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Abstract

In this paper, the behavior of scalar multi-agent systems over networks sub-
ject to time-driven jumps. Assuming that all agents communicate through
distinct communication digraphs at jump and flow times, the asymptotic
multi-consensus behavior of the hybrid network is explicitly characterized.
The hybrid multi-consensus is shown to be associated with a suitable parti-
tion that is almost equitable for both the jump and flow communication di-
graphs. In doing so, no assumption on the underlying digraphs is introduced.
Finally, the coupling rules making the multi-consensus subspace attractive
are established. Several simulation examples illustrate the theoretical results.

Keywords: Multi-agent systems; Hybrid systems; Consensus; Impulsive
systems; Graph theory.

1. Introduction

Networked systems are nowadays well-considered a bridging paradigm
among several disciplines spanning, among many others, from physics to en-
gineering, psychology to medicine, biology to computer science. As typical
in control theory (Isidori, 2017), we refer to a network (or multi-agent) sys-
tem as composed of several dynamical units (agents) interconnected through
a communication graph: each node of the communication graph uniquely
corresponds to one dynamical unit whereas edges model the corresponding
exchange of information among agents. As a consequence, even for simple
agents and with no issue in the network interconnection (e.g., time-delays),
the network behavior is described by a complex dynamical system.
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In this regard, several works have been devoted to providing method-
ological understanding on the collective behavior induced by the network
interaction through the graph. Most of control problems involving network
systems are generally related to driving all systems composing the network
toward a consensus behavior that might be global for all individuals or com-
mon only to some clusters uniquely identified by the graph (e.g., (Jadbabaie
et al., 2003; Li et al., 2010; Aeyels and De Smet, 2010; Ren and Cao, 2010;
Chen et al., 2011; Egerstedt et al., 2012; Monshizadeh et al., 2015; Wang and
Lu, 2019; Cacace et al., 2021)). All of those works are devoted to the case of
either continuous or discrete-time networks with possibly continuously time-
varying communication topology. However, inspired by practical scenarios
with heterogeneous samplings and discrete-event phenomena (Goldhammer
et al., 2012; Vetrella et al., 2017; Ferrante et al., 2015; de Carolis et al., 2018;
Mattioni, 2020) and as deeply motivated in (Maghenem et al., 2020), it is
reasonable to allow for a hybrid communication topology, i.e., showing an in-
terplay between a continuous-time behavior and event-triggered switchings.
This setup embeds several practical scenarios, such as swarms of satellites
communicating and sensing through different kind of sensors (i.e., radars and
cameras), (Nag and Summerer, 2013), sampled-data agents at large (Barkai
et al., 2021) or cyber-security in networked systems (Duz et al., 2018). To
model the class of hybrid multi-agent systems considered in this paper, we
adopt the general framework for analysis and design of hybrid control sys-
tems proposed in (Goebel et al., 2012). Indeed, we consider a fixed group
of autonomous agents whose coupling rules show two different regimes: a
continuous-time flow of information associated with a given communication
graph (the flow graph) and an intermittent update encoded by an other com-
munication graph (the jump graph). In this set-up, we study the effects of
the hybrid coupling functions and the network topology on the agents’ tra-
jectories. In particular, we are interested in the multi-consensus problem,
that is, the definition of the coupling functions making the agents cluster
into several subgroups possessing the same steady-state induced by the hy-
brid network. The single-consensus problem has been addressed in a similar
hybrid setting (Zheng et al., 2018; Zheng et al., 2019; Guan et al., 2011).
Assuming hence distinct (but general) digraphs characterizing the network
during flow and jump times, the contribution of this paper is hence twofold:

• first, we characterize the number and type of consensuses over the hy-
brid multi-agent systems depending on the structure of the flow and
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jump digraphs with no assumption on the corresponding connectivity
properties;

• then, the coupling functions are designed in order to guarantee conver-
gence to the consensus subspace.

In doing so, the consensus behaviors are explicitly characterized based on the
notion of Almost Equitable Partitions (AEPs, (Godsil and Royle, 2013; Car-
doso et al., 2007)) firstly exploited for the characterization of multi-consensus
in a purely continuous-time context in (Monaco and Ricciardi Celsi, 2019).
In particular, we found that the multi-consensuses are uniquely identified by
the joint effect of the flow and jump graphs and, in particular, the coarsest
AEP that is common to both jump and flow communication digraphs; nodes
belonging to the same cell of the partition converge to the same steady-state
that is not necessarily a constant evolution but it is allowed to be a hybrid
trajectory.

The remainder of the paper is organized as follows. A review on graph the-
ory and the multi-consensus problem for continuous-time networks is given
in Section 2. Then, the class of system under investigation is introduced
in Section 3 and the problem formulated in Section 4. The main results
are established in Section 5 with illustrating examples in Section 6. Finally,
conclusions are drawn in Section 7.

Notations. C+ and C− denote the right and left hand side of the complex
plane. For a given a finite set S, |S| denotes its cardinality. For a closed
set S ⊂ Rn and x ∈ Rn, dist(x,S) denotes the distance of x from the set
S. We denote by 0 either the zero scalar or the zero matrix of suitable
dimensions. 1c denotes the c-dimensional column vector whose elements are
all ones while I is the identity matrix of suitable dimensions. Given a matrix
A ∈ Rn×n then σ{A} ⊂ C denotes its spectrum. A positive definite (semi-
definite) matrix A = A> is denoted by A � 0 (A � 0); a negative definite
(semi-definite) matrix A = A> is denoted by A ≺ 0 (A � 0).

2. Review on continuous-time systems over networks

2.1. Directed graph Laplacians and almost equitable partitions

Let G = (V , E) be a directed graph (or digraph for short) with |V| = N ,
E ⊆ V ×V . The set of neighbors to a node ν ∈ V is defined as N (ν) = {µ ∈
V s.t. (µ, ν) ∈ E}. For all pairs of distinct nodes ν, µ ∈ V , a directed path
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from ν to µ is defined as ν  µ := {(νr, νr+1) ∈ E s.t. ∪`−1
r=0 (νr, νr+1) ⊆

E with ν0 = ν, ν` = µ and ` > 0}. The reachable set from a node ν ∈ V is
defined as R(ν) := {ν} ∪ {µ ∈ V s.t. ν  µ}. A set R is called a reach if
it is a maximal reachable set, that is, R = R(ν) for some ν ∈ V and there
is no µ ∈ V such that R(ν) ⊂ R(µ). Since G possesses a finite number of
vertices, such maximal sets exist and are uniquely determined by the graph
itself. Denoting by Ri for i = 1, . . . , µ, the reaches of G, the exclusive part
of Ri is defined as Hi = Ri/ ∪µ`=1,`6=i R` with cardinality hi = |Hi|. Finally,
the common part of G is given by C = V/ ∪µi=1 Hi with cardinality c = |C|.

Given two graphs G1 = (V , E1) and G2 = (V , E2) one defines the union
graph G = G1 ∪ G2 = (V , E1 ∪ E2) and, similarly, the intersection graph as
G = G1 ∩ G2 = (V , E1 ∩ E2).

The Laplacian matrix associated with G is given by L = D − A with
D ∈ RN×N and A ∈ RN×N being respectively the in-degree and the adja-
cency matrices. As proved in (Agaev and Chebotarev, 2005), L possesses one
eigenvalue λ = 0 with multiplicity coinciding with µ, the number of reaches
of G, and the remaining N−µ with positive real part. Hence, after a suitable
re-labeling of nodes, the Laplacian always admits the lower triangular form
(Caughman and Veerman, 2006)

L =

á
L1 . . . 0 0

. . .
...

0 . . . Lµ 0
M1 . . . Mµ M

ë
(1)

where: Li ∈ Rhi×hi (i = 1, . . . , µ) is the Laplacian associated with the
subgraph Hi and possessing one eigenvalue in zero with single multiplic-
ity; M ∈ Rc×c verifying σ(M) ⊂ C+ corresponds to the common component
C. Thus, the eigenspace associated with λ = 0 for L is spanned by the right
eigenvectors

z1 =

á
1h1

...
0
γ1

ë
. . . zµ =

á
0
...
1hµ
γµ

ë
(2)

with
∑µ

i=1 γ
i = 1c and Mi1hi +Mγi = 0 for all i = 1, . . . , µ. In addition, the

left eigenvectors associated with the zero eigenvalues are given by

ṽ>1 =
(
v>1 . . . 0 0

)
. . . ṽ>µ =

(
0 . . . v>µ 0

)
(3)
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with v>i =
(
v1
i . . . vhii

)
∈ R1×hi , vsi > 0 if the corresponding node is root or

zero otherwise. A partition π = {ρ1, . . . , ρr} of V is a collection of cells ρi ⊆ V
verifying ρi ∩ ρj = ∅ for all i 6= j and ∪ri=1ρi = V . The characteristic vector
of ρ ⊆ V is given by p(ρ) = (p1(ρ) . . . pN(ρ))> ∈ RN with for i = 1, . . . , N

pi(ρ) =

®
1 if vi ∈ ρ
0 otherwise.

For a partition π = {ρ1, . . . , ρr} of V , the characteristic matrix of π is P (π) =(
p(ρ1) . . . p(ρr)

)
with P = ImP (π) with, by definition of partition, each

row of P (π) possessing only one element equal to one and all other being zero.
Given two partitions π1 and π2, π1 is said to be finer than π2 (π1 � π2) if all
cells of π1 are a subset of some cell of π2 so implying ImP (π2) ⊆ ImP (π1);
equivalently, we say that π2 is coarser than π1 (π2 � π1), with ImP (π1) ⊆
ImP (π2). We name π = V the trivial partition as composed of a unique
cell with all nodes. Given a cell ρ ∈ V and a node νi /∈ ρ, we denote by
N (νi, ρ) = {ν ∈ ρ s.t (ν, νi) ∈ E} the set of neighbors of νi in the cell ρ.

Definition 1. A partition π? = {ρ1, ρ2, . . . , ρk} is said to be an almost equi-
table partition (AEP) of G if, for each i, j ∈ {1, 2, . . . , k}, with i 6= j, there
exists an integer dij such that |N (νi, ρj)| = dij for all νi ∈ ρi.

In other words, a partition such that each node in ρi has the same number
of neighbors in ρj, for all i, j with i 6= j, is an AEP. The property of almost
equitability is equivalent to the invariance of the subspaces generated by the
characteristic vectors of its cells. In particular, we can give the following
equivalent characterization of an AEP π? (Monaco and Ricciardi Celsi, 2019;
Monshizadeh et al., 2015).

Proposition 1. Consider a graph G and a partition π? = {ρ1, ρ2, . . . , ρk}
with P? = ImP (π?). π? is an almost equitable partition (AEP) if and only
if P? is L-invariant, that is,

LP? ⊆ P?. (4)

We say that a non trivial partition π? is the coarsest AEP of G if π? � π
for all non trivial π AEP of G and, equivalently, ImP (π?) ⊆ ImP (π). Algo-
rithms for computing almost equitable partitions are available for arbitrary
unweighted digraphs such as, among several others, the one in (Monshizadeh
et al., 2015).
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2.2. Multiconsensus of continuous-time systems

As proved in (Monaco and Ricciardi Celsi, 2019), when considering multi-
agent systems the notion of AEP is linked to the characterization of multi-
consensus. Roughly speaking, consider a set of N > 1 of scalar integrators
of the form

ẋi = ui

with xi ∈ R and continuously exchanging information based on a communi-
cation graph G = (V , E) whose vertices νi ∈ V correspond to the ith agent
with state xi (i = 1, . . . , N). Then, under the coupling rule

ui = −
∑

`:ν`∈N (νi)

(xi − x`)

nodes asymptotically cluster into r = µ+ k consensuses for some k ∈ N such
that 1 ≤ k ≤ c; those clusters are uniquely defined by the coarsest AEP
π? = {ρ1, . . . , ρr} of G: the states of all agents belonging to the same cell of
the AEP converge to the same consensus state. More in detail, with a slight
abuse of notation and exploiting (1),the AEP underlying the multi-consensus
of the network is π? = {H1, . . . ,Hµ, ρµ+1, . . . , ρµ+k} with C = ∪k`=1ρµ+` and
all nodes in ρµ+` (of cardinality c` = |ρµ+`|) sharing the same components of
the vectors γi for all i = 1, . . . , µ. More precisely, setting in (2)

γi =

Ö
γi1
...
γic

è
∈ Rc, i = 1, . . . , µ

a node νN−c+m1 ∈ C (with m1 ∈ {1, . . . , c}) belongs to the cell ρµ+` ⊆ C
if and only if γim1

= γim2
for all νN−c+m2 ∈ ρµ+`, i = 1, . . . , µ and some

m2 ∈ {1, . . . , c}. Accordingly, the number of cells partitioning C (i.e., the
integer k) coincides with the number of distinct coefficients of the vector γi

with i = 1, . . . , µ.
Consider now the agglomerate network dynamics

ẋ = −Lx

with x = (x1 . . . xN), xi ∈ R, L the communication graph Laplacian, and
the sub-states when c0 = h0 = 0

xi =col{xh1+···+hi−1+1, . . . , xh1+···+hi} ∈ Rhi

x` =col{xN−c+c1+···+c`−1
, . . . , xN−c+c1+···+c`} ∈ Rc`
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for i = 1, . . . , µ and ` = 1, . . . , k. One can further rewrite each γi ∈ Rc in (2)
as

γi =

Ö
γi11c1

...
γik1ck

è
∈ Rc, γi` ∈ R, ` = 1, . . . , k (5)

with c` the cardinality of the cell ρµ+` ⊆ C (i.e., c` = |ρµ+`|) so that, as
t→∞, the following holds true:

1. nodes in the same reach Hi converge to the same consensus value;
namely, for i = 1, . . . , µ and all νj ∈ Hi

xi(t)→ xssi 1hi , xssi := v>i xi(0) ∈ R

with v>i ∈ Rhi being the corresponding component of the left eigenvec-
tor (3);

2. nodes in C belonging to the same cell ρµ+` converge to a convex com-
bination of the consensuses induced by the reaches; namely,

x`(t)→ xssc`1c` , xssc` :=

µ∑
i=1

γi`x
ss
i

and γi` ∈ R the distinct components of the vector γi ∈ Rc in (5), for
` = 1, . . . , k.

3. Hybrid multi-agent systems

We consider a group of N ∈ N identical agents, whose state is assumed
to be a scalar xi ∈ R for any i = 1, ..., N . The evolution of each agent
state is assumed to be governed by a hybrid dynamics, i.e, characterized
by the interplay of a continuous-time and a discrete-time behaviour (Goebel
et al., 2012). The alternate selection of continuous and discrete dynamics
can be either driven by specific time patterns or triggered by conditions on
the state. In this paper we consider agents whose dynamics is given by a
hybrid integrator with time-driven jumps. In particular, the state of each
agent is assumed to obey the following update law:

ẋi(t) = ui(t) t ∈ R+ \ J
x+
i (t) = xi(t) + vi(t) t ∈ J

i = 1, ..., N (6)
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where J denotes the sequence of jump instants

J = {tj ∈ R+, j = 1, ...,ℵJ : tj < tj+1, ℵJ ∈ N ∪∞}

and where ui(t), vi(t) ∈ R are control inputs and

τmin < tj+1 − tj < τmax ∀j ∈ J .

The differential equation in (6) is referred to as flow dynamics, whereas the
difference equation corresponds to the jump dynamics. To keep track of the
jumps, it is convenient to introduce the notion of hybrid time domain as a
special case of (Goebel et al., 2012, Definition 2.3).

Definition 2. A hybrid time domain is a set T in [0,∞)×N defined as the
union of indexed intervals

T :=
⋃
j∈N

{
[tj, tj+1]× {j}

}
(7)

Given an hybrid time domain, its length is defined as length(T ) = supt T +
supj T . A hybrid time domain is said τ -periodic, for some constant τ > 0, if
tj+1 − tj = τ for any j ∈ N. 4

In view of the latter definition, we can enhance the notation for the state
of the agents as follows

xi(t, j) with (t, j) ∈ T , i = 1, ..., N.

As previously mentioned, the agents are supposed to be connected through
a suitable communication graph. However, due to the hybrid nature of the
problem, it is reasonable to allow interactions among the agents with different
topologies for the flow dynamics and the jump dynamics. To this end, let us
consider a flow graph Gf = (Vf , Ef) and a jump graph Gj = (Vj, Ej) where the
sets of vertices satisfy

V := Vf = Vj

as the number of agents remains constant upon jumps. Accordingly, we aim
at designing the control inputs in a decentralized way as functions of the
states of agent i and its neighbours, i.e.,

ui = fi(xi, {xk : νk ∈ Nf,i})
vi = gi(xi, {xk : νk ∈ Nj,i})
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where the set of indexes

Nf,i = {νk ∈ V : (νk, νi) ∈ Ef}, Nj,i = {νk ∈ V : (νk, νi) ∈ Ej}

are, respectively, the flow and the jump neighbourhoods of the agent i.

Remark 1. Although impulsive multi-agent systems might be modelled in
other possible ways (e.g., (Haddad et al., 2014; Liberzon, 2003)), the choice
of recasting the problem in the hybrid formalism is motivated by two main
reasons: (i) it is more compact and easily extendable to the case of general
hybrid systems (with state-driven jumps too); (ii) it allows to easily handle
the geometric properties independently of the jump time-instants and flow
intervals.

4. The hybrid consensus problem

It is well known that, in classical multi-agent systems, consensus condi-
tions can be attained by implementing simple linear feedback laws, which
can be encoded through the Laplacian matrix of the communication graph.
We propose a similar approach here, by setting

ui(t) = −
∑

k:νk∈Nf,i
(xi(t)− xk(t))

vi(t) = −α
∑

k:νk∈Nj,i
(xi(t)− xk(t))

(8)

where α > 0 is a suitable gain to be tuned. Defining the cumulative state
x = [x1 x2 · · · xN ]>, the dynamics of the multi-agent system driven by (8)
can be written as

ẋ(t) = −Lfx(t) t ∈ R+ \ J
x+(t) = (I − αLj)x(t) t ∈ J

(9)

where Lf and Lj denote, respectively, the Laplacian matrix of the flow and
the jump graph. It is worth noticing that, whilst the negative flow Laplacian
−Lf provides a marginally stable continuous dynamics, the jump map has to
be made stable by means of a proper tuning of α > 0. To this end, we can
invoke the following technical result.

Proposition 2. Let G = (V ,D) be a graph with N̄ vertices, and let L ∈
RN̄×N̄ be its Laplacian matrix. There exists α > 0 such that the spectrum of
(I − αL) satisfy

σ(I − αL) ⊂ {z ∈ C : |z| < 1} ∪ {1} (10)

1 ∈ σ(I − αL) (11)
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Proof. By construction (Veerman and Lyons, 2020, Theorem 4.6) we know
that σ(L) ⊂ C+ with dim{kerL} = µ ≥ 1, i.e, there exists w ∈ RN̄ with
Lw = 0. Accordingly, for any α > 0, one has (I − αL)w = Iw − αLw = w,
this showing that 1 ∈ σ(I − αL). Let us now define

α∗ := min
λ∈σ(L)\{0}

2Re(λ)

|λ|2
. (12)

Then selecting α ∈ (0, α∗) guarantees the fulfilment of condition (10). To
verify this fact, we can observe that for any λ ∈ σ(L) \ {0} the number
λ̃ = 1− αλ ∈ C is a eigenvalue for I − αL, with

|λ̃| =
»

(1− αRe(λ))2 + Im(λ)2.

By simple algebraic manipulations one can see that |λ̃| < 1 whenever α < α?

with α? given by (12). �

Our goal is to establish conditions on the combination of graphs Gf ,Gj

under which a consensus is achieved in the multi-agent system (9), and to
characterize such consensus.

5. Main result

In this section, the main results are given to characterize the consensus
behaviors of the hybrid network and the corresponding clusters.

5.1. The multi-consensus clusters

In the following result, the multi-consensus clusters arising from (9) under
the hybrid connection in (8) are characterized based on a suitably defined
AEP for both the components of the topology.

Theorem 1. Consider the hybrid multi-agent system (9) and let Gf and Gj

be the flow and jump graphs with Laplacians Lf and Lj. Then, the multi-
consensuses of (9) are induced by the coarsest almost equitable partition π?H
for Gf and Gj simultaneously.

10



Proof. For proving the result, first one needs to show that if nodes in the
same cell ρi ∈ π?H are initialized with the same initial condition, then, the
corresponding evolutions are identical for all time. To this end, denoting
P?H = ImP (π?H), one gets that by definition LfP?H ⊂ P?H and LjP?H ⊂ P?H.
Picking x0 = x(t0, 0) ∈ P?H (i.e., agents in the same cell of π?H share the same
initial condition1), the evolution of (9) is given by

x(t, j) = e−(t−tj)LfE(tj, tj−1) . . . E(t1, t0)x0

with E(tj, tj−1) = (I − αLj)e
−(tj−tj−1)Lf the monodromy matrix. By the

induction principle, assume that x(tj, j) ∈ P?H. Then, as P?H is Lf-invariant,
as t ∈ [tj+1, tj), one gets x(t, j) = e−(t−tj)Lfx(tj, j) ∈ P?H and, in particular,
x(t−j+1, j) = e−(tj+1−tj)Lfx(tj, j) ∈ P?H as t → t−j+1; namely, when flowing,
trajectories of nodes belonging to the same cell of π?H remain identical. Also,
as t = tj+1, one concludes x(tj+1, j + 1) = (I − αLj)x(t−j+1, j) ∈ P?H by Lj-
invariance of P?H (Proposition 1). Accordingly, as x0 = x(t0, 0) ∈ P?H, one
gets that nodes of (9) in the same cell in π?H share the same initial conditions
for all (t, tj) ∈ T and thus consensus. Finally, because π?H is the coarsest
AEP for both Gf and Gj, then P?H is the largest invariant subspace (spanned
by a partition) that is shared, at the same time, by Lf and Lj so getting the
result. �

Remark 2. Denote by π?f and π?j the coarsest AEPs for, respectively, Gf and
Gj verifying

LqP?q ⊆ P?q

with P?q = ImP (π?q ) ≡ kerLq being the (invariant) eigenspace associated with
the non-zero eigenvalues of Lq for q ∈ {f, j}. Because π?H is the coarsest AEP
for both Gf and Gj, then the subspace

P?H = ImP (π?H) (13)

is Lq-invariant for q ∈ {f, j}. As a consequence, one necessarily gets P?H ⊆ P?f
and P?H ⊆ P?j that implies π?f � π?H and π?j � π?H.

1By definition of partition, all rows of P (π?H) possess only one element equal to 1 and
all others are 0. The generic vector x = (x1, . . . , xN ) ∈ P?H is such that xθ = xη if and
only if νθ, νη ∈ V (with θ 6= η and θ, η = 1, . . . , N) belong to the same cell of π?H.
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Remark 3. In the proof of the result above, we have intentionally defined
the consensus of (9) as a shared evolution rather than a set of common
asymptotic values the nodes tend to.

At this point, we show that π?H can be constructed starting from the union
and the intersection graphs, respectively associated with the flow and jump
graphs. To this end, denoting by Gun = Gf ∪Gj and Gint = Gf ∩Gj, it is always
possible (Monshizadeh et al., 2015) to sort nodes of the hybrid network in
such a way the Laplacian Lun associated with Gun gets the form

Lun =

á
Lun,1 . . . 0 0

...
. . .

...
...

0 . . . Lun,µ 0
Mun,1 . . . Mun,µ Mun

ë
(14)

where Lun,i are the Laplacians associated with the exclusive reaches Hun,i of
Gun and Mun the nonsingular matrix associated with the common Cun of Gun.
As a consequence, exploiting the relation (Jadbabaie et al., 2003)

Lun = Lf + Lj − Lint (15)

one gets for q ∈ {int, j, f}

Lq =

á
Lq,1 . . . 0 0

...
. . .

...
...

0 . . . Lq,µ 0
Mq,1 . . . Mq,µ Mq

ë
. (16)

Starting from this, the following result can be proved.

Theorem 2. Consider the hybrid multi-agent system (9) and let Gf and Gj

be the flow and jump graphs with Laplacians Lf and Lj. Let Hun,1, . . . ,Hun,µ

and Cun be respectively the exclusive reaches and the common part of the
union graph Gun = Gf ∪ Gj with Hun,i ∩ Cun = ∅ and Hun,i ∩Hun,j = ∅ for all
i 6= j ∈ {1, . . . , µ}. Let πC = {ρµ+1, . . . , ρµ+k} be the coarsest partition of Cun

with Cun = ∪k`=1ρµ+`, c` = |ρµ+`| for ` = 1, . . . , k and characteristic matrix(
p(ρµ+1) . . . p(ρµ+k)

)
=

Å
0 . . . 0

pc(ρµ+1) . . . pc(ρµ+k)

ã
Pc = ImPc, Pc =

(
pc(ρµ+1) . . . pc(ρµ+k)

)
12



verifying MintPc ⊆ Pc with Mint ∈ Rc×c as in (16). Then, the coarsest almost
equitable partition for Gf and Gj is provided by

π?H = π?un := {Hun,1, . . . ,Hun,µ, ρµ+1, . . . , ρµ+k}. (17)

Proof. For proving the result one first needs to show that: (i) π?un is an AEP
for both Gf and Gj; (ii) it is the coarsest one (i.e., π?H = π?un).
As far as (i) is concerned, it suffices to show that LqP?un ⊆ P?un for q ∈ {f, j}
and

P?un := ImP (π?un).

To this end, we first note that, by definition of partition, all cells share no
node; namely, for all i 6= j ∈ {1, . . . , µ}

Hun,i ∩Hun,j = ∅
Cun = ∪k`=1ρµ+`

Hun,i ∩ Cun = ∅.

Because for i = 1, . . . , µ, the cells associated with the exclusive reaches are
given by Hun,i = {νh1+···+hi−1+1, . . . , νh1+···+hi} with cardinality hi = |Hun,i|
and h0 = 0, the corresponding characteristic vectors are given by

p(Hun,1) =

á
1h1

...
0
0

ë
, . . . , p(Hun,µ) =

á
0
...
1hµ
0

ë
.

Consequently, the characteristic matrix of π?un gets the form

P (π?un) =

á
1h1 . . . 0 0

...
. . .

...
...

0 . . . 1hµ 0
0 . . . 0 Pc

ë
.

At this point, exploiting the structure of Lq and the definition of Lq,i in (16),
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one easily gets

Lqp(Hun,i) =



0
...

Lq,i1hi
...
0
0

 = 0

for q ∈ {f, j} and i = 1, . . . , µ because 1hi ∈ kerLq,i. Accordingly, one
needs to prove that MqPc ⊆ Pc for q ∈ {f, j}. For this purpose, with no
loss of generality, assume nodes in C are sorted in such a way that ρµ+` =
{vµ+c1+···+c`−1+1, . . . , vµ+c1+···+c`} for ` = 1, . . . , k so that one rewrites

pc(ρµ+1) =

Ö
1c1
...
0

è
. . . pc(ρµ+k) =

Ö
0
...
1ck

è
. (18)

Also, we rewrite Mq ∈ Rc×c in (16) as

Mq =

Ö
Mq,11 . . . Mq,1k

...
. . . . . .

Mq,k1 . . . Mq,kk

è
, q ∈ {int, un, f, j} (19)

with each Mq,`r ∈ Rc`×cr being the component of the Laplacian establishing
the in-coming connections among the cells ρµ+` and ρµ+r with r, ` = 1, . . . , k
in the graph Gq. Accordingly, each element of the column vector −Mqpc(ρµ+`)
represents the amount of neighbors that the corresponding node in ρµ+` ⊆ Cun

possesses in the cell ρµ+r ⊆ Cun with r, ` = 1, . . . , k and r 6= `. Noticing that
the generic vector in Pc is given byÖ

λ11c1
...

λk1ck

è
for some real constants λ1, . . . , λk ∈ R, the relation MqPc ⊆ Pc holds if and
only if for all pc(ρµ+`) and ` = 1, . . . , k, one gets

Mqpc(ρµ+`) =

Ö
ε1
q,`1c1

...
εkq,`1ck

è
14



for some εrq,` ∈ Z with q ∈ {f, j} and r = 1, . . . , k (Monaco and Ricciardi Celsi,
2019, Theorem 1). In particular, considering the graph Gq one gets that: for
r 6= `, −εrq,` ≥ 0 represents the number of neighbours each node in ρµ+`

possesses in ρµ+r under the graph Gq; for r = `, ε`q,` ≥ 0 is the number of
neighbors that each node in ρµ+` possesses in all other cells. By assumption
and Definition 1, for q = int (i.e., when considering the intersection graph
Gint) one gets

Mintpc(ρµ+`) =

Ö
ε1

int,`1c1
...

εkint,`1ck

è
with: −εrint,` the number of neighbours each node in ρµ+` possesses in ρµ+r

for r 6= `; ε`int,` the number of neighbours that each node in ρµ+` possesses in
the union of all other cells of the partition. Accordingly, by Definition 1 of
AEP and Proposition 1, one must show that the number of such neighbors
is the same in both the jump and flow graphs Gj and Gf , that is for q ∈ {f, j}
and ` = 1, . . . , k

Mqpc(ρµ+`) =

Ö
ε1
q,`1c1

...
εkq,`1ck

è
, εkq,` ∈ Z.

To this end, exploiting (15), one gets the equality

Mintpc(ρµ+`) = (Mf +Mj −Mun)pc(ρµ+`). (20)

By the structure (18) and (19), equality (20) rewrites blockwise for r =
1, . . . , k as

Mf,r`1c` +Mj,r`1c` −Mun,r`1c` = εrint,`1cr .

By definition of εrint,` , one has that for q ∈ {un, f, j}

Mq,r`1c` = εrint,`1c` + αq,r`

for some vector αq,r` ∈ Rc` . The components of the vector αq,r` coincide
with: the cumulative number of exclusive (that is, when excluding the shared
ones in the intersection graph) neighbors the corresponding node possesses

15



in ρµ+r if r 6= `; the opposite of the total number of not shared (again,
when excluding the ones in the intersection graph) neighbors that such a
node possesses in all other cells otherwise. Based on this, the equality above
reduces to αun,r` = αf,r`+αj,r` implying that, for all r, ` = 1, . . . , k, necessarily
αq,r` = ε̂q,r`1cr for some constant ε̂q,r` ∈ Z and q ∈ {f, j}. The first part of
the proof is then concluded.

(ii) Exploiting (14) and the rewriting (16), it turns out that necessarily
{Hun,1, . . . ,Hun,µ} is the coarsest non-trivial AEP for both Gj and Gf when
considering only the exclusive reaches Hun = Hun,1 ∪ · · · ∪ Hun,µ. For the
remaining part of the proof, let us proceed by contradiction and assume that
there exists an AEP π̄ = {Hun,1, . . . ,Hun,µ, ρ̄µ+1, . . . , ρ̄µ+k̄} that is coarser
than π?un (i.e., π̄ � π?un). Equivalently, the corresponding subspace P̄c =
ImP̄c, where P̄c =

(
p(ρ̄µ+1) . . . p(ρ̄µ+k)

)
, is invariant for both Mj and Mf

but not Mint-invariant. As in the previous case, let the nodes be sorted in
such a way that

pc(ρ̄µ+1) =

Ö
1c̄1
...
0

è
. . . p̄c(ρµ+k̄) =

Ö
0
...
1c̄k̄

è
with k̂ < k and each cell ρ̄µ+` = {ρµ+`1 , . . . , ρµ+`i} with c̄` = |ρ̄µ+`| being the
union of `i cells of π?un in (17). If that is true, one gets that for q ∈ {f, j}

Mqp(ρ̄µ+`) =
k̄∑
s=1

ε̄q,sp(ρ̄µ+s) =

Ö
ε̄q,11c̄1

...
ε̄q,k̄1c̄k̄

è
.

Accordingly, because Mun +Mint = Mf +Mj one gets that

(Mun +Mint)p(ρ̄µ+`) =

Ö
(ε̄f,1 + ε̄j,1)1c̄1

...
(ε̄f,k̄ + ε̄j,1k̄)1c̄k̄

è
which implies that, by definition of intersection graph Gint and because Eint ⊆
Eun, the subspace P̄c is Mint-invariant. However, because Pc is invariant as
well and associated with the coarsest non-trivial AEP of Gint restricted to Cun

either k̄ = k or k̄ = 1 thus falling into a contradiction and, thus, π?H = π?un.
�
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Remark 4. For the hybrid network, multi-consensus is fixed by both the
union and intersection graphs Gun and Gint. As a matter of fact, cells in π?H
are given by the exclusive reaches of Gun plus a further partition of nodes in
Cun suitably partitioned so to guarantee Mint-invariance of the corresponding
characteristic matrix. In other words, once the first µ cells of π?H are fixed
by the reaches of the union graph, the remaining ones are defined by looking
at the subgraph of Gint arising from Mint.

Remark 5. Whenever Mint = 0, multi-consensus is completely fixed by the
union graph; namely, cells ρµ+` are such that they provide the coarsest AEP
associated with Gun.

Remark 6. Whenever the union graph possesses no common part (i.e.,
Cun = ∅), the hybrid network exhibits exactly µ consensuses behaviors. As
a consequence, if Gun possesses one consensus only, then the hybrid network
converges to a single consensus independently of the clusters of Gf and Gj.

5.2. Convergence analysis and hybrid multi-consensuses

Let us now address the problem of convergence of solutions of (9) to the
multi-consensus subspace. For the sake of simplicity, the proof of convergence
is given in the periodic case only. The guidelines for the extension to the non
periodic case are then briefly discussed.

First, the following technical result is proved.

Proposition 3. Let τ > 0 be fixed and consider the hybrid multi-agent sys-
tem (9) with a τ -periodic hybrid time domain. Let us define the reverse
monodromy matrix

H = e−Lfτ (I − αLj) (21)

where α > 0 is any positive parameter satisfying the conditions:

α < min
λ∈σ(Lj)\{0}

2Re(λ)

|λ|2
(22)

α < min
λ∈σ(Lj)\{0}

1

Re(λ)
(23)

Then the spectrum of H verifies

σ(H) ⊂ C≤1 := {z ∈ C : |z| < 1} ∪ {1}.
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Proof. By direct inspection, as long as α is chosen within the prescribed
range, it can be seen that the entries of the matrix H satisfy

(i) Hij ≥ 0 for any i, j = 1, ..., N

(ii) the sum of each row is equal to 1, i.e.,

Hi1 +Hi2 + · · ·+HiN = 1

(iii) Hii ∈ (0, 1] for any i = 1, ..., N

The first two items rely on the structure of the Laplacians Lf , Lj, the pos-
itivity of τ and the choice of α. Condition (22) guarantees that (I − αLj)
is Schur (see Proposition 2), whereas the additional condition (23) is useful
to further restrict the spectrum within the half-plane C+. In particular, for
any τ > 0 and thanks to (22)-(23), the matrices e−Lfτ and (I − αLj) are
stochastic and are guaranteed to have positive entries on diagonal terms and
non-negative entries elsewhere. Such properties are naturally retained in the
product, showing that H has non-negative entries (item (i)) and is still a
stochastic matrix (item (ii)). Finally, combining these two conditions entails
item (iii). The conclusion then follows from the classical Geršgorin theorem
(Golub and Van Loan, 2013). In fact, using the identity

∑
j 6=i |Hij| = 1−Hii

which is guaranteed by the previous conditions, one has that the eigenvalues
belong to the union of discs Di with

Di := {z ∈ C : |z −Hii| ≤ (1−Hii)}

and clearly the desired inclusion
⋃N
i=1 Di ⊂ C≤1 holds. �

Let us denote with K = P?H ⊂ RN the multi-consensus subspace, this
being in particular a center invariant subspace (Isidori, 2017) for the mon-
odromy matrix, associated with the eigenvalue 1. In view of Proposition 3,
a linear transformation x = T x̃ exists such that

x̃ = [x̃>1 x̃>2 ]>, T−1HT = H̃ =

ñ
H̃11 0

0 H̃22

ô
(24)

with σ(H̃11) = {1} and σ(H̃22) ⊂ C<1. In particular, in the new coordinates,
the multi-consensus space is represented by the set

K̃ = T−1K = {x̃ ∈ RN : x̃2 = 0}.
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By the Lyapunov stability theorem for discrete-time linear systems (Chen,
1999, Theorem 5.D5), a scalar κ > 0 and a positive definite matrix

P̃22 = P̃>22 � 0, P̃22 ∈ RN2×N2

can be found such that

x̃>2
Ä
H̃>22P̃22H̃22 − P̃22

ä
x̃2 ≤ −κ‖x̃2‖2 ∀x̃2 ∈ RN2

with N2 = N − dim(K). Furthermore, setting

P̃ =

ï
0 0

0 P̃22

ò
� 0, (25)

the inequality can be extended on the whole state space RN as

x̃>(H̃>P̃ H̃ − P̃ )x̃ ≤ −κx̃>
ï
0 0
0 IN2×N2

ò
x̃

= −κ (dist(x̃, K̃))2

∀x̃ ∈ RN (26)

Now, by defining the augmented state ζ = [x̃> s]> ∈ RN+1 and considering
the flow and jump sets

C = {ζ = (x̃, s) : x̃ ∈ RN , s ∈ [0, τ ]}
D = {ζ = (x̃, s) : x̃ ∈ RN , s = τ},

(27)

the hybrid-multi agent system (9) can be rewritten as

ζ̇ = F (ζ) ζ ∈ C
ζ+ = G(ζ) ζ ∈ D

(28)

where the flow and jump maps are defined, respectively, by

F (ζ) =

ï
−L̃f x̃

1

ò
G(ζ) =

ï
(I − αL̃j)x̃

0

ò
with L̃f = T−1LfT and L̃j = T−1LjT . Based on the latter arguments, the
following stability result can be established.

Theorem 3. Let τ > 0 be fixed and consider the hybrid multi-agent system
(9) with a τ -periodic hybrid time domain and α > 0 satisfying (22)-(23).
The multi-consensus subspace K is globally asymptotically stable in the hybrid
sense (Goebel et al., 2012, Definition 3.6).
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Proof. We first observe that, thanks to the linearity of the transformation,
proving the asymptotic stability of the set K in the original coordinates x
is equivalent to establishing asymptotic stability of K̃ = T−1K in the new
coordinates x̃. Now, following (Goebel et al., 2012) and referring to the
equivalent formulation (28), we aim at showing that the closed set A = {ζ :
x̃ = (x̃1, 0), s ∈ [0, τ ]} = K̃ × [0, τ ] is globally asymptotically stable in the
hybrid sense (Goebel et al., 2012, Definition 3.6). To this end, we consider
the Lyapunov function candidate

V (ζ) = e−βsW (e−L̃f(τ−s)x̃)

with β > 0 and W (x̃) = x̃>P̃ x̃, where P̃ = P̃> � 0 is defined in (25)-(26).
Observing that by Theorem 2 the inclusion L̃fK̃ ⊆ K̃ holds, we can infer that
the exponential matrix e−L̃f(τ−s) must have a upper block-triangular form,
with

e−L̃f(τ−s) =

ï
E11(τ − s) E12(τ − s)

0 E22(τ − s)

ò
for some suitable matrix-valued continuous functions E11(s), E12(s) and E22(s)
where det(E22(s)) 6= 0 ∀s ∈ R. Based on this fact and on the diagonal
structure of P̃ , the following identity holds:

e−L̃
>
f (τ−s)P̃ e−L̃f(τ−s) =

ï
0 0

0 E>22(τ − s)P̃22E22(τ − s)

ò
.

Now, setting
‖ζ‖A = dist(ζ,A) = inf

υ∈A
‖ζ − υ‖,

it can be easily verified that the bounds

c1‖ζ‖2
A ≤ V (ζ) ≤ c2‖ζ‖2

A

are fulfilled for any ζ ∈ C ∪ D with positive constants c1, c2 > 0 given by

c1 = e−βτλmin(P̃22) mins∈[0,τ ] λmin(E>22(τ − s)E22(τ − s)),
c2 = λmax(P̃22) maxs∈[0,τ ] λmax(E>22(τ − s)E22(τ − s)).

Computing the derivative along the solution of (28) during any flow interval
yields

〈∇ζV (ζ), F (ζ)〉 = −2e−βsx̃>e−L̃
>
f (τ−s)P̃ e−L̃f(τ−s)L̃f x̃

+ 2e−βsx̃>e−L̃
>
f (τ−s)P̃ e−L̃f(τ−s)L̃f x̃

−βe−βsW (e−L̃f(τ−s)x̃)
≤ −βc1‖ζ‖2

A
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for any ζ ∈ C. On the other hand, for ζ ∈ D, one has

V (G(ζ))− V (ζ)= x̃>(H̃>P̃ H̃ − e−βτ P̃ )x̃

≤ (−κ+ (1− e−βτ )λmax(P̃22))‖ζ‖2
A

with H̃ defined in (21)-(24) and where (26) has been used. Selecting β > 0
sufficiently small, i.e.2,

β <
1

τ
log

Ç
λmax(P̃22)

λmax(P̃22)− κ

å
,

the right-hand side of V (G(ζ))− V (ζ) is negative definite relative to A and
this is enough to guarantee the hybrid asymptotic stability of the set A by
invoking (Goebel et al., 2012, Theorem 3.18). In conclusion, the convergence
of x towards the multi-consensus space K has been proved. �

Remark 7. The extension to the non-periodic case can be done by consider-
ing an augmented state ζ = [x̃> j s]> and replacing the flow and jump sets
in (27) by

C = {ζ = (x̃, j, s) : x ∈ RN , j ∈ N, s ∈ [0, tj+1 − tj]}
D = {ζ = (x̃, j, s) : x ∈ RN , j ∈ N, s = tj+1 − tj}

where we implicitly assume t0 = 0. Note that both C and D are closed sets
thanks to the existence of lower and upper bounds for the dwell time (i.e.,
τmin < tj+1 − tj < τmax). See (Goebel et al., 2012, Example 3.22) for an
explicit definition of the Lyapunov function.

From the results above, it is possible to characterize multi-consensus of
the hybrid network (9). To this end, assuming the concerned Laplacians of
the form (16) and the definition of π?H = {Hun,1, . . . ,Hun,µ, ρµ+1, . . . , ρµ+k}
with |ρµ+`| = c` in Theorem (2), we denote for i = 1, . . . , µ and ` = 1, . . . , k

xi =
(
xh1+···+hi−1+1 . . . xh1+···+hi−1+hi

)>
xrδ =

(
xN−µ+c1+···+ci−1+1 . . . xN−µ+c1+···+ci

)>
2Note that by construction 0 < κ < λmax(P̃22).
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Corollary 1. Consider the hybrid multi-agent system (9) with Gf and Gj the
flow and jump communication graphs characterized by the Laplacians Lf and
Lj respectively. Let Gun be union graph with Laplacian of the form (14) with
reaches Hun,i of cardinality hi (i = 1, . . . , µ) and common component Cun of
cardinality δ. Consider the weighted Laplacian

Lα = Lf + αLj

of the same form as (14) with, setting hi = |Hun,i| for i = 1, . . . , µ, right and
left eigenvectors associated with λ = 0 given by

zα,1 =

á
1h1

...
0
γ1
α

ë
. . . zα,µ =

á
0
...
1hµ
γµα

ë
(29)

ṽ>α,1 =
(
v>α,1 . . . 0

)
. . . ṽ>α,µ =

(
0 . . . v>α,µ

)
(30)

with v>α,i =
(
v1
α,i . . . vhiα,i

)
∈ R1×hi, vsi > 0. Let π?H be the coarsest AEP for

both Gf and Gj as defined in Theorem 2. Then, the following holds true:

(i) for all nodes in the same exclusive reach Hun,i of Gun, xi(t, j) → xssi 1hi
with xssi = v>α,ixi(t0, 0) with i = 1, . . . , µ;

(ii) all nodes in the same cell ρµ+r ⊂ Cun with r = 1, . . . , k converge to the
hybrid consensus dynamics

ẋssδ,r =−Mf,rrx
ss
δ,r −

µ∑
i=1

εif,rx
ss
i 1hi −

k∑
`=1,` 6=r

Mf,r`x
ss
δ,`

xssδ,r
+ =(Icr − αMj,rr)x

r
δ −

µ∑
i=1

εij,rx
ss
i 1hi −

k∑
`=1,` 6=r

Mj,r`x
ss
δ,`.

(iii) if Γµα = span{γ1
α, . . . , γ

µ
α} is both Mf and Mj invariant, then nodes be-

longing to the same cell ρµ+r with r = 1, . . . , k converge to k > 0
constant multi-consensuses; namely, for all r = 1, . . . , k splitting γi =(
γiα,11c1 . . . γiα,k1ck

)>
one gets

xδ,r(t, k)→
∑

γiα,rx
ss
i 1ci .
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Proof. The proof follows from the triangular form of the involved Laplacians
(16) and Theorems 2 and 3. �

As stated in the result above, consensus in hybrid networks (even when
composed of scalar integrators) is a hybrid trajectory: nodes in the reaches
tend to a constant consensus value given by the weighted mean of the cor-
responding agent’s initial states; nodes in the common tend to a hybrid
consensus arc which is however bounded.

Remark 8. The multi-consensuses of the hybrid network are all parameter-
ized by the coupling strength α > 0 in (9) and are independent, as expected,
of the jumping times and flow periods.

6. Examples

In this section, different networks composed of N = 7 hybrid agents
of the form (6) are considered. In all cases, the initial conditions are set
as xi(0, 0) = i for i = 1, . . . , 7 with aperiodic jumps with τmin = 0.1 and
τmax = 1 seconds. For completeness, the behaviors of the purely continuous-
time networks evolving under either Gf and Gj are reported to highlight the
influence of the hybrid connection compared to the standalone ones. In all
cases, the coupling strength for the jump component of the dynamics in 8 is
set to α = 1

5
.

Example 1. Let us consider graphs as in Fig. 1. In this case, applying the
result in Theorem 2 and along the lines of Remark 6, the union graph the
AEP underlying consensus is given by the trivial one composed of one cell
with all nodes included; namely, one obtains

π?H ={{ν1, ν2, ν3, ν5, ν5, ν6, ν7}}.
As a consequence, although the standalone flow and jump graphs induce three
and two consensuses respectively with

π?f ={{ν1, ν2, ν3}, {ν4, ν5}, {ν6, ν7}}
π?j ={{ν4, ν7}, {ν1, ν2, ν3, ν5, ν6}},

nodes of the hybrid network converge to a unique asymptotic agreement which
is given by

xss =v>α x0

v>α =
1

16

(
0.1 0.12 0.66 0.051 0.048 0.012 6.8e−3

)
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with v>α being the left normalized eigenvector associated with the zero eigen-
value of the Laplacian of the union graph Gun. More in detail, as underlined
by Figure 2, in this case one gets the constant consensus value xss = 2.87.
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(a) Flow graph

1

2
3

4

5

6

7

(b) Jump graph

Figure 1: Graphs for Example 1

Example 2. Let us consider graphs as in Fig. 3. In this case, invoking
Theorem 2, nodes of the hybrid network cluster according to the AEP

π?H = {Hun,1,Hun,2, ρ3}

with the exclusive reaches of the union graph Hun,1 = {ν1, ν2, ν3}, Hun,2 =
{ν4, ν5} and ρ3 = Cun = {ν6, ν7} associated with Mint = 0. In addition,
according to Corollary 1, nodes in the exclusive reaches converge to the con-
sensuses

xss1 =v>α,1x1(0, 0), v>α,1 =
30

41

(
1
6

1
5

1
)

xss2 =v>α,2x2(0, 0), v>α,2 =
1

2

(
1 1

)
so getting xss1 = 2.6098 and xss2 = 4.5. On the other side, as shown in Figure
4, nodes in the cell associated with the common component converge to the
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Figure 2: Simulations for Example 1

same hybrid consensus arc described by

ẋδ =−
Å

3 −1
−1 3

ã
xδ −

Å
1
1

ã
xss1 −

Å
1
1

ã
xss2

x+
δ =−

Å
1− α 0

0 1− α

ã
xδ −

Å
1
1

ã
xss1 .

Example 3. Let us consider graphs as in Fig. 5. In this case, three consen-
suses are reached for the hybrid network according to the clusters defined by
the AEP π?H = {Hun,1,Hun,2, ρ3} with Hun,1,= {ν1, ν2, ν3}, Hun,2,= {ν4, ν5}
and ρ3 = {ν6, ν7}. As in the previous cases, consensus over the reaches are
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Figure 3: Graphs for Example 2

constant and given by

xss1 =v>α,1x1(0, 0), v>α,1 =
1

11

(
5 1 6

)
xss2 =v>α,2x2(0, 0), v>α,2 =

1

2

(
1 1

)
so getting xss1 = 2 and xss2 = 4.5. In this case, moreover, one gets that the
last components of the eigenvectors in (29) are given by

γ1
α = γ2

α =
1

2
12

so getting that Γµα = span{12} is both Mf and Mj invariant with

Mf = Mj =

Å
3 −1
−1 3

ã
.

Thus, by Corollary 1, nodes in the cell ρ3 associated with the common Cun

converge to a constant consensus which is given by

xδ,1(t, k)→ 1

2
(xss1 + xss2 )12

so getting in this case the constant consensus xδ,1(t, k)→ 3.2512 as depicted
in Figure 6.
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Figure 4: Simulations for Example 2

7. Conclusions

In this paper, we have provided a full characterization of the multi-
consensus for scalar hybrid systems under aperiodic time-driven jumps evolv-
ing over networks. Considering different communication graphs for the flow
and jump dynamics, it has been shown that the clusters defining the behavior
of the hybrid agents are identified by the coarsest partition which is almost
equitable for both Gf and Gj. More in detail, the number of multi-consensuses
is strictly related to the union and intersection graphs associated with Gf and
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Figure 5: Graphs for Example 3

Gj with as many consensuses as the number of exclusive reaches of the union
plus further clusters induced over the remaining common component by the
intersection graph. In addition, although consensuses over the reaches are
constant behaviors, the asymptotic agreements over the common components
are generally described by hybrid arcs. Future perspectives concern the char-
acterization of multi-consensus for larger classes of hybrid systems with the
inclusion of state-driven jumps and non-scalar agent dynamics with emphasis
to the open problems detailed in (Maghenem et al., 2020).
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