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Abstract— We formulate and implement a dynamical multi-
group model to describe the diffusion of COVID-19 epidemic
within homogeneous sub-populations, structurally or geograph-
ically separated but interconnected by a mobility network.
Each sub-model provides a rather accurate description of
infective sub-populations. Control actions, representing the
intervention measures adopted to curb the disease dynamics,
are also included. The multi-group structure of the model
is specifically designed to investigate the effects of people
mobility. The case of three Italian areas is considered, for the
period March–October 2020 including the massive increment
in people mobility occurred in summertime. The results of
model simulation are in good agreement with the data and
can provide important informations about the contribution of
outcome individuals to the virus spread.

I. INTRODUCTION

The current pandemic emergency caused by Coronavirus
disease (COVID-19) has highlighted the vulnerability of all
world countries in facing efficiently the unprecedented chal-
lenges thereby arisen, while evidencing the need of framing
the determinants of the epidemic dynamics, especially to
limit the impact of future possible outbreaks [1].

In addressing these questions, several literature studies
have taken into account different types of possible inter-
ventions and two domains of variables: pathogen-associated
variables and society-based variables. This latter variable
domain is particularly relevant since individuals are actually
the vectors of SARS-CoV-2 virus. Thus, social distancing
and personal protective measures appear to be the primary
mechanisms for controlling the COVID-19 spread, at least
before vaccines become diffusely available. The effectiveness
of social distancing is studied in many papers, which propose
projections where the impact of introducing containment
measures is shown along with the contribution in reducing
the infection spread [2], [3], [4], [5].

In the early stage of pandemic, only qualitative data
analysis was performed, as in [6] where data regarding
how the human mobility changed in the United States at
the beginning of the pandemic course are studied and the
importance of quantifying the social distancing practices is
emphasized. Moreover, apart from a number of examples for
China, not many quantitative studies on the effect of limiting
social distancing and human mobility exist. Such quantitative
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studies are generally based on mathematical modelling, they
are data-driven, still they use rather different approaches, see
e.g. [7], [8], [9].

In many recent works, both deterministic/stochastic and
discrete/continuous models have been applied for the descrip-
tion, forecast and control of the COVID-19 epidemic spread.
In the framework of compartmental models, the classes of
Susceptible (S), Exposed (E), Infected (I) and Removed (R)
subjects are generally introduced, yielding SEIR models.
For the COVID-19 pandemic, like for other diseases with
specific characteristics, additional categories are generally
introduced, referring to the condition of infected patients,
such as asymptomatic, or hospitalised, or in the quarantine
condition [2], [10], [11].

Concerning the geographical aspects, the effect of interac-
tions and travel restrictions on the pandemic evolution, multi-
group epidemic compartmental models, suitable extensions
of SIR/SEIR frameworks, are used to represent the COVID-
19 spread among different (heterogeneous) populations, like
e.g. in [12], [13], [14], [15]. The heterogeneity of the
sub-populations is intended with respect to the epidemic
properties and can depend on their different geographical
allocation or other structural variables (e.g. age, population
density, environment).

The model presented in this paper is based on a pre-
vious epidemic model reported in [10], representing the
COVID-19 evolution by a SEIR-type model with two sub-
populations of infected subjects, undiagnosed and diagnosed,
and explicitly accounting for a fraction of asymptomatic
infective subjects. The present model structure, depicted in
Sect. II, incorporates N interconnected epidemic models of
that kind, particularly with the aim of representing the effect
of individual interactions and geographical exchanges among
groups. In Sect. III the general model is specialized for
N = 3 and it is applied to simulate the disease evolution in
Italy: its territory is decomposed into three macro-regions,
corresponding approximatively to North, Centre and South,
in order to evidence some interesting aspects related to the
increased human mobility following the first pandemic wave.
The model proved to be apt in describing the summer period
2020 of the COVID-19 epidemic in Italy, by explicitly ac-
counting for different scenarios characterizing geographically
the distinct macro-regions of the Italian territory.

II. A MULTI-GROUP EPIDEMIC MODEL FOR THE SPREAD
OF COVID-19 AMONG N GROUPS

The model proposed here has a multi-group structure
that incorporates different sub-units, each one describing



the dynamic evolution of the epidemic within a homoge-
neous population with specific evolution characteristics. For
instance, the groups can represent different geographical
regions or structurally different populations. The N groups
(namely sub-units) are interconnected by a mobility network
that accounts for the transfers of individuals who are allowed
to travel from a group to another. Most typically, the model
can describe a geographical system composed by N regions
with people of each region moving for work, study or
simply personal/holiday reasons. Some following numerical
examples will be given referring to this situation.

Each of the N sub-models is a simplified version of
the model previously proposed in [10] for the description
of the first phase of the epidemic spread in our country
(thereby modelled as a whole homogeneously-mixing group).
In addition to a compartment of exposed individuals, which
is proper of SEIR models, our model explicitly distinguishes
between diagnosed and undiagnosed infective patients. As
shown in [10], the proposed structure appears appropriate to
mimic the Italian case, by incorporating also control actions
reproducing government restrictions and emergency actions
implemented to detect the infected cases, especially asymp-
tomatic or mildly symptomatic cases. Precisely, each sub-
model takes into account the following five state variables:
S(t) - number of susceptible individuals; E(t) - number of
exposed (infected but not yet infective) individuals; Iu(t) -
number of undiagnosed infective patients; it is specifically
devised to represent subjects who will be asymptomatic or
pauci-symptomatic during their whole infection period, in
addition to subjects with recognisable symptoms, as long
as they remain undiagnosed; Id(t) - number of diagnosed
infective patients, possibly receiving medical treatments to
cure the infection or its complications. We assume that
this latter population cannot transmit the virus because of
isolation (at home or at hospital); R(t) - number of healed
patients (treated or not).
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Fig. 1. Block diagram of model (1)-(5) applied to the mobility scheme
among N = 3 interconnected regions of epidemic diffusion.

The complete model formulation includes N structurally
identical groups or sub-systems, with each group i, {i =
1, 2, . . . , N}, described by a SEIR-type model with undiag-
nosed and diagnosed infected subjects, as reported above.
The N sub-systems are connected by means of a mobility
network allowing people to move among groups. In the
following, we refer to a specific epidemic group by its

identifier i, also using the same subscript to denote the
related state variables and parameters. In general, however,
we assume that the only individuals allowed to move are
the ones having no evidence and/or diagnosis of infection,
i.e. the ones belonging to compartments Si, Ei, Iui , Ri,
i = 1, 2, . . . , N . Fig. 1 shows, by means of a graphical
example with N = 3, how the mobility network works, also
illustrating the epidemic core model of each sub-system.

So, the spread of COVID-19 among N epidemiologically
distinct groups can be formally described by means of N
systems of time-varying ODE models of the following kind:

Ṡi=Bi−βi(1−ui)SiIui−µiSi

−
N∑

j=1,j 6=i

ci,j(1−zi,j)Si+
N∑

j=1,j 6=i

cj,i(1−zj,i)Sj , (1)

Ėi=βi(1−ui)SiIui
−viEi−kiEi−µiEi

−
N∑

j=1,j 6=i

ci,j(1−zi,j)Ei+
N∑

j=1,j 6=i

cj,i(1−zj,i)Ej+InE , (2)

İui
=kiEi−viIui

−hiφiIui
−γIui

(1−φi)Iui
−µiIui

−
N∑

j=1,j 6=i

ci,j(1−zi,j)Iui
+

N∑
j=1,j 6=i

cj,i(1−zj,i)Iuj
+InIui

, (3)

İdi=hiφiIui
+vi(Ei+Iui

)−γIdi(1+fi)Idi

−µIdi (1−wi)Idi , (4)

Ṙi=γIui
(1−φi)Iui +γIdi (1+fi)Idi−µiRi

−
N∑

j=1,j 6=i

ci,j(1−zi,j)Ri+
N∑

j=1,j 6=i

cj,i(1−zj,i)Rj , (5)

where i = 1, 2, . . . , N and the state variable dependence on t
has been omitted for compactness’ sake. A brief description
of all the quantities included in the ODE system (1)-(5) is
here given. Bi is the net input rate in compartment Si, which
accounts for both the newborn (susceptible) individuals and
the balance between immigration and emigration; µi is the
per capita death rate owing to causes not related to the in-
fection (natural death of the population) and it represents the
loss rate from any compartment of the model except for Idi ;
µIdi is the per capita death rate of diagnosed patients Idi ; βi
is the relative contagiousness of individuals in compartment
Iui and it accounts for two main factors, which are the
contagion probability from one infected-susceptible contact
(related to the aggressiveness of the virus) and the frequency
of contacts; φi represents the fraction of the infective popula-
tion Iui

that will show recognisable symptoms and that will
consequently be diagnosed and isolated (possibly receiving
therapies); ki describes the transition from Ei to Iui , and
it is set to ki = 1/τi, where τi is the mean length of
the incubation period; hi refers to the transition from Iui

to Idi , taken as hi = 1/τsi , where τsi is the mean time
from infection until the occurrence of the first recognisable
symptoms; γIui

models the outflow from the infective com-
partment Iui

associated to recovery from infection and, then,
it is assumed γIui

= 1/τri , with τri the mean recovery period



without any medical assistance; similarly γIdi models the
outflow from the infective compartments Idi due to recovery
from the infection and, then, it is γIdi = 1/τdi , with τdi
denoting the mean recovery period of monitored patients;
cij is a weight accounting for the transition probability of
a subject moving from the i-th compartment Si or Ei or
Iui

to the corresponding j-th compartment. Note that the
coefficients cij can also be time-varying in order to represent
the variation of transfer probabilities possibly occurring over
time. This variability is especially required for long-term
analysis when “ordinary” mobility regimens alternate with
highly “intense” transfer periods, like summer or Christmas
or Easter seasons. Note also that, for the sake of generality,
the recovery rates from compartments Iui

and Idi are taken
into account separately by means of the rate constants γIui

and γIdi , respectively, even though to a first approximation,
and in the absence of experimental evidences, they can be
assumed equal to each other.

As far as the control actions are concerned, the time-
varying quantities ui(t), vi(t), wi(t), zi,j(t) (taking values
in [0, 1]), and fi(t) ≥ 0 are introduced to represent the
intervention measures adopted by the authorities to contain
the disease outbreak. More precisely, ui(t) quantifies possi-
ble actions locally implemented by authorities to reduce the
contact rate, and then the relative infectivity βi, of population
i. It accounts for all the government decrees introduced to
limit the physical interactions among people, but also for
the informative campaign for hygienic measures, TV/radio
announcements, and so on. The quantity vi(t) represents
the intensity of the swab test campaign performed on sub-
population i, which changes daily depending on the number
of swab tests actually performed. For the sake of simplicity,
and in the absence of other indications, we assume that
the amount of performed tests is equally distributed among
people of compartments Si, Ei and Iui

, so that the same per
capita test rate can be assumed for all these compartments.
This implies that the exit fluxes of tested (positive) individ-
uals leaving Ei and Iui

are proportional to the number of
individuals within the same compartment, i.e. vi(t)Ei(t) and
vi(t)Iui(t), respectively. We notice that the flux vi(t)Si(t) of
(negative) test results exiting Si does not explicitly appear
in the model equation since it does not contribute to the
dynamical evolution (actually an identical flux amount comes
back to compartment Si). The control actions wi(t) and
fi(t) refer to the efficacy of the therapies adopted by the
i−th health system, either to reduce side effects of COVID-
19 and, respectively, to cure the infection. Furthermore, the
time-varying controls zi,j(t), i, j = 1, 2, . . . , N , represent
the interventions and mobility restrictions implemented by
the central government or local authorities to limit people
transfers between groups i and j.

Finally, the pair of input fluxes InEi
(t) and InIui

(t) are
introduced (see Eqs. (2), (3)) to model the cumulative entry
of infected people coming from outer groups/regions whose
epidemic dynamics is not incorporated in the N group model.
Since diagnosed infective people are not allowed to travel,
it is reasonable to account for such cumulative outer inputs

only in the equations of Ei and Iui
, i = 1, . . . , N .

We notice that the proposed model does not incorporate
the possibility of re-infection. Indeed in our model, once
recovered, a patient (R) is no longer susceptible. However,
this simplifying hypothesis, which is actually the object of
clinical studies and debates on the persistence and actual
length of the immunity period, can be a valid assumption if a
short-term analysis, like the one presented in the next section,
is performed. Moreover, our model is designed to describe
the infection transmission using a nonlinear S-I dynamics
that is the main difference with meta-population models
which focus on pathogen transferring instead of transmission.

The following section is devoted to the application of
the model for the numerical simulation of the COVID-19
evolution in Italy, considering N = 3 groups (regions) and
using real demographic and epidemic data for parameter
estimation. Setting N = 3 coupled to a summer observation
period is motivated in order to highlight the influence of
human movements on the epidemic spread. In the period of
interest, following the first epidemic wave, a considerable
number of movements could be counted across Italy, with
non uniform flow, but with predominant flow orientation
from North towards Centre-South. N is chosen as a trade-off
between the expected level of detail and of fragmentation.

III. PARAMETER ESTIMATION AND ANALYSIS OF THE
MOBILITY IN ITALY UP TO 21-10-2020

We aim to evaluate, by numerical simulation, the impact
of human mobility and people transfer on the diffusion of
COVID-19 in our country, considering three geographical
areas of the Italian territory. The areas are North, Centre,
and South, each one gathering different Italian districts, as
reported by Table I. The analysis aims to evaluate the effects
of restoring the human mobility after the first strong lock-
down in Italy (implemented by the central government as of
March 9, 2020) on the trigger of the second wave, with a
specific focus on the role played by the exodus occurring
during the past summer holidays 2020.

TABLE I
MACRO-REGIONS VS. ITALIAN DISTRICTS CORRESPONDENCES.

Identifier Region Italian districts

1 North
Piemonte, Trentino Alto Adige, Lombardia
Valle d’Aosta, Liguria, Emilia Romagna,

Veneto, Friuli Venezia Giulia
2 Centre Toscana, Umbria, Marche, Lazio

3 South Abruzzo, Molise, Campania, Puglia,
Basilicata, Calabria, Sardegna, Sicilia

A. Parameter estimation from data in the interval March 9
- June 3, 2020

Concerning the model parameters Bi, µi, ki, hi, i =
1, 2, 3, they have been inferred from official data sources,
following the approach described in [10]. Table II reports the
values of these parameters for the three macro-regions. Note
that the net input rates Bi, i = 1, 2, 3, have been computed
as Bi ≈ Pi · µi, where Pi are the total numbers of people
within the i-th region (almost constant along the “short”
period of interest), i.e. P1 = 27, 746, 113; P2 = 12, 016, 009;
P3 = 20, 597, 424.



TABLE II
FIXED MODEL PARAMETERS.

Parameter Value Source

B1 779.67 persons · day−1 [16]
B2 337.65 persons · day−1 [16]
B3 578.79 persons · day−1 [16]

µ1, µ2, µ3 2.81 · 10−5 day−1 [16]
k1, k2, k3 0.167 day−1 [17], [18]
h1, h2, h3 0.20 day−1 [17], [18]

The remaining parameters βi, φi, µIdi , γIui
, γIdi , i =

1, 2, 3, have been estimated by means of a least square
fitting procedure, which, for the sake of simplicity, assumed
γIui

= γIdi for any i. The epidemiological data exploited for
the fitting are: i) daily number of diagnosed individuals that
are currently positive, ii) total number of recoveries among
all diagnosed positives, iii) total number of notified deaths.
For each region i, such data are respectively reproduced by
the computational quantities: a) Idi(δj), b)

∫ σ=δj
σ=δ0

γIdi (1 +

fi(σ))Idi(σ)dσ, c)
∫ σ=δj
σ=δ0

µIdi (1 − wi(σ))Idi(σ)dσ, where
δ0 is March 9, that is the beginning of the national lock-down
in Italy, while the j-th notification day δj can run until June 3,
i.e. until the starting day of the restored free mobility among
regions (about one month after the end of the lock-down
on May 4). The choice of exploiting epidemiological data
for the model training in the selected time interval is made
to simplify the identification procedure. Indeed, since in the
chosen period the human mobility was practically forbidden
(except for necessity reasons), we can set zi,j(t) = 1, for any
pair (i, j) and any t in the identification interval, performing
three independent procedures for the identification of the
parameter sets {βi,φi,µIdi,γIui

,γIdi}, for i = 1, 2, 3. In
view of the strong restrictions carried out during the lock-
down on the arrivals to Italy from abroad, we also assume
null infective inputs external to the system, i.e. InEi(t) =
InIui

(t) = 0, i = 1, 2, 3, from March 9 to June 3, 2020.
For the identification of each parameter set

{βi,φi,µIdi,γIui
,γIdi} from data, we exploited suitable

time-varying controls ui(t), vi(t), wi(t), fi(t) taking into
account the variations of the social behaviour (owing to
both government restrictions and increasing health risk
awareness in the population), of the swab test campaign,
and of the health system efficiency. The time course of
the control actions assumed over the interval March 9 -
June 3 is reported in Fig. 2, lower panels, together with
the optimal fitting curves a)-c) of data i)-iii), upper panels,
for the three macro-regions specified by Table I. Note
that in each region: ui(t) is assumed rapidly increasing
from March 9 as a consequence of the decree ratifying the
beginning of the national lock-down (see also [10]); vi(t),
is derived directly from data on the number of swab tests
performed in region i. We observe that rapid changes of
wi(t) and fi(t) are required to adequately fit the data; they
can be explained in view of two main factors: progressive
increase of the medical experience and initial lack in the
notification process of the daily recoveries. The estimated
model parameters for each region are reported in Table III.

An ad hoc best fitting procedure was developed in MAT-

LAB accounting for positivity constraints on the parameters
by a logarithmic transformation. The procedure incorporates
native MATLAB routines for integration of the ODE system
(1)-(5) (ode45) and for OLS unconstrained minimization
(fminsearch).

Fig. 2. Fitting curves (upper panels) and corresponding control actions
(lower panels) for the three macro-regions of Table I. Data retrieved from
[19]. vi(t) = M10(ρi(δj)), i = 1, 2, 3, for t ∈ [δj , δj+1), where ρi(δj)
is the ratio between the number of swab tests in region i at δj and Pi;
M10(ρi(δj)) returns the average value of ρi(·) on a moving window of
21 days length centered on δj . Initial conditions for i = 1, 2, 3: Idi (δ0)
is the measured number of current positives of region i at δ0 (March
9); Ei(δ0), Iui (δ0), Ri(δ0) are computed from Ei(δ0)/Idi (δ0) = 11,
Iui (δ0)/Idi (δ0) = 9 and Ri(δ0)/Idi (δ0) = 1 (simulations in [10]), and
Si(δ0) is computed by the relation Si + Ei + Iui + Idi +Ri = Pi.

TABLE III
ESTIMATED MODEL PARAMETERS (BASED ON EPIDEMIOLOGICAL DATA

FROM MARCH 9 TO JUNE 3).

i
Parameters

βi φi µId1
γIui

, γIdi
(persons−1 · day−1) (-) (day−1) (day−1)

1 1.289 · 10−8 0.0992 0.0144 0.0192
2 3.290 · 10−8 0.1947 0.0069 0.0145
3 2.900 · 10−8 0.2173 0.0070 0.0090

B. Increasing the mobility among regions after June 3

We want now to investigate the effect of increasing the
human mobility, officially restored among regions as of
June 3, on the time-course of the epidemic in each area.
Estimating the related parameters by best fitting of data from
June 3 onwards is out of the scope of this section. We rather
propose a quantitative analysis of the whole system aimed to
evaluate the impact of some policies and social behaviours,
with particular emphasis on the mobility aspects after the
lock-down end.

Possible realistic values of the control actions have been
inferred based on epidemiological data of the total number of
cases and of the daily number of new cases during the period
June 3 - October 21 with a particular focus on the role played
by the human mobility increase in triggering the second
pandemic wave. Such epidemiological data are reproduced
by the model based quantities Ci(δj) =

∫ σ=δj
σ=δ0

[hiφiIui
(σ)+

vi(σ)(Ei(σ) + Iui
(σ))]dσ, for the total cases of region i at

day δj , and by the related increment Ci(δj)−Ci(δj−1), for
the daily new cases. In order to match such data, particular
attention has been devoted to the calibration of the quantities
ui(t), zi,j(t), and ci,j(t), as well as of the inputs InEi(t),
InIui

(t), i = 1, 2, 3. Since there was not any differentiation



of the mobility restrictions across Italy until the middle of
October, we assume in this analysis zi,j(t) = z(t), for
any pair i, j (and for any time). Moreover, for the sake of
simplicity, we consider a single cumulative flux entering the
infected communities of region i from outside, Ini(t), which
is assumed equally distributed between Ei and Iui , that is
InEi

(t) = InIui
(t) = Ini(t)/2. The time behaviour of the

coefficients ci,j(t) is also chosen ad hoc so as to represent
both the “ordinary mobility”, before and after summer, and
the unbalanced transfer of people characterizing the holiday
exodus, which can be observed in the available and official
source data. Concerning the other control actions, vi(t) is
driven by the data on the number of swab tests, as in Section
III-A, while wi(t) and fi(t) are kept fixed to the value
reached at the end of the identification period. Note that the
controls wi(t) and fi(t) do not play a crucial role on the
total cases (as it can be deduced from the model equations),
so an accurate tuning of these functions is not required for
the following analysis.

Fig. 3 depicts the time course of the time-varying quan-
tities adopted to reproduce the epidemiological data (right
panel): ui(t), Ini(t) (left panels) and z(t), ci,j(t) (central
panels). The time behaviour before June 3 is the same

Fig. 3. Time-course of the controls (left and central panels) chosen to
reproduce the total number of cases (left panel) until October 21.

of Section III-A. Concerning the evolution after June 3,
we highlight the following aspects related to ui(t), Ini(t),
i = 1, 2, 3: (A) there is no increase of cases in Centre and
South Italy from the end of the lock-down to mid-August (see
Fig. 3, right panel), suggesting that neither a remarkable
change in the social behaviour nor a sensible influx of
new infections from outside is present in regions i = 2, 3
during the first phase of summer. So we keep ui(t) ≈ 0.99,
i = 2, 3, until mid September, and Ini(t) = 0, i = 2, 3;
(B) the northern cases keep on increasing after the restored
mobility (although the increasing rate is lighter than before
May 4). So a first decrease of u1(t) (before mid September)
and a concomitant increase of In1(t) are assumed after the
reopening; (C) the inputs Ini(t), i = 1, 2, 3, are not changed
anymore (i.e. until October 21), while a sensible change for
the controls ui(t), i = 1, 2, 3 is assumed almost at the middle
of September when the restart of production activities and
schools may have increased the contacts among people.

As far as the mobility controls after June 3 are concerned,
we make the following assumptions on z(t), ci,j(t), i 6= j,
i, j = 1, 2, 3: (D) the mobility is slowly restored throughout

one month after the government decree allowing free people
transfers as of June 3, i.e. z(t) decreases from 1 (no mobility)
on June 3 to 0 (completely restored mobility) on June 30;
(E) we assume a “regular mobility” (people transfers for
study/work or for visiting relatives/friends under “ordinary”
conditions) before and after the holidays (that is before July
20 and after September 30) and, for any t in these periods, we
fix ci,j(t) = c̄i,j , where the constant coefficients c̄i,j are set
in order to provide an order of magnitude of 100K persons
travelling each day between each pair of regions. In particular
we choose c̄1,2 = 4 · 10−3, c̄1,3 = 4 · 10−3, c̄2,1 = 8 · 10−3,
c̄2,3 = 8·10−3, c̄3,1 = 6·10−3, c̄3,2 = 4·10−3; (F) we change
rapidly the coefficients ci,j(t) from July 20 to September 30
(see Fig. 3) to simulate a summer exodus from North towards
Centre and South that produces a demographic unbalance of
a few million people in each region. A statistical analysis
reported by ENIT (the Italian National Agency for Tourism)
on September 15 shows that almost 24 millions of Italians
went to Centre and South for their holidays [20].

Overall, as shown in Fig. 4, the assumed control actions
allow to fit well the data on the total number of cases (middle
panels) and on the daily number of new cases (lower panels)
from June 3 until October 21 The first comment that we

Fig. 4. Model assessment from epidemiological data between March 9 and
October 21, 2020. Upper panels: size of the northern, central and southern
susceptible population. Middle panels: total number of cases. Lower panels:
new daily cases. Red dots: ISS data [19]. Black lines: model reconstruction.

can give is that there is a slight increment of cases in the
interval 150-200 days occurred in all the regions, especially
of Centre-South, (note the slope change in total cases, middle
panels of Fig. 4, or the bell-shaped course of new cases,
lower panels of Fig. 4). This increment can be explained
by the combination of the summer exodus from North to
Centre-South together with the enhanced virus circulation in
the North (u1(t) lowered and In1(t) increased after June
3). However, such an increment is rather contained, proving
that the social behaviour and the movements during summer
were not enough to immediately trigger a second wave.
However, they probably contributed to the second wave
since the fast increase of cases after September 15 can be
actually reproduced only combining the sensible reduction
after this date of ui(t), i = 1, 2, 3, with the mobility and



the social behaviour assumptions made for the holiday time.
This combination of effects has been demonstrated also by
predictions obtained removing one control action at a time
(simulations not shown).

IV. CONCLUDING REMARKS

In containing the spread of COVID-19, robust mathemat-
ical models are important quantitative and predictive tools
that can help understanding the disease and forecasting its
future dynamics. A dynamical multi-group model designed
to describe the epidemic evolution of COVID-19 within
N sub-populations is formulated and implemented in the
present paper. Each sub-population is homogeneous from
an epidemic point of view, and it is geographically or
structurally distinct from the others, but interconnected by
a mobility network which allows (inwards and outwards)
fluxes of people among groups. The epidemic model for
each sub-population suitably extends a SEIR-type model
accounting for both diagnosed and undiagnosed infectives,
as well as for asymptomatic subjects, in the sub-groups.
Moreover, control actions representing intervention measures
adopted to contain the disease outbreak are modeled.

After giving a general formulation of the multi-group
model, we have presented an application with each group
representing an Italian macro-region. The multi-group model
can be used to highlight social and economic aspects in-
fluencing the epidemic spread among groups of people
geographically separated. The number of sub-groups within
a whole reference population, and then the extension of
the areas where the groups are located, depends on the
level of detail required by the performed analysis: a lower
number of groups belonging to larger areas allows high-
level, coarse-grained analyses which focus on “macroscopic”
aspects related to the group interconnection.

The present work aims to evaluate how the variations of
human mobility, following the application of the government
decrees, contributed and influenced the diffusion of COVID-
19 in Italy. In particular, we intended to present a quantitative
analysis of the Italian situation, focusing mainly on mobility
related aspects. For this reason, the parametric identification
of the model is performed on demographic and epidemiolog-
ical data in a period centred around the summer 2020, which
was characterized by a huge number of people movements
across the Country. Also, the choice of the model sub-units
(northern, central, southern macro-regions) is representative
for the simulation period. Overall, the model simulation
produced fitting results that show a very good agreement
with the data, which is confirmed by the model predictions
of Fig.4. The simulation evidenced how the combination of
the summer exodus (mostly from North to Centre-South)
along with the enhanced virus circulation in Northern Italy
produces a rather moderate increment of cases during the late
summer. Although the mobility aspects alone appear to be
insufficient to immediately trigger a second epidemic wave,
their combination with the re-opening of production activities
and schools in mid September was crucial in determining the
observed sharp increase of cases at the beginning of October.

An important development of the present study may
consist in extending the data analysis and the estimation
procedure to predict and then prevent the disease diffusion.
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