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a b s t r a c t 

The integration of human and artificial intelligence (AI) in medicine has only recently begun but it has 

already become obvious that intelligent systems can dramatically improve the management of liver dis- 

eases. Big data made it possible to envisage transformative developments of the use of AI for diagnosing, 

predicting prognosis and treating liver diseases, but there is still a lot of work to do. 

If we want to achieve the 21 st century digital revolution, there is an urgent need for specific national and 

international rules, and to adhere to bioethical parameters when collecting data. Avoiding misleading 

results is essential for the effective use of AI. A crucial question is whether it is possible to sustain, 

technically and morally, the process of integration between man and machine. 

We present a systematic review on the applications of AI to hepatology, highlighting the current chal- 

lenges and crucial issues related to the use of such technologies. 

© 2021 Published by Elsevier Ltd on behalf of Editrice Gastroenterologica Italiana S.r.l. 
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. Introduction 

The recent developments in the field of artificial intelligence 

AI) were made possible thanks to the increasing availability of 

uge amounts of data, resulting from the ability to digitally trans- 

orm information and from the recent increases in computational 

ower. AI mimics human intelligence processes and increases the 

hance of successfully solving problems. Indeed, intelligent systems 

an use neural networks not only to examine and perceive the ex- 

ernal world (e.g., natural language, vision, sensors etc.), but also 

o dissect and learn about complex biological systems [1] . 

AI includes many sub-fields ranging from advanced statistical 

odelling to machine learning (ML) and deep learning (DL) al- 

orithms. Healthcare is a field that is thought to be highly suit- 

ble for the applications of different AI approaches. In the field of 

ealth, in fact, AI may have multiple applications. AI algorithms 

nd platforms can identify clinical patterns that might provide a 

ecisional support to healthcare professionals, can interpret the 
na S.r.l. 
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maging data thus assisting radiologists, but also generate automat- 

ng systems for the analysis of big datasets to improve precision 

edicine [2] . 

However, the large-scale application of AI tools and innovative 

tatistical methods is subject to challenges related to the collec- 

ion, standardization and interpretation of heterogeneous datasets, 

or data sharing and the safeguarding of sensitive data. Moreover, 

urther concerns regarding the quality of health-related data need 

o be addressed to be able to apply AI in clinical practice. In fact, 

he application of AI may be problematic, because algorithms that 

re flawed or used incorrectly could cause major harm to patients 

3 , 4] . 

It is essential to define and validate the best algorithms to di- 

gnose and treat liver diseases in real life similarly to many other 

onditions, to support patients to manage their own liver patholo- 

ies, to avoid medical mistakes, and improve economic sustainabil- 

ty by reducing healthcare costs related to liver diseases. 

In this review, we present an overview of the last 10 years of 

he AI-based approaches application in liver diseases and discuss 

he most urgent issues, challenges and future directions. 

. Methods 

A literature search was performed in the electronic database of 

ubMed using the following search terms: “artificial intelligence”, 

learning”, and “liver diseases”. A restriction for English language 

as been applied. Case reports, case series, pre-clinical studies, and 

eviews were excluded. Only human studies published in the past 

ecade (from January 2011 to January 2021) were included. 

The search and initial screening of the articles were conducted 

y two expert authors. 

The initial search in the electronic database generated 334 ar- 

icles. Next, two independent researchers did the screening of the 

rticles. One-hundred eighty-four articles were excluded after re- 

iewing their titles and abstracts because they did not fulfil the 

riteria of search. A total of 150 studies were selected. However, 

he object of this systematic review will be the 66 articles describ- 

ng the application of AI approaches developed to improve hepato- 

ellular carcinoma (HCC) and liver metastasis diagnostics (Supple- 

entary Table 1) [5-70] , and the 41 articles that use AI to improve

on-alcoholic fatty liver disease (NAFLD) and fibrosis diagnostics 

 Table 1 and Supplementary Table 2) [71-111] . Since the wide di- 

ersity of objectives, methods, and metrics precluded a quantita- 

ive approach, we performed a clustering of manuscripts based on 

he type of data that have been used to construct the algorithms. 

e identify three major clusters of articles that use AI in liver dis- 

ases: digital epidemiology data, omics data, and medical imaging 

nd radiomics data. Some of the selected articles were discussed in 

edicated specific sections together with other interesting articles 

n the same field. 

Among the 46 residual omitted articles most of them were re- 

ated to hepatology topics, including liver transplantation, drug- 

nduced liver injury, and hepatitis B and C, that have been recently 

iscussed or that merit to be addressed separately [112 , 113] . 

. AI and liver diseases 

AI has numerous potential applications in liver diseases. In this 

ection, we provide examples of how AI, applied to digital epi- 

emiology, analysis of omic datasets, imaging and radiomics, not 

nly contributes to improving diagnosis and treatment of liver dis- 

ases, but also plays a central role in future hepatology research. 
2 
.1. Digital epidemiology data 

Epidemiology is the scientific study of the distribution and the 

eterminants of health-related states and events in specific popu- 

ations [114] . Salathé defines “digital epidemiology” as the branch 

f epidemiology that leverages data generated for purposes dif- 

erent from epidemiology itself [115] , such as data coming from 

oogle Maps or social networks. On the same note, in the early 

0 0 0s, Gunther Eysenbach coined the term “infodemiology” [116] . 

nfodemiology is a new area of scientific research which aims to 

nalyse health data that users deposited into the internet [116] . 

he current pandemic of coronavirus disease 2019 (COVID-19) 

as fostered the infodemiological approach, which had previously 

hown to offer quicker answers than normal syndromic surveil- 

ance methods in the context of other infectious diseases (e.g. in- 

uenza, SARS, HIV) [117–119] . 

Digital epidemiology is often linked to the use of AI and ML. In- 

eed, one peculiarity of digital epidemiology is the additional use 

f unstructured data, i.e. data who lacks annotations, labels or pre- 

efined forms of organization [120 , 121] ; this data format requires 

pecific analytical methods, such as data mining and natural lan- 

uage processing ones [1] . 

Similarly to what is happening to infectious diseases, hepatol- 

gy can greatly benefit from the development of digital epidemiol- 

gy. Among others, some viable applications can be: a) to improve 

rediction of the future epidemiological trends of liver diseases; b) 

o refine the development of cost-effective solutions to diagnose 

nd treat liver diseases; c) to elaborate new predictive models for 

isk stratification of liver conditions and to improve liver organ al- 

ocation for transplantation. 

As regards models to predict the burden of liver diseases in the 

uture, there is an increasing body of evidence showing that the 

revalence of NAFLD will increase worldwide for at least another 

ecade, and will be followed by an increase in advanced liver dis- 

ase [122 , 123] , making it a relevant public health issue. A recent 

ystematic review of ML applications to diagnose NAFLD can be 

ound in the publication by Decharantanachart et al [124] . A good 

ccuracy was reported across the studies where AI-assisted tech- 

iques and clinical parameters have been employed in the NAFLD 

71-77] , even though there is a need of further validation before 

oving them forward into the clinic. 

Additional examples of digital epidemiology applications in the 

eld of prediction can be found in several hepatological domains. 

ecently Kanwal et al [91] have proposed a simple ML model that 

sing clinical variables produces a new score to forecast cirrhosis 

ortality. 

Risk stratification in rare liver diseases is likely more challeng- 

ng [125] ; diseases like primary sclerosing cholangitis (PSC) are 

articularly difficult to model, due to the hectic and irregular dis- 

ase course, the absence of reliable biomarkers and the differ- 

nt possible outcomes that can be assessed [126] . Nonetheless, 

ayo Clinic researchers have recently generated two prognostic 

ools based on a ML algorithm (gradient boosting machine) to pre- 

ict the incidence of hepatic decompensation within 5 years in 

25 patients affected by PSC. The first algorithm leveraged clinical 

ata [127] while the second one utilized plasma bile acid profil- 

ng [128] . Despite some limitations (e.g., tertiary centre bias, lack 

f some covariates), they represent the actual application of ML to 

urning open questions in the field and offers new perspectives to 

nvestigate the long-standing issue of risk stratification in PSC. 

Models based on ML have been introduced in the setting of 

olid organ transplantation too, where prognosis depends on a 

omplex, multidimensional and nonlinear relationship between 

ariables pertaining to the donor, the recipient and the surgical 

rocedure. In the setting of liver transplantation, ML models have 

een developed to predict pre-transplant survival in patients with 
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Table 1 

Application of AI techniques in the NAFLD field. 

Type of data Ref. N of subjects Type of study Aim AI approach applied Performance 

Digital 

Epidemiology 

71 2970 (2920 

training + 50 

validation) 

Monocentric 

prospective 

To perform diagnosis 

of liver steatosis 

Different ML algorithms Fatty Liver Index + Glucose + Age + 

Sex, sensitivity = 0.979, specificity = 1. 

Abdominal Volume 

Index + Glucose + GGT + Age + Sex, 

sensitivity = 0.985, specificity 1. Body 

Roundness 

Index + Glucose + GGT + Age + Sex, 

sensitivity = 0.967, specificity = 0.99 

Digital 

Epidemiology 

72 N/A Large-scale public 

dataset 

To predict NAFLD 

development 

Quantitative Structure 

Activity Relationship 

model constructed using 

ML tool TANAGRA 

Sensitivity = 0.66, specificity = 0.74 

Digital 

Epidemiology 

73 2239 Monocentric 

retrospective 

To investigate the 

prevalence of NAFLD 

features and its 

comorbidities 

Supervised ML algorithms 

including least absolute 

shrinkage and selection 

operator (LASSO) and RF 

classifier 

Final model: sensitivity = 0.70, 

specificity = 0.79 

Digital 

Epidemiology 

74 577 (377 

NAFLD + 200 no 

NAFLD) 

Monocentric 

retrospective 

To perform 

stratification of NAFLD 

Different ML algorithms RF (10 fold cross validation): 

sensitivity = 0.871, specificity = 0.858 

Digital 

Epidemiology 

75 N/A Large-scale public 

dataset 

To perform 

stratification of NAFLD 

Different ML algorithms XGBoost: AUC = 88% 

Digital 

Epidemiology 

76 10,508 

(2,522 + NAFLD) 

Monocentric 

cross-sectional 

To predict NAFLD 

development 

Different ML techniques 

implemented Weka 

open-source software 

SVM: sensitivity = 0.725, 

specificity = 0.946 

Digital 

Epidemiology 

77 922 Monocentric 

prospective 

To perform diagnosis 

of steatosis 

Laboratory 

parameter-based ML 

model 

For NAFLD ridge score 

sensitivity = 0.92, specificity = 0.90 

OMICs 78 1514 Multicenter 

prospective 

To perform 

stratification of NAFLD 

Different models 

combining omics data 

with clinical data 

Sensitivity and specificity were 

assessed at different cut-offs but they 

higher than for other scores 

OMICs 79 80 (31 NAFLD + 49 

no NAFLD) 

Monocentric 

case-control 

To perform 

stratification of NAFLD 

Different ML methods that 

combine measurements of 

lipids, glycans and 

biochemical parameters 

Model with lipidomics discriminates 

fibrosis with sensitivity = 0.95 and 

specificity = 0.99 

Radiomics 80 204 Monocentric 

prospective 

To quantify the liver 

steatosis 

One-dimensional CNN 

algorithms for NAFLD 

diagnosis and fat fraction 

estimation 

For the test cohort, sensitivity = 0.97, 

specificity = 0.94 

Radiomics 81 60 Monocentric 

prospective 

To quantify the liver 

steatosis 

ML-based model that 

combines several 

ultrasound parameters 

Model by using the combination of all 

parameters, sensitivity = 0.875; 

specificity = 0.928 

Radiomics 82 9552 Monocentric 

retrospective 

To quantify the liver 

steatosis 

Automated DL algorithm 

for liver segmentation and 

liver fat quantification 

For categorizing a patient as healthy 

(no steatosis), sensitivity 0.826, 

specificity 0.963 

Radiomics 83 256 Monocentric 

retrospective 

To perform diagnosis 

and quantification of 

liver steatosis 

Automatic liver 

attenuation ROI-based 

measurement (ALARM) 

pipeline 

ALARM center-ROI: 

sensitivity = 0.737-0.79, 

specificity = 0.991-1. ALARM 

periphery-ROI: 

sensitivity = 0.737-0.842, 

specificity = 0.996-1 

Radiomics 84 55 Monocentric 

prospective 

To perform diagnosis 

of liver steatosis 

Inception-ResNet-v2 DCNN AUC = 0.977 

Radiomics 85 63 subjects (27 

normal + 36 

abnormal) 

Monocentric 

retrospective 

To perform 

stratification of NAFLD 

DL architecture of 

convolution + pool- 

ing + rectified linear 

unit + dropout + inception 

model 

Accuracy = 99%, AUC = 1.0 

Radiomics 86 652 Multicentric 

retrospective 

To perform diagnosis 

of liver steatosis 

Algorithm developed by 

NLP 

NLP algorithm detected steatosis with 

an accuracy exceeding at least 96% 

Radiomics 87 12 Monocentric 

prospective 

To perform liver 

steatosis grading 

ELM-based approach Accuracy = 96.75%, AUC = 0.97 

Radiomics 88 100 (42 

normal + 58 

abnormal) 

Monocentric 

prospective 

To perform liver 

steatosis grading 

Computer aided diagnostic 

techniques 

DT classifier AUC = 0.933, Fuzzy 

classifier AUC = 0.883. 

Medical 

Imaging 

89 36 Monocentric 

retrospective 

To quantify the liver 

steatosis 

DELINEATE model based 

on Deep Neural Network 

For comparison between steatosis 0 

vs. 1-3 with DELINEATE Steatosis 

Pixel% and DELINEATE Steatosis 

Count%: sensitivity = 0.968, 

specificity = 1. For comparison between 

steatosis 0-1 vs. 2-3 with Aperio 

Steatosis Pixel%: sensitivity = 0.913, 

specificity = 1 

Medical 

Imaging 

90 63 subjects (20 

normal + 27 

abnormal) 

Monocentric 

retrospective 

To classify liver 

steatosis 

Supervised ML classifiers Overall accuracy = 89% 

3 
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irrhosis, to assess the best donor-to-recipient match during allo- 

ation processes, and to foresee post-operative complications and 

utcomes [129-134] . An interesting narrative review on the role of 

L in the field of liver transplantation, high-lighting strengths and 

itfalls, and future perspective has been recently published [113] . 

Despite the encouraging evidence, before application into the 

linic, digital epidemiology need rigorous methodology and large 

alidation cohorts with a full representation of each sex, different 

thnicities and different socio-economic conditions [1 , 135] . 

.2. Omics data 

Most of the common liver diseases are complex, and deter- 

ined by a combination of multiple factors, thus, liver pathophys- 

ology includes a multitude of highly dynamic physical and func- 

ional interactions between the genome, transcriptome, proteome, 

etabolome, and epigenome. These words describe complete bi- 

logical “omics” that provide a huge amount of data in a very 

hort period of time and with an unbiased approach. Despite the 

rst studies were focused on the single-omic approach, nowadays 

t widely recognized that the combination of more than one omic 

ignature (multi-omics) may lead to stronger scientific conclusions 

nd can be effective for developing diagnostic tools or identifying 

ovel therapeutic targets [136 , 137] . 

Hoverer, multi-omics datasets are big and multi-dimensional, 

hus strategies to manage their storage and wide accessibility, as 

ell as their networking and interpretation in terms of clinical rel- 

vance, are important issues in precision medicine [138 , 139] . For- 

unately, the rapid evolution of ML and DL in the last years has 

acilitated the accurate analysis and the clinical translation in sev- 

ral liver diseases of large datasets produced by omics. Moreover, 

enomic, epigenomic, proteomic and metabolomic data analyses 

ntegrated in computational platforms have the potential to pro- 

ide precise and reliable biomarkers for personalized diagnosis and 

reatment of liver diseases [137] . 

Among liver diseases, NAFLD is the most heterogeneous for 

oth histologic patterns and metabolic features, thus multi-omics 

pproach could be particularly fruitful to identify different pheno- 

ypes. 

Therefore, intelligent systems that consider a large number of 

ariables from multiple sources may provide an important contri- 

ution for the identification of specific omic signatures for patient’s 

tratification in NAFLD [78 , 79 , 137] . 

Genomics and genome-wide association studies are the most 

ctive fields of research in NAFLD, revealing a large number of ge- 

etic loci linked to an increased susceptibility to disease and its 

rogression [137] . The inclusion of genetic risk factors into risk 

odels, which were obtained by polygenic risk scoring or ML ap- 

roaches, has improved the accuracy of individual prediction to 

AFLD [140] . However, genetic information alone could be limiting 

or precision medicine and, in fact, several studies recently high- 

ighted that the knowledge of the effects of genetic variants on 

roteins and lipids is also required to gain novel insights in NAFLD 

athophysiology [141] . 

Recently European researchers of the multicentric prospective 

ohort study IMI DIRECT developed a total of 18 different models 

y ML combining omics and clinical data, which allowed to iden- 

ify biological features associated with intra-hepatic fat accumula- 

ion [78] . Interestingly, the study revealed that proteomic markers 

ielded the highest predictive accuracy when combined with the 

vailable clinical data and/or lifestyle data. 

A growing literature about NAFLD and other liver diseases 

as also highlighted the role of gut-associated omics, such as 

etagenomics and microbiome-related metabolomics, as addi- 

ional promising tools for discovery of biomarkers and drugs [142] . 

ccordingly, it could be foreseen as possible to estimate individ- 
4 
al glycaemic response to specific foods based on the correspond- 

ng specific microbiome by the use of algorithm-driven analysis of 

ultimodal data collection [143–146] , but also to identify a spe- 

ific stool-microbiome derived signature associated with robust di- 

gnostic accuracy for the detection of NAFLD-related [147] . 

HCC diagnosis and treatment may also benefit from the use of 

ulti-omic datasets. Indeed, the past few years have witnessed the 

eneration of large amounts of molecular omic data that have been 

laborated with AI-technologies to classify the liver lesions, and 

o predict response to transarterial chemoembolization (TACE) or 

urvival of patients with HCC [5-15] . New lines of evidence have 

ointed out the need of the integration of the available omic sig- 

atures of HCC with imaging and electronic medical data, to better 

efine patient sub-groups of disease and translate all information 

nto therapy achievements [148] . 

Finally, multi-omic approaches may also contribute to the dis- 

overy of minimally invasive biomarkers of acute cellular rejec- 

ion in liver transplant recipients, and some of these datasets could 

e integrated into diagnostic algorithms to assist clinical decision 

aking with a high degree of accuracy, reducing the need for in- 

asive liver biopsy [149] . 

.3. Medical imaging and radiomics data 

Hepatologists usually detect, characterize, and monitor liver dis- 

ases by assessing medical images, using their skills and experi- 

nce. However, not too rarely diagnostic conclusions are subjec- 

ive and inaccurate making more reproducible and accurate as- 

essment an unmet need. To this end, AI may be useful for sup- 

orting clinicians. Algorithms can classify images by learning from 

 large dataset and can even take into account reconstructed dy- 

amic images obtained by computed tomography (CT) or magnetic 

esonance image (MRI) [150] . The analysis of liver images by DL 

lgorithms proved not only to be more accurate to achieve repro- 

ucible imaging diagnosis by automatically recognizing imaging in- 

ormation, but also to be useful for deciding the most appropriate 

herapy to be adopted. However, it is always mandatory to stan- 

ardize the methods of acquisition and storage of the acquired bio- 

mages [151] . 

The generation of large amounts of data using innovative imag- 

ng instruments has motivated several liver pathology research 

roups to explore the use of ML-based algorithms for assessing the 

tage of HCC, NAFLD and fibrosis [89 , 90 , 152] . 

The results obtained with second-harmonic generation mi- 

roscopy, which are highly sensitive to the structure of collagen 

brils and fibers and can highlight changes that occur in diseases 

uch as cancer, fibrosis and, connective tissue disorders, are partic- 

larly noteworthy [153] . Convolutional neural networks, a DL algo- 

ithm pre-trained using multiple sources of images, have provided 

ffective results in determining the degree of severity of liver fibro- 

is [154] . The use of DL and neural networks reduce computational 

osts and achieves an area under the curve (AUC) of 1, represent- 

ng an excellent performance (100%) for risk stratification of NAFLD 

atients [85] . 

Quantification of the phenotypic features of a lesion from med- 

cal imaging is a recent achievement of AI. Indeed, with the term 

radiomics” we currently define the automated high-throughput 

xtraction of image features and “imaging biomarkers” [155 , 156] . 

adiomic data are extracted and processed with bioinformatics 

ools and can be combined with other patient data (bio-humoral, 

linical, genetic, histologic…) to develop models for the improve- 

ent of diagnostic, prognostic, and predictive accuracies. The 

omics” concept applies to quantitative tomographic imaging on 

ultiple levels (one multi-layer or three-dimensional images from 

ne patient may easily contain millions of voxels). Complex im- 

ges with high-dimensional data are generated, corresponding to 
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easurable biological characteristics. Radiomics fulfils the goal of 

recision, predictive, preventive, personalized medicine in which 

table, reproducible and validated molecular biomarkers are used 

o identify “the right cure for the right person at the right time ”

157 , 158] . 

In the field of radiomics different ML and DL algorithms has 

een recently developed for assessing NAFLD and liver fibrosis 

tages, showing radiomics able to provide additional contributions 

o identify the severity and the progression of liver disease [ 80- 

8 , 93-111 ]. 

The imaging surveillance of patients at risk of develop- 

ng HCC enables us to make diagnoses at earlier stages, when 

urative treatments are still practicable. Therefore, DL- and 

L-based radiomics is rapidly becoming an extremely promis- 

ng technique for accurate diagnosis and grading of HCC, and 

or supporting clinicians in choosing personalized treatments 

16-67] . In 2018 the Food and Drug Administration approved 

 plan for AI medical algorithms, including the “Arterys” algo- 

ithm for the diagnosis of liver cancer obtained by MR and CT 

nalysis ( [51,155] , https://www.prnewswire.com/news-releases/ 

rterys-receives-first-fda-clearance-for-broad-oncology-imaging- 

uite- with- deep- learning- 300599275.html ). 

ML and DL may also be particularly useful for preventing and 

redicting toxicity as they can be used for segmentation of tu- 

ours and surrounding at-risk organs to ensure guiding delivery 

reatment. Due to such improvements in target delivery, stereotac- 

ic body radiotherapy is increasingly administered for treatment of 

iver cancers. Baseline liver metabolic function has been used to 

redict toxicity risk. In particular, it has been found that irradiation 

f the proximal portal vein incurs in twofold toxicity risk compared 

o the left portal vein [159 , 160] . 

So far, most radiomic studies in hepatology were performed 

o identify prognostic or predictive models of malignant lesions 

161] . In the last two years, four retrospective multicentric stud- 

es demonstrate that MRI and ultrasound radiomics models based 

n automated- and/or dynamic- DL algorithms were able to bet- 

er detect and distinguish benign from malign focal liver lesions, 

mproving the ability to make diagnosis of HCC [20 , 22 , 29 , 42] . Al-

orithms predict recurrences, the occurrence of post-hepatectomy 

iver failure, the presence of tumour microvascular invasion and 

uture clinical deterioration, too [18 , 31 , 33 , 34 , 162-165 ]. Akai et al.

sed texture analysis to predict disease-free survival and over- 

ll survival [166] . Noteworthy, in a multicentric prospective study, 

s well as in several monocentric studies, DL model presents a 

ood performance in predicting the response of patients with 

ntermediate-stage HCC undergoing TACE [30 , 26 , 46] . Furthermore, 

adiomic analysis was used to produce a predictive score for tu- 

our response and overall survival in patients with unresectable 

CC to be treated with trans-arterial radioembolization using 

ttrium-90 [167 , 168] . 

In summary, AI based studies of functional, molecular, and 

tructural bio-imaging are providing an extraordinary new oppor- 

unity for the in vivo study of liver pathophysiology. 

. Challenges and future directions 

.1. Big Data use and implications 

Big data is an evolving concept describing a massive volume of 

tructured and unstructured datastes (omics, clinical features, im- 

ges) that can be processed by AI techniques in order to under- 

tand and solve complex problems [169 , 170] . 

Large amounts of data are distinguished by volume, veracity, 

ariety and velocity [171 , 172] . Furthermore, big data analysis must 

e unbiased and reliable in order to support clinical decisions, but 

ccurate extrapolation can only be achieved through the use of rig- 
5 
rous theoretical underpinnings and reliable health-related data. AI 

lgorithms must be fed with large quantities of reliable data to be 

ble to “learn” complex and non-linear relationships between vari- 

bles and outcomes of interest [173] . Although the production of 

 huge number of health-related structured (e.g. clinical trials reg- 

stries, electronic medical records, medical images, biomarker data, 

omics data, administrative databases), and unstructured data (e.g. 

ocial networks, media, internet etc.) [171] is expected in the fu- 

ure, at present it is difficult to obtain good sources of information 

o feed algorithms. 

The available structured healthcare data are largely obtained 

rom randomized controlled trial (RCT). The current most reli- 

ble registries ( http://www.eltr.org/ ; https://rare-liver.eu/registry ) 

or liver diseases [174 , 175] contain data that vary significantly in 

uality [176] and are derived from diverse sources, including clin- 

cal observations, medical imaging, medical devices and molecular 

cience. 

The most exciting new AI applications in health care are in the 

reas of ML and DL. However, until their effectiveness in improv- 

ng clinical practice will not be validated, the produced data cannot 

e considered of real value, even when achieving AUC of 0.99 [1] . 

n fact, the features of structured big data cannot be aggregated 

nd shared, and errors do not disappear in big data, on the con- 

rary they become worse [177 , 178] . The manipulation of data by AI 

echnologies might become really harmful for health-care systems, 

enerating unexpected and unintentional outcomes with capacity 

o negatively and/or unfairly influence medical decisions. 

While we wait for the creation of new reliable databases, we 

ust deal with a large number of smaller separate databases that 

o not have the features of “big data”. This means implies that 

emanding and time-consuming data cleaning and pre-processing 

rocedures are always to be set in place to create databases that 

ims at limiting errors as much as possible, before we could start 

o use intelligent systems to evaluate the reliability of health stud- 

es. If we do not pay careful attention to data training, which 

egins with finding new ways to train computers using small 

atasets, even the most powerful algorithm will fail to meet ex- 

ectations and will produce unpredictable and unreliable out- 

uts [178–181] . One interesting strategy for working with small 

atabases could be devising AI applications capable of “unsuper- 

ised learning” that is learning without labelled data. However, we 

re far from achieving this goal. 

Driving innovation in the medical field also requires fast, se- 

ure, and interconnected infrastructures for interoperable data sys- 

ems. The infrastructures must adhere to international standards 

nd use internationally shared medical terminologies to convey ac- 

urate medical information. 

Finally, there is an even more important and urgent need for 

ransparency, and the deconvolution of “black box” algorithms. The 

oncept of “black box” refers to opaqueness of algorithms currently 

n use, which makes it difficult to understand how outputs have 

een determined [182] . Therefore, an extensive simulation and val- 

dation of the obtained results, systematic error corrections and re- 

ision are essential for an AI algorithm to play a relevant role in 

linical practice [183] . 

In Fig. 1 , we propose a flowchart that shows how big data 

hould be well-processed through the use of ML and DL algo- 

ithms. 

.2. Privacy and data security 

The European Commission considers both storage and protec- 

ion of sensitive data the most important and urgent problems re- 

ated to the different healthcare systems. In a near future, tech- 

ologies and data protection will become predominant. In the field 

https://www.prnewswire.com/news-releases/arterys-receives-first-fda-clearance-for-broad-oncology-imaging-suite-with-deep-learning-300599275.html
http://www.eltr.org/
https://rare-liver.eu/registry
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Fig. 1. Flowchart from big data to AI validation through Machine and Deep Learning. 
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f medicine, the main issue to the future of AI is to ensure privacy

nd security of patient’s data [184 , 185] . 

Developing algorithms often incurs the risks of revealing sensi- 

ive personal data, including patient’s medical history, up to con- 

idering that recent advances in facial recognition technology is 

aking always easier to identify patients [186] . 

The latest pandemic infection by SARS-CoV-2 is helping us bet- 

er understand the key role of AI: how it can speed up new solu- 

ions for identifying track, forecasting outbreak, as well as for di- 

gnosing and treating this global pandemic. Clinicians, academics, 

nd governments around the world, together with technology star- 

ups are involved in activating each ready-to-use technology as 

oon as possible to counteract the dissemination of the virus. 

However, up to date, the balance between privacy and health is 

articularly difficult to manage without previous and shared rules. 

he creation of new secure shared platforms regulated by gov- 

rnmental legislation, which has already been achieved in Estonia 

 https://e-estonia.com/solutions/security-and-safety/ ), is necessary 

n all European countries to avoid serious security issues that will 

therwise hamper advances in AI in the field of medicine. Cur- 

ently, most research institutions use fragmented and protected in- 

rastructures that cannot be shared and aggregated. To address this 

roblem, over the last decade UE grants have supported the de- 

elopment of platforms for protected and well-structured shared 

data spaces” where sensitive data, such as anonymized data and 

ata coming from RCT, can be collected and used to advance 

nowledge in the field of health care [187] . The General Data Pro- 

ection Regulation (GDPR) states: “In order to ensure fair and trans- 

arent processing in respect of the data subject […] the controller 

hould use appropriate mathematical or statistical to […] secure per- 

onal data in a manner that takes account of the potential risks in- 

olved for the interests and rights of the data subject and that pre- 

ents, interalia, discriminatory effects on natural persons .”

However, the European Union’s GDPR and the recent 

thical guidelines for trustworthy AI ( https://ec.europa.eu/ 

igital- single- market/en/news/ethics- guidelines- trustworthy- ai ) 

re the first steps of a long path. 
6 
.3. Other ethical questions and considerations 

These innovative and promising AI techniques raise some 

mportant questions and considerations. Could AI autonomously 

odify the guidelines provided by experts? What is the best 

ay to safeguard the patient-doctor relationship? What about 

elf-diagnosing and self-medication? Is it acceptable to use non- 

ransparent algorithms for patient care? What should be done to 

mprove and clarify the outcomes obtained by AI methods? What 

hould Europe do to remain competitive? 

In terms of scientific publications in AI and health, Europe is 

xtremely well positioned, but competition is increasing [188] . In 

ecent decades, Europe has suffered a “brain drain”, as a significant 

umber of talented individuals left the Continent to work outside. 

 similar ‘brain drain’ from academia to industry is increasingly 

aking place. A growing number of scientists are if fact leaving 

cademia for more profitable roles in global technology companies. 

ikewise, in recent years, the number of AI publications authored 

y individuals with company affiliation has grown exponentially 

189] . 

At last, it is also very important to remind, that the training of 

lgorithms must be performed in a meticulous way to prevent AI 

rom worsening pre-existing disparities. For example, an algorithm 

as created to identify skin cancers without considering different 

kin colours. It is relatively easy to create algorithms that fail to 

nclude minorities in the datasets [190] . In the health sector, stan- 

ards must be established, and non-profit and industrial research 

olicy strategies must be developed to monitor and control all as- 

ects of the value chain from infrastructure to data, skills, and ser- 

ices. 

.4. Future directions 

Even though AI technology applications in health are promis- 

ng, there are still many obstacles and pitfalls. Machine and deep 

earning are not magic wands that can transform any data into 

old. Considering the large amount of information (e.g. personal 

https://e-estonia.com/solutions/security-and-safety/
https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai
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istory of the patient, family diseases, genomic sequences, tailored 

reatments) that a physician should evaluate before making a deci- 

ion, it is easy to understand how intelligent systems could be ex- 

remely useful for supporting healthcare personnel [191] . To date, 

he direct utilization of DL and ML methods in liver diseases has 

een scarce, but AI promises to increase the integration of multi- 

mic datasets with clinically available data enabling us to under- 

tand the molecular complexity of disease in hepatology. Computa- 

ional models may provide non-invasive comprehensive multiscale 

haracterization of liver, taking into account microenvironment and 

he features of patients, thereby giving important supports to clin- 

cians for diagnostic, prognostic, and predictive decisions. Further- 

ore, integrated biomarkers may improve non-invasive patient se- 

ection, stratification, prognoses and for choosing specific targeted 

herapies. Liver diseases need composite multiscale synergistic ap- 

roaches and tools for the analysis of clinical features, genetic pat- 

erns, and radiographic, histopathologic and biophysical data to 

peed up innovative and virtuous management of patients. How- 

ver, we must be careful and parsimonious when using machines 

o support clinical decisions, because excess use and confidence 

n machines could reduce, in a worrying way, the professional 

kills of physicians and may have serious consequences in cases 

here intelligent systems malfunction [191] . Even though intel- 

igent systems leverage families of algorithms helping to unravel 

ifferent classes of problems, physicians must still acquire skills, 

xperience, and knowledge to enable them to choose how and 

hen AI techniques can be used to solve diagnostic or treatment 

roblems. 

If regulated and controlled, AI has certainly the potential to 

elp us provide better assistance to patients affected by liver dis- 

ases and to reduce the considerable economic resources neces- 

ary to address diseases such as chronic hepatitis, liver tumours 

nd liver transplant. 

In the near future, we firmly believe that we will experience a 

eep transformation in hepatology practice by AI, that will over- 

ome embedded prejudices and eventually be fully integrated into 

he daily clinical practice. 
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