATE , as for undulatory swimming in 
the specific case of inviscid  flows31. For zero resistance, the Froude efficiency continuously decreases up to a null 
value at steady state where the net thrust is going to vanish. At the same time, the cost of transport is decreasing 
towards steady state but it reaches an asymptotic finite value resulting extremely low due to a reduced expended 
energy and a very large locomotion speed in absence of viscous resistance. This expected behaviour is properly 
modified when introducing a non zero virtual body resistance leading to intermediate values of both COT and η 
with respect to the above extreme conditions. At steady state the efficiency is not zero anymore since the thrust 
reaches a finite value able to counterbalance the imposed drag and the cost of transport gains a value consistent 
with a reduced locomotion speed together with an increase of the expended power. As shown by the numerical 
results in the following section, it is easy to understand the primary role of the body resistance to qualify the 
overall performance of the swimming fish.

The role of the body resistance. As anticipated before, the concept of virtual body introduced to esti-
mate the performance of the fishlike body, requires an assumption for the drag coefficient CD as close as possible 
to expected real values which may be selected from experimental  evidence32.

The mean forward velocity is shown in Fig. 3a for viscous and inviscid flows together with the phase veloc-
ity c. We may notice a general reduction of the velocity values with respect to Fig. 2b clearly due to the extra 
virtual body resistance and their dependence on the peak-to-peak trailing edge amplitude ATE , as expected in 
the presence of viscous  resistance33. A contained difference is appreciable when comparing viscous and inviscid 
results, in particular for larger values of Ah∕ATE , essentially related to the viscous resistance of the propulsor 
which increases with the locomotion speed to give a sensible difference between the two  approaches34. The whole 
body performance given by the cost of transport is shown in Fig. 3b with a very satisfactory agreement between 
viscous and inviscid results. A clear evidence of the classical U-shaped form for the COT  curves35,36 is obtained 
and a minimum value appears in a quite small range about Ah∕ATE = 0.7 . The presence of a virtual body allows 
also for the calculation of the propulsor efficiency since the thrust, balancing the known drag at cruising speed, 
is now  available37,38. Interestingly, the range where we find the maximum efficiency of the propulsor, reported 
in Fig. 3c, is clearly different from the one where the minimum COT for the whole body occurs. Specifically, the 
range corresponding to the maximum value of the efficiency η is found for larger values of Ah∕ATE . Let us men-
tion that other authors, by making different choices, may obtain different results which however are perfectly 
compatible with the present ones. For instance, Akoz et al.19, by forcing a constant self-propelled locomotion 
speed for a defined body via a change of frequency, interestingly find the cost of transport as the inverse of the 
propulsor efficiency. Instead, if a constant speed is prescribed without caring for the self-propelled conditions 
consistent with a given body  resistance3,4,6, the attention is only focused on the generic properties of the propul-
sor as clearly underlined by Anderson et al.5.

For the sake of completeness, we illustrate in Fig. 4a the values of cost of transport and efficiency also in terms 
of the more commonly used Strouhal number that was previously set apart for its dependence on the unknown 
locomotion velocity. The figure confirms the results previously discussed about the substantial difference of the 

Figure 2.  (a) Time history of the locomotion speed for ATE = 1 and three different values of Ah∕ATE . (2b) 
Mean steady state swimming velocity U/L and phase velocity c/L (dashed line) against Ah∕ATE for different 
peak-to-peak trailing edge oscillation amplitudes ( ATE = 1 and 1.5). Inviscid numerical results for zero 
resistance of the virtual body.
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Figure 3.  (a) Mean steady state swimming velocity U/L and phase velocity c/L (dashed line), (b) cost of 
transport of the whole body and (c) efficiency of the propulsor against Ah∕ATE for different peak-to-peak 
trailing edge oscillation amplitudes ( ATE = 1 and 1.5). Viscous and inviscid numerical solutions for a prescribed 
virtual body resistance.

Figure 4.  (a) Cost of transport of the whole body (blue) and efficiency of the propulsor (red) as function of the 
Strouhal number St. (b) Feathering parameter � (blue) and maximum angle of attack �m (red) for the inviscid 
case as function of the Strouhal number. Comparison between ATE = 1 and 1.5 for the inviscid case.
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optimal ranges for the two performance measures. Within this context it is worth stressing how the optimal 
values of COT and η are related to a couple of very significant parameters i.e. the proportional-feathering � and 
the maximum effective angle of attack �m . Following Anderson et al.5, we recall the definition of �m as

where the approximation holds for small values of the pure heave incidence angle �h0∕U  . If this is the case, the 
following simple relation between �m and � holds

whose physical meaning is very clear: as the feathering parameter is tending to one, i.e. the locomotion velocity 
is approaching the phase velocity c, the value of �m tends to zero. From Fig. 4b we may easily deduce that the 
maximum propulsor efficiency occurs for very large values of �m while the minimum of the cost of transport 
for the whole body occurs for large values of � . The corresponding values of the parameters �m and � are well 
reproducing results proposed in the literature for the search of optimal performance conditions. Namely, several 
findings confirm that fish select cruising speed usually very close to the phase velocity (i.e. � within 0.7 − 0.8 ) 
when they have to cover large  distances26,27. On the opposite, large values of the angle of attack, within 15◦ − 25◦ , 
are associated with higher propulsor  efficiency5 and are more favorable when a large locomotion speed is required 
for escape-like gaits.

Final remarks
When studying flapping airfoils under an incoming uniform flow, the focus is usually on the ability of the pro-
pulsor to generate a large thrust to balance the resistance, together with a high propulsive efficiency. Obviously, 
if the thrust of the propulsor prevails over the body drag an acceleration follows leading to different operating 
conditions. Once a certain body has been selected, a constant drag coefficient is prescribed hence it is more 
comfortable to adopt a self-propulsion approach which, by assuring the force balance, leads to a straightforward 
evaluation of the energy consumption together with the proper locomotion speed. In this way, we recover the 
procedure usually adopted in undulatory swimming governed by the phase velocity of a traveling wave. This 
choice is encouraged by the analogy illustrated before which introduces an asymptotic velocity also in the case 
of oscillatory swimming. The presence of a virtual body with its prescribed resistance allows, in the frame of 
a self-propulsion procedure, to evaluate also a well-defined propulsor efficiency to be contrasted with the cost 
of transport of the whole body. The results clearly indicate two different optimal swimming conditions: the 
first, characterized by a large locomotion velocity and a large angle of attack, is associated with the maximum 
propulsive efficiency; the second, associated with the minimum cost of transport, is characterized by a lower 
locomotion velocity and a quite large value of the feathering parameter. The contemporary observation of these 
different measures and the understanding of their validity for different swimming demands overcomes the 
conflicting opinions appearing in the literature about the best procedure to evaluate swimming  performance39. 
In line with the overall discussion, we support here the use of a self-propulsion approach for the study of oscil-
latory swimming to obtain a direct evaluation of the performance, either for cruising long-range motions or 
for fast escape-like gaits. As a further point, the self-propelled axial motion is propaedeutic for the extension 
to lateral and angular degrees of freedom which drive the  performance28 and better represents the swimming 
gaits observed in nature. To this purpose, the study of a swimming body under a prescribed uniform flow is not 
suitable, since no recoil motion may be accounted for, and the fully free locomotion is confirmed as the natural 
approach to obtain meaningful results.

Materials and methods
The self-propelled axial motion of a swimming body with velocity �b is analyzed by considering a two-dimen-
sional body B within an unbounded fluid domain V∞ . No external forces are applied, hence only internal actions 
are exchanged between the deformable body and the surrounding fluid, otherwise quiescent. To the purpose, 
we adopt the classical impulse  formulation40,41 for the linear fluid momentum which is expressed by two terms 
representing the field vorticity � and the vortex sheet over the body surface as

where n , the normal to the body surface �B , points into the fluid domain V∞ and ρ is the fluid density. A Helm-
holtz decomposition may be now applied to express the velocity field as the sum of the acyclic and vorticity 
related components:

where φ and � are referred to as the scalar and the (solenoidal) vector potential, and are given by the solution of 
the Laplace/Poisson equation, subject to the impermeable boundary condition on �B , i.e. �� ⋅ n = ub ⋅ n and 
(� ×�) ⋅ n = 0 respectively, and to the vanishing velocity at infinity. It follows that the total impulse p , which 
does not suffer the poor convergence of the momentum over an unbounded  domain42,43 and whose time deriva-
tive gives the forces exchanged between the body and the surrounding fluid, may be expressed as the sum of the 
potential and vortical impulses, p� and pv , as

(4)�m = arctan
�h0
U

− �0 ≈
�h0
U

− �0

(5)
�m

�0
=

1 − Θ

Θ

(6)� = ∫V∞

� � × �dV + ∫
�B

� � × (� × �+)dS

(7)�+ = �� + ∇ ×� = �� + �w
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where the bound vorticity due to �w , properly added to the released vorticity � , gives the additional vorticity 
introduced by Lighthill. The mathematical model, described in detail for undulatory free swimming in Paniccia 
et al.31, has been partially reported in the Supplementary Material and properly reshaped for the axial oscillatory 
swimming given by a flapping foil in the presence of a virtual body. The flow solutions are obtained by a simple 
inviscid procedure easily extendable to a classical vortex method by introducing the diffusion of the vorticity as 
detailed in a previous  paper44. In the present work, a standard viscous solver, validated against the one used by Lin 
et al.25, has been used to provide a comparison of the results and an overall assessment of the inviscid procedure.

The sinusoidal heave and pitch motions with amplitudes h0 and �0 , respectively, are characterized by an 
angular oscillation frequency � = 10� rad∕s and are separated in phase by an angle � = �∕2 (pitch leading). 
The ratio Ah∕ATE between the non-dimensional peak-to-peak trailing edge amplitude for pure heave motion 
and for combined heave and pitch motions is varied in the range 0.4 ∼ 0.98 and the pitch oscillation amplitude 
�0 follows to maintain the prescribed ATE . Finally, for the virtual body, the drag coefficient CD is set equal to 0.25 
and the mass m of the total body, i.e. virtual body plus propulsor, is set equal to 4.5 kg. For the details about the 
numerical procedures and choice of the parameters, see the Supplementary Material.
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