
DOCTORAL THESIS

Contributions to Bayesian inference for economic
and financial applications

Advisor:

Prof. Brunero LISEO

Candidate:

Lyubov DOROSHENKO

A thesis submitted in fulfillment

of the requirements for the degree of

Doctor of Philosophy

in Economics and Finance



Contents

1 Introduction 4

2 Bayesian Generalized Linear Mixed Model with Rank Likelihood 6

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Ordered probit regression and the rank likelihood models . . . . . . 8

2.2.2 Generalized linear mixed effects models using rank likelihood . . . . 12

2.2.3 Algorithm 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.4 Missing data imputation . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.5 Algorithm 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Example 1. Sovereign credit ratings . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Explanatory variables . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Example 2. Corruption Perception Index . . . . . . . . . . . . . . . . . . . 26

2.4.1 Explanatory variables . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Discussion and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6 Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6.1 Sovereign credit ratings . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6.2 Corruption Perception Index . . . . . . . . . . . . . . . . . . . . . . 35

2.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.7.1 Derivation of the full conditional distributions . . . . . . . . . . . . 39

2



CONTENTS 3

3 A Mixture of Heterogeneous Models with Time Dependent Weights 43

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 A Mixture with Time Invariant Weights . . . . . . . . . . . . . . . . . . . 45

3.2.1 Mixture Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.2 Time Invariant Weights . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Mixture of Regressions with Time Varying Weights . . . . . . . . . . . . . 49

3.3.1 Mixture Model with Weights following DAR(1) process . . . . . . . 50

3.3.2 Mixture Model with Weights following Logistic Normal process . . . 51

3.4 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4.1 Determining Economic and Financial Indicators . . . . . . . . . . . 53

3.4.2 Forecasting and predictive accuracy measures . . . . . . . . . . . . 56

3.4.3 The VIX as a measure of uncertainty . . . . . . . . . . . . . . . . . 60

3.5 Real and simulated data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5.1 Mixture Model with Time Invariant Weights . . . . . . . . . . . . . 62

3.5.2 Mixture Model with Weights following DAR(1) process . . . . . . . 64

3.5.3 Mixture Model with Weights following Logistic Normal process . . . 65

3.5.4 Models’ comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.7 Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.7.1 Mixture Model with Time Invariant Weights . . . . . . . . . . . . 70

3.7.2 Mixture Model with Weights following DAR(1) process . . . . . . . 73

3.7.3 Mixture Model with Weights following Logistic Normal process . . 76

3.8 Pseudo-algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.8.1 Algorithm 1. Metropolis-Hastings within Gibbs for the Mixture

Model with Weights following DAR(1) process . . . . . . . . . . . . 78

3.8.2 Algorithm 2. Metropolis-Hastings within Gibbs for the Mixture

Model with Weights following Logistic Normal process . . . . . . . 79

Bibliography 82



Chapter 1

Introduction

The present PhD dissertation consists of two independent job-market papers, therefore

each chapter represents an article with its own conclusions. In both studies I introduce

innovative statistical models aimed to be applied to the economic and financial data. A

detailed description of the related inference and applications is provided.

In the first paper, under the supervision of Professor Brunero Liseo (Sapienza University

of Rome), I consider situations where a model for ordered categorical response variable

is necessary. In this case the interest of the analysis lies in the shift of the predicted dis-

crete ordered outcome distribution as one or more of the regressors change, i.e., marginal

probability effects. Therefore the questions to be addressed are focused not on the scale

of each variable, but rather on the association between variables themselves. Standard

ordered response models may not be very suited to perform this analysis, being these

effects to a large extent predetermined by the rigid parametric structure of the model.

More specifically, in the case of normally distributed data, it is possible to address these

issues by the multivariate normal and linear regression models. In this work I use the rank

likelihood in non Gaussian situations and show how additional flexibility can be gained

by modeling individual heterogeneity by means of a latent class structure. I extend the

rank likelihood approach to Generalized Linear Mixed Effects models’ framework which is

therefore suitable for longitudinal data applications. The Bayesian approach using Markov

Chain Monte Carlo (MCMC) is adopted. The performance of the model is illustrated in

the context of sovereign credit ratings and Corruption Perception Index modeling and

4
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forecasting.

The second study is entitled A Mixture of Heterogeneous Models with Time Dependent

Weights. This part of dissertation has been developed and done while I was spending a

visiting period at the Statistical and Applied Mathematical Institute, under the supervi-

sion of Professor Brunero Liseo and Dr Christian Macaro (SAS Institute).

Understanding stock market volatility is a major task for market analysts, policy mak-

ers, economists and investors. However, inference in financial and economic models can

be challenging due to the fact that an explicit dependence order between observations is

added: a time dimension. Some of the existing approaches aim to address these challenges

by using ARMA, GARCH, Dynamic Linear Models and many others. In this work, I pro-

vide an alternative way to model and predict these data using a mixture of heterogeneous

models with mixing weights characterized by an autoregressive structure. In comparison

to the static mixture, the models I introduce are based on time-dependent weights which

allows one to learn how the data-generating mechanism changes over time. The resulting

dynamic mixtures aim to model the composition of the stock market data. A Bayesian

approach is adopted and the Metropolis-Hastings within Gibbs sampling technique is

used. Through extensive analysis in both observed and simulated data settings, I show all

the benefits the dynamic mixture model has over its static counterpart. I illustrate this

performance in the context of the stock market expectation of a 30-day forward-looking

volatility expressed by the volatility index VIX.

Key-words: dynamic mixture models, VIX, mixture weights, time-dependent, time series,

Bayesian mixture, latent variables, corruption, sovereign debt, ratings, financial market

uncertainty.



Chapter 2

Bayesian Generalized Linear Mixed

Model with Rank Likelihood

2.1 Introduction

1 Quantitative analyses in many research fields involve data sets which include variables

whose distributions cannot be represented by the common distributions such as Normal,

Binomial or Poisson. Ranked data appear in many problems of social choice, information

retrieval and user recommendation. Examples are represented by the document retrieval

problem, where the goal is to design a meta-search engine according to a ranked list of

web pages output by various search algorithms, and ranking candidates by a large number

of voters in elections (e.g. instant-runoff voting) (Tang, 2019).

Distributions of such a data and common survey variables cannot be accurately described

by any of the ones mentioned earlier. Additionally, in these cases, since the variables

of interest are binned into ordered categories, interest often lies not in the scale of each

individual variable, but rather in the associations between the variables (Hoff, 2009).

A relevant example in the economic field of this type of variables is represented by the

sovereign credit ratings. These represent a condensed assessment of a government’s abil-

1This chapter represents an extended version of a paper ”Bayesian Generalized Linear Mixed Model

with Rank Likelihood” written with Brunero Liseo.

6



2.2 Methodology 7

ity and willingness to repay its public debt both in principal and in interests on time

(Miricescu, 2012). Therefore these ratings represent the assessments which are forward-

looking qualitative measures of the probability of default calculated by rating agencies.

The credit assessments that the rating agencies award to sovereign issuers often can gener-

ate controversy in the financial markets, especially in the case when the agencies’ ratings

for the same country do not coincide, which can occur (Valle and Maŕın, 2005). The

relevance of rating the creditworthiness of sovereign borrowers arises from the fact that

national governments represent the largest issuers on capital markets and also because

those country ratings are seen as a ceiling to public and private sector issues (Afonso,

2003).

After briefly describing some of the already existing models for modeling ordinal data

and for sovereign debt ratings in particular, we introduce the methodology of the present

work. A detailed description of the Bayesian approach as well as the corresponding pseudo-

algorithm follows.

In order to test further the properties and advantages of our proposal, its performance is

also analyzed in the context of Corruption Perception Index (CPI) modeling.

2.2 Methodology

There is a large amount of literature on probabilistic ranking models. The earliest work

dates back to Thurstone (1927; 1931), where the items are ranked according to the order

statistics of a Gaussian random vector. Bradley and Terry (1952) introduced an exponen-

tial family model by pairwise comparisons, and the model was extended by Luce (1959)

and Plackett (1975) with comparisons to multiple items.

In what follows, we are going to focus on the latent variable methods for ordinal data,

represented by the sovereign credit ratings. Nevertheless, these models can be extended

to any other sort of statistical data, where the variables have ordered categories and the

distances between the categories are not known.
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2.2.1 Ordered probit regression and the rank likelihood models

So far the most common strands of empirical work in the literature are represented - on

one hand - by the Ordinary Least Squares (OLS) analysis on a numerical representation

of the ratings, which allows for a straightforward generalization to panel data by doing

fixed or random effects estimation; on the other hand, by ordered response models (Afonso

et al., 2006).

In the case analyzed in this study a variable of interest, represented by the sovereign credit

ratings for a considered sample of countries, is binned into ordered categories. For nor-

mally distributed data the association between the quantity of interest and the covariates

can be analyzed using the multivariate normal and linear regression models. These models

can be extended to situations where the data are not normal, by expressing non-normal

random variables as functions of unobserved, ”latent” normally distributed random vari-

ables. Multivariate normal and linear regression models then can be applied to the latent

data (Hoff, 2009).

Regression models for ordered responses, i.e. statistical models in which the outcome of

an ordered dependent variable is explained by arbitrarily scaled independent variables,

have their origin in biometrics literature. Aitchison and Silvey (1957) proposed the or-

dered probit model to analyze experiments in which the responses of subjects to various

doses of stimulus are divided into ordinally ranked classes. Snell (1964) suggested the use

of the logistic instead of the normal distribution as an approximation for mathematical

simplification. The first comprehensive treatment of ordered response models in the social

sciences appeared with the work of McKelvey and Zavoina (1975), who generalized the

model of Aitchison and Silvey to more than one covariate. The basic idea consisted in

assuming the existence of an underlying continuous latent variable, related to a single in-

dex of explanatory variables and an error term, and in obtaining the observed categorical

outcome by discretizing the real line into a finite number of intervals.

McCullagh (1980) independently developed the cumulative model in the statistics liter-

ature. He modeled the cumulative probabilities of the ordered outcome as a monotonic

increasing transformation of a linear predictor onto the unit interval, assuming a logit or

probit link function. This specification yields the same probability function as the model
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of McKelvey and Zavoina, and therefore is observationally equivalent (Boes and Winkel-

mann, 2006).

A large number of parametric generalizations have been proposed, which include alter-

native link functions, as well as semi- and non-parametric approaches, which replace the

distributional assumptions of the standard model, or the predictor function, by flexible

semi or non-parametric functional forms. General surveys of the parametric and non-

parametric literature are given, for instance, in Agresti (1999), Barnhart and Sampson

(1994), Clogg and Shihadeh (1994), Winship and Mare (1984), Bellemare et al. (2002),

and Stewart (2005).

In order to include a categorical variable in a regression analysis, a natural approach

consists in constructing an ”indicator variable” for each category. This allows a separate

effect for each level of the category, without assuming any ordering or other structure on

the groups. When there are only two categories, a simple 0/1 indicator is appropriate,

while when there is a need to deal with k categories, k− 1 indicators work in addition to

the constant term. It is often useful to incorporate the coefficients of indicator variables

into hierarchical models (Gelman et al., 2004).

Linear or generalized linear regression models, which assume a numeric scale of the data,

may be appropriate for the variables such as GDP or Inflation, but are not appropriate

for non-numeric ordinal variables like sovereign ratings. A way to model this variable is

through the use of ordered probit regression, where the variable Y is related to a vector

of predictors x via a regression in terms of a latent variable Z. More in detail, the model

is:

ε1, . . . , εn
iid∼ N(0, 1)

Zi = βTxi + εi (2.1)

Yi = g(Zi) (2.2)

where β and g are unknown parameters. The regression coefficients β describe the rela-

tionship between the explanatory variables and the unobserved latent variable Z, while

the function g relates the value of Z to the observed variable Y .

In a probit regression model, following Hoff (2009), the variance of ε1, . . . , εn is taken to

be 1, being the scale of the distribution of Y already represented by g, as g is allowed to
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be any non-decreasing function. Furthermore, g can represent the location of the distri-

bution of Y , and so we do not need to include an intercept term in the model.

The analysis of the described model requires to specify a prior distribution for β and the

transformation g(Z), as specified by a vector g of K − 1 threshold parameters. At this

point coming up with a prior distribution for g that represents actual prior information

can be a difficult task.

An alternative approach to estimate β which does not require to estimate the function

g(Z), can be achieved with the help of the rank likelihood. Being the last one invariant

under monotone transformations, the need to put a prior on the transformation functions

can be avoided.

Were the Zi’s observed directly, Equation 2.2 could be ignored and there would be an

ordinary regression problem without the need to estimate the transformation g(Z). Even

if we do not observe the Zi’s directly, there is information in the data about the Zi’s that

does not require the specification of g(Z). Since g is non-decreasing, it is possible to

know something about the order of Zi’s. Hoff (2009) shows that, if the observed data

are such that y1 > y2, then since yi = g(Zi), it is clear that g(Z1) > g(Z2). Since g is

non-decreasing, this implies that Z1 > Z2. In other words, having observed Y = y, we

know that the Zi’s must lie in the set

R(y) = {z ∈ Rn : zi1 < zi2 if yi1 < yi2 , ∀i1, i2 = 1, . . . , n} (2.3)

Since the distribution of Zi’s does not depend on g, the probability that Z ∈ R(y) for a

given y also does not depend on the unknown function g. This suggests that the posterior

inference can be based on the knowledge that Z ∈ R(y). The posterior distribution for β

in this case is given by

p(β|Z ∈ R(y)) ∝ p(β)Pr(Z ∈ R(y)|β) = p(β)

∫
R(y)

n∏
i=1

N(zi,β
Txi, 1)dzi, (2.4)

where N(w, a, b) represents the normal density with mean a, variance b evaluated at w.

As a function of β, the probability Pr(Z ∈ R(y)|β) is known as rank likelihood.

For continuous y-variables this likelihood was introduced by Pettitt (1982) and its theo-

retical properties were studied by Bickel and Ritov (1997).
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It is called a rank likelihood because for continuous data it contains the same information

about y as knowing the ranks of {y1, . . . , yn}, i.e., which one has the highest value, which

one has the second highest value, etc. For any ordinal outcome variable Y information

about β can be obtained from Pr(Z ∈ R(y)|β) without having to specify g(Z).

For β, given a current value z of Z, the full conditional density p(β|Z = z,Z ∈ R(y))

reduces to p(β|Z = z) since knowing the value of Z is more informative than knowing just

that Z lies in the set R(y). Therefore the full conditional of β depends only on z and

satisfies p(β|y, z) ∝ p(β)p(z|β) (Hoff, 2009).

Using the following g-prior (Zellner, 1986):

β ∝ Np(0, n(XTX)−1) (2.5)

p(β|z) is a multivariate normal distribution with

V ar[β|z] =
n

n+ 1
(XTX)−1 (2.6)

E[β|z] =
n

n+ 1
(XTX)−1XTz (2.7)

As for the full conditional distribution of Zi’s, conditional on β, Zi ∼ N(βTxi, 1). Con-

ditional on {β,Z ∈ R(y), z−i}, the density of Zi is proportional to a normal density but

constrained by the condition Z ∈ R(y). This implies that Zi must lie in the interval:

max {zj : yj < yi} < Zi < min {zj : yi < yj} (2.8)

Letting a and b denote the numerical values of the lower and upper endpoints of this

interval, the full conditional distribution of Zi is

p(zi|β,Z ∈ R(y), z−i) ∝ N(zi,β
Txi, 1)× δ(a,b)(zi), i = 1, . . . , n (2.9)

(Hoff, 2009). So far this method has been applied to model cross-sectional categorical

data. In what follows we extend it to allow repeated observations as in the panel data

context.
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2.2.2 Generalized linear mixed effects models using rank likelihood

Linear mixed effects models and generalized linear mixed effects models (GLMMs) have

increased in popularity in the previous decade (Zuur et al., 2009; Bolker et al., 2009).

Both extend traditional linear models to include a combination of fixed and random ef-

fects as predictor variables.

GLMMs provide a flexible framework for modeling a range of data, although with non-

Gaussian dependent variables it is impossible to obtain the likelihood in a closed form.

Before the MCMC revolution, there were few examples of applications of Bayesian GLMMs,

since outside of the linear mixed case, other models were analytically intractable. Kass

and Steffey (1989) describe the use of Laplace approximations in Bayesian hierarchical

models, while Skene and Wakefield (1990) use numerical integration in the context of a

binary GLMM.

Zeger and Karim (1991) describe approximate Gibbs sampling for GLMMs, with non-

standard conditional distributions being approximated by normal distributions. The

winBUGS (Spiegelhalter et al., 1998) software example manuals contain many GLMM

examples. There are also a variety of additional software platforms for fitting GLMMs

via MCMC including JAGS (Plummer, 2009) and BayesX (Fahrmeir et al., 2004).

The purpose of the present work is to incorporate the rank likelihood into the GLMM’s

framework. More specifically, the previously described latent variable model can be ex-

tended in the following way: for t = 1, . . . , T ; j = 1, . . . ,m

Ytj = g(Ztj)

where

Ztj = βTXtj + γj + εtj (2.10)

and

εtj
iid∼ N(0, 1), t = 1, . . . , T, j = 1, . . . ,m

In the previous expressions, Yj and Zj are T × 1 response and latent variables, Xj is a

T × p design matrix of regressors for the j-th group of observations, j = 1, . . . ,m; β is

p× 1 vector of uniquely defined ’fixed effects’, γj is a random variable which represents a
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random effect for each group, εj is T × 1 vector of random residuals.

The conditional distribution that generates the latent data is:

Zj|β, γj = (z1j, . . . , zTj)|β, γj ∼ N(Xβ + γj, I)δ(aj ,bj)(zj)

Letting atj and btj denote the numerical values of the lower and upper endpoints of the

interval, Z is bound to lie in:

max {zth : yth < ytj} < Ztj < min {zth : ytj < yth}

as specified in the previous section. At this point, a non-informative prior is selected for

the regression coefficients

π(β) ∝ 1. (2.11)

It is also common to assume a normal prior for the random effects:

γj|σ2
j ∼ N(0, σ2

j ), j = 1, . . .m, (2.12)

and independent scaled inverse chi-squared distributions for the variances of the random

effects

σ2
j

iid∼ Scale-Inv-χ2(ν, τ 2) j = 1, . . .m. (2.13)

Therefore the joint posterior density is:

p(β,γ,σ2, z|y) ∝ p(y|z)p(z|β,γ)p(γ|σ2)π(σ2)π(β) (2.14)

where, setting γ = (γ1, . . . , γm), the likelihood can be written as

p(z|β,γ) =
m∏
j=1

T∏
t=1

p(ztj|β, γj) =
m∏
j=1

T∏
t=1

1√
2π

exp

ß
−1

2
(ztj − γj − βTxtj)2

™
(2.15)

More in detail, the prior distributions for the random effects and their variances have the

following form:

p(γ|σ2) =
m∏
j=1

1

σj
exp

®
−1

2

γ2j
σ2
j

´
(2.16)

π(σ2) =
m∏
j=1

1

σ2
j

ν
2
+1

exp

®
−1

2

ντ 2

σ2
j

´
, (2.17)
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where ν represents the ’degree of belief’ parameter, and τ 2 can be thought as a prior

’guess’ of the appropriate variance. We refer to ν and τ 2 in the algorithm as prior hyper-

parameters, as they can be calibrated in accordance with features or goals of the specific

application. These hyperparameters are fixed and do not depend on j. All the compo-

nents of γ are assumed to be mutually a priori independent, as well as independent on β.

It is then possible to implement Bayesian inference through the use of a Gibbs sampler

algorithm, after having derived the full conditional distributions up to the proportionality

constant: it is straightforward to show that, for j = 1, . . . ,m:

σ2
j |γj ∝

1

σ2
j

ν+1
2

+1
exp

®
− 1

2σ2
j

(ντ 2 + γ2j )

´
σ2
j |γj ∼ Scale-Inv-χ2(ν + 1, τ 2 +

γ2j
ν

) (2.18)

or

σ2
j |γj ∼ Inv-Gamma(

ν + 1

2
,
ντ 2 + γ2j

2
).

The full conditional distribution of the random effects is given by:

γj|β, z, σ2
j ∝ exp

{
−1

2
(T +

1

σ2
j

)[γ2j − 2γj

∑T
t=1(ztj − βTxtj)

T + 1
σ2
j

]

}
(2.19)

Since the last expression is proportional to a normal density, in order to find the mean

and variance of the resulting distribution, it is appropriate to calculate the maximum,

which would correspond to the mean of the normal distribution. For the variance it is

necessary to compute the second derivative of the log density with respect to γj, which

would provide us with the negative value of the inverse variance of the given distribution.

It is a matter of calculation to show that the posterior mean is:

γ̂j =

∑T
t=1(ztj − βTxtj)

T + 1
σ2
j

and the posterior variance is:

var(γj) =
1

T + 1
σ2
j

=
σ2
j

Tσ2
j + 1
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It amounts to say that the full conditional for the random effects is:

γj|σ2
j , ztj,β ∼ N

(∑T
t=1(ztj − βTxtj)

T + 1
σ2
j

,
1

T + 1
σ2
j

)
(2.20)

Finally, the full conditional for β can be computed in the following way:

p(β|γ, z) ∝
m∏
j=1

1√
2π

exp

ß
−1

2
(zj − γj − xjβ)T (zj − γj − xjβ)

™
(2.21)

At this point the same procedure as for the previous full conditional distribution is used

to derive the mean and the variance of this distribution. The mean of the full conditional

for β is the following:

β̂ =

(
m∑
j=1

xTj xj

)−1 m∑
j=1

(
xTj (zj − γj)

)

and the variance is

Var(β) =

(
m∑
j=1

xTj xj

)−1

Then the full conditional posterior distribution of β is

β|z,γ ∼ Np

(
(
m∑
j=1

xTj xj)
−1

m∑
j=1

(xTj (zj − γj)), (
m∑
j=1

xTj xj)
−1

)
(2.22)

The detailed computations can be seen in the Appendix, while in the next subsection we

present a pseudo-algorithm that describes the Gibbs sampler which allows to sample from

the posterior distribution of the parameters of the model.
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2.2.3 Algorithm 1

Algorithm 1 Gibbs sampling for Generalized Linear Mixed Effects Model using Rank

Likelihood
For j = 1, . . . ,m and t = 1, . . . , T initialize γj, ztj

Initialize β

Fix S (number of iterations) and the prior hyperparameters of the model ν and τ 2

while i = 1, . . . , S do

while j = 1, . . . ,m do

σ2
j
(i)|γ(i)j ∼ Scaled-Inv-χ2(ν(i) + 1, τ 2(i) +

γ2
(i)
j

ν(i)
).

while t = 1, . . . , T do

γ
(i)
j |σ2

j
(i), z

(i)
tj ∼ N(

∑T
t=1(z

(i)
tj −β

T (i)x
(i)
tj )

T+ 1

σ2
j
(i)

, 1
T+ 1

σ2
j
(i)

)

end while
end while

for t = 1, . . . , T do

for j = 1, . . . ,m do

set a
(i)
tj = max

¶
z
(i)
th : y

(i)
th < y

(i)
tj

©
; b

(i)
tj = min

¶
z
(i)
th : y

(i)
tj < y

(i)
th

©
ztj ∼ N(Xβ + γj, I)δ(atj ,btj)(ztj)

end for
end for

β|z ∼ Np((
∑m

j=1 x
T
j xj)

−1∑m
j=1(x

T
j (zj − γj)), (

∑m
j=1 x

T
j xj)

−1)

end while

In Section 2.3 we use the proposed model in two different contexts. Firstly, we consider

the categorization of the 22 Fitch rating categories, where 1 (DDD-D) refers to the lowest,

and 22 (AAA) to the highest credit rating category. Notice that we assign 1 to all three

default categories, more precisely, to D, DD and DDD sovereign ratings. Afterwards the

same model is applied to the Corruption Perception Index country-level panel data.

2.2.4 Missing data imputation

Most common methods in statistical analysis require rectangular data sets with no miss-

ing values. Nevertheless, missing data are fairly widespread in many research problems.
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Sometimes missing data can arise from design, but more often data are missing due to

reasons beyond the researcher’s control. For instance, when data are collected from dif-

ferent sources, it is common for some data to be consistently missing from some of the

sources. The extent of damage caused by missing data depends on the quantity of records

for which data is missing relative to the quantity of complete records, and on the possible

influence of incomplete records on the estimation. What most researchers try to do is to

fill the gaps in the data with different types of guesses and statistical estimates (Honaker

and King, 2010).

Many software packages discard all subjects with incomplete data, or impute missing val-

ues with a population mean or some other fixed value, then proceed with the analysis.

The first approach of course is not satisfying because a potentially large amount of useful

information is being thrown away. Considerable information exists in partially recorded

observations about the relationships between the variables, but list-wise deletion discards

all this information. Sometimes this is the majority of the information in the original

data set. The second approach is not statistically correct, being the fact that it says we

are certain about the values of missing data when we have not even observed them (Hoff,

2009).

In the case of sovereign debt ratings, for some of the years of the considered period,

the ratings were not available. It is obvious, that in this case the strategy of throwing

out observations with missing data is not a usable option, either because the data sets

we consider are already small or because the observations are clearly serially correlated.

Moreover, we do not want to ignore a potentially useful information we can infer from the

missing data.

As an alternative solution, we treat missing data as latent quantities and provide a poste-

rior distribution of them trough the use of the Gibbs sampler. This approach provides a

means to retain a partial information in each transaction having missing data, strength-

ening the overall inference (Knight et al., 1998).

In the case of sovereign debt ratings data, some data are missing for the response vari-

ables. Moreover, in the case at hand (see Table 1) we can safely assume that data are

Missing Completely At Random data, since there are no evident missingness patterns in
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the dataset.2

1 2 3 4 5 6

1 20 22 22 22 22 22

2 20 22 22 22 NA NA

3 20 22 22 22 22 22

4 20 22 22 22 22 22

5 19 22 22 22 22 22

6 NA 22 22 NA 22 22

7 19 NA NA 22 22 22

8 19 22 22 22 21 21

9 18 22 22 22 21 21

10 16 22 22 22 17 17

11 15 22 21 22 14 14

12 15 22 21 22 15 15

13 15 22 20 22 15 15

14 15 22 20 22 15 15

15 14 22 20 22 15 15

16 14 22 20 22 16 16

Table 2.1: Time series data of sovereign credit ratings across 6 analyzed countries for 16

years. NAs represent missing observations.

Treating the missing data as unknown parameters allows us to use Gibbs sampler to

make inference on all the parameters of the model, say θ, as well as to make predictions

for the missing values.

Let Y be the T ×m matrix of all potential data, observed and missing, and let O be the

T ×m matrix in which otj = 1 if Ytj is observed and otj = 0 if Ytj is missing; the matrix

Y can be thought of as consisting of two parts:

• Yobs = {ytj : otj = 1}, the data that is observed;

2See the web site https://medium.com/@danberdov/types-of-missing-data-902120fa4248.
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• Ymiss = {ytj : otj = 0}, the data that is not observed.

From the observed data one needs to derive p(θ,Ymiss|Yobs), that is the posterior distri-

bution of unknown and unobserved quantities. Following Hoff (2009), a Gibbs sampling

scheme for approximating this posterior distribution can be built, adding one step to the

Gibbs sampler used for the other model’s parameters. Given starting values
¶
Y

(0)
miss

©
, we

generate
¶
θ(i+1),Y

(i+1)
miss

©
from

¶
θ(i),Y

(i)
miss

©
by:

1. sampling θ(i+1) from p(θ|Yobs,Y (i)
miss);

2. sampling Y
(i+1)
miss from p(Ymiss|Yobs,θ(i+1)).

Since our model adopts a non parametric approach on Y and its distribution is not

specified, we need some extra assumption in the presence of missing data. In what follows

we assume that Y follows a Uniform distribution. It implies that the full conditional of

each missing ytj is Uniformly distributed on a compact set determined by the constraints

introduced by the z’s. See below for details:

∀t and for h 6= j,

zth < ztj ⇐⇒ yth < ytj

Therefore, as in the previous section, it is possible to say that

max(yth : zth < ztj) < ytj < min(yth : ztj < zth)

At this point

ymisstj |yobstj , ztj ∼ Unif(max(yth : zth < ztj),min(yth : ztj < zth)). (2.23)

The corresponding algorithm is represented in the following subsection.
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2.2.5 Algorithm 2

Algorithm 2 Gibbs sampling for Generalized Linear Mixed Effects Model using Rank

Likelihood considering missing data imputation
For j = 1, . . . ,m and t = 1, . . . , T initialize γj, ztj and y∗tj where y∗tj represents missing

data

Initialize β

Fix S (number of iterations) and the prior hyperparameters of the model ν and τ 2

while i = 1, . . . , S do

while j = 1, . . . ,m do

σ2
j
(i)|γ(i)j ∼ Inv-scaled-χ2(ν(i) + 1, τ 2(i) +

γ2
(i)
j

ν(i)
).

while t = 1, . . . , T do

γ
(i)
j |σ2

j
(i), z

(i)
tj ∼ N(

∑T
t=1(z

(i)
tj −β

T (i)x
(i)
tj )

T+ 1

σ2
j
(i)

, 1
T+ 1

σ2
j
(i)

)

end while
end while

for t = 1, . . . , T do

for j = 1, . . . ,m do

set a
(i)
tj = max

¶
z
(i)
th : y

(i)
th < y

(i)
tj

©
; b

(i)
tj = min

¶
z
(i)
th : y

(i)
tj < y

(i)
th

©
z
(i)
tj ∼ N(Xβ + γj, I)δ(atj ,btj)ztj

end for
end for

for t = 1, . . . , T do

for j = 1, . . . ,m do

set ay
(i)
tj = max

¶
y
(i)
th : z

(i)
th < z

(i)
tj

©
; by

(i)
tj = min

¶
y
(i)
th : z

(i)
tj < z

(i)
th

©
y
∗(i)
tj ∼ Unif((ay

(i)
tj , by

(i)
tj )

end for
end for

β|z ∼ Np((
∑m

j=1 x
T
j xj)

−1∑m
j=1(x

T
j (zj − γj)), (

∑m
j=1 x

T
j xj)

−1)

end while

Finally, an important step when dealing with time series is the possibility to make some

statistical statements on future values. Since we did not make any specific assumption on

the function g it is not possible to predict the values of Y at any time t∗ > T . For the

sake of simplicity consider the case t∗ = T + 1. The only information we have is given
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by the relative positions of zT+1,j ∀j = 1, ...,m. Therefore the predictions can be done in

two following alternative ways, both of them, admittedly, very approximate:

• Once the posterior means of z
(i)
T+1,j are computed, ∀j = 1, ...,m, it is possible to

build a relative ranking of the predictions of Y for different states.

• From the additional assumption that the behavior of the series Y is ”stationary”, it

is possible to implement an algorithm similar to 2 and impute values YT+1.

2.3 Example 1. Sovereign credit ratings

The rating agencies deal with a set of variables that are incorporated in a risk model to

give a particular score to each sovereign issuer. These ratings form a classification that is

ordinal in character and there is a division between what is known as investment grade,

rated from AAA to BBB according to S&P and Fitch, and from Aaa to Baa according to

Moody’s, and what is termed as speculative grade, rated from BB to C or from Ba to C,

respectively (Afonso et al., 2012).

To assess the credit risk of governments, it is necessary to take into account both sol-

vency facts and aspects such as the stability of the political system, social cohesion and

the degree of interdependence with international economic and financial systems. See,

for instance, Bulow and Rogoff (1988) and also Bulow (1992) for the differences between

corporate and sovereign default. It is also important to highlight that sovereigns, unlike

corporate issuers, are less likely to face claims from creditors if a circumstance of a default

arises. This is true even if governments have an incentive to make payments, resulting

from the possibility of capital market autarky (Afonso, 2003).

Reinhart (2002) indicates that sovereign credit ratings are useful in predicting sovereign

distress. When a sovereign defaults, it can incur reputation costs, loose the assets abroad,

worsen its access to international capital markets and even delay international trade (Bu-

low and Rogoff, 1988; Duffie et al., 2003).

Fitch’s credit ratings for the issuers represent an opinion on a relative stability of an

entity, in our case of a certain country, to meet financial commitments, such as interest,
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preferred dividends, repayment of principal, insurance claims or counterparty obligations3.

2.3.1 Explanatory variables

The credit rating actually awarded is based on a mixture of quantitative and qualitative

variables. According to Fitch, in the list of variables to take into account in the rating

of sovereign issuers, up to fourteen subgroups are distinguished, as follows: demographic,

educational and structural factors, labour market analysis, structure of output and trade,

dynamism of the private sector, balance of supply and demand in the economy, balance of

payments, constraints to medium term growth, macroeconomic policy, trade and foreign

investment policy, banking and finance, external assets, external liabilities, politics and

the State, international position. In total 128 variables are monitored (Valle and Maŕın,

2005). After a first analysis, where the plausibility of the economic relations was assessed,

the following variables are selected:

• GDP per capita (OECD);

• Estimate of governance (The World Bank);

• Inflation, annual %(The World Bank).

Cantor and Packer (1996) and Mellios and Paget-Blanc (2006) find that GDP per capita

plays an important role in determining a country’s credit rating. This indicator represents

a measure of the country’s development and can be seen as an indicator of the tax basis

available in the economy. Countries with lower GDP per capita may be less able to solve

debt service problems by implementing austerity measures. Therefore, the bigger GDP

per capita, the more likely is the attribution of a higher rating level.

The estimate of governance reflects perceptions of the quality of public services, the qual-

ity of the civil service and the degree of its independence from political pressures, the

quality of policy formulation and implementation, and the credibility of the government’s

commitment to such policies 4. This estimate of governance ranges from approximately

3See the web site https://www.fitchratings.com/products/rating-definitions.
4See the web site https://epdf.pub/mining-society-and-a-sustainable-world.html.
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-2.5 (weak) to 2.5 (strong) governance performance.

Inflation rate has two opposite effects on the existing stock of government debt. An

increase of inflation improves the public debt dynamics by reducing the real value of gov-

ernment debt. Nevertheless, at the same time a rise in inflation contributes negatively to

the debt dynamics because it makes it necessary for the government to pay higher nomi-

nal interest rates. High inflation may signal excess demand or labour market distortions,

additionally it can also imply some lack of capacity for a country to finance its public

expenditures using only public revenues and issuing public debt. Therefore it should be

expected to see a negative relation between the level of rating and inflation rate (Afonso,

2003).

Notice that in this and in the following section no formal model selection method is im-

plemented. The variables we choose as the covariates are the ones for which the model

shows the most satisfactory performance in terms of convergence and predictions.

For our analysis we considered the ratings from 2002 to 2018 for the following countries:

Italy, USA, France, Germany, Spain and Japan 5. For the random effects we considered

the prior hyperparameters τ 2 = 0.5 and v = 5.

All the covariates in the applications presented in this chapter are rescaled before running

MCMC in order to change their values to a common scale, without distorting differences

in the ranges of values.

2.3.2 Results

The most straightforward approach for assessing the convergence of the MCMC samples

to the true posterior distribution is based on simply plotting and inspecting traces of the

observed MCMC samples. It is well known that such diagnostic should be carried out

for each stochastic quantity estimated by the MCMC algorithm, given that convergent

behavior of one variable does not imply evidence for convergence for other variables in

the analysis.

Therefore, once the MCMC estimation is performed, in order to monitor whether the

5https://tradingeconomics.com/italy/rating
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algorithm has converged, the trace-plots of each estimated parameter are analyzed. The

trace-plots in Fig.2.1 show the Markov chain’s evolution through 30000 iterations for the

fixed effects’ parameters of the model, represented by the regression coefficients βj for

j = 1, . . . , 3.

Looking at the Fig.2.1 it can be seen how the first regression coefficient, corresponding to

the fixed effect of GDP per capita covariate is converging more slowly than the other β’s.

However, in overall we can see some degree of correlation between the values sampled by

the Markov chain only in case of β1, while the others performed much better.

In particular, it is possible to notice that the third covariate has always a negative impact

on the dependent variable, indeed the posterior mean of β3 is −0.34, which highlights how

the negative effect of Inflation on the government debt dynamics prevails on the positive

one expressed by reduction of its real value.

In the case of the other regression coefficients it is not trivial to interpret their impact,

since the value of β2 corresponding to Government Effectiveness seems to fluctuate be-

tween -1 and 1. A very similar situation is observed for GDP per capita.

The same analysis is conducted for the random effects γj , j = 1, . . . , 6. The trace-plots

for all the countries are reported in Fig.2.2. In this case we can notice that in overall all

the chains mix well.

Multiple chains are often used to check MCMC convergence. Gelman et al. (1992) pro-

posed a general approach to assessing convergence of MCMC output where parallel chains

are updated with initial values that are overdispersed relative to each target distribution.

Convergence is diagnosed when the chains have ‘forgotten’ their initial values, and the

output from all chains is indistinguishable. More in detail, the convergence is assessed

by comparing the estimated between-chains and within-chain variances for each model

parameter.

The potential scale reduction factor (PSRF) is an estimated factor by which the scale of

the current distribution might be reduced if the simulations were continued for an infinite

number of iterations. Each PSRF approaches 1 as the number of iterations goes to infinity

and it is with upper and lower confidence limits. As Brooks and Gelman (1998) suggest,

the approximate convergence is diagnosed when the PRSF for all model parameters is

close to 1.
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In the case at hand, we consider the coverage probability of the confidence interval of 95%

and run three Markov chains for the same number of simulations as before. For almost

all the parameters, the potential scale reduction factor does not exceed the value of 1.01,

except for β3 with PRSF equal to 1.02 and β1 with PRSF equal to 1.07. These results

allow us to say that no convergence issues can be detected.

Finally, after the model is run on all data (15 years) except for the last observation, the

out-of-sample predictions are performed. We report them graphically in Fig.2.3.

The black line in Fig.2.3(a) represents the observations at the last time T , while in

Fig.2.3(b) are represented the predictions at the same time unit. Looking at the pre-

dictions of ratings, several considerations are in order. First of all, it can be noticed how

the model succeeds to correctly estimate the order of the sovereign debt ratings of the

considered countries. In particular, the USA and Germany show approximately the same

ratings, which are higher than the ones of all the other countries. France has a lower rating

compared to US and Germany, but higher than those of Italy, Spain and Japan. Finally,

Italy has the lowest sovereign credit rating out of all the considered cases. Notice that

the scale of the variable in plot 2.3(b) is different from the scale of the original dependent

variable, due to the fact that the estimation is carried out with the help of the latent

variable we introduced above.

Nevertheless, we can clearly see that the equal ratings, such as in the case of the USA

and Germany, or Spain and Japan, are not predicted quite precisely. In the first case, the

predicted ratings seem to be almost the same, but in the case of Spain and Japan, the

rating predicted for the latter is lower with respect to the former country.

The Fig.2.4 and 2.5 represent the whole estimated by the posterior means time series of

the latent variables z, where the last estimate, highlighted in a pink color, represents the

prediction. Fig.2.4 refers to Italy, USA and France, while Fig.2.5 represents Germany,

Spain and Japan.

Finally, in Fig.2.6 and 2.7 we consider convenient to represent the box-plots for the pos-

terior distribution of the latent variable z at each considered time unit. In particular,

Fig.2.6 refers to Italy, USA and France, while Fig.2.7 to Germany, Spain and Japan. In

this way it is possible to see how variable and spread out the sampled values are. As

above, the last box-plots represent the posterior distribution of the predicted z.
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2.4 Example 2. Corruption Perception Index

Corruption scandals have contributed to the downfall of governments in Ecuador, Brazil,

Italy and India. The variety, number, and importance of countries experiencing those

events highlight both the complexity of this phenomenon and its prominence as a global

issue. When it is pervasive and uncontrolled, corruption hinders economic development

and undermines political legitimacy. Less pervasive forms result in wasted resources, in-

creased inequity in resource distribution, less political competition, and greater distrust

of government (Elliott, 1997).

Until the 1980s, scholarly research on corruption was largely confined to the fields of

political science, sociology, history, public administration, and criminal law. Since then,

economists have also turned their interest to this topic, largely due to its increasingly

evident link to economic performance (Abed and Gupta, 2002).

Concerns about the negative social and economic impacts of corruption have grown

rapidly, and major international organizations consistently claim that corruption hinders

economic growth. Corruption is ”The abuse of public office for private gain”(Transparency

International), or ”Monopoly plus discretion minus accountability”(United Nations), or ”a

symptom of deep-seated economic, political and institutional weaknesses” (World Bank),

or ”An act of guilt, moral perversion, dishonest proceedings, debasement or alteration and

depravity” (Webster’s Unabridged Dictionary).

As a variable of interest for our second application, Corruption Perception Index (CPI)

is chosen. This index is estimated by the non-governmental organization Transparency

International (TI) and represents arguably the most widely used indicator of corruption.

The CPI is a composite index, a combination of different international surveys and assess-

ments of corruption, gathered by a variety of reputable institutions. The index draws on

13 surveys from independent institutions specializing in government and business climate

analysis covering expert assessments 6.

The Corruption Perception Index scores countries on a scale from 0 to 100, where 0 means

that a country is perceived as highly corrupt and 100 means that a country is perceived

6See the web site https://www.transparency.org/en/press/explanation-of-how-individual-country-

scores-of-the-corruption-perceptions.
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as very clean. The indicator is representative of expert opinion, as it is built by taking

the averages of various standardized expert surveys, including those from the Bertelsmann

Foundation, the World Economic Forum, the World Bank, and many others (Ortiz-Ospina

and Roser, 2016).

2.4.1 Explanatory variables

The explanatory variables that are considered in the analysis are the following:

• GDP per capita (OECD);

• Human Development Index (HDI)7;

• General Government Spending (OECD).

Many of the poorest nations in the world are places with authoritarian regimes, political

turmoil, week financial institutions, inadequate infrustructure and corruption. Therefore

GDP capita represents the first considered explanatory variable.

One of the key common driving forces that generates corruption is a relatively low level of

education. Thus we include the HDI as one of the explanatory variables of our analysis.

The HDI was created to emphasize that people and their capabilities should be one of

the criteria to consider for assessing the development of a certain country, not only its

economic growth. The HDI can also be used to question national policy choices, asking

how two countries with the same level of Gross National Income per capita can end up

with different human development outcomes. The HDI is a summary measure of average

achievement in key dimensions of human development: a long and healthy life, being

knowledgeable and have a decent standard of living8.

Another covariate we consider is given by General Government Spending (GGS). GGS

provides an idication of the size of government across countries. The large variation in

this indicator highlights the variety of countries’ approaches to delivering public goods and

services and providing social protection, not necessarily differences in resources that are

spent. This indicator is measured in terms of thousand USD per capita, and as percentage

7See the web site http://hdr.undp.org/en/indicators/137506
8See the web site http://hdr.undp.org/en/content/human-development-index-hdi.



28
CHAPTER 2. BAYESIAN GENERALIZED LINEAR MIXED MODEL WITH

RANK LIKELIHOOD

of GDP. All OECD countries compile their data according to the 2008 System of National

Accounts 9.

As mentioned above, government expenditure is considered a proxy of government size and

may have an important rule in both the economics performance of a country and public

sector corruption. The strand of literature analyzing the relationship between corruption

and government expenditure, however, is largely inconclusive and needs further research

(Monte et al., 2020).

We consider the yearly data referring to the time period from 2003 to 2017, for the

following countries: Denmark, Australia, Italy, Spain and the USA. After a sensitivity

analysis, for the random effects we consider the prior hyperparameters τ 2 = 1 and v = 15.

2.4.2 Results

The model is run on the first 14 observations considering the out-of-sample period of the

last year.

In order to check whether the quality of the MCMC generated samples is sufficient to

approximate the target distribution, the trace-plots are analyzed. Those related to the

regression coefficients βs posterior distributions are reported in Fig.2.8, while Fig.2.9 and

Fig.2.10 refer to the random effects γ. No apparent anomalies are observed in both cases,

the chains represent low serial correlation and explore the parameter space in a satisfac-

tory way.

After implementing the Gelman-Rubin convergence diagnostic test, the point estimates

of the PSRF result to be equal to 1 for all the random effects parameters, and not larger

than 1.03 for all the βs. These numbers allow us to say with confidence that the simulated

Markov chain fully explores the target posterior distribution.

Observing the trace-plots of the random effects, we can clearly see how Italy, the most

corrupted country in the data set, always shows negative posterior estimates.

After the convergence analysis, the observations related to the last time unit, are pre-

9See the web site

https://www.oecd-ilibrary.org/governance/general-government-spending/indicator/englisha31cbf4d −
en.
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dicted. In Fig.2.11 one can see the comparison between the real data related to the last

observations and the posterior means of predicted latent variables for CPI.

It can be clearly seen how the ranking of the countries with respect to the index is pre-

dicted quite well. In particular, it is possible to notice how the Corruption Perception

Index is decreasing from Denmark to Italy and then increasing again for Spain and the

USA. It is also correctly predicted that for Spain and the USA the index is slightly lower

than the Australian index value.

As before, in Fig.2.12 are represented the estimates of the latent variables z for all the

countries for the whole considered time series. The dark blue points are the predictions

for the last out-of-sample observation.

Finally, in order to analyze better the latent variables’ estimates from MCMC draws,

we compute the posterior uncertainty intervals, i.e., the credible intervals, represented in

Fig.2.13 for all the countries. Notice that the estimates for the year of 2017 represent the

out-of-sample predictions. More in detail, those two figures provide plots of central inter-

vals based on quantiles and show 50% intervals (the thick segments) and 90% intervals

(the thinner outer lines); the points are posterior means.
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2.5 Discussion and conclusions

In this paper we develop and evaluate an algorithm for modeling the ordered categori-

cal longitudinal data from a Bayesian perspective. In particular, the rank likelihood is

incorporated in the framework of generalized linear mixed effects models for applications

to time series data. Our results show the capability of such algorithm, with or without

missing data, to model and predict the order of categorical data with the help of latent

variables. These capabilities are demonstrated in the context of sovereign credit ratings

and Corruption Perception Index.

The full conditional distributions for all the model parameters are derived in order to

implement a straightforward Gibbs sampling. The convergence is evaluated and the out-

of-sample predictions are computed and compared to the observed data.

One of the drawbacks of the proposed model can be observed during the first application,

when the introduced model fails, even if not to a relevant extent, to correctly predict the

sovereign ratings which have equal values for some countries. Nevertheless, for the rest of

the sovereign ratings application, as well as in case of the CPI predictions, in overall the

model performs quite well.

Some convergence issues occur during the first application, which conducts us to one of

the possible ways to improve the performance of the method, via formal procedures of

model selection which are omitted in this study. The priors on the hyperparameters can

be set too, as in this study they are selected with the help of sensitivity analysis.
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2.6 Figures

2.6.1 Sovereign credit ratings

Figure 2.1: Trace-plots of fixed effects β corresponding to GDP per capita, Estimate of

Governance and Inflation rate



32
CHAPTER 2. BAYESIAN GENERALIZED LINEAR MIXED MODEL WITH

RANK LIKELIHOOD

Figure 2.2: Trace-plots of random effects γ corrisponding to Italy, USA, France, Germany,

Spain and Japan

Figure 2.3: Real data & Predicted data for the last time unit across all considered countries
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Figure 2.4: The estimated latent variables for Italy, USA and France for the whole con-

sidered time series. The pink points represent the predictions

Figure 2.5: The estimated latent variables for Germany, Spain and Japan for the whole

considered time series. The pink points represent the predictions
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Figure 2.6: Box-plots of the posterior distribution of the latent variables for Italy, USA

and France for the whole considered time series. The box-plots in 2018 represent the

predictions.

Figure 2.7: Box-plots of the posterior distribution of the latent variables for Germany,

Spain and Japan for the whole considered time series. The box-plots in 2018 represent

the predictions.
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2.6.2 Corruption Perception Index

Figure 2.8: Trace-plots of fixed effects β corresponsing to GDP per capita, Human Devel-

opment Index and General Government Spending

Figure 2.9: Trace-plots of random effects of Denmark, Australia and Italy
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Figure 2.10: Trace-plots of random effects of Spain and USA

Figure 2.11: Real data & Predicted CPI for the last time unit across all considered

countries
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Figure 2.12: The estimated latent variables for Denmark, Australia, Italy, Spain and USA

for the whole considered time series. The dark blue points represent the predictions
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(a) Denmark (b) Australia

(c) Italy (d) Spain

(e) USA

Figure 2.13: Plots of central intervals for the estimated and predicted latent variables

based on quantiles represeting 50% intervals (the thick segments) and 90% intervals (the

thinner outer lines); the points are posterior means.
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2.7 Appendix

2.7.1 Derivation of the full conditional distributions

Given the following proposed model

Ytj = g(Ztj)

t = 1, . . . , T ; j = 1, . . . ,m

Ztj = βTXtj + γj + εtj

εtj
iid∼ N(0, 1)

With the following priors:

γj|σ2
j ∼ N(0, σ2

j )

σ2
j

iid∼ Scale-Inv-χ2(ν, τ 2)

π(β) ∝ 1

∀j = 1, . . . ,m where ν and τ 2 are fixed prior hyperparameters which do not depend on j.

Therefore the joint posterior density is:

p(β,γ,σ2, z|y) ∝ p(y|z)p(z|β,γ)p(γ|σ2)π(σ2)π(β)

where, setting γ = (γ1, . . . , γm), σ2 = (σ2
1, . . . , σ

2
m) the likelihood can be written as

p(z|β,γ) =
m∏
j=1

T∏
t=1

p(ztj|β, γj) =
m∏
j=1

T∏
t=1

1√
2π

exp

ß
−1

2
(ztj − γj − βTxtj)2

™
p(γ|σ2) =

m∏
j=1

1

σj
exp

®
−1

2

γ2j
σ2
j

´
π(σ2) =

m∏
j=1

1

σ2
j

ν
2
+1

exp

®
−1

2

ντ 2

σ2
j

´
We can derive the full conditionals up to the proportionality constant. ∀j = 1, . . . ,m

σ2
j | − −− ∝

1

σ2
ν
2
+1

exp

®
−1

2

ντ 2

σ2
j

´
1

σj
exp

®
−1

2

γ2j
σ2
j

´
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∝ 1

σ2
j

ν+1
2

+1
exp

®
− 1

2σ2
j

(ντ 2 + γ2j )

´
σ2
j |γj ∼ Scale-Inv-χ2(ν + 1, τ 2 +

γ2j
ν

)

or

σ2
j |γj ∼ Inv-Gamma(

ν + 1

2
,
ντ 2 + γ2j

2
)

For the random effects, for j = 1, . . . ,m

γj| − −− ∝
T∏
t=1

p(ztj|γj)p(γj|σ2
j ) =

T∏
t=1

p(ztj|γj)
1

σ2
j

exp

®
−1

2

γ2j
σ2
j

´
∝ exp

{
−1

2
(
T∑
t=1

(ztj − βTxtj − γj)2
}

exp

®
−1

2

γ2j
σ2
j

´
∝ exp

{
−1

2
(
T∑
t=1

(ztj − βTxtj)2 + Tγ2j − 2γj

T∑
t=1

(ztj − β2xtj))

}
exp

®
−1

2

γ2j
σ2
j

´
∝ exp

{
−1

2
(Tγ2j +

1

σ2
j

γ2j − 2γj

T∑
t=1

(ztj − βTxtj))

}

∝ exp

{
−1

2
(γ2j (T +

1

σ2
j

)− 2γj

T∑
t=1

(ztj − βTxtj))

}

∝ exp

{
−1

2
(T +

1

σ2
j

)[γ2j − 2γj

∑T
t=1(ztj − βTxtj)

T + 1
σ2
j

}

Since the last expression is proportional to a Normal density, in order to find the mean

and variance of the resulting distribution, first of all it is appropriate to calculate the

maximum, which would correspond to the mean of the Normal distribution. For the

variance it is necessary to compute the second derivative of the log density with respect

to γj, which would provide us with the negative value of the inverse variance of the given

distribution.

log(γj|σ2
j , zj ,β) = −1

2
γ2j (T +

1

σ2
j

) + γj(T +
1

σ2
j

)

∑T
t=1(ztj − βTxtj)

T + 1
σ2
j

=
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= −1

2
γ2j (T +

1

σ2
j

) + γj

T∑
t=1

(ztj − βTxtj)

∂log(γj|σ2
j , zj ,β)

∂γj
= −γj(T +

1

σ2
j

) +
T∑
t=1

(ztj − βTxtj) = 0

Which gives the posterior mean:

γ̄j =

∑T
t=1(ztj − βTxtj)

T + 1
σ2
j

While

−
∂2log(γj|σ2

j , zj ,β)

∂γj∂γj
= −(−(T +

1

σ2
j

))

Which means the posterior variance is the following:

var(γj) =
1

T + 1
σ2
j

=
σ2
j

Tσ2
j + 1

Finally, the full conditional for β can be computed in the following way:

p(β| − −−) ∝
m∏
j=1

1√
2π

exp

ß
−1

2
(zj − γj − xjβ)T (zj − γj − xjβ)

™
where zj =


z1j

z2j
...

zTj

 and xj =



x11j x12j . . . x1pj

x21j x22j . . . x2pj
...

...
...

...

xT1j xT2j . . . xTpj


p(β|zj , γj) ∝

m∏
j=1

exp

ß
−1

2
((zj − γj)T (zj − γj)− 2βTxTj (zj − γj) + βTxTj xjβ)

™
∝

m∏
j=1

exp

ß
−1

2
(βTxTj xjβ − 2βTxTj (zj − γj) + (zj − γj)T (zj − γj))

™
At this point the same procedure as for the previous full conditional is used to derive the

mean and the variance of this distribution:

log(β|zj , γj) = −1

2
(
m∑
j=1

βTxTj xjβ − 2βT
m∑
j=1

xTj (zj − γj))
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∂log(β|zj , γj)
∂βT

= −1

2
(2

m∑
j=1

xTj xjβ − 2
m∑
j=1

xTj (zj − γj)) = 0

Therefore, the mean of the full conditional for β is the following:

β̄ = (
m∑
j=1

xTj xj)
−1

m∑
j=1

(xTj (zj − γj))

While for the variance the second derivative is needed:

−∂
2log(β|zj , γj)
∂β∂βT

= (
m∑
j=1

xTj xj)

Therefore, it is possible to use the Gibbs sampling to sample from the following posterior

distribution of β:

β|z ∼ Np

(
(
m∑
j=1

xTj xj)
−1

m∑
j=1

(xTj (zj − γj)), (
m∑
j=1

xTj xj)
−1

)



Chapter 3

A Mixture of Heterogeneous Models

with Time Dependent Weights

3.1 Introduction

1Time series modeling and forecasting have fundamental importance to a variety of prac-

tical domains, and can be applied to anything that changes over time, e.g., astronomical

data; epidemics; electricity demand; financial data; weather variables; medical trial data.

One of the tough challenges for all researchers in this domain with respect to economic

context is given by analyzing and predicting how a given asset, security, economic variable

or volatility vary over time. An important question associated with such an analysis is

focused on learning how the changes related to the chosen data point compare to the

movements in other variables over the same period of time.

Economic and financial data in conjunction can offer an insight into the overall economy.

Therefore, understanding stock market and its volatility is an important issue to many

respects. Volatility in financial markets is an issue concerning market analysts, policy

makers and economists and it is investigated by them with different approaches and tec-

niques.

1This is an extended version of a paper ”A Mixture of Heterogeneous Models with Time Dependent

Weights”written with Brunero Liseo (Sapienza University of Rome) and Christian Macaro (SAS Institute)

43
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In order to analyze and predict the stock market’s volatility a variety of models has been

developed in several areas of interests. For instance

• A time series expert may try to model it with autoregressive models, which can

be developed for univariate time series data that is stationary (AR), has a trend

(ARIMA), and has a seasonal component (SARIMA).

• The central bank could use a regression with an autoregressive model.

• A marketing expert may try to use tools for text analytics to dig out the general

public sentiment towards the stock.

• The ARCH or Autoregressive Conditional Heteroschedastic model (Engle, 1982)

provides a way to model changes in a variance of time series, such as increasing or

decreasing volatility.

• Bollerslev (1986) introduced a new general class of ARCH models, named Gener-

alized Autoregressive Conditional Heteroschedastic (GARCH) model, which allows

for both a long memory and a more flexible lag structure.

All the above approaches emphasize the connection between different sources of informa-

tion and the volatility of the stock.

In order to take advantage of a large amount of the available data and still maintain a

relatively parsimonious structure, in this article all these connections are exposed in a

simple framework.

This task can be accomplished finding meaningful groups of financial and economic time

series with similar behavior in order to model the link between stock market’s volatility

and a variety of relevant informative sources. In particular, mixture models provide a

natural means of introducing flexibility in a wide variety of statistical models.

Standard methods for panel data analysis assume homogeneity across the time series data

generating mechanisms. In the above-described specific case, it is of substantial interest

to learn if the data generating mechanism is changing over time.

The paper is organized as follows: in Section 3.2 mixture modeling is briefly introduced

and the mixture of regression models with time-invariant weights (Frühwirth-Schnatter,

2006) is described. Section 3.3 introduces two dynamic mixture models with time-varying

weights and illustrates the corresponding MCMC algorithms. In Section 3.4 the consid-
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ered economic and financial data sets, forecasting technique and accuracy measures are

described. In Section 3.5 the results are presented both in terms of in-sample and out-

of-sample predictions. Finally, the conclusions follow in Section 3.6 while Section 3.7 and

Section 3.8 contain all the figures analyzed in Section 3.5 and the pseudo-algorithms for

the introduced dynamic mixtures respectively.

3.2 A Mixture with Time Invariant Weights

3.2.1 Mixture Modeling

For a long time the mixture model has been a challenge to the statistician, whether be-

ginner, practitioner or theoretician. Recent advances in computational statistics provide

a large amount of tools for parametric and non-parametric modeling, especially in mix-

ture modeling and model comparison. Mixture models for time series offer the possibility

to approximate non-linearities with the advantage that mixtures of simple, perhaps lin-

ear components, are usually more tractable than more parsimonious non-linear processes

(Huerta et al., 2003). They have been successfully employed in marketing and economics

(Frühwirth-Schnatter, 2001), as well as in biology and epidemiology (Green and Richard-

son, 2002), to mention some out of a large number of fields of applications.

In applied statistics, as well as in econometrics, a lot of applications deal with relating a

random variable yi, which has been observed on several occasions i = 1, ..., N , to a set of

explanatory variables through a regression-type model.

However, a simple regression model does not account for - and is not representative of -

the unpredictable black swan events that are beyond what is normally expected of a sit-

uation and has a potentially severe consequences. Taleb (2007) argues that the standard

tools of probability and prediction such as a Normal distribution do not apply since they

depend on large population and past sample sizes that are never available for rare events

by definition.

Moreover, very often the assumption that the regression coefficient is fixed over all pos-

sible realizations is inadequate, so the models in which the regression coefficients change

are of great importance. The most general alternative is to assume a different regression
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coefficient βsi for each realization yi, such that E(yi|β, xi) = xiβ
s
i , but only rarely it will be

possible to estimate βsi without imposing further structure, and modeling βs = (βs1, ..., β
s
N)

becomes an important point to be considered (Frühwirth-Schnatter, 2006).

In order to identify a sensible model for βs, it is helpful to understand why the regres-

sion coefficients have to be different. For sequential observations the regression coefficient

may change over time, while for cross-sectional data the regression coefficient may change

between subgroups of observations. In both cases the model can be misspecified because

of omitted variables and nonlinearities or the sample could contain the outliers. Any in-

formation available about the nature of heterogeneity for the problem at hand has to be

incorporated in an appropriate manner (Frühwirth-Schnatter, 2006).

A way to capture the changes in the parameters of a regression model is given by fi-

nite mixture of regression models. Mixtures of regression models are appropriate when

the observations are from several subgroups with missing grouping identities, and in each

subgroup, the response has a linear relationship with one or more other recorded variables

(Qarmalah et al., 2017).

This model assumes that a set of k regression models characterized by the parameters

(β1, σ
2
ε,1), ..., (βk, σ

2
ε,k) exist, and that for each observation pair (yi, xi) a hidden random

indicator chooses one among these models to generate yi (Frühwirth-Schnatter, 2006).

Mixtures of linear regression models were introduced by Quandt and Ramsey (1978) as

a very general form of switching regression. They used a technique based on a moment-

generating function in order to estimate the parameters. However, they have mainly been

studied from a likelihood perspective.

De Veaux (1989) developed an EM approach for fitting two regression situations. Jones

and McLachlan (1992) applied mixtures of regressions in data analysis and used the EM

algorithm to fit these models. The books by Wedel and Kamakura (2012) and Skron-

dal and Rabe-Hesketh (2004) have comprehensive reviews on finite mixture of regression

models in market segmentation and social sciences. These are only some of the works

where mixtures of linear regressions have been studied extensively using the procedure for

fitting these models by means of maximum likelihood.

Bayesian approaches for mixture regression models are summarized by Frühwirth-Schnatter

(2006). Mixture models continue to be a topic of intense research, with special issues be-
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ing edited in close succession (Böhning et al., 2014; Hinde et al., 2016). A large part

of articles in those special issues is about variants of mixture regression models, such as

Poisson regression, spline regression, or regression under censoring.

3.2.2 Time Invariant Weights

In this article we assume that the data of interest can be characterized by the following

model, which arises when an observed quantity y depends on the covariates x in a linear

way:

y = x′jβj + σjε, with ε ∼ g(ε) (3.1)

Here x′
j denotes a subset of the available covariates for the model. We assume a mixture

model where each subset xj (j = 1, . . . , k) is considered with probabilities pj j = 1, . . . , k.

For each j = 1, . . . , k (βj , σj) represent the related parameters. Hence, assuming a Normal

distribution on the perturbation ε, the conditional distribution of y given x is a mixture

of Gaussian distributions (Hurn et al., 2003):

y|x = p1N(x′β1, σ
2
1) + · · ·+ pkN(x′βk, σ

2
k) (3.2)

which can also be represented as:

yi =


x′
1iβ1 + ε1i with probability p1 and ε1i ∼ N(0, σ2

ε,1)

...

x′
kiβk + εki with probability pk and εki ∼ N(0, σ2

ε,k)

(3.3)

where i = 1, . . . , n, β′
j = (β1, ..., βdj) and dj is the number of covariates in model j.

Notice that the models need not to have common regressors and the dimension dj’ can be

different. This is in accordance with the idea that heterogeneous sources of information

may affect a single quantity of interest. In fact, the type of heterogeneity estimated in a

regression mixture consists in unobserved groups which differ in the relationship between

x and y. The mixture regression model defined in (3.1) is heteroscedastic, since the

variance of εi changes across the realizations. In the present work for the sake of simplicity
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the analysis is centered on the homoscedastic version of the model with univariate model

components. The additional reason to focus on the mixture components with one covariate

is given by the fact that in this way it is possible to see the impact of each separated source

of information on the dependent variable.

After observing a segment of the time series, say y = (y1, ..., yn), and after eliciting a prior

distribution over the parameters of the entire model, say θ = (β,σ2, p), the statistical

summary is provided by the posterior distribution

π(θ|y) ∝ π(θ)
n∏
i=1

{
k∑

h=1

phN
(
x′
hiβh, σ

2
h

)}
(3.4)

It is well known that the direct evaluation of (3.4) is computationally very demanding for

large values of n and k: the problem can be easily avoided, in a Bayesian setting, using a

data-augmentation device, which introduces a set of latent variables (z1, . . . , zk). In this

way the model can be reformulated as

yi =


x′
1iβ1 + ε1i if zi = 1

...

x′
kiβk + εki if zi = k

, i = 1, . . . , n, (3.5)

with

zi | p ∼ Multinomk(1; p1, . . . , pk) (3.6)

The new posterior distribution, now including the zi’s is then

π(θ, z|y) ∝ π(θ)
n∏
i=1

p(zi|p)
n∏
i=1

N
(
yi|x′

zi,i
βzi , σzi

)
(3.7)

If observation yi is assigned to a group j, i.e. zi = j, the contribution of yi to the

augmented likelihood function is

p(yi |βj , σ2
j ) =

1

σj
√

2π
exp

Ç
− 1

2σ2
j

(yi − x′
iβj)

2

å
. (3.8)

The augmented likelihood function consists of k independent factors, each carrying all

the information about the parameters in a certain group. In a Bayesian framework, each
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of these factors is combined with a prior. It is well known (Frühwirth-Schnatter, 2006)

that conditional conjugacy is guaranteed when βj is assumed to have a prior covariance

matrix suitably depending on σ2
j , that is,

βj
ind∼ Ndj (b0,B0,j) , j = 1, . . . k, (3.9)

with B0,j = σ2
j B̃0, and B̃0 is a covariance matrix independent of j. The model is

completed by assuming

p = (p1, · · · , pk) ∼ Dirichletk(γ1, · · · , γk), (3.10)

zj| p ∼ Multink(p), j = 1, . . . k, (3.11)

σ2
j

iid∼ InvGamma(cj, Cj), j = 1, . . . k, (3.12)

In this case, the use of a Gibbs sampler algorithm is straightforward. Kass and Wasser-

man (1996) suggest centering the prior distribution of β around the OLS estimate. Such a

distribution cannot be strictly considered a real prior distribution, as it requires knowledge

of the data. However, it only uses a small amount of the information in the dependent

variable, and can be loosely thought of as the prior distribution of a person with unbiased

but weak prior information (Hoff, 2009). Analogously, the prior distribution of σ2s can

be centered around σ̂2
OLS. The algorithm is based on Gibbs sampler and it is basically

similar to that described in Frühwirth-Schnatter (2006).

3.3 Mixture of Regressions with Time Varying Weights

It is frequently of substantial interest to learn whether the data generating mechanism is

different across time. In this case one can assume that data is modeled as:

yt =


x′1tβ1 + ε1t if zt = 1
...

x′ktβk + εkt if zt = k

for t = 1, ..., T, with

zt| pt ∼ Multink(1,pt),
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with p = (p1t, . . . , pkt) and {pt, t = 1, . . . T} being a stochastic process which describes

the evolution in time of the weights of the competing regression models.

In what follows, we aim to introduce two different proposals for the stochastic process

governing the pt’s, namely a Dirichlet Autoregressive process (Griffin and Steel, 2011)

and a Logistic Normal process (Aitchison and Shen, 1980).

3.3.1 Mixture Model with Weights following DAR(1) process

One possible way of modeling the time evolution of the weights of the various models, is

to assume a Dirichlet distribution with parameters changing in time. This is performed

through a sort of Dirichlet autoregressive process of order 1 [DAR(1)], which we now

describe:

• Let et
iid∼ Dirichletk (v), with v = (v1, . . . , vk), t = 0, 1, . . . , T ;

• Set v∗ = v1 + · · ·+ vk;

• Set δ ∈ (0, 1) and define, for t = 1, 2, . . . , T ,

pt = δpt−1 + (1− δ)et. (3.13)

It can be easily seen that, for all t = 1, 2, . . . , the random vector pt|pt−1 has a distribution

which is an affine transformation of a Dirichlet density, namely

fpt|pt−1(u) =
Γ(v∗)∏k
j=1 Γ(vj)

1

δv
∗−k

k∏
j=1

(
uj − δpj,(t−1)

)vj−1 , (3.14)

with uj ∈
(
δpj,(t−1), δpj,(t−1) + 1− δ

)
, j = 1, . . . , k.

Iterating the AR structure, one can write, for j = 1, . . . , k,

pjt = δpj(t−1) + (1− δ)ejt
= δ

(
δpj(t−2) + (1− δ)ej(t−1)

)
+ (1− δ)ej(t−1)

= . . .

= δtpj0 + (1− δ)
t∑

h=1

δt−hejh
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It is clear that the stochastic process behaves like a sequence of dependent Dirichlet

random vectors. For example, the expected value is, for all t,

E (pt) = δt
v

v∗
+ (1− δ)

t−1∑
h=0

δsE(et−h) =

= δt
v

v∗
+ (1− δt) v

v∗
=
v

v∗

In this study we do not consider a mixture with weights following a DAR(2) process, as

the resulting model’s performance did not show a significant improvement with respect

to DAR(1) model.

In order to implement the Metropolis-Hastings step for the parameters v and δ, we assume

they are independent a priori:

π(v, δ) = π(v)π(δ) (3.15)

and have the following prior distribution:

vj
iid∼ Gamma(αv, bv), j = 1, . . . , k, (3.16)

δ ∼ Unif(0, 1). (3.17)

The proposal distributions are defined as

v
(m)
j ∼ Truncated Normal(0,Inf)(v

(m−1)
j , 1), j = 1, . . . , k, (3.18)

δ(m) ∼ Beta

Å
γ,
γ − 1

δ(m−1)
− (γ − 2)

ã
(3.19)

where, again, proposals are selected in order to implement a random walk Metropolis-

Hastings algorithm. Notice that in the case of δ, the Beta proposal distribution is centered

on its mode, while γ hyperparameter is fixed. The corresponding sampling algorithm is

described in Algorithm 3.8.1.

3.3.2 Mixture Model with Weights following Logistic Normal process

For each t, pt is a random vector whose components sum to 1 and whose support is in the

simplex Sk. A variety of transformations which aim at mapping the simplex over a more
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manageable space has been proposed. Among them the Logistic Normal random vector

stands for its interpretability (Aitchison and Shen, 1980), already implemented in several

different applications, as, for example, the analysis of multinomial and contingency table

data (Lindley, 1964); in the elicitation process for an exchangeable prior (Leonard, 1973),

or in the reconciliation of subjective probability assessments (Lindley et al., 1979).

In this framework we assume that there is a sequence of independent and identically

distributed random vectors

et = (e1t, . . . , ekt)
iid∼ N(0, τ 2)

with τ 2 = diag (τ 21 , . . . τ
2
k ) and define a vector autoregressive process

wjt = ψjwj(t−1) + ejt, j = 1, . . . k, (3.20)

where, for t = 1, 2, . . . , the ψj’s are such that |ψj| < 1, j = 1, . . . , k. Finally we construct

the weights as

pjt =
exp (wjt)∑k−1

j=1 exp (wjt) + 1
, j = 1, . . . , k − 1, (3.21)

and

pkt =

(
k−1∑
j=1

exp(wjt) + 1

)−1
The above process is combined with the mixture of regression models described in the

previous section. To do that, we need to introduce a prior distribution for the additional

paramaters, namely the ψj’s and τ 2j ’s. We assume that the two vectors are a priori

independent and that

ψj
iid∼ Truncated Normal(−1,1)

(
µψ, σ

2
ψ

)
j = 1, . . . , k (3.22)

and

τ 2j
iid∼ Inv.Gamma (aτ2 , bτ2) j = 1, . . . , k. (3.23)

where aτ2 and bτ2 are the shape and scale parameters of the Inverse Gamma density

respectively. The presence of the additional parameters prevents us from the use of a

standard Gibbs algorithm and a Metropolis-Hastings step is necessary; in particular we
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adopt a random walk version of the Metropolis-Hastings algorithm with the following

proposal distributions, considering the generic M-H step of the algorithm, for j = 1, . . . , k:

ψ
(m)
j ∼ Unif

î
max(−1, ψ

(m−1)
j−1 − d),min(1, ψ

(m−1)
j−1 + d)

ó
(3.24)

and

τ 2
(m)
j ∼ Gamma

(
τ 2j−1

(m−1)

ητ2
, ητ2

)
(3.25)

where d is a tuning quantity chosen in order to have an appropriate step size; the Gamma

proposal has been chosen such that its mean equals the previous value of the chain.

The pseudo-algorithm is described in Algorithm 3.8.2.

3.4 Application

The three mixture models described in §3.2.2, 3.3.1 and 3.3.2 are now considered in

the specific task of modeling and forecasting a monthly time series of the VIX index.

We compare these models in terms of in-sample and out-of-sample predictions. A more

detailed description of the forecast procedures can be found in §3.4.2.

3.4.1 Determining Economic and Financial Indicators

The stock market is a broad measure of the economy and is affected by many variables,

such as e.g. interest rates, inflation and geopolitical events. Therefore stock market

volatility can be difficult to analyze and predict. However, an appropriately collected

aggregation of multiple economic and financial variables can provide accurate predictions

when a certain amount of data is analyzed.

In our analysis we use a parsimonious set of macroeconomic variables. The data we

consider are announcement about unemployment (the unemployment rate from the Jobs

Report), oil price (The West Texas Intermediate Crude Oil Price Index), an indicator for

commercial and industrial loans, real estate loans, an indicator for monetary policy stance

and interest rates (Fed Fund Rate, FFR), treasury maturity rates and the Consumer Price

Index. The rationale of our choice is later briefly explained.
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We consider the monthly data from October 1990 to June 2020, the time series are taken

mainly from Federal Reserve Economic Data (FRED) database. FRED is the database

maintained by the Research division of the Federal Reserve Bank of St.Louis that has

more than 500,000 economic time series from 87 sources.

All of the data are transformed into percentages in order to have all the quantities ex-

pressed in the same way. By definition, although the VIX is not expressed as a percentage,

it should be understood as one. A VIX of 22 translates to implied volatility of 22% on

the SPX. This means that the index has a 66.7% probability (that being one standard

deviation) of trading within a range 22% higher than - or lower than - its current level,

over the next year. Because of this in case of VIX, the data are divided by 100, while

in the case of variables expressed as prices the percentages are obtained as the relative

variation of the values at time t and t− 1, i.e. as the ratio

Pt − Pt−1
Pt−1

As some of chosen time series are not seasonally adjusted, each of them is decomposed

into seasonal, trend, and irregular parts. The seasonal effect is removed from the original

time series.

In the analyzed case, none of the considered time series shows to be ruled out by a strong

trend or explosive effects; therefore the differencing is not necessary.

Some of the indicators are known to anticipate the crises while the others, such as the

unemployment rate, undergo changes only afterwards. For instance, during the 2008 fi-

nancial crisis, the recession started in the first quarter of 2008, while the unemployment

rate reached its peak of 10% only in October 2009, after the recession has ended. For this

reason we do not expect this covariate to vary in a particular way during the financial

crisis of 2007 - 2008, the same applies for West Texas Intermediate Crude Oil Prices.

As index of real activities, we focus on the unemployment rate. Like gross domestic prod-

uct (GDP), it can be used to assess the development and strength of the economy. The

Jobs Report is reported monthly by the U.S. Bureau of Labor Statistics and accounts

for approximately 80% of the workers who produce the entire gross domestic product of

the United States. The Jobs Report and unemployment rates are critical measures of an

economy’s overall health and capture the expectations about future. Stocks generally rise
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or fall with good or bad employment reports, as investors perceive the potential changes

in these areas. The Unemployment Rate of People aged from 15 to 64 is considered one

of the relevant variables to include in the analysis.

Another important variable to consider is the price of crude oil. Policy makers and finan-

cial investors understand that sharp changes in the price of crude oil can depress asset

prices and boost volatility. However, the channels of transmission of energy price shocks

and their impact on macroeconomic and financial variables are still under debate (see the

survey by Kilian, 2014 and the discussion by Serletis and Elder, 2011). To analyze the

impact of oil price shocks on stock market volatility, West Texas Intermediate Crude Oil

Prices (WTI) data are considered.

We also include in our analysis commercial and industrial and real estate loans. The

Commercial and Industrial Loans indicator for all commercial banks (C&I loans) repre-

sents the money borrowed from banks designated solely for loans. This index decreases

in volatile circumstances. Real Estate Loans (RE loans) are also expected to rise and to

have a higher weight during subprime mortgage crisis.

Interest rates dramatically affect economic growth, inflation, the housing market, equity

valuations, and even gold prices. All interest rates are related by the yield curve, which

represents the difference between long-term interest rates and short-term interest rates.

Usually variations in the short rates transmit to the long ones. Therefore, although the

central bank cannot directly control all interest rates, it can affect all of them by control-

ling the shortest duration (the overnight inter-bank lending rate). As the Federal Reserve

raises or lowers this key rate, it can affect treasury bonds, mortgages, corporate bonds and

even many foreign bonds. There are other factors that can affect interest yield on various

debts, but the Federal Funds Rate (FFR) is one of the most important. Therefore the

Effective Federal Funds Rate is included as a covariate as well. Looking at the data, the

FFR decreases dramatically during periods of economic volatility. After the 2008 financial

crisis, the FFR sank for several years before rising again in early 2016 (FRED, 2017).

We also consider treasury maturity rates. The rates at which debt securities mature can

vary, in this case Federal Reserve standardized the different maturities to a constant ma-

turity. The constant maturity can be indexed, and its rate of change measured. One such

an index is represented by the 10-Years Treasury Constant Maturity Rate (DGS10), which
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measures constant maturity over a ten-year time span. The 10-Years Treasury Constant

Maturity Minus 2-Year Treasury Constant Maturity (T10Y2Y) is given by the difference

between the 10 and 2-year measurements of constant maturity. Unlike the 10-Year Trea-

sury Maturity rate, this rate increases significantly when there is an increase in volatility.

In normal economic circumstances the yield on the 10-year should be greater than the

2-year, creating a positive spread. Therefore, investors are compensated for taking on

the higher risk of longer-duration bonds in the form of higher yield. The 10 year-2 year

spread has gotten recognition for the fact that it has, in a way, correctly identified each

of the previous recessions over the past 40 years before they actually occurred by going

negative beforehand (FRED). The 10-Years Treasury Constant Maturity Minus Federal

Funds Rate (T10YFF), defined as the difference between the two rates mentioned above,

is thus a distinct indicator which increases when volatility increases.

The prices of goods and services fluctuate over time, but when prices change too much

and too quickly, the effects can generate strong perturbances in the economy. The Con-

sumer Price Index (CPI), the principal gauge of the prices of goods and services, indicates

whether the economy is experiencing inflation, deflation or stagflation. Therefore, the CPI

for All Urban Consumers is also taken in account for our analysis.

Finally, in the case at hand a first-order autoregressive model may be useful for the fore-

casting goals, so we regress the quantity of interest on the previous values from the same

time series considering VIXt−1.

3.4.2 Forecasting and predictive accuracy measures

Forecasting is certainly one of the most relevant issues in statistical analysis of financial

data. In the present study, first of all the whole data sets are used to estimate the models

and the in-sample predictions of the last 50 observations (starting from May 2016) are

computed, i.e., the observations that are predicted are also used to fit the model. In-

sample forecast is the process of formally evaluating the predictive capabilities of the

models using all the observations to see how effective the algorithms are in reproducing

the data.
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Whereupon the estimations are repeated using only one part of the data in order to make

an out-of-sample forecast. To achieve a forecasting of VIX, an out-of-sample of length 50

is considered assuming given the independent variables.

The case of time-invariant weights (see § 3.2.2) is of course straightforward to implement.

We use the posterior distribution of the weights p̂j j = 1, . . . , k, say π∗(p), to produce

forecasts of VIX, simply by using the following procedure

For m = 1, . . . , S,

• draw p(m) ∼ π∗(p)

• draw Z(m) ∼ Multinomk(p
(m))

• use model identified by Z(m) to predict y(m).

Finally, average over m = 1, . . . , S to produce Ŷ .

In the case of time varying weights, given their autoregressive structure, at each time t

it is possible to predict pj,t+1 and therefore to evaluate the posterior predictive distribution

of the response variable.

In the case of Logistic Normal weights (see § 3.3.2), the procedure to make prediction

requires an additional step.

For fixed t,

For m = 1, . . . , S,

• draw τ (m) and ψ(m) from their posterior distribution

• compute w
(m)
t+1 = ψw

(m)
t + et+1

• compute p
(m)
t+1 in terms of w

(m)
t+1

• draw Z
(m)
t+1 ∼ Multinomk(p

(m)
t+1)

• use model identified by Z
(m)
t+1 to predict y

(m)
t+1 .

Finally, average over m = 1, . . . , S to produce Ŷt+1.
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The procedure to compute forecasts from the Dirichlet Autoregressive process mixture

is very similar and is therefore omitted.

A well-established measure of performance for time series modeling is prediction ac-

curacy (Makridakis and Hibon, 2000). Many accuracy measures have been proposed for

time series forecasting; most of them suffer from one or more issues, i.e., poor resistance

to outliers and/or scale dependence like those based on absolute or squared errors: they

can be helpful in comparing forecast methods on the same dataset, but because of the

aforementioned reason, they should not be used across sets of data that are on different

scales (Chen et al., 2017).

The most common scale-dependent measures are the Mean Squared Error (MSE),

MSE =
1

n

n∑
t=1

e2t (3.26)

the Mean Absolute Error (MAE)

MAE =
1

n

n∑
t=1

|et| (3.27)

and the Root Mean Squared Error (RMSE), which is simply defined as the squared root

of (3.26), where

- Yt is the observation at time t;

- Ŷt is the forecast of Yt.

- et = (Yt − Ŷt) is the forecasting error;

We consider the last two of them. In addition, we take into account a more information-

oriented measure of accuracy, namely the Watanabe-Akaike Information Criteria (WAIC,

introduced by Watanabe and Opper, 2010, who named it the Widely Applicable Informa-

tion Criterion). Here the goal is to estimate the expected out-of-sample-prediction error

using a bias-corrected adjustment of within-sample error; WAIC represents a completely

Bayesian tool for estimating the out-of-sample expectation. Its calculation involves the

computation of the log pointwise posterior predictive density (lppd, henceafter) and a cor-

rection for effective number of parameters to adjust for overfitting (Gelman et al., 2014).

More in detail, in order to calculate the WAIC, we consider the leave-one-out expression,

where, performing the analysis for each of the n data points, yields n different posterior
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distributions, say p(θ|y(−i)), each summarized by S posterior simulations, say θ
(i)
s . Then

the Bayesian lppd is

lppd =
n∑
i=1

log

(
1

S

S∑
s=1

p
Ä
yi|θ(i)s )

ä)
(3.28)

WAIC is defined as

WAIC = −2(lppd− pWAIC) (3.29)

where pWAIC is the bias correction factor which can be estimated by

pWAIC =
n∑
i=1

S∑
s=1

Var (log p(yi|θs)) , (3.30)

where Var (log p(yi|θ) is the variance of the log-predictive density for each data point, for

fixed θ.

Notice that, compared to the other measures of deviance, such as AIC and DIC,

WAIC has the desirable property of averaging over the posterior distribution rather than

conditioning on a point estimate. In fact, this information criterion works also with

singular models and thus is particularly helpful for models with hierarchical and mixture

structures in which the number of parameters increases with sample size and where point

estimates often do not make sense (Gelman et al., 2014).

The three above described accuracy measures are used to compare the performances of

the static and dynamic models both for observed and simulated data. In order to see how

those frameworks work with different data sets, we apply them also to the simulated data

with the same dependence structure of the considered variables.

In particular, let P be the correlation matrix of the VIX dataset. The values from a

Gaussian Copula CG need to be sampled, with correlation matrix P = LL′, L being a

lower triangular matrix, using the following steps:

1. let d be the number of covariates in the model

2. draw Z = (Z1, Z2, . . . , Zd+1)
iid∼ N(0, 1)

3. set X = LZ [ then X ∼ Nd+1(0,P ) ]

4. set Φ(X) = (Φ(X1), . . . ,Φ(Xd+1))



60
CHAPTER 3. A MIXTURE OF HETEROGENEOUS MODELS WITH TIME

DEPENDENT WEIGHTS

5. re-transform the marginally univariate uniform series into Gaussian MA(1) series

using some specific values of the coefficient φ. Mean and standard deviation of the

marginal time series are set equal to those of the VIX dataset.

The value of ψ for all considered time series is fixed equal to 0.5. The corresponding

values of mean and standard deviation are reported in Table 3.1. These descriptive statis-

tics refer to seasonally adjusted time series

Table 3.1: Means and standard deviations of marginal time series

Variable Mean Standard deviation

VIX 0.1936 0.0765

Unemployment 0.0589 0.0175

RE loans 0.0049 0.0065

WTI 0.005 0.0939

DGS10 0.0435 0.0187

T10Y2Y 0.0118 0.0088

T10YFF 0.0161 0.0124

FFR 0.0273 0.0224

C&I loans 0.0043 0.0125

CPI 0.0019 0.0026

3.4.3 The VIX as a measure of uncertainty

Forecasting of stock market volatility is essential for the investors as it is an indicator

of the risk inherent in stock market investments. Volatility index is a popular tool for

predicting the future short-term market volatility (Sarwar, 2012). The first (and the one

we analyze in this article) volatility index (VIX), was introduced by Chicago Board of

Options Exchange (CBOE). Afterwards, the index has also been introduced in several

developed and emerging markets. These volatility indices are measures of market expec-

tation of volatility over a short-term future period (Giot, 2005; Becker et al., 2009).
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The VIX index is a financial benchmark designed to be an up-to-the-minute estimate of

the expected volatility of the S&P 500 Index (SPX) option bid/ask quotes. More specif-

ically, the VIX index is intended to provide an instantaneous measure of how much the

market expects the S&P 500 Index will fluctuate in the following 30 days from the time

of each tick of the VIX index (CBOE, 2018). The VIX also fluctuates with option expi-

ration dates, as the index considers these dates in the determination of individual option

volatility. This means that the index is practically an aggregate of the implied volatility

of options available on the S&P 500.

VIX derivatives, such as options and futures, expire on the third or fourth Wednesday of

every month and their final value is determined by the VIX’s monthly settlement, calcu-

lated on expiration day.

The VIX settlement price is calculated using actual opening trade price of a subset of

S&P options. If there is no opening traded price for an option included in the calculation,

an average of that option’s bid and ask price is used 2.

Often referred to as the ”investor fear gauge”, the VIX aims to track the market expecta-

tion of volatility, giving an indication about how nervous the market is about the future.

It reflects investors’ consensus view of future expected stock market volatility (Ryu, 2012).

Traders in volatility have debated for a long time whether the settlement calculation can

be influenced by someone artificially raising the price of the options going into the calcu-

lations. In 2018 Griffin and Shams published a paper noting significant spikes in trading

volume in S&P 500 index options at the time of the VIX settlement.

However, in 2019 Saha, Malkiel and Rinaudo wrote an article in which was constructed

a regression model with explanatory variables that are exogenous to the index in order

to examine the model prediction erros. As a result, it was found out that the movements

in the daily levels of the VIX index are explained by market fundamentals and not by

manipulation.

This highlights the importance of being able to elaborate an efficient technique for pre-

dicting such a relevant for stock market and the whole economy indicator as VIX.

2https://www.investopedia.com/terms/v/vix.asp
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3.5 Real and simulated data

3.5.1 Mixture Model with Time Invariant Weights

In the first place, the mixture model with constant weights using a real data set is im-

plemented. In order to make sure that the MCMC sampler explores the parameter space

efficiently the trace-plots of several parameters are analyzed.

The trace-plots of some intercepts, regression coefficients, and variances are reported in

Fig.3.1. In the analyzed case the trace-plots of all the estimated parameters do not show

any apparent anomaly or high serial correlation between successive draws; it is also clear

that the chains explore the sample space adequately. In fact, 10000 iterations allow the

Markov chain to reach the stationarity region and to explore the target posterior distri-

bution without necessity to burn-in the simulations.

It is important to keep in mind that, while in the dynamic models the weights of the

mixture components at each time point are determined dynamically, in the static case

the weights are constant. This means that in the case of constant weights, the algorithm

compares 10 models throughout the whole considered time period, while in the case of

time-varying weights there are 10 competing models at each time unit.

Out of all the considered covariates, some of them may not have a relevant impact on

the dependent variable. Therefore, the associated posterior distributions can be poorly

explored. This can be explicitly observed in Fig.3.1, where the intercept and regression

coefficient of the components 1 (V IXt−1) and 2 (Unemployment rate) are represented.

In addition to the trace-plots, a plot with the running means of the chains is useful to

detect within-chain convergence issues. In Fig.3.2 we report the running means of the

intercept and regression coefficient of the first component of the mixture. The behavior

of other coefficients is similar.

Three Markov chains with different initial values are run for each of the analyzed models

in order to perform the Gelman-Rubin convergence test. In the case of the mixture with

constant weights, the potential scale reduction factor is close to 1 for the majority of

parameters, nevertheless the parameters β0 and β1 of the component 10 seem to achieve

convergence more slowly than the other parameters.
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After we estimate the parameters, posterior distributions of forecasted values of VIX for

in-sample and out-of-sample periods of 50 months are obtained. In Fig.3.3 are sketched

100 randomly selected sample paths of posterior distribution of in-sample predictions,

while in Fig.3.4 we can see the same sort of representation for posterior distribution of

out-of-sample forecasting. The solid black superimposed line represents the effective VIX.

Analyzing these plots, it can be seen that the model in both cases fits the data reasonably

well. Taking into account the fact that the last observations of the considered data set

are referred to the period when the COVID-19 pandemic hit the world economy the most,

we predict a considerable spike of VIX, even with a slight delay, in the case of in-sample,

and a little larger delay in the case of out-of-sample.

RMSE, MAE and WAIC accuracy measures are then calculated. Table 3.2 reports the

results for the three models fitted to the real data, while Table 3.3 represents the same

quantities obtained applying the mixtures to simulated time series. In Fig.3.5 and in

Fig.3.6 are represented histograms of the RMSE’s distributions for in-sample and out-of-

sample cases.

In both, in-sample and out-of-sample cases, the RMSE distribution is approximately sym-

metric which means it is meaningful to report their average values in order to make the

final conclusions and comparison.

One interesting feature of our results is that all the components, except for V IXt−1, show

very low values of posterior means of weights, approximately equal to 0.06 in the case of

Crude Oil Prices, 0.0006 for CPI and 0.0003 for the other components. As for VIX index

time series considered at t− 1, the weight assigned by the analyzed model is 0.94, which

means that this variable contributes the most to the in-sample and out-of-sample pre-

dictions. This shows how the Time-Invariant Weghts Mixture model poorly exploits the

input information, since the covariates we selected may have had a different weight during

the considered time period, especially during the 2007 crises and the recent COVID-19

outbreak.
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3.5.2 Mixture Model with Weights following DAR(1) process

In order to implement a Metropolis-Hastings algorithm, in the case of the dynamic mix-

tures it is necessary to introduce prior and proposal distributions for the additional pa-

rameters. For the mixture with weights having an Autoregressive Dirichlet structure, the

following prior distributions are selected:

vj
iid∼ Gamma(5, 3), j = 1, . . . , k, (3.31)

δ ∼ Unif(0, 1). (3.32)

As for the proposal distribution for δ, described by Equation 3.19, γ is set equal to 15.

It is worth mentioning that in this case it is not extremely simple to obtain the conver-

gence of all the additional parameters.

The trace-plots of the estimated parameters exhibit a high autocorrelation in the Markov

chain. Therefore, in order to enlarge the effective sample size of each considered Markov

Chain, we run the model for 20000 iterations.

Some of the trace plots are reported in Fig.3.7, 3.8 and 3.9. The majority of the Dirichlet

distribution parameters converge after a few thousand simulations, except for v1 cor-

responding to the first mixture component represented by V IXt−1.After running three

Markov Chains with different initial values and computing Gelman-Rubin MCMC con-

vergence test, the potential scale reduction factors are computed for all model parameters.

The parameters with the lowest PSRF, that do not exceed 1.05, represent the majority

of parameters β and σ. Some of the parameters vj and the parameter δ have the PSRF

fluctuating between 1.3 and 1.5, while for the other mixture model’s parameters the con-

vergence is much more slowly.

Therefore, we consider more convenient to compute the in-sample and out-of-sample pre-

dictions taking a 2000 burn-in for all the model’s parameters.

At this point, 100 randomly sampled paths from the posterior out-of-sample predictions

distribution are depicted in Fig. 3.10. In this case it is possible to see a slight time delay

in the predictions in the end of the out-of-sample period again. Moreover, some under-

estimations and overestimations with respect to the real VIX movements can be clearly

noticed.
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Nevertheless, it is not simple to make a direct comparison with the time invariant mixture

performance analyzing the graphs only. Therefore, the accuracy measures are calculated

as before, and they can be seen in Table 3.2 and Table 3.3 for real and correspondingly

simulated data.

The histograms of RMSE and MAE out-of-sample predictive distributions are represented

in Fig.3.11 and Fig.3.12.

3.5.3 Mixture Model with Weights following Logistic Normal process

As in the previous subsection, it is necessary to introduce prior and proposal distributions

for the additional parameters to run MCMC; namely for ψj and τ 2j ∀j = 1, . . . , k in this

case.

As the priors,

ψj
iid∼ Truncated Normal(−1,1) (0, 3) j = 1, . . . , k (3.33)

and

τ 2j
iid∼ Inv.Gamma (10, 10) j = 1, . . . , k. (3.34)

are chosen. Since it is not known if the ψj parameters need to assume positive or nega-

tive values, it is reasonable to consider a non-informative zero mean Truncated Normal

distribution as a prior.

As for the proposal distributions, the ones mentioned in Equations 3.24 and 3.25 are used,

with the tuning quantity d = 0.05 and the scale gamma parameter ητ2 = 0.05. As in the

case of the previously described mixture model, they are selected with the help of sensi-

tivity analysis.

In the case of the mixture model with weights following the Logistic Normal distribu-

tion, some Markov Chains show significant autocorrelation, therefore 25000 iterations are

needed to reach a satisfying level of convergence.

As for a more formal convergence diagnostics, the Gelman-Rubin test showed the highest

PRSF values for the parameters β1 of the component 6, and β0 and β1 of the component

10. The parameter ψ is converging slowly for all the mixture components, while for the

rest of the parameters the PSRF can be roughly approximated with 1.
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In this case we deal with a non-identifiability problem. In order to solve it, label switch-

ing package in R is used to reorder MCMC output of parameters. More in detail, τ 2

parameter is selected to apply the identifiability constraint. The post MCMC relabeling

improved significantly the model parameters’ convergence, the trace plots representing τ2

of some of the components of the mixture can be seen in Fig.3.13 and 3.14.

The 100 paths of the posterior distribution of the out-of-sample predictions are sketched

in Fig.3.15. The superimposed black bold line, as before, represents the actually observed

pattern of VIX.

Analyzing this plot, we can see there is much more uncertainty in the general predictions

path, but in comparison to the other analyzed models there seems to be a smaller time

delay in predicting the final VIX index spike. However, this is not a statement, but a

conjecture we make looking at the plot representing the posterior distribution of the fore-

casted series.

The histograms of RMSE and MAE distributions are represented in Fig.3.16 and Fig.3.17.

3.5.4 Models’ comparison
Looking at the out-of-sample predictions of the three analyzed models, the time delay we

observe in all cases can be interpreted in two different and opposite ways: the former is

that the models reveal a very good fit and, because of this, they are not adequately good

in forecast; the latter is that they simply show a delay in learning from data.

For more analytical results, see Table 3.2 and Table 3.3 with computed accuracy measures

reported below.

Table 3.2: Accuracy measures. Real data

Mixture model
in-sample out-of-sample

RMSE MAE RMSE MAE WAIC

TimeInv 0.082 0.055 0.062 0.044 -1393.8

DAR(1) 0.127 0.080 0.086 0.057 -1392.9

LogisticNorm 0.097 0.067 0.089 0.067 -1186.0

Analyzing the numbers in Table 3.2, it is possible to see that all of the introduced

models show similar results. Nevertheless, both the dynamic mixtures have a slightly
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worse performance with respect to the static one in terms of RMSE and MAE accuracy

measures.

In particular, considering the out-of-sample predictions, the model with Logistic Normal

weights has the highest values of RMSE and MAE, followed by the model with DAR(1)

weights, which shows a slightly better performance from this perspective.

As for the Watanabe Akaike Information Criterion, Time Invariant and DAR(1) Mixtures

seem to show the same out-of-sample expected prediction error, while Logistic Normal

Mixture has the highest WAIC value.

Table 3.3: Accuracy measures. Simulated data

Mixture model
in-sample out-of-sample

RMSE MAE RMSE MAE WAIC

TimeInv 0.074 0.059 0.074 0.059 -1072.1

DAR(1) 0.089 0.069 0.117 0.088 -1110.1

LogisticNorm 0.086 0.069 0.093 0.076 -1035.6

Analyzing the accuracy measures and WAIC criterion values calculated for the same

models for the simulated data, we can see how again the models perform in a very similar

way, with slightly worse results in terms of RMSE and MAE accuracy measures in the case

of the dynamic mixtures. However, it is possible to see how the time invariant mixture

and the mixture with DAR(1) weights show similar WAIC values. In particular, WAIC

results to have the lowest value for DAR(1) model, followed by the static mixture and the

mixture with logistic normal weights.

As a final remark, it is worth highlighting that it is not easy to conclude which of the

analyzed models performs better in terms of the forecast of VIX. While the time invariant

mixture seems to follow a more regular path and to predict the real values very well for

the first 40 out-of-sample months, it shows a time delay at the end of the considered time

period (see Fig.3.4). In the case of the mixture with DAR(1) weights for the real data,

despite of a more relevant uncertainty perceived from the graphic representation of the

predictions (see Fig.3.10), it shows the WAIC as low as in the case of the time invariant

mixture, while RMSE and MAE accuracy measures indicate its better performance in
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comparison to the mixture with Logistic Normal weights. Nevertheless, the Logistic Nor-

mal weights model seems to have a smaller time delay in predicting a final spike of VIX at

the end of the out-of-sample period (see Fig.3.15), and appears to outperform the DAR(1)

weights model from the RMSE and MAE perspective for simulated data. At the same

time, in the simulated data setting the DAR(1) mixture shows the smallest WAIC, which

indicates the lowest expected out-of-sample prediction error for the analyzed model.
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3.6 Conclusions

The main contribution of this study consists in introducing and developing two different

ways of modeling the mixture model’s weights in a dynamic way. We adopt a Bayesian

approach and construct tailored algorithm for each introduced model. We use the result-

ing models for a specific financial application and compare their performance with the

standard static mixture.

Due to the in-sample and out-of-sample predictions and corresponding accuracy measures,

the predictive capabilities of the analyzed models are assessed. Analyzing the results for

observed and simulated data, it is possible to conclude that the dynamic models per-

form similarly to their static counterpart, which suggests that the common static mixture

models may not necessarily be the unique way of modeling the analyzed time series data.

Therefore it can be profitable to use their setting defined in a dynamic way.

Future research should consider the potential effects of selecting the covariates of the

model more carefully via formal procedures of model selection which were not considered

in this study. In addition, extending the introduced models to the multivariate case, i.e.,

building a dynamic mixture of multiple regression, may constitute an interesting topic

to explore and a means to improve in a relevant way the performance of the introduced

models.
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3.7 Figures

3.7.1 Mixture Model with Time Invariant Weights

Figure 3.1: Trace-plots of β0, β1 and σ2 of the first two components of Time Invariant

Mixture

Figure 3.2: Running means of the sampled values of β0 and β1 of the first component of

Mixture with Time Invariant Weights
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Figure 3.3: Posterior in-sample distribution of VIX in case of Mixture Model with Time-

Invariant Weights

Figure 3.4: Posterior out-of-sample distribution of VIX in case of Mixture Model with

Time-Invariant Weights
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Figure 3.5: Posterior predictive of RMSE of

the in-sample forecasting of Mixture Model

with Time-Invarying Weights

Figure 3.6: Posterior predictive of RMSE

of the out-of-sample forecasting of Mixture

Model with Time-Invarying Weights
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3.7.2 Mixture Model with Weights following DAR(1) process

Figure 3.7: Trace-plots of the Dirichlet distribution parameters of the first three compo-

nents of Mixture with Weights following DAR(1) process
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Figure 3.8: Trace-plots of the Dirichlet distribution parameters of the components 6-10

of Mixture with Weights following DAR(1) process

Figure 3.9: Trace-plot of δ of Mixture with Weights following DAR(1) process



3.7 Figures 75

Figure 3.10: Posterior out-of-sample distribution of VIX in case of Mixture with DAR(1)

Weights

Figure 3.11: Posterior predictive of RMSE

of the out-of-sample forecasting of Mixture

Model with DAR(1) Weights

Figure 3.12: Posterior predictive of MAE

of the out-of-sample forecasting of Mixture

Model with DAR(1) Weights
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3.7.3 Mixture Model with Weights following Logistic Normal process

Figure 3.13: Trace-plots of τ 2 of the components 1, 2 and 3 of Mixture with Weights

following Logistic Normal process

Figure 3.14: Trace-plots of τ 2 of the components 4 and 5 of Mixture with Weights following

Logistic Normal process
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Figure 3.15: Posterior out-of-sample distribution of VIX in case of Mixture with Logistic

Normal Weights

Figure 3.16: Posterior predictive of RMSE

of the out-of-sample forecasting of Mixture

Model with Logistic Normal Weights

Figure 3.17: Posterior predictive of MAE

of the out-of-sample forecasting of Mixture

Model with Logistic Normal Weights
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3.8 Pseudo-algorithms

3.8.1 Algorithm 1. Metropolis-Hastings within Gibbs for the Mixture

Model with Weights following DAR(1) process

For j = 1, . . . , k initialize vj, δ, pjt, βj, σ
2
j

Fix S (number of iterations) and the hyperparameters of the model

while m = 2, . . . , S do

for j = 1, . . . , k do

v∗j ∼ q(·|v(m−1)j ); set

A = min(
(part of the likelihood depending on v∗j )π(v∗j )q(v

m−1
j |v∗j )

(part of the likelihood depending on v
(m−1)
j )π(vm−1j )q(v∗j |vm−1j )

, 1)

αj ∼ Unif(0, 1)

if αj < A then

v
(m)
j = v∗j

else

v
(m)
j = v

(m−1)
j

end if
end for

sample from δ∗ ∼ q(·|δ(m−1)) and repeat M-H step for δm given vmj

while t = 2, . . . , T do

set p
(m)
jt = p

(m)
jt−1δ

(m) + (1− δ(m))ε
(m)
jt , ∀j = 1, . . . , k with

ε1t, . . . , εkt ∼ Dirichletk(v
(m)
1t , . . . , v

(m)
kt )

sample from z
(m)
t |p

(m)
1t , . . . , p

(m)
kt ∼ Multinomk(p

(m)
1t , . . . , p

(m)
kt ).

end while

for j = 1, . . . , k do

evaluate y′
jy

(m)
j = y′[zm=j,1]y[zm=j,1] =

∑n
i=1 y

2
i 1z(m)

i =j
, j = 1, . . . , k

X ′
jX

(m)
j = X ′

j[z(m)=j,]
Xj[z(m)=j,]

X ′
jy

(m)
j = X ′

j[z(m)=j,]
yj[z(m)=j,1]

c
(m)
j = cj +

n
(m)
j

2

Λ
(m)
j = X ′

jX
(m)
j + Λj ,

µ
(m)
j = [Λ

(m)
j ]−1[Λjµj +X ′y

(m)
j ],



3.8 Pseudo-algorithms 79

C
(m)
j = Cj + 1

2

¶
y′
jy

(m)
j + µ′jΛjµj − [µ

(m)
j ]′Λ

(m)
j µ

(m)
j

©
,

draw (σ2
j )

(m) ∼ Inv.Gamma
Ä
c
(m)
j , C

(m)
j

ä
,

draw βj ∼ Ndj

Ä
µj, (σ

2
j )

(m)[Λ
(m)
j ]−1

ä
,

end for
end while

close;

3.8.2 Algorithm 2. Metropolis-Hastings within Gibbs for the Mixture

Model with Weights following Logistic Normal process

For j = 1, . . . , k initialize ψj, τ
2
j , βj,σ

2
j , wjt

Fix S (number of iterations) and the hyperparameters of the model

while m = 2, . . . , S do

for j = 1, . . . , k do

ψ∗j ∼ q(·|ψ(m−1)
j ); set

A = min

(
(part of the likelihood depending on ψ∗)q(ψ

(m−1)
j |ψ∗j )π(ψ∗j )

(part of the likelihood depending on ψ(m−1))q(ψ∗j |ψ
(m−1)
j )π(ψ

(m−1)
j )

, 1

)
αj ∼ Unif(0, 1)

if α < A then

ψ
(m)
j = ψ∗j

else

ψ
(m)
j = ψ

(m−1)
j

end if

τ 2∗j ∼ q(·|τ 2(m−1)j ); set

A = min

(
(part of the likelihood depending on τ 2∗)q(τ

2(m−1)
j |τ 2∗j )π(τ 2∗j )

(part of the likelihood depending on τ 2(m−1))q(τ ∗j |τ
2(m−1)
j )π(τ

2(m−1)
j )

, 1

)
αj ∼ Unif(0, 1)

if αj < A then

τ
2(m)
j = τ 2∗j

else
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τ
2(m)
j = τ

2(m−1)
j

end if
end for

while t = 2, . . . , T do

for j = 1, . . . , k do

generate ejt ∼ N(0, τ 2j )

set w
(m)
jt = ψ

(m)
j w

(m)
j,(t−1) + e

(m)
jt

end for

for j = 1, . . . , k − 1 do

set pjt =
exp(wjt)∑k−1

j=1 exp(wjt)+1

end for

set pkt = 1∑k−1
j=1 exp(wjt)+1

z
(m)
t |p

(m)
1t , . . . , p

(m)
kt ∼ Multinomk(p

(m)
1t , . . . , p

(m)
kt ).

end while

for j = 1, . . . , k do

evaluate y′
jy

(m)
j = y′[zm=j,1]y[zm=j,1] =

∑n
i=1 y

2
i 1z(m)

i =j
, j = 1, . . . , k

X ′
jX

(m)
j = X ′

j[z(m)=j,]
Xj[z(m)=j,]

X ′
jy

(m)
j = X ′

j[z(m)=j,]
yj[z(m)=j,1]

c
(m)
j = cj +

n
(m)
j

2

Λ
(m)
j = X ′

jX
(m)
j + Λj ,

µ
(m)
j = [Λ

(m)
j ]−1[Λjµj +X ′y

(m)
j ],

C
(m)
j = Cj + 1

2

¶
y′
jy

(m)
j + µ′jΛjµj − [µ

(m)
j ]′Λ

(m)
j µ

(m)
j

©
,

draw (σ2
j )

(m) ∼ Inv.Gamma
Ä
c
(m)
j , C

(m)
j

ä
,

draw βj ∼ Ndj

Ä
µj, (σ

2
j )

(m)[Λ
(m)
j ]−1

ä
,

end for
end while

close;

• y[z(m)=j,1] represents a column vector containing the subset of y1, . . . , yn selected by

z(m). Notice that the dimension of this vector is (nj × 1), where n
(m)
j represents the

number of observations allocated to component j.

• Xj[z(m)=j,1] represents a matrix containing the subset of the design matrix of model
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j selected by z(m). Notice that the dimension of this matrix is (nj × dj).
• Λj represents the prior variance-covariance matrix of the regression coefficients.
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