
remote sensing  

Article

The Role of Satellite InSAR for Landslide Forecasting:
Limitations and Openings

Serena Moretto 1,2,* , Francesca Bozzano 1,2 and Paolo Mazzanti 1,2

����������
�������

Citation: Moretto, S.; Bozzano, F.;

Mazzanti, P. The Role of Satellite

InSAR for Landslide Forecasting:

Limitations and Openings. Remote

Sens. 2021, 13, 3735. https://doi.org/

10.3390/rs13183735

Academic Editors:

Massimiliano Bordoni,

Claudia Meisina and Roberta Bonì

Received: 19 July 2021

Accepted: 13 September 2021

Published: 17 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Earth Sciences & CERI Research Center on Geological Risks, Sapienza University of Rome, P.
le A. Moro 5, 00185 Rome, Italy; francesca.bozzano@uniroma1.it (F.B.); paolo.mazzanti@uniroma1.it (P.M.)

2 NHAZCA S.r.l. Startup, Sapienza University of Rome, via V. Bachelet 12, 00185 Rome, Italy
* Correspondence: serena.moretto@nhazca.com

Abstract: The paper explores the potential of the satellite advanced differential synthetic aperture
radar interferometry (A-DInSAR) technique for the identification of impending slope failure. The
advantages and limitations of satellite InSAR in monitoring pre-failure landslide behaviour are
addressed in five different case histories back-analysed using data acquired by different satellite
missions: Montescaglioso landslide (2013, Italy), Scillato landslide (2015, Italy), Bingham Canyon
Mine landslide (2013, UT, USA), Big Sur landslide (2017, CA, USA) and Xinmo landslide (2017,
China). This paper aimed at providing a contribution to improve the knowledge within the subject
area of landslide forecasting using monitoring data, in particular exploring the suitability of satellite
InSAR for spatial and temporal prediction of large landslides. The study confirmed that satellite
InSAR can be successful in the early detection of slopes prone to collapse; its limitations due to phase
aliasing and low sampling frequency are also underlined. According to the results, we propose
a novel landslide predictability classification discerning five different levels of predictability by
satellite InSAR. Finally, the big step forward made for landslide forecasting applications since the
beginning of the first SAR systems (ERS and Envisat) is shown, highlighting that future perspectives
are encouraging thanks to the expected improvement of upcoming satellite missions that could
highly increase the capability to monitor landslides’ pre-failure behaviour.

Keywords: landslides; satellite InSAR; forecasting methods; monitoring; precursory phenomena;
COSMO-SkyMed; RADARSAT-2; Sentinel-1

1. Introduction

The availability of SAR satellite images since 1992 has allowed the development
of A-DInSAR (advanced differential synthetic aperture radar interferometry) processing
methods since the early 2000s [1–3]. The main factors that contributed to the spread
and development of satellite SAR interferometry can be summarized as follows: The
launch of several satellite missions belonging to different national and international space
agencies, the improvement of satellite mission technologies, the enhancement of computing
capabilities and the improvement of processing algorithms. Nowadays, satellite SAR
interferometry is considered an effective technique for land, structure and infrastructure
monitoring, finding several applications in landslide risk mitigation strategies at different
stages and scales [4–24].

The increasing availability of SAR satellite images (in terms of both spatial and tem-
poral coverage) and the development of accurate processing algorithms [1,3,25–29] led
to the opportunity to use satellite technologies for continuous monitoring applications,
allowing to reflect on the possibility to exploit the satellite InSAR technique for landslides
forecasting purposes. In A-DInSAR approaches, several tens of SAR images collected over
time over the same area with the same acquisition geometry (interferometric stack) are used
to overcome the main limitations due to the atmospheric phase screen (APS) and residual
topography [1,2,26]. Persistent Scatterers Interferometry (PSI) is one of the first and most
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used A-DInSAR techniques, based on the analysis of specific targets on the Earth’s surface
(called Persistent Scatterers, PSs) characterized by long time-coherent behaviour, allowing
to retrieve: (i) The deformational trend during the investigated time period with millimetre
accuracy; (ii) the time series of displacement; (iii) the residual height with respect to the
reference DEM (Digital Elevation Model) used.

In this paper the role of satellite SAR interferometry for landslide forecasting is
evaluated, giving an overview of some cases already presented in the scientific literature
and new insights. Specifically, according to the creep theory [30,31], the potential of satellite
InSAR to monitor precursor phenomena of large landslides and their spatial and temporal
predictability, also in terms of Time of Failure estimation (ToF, [32–35]) is revised.

The first studies published on this topic regard the theoretical assessments on the
possibility to exploit satellite InSAR to monitor a landslide process during the pre-failure
stage [36–40]. The preliminary evaluation carried out by Mazzanti et al. (2011) on “land-
slides forecasting analysis by displacement time series derived from satellite InSAR data”
highlights the limitations that must be accounted for, such as: The availability of data,
radar distortions, the presence of backscatters, the moving direction of the landslide, the
extension of landslides and the magnitude of precursory phenomena (i.e., the length of
the tertiary creep phase and the rate of deformations). The first basic consideration is that
several landslide processes cannot be investigated using the satellite InSAR technique.

Assuming the presence of a coherent target in correspondence with a landslide area
is satisfied, Moretto et al. 2017 [40] performed a first quantitative analysis concerning the
“Assessment of Landslide Pre-Failure Monitoring and Forecasting Using Satellite SAR
Interferometry”, considering two major limitations of the technique to monitor the pre-
failure behaviour: (i) The revisit time (i.e., the sampling period of the data acquisition)
and (ii) the phase ambiguity constraints. The acquisition of slope deformations before the
collapse was simulated for 58 landslides, considering the features of satellite missions of
the past, present and future. From the study, it was found that 30% of the landslide events
collected could have been monitored during the acceleration phase considering the current
features of Sentinel-1 constellation.

In recent years, taking advantage of the increasing temporal and spatial resolutions
of new SAR satellite missions (Sentinel-1 and COSMO-SkyMed in particular), several
retrospective analyses of past landslides have been carried out using A-DInSAR methods,
retrieving the deformational behaviour during the pre-failure stage [39–46]. In particular,
the Xinmo landslide (24 June 2017; China) gained great attention in the satellite remote
sensing community. It was the first landslide where clear precursors were observed
with the satellite InSAR technique with time series of displacement showing the typical
deformational behaviour of the tertiary creep phase [39,41].

In this paper we describe five different retrospective analyses carried out on natu-
ral and man-made slopes in different environments and with different InSAR sensors
(Figure 1):

(1) Montescaglioso landslide (3 December 2013; Italy), using COSMO-SkyMed imagery
in the time period between May 2011 and December 2013;

(2) Scillato landslide (10 April 2015; Italy), using COSMO-SkyMed imagery in the time
period between January 2013 and March 2015 (Moretto et al., 2018);

(3) Bingham Canyon Mine landslide (10 April 2013), using the RADARSAT-2 dataset
collected between December 2008 and March 2013;

(4) Muddy Creek landslide (25 May 2017; CA, USA), using Sentinel-1 dataset acquired in
the period May 2015–May 2017;

(5) Xinmo landslide (24 June 2017; China), using Sentinel-1 imagery acquired between
October 2014 and June 2017.
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Figure 1. Landslide location.

The results obtained using the A-DInSAR technique were analysed and exploited
for forecasting purposes. A Time Series Analysis (TSA) was performed according to the
following approaches:

• A Trend Change Detection Analysis (TCDA) was performed in order to detect trend
changes in the time series of displacement, which can be associated to critical phases
in a landslide’s life cycle;

• landslide forecasting methods were applied using A-DInSAR time series of displace-
ment for the time of failure estimation.

Finally, the study allowed to propose a new classification regarding the predictabil-
ity of large landslides from satellite InSAR, discussing, among the predictability versus
unpredictability of landslides, the spatial and temporal prediction opportunity offered by
present satellite missions and future perspectives.

2. Materials and Methods

The study workflow is presented in Figure 2. The A-DInSAR retrospective analyses
were carried out for the five case histories. Time series of displacement was analysed (TSA)
to assess and classify the deformational behaviour of the landslides during the pre-failure
stage. First, the TCDA was applied, followed by a full time of failure analysis in case of
trend change identification.

Results obtained with landslide forecasting methods were analysed to understand the
reliability of prediction, focusing on the occurrence of spatial and/or temporal clusters
in predictions. For all the landslides, the results were assessed and interpreted globally
(including InSAR and TSA results, correlation with rainfall data, interferograms, etc.)
allowing to retrieve interesting information regarding the landslide pre-failure behaviour.
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Figure 2. Workflow.

2.1. Landslide Forecasting Methods

The scientific community started to explore landslide behaviour during the first half
of the twentieth century [30]. In 1950, Terzaghi recognized the relation between land-
slide evolution and creep theory; he was the first to connect the progressive deformation
process affecting a slope before failure with the creep theory, laying the foundations for
landslide prediction.

The creep theory describes the plastic deformation of materials exposed to a constant
stress below their yield stress. Within engineering geology and material science, creep
theory describes the deformation of the slope under constant shear stress till failure, thus
representing the time-dependent deformational behaviour of a slope towards failure.

Continuous deformation, which progresses under constant stress, is a material be-
haviour of evident interest to a wide spectrum of scientists. If deformation is likely to
accelerate towards failure, understanding and modelling the process becomes crucial “to
estimating the useful life of machines and structures, to anticipating the behaviour of
artificial embankments and natural and cut slopes, and to evaluating the hazards their
possible failure presents to property and people” [31].

Over many years, a big number of scientific studies were carried out, producing a
very large literature [30–35].

In 1982, Varnes [31] presented and described the progressive failure of materials
under constant stress, using a deformational model composed by three different stages:
The primary, secondary and tertiary creep. The tertiary creep phase represents the fun-
damental phase for the application of landslide forecasting methods (or semi-empirical
methods) [47–55]. One of the most known, used and powerful methods is the Inverse
Velocity method (INV), developed by Fukuzono (1985, [32]) and subsequently improved
by Voight (1988, [34]) and Cornelius and Voight (1995, [35]).
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Analysing the rate of precursory phenomena for volcanic eruptions, Voight (1988)
wrote the following equation:

..
Ω = A

.
Ω

α
, (1)

where
..
Ω is the acceleration,

.
Ω is the velocity, A and α are semi-empirical constants. The

author suggested that several parameters could be used in the relation (e.g., strain, rotation,
translation or seismic-energy release), thus including any kind of precursor phenomena
which can be measured in terms of velocity and acceleration. Based on equation 1, different
failure forecasting methods were proposed [35]. In this study, we make use of the following
two forecasting methods:

• The INV analysis (Figure 3a [32,38]), based on the linear regression analysis using the
inverse velocity versus time data. The ToF is defined as the intercept between the
linear regression line and the x-axis;

• The non-linear fitting technique (NL Technique, Figure 3b, [35,38]), consisting in the
non-linear data approximation using the least-squares approach. A and α constants
are found iteratively by minimizing the error between the real pre-failure monitoring
data and the given function. ToF is computed assuming that, when the strain rate
tends to infinity, the slope tends to failure; thus, it matches with the curve’s asymptote.
The NL method can be applied only for α > 1.

Figure 3. Example of INV method and NL technique. Tf represents the computed time of failure
(from [39], modified).

2.2. Satellite A-DInSAR

The observation of the accelerative behaviour preceding a slope before failure is
fundamental for temporal prediction and for the application of forecasting methods. The
basic requirement for the application of landslide forecasting methods is the monitoring of
deformations affecting a slope before the failure.

Satellite A-DInSAR is a powerful radar-based remote sensing technique that allows
to measure displacements of the ground and structures over time, reaching millimetre-
level accuracy, for those measurement points characterized by a high stability of the
backscattered radar signal (i.e., coherent targets). It is a multi-image processing technique
able to provide the time series of displacement for both wide areas (thousands of square
kilometres) and small areas (i.e., single slope or structure).

The analyses carried out in this study are based on the exploitation of the PSI (per-
sistent scatterers interferometry) techniques ([1,2,26]). The PSI approach is based on the
observation that “man-made features remained coherent in radar interferograms over
long time spans, while their surrounding was completely decorrelated” [26]. Persistent
scatterers interferometry allows to reduce the temporal and geometrical decorrelation
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issues and the atmospheric artefacts by analysing the interferometric phase of individual
long time-coherent scatterers in a stack of many tens of differential interferograms (i.e.,
pixels/scatterers that are coherent in all the interferograms). The peculiarity of the PSI
technique is the use of a single reference stack of complex differential interferograms. The
key processing steps of the PSI algorithm implemented in SARPROZ (the SAR processing
tool by Periz, [56]) can be summarized as follows:

(1) Selection of the reference image and star graph definition (i.e., the definition of the
connections between images, including the temporal and perpendicular baseline
parameters of secondary images with respect to the reference image);

(2) secondary SLC image coregistration;
(3) Ground Control Point (GCP) selection;
(4) synthetic DEM estimation;
(5) computation of differential interferograms;
(6) preliminary parameter estimation (average velocity/non-linear displacements and

residual height) over the Persistent Scatterers Candidates (PSCs);
(7) atmospheric phase screen removal and final estimation over all pixels.

The reference image is selected to minimize the sum of the temporal and perpendicular
baselines of the interferometric stack because, usually, the more the reference image is
selected centrally in time and lies centrally in space, the larger the stack coherence [26].

The co-registration step allows to spatially overlay the pixels of the images, correcting
distortions, shifts and scale differences.

The GCP is used to geocode the SLC images, passing from SAR coordinates (expressed
in slant range and azimuth) to geographic coordinates, correcting initial orbital offsets and
to import the DEM that is converted into the SAR coordinates using the GCP.

The preliminary parameters estimation is carried out considering a selection of points,
the so-called persistent scatterers candidates. Specifically, a combination of different
parameters were used for the identification of PSCs: The reflectivity, the amplitude stability
index, the spatial coherence, the amplitude stability index + spatial coherence, etc. The
amplitude stability index (ASI) is defined as:

ASI = 1 − σ/µ, (2)

where σ is the standard deviation and µ is the mean value of the amplitude.
On the selected PSCs, the parameters are estimated using the wrapped phase of

each interferogram of the star graph solving the inversion problem. The interferometric
phase is analyzed by considering connected pairs of PSCs. In particular, the differential
interferometric phase of a connection related to an interferogram k (∆φk) is modelled
assuming a term related to the movement (∆φkmov), a term related to the residual height
(∆φkRH) and a residual error term (∆kε) related to the Atmospheric Phase Screen (APS):

∆φk = ∆φkmov + ∆φkRH + ∆kε (3)

For each connection related to a pair of PSCs, starting from a Reference Point (RP)
assumed as stable, the inversion problem is solved allowing the estimation of the phase
contribution due to both the movement term and the residual height. It is worth mentioning
that the term ∆φkmov can assume both a linear and non-linear nature, according to the
used model.

A statistical parameter named temporal coherence (γ) evaluates the similarity between
the observed differential interferometric phases (∆φk) and the used model (∆φkmov). The
temporal coherence ranges between 0 and 1, reaching its maximum when the residual
errors (∆kε) are zero.

Assuming the atmospheric phase contribution uncorrelated in time and correlated in
space, it can be isolated from the displacement trend and random noise by using a low-pass
filter in space and a high-pass filter in time [26]. Once the APS is estimated and removed
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from each image, high accuracy time series of displacement can be achieved on a larger
number of measurement points (MPs).

2.3. Time Series Analysis (TSA)

The time series of displacement can be analysed in order to detect the possible oc-
currence of trend changes [57,58] that could represent the first insights of the onset of a
critical phase of a landslide life cycle. In this work, we refer to the trend change analysis
and change point detection as Trend Change Detection Analysis (TCDA, [39]). In order to
identify the trend changes, piecewise regression analysis was performed [57–59]. Piecewise
regression is a segmentation method based on the approximation of a time series T, of
length n, with K straight lines. The linear segmentation analysis allows to find abrupt
changes in the time series identifying the so-called breakpoints.

The linear segmentation problem can be addressed in several ways and with different
algorithms [60], for example: (1) It is possible to identify the best representation using
a defined number of segments, or (2) to identify the best representation such that the
maximum error between each segment and the measurement points does not exceed some
user-specified thresholds, or (3) to find the representation returning a combined error of all
the segments below a user-defined threshold.

In this work, for the TCDA, a Modified Sliding Window (MSW) segmentation algo-
rithm was used, belonging to point 2 of the above listed techniques. The standard Sliding
Window (SW) method is applied by increasing the length of a segment until it exceeds
a user-defined error threshold. Once the threshold is exceeded, a breakpoint in the time
series is identified (i.e., the onset of a trend change) and the process is repeated using the
next data points. Specifically, the SW algorithm starts by anchoring the left point of a
potential segment at the first data point of a time series, approximating the data to the right
of the anchor point using the linear regression by increasing step by step the segment’s
length. When the error of the linear regression is greater than the user-specified threshold
(at a certain point i), the breakpoint is identified in the position i-1. The anchor point is
then moved to the point i, and the process is repeated until the entire time series is totally
approximated using segments [61]. Different parameters can be selected as the stopping
criterion (e.g., minimum square error, R-squared value, etc.).

A Modified version of the SW algorithm (MSW) has been introduced to take into
account the specific features of the time series obtained using A-DInSAR technique. The
SW segmentation technique is very sensitive to the value of the single measurement point
if only one parameter is considered as the stopping criterion (such as the absolute error of
the regression). As the time series are characterized by steep phase oscillations regarding
the single measurement, considering only one criterion would lead to obtaining several
pointless breakpoints.

To give a higher weight to the time series trend, instead of the single measurement,
the following additional constraints were applied for the detection of breakpoints:

1. A minimum of five data points is required to define a segment; thus, the first anchor
point (i) is located at the fifth point of the time series (i = 5);

2. the slope of the regression line (m-L1) related to the five points to the left of the anchor
must be lower than the slope of the line (m-L2) which approximates the five points
after the anchor;

3. m-L2 must has the same sign of the overall time series trend (e.g., if the PS has a
positive average velocity value, a positive angular coefficient of the L2 line is required);

4. m-L2 must be higher than the slope of the regression line related to the whole time
series (m-Global);

5. for a breakpoint BP = n and for a time series T = T1 . . . ..Tend, the slope of the regres-
sion line of the section [Tn:Tend] (namely m-[Tn:Tend]), must be higher than m-Global;

6. for a breakpoint BP = n, the gradient between the points n + 1 and BP (∆2) must be
higher than the gradient between the points n − 1 and BP (∆1).
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It is worth mentioning that thresholds can be applied to each constraint. In addition,
to account for the residual error of the single measurement, the time series were smoothed
with a moving average filter. In fact, because each point of the time series is a zero-
redundancy product affected by residual noise, the use of low pass filters to improve the
signal to noise ratio is recommended [62].

3. Results
3.1. Montescaglioso Landslide

The Montescaglioso landslide occurred the 3 December 2013, in Southern Italy (Basili-
cata Region) on the south-western slope of the Montescaglioso hill, involving an area about
500,000 m2 wide [13,18,63] (Supplementary Materials Figure S4). A maximum depth of 40 m
for the failure surface is presumed, with an estimated volume of about 8 million cubic me-
tres [63]. The landslide showed a triangular-shaped area, with a total length of 1200 m and a
width of 800 m. The landslide mass was mainly constituted of debris originated by previous
landslides, which involved the Argille Subappenine (i.e., marly clays, clays and silty clays)
and the Irsina formations (i.e., conglomerates) (Supplementary Materials Figure S2). The
trigger of the landslide event is attributed to the intense rainfall that occurred 5–8 October
and the beginning of December 2013 [63–65].

Pre-failure deformational behaviour was observed using a dataset composed by 37 high-
resolution COSMO-SkyMed Stripmap images acquired from May 2011 to December 2013
in the ascending acquisition geometry with a right-looking configuration (LOS angle
with respect to the North is 78◦ and incidence angle 30◦). The last image used is dated
3 December 2013, collected at 5:30 a.m. local time, i.e., 7.5 h before the failure occurred at
1 p.m. CET. The pre-failure analysis showed that the occurrence of slow deformations in
some portions of the area subsequently involved in the 3 December landslide, which also
extend outside the landslide boundaries (Figure 4). The maximum displacements were
recorded between points (a) and (b) in Figure 4, where the average velocity ranges from 5 to
10 mm/year. The time series of displacement inside the landslide area is characterized by a
linear deformational behaviour, with no insights concerning an acceleration phase prior to
the slope failure. The last interferogram available computed using the images acquired on
2 and 3 December 2013 does not show evidence of deformations during the last day before
the landslide occurrence (Figure 5), highlighting that no significant displacements occurred.

3.2. Scillato Landslide

The Scillato landslide occurred 10 April 2015 (Italy, Sicily Region) [66]. It produced
the collapse of the Imera Viaduct (Catania–Palermo Highway, A19) and of an important
connection road generating a great impact on the transportation network (Supplementary
Materials Figure S3).

The landslide involved a slope located on the left bank of the Imera river between
1050 m and 240 m a.s.l. It is considered as the last reactivation of an older landslide that
occurred in 2005 [66]. The total length of the sliding body is about 600 m and the depth
of the failure surface is about 30 metres. The landslide involved flysh deposits with a
predominant clay component and occurred after a period of heavy rainfall.

The A-DInSAR analysis in the pre-failure period was performed using 30 high-
resolution COSMO-SkyMed Stripmap images acquired in the ascending acquisition be-
tween January 2013 and March 2015. The LOS angle with respect to the north was −168.8◦

and the incidence angle was 26.5◦. Inside the landslide area, displacements were recorded
in two different sectors (a and b in Figure 6). The major displacements were reached in
the upper scarp of the landslide, in correspondence of route SP24, where displacement
trends ranging from −2 to −8 mm/year were measured. Sector B is characterized by the
presence of deformations with an average velocity of −3 mm/year, mainly affecting the
old track of the SP24 route, which collapsed during the 2005 landslide event. The time
series of displacement are characterized by linear deformational behaviour.
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Figure 4. A-DInSAR pre-failure analysis for Montescaglioso landslide (from [39]). (Lat: 40.543928◦;
Lon: 16.652877◦; WGS84) including the average velocity map and the time series of displacement of
two representative measurement points in sectors (a) and (b).

Figure 5. Differential interferogram generated with the images acquired on 2 December 2013 and
3 December 2013.
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Figure 6. A-DInSAR pre-failure analysis for Scillato landslide (from [66], modified), including the
average velocity map and the time series of displacement of two representative measurement points
in sectors (a) and (b). (COSMO-SkyMed Product—©ASI—Agenzia Spaziale Italiana—(2017). All
rights reserved). (Lat: 37.843329◦; Lon: 13.914881◦; WGS84).

3.3. Bingham Canyon Mine Landslide

The Bingham landslide occurred 10 April 2013 (Salt Lake City, UT, USA) in the
Bingham Canyon Mine, one of the world’s largest copper deposits [67,68] (Figure 7a).
It was characterized by a complex failure mechanism evolved in the porphyry cop-
per system, mainly composed by Permian and Pennsylvanian sedimentary units rich
in copper, gold, silver, molybdenum, lead and zinc [67]. With its volume of about
65 million cubic metres, the landslide is considered one of the largest in the history
of North America https://blogs.agu.org/landslideblog/2013/05/17/was-the-bingham-
canyon-landslide-the-largest-ever-non-volcanic-landslide-in-north-america/ (accessed
on 15 September 2021) [67]. While the size of the landslide was unexpected, the tim-
ing was estimated using a warning system based on ground-based interferometric SAR
(GB-InSAR) monitoring [68]. The mine production was stopped seven hours before the
collapse https://earthobservatory.nasa.gov/images/81364/sizing-up-the-landslide-at-

https://blogs.agu.org/landslideblog/2013/05/17/was-the-bingham-canyon-landslide-the-largest-ever-non-volcanic-landslide-in-north-america/
https://blogs.agu.org/landslideblog/2013/05/17/was-the-bingham-canyon-landslide-the-largest-ever-non-volcanic-landslide-in-north-america/
https://earthobservatory.nasa.gov/images/81364/sizing-up-the-landslide-at-bingham-canyon-mine
https://earthobservatory.nasa.gov/images/81364/sizing-up-the-landslide-at-bingham-canyon-mine
https://earthobservatory.nasa.gov/images/81364/sizing-up-the-landslide-at-bingham-canyon-mine
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bingham-canyon-mine (accessed on 15 September 2021) and no one was injured. In the
framework of the SOAR-EI Project “Landslides forecasting by means of satellite InSAR”
(between the Canadian Space Agency and Sapienza University of Rome), a retrospec-
tive analysis of the landslide using the A-DInSAR technique was carried out. The past
deformations affecting the pit’s walls were analysed using a stack of 44 high-resolution
RADARSAT-2 images (ultra-fine acquisition mode, 1.6 × 2.8 metres resolution in range
and azimuth, respectively, C-band at 5.405 GHz, 5.55 cm of wavelength) collected between
October 2009 and April 2013 in the ascending geometry. The pre-failure analysis showed
the occurrence of strong displacements in the area subsequently involved in the landslide
(Figure 7). However, measurement points inside the landslide area are characterized by
low temporal coherence values; thus, unreliable displacement estimations were obtained
for those MPs. It follows that A-DInSAR analysis allowed to identify the area affected by
deformations but did not allow to accurately estimate the intensity of displacements. The
reason is related to the occurrence of high displacements, beyond the phase ambiguity limit
and the gaps in the RADARSAT-2 data stack used (as can be observed for the time series of
displacement in Figure 7). As also stated by Williams et al. (2021) [67], it is reasonable to
assume that real displacements where higher than the phase ambiguity limits. It turns out
that sensed displacements inside the landslide area are underestimated.

Considering the 44 available images, from a theoretical point of view, the maximum
displacement observable by PSI techniques during the observational period is 119 cm
(assuming λ/2 as the limit for phase ambiguity between two consecutive images [62,69].

3.4. Mud Creek Landslide

The Mud Creek landslide occurred 20 May 2017, along the coastline area of the
Big Sur region (CA, USA) [39,70]. It was preceded by a smaller landslide, captured on
17 May 2017, by the Sentinel-2 satellite (ESA) https://earthobservatory.nasa.gov/images/
90281/landslide-buries-scenic-california-highway (accessed on 15 September 2021). The
Mud Creek landslide produced the collapse of a popular coast road in California, Highway
1, about 220 km south of San Francisco, and fortunately no one was injured. The landslide
is characterized by an M-shape scar area, a width of 490 m and a length of 600 m and it
displaced ~3 million m3 of earth and rock [70]. The landslide involved the mélange of the
Franciscan Assemblage formation, characterized by overlying unconsolidated colluvial
deposits [70–72]. The landslide occurred after a dry period about one month long (no
rainfall was recorded during the 30 days preceding the slope collapse). However, between
the 1 January 2017, and 8 April 2017, ~1124 mm of cumulative rainfall was recorded
at the “BIG SUR STATION”, located about 70 km north of the landslide location, thus
exceeding the average annual amount of precipitation for this area, namely 1036 mm
https://www.ncdc.noaa.gov/ (accessed on 15 September 2021) [39]. The rainfall mainly
occurred during January and February 2017, when the amount of precipitation greatly
exceeded the average monthly value computed considering the time interval between
1 January 1915, and 6 October 2016 (Supplementary Materials Figure S4).

The analysis of satellite SAR imagery aimed at observing the pre-failure surface
deformation pattern of the area involved in the 20 May 2017, landslide. The area of interest
was analyzed by using both DInSAR and advanced processing algorithms (A-DInSAR).
One Sentinel-1 descending dataset composed by 60 SAR images acquired in the time
interval between the 12 May 2015, and 13 May 2017, was used. The dataset is characterized
by a flight direction of −10.11◦ and an incidence angle of about 38◦ at the scene centre.
To estimate and subtract the phase contribution related to topography, the SRTM (Shuttle
Radar Topography Mission) DEM with a resolution of 30 m was used. The average velocity
map obtained with the A-DInSAR analysis is shown in Figure 8. The obtained results are
remarkable and undoubtedly highlight the presence of a large slope instability process
affecting the slope. The Mud Creek landslide area was affected by high displacements
during the two years preceding the slope collapse. The maximum displacements recorded
reached 160 mm. It can be noted that Highway 1 defines the lower boundary of the unstable

https://earthobservatory.nasa.gov/images/81364/sizing-up-the-landslide-at-bingham-canyon-mine
https://earthobservatory.nasa.gov/images/81364/sizing-up-the-landslide-at-bingham-canyon-mine
https://earthobservatory.nasa.gov/images/90281/landslide-buries-scenic-california-highway
https://earthobservatory.nasa.gov/images/90281/landslide-buries-scenic-california-highway
https://www.ncdc.noaa.gov/
https://www.ncdc.noaa.gov/


Remote Sens. 2021, 13, 3735 12 of 31

mass; in fact, deformations were not recorded below Highway 1, where the slope appears
stable. The May 20 landslide event did not involve all the deforming mass observed in
the A-DInSAR results; indeed, the right flank of the instable mass did not fail. The right
boundary of the landslide body interacted with a deep trench that could have worked as a
kinematic release.
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Measurement points inside the landslide area clearly show non-linear deformations.
In the central part of the landslide body, a first trend change can be observed at the end of
January 2016, one and half years before the landslide occurrence, while a second increase
can be observed in January 2017 (Figure 8, black arrows). The non-linear deformational
behaviour of the unstable slope is well represented also in the differential interferograms.
The DInSAR results offer a spatial-temporal view of the movements that affected the slope
starting from the end of January 2016 (Figure 9). The interferograms formed by considering
all the available images are reported in Figure 9 and Table 1.

In the differential interferograms it is possible to observe the first signs of increasing
trends that affected the landslide area. Specifically, in interferogram 22 (19 January 2016–
31 January 2016), the first features of deformations can be recognized in the upper part
of the landslide area. From 19 March 2016 until 29 July 2016 (interferograms 27 to 35) the
continuous movements that affected all the area subsequently involved in the failure event
are evident. Indeed, during this period, it is possible to observe the interferometric fringes
related to displacements in the central portion of the interferograms. In January 2017, the
slope started to show high displacements again (interferogram number 49). After that date,
the low spatial coherence of the interferograms does not allow to recognize a well-defined
deformational pattern inside the landslide area. However, using a stronger low pass filter
(namely the Boxcar filter) for the last 10 interferograms, clearer results can be retrieved,
making it possible to observe deformations that occurred during the periods 2 March 2017–
26 March 2017 (interferogram 55) and 19 April 2017–1 May 2017 (interferogram 58). The
noise affecting interferograms 56 and 57 does not permit to infer a solid interpretation
of the results in the reference period. On the other hand, it is possible to state that large
displacements occurred during the last acquisitions (1 May 2017–13 May 2017), which
produced the decorrelation of the observed scenario inside the area subsequently involved
in the landslide event (Figure 10). Indeed, the landslide area is characterized by a low coher-
ence value (Figure 10) related to movements that exceeded the phase ambiguity limit (i.e.,
displacement > λ/4), producing the decorrelation of the interferometric phase. This state-
ment is also supported by the investigations carried out by the USGS, highlighting that the
landslide area was affected by displacements in the order of some metres between March
and May 2017 https://www.usgs.gov/special-topic/big-sur-landslides/science/mud-
creek-landslide-may-20-2017?qt-science_center_objects=0#qt-science_center_objects (ac-
cessed on 15 September 2021). The correlation between the displacements observed in the
interferograms and time series of displacement are well represented in Figure 9, where the
periods characterized by the higher deformation rate are highlighted with the red windows
corresponding to March–July 2016 and January–May 2017.

The TCDA was performed using the MSW method considering the measurement
points located in the landslide area with a coherence value greater than 0.75. The coherence
threshold was applied to consider the best point targets. A total number of 276 points
were selected. The maximum absolute error was used as one of the stopping criteria. The
threshold values used for each stopping criterion are listed in Table 2. A moving average
filter with a window length of 10 was used to improve the signal to noise ratio of the time
series. Figure 11 summarizes the obtained results.

The diagram in Figure 11a shows the breakpoints according to each time series, while
the histogram in Figure 11b shows the temporal distribution of the breakpoints, featured
by a tri-modal distribution with the picks corresponding to the following time intervals:

- 25 October 2015–25 November 2015 (pick 1);
- 25 January 2016–25 April 2016 (pick 2);
- 25 October 2016–25 January 2017 (pick 3).

The first pick is related to few and isolated measurement points, the second de-
tected trend change (pick 2) is compatible with the movements observed starting from
19 March 2016 (interferograms 27–35 Figure 9, Table 1), while the third pick is temporally
compatible with the last trend increase, which started in January 2017 (interferograms
49–59 Figure 9, Table 1).

https://www.usgs.gov/special-topic/big-sur-landslides/science/mud-creek-landslide-may-20-2017?qt-science_center_objects=0#qt-science_center_objects
https://www.usgs.gov/special-topic/big-sur-landslides/science/mud-creek-landslide-may-20-2017?qt-science_center_objects=0#qt-science_center_objects
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For MPs showing a trend change during the time interval 25 October 2016–25 January
2017, forecasting analysis is performed (Figure 12). Time series were analysed using a
moving average filter, assigning zero weight to data outside six mean absolute deviations.
While few predictions are close to the actual slope failure, they are characterized by a
random distribution that does not allow prediction of the landslide event (Figure 12). In
fact, even if the TCDA showed the occurrence of trend changes; a proper acceleration
period was not detected from satellite InSAR, preventing the successful application of
forecasting methods.

Figure 9. Relation between the displacements observed in the interferograms (a) and time series of displacement (b). The red
windows highlight the high deformations observed during the two periods March–July 2016 and January–May 2017. Inter-
ferograms are organized from the oldest (number 1) to the newest (number 59). Image number 60 represents the amplitude
map of the analysed area, where the red dashed line shows the location of the May 20 landslide (from [39], modified).

Table 1. List of images used to generate the interferograms. The dates are presented in the following format: yyyymmdd.
Bn is the normal baseline (in metres). TB is temporal baseline.

Interferogram Images Bn TB Interferogram Images Bn TB

1 20150512–20150524 30.8812 12 31 20160506–20160518 −67.3904 12

2 20150524–20150605 87.5209 12 32 20160518–20160530 18.2658 12

3 20150605–20150617 −37.0054 12 33 20160530–20160611 −17.3428 12

4 20150617–20150629 92.4879 12 34 20160611–20160705 94.8227 24

5 20150629–20150711 −201.4874 12 35 20160705–20160729 −103.4819 24

6 20150711–20150723 81.1978 12 36 20160729–20160810 −46.1987 12

7 20150723–20150804 4.6342 12 37 20160810–20160822 94.9578 12

8 20150804–20150816 −1.9977 12 38 20160822–20160903 −36.6214 12
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Table 1. Cont.

Interferogram Images Bn TB Interferogram Images Bn TB

9 20150816–20150828 48.8288 12 39 20160903–20160915 28.5697 12

10 20150828–20150909 −66.5864 12 40 20160915–20160927 49.1716 12

11 20150909–20150921 −27.9898 12 41 20160927–20161009 −34.5499 12

12 20150921–20151003 13.7339 12 42 20161009–20161021 −47.3478 12

13 20151003–20151015 64.2993 12 43 20161021–20161102 85.6516 12

14 20151015–20151027 −11.9484 12 44 20161102–20161114 −4.1638 12

15 20151027–20151108 −66.701 12 45 20161114–20161126 −3.1614 12

16 20151108–20151120 25.107 12 46 20161126–20161208 −49.8788 12

17 20151120–20151202 27.9885 12 47 20161208–20161220 19.321 12

18 20151202–20151214 69.8004 12 48 20161220–20170101 73.2145 12

19 20151214–20151226 17.9478 12 49 20170101–20170113 −1.1805 12

20 20151226–20160107 −73.5122 12 50 20170113–20170119 −138.4077 6

21 20160107–20160119 −38.7568 12 51 20170119–20170125 93.8401 6

22 20160119–20160131 −18.7675 12 52 20170125–20170206 −25.978 12

23 20160131–20160212 9.8419 12 53 20170206–20170218 −69.1927 12

24 20160212–20160224 63.6508 12 54 20170218–20170302 −27.3675 12

25 20160224–20160307 14.2739 12 55 20170302–20170326 117.0545 24

26 20160307–20160319 −42.3275 12 56 20170326–20170407 −35.8385 12

27 20160319–20160331 −54.7575 12 57 20170407–20170419 −28.6252 12

28 20160331–20160412 −1.3179 12 58 20170419–20170501 14.1309 12

29 20160412–20160424 67.9668 12 59 20170501–20170513 64.8533 12

30 20160424–20160506 8.2471 12

Figure 10. Coherence (a) and phase (b) of the last available interferogram (number 59 in Figure 9).
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Table 2. Thresholds used as the stopping criteria where, for an anchor point located in i, m-L2 is the
slope of the line that approximates the five data points after the anchor point; m-L1 is the slope of
the line that fits the five points to the left of the anchor; m-Global is the angular coefficient of the
regression line approximating the whole time series; m-[Ti : Tend] ism-L2 the slope of the regression
line related to the data from T = i to the last T value; ∆2 is the gradient between the points i-1 and i;
∆1 is the gradient between the points i-2 and i-1. If all the constraints are met, a breakpoint is defined
at the position i-1.

Max Absolute Error > 0.04

m-L2/m-L1 > 2.5

m-L2/m-Global > 1.3

m-[Tn : Tend]/m-Global > 1.1

∆2/∆1 > 1

1 

 

 

Figure 11. MSW segmentation analysis. (a) Diagram of all the analyzed time series and the detected
breakpoints. (b) Histogram of the temporal distribution of the breakpoints. (c) Correlation between
the displacements (black dots), rainfall records (blue line) and TCDA results.
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Figure 12. Prediction graph representing the failure forecasting methods applied on the time series of displacement
characterized by a trend change between 25 October 2016 and 25 January 2017 (pick 3). The computed Time of Failure
(ToF) is reported on the y-axis and the measurement points on the x-axis. The failure line represents the actual time of the
slope collapse.

3.5. Xinmo Landslide

The Xinmo landslide occurred 24 June 2017 at 5:45 am local time (23 June 2017,
21:38 UTC) (Supplementary Materials Figure S5). The landslide process lasted only a few
minutes [73–75], destroying the small village of Xinmo (Maoxian County, Sichuan Province,
China) and claiming over 100 lives [75]. A total of 7.70 ± 1.46 million m3 of material
was involved in the landslide event [74], damming a 2-kilometre section of the Songping
river [74]. The landslide involved an area of 1.62 km2, with an average thickness of the
landslide deposit of about 8 m [75]. Geological studies suggested that the landslide was
triggered by heavy rainfall [74]. The cumulative rainfall between 1 May and 22 June 2017,
was 201 mm at Diexi town and 227 mm at Songping gully, and continuous rainfall was
recorded for 10 to 20 days before the slope collapse [75].

A-DInSAR was applied to observe the pre-failure deformational behaviour of the
Xinmo landslide area. Forty-five Sentinel-1 images on descending acquisition geometry
spanning from October 2014 to 19 June 2017, were exploited. The topographic phase was
removed using the 30-m pixel size DEM from the ALOS-2 mission (ALOS World 3D-30m-
AW3D30). The SAR images are characterized by an azimuth direction of −10.24◦ and an
incidence acquisition angle at the scene centre of 39.4◦.

Data were processed using the advanced multi-temporal processing technique. A
detailed local scale analysis focused on the area involved in the June 24 landslide was
performed to detect and measure non-linear displacements that affected the landslide
area [76].

Over the outcropping rocks, a high spatial density of measurement points was
achieved, see Figure 13. In the landslide area, highlighted with the red dashed line in
Figure 13, the deformations preceding the slope collapse can be observed. The results
display a non-homogenous spatial deformation pattern, featured by three main clusters:
Velocity > 5 mm/year, velocity between 5 and 3 mm/year and stable points. The high
negative values of velocity trend (red points) are associated to a downslope movement,
characterized by maximum cumulative displacements of 90–100 mm. Several measure-
ment points obtained in correspondence with the high-velocity moving area show a clear
non-linear deformational behaviour [41]. The MPs with displacements ranging from −3 to
−5 mm/year are characterized by linear displacement trends. Inside the landslide area,
stable portions are also present (green MPs). The MPs are mainly located on debris deposits
composed by large rock blocks, which return a high stable backscattered signal. Only a
part of the high-velocity MPs is located on the bedrock (i.e., the red points between the
yellow and blue circles in Figure 13).
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Figure 13. A-DInSAR results. Average velocity map and the time series of displacement retrieved in correspondence with
the yellow circle (a–d) and the blue circle (e–h) showing clear non-linear deformational behaviour. The dashed polygon
represents the landslide boundary. The insert shows the location of the analysed area (from [39], modified). (Lat: 32.079638◦;
Lon: 103.662088◦; WGS84).

The TCDA allowed to identify the MPs showing an acceleration prior to the slope
collapse. The MSW segmentation algorithm was applied to analyse the MPs. A coherence
threshold of 0.75 and a velocity threshold of 10 mm/year was considered for the selection
of the MPs to be analysed. A moving average filter with a window length of 10 points
was used to smooth the residual error of the single measurements. According to these
constraints, a total number of 158 MPs was selected.

One main pick can be recognized between 25 Februry 2017 and 15 May 2017 (Figure
14b). The corresponding 86 MPs were located in the north-western part of the landslide
area (as reported in Figure 14c) and were characterized by increasing displacement rates
between the end of February and May 2017. According to the time series belonging to pick
1, landslide forecasting methods were applied on filtered time series of displacement. Two
different forecasting analyses were carried out:

- The first forecasting analysis, considering the complete time series of displacement
available, from October 2014 to the 19 June 2017 (Figure 15a);

- the second forecasting analysis, considering the time interval from the last breakpoint
time to the end of the series (Figure 15b).
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Figure 14. (a) Thresholds used as the stopping criteria. (b) Temporal distribution of the breakpoints. (c) Spatial distribution
of the MPs showing a trend change between February 2017 and May 2017 (pink stars).

Figure 15. Histograms showing the temporal distribution of predictions. (a) Forecasting analysis applied to the whole
monitoring period (October 2014–June 2017). (b) Forecasting analysis applied on the time interval included from the
breakpoint time to the last acquisition (19 June 2017).

The outcomes of the first forecasting analysis reveal that the NL method can return
reliable and accurate predictions (Figure 15a). The INV method totally failed in predicting
the ToF. In fact, the INV method can be used when the inverse velocity data are well
approximated by a linear trend; while considering the whole time series of displacement
and not only the tertiary creep phase, a strong non-linear behaviour has to be taken into
account. In contrast, the NL method, because of its non-linear nature, can follow strong
non-linear deformations; that is the reason why it can also be applied using the whole
dataset and not only the acceleration stage. The analysis showed that the predictions
obtained with the NL method are clustered in the time interval between the end of June
and the beginning of August 2017, allowing to define a likely failure window (i.e., the
period in which the landslide is likely to occur).

The second forecasting analysis shows that the INV method allows to obtain the most
accurate predictions (Figure 15b). Indeed, the analysis was carried out considering only
the tertiary creep phase, where the inverse velocity data can be well approximated by a
linear relation in the 1/V graph, allowing to obtain a reliable prediction using the INV
method. As can be seen from the histogram in Figure 15b, the predictions are clustered
in the time interval between 19 June and 13 August 2017, making it possible to identify a
likely failure window.

In Figure 16 an example of the NL forecasting analysis over two measurement points
showing a successful (Figure 16a) and an unsuccessful (Figure 16b) example of predictions
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is reported. It is possible to observe that the NL model closely approximates the time series
in the case of successful prediction, while a low correlation characterizes the NL model
and monitoring data in the case of the unsuccessful prediction. The relation between the
error of predictions (computed as the difference in days between ToF and actual failure)
and correlation coefficient R is shown in Figure 17. The graph reveals the inverse relation
existing between the two parameters, namely: A large error of predictions is related to low
R values.

Figure 16. Example of the application of NL analysis on two time series of displacement belonging to
pick 1. (a) Successful forecasting analysis. (b) Unsuccessful forecasting analysis. In both the graphs,
the best-fitting parameters A and α and the correlation coefficient R are reported. The real slope
failure occurred on 24 June 2017.

Figure 17. Relation between the error of predictions obtained with the INV method (a) and R values
(b). The error of prediction is reported on the y-axis as the difference in days between the computed
ToF and the actual failure time. The ID of predictions is listed on the x-axis. The graph refers to
the forecasting analysis applied on the time interval included from the breakpoint time to the last
acquisition (19 June 2017).
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4. Discussions

Five different landslides were back-analysed in this study to explore the potential of
satellite InSAR to detect precursor phenomena in terms of deformations. The outcomes
can be summarized as follows:

- The Montescaglioso landslides, considered as a reactivation evolved in clay soils
and triggered by intense rainfalls, was characterized by a rapid evolution toward
failure. As a matter of fact, the landslide event did not show precursory phenomena
in terms of deformations until, at least, the 8 h preceding the slope collapse (i.e., the
time that elapsed between the last image acquired by COSMO-SkyMed constellation
and the failure). No evident displacements associated with the landslide process
were recorded during the 1.5 years preceding the slope failure, and the slope area
turned out to be quite stable during the pre-failure period. The A-DInSAR results
are characterized by an irregular spatial distribution and by an inhomogeneous
distribution of the magnitude of deformations, which seems to reflect the behaviour
of single point targets rather than the behaviour of the slope system. We can state that
both the spatial and temporal forecasting from satellite InSAR failed.

- For the Scillato landslides, the results highlight the occurrence of displacements in
the area subsequently involved in the landslide process. Two sectors of interest can
be recognized (Figure 6): Major displacements were retrieved in correspondence
with the upper scarp of the landslide (Sector A), with deformation trends ranging
between −2 and −8 mm/year; deformations were also collected in the lower part
of the landslide body (Sector B), characterized by an average deformation trend of
−3 mm/year. Even if slope deformations were evident, an acceleration phase before
the failure was not captured from the satellite InSAR analysis, so that it would not
be possible to appreciate the critical conditions of this portion of the slope before the
failure occurred. It turns out that, considering the spatial distribution of the observed
deformations and their temporal characteristics, it would not be possible to identify
the area subsequently involved in the landslide event or its time of occurrence, even in
the retrospective analysis. In this case, the landslide processes were characterized by
a rapid evolution toward the failure, preventing observation of precursor phenomena
from satellite InSAR. However, A-DInSAR results provided interesting insights about
the state and distribution of the landslide activity [77]. In fact, even if the density
and distribution of measurement points would not have allowed to spatially identify
and constrain the unstable mass, due to the absence of natural coherent targets on
the ground, the displacements sensed in correspondence with anthropic structures
(roads and buildings) are perfectly within the boundary of the 2015 landslide event
(sectors A and B in Figure 6). Knowing the location and extension of the 2005 landslide
(yellow polygon in Figure 6), InSAR results would have allowed to classify the past
2005 landslide as active, proving interesting insights also regarding the distribution of
the landslide activity. In fact, considering the movements recorded in correspondence
with the SP45, at a higher altitude with respect the 2005 landslide, it would have
been reasonable to hypothesize a retrogressive evolution of the landslide, involving
the SP45.

- For the Bingham Canyon Mine landslide, strong displacements were observed during
the pre-failure period with satellite InSAR (Figure 7). The strong displacements
occurred and the low and inhomogeneous sampling frequency of RADARSAT-2 stack
affected the capability of the technique to monitor displacements inside the landslide
area, which turned out to be strongly underestimated [70]; precursory phenomena
in terms of accelerating creep were not captured by A-D InSAR, while the Terrestrial
InSAR instrument, implemented by the company that operates the mine, featured
by a few minutes of data sampling frequency, allowed to detect a clear accelerating
behaviour, thus evacuating the area 6 h before the failure occurred from the NASA
Earth Observatory https://earthobservatory.nasa.gov/images/81364/sizing-up-the-
landslide-at-bingham-canyon-mine (accessed on 15 September 2021). In this case,

https://earthobservatory.nasa.gov/images/81364/sizing-up-the-landslide-at-bingham-canyon-mine
https://earthobservatory.nasa.gov/images/81364/sizing-up-the-landslide-at-bingham-canyon-mine
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the nature of the landslide and the low temporal resolution of the RADARSAT-
2 interferometric stack influenced the capability of satellite InSAR to monitor the
landslide’s evolution towards the failure. However, satellite InSAR provided unique
evidence regarding the unstable mass extension and the characterization of the failure
mechanism [68]. The high PM density enabled spatial constraint of the landslide
area, providing important details that could have been useful for the determination of
failure size, extent and runout distance analysis, to be used by decision makers in the
emergency response plan implemented before the catastrophic collapse [70].

- For the Mud Creek landslide, the phase ambiguity limits affected the capability to
monitor the tertiary creep phase and, consequently, the reliability of predictions using
landslide forecasting methods. However, the high spatial density of measurement
points enabled clear identification of the boundary of the instable mass and trend
changes in the time series connected to the beginning of a possible slope critical
phase. We saw how the trend changes reflect the deformations observed in the
differential interferograms and the relation between the increase of velocity trends
and rainfall, providing interesting information about the processes that governed the
slope behaviour. In this case, the InSAR technique has proven to be a suitable tool
for the detection of the critical landslide-prone area. In fact, the A-DInSAR results,
supported also by the DInSAR analysis, allowed to spatially constrain the critical
slope area and to identify the strain rate increases in the time series associated with
insights concerning the impending failure. Even if the temporal forecasting analysis
did not return successful results, satellite InSAR could have been extremely useful
even in a priori analysis in supporting the risk management policies, by identifying
the landslide critical area thus assessing the proper mitigation strategies. In this
case, we can state that the spatial prediction was successful. Moreover, qualitative
interesting insights about the temporal prediction were provided by satellite InSAR.
In fact, the observed trend change in January 2017 and the loss of coherence in the last
interferogram can be interpreted as the beginning of a potential critical phase to be
properly addressed.

- For the Xinmo landslide, a relationship between the spatial distribution, the timing of
the trend changes and the temporal predictions was observed, allowing to estimate a
“likely failure window” during which the occurrence of the slope collapse is supposed
to be possible/imminent. In fact, in contrast with the Mud Creek landslides where only
a few measurement points returned predictions characterized by high accuracy, for the
Xinmo landslide the predictions are clustered in space and in time (Figures 14 and 15).
These outcomes revealed the suitability of InSAR technology to detect critical landslide
situations, leading the way to new applications of the technique for landslide risk
awareness and management strategies.

We show how MP density can influence the spatial predictability of landslides. In our
case histories, the capability of satellite InSAR to identify precursors or slopes prone to
collapse turned out to be higher for landslide processes involving rocks (e.g., Mud Creek
and Xinmo) than for landslides evolving in hard soils or clay soils (e.g., Montescaglioso,
Scillato). The first reason for this is related to the fact that rocks are good radar reflectors,
allowing to retrieve high density MPs. In contrast, for the Montescaglioso and Scillato
landslides that evolved in clay materials with low backscattering features, the low spatial
distribution of measurement points did not allow to spatially constrain the landslide prone
areas. Furthermore, in these cases, the MPs are mainly located in correspondence with man-
made structures (namely buildings and roads). This could be a limit to monitoring slope
deformational behaviour because the measurements may reflect the interaction between
the structures and the terrain and not the slope behaviour. On the other hand, for the
Mud Creek and Xinmo landslides, the real ground deformations in the landslide areas
were captured and the high spatial distribution of the point targets would have allowed to
identify the expected landslide location (i.e., successful spatial forecasting).
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It is worth mentioning which type of A-DInSAR approach could contribute to the
suitability of results for the investigation of landslide process. In fact, while the PSI
approach returns very accurate results in terms of displacement trend estimation, it is
founded on the analysis of high time-coherent targets sometimes not sufficiently present in
landslides evolving in soils or agricultural fields. In this scenario, the SBAS approaches
could provide interesting and additional information in highly deformable soils and rocks
sometimes characterized by few (or by the absence) of the so-called persistent scatterers,
even if SBAS is not as accurate as PSI because of the unwrapping errors [29]. In addition,
in some cases, the intensity of the ground displacements can be quantitatively estimated
by the analysis of multi-temporal unwrapped interferograms with centimetric accuracy, as
highlighted in several studies [78]. The method is less accurate and robust with respect to
common A-DInSAR methods (due to atmospheric noise, residual height contribution and
unwrapping errors), but it allows to estimate displacements larger than those producing
phase aliasing with multi-temporal processing algos and to obtain more distributed data.

The type of landslide can also be crucial for the temporal predictability. In fact, the
Montescaglioso and Scillato landslides, second generation landslides (reactivation) evolv-
ing in clay material, were not characterized by evident precursor phenomena and evolved
towards the failure very fast, not allowing to capture temporal insights of impending
failure. In contrast, the Xinmo landslide (first landslide generation) shows the typical defor-
mational behaviour of progressive failure in brittle material, with a continuous strain rate
increase until the failure occurrence associated with the shear surface development [53,79].

Regarding the ToF approach, the following statements can be drawn:

- The results of the ToF analysis must be globally assessed, considering both the spatial
and temporal distribution of the predictions. With the A-DInSAR derived time series
of displacement, failure of forecasting methods should be applied according to a
statistical-based approach in order to detect the time interval in which the failure is
likely to occur (e.g., a confidence interval of the predictions).

- The quantitative estimation of the goodness between the model and interferometric
data can be described by the correlation coefficient R or R2, indeed successful predic-
tions are characterized by a high R value. The fitting parameters (e.g., the correlation
coefficient R or R2), can give an idea of the reliability of prediction because they reflect
the similarity between the model and monitoring data.

- The landslide forecasting methods should be applied when an acceleration phase is
evident in the time series of displacement to avoid gaining unreliable predictions.
Thus, the first step of a forecasting analysis should deal with the detection of the
onset of acceleration (OOA; [80]), defined as the point identifying the transition from
a steady state to an acceleration stage.

According to the results obtained in the five case studies presented, we propose a novel
classification regarding the predictability of landslides from satellite InSAR, differentiating
among five classes of predictability:

- “Unpredictable landslide” by InSAR. This class includes landslides where displace-
ments strictly related to the slope instability process cannot be observed by InSAR
and/or processes characterized by an absence of precursor phenomena or by a very
rapid evolution of the acceleration phase (e.g., the Montescaglioso landslide). These
types of behaviours can be connected to the landslide type, involved materials and
trigger forces.

- “Qualitative spatial predictability” by InSAR. This refers to the possibility to derive
information about the state of activity and the distribution of activity of a landslide
based on the geological/geomorphological interpretation of InSAR data (i.e., the
Scillato landslide).

- “Spatial predictability” by InSAR. This concerns the possibility to spatially constrain
the landslide mass, with none or limited insights about the temporal predictability
(i.e., the Bingham Canyon Mine landslide).
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- “Critical behaviour predictability” by InSAR. This referrs to a successful spatial
predictability coupled with qualitative insights about the temporal evolution of a
landslide. In this case a worsening of the stability conditions of a slope can be
clearly identified, such as an increase of the deformational trend, but a progressive
accelerating phase is not evident (i.e., Mud Creek landslide).

- “Predictable landslide” by InSAR. This is related to the temporal prediction capabil-
ity, or rather to the possibility to successfully apply the ToF analysis, evidencing a
correlation between spatial and temporal predictability (i.e., the Xinmo landslide).

Thanks to a growing availability of SAR imagery, the new satellite generations are
making it possible to increase InSAR applications. The last satellite missions (Sentinel-
1, COSMO-SkyMed, RADARSAT-2, TerraSAR-X, etc.) have considerably improved the
potential of the A-DInSAR technique for landslide forecasting purposes [39]. The short
revisit time and the constant and global acquisition plan offered by the Sentinel-1 mission
have allowed to explore the capability of the InSAR technique for forecasting purposes by
back-analysing recent landslide events: The Mud Creek landslide (20 May 2017) and the
Xinmo landslide (24 June 2017).

The analyses highlight that forecasting the landslide occurrence from space is currently
possible. However, at present, the revisit time still represents the principal constraint for
operational services in a priori analysis, limiting the applicability of the forecasting analysis
to landslide phenomena characterized by long tertiary creep phase and affecting the
accuracy of predictions [81].

SAR satellite missions started with systems characterized by a revisit time of 35 days,
currently reaching revisit times of few days with a global coverage. Furthermore, interesting
improvements in the revisit time for future satellites are expected. The scientific community
has already worked out geosynchronous SAR systems [82–86] with quasi-continuous
imaging capabilities able to generate 10 metre resolution images every 8 h [87]. In addition,
“near Real Time (minutes or hours) radar imaging . . . can be obtained with different
solutions” [87] and satellite constellations of both geosynchronous SAR systems [88] and
SAR microsatellites able to get revisit times of 1–2 h are expected in the near future [89].
This means a higher capability to monitor the accelerating phase of landslides and a higher
capability of sensing the high deformation magnitudes occurring during the pre-failure
stage. This improvement in terms of sampling frequency would also allow reaching higher
accuracy of the ToF prediction. In fact, as discussed in Bozzano et al. 2017, the sampling
frequency is fundamental for the application of landslide forecasting methods, particularly
because sampling frequency highly influences the accuracy of predictions.

However, the big step forward made for landslide forecasting applications since the
beginning of the first SAR systems (ERS and Envisat) can be observed in Figure 18. In the
diagram, the 56 landslides collected in the landslide database presented in Moretto et al.
2017 [40] are located on the x-axis, while the prediction error (obtained as the difference in
days between the actual failure and the computed ToF) is on the y-axis. ID values were
sorted according to the data sampling frequency, so that the sampling frequency of datasets
decreases towards the right of the diagram. It is worth highlighting hat the prediction
accuracy increases towards the left of the graph, with the increasing of data sampling
frequency. It can be observed as a single geosynchronous SAR system (according to its
theoretical revisit time of 12 h) and the future expected geosynchronous SAR or micro-SAR
constellations will theoretically contribute to greatly increasing the landslide prediction
accuracy and the possibility to monitor faster precursory phenomena, thus increasing the
potential of satellite InSAR for landslide forecasting purposes.
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Figure 18. Error diagram comparing the errors of failure prediction (y-axis) and data sampling frequency (x-axis). The
sampling frequency of datasets decreases towards the right, passing from a sampling frequency of about one datum per
minute (ID 1) to one datum every three months (ID 56). The diagram shows the error of predictions (y-axis) obtained with
different landslide forecasting methods. The colours identify the different failure forecasting methods (FFMs). The red
arrows identify the points corresponding to the sampling frequency of: Future geosynchronous SAR or SAR microsatellite
constellation (revisit: 1–2 h), single geosynchronous SAR (revisit: 12 h), Sentinel-1 (revisit: Six days), COSMO-SkyMed
(revisit: 16 days) and ERS and Envisat satellites (revisit: 35 days).

5. Conclusions

Satellite SAR interferometry already contributes to landslide risk reduction at different
stages and scales and the growing technological improvement in the Earth observation
SAR field is expected to further increase satellite InSAR potential for different applica-
tions. The technique is becoming more and more promising and useful for acquiring
several pieces of information for landslide hazard assessment, strongly contributing to risk
management strategies.

At present, it is still considered a border methodology for forecasting purposes con-
cerning achieving reliable ToF predictions in a priori analyses, and the operational scenario
by satellite SAR interferometry is still challenging, mainly because of the low sampling
frequency offered by current SAR satellite missions. Some challenges still need to be
overcome to implement landslide forecasting analysis in real risk management strategies,
both from the technical (satellite revisit time, coverage, etc.) and operational/management
(e.g., need to have more robust standards and best practices; advancements in the culture
of prevention) points of view. However, it was confirmed that Satellite SAR interferometry
can be successful in the early detection of landslide critical conditions.

According to our findings, we can distinguish among:

- Successful prediction of the ToF with satellite InSAR (i.e., “predictable landslide” in
Section 4);

- observation of a worsening of the situation, without the ability to predict the TOF (i.e.,
“critical behaviour predictability” in Section 4);

- detection of spatial anomaly allowing to accurately delimit the slope instability (i.e.,
“spatial predictability” in Section 4);

- classification of the state of activity of a landslide (i.e., “qualitative spatial predictabil-
ity”, in Section 4);

- Unpredictable events (i.e., “predictable landslide” in Section 4).

We saw how the type of landslide affects the potential of satellite InSAR to monitor
its deformational behaviour. First of all, the site-specific suitability of a satellite InSAR
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analysis depends on several factors [36,90]: (i) Radar distortions; (ii) presence of stable
backscatters; (iii) availability of data; (vi) areal extension of the landslide process and
(v) deformational behaviour of the landslide (rate of deformations). In addition, we
discussed how the capability of satellite InSAR to identify precursor phenomena is better
for landslides evolving in rocks (e.g., Mud Creek and Xinmo), rather than landslides
evolving in hard soils or clay soils (e.g., Montescaglioso, Scillato), mainly due to the
density of measurement points, as well as the difference in predictability between the
first generation and second generation of landslides (this last can be characterized by the
absence of evident precursor phenomena).

Assuming that the minimum requirements are respected (i.e., availability of images,
coherent targets and spatial extension of the landslide process), one of the major limits
affecting satellite InSAR for landslide forecasting purposes is the low data sampling fre-
quency. In fact, sampling frequency plays a key role for forecasting and early warning
purposes. As a matter of fact, too long revisit times do not allow to investigate rapid
processes (e.g., if the acceleration phase is shorter than the revisit time) or to properly
monitor the displacements (because of phase ambiguity limitations), i.e., the shorter the
revisit time, the higher the maximum displacement that can be estimated. The monitoring
sampling frequency also affects the accuracy of the forecasting methods, so that the higher
the sampling frequency, the higher the accuracy of predictions [87]. If a landslide process
is monitored with suitable techniques (high spatial and temporal resolution), forecasting
methods can be a powerful tool in risk management strategies and for early warning
systems [81].

Moreover, the new-generation satellite missions have considerably improved the
potential of the A-DInSAR technique for landslide forecasting purposes, and further
relevant developments are expected in the near future (Figure 15), paving the way for new
opportunities in this field to be fully explored.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs13183735/s1. Figure S1: Area involved in the Montescaglioso landslide; Figure S2: Geological
map of the Montescaglioso hill and related geological cross sections A-A’, B-B’; Figure S3: View
of the Scillato landslides of 2015 and 2005 over an high-resolution orthophoto (left) and pictures
of the damages of the SP24 and of the viaduct (A19); Figure S4: Rainfall records collected at the
station “BIG SUR STATION, CA US USC00040790” (Elev: 60 m a.s.l. Lat: 36.2472◦ N Lon: −121.7802◦

W) [National Environmental Satellite Data and Information Service—17]. (a) Daily rainfall records.
(b) Cumulative rainfalls. (c) Average of monthly rainfall. Blue bars are referred to the time interval
between 1 January 1915 and 6 October 2016, orange bars represent the average monthly rains between
January–May 2017; Figure S5: The Xinmo landslide. (a) Location. (b) UAV (Unmanned aerial Vehicle)
imagery that offer a complete view of the landslide. (c,d) Pictures of the landslide deposit.
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