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Abstract: The core of this paper concerns the existence (via regularity) of weak solutions inW1,2
0 of a class of

elliptic systems such as
{{
{{
{

−div((A + φ)∇u) = f,

−div(M(x)∇φ) = 12 |∇u|
2,

deriving from saddle points of integral functionals of the type

J(v, ψ) = 12 ∫
Ω

(A + ψ+)|∇v|2 −
1
2 ∫
Ω

M(x)∇ψ∇ψ − ∫
Ω

fv.
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1 Introduction
Let Ω be a bounded, open subset ofℝN , with N > 2, and let M(x) be a measurable matrix such that

M(x)ξξ ≥ α|ξ|2, |M(x)| ≤ β, (1.1)

for almost every x in Ω and for every ξ in ℝN with 0 < α ≤ β. We also suppose that A > 0 is a positive real
number and that f is a function belonging to Lm(Ω), m ≥ 2N

N+2 . Let us consider the functional

J(v, ψ) = 12 ∫
Ω

(A + ψ+)|∇v|2 −
1
2 ∫
Ω

M(x)∇ψ∇ψ − ∫
Ω

fv (1.2)

with v ∈ W1,2
0 (Ω), ψ ∈ W1,2

0 (Ω) and
ψ+|∇v|2 ∈ L1(Ω).

Observe that the functional J( ⋅ , ψ) has a minimum for every ψ, while the functional J(v, ⋅ ) has a maximum
for every v.

Then it is reasonable to think that there exists a saddle point (u, φ) for J, which is formally a solution of
the system

{{
{{
{

−div((A + φ)∇u) = f,

−div(M(x)∇φ) = 12 |∇u|
2.

(1.3)
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However, there are several difficulties hidden in the previous sentence: the existence of a saddle point, the
nondifferentiability of J and the fact that the second equation has an L1 right-hand side. For these reasons,
classical min-max theorems (see [2, 6, 9]) cannot be applied, so that we directly study system (1.3) instead
of the functional J, proving first the existence inW1,2

0 (Ω) of a weak solution (u, φ) and then that it is a saddle
point of J.

Our main result is the following theorem, proved in Section 2.

Theorem 1.1. Assume that (1.1) holds and let f be a function in L2∗ (Ω), where 2∗ = 2N
N+2 . Then there exists

a weak solution (u, φ) of the system (1.3). More precisely:
(i) u and φ belong to W1,2

0 (Ω), u3 and φ3/2 belong to W1,2
0 (Ω), φ|∇u| belongs to L2(Ω), and |∇u|2w belongs

to L1(Ω) for every w inW1,2
0 (Ω).

(ii) We have

∫
Ω

(A + φ)∇u∇v = ∫
Ω

fv for all v ∈ W1,2
0 (Ω). (1.4)

(iii) We have that φ ≥ 0 and

∫
Ω

M(x)∇φ∇w = 12 ∫
Ω

|∇u|2w for all w ∈ W1,2
0 (Ω). (1.5)

Remark 1.2. We point out the regularizing effect of the system: the solution φ belongs to W1,2
0 (Ω), despite

the poor summability of the right-hand side of the equation it satisfies. Also, even though in principle u only
belongs toW1,2

0 (Ω), so that |∇u|2 is in L1(Ω) and not better, the product |∇u|2w belongs to L1(Ω) for every w
inW1,2

0 (Ω) (recall thatW1,2
0 (Ω) functions are not, in general, bounded).

There are not many results about saddle points for integral functionals depending on two independent
variables. A small comparison with our results is possible with the functional

I(z, η) = 12 ∫
Ω

M(x)∇z∇z − A2r ∫
Ω

M(x)∇η∇η + A
r ∫
Ω

η+|z|r − ∫
Ω

fz,

where the coupling between z and η is in the zero order term. The existence of a saddle point for I (and of
a solution of the related Euler–Lagrange system) is proved in [4]. Also the solutions of the Euler–Lagrange
system for I enjoy the regularizing effect.

Remark 1.3. The fact that the solution u, due to the coupling of the equations of the system, is more regular
than the solution of the single equation (for example, not only u, but also u3 belongs to W1,2

0 (Ω)) may lead
to think that there exist solutions also under weaker summability assumptions on f , such as f belonging to
Lm(Ω) for somem < 2∗. There is, however, a main obstruction to this fact: if f does not belong to L2∗ (Ω), one
may not expect to have solutions u inW1,2

0 (Ω); therefore, |∇u|2 would not belong to L1(Ω), and so the second
equation of (1.3) loses meaning. Therefore, in some sense, the assumption f in L2∗ (Ω) is the minimal one in
order to have existence. Also note that if f belongs to Lm(Ω), withm < 2∗, the functional J( ⋅ , ψ) has no longer
a minimum onW1,2

0 (Ω), so that also the concept of saddle point for J is lost if f is not sufficiently summable.

Remark 1.4. The coefficient 1
2 which multiplies the quadratic gradient term in the second equation of (1.3)

can be exchanged with any other real number λ > 0. Indeed, if (v, φ) is a solution of

{{
{{
{

−div((A + φ)∇v) = √2λf,

−div(M(x)∇φ) = 12 |∇v|
2

and u = v
√2λ

, then (u, φ) is a solution of

{
−div((A + φ)∇u) = f,
−div(M(x)∇φ) = λ|∇u|2.

(1.6)

Since the summability of√2λf does not depend on λ, once we have proved an existence result for (1.3) under
the assumption of data f in L2∗ (Ω), wewill have an existence result for (1.6) under the same assumption on f .
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Once we have proved Theorem 1.1, we can prove, in Section 3, that the functional J defined above has a
saddle point.

Theorem 1.5. Under the assumptions of Theorem 1.1 and by assuming that M(x) is symmetric, the solution
(u, φ) of the system (1.3) is a saddle point of the functional J, defined in (1.2), that is,

J(u, ψ) ≤ J(u, φ) ≤ J(z, φ) (1.7)

for every z inW1,2
0 (Ω) such that φ|∇z|2 belongs to L1(Ω), and for every ψ inW1,2

0 (Ω).

Our final result will prove that the increased summability of u and φ given by Theorem 1.1 under the
assumption f in L2∗ (Ω) can also be improved if f belongs to Lm(Ω), with m > 2∗. More precisely, we will
prove the following:
(i) If m > N2 , then u belongs to L∞(Ω), while φρ belongs to W1,2

0 (Ω) for every ρ ≥ 1 (see Lemma 2.2 and
Lemma 2.4, below).

(ii) There exists an increasing sequence mk, with 2∗ < mk < N2 , such that if f belongs to Lmk (Ω), then u
belongs to L3⋅m∗∗

k (Ω) and φ belongs to L3⋅m∗∗
k /2(Ω) (see Section 4 for the precise statement of this result).

Remark 1.6. In all the results of this paper, every result proved for u has a counterpart for φ in the sense that
“φ almost behaves like u2”; for example, in Theorem 1.1, u3 belongs to W1,2

0 (Ω), and φ3/2 belongs to the
same space.

To give an idea of the reason why this happens, let us consider a one-dimensional reduction of the func-
tional J, i.e., the function of two real variables

H(x, y) = 12 (A + y)x
2 −

1
2 y

2 − Bx,

where A > 0 and B > 0. It is easy to see that H has a unique critical point (x0, y0) with y0 = 1
2 x

2
0 and x0 such

that 12 x
3
0 + Ax0 = B, and that (x0, y0) is a saddle point forH. Therefore, as far as the critical saddle point (u, φ)

of J is concerned, it is reasonable to expect that φ approximately behaves like u2 since y0 ≈ x20.
See also the beginning of Section 4 for further remarks on this topic.

2 Proof of Theorem 1.1
In the following, we will make frequent use of the function of one real variable (here k > 0):

Tk(s) = max(−k,min(s, k)).

We will prove the result in several steps. We begin proving that, if f belongs to Lm(Ω), with m > N2 , then
an “approximate” system has a solution.

Lemma 2.1. Assume that (1.1) holds and let f belong to Lm(Ω), with m > N2 . Let n be in ℕ. Then there exists
a couple (un , φn) of functions such that the following hold:
(i) un belongs toW1,2

0 (Ω) ∩ L∞(Ω) and

∫
Ω

(A + Tn(φn))∇un∇v = ∫
Ω

fv for all v ∈ W1,2
0 (Ω). (2.1)

(ii) φn ≥ 0 belongs toW1,q
0 (Ω) for every q < N

N−1 , is such that Tk(φn) belongs toW
1,2
0 (Ω) for every k ≥ 0, and

∫
Ω

M(x)∇φn∇Tk(φn − η) ≤
1
2 ∫
Ω

|∇un|2Tk(φn − η) (2.2)

for every k ≥ 0 and every η inW1,2
0 (Ω) ∩ L∞(Ω).
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Proof. Let f be a function as in the statement and let n be inℕ. Let r be such that 1 < r < N
N−2 , and for 0 ≤ φ

in Lr(Ω) let w inW1,2
0 (Ω) be the unique weak solution of

∫
Ω

(A + Tn(φ))∇w∇v = ∫
Ω

fv for all v ∈ W1,2
0 (Ω).

Since m > 2∗, one has
‖w‖W1,2

0 (Ω) ≤ C‖f‖Lm(Ω) = R, (2.3)

while (since m > N2 ), by a result of Stampacchia (see [8]), one has

‖w‖L∞(Ω) ≤ C‖f‖Lm(Ω). (2.4)

Define then ψ to be the unique function (see [3], where ψ is called entropy solution) such that Tk(ψ) belongs
toW1,2

0 (Ω) for every k ≥ 0 and that

∫
Ω

M(x)∇ψ∇Tk(ψ − η) ≤
1
2 ∫
Ω

|∇w|2Tk(ψ − η)

for every k ≥ 0 and for every η ∈ W1,2
0 (Ω) ∩ L∞(Ω). We recall that ψ ≥ 0 belongs toW1,q

0 (Ω) for every q < N
N−1

and that
‖ψ‖W1,q

0 (Ω) ≤ Cq‖|∇w|
2‖L1(Ω) = Cq‖w‖2W1,2

0 (Ω) ≤ Cq‖f‖
2
Lm(Ω),

where Cq is a constant depending on q < N
N−1 and we have used (2.3) in the last passage. In particular, by the

Sobolev embedding, if q is such that q∗ = r, we have

‖ψ‖Lr(Ω) ≤ CrR2 = Q(R).

Therefore, if S : Lr(Ω)→ Lr(Ω) is defined by S(φ) = ψ, the ball of Lr(Ω) of radius Q(R) is invariant for S.
If {φρ} is bounded in Lr(Ω), it is easy to prove that one can extract from S(φρ) a sequence strongly convergent
in Lr(Ω) since the sequence {S(φρ)} is bounded in W1,q

0 (Ω). Furthermore, if φρ strongly converges to φ in
Lr(Ω), it is easy to prove that wρ strongly converges to w (the unique solution) in W1,2

0 (Ω), so that S(φρ)
strongly converges to S(φ) in Lr(Ω). Therefore, by the Schauder fixed point theorem, for every n in ℕ there
exists φn ≥ 0 such that S(φn) = φn, and so the functions un and φn satisfy (2.1) and (2.2), as desired.

Our next result deals with the sequence {(un , φn)} given by the previous lemma, proving that it has a limit,
which solves the system (1.3) if f belongs to Lm(Ω), with m > N2 .

Lemma 2.2. Assume that (1.1) holds and let f belong to Lm(Ω), with m > N2 . Then there exists a couple (u, φ)
of functions such that the following hold:
(i) u belongs toW1,2

0 (Ω) ∩ L∞(Ω), φ belongs toW1,2
0 (Ω), φ|∇u| belongs to L2(Ω) and |∇u|2w belongs to L1(Ω)

for every w inW1,2
0 (Ω).

(ii) u is such that

∫
Ω

(A + φ)∇u∇v = ∫
Ω

fv for all v ∈ W1,2
0 (Ω). (2.5)

(iii) φ ≥ 0 is such that

∫
Ω

M(x)∇φ∇w = 12 ∫
Ω

|∇u|2w for all w ∈ W1,2
0 (Ω). (2.6)

Proof. Here, and in the following, we will denote by C(f) and C(f, A), some possibly different positive con-
stants which only depend on (some powers of) the norm of f in Lm(Ω) and on A.

Let (un , φn) be the couple of functions given by Lemma 2.1. We begin with some a priori estimates on
both un and φn. Recalling (2.4), we have that

‖un‖L∞(Ω) ≤ C(f). (2.7)
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Furthermore, choosing v = un in (2.1), we have

∫
Ω

(A + Tn(φn))|∇un|2 ≤ ∫
Ω

fun ≤ C(f),

so that
{un} is bounded inW1,2

0 (Ω) and {Tn(φn)|∇un|2} is bounded in L1(Ω). (2.8)

Finally, choosing η = 0 and k = n in (2.2), we obtain, using (2.8) and (1.1), that

α∫
Ω

|∇Tn(φn)|2 ≤
1
2 ∫
Ω

Tn(φn)|∇un|2 ≤ C(f), (2.9)

so that {Tn(φn)} is bounded inW1,2
0 (Ω). Notice now that since {un} is bounded inW1,2

0 (Ω), {|∇un|2} is bounded
in L1(Ω). Then, by the results of [3], {φn} is bounded inW1,q

0 (Ω) for every q < N
N−1 . Hence, φn converges, up

to a subsequence still denoted by φn, to some function φ. But then, by {Tn(φn)} being bounded inW1,2
0 (Ω),

we have that φ belongs toW1,2
0 (Ω) as well.

We now choose v = unTn(φn) in (2.1) to obtain

∫
Ω

(A + Tn(φn))|∇un|2Tn(φn) + ∫
Ω

(A + Tn(φn)∇un∇Tn(φn)un = ∫
Ω

funTn(φn),

which implies (by dropping a positive term and using (2.7) and (2.9)) that

∫
Ω

Tn(φn)2|∇un|2 ≤ C(f)‖Tn(φn)‖Lm� (Ω) + ∫
Ω

(A + Tn(φn))|∇un||∇Tn(φn)||un|

≤ C(f) + ∫
Ω

(A + Tn(φn))|∇un||∇Tn(φn)||un|,

where in the last passage we have used that m� < N
N−2 < 2

∗. Using the Young and Hölder inequalities in last
term of the right-hand side of the previous inequality, we have

∫
Ω

(A + Tn(φn))|∇un||∇Tn(φn)||un|

≤ A‖un‖L∞(Ω)‖un‖W1,2
0 (Ω)‖Tn(φn)‖W1,2

0 (Ω) +
1
2 ∫
Ω

Tn(φn)2|∇un|2 + C‖un‖2L∞(Ω)‖Tn(φn)‖
2
W1,2

0 (Ω)

≤
1
2 ∫
Ω

Tn(φn)2|∇un|2 + C(f, A).

Therefore, after simplifying equal terms, we have

∫
Ω

Tn(φn)2|∇un|2 ≤ C(f, A). (2.10)

Summing up, as a consequence of the previous estimates and convergences, we have that

{
{
{

un weakly converges to u inW1,2
0 (Ω),

Tn(φn) weakly converges to φ inW1,2
0 (Ω)

(2.11)

and that there exists Y in (L2(Ω))N such that (recall (2.10))

Tn(φn)∇un weakly converges to Y in (L2(Ω))N .

Let now Ψ be a C10(Ω) function; from the above convergence we have that

lim
n→+∞
∫
Ω

Tn(φn)∇un∇Ψ = ∫
Ω

Y∇Ψ.
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On the other hand, since {∇un} weakly converges in (L2(Ω))N , while Tn(φn)∇Ψ is strongly convergent in
(L2(Ω))N by the Rellich theorem, we have

lim
n→+∞
∫
Ω

Tn(φn)∇un∇Ψ = lim
n→+∞
∫
Ω

∇un[∇ΨTn(φn)] = ∫
Ω

∇u∇Ψφ.

Therefore, Y = φ∇u, and so

Tn(φn)∇un weakly converges to φ∇u in (L2(Ω))N .

Using this convergence, and the weak convergence of un to u inW1,2
0 (Ω) (see (2.11)), we can pass to the limit

in (2.1), to find that
∫
Ω

(A + φ)∇u∇v = ∫
Ω

fv for all v ∈ W1,2
0 (Ω). (2.12)

Recall that u is such that it belongs to W1,2
0 (Ω) ∩ L∞(Ω) and that φ|∇u| belongs to L2(Ω). Taking v = u

in (2.12), we then have
∫
Ω

(A + φ)|∇u|2 = ∫
Ω

fu.

On the other hand, choosing v = un in (2.1), we have

lim
n→+∞
∫
Ω

(A + Tn(φn))|∇un|2 = lim
n→+∞
∫
Ω

fnun = ∫
Ω

fu.

Therefore,
lim
n→+∞
∫
Ω

(A + Tn(φn))|∇un|2 = ∫
Ω

(A + φ)|∇u|2.

From the positivity of the functions, this implies that

(A + Tn(φn))|∇un|2 strongly converges to (A + φ)|∇u|2 in L1(Ω),

which in turn implies that {un} strongly converges to u inW1,2
0 (Ω). Hence, since |∇un|2 is strongly convergent

in L1(Ω) and (see (2.11)) Tn(φn) weakly converges to φ in W1,2
0 (Ω), we can pass to the limit in (2.2) to have

that φ belongs toW1,2
0 (Ω) and

∫
Ω

M(x)∇φ∇Tk(φ − η) ≤
1
2 ∫
Ω

|∇u|2Tk(φ − η) (2.13)

for every k ≥ 0 and for every η inW1,2
0 (Ω) ∩ L∞(Ω).

Since φ belongs to W1,2
0 (Ω), we now prove that it does not only satisfy (2.13), but that it also is a weak

solution. In the first step, we prove that (2.6) holds for test functions w in W1,2
0 (Ω) ∩ L∞(Ω); then we prove

that test functions only belonging toW1,2
0 (Ω) are allowed.

To see that, let η be inW1,2
0 (Ω) ∩ L∞(Ω), let k be greater than the norm of η in L∞(Ω), and let h > 0. Then,

since Th(φ) − η belongs toW1,2
0 (Ω) ∩ L∞(Ω), one has

∫
Ω

M(x)∇φ∇Tk(φ − Th(φ) + η) ≤
1
2 ∫
Ω

|∇u|2Tk(φ − Th(φ) + η),

that is,
∫

{|Gh(φ)+η|≤k}

M(x)∇φ∇Gh(φ) + ∫
{|Gh(φ)+η|≤k}

M(x)∇φ∇η ≤ 12 ∫
Ω

|∇u|2Tk(φ − Th(φ) + η).

The first term is positive, so that it can be dropped, while for the third, by recalling the choice of k, one has

lim
h→+∞

1
2 ∫
Ω

|∇u|2Tk(φ − Th(φ) + η) =
1
2 ∫
Ω

|∇u|2Tk(η) =
1
2 ∫
Ω

|∇u|2η.
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As for the second term, we remark that

lim
h→+∞

M(x)∇φ∇ηχ{|Gh(φ)+η|≤k} = M(x)∇φ∇η

and that
M(x)∇φ∇ψχ{|Gh(φ)+η|≤k} ≤ β|∇φ||∇η| ∈ L1(Ω)

since both φ and η belong toW1,2
0 (Ω). Therefore, by the Lebesgue theorem,

lim
h→+∞

∫
{|Gh(φ)+η|≤k}

M(x)∇φ∇η = ∫
Ω

M(x)∇φ∇η.

Thus,
∫
Ω

M(x)∇φ∇η ≤ 12 ∫
Ω

|∇u|2η for all η ∈ W1,2
0 (Ω) ∩ L∞(Ω).

Choosing η = ±ψ, with ψ inW1,2
0 (Ω) ∩ L∞(Ω), we then obtain that φ ≥ 0 belongs toW1,2

0 (Ω) and is such that

∫
Ω

M(x)∇φ∇ψ = 12 ∫
Ω

|∇u|2ψ for all ψ ∈ W1,2
0 (Ω) ∩ L∞(Ω). (2.14)

Let now 0 ≤ w ∈ W1,2
0 (Ω) and use ψ = Tn(w) in (2.14) to obtain

∫
Ω

M(x)∇φ∇Tn(w) =
1
2 ∫
Ω

|∇u|2Tn(w).

Wecanpass to the limit on the left-hand side since Tn(w) strongly converges inW1,2
0 (Ω), andon the right-hand

side thanks to the Levi monotone convergence theorem. Thus we have

∫
Ω

M(x)∇φ∇w = 12 ∫
Ω

|∇u|2w

for every positive w in W1,2
0 (Ω); by linearity, we thus have that (2.6) holds true, and that |∇u|2w belongs to

L1(Ω) for every w inW1,2
0 (Ω), as desired.

Remark 2.3. We remark that the fact that (2.6) holds true can also be proved by using a result by Brezis and
Browder (see [5]); indeed, since φ is inW1,2

0 (Ω), we have that −div(M(x)∇φ) belongs toW−1,2(Ω). Since it is
positive, we have

∫
Ω

M(x)∇φ∇w = ⟨−div(M(x)∇φ), w⟩ = 12 ∫
Ω

|∇u|2w

for every positive w inW1,2
0 (Ω); this implies (2.6) by writing every w inW1,2

0 (Ω) as w = w+ − w−.

In order to proceed with the proof of the main result, we need to prove further properties on the solution
(u, φ) given by the previous lemma.

Lemma 2.4. Assume that (1.1) holds and let f belong to Lm(Ω), with m > N2 . Then the function φ given by
Lemma 2.2 is such that φρ belongs to W1,2

0 (Ω) for every ρ ≥ 1. Furthermore, for every ρ and σ in ℕ, one can
choose v = uσφρ and w = uσφρ in (2.5) and (2.6), that is,

∫
Ω

(A + φ)∇u∇(uσφρ) = ∫
Ω

fuσφρ (2.15)

and
∫
Ω

M(x)∇φ∇(uσφρ) = 12 ∫
Ω

|∇u|2uσφρ , (2.16)

with all the integrals involved being finite.

Brought to you by | University of Toronto-Ocul
Authenticated

Download Date | 12/12/16 12:03 AM



8 | L. Boccardo and L. Orsina, Saddle points of integral functionals

Proof. Here, and in the following, we will denote by C(f, A, γ) possibly different constants depending on
(powers of) the norm of f in Lm(Ω), on A, and on (powers of) a real number γ.

Recall that, as a consequence of Lemma 2.2, we have that u belongs toW1,2
0 (Ω) ∩ L∞(Ω), that φ belongs

toW1,2
0 (Ω), and that

‖u‖W1,2
0 (Ω) + ‖φ‖W1,2

0 (Ω) + ‖u‖L∞(Ω) ≤ C‖f‖Lm(Ω) = C(f). (2.17)

Let γ ≥ 2 and let k > 0 large enough. Choose v = uTk(φ)γ−1 in (2.5) to obtain

∫
Ω

(A + φ)|∇u|2Tk(φ)γ−1 ≤ ∫
Ω

f|u|Tk(φ)γ−1 + (γ − 1)∫
Ω

(A + Tk(φ))|∇u||∇Tk(φ)|Tk(φ)γ−2.

Dropping a positive term on the left-hand side and recalling (2.17), we have

∫
Ω

|∇u|2Tk(φ)γ ≤ C(f)(∫
Ω

Tk(φ)(γ−1)m
�
)

1
m�
+ γ∫

Ω

(A + Tk(φ))|∇u||∇Tk(φ)|Tk(φ)γ−2. (2.18)

We now estimate a part of the right-hand side of the above inequality, by supposing that k ≥ A and by
using (2.17):

γA∫
Ω

|∇u||∇Tk(φ)||Tk(φ)|γ−2 = γA ∫
{φ<A}

|∇u||∇Tk(φ)||Tk(φ)|γ−2 + γA ∫
{φ≥A}

|∇u||∇Tk(φ)||Tk(φ)|γ−2

≤ γAγ−1 ∫
Ω

|∇u||∇Tk(φ)| + γ∫
Ω

|∇u||∇Tk(φ)|Tk(φ)γ−1

≤ C(f, A, γ) + γ∫
Ω

|∇u||∇Tk(φ)|Tk(φ)γ−1.

Inserting this inequality in (2.18), we obtain

∫
Ω

|∇u|2Tk(φ)γ ≤ C(f, A, γ) + C(f)(∫
Ω

Tk(φ)(γ−1)m
�
)

1
m�
+ γ∫

Ω

|∇u||∇Tk(φ)|Tk(φ)γ−1

≤ C(f, A, γ) + C(f)(∫
Ω

Tk(φ)(γ−1)m
�
)

1
m�
+
1
2 ∫
Ω

|∇u|2Tk(φ)γ +
γ2

2 ∫
Ω

|∇Tk(φ)|2Tk(φ)γ−2. (2.19)

We now have, if k > γα with α given by (1.1),

γ2

2 ∫
Ω

|∇Tk(φ)|2Tk(φ)γ−2 ≤
γ2

2 ∫
{φ< γα }

|∇Tk(φ)|2Tk(φ)γ−2 +
γ2

2 ∫
{φ≥ γα }

|∇Tk(φ)|2Tk(φ)γ−2

≤
1
2α

2−γγγ ∫
Ω

|∇Tk(φ)|2 +
αγ
2 ∫

Ω

|∇Tk(φ)|2Tk(φ)γ−1

= C(f, A, γ) + αγ2 ∫
Ω

|∇Tk(φ)|2Tk(φ)γ−1.

Thus, inserting this inequality in (2.19) and simplifying equal terms, we have

1
2 ∫
Ω

|∇u|2Tk(φ)γ ≤ C(f, A, γ) + C(f)(∫
Ω

Tk(φ)(γ−1)m
�
)

1
m�
+
αγ
2 ∫

Ω

|∇Tk(φ)|2Tk(φ)γ−1. (2.20)

We now choose w = Tk(φ)γ in (2.6), to obtain, after using (1.1),

αγ∫
Ω

|∇Tk(φ)|2Tk(φ)γ−1 ≤ γ∫
Ω

M(x)∇φ∇Tk(φ)Tk(φ)γ−1 =
1
2 ∫
Ω

|∇u|2Tk(φ)γ .
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Using this inequality in (2.20), we have

∫
Ω

|∇Tk(φ)|2Tk(φ)γ−1 ≤ C(f, A, γ) + C(f, γ)(∫
Ω

Tk(φ)(γ−1)m
�
)

1
m�
+
1
2 ∫
Ω

|∇Tk(φ)|2Tk(φ)γ−1,

which implies, after simplifying equal terms, that

∫
Ω

|∇Tk(φ)|2Tk(φ)γ−1 ≤ C(f, A, γ) + C(f, γ)(∫
Ω

Tk(φ)(γ−1)m
�
)

1
m�
. (2.21)

We now observe that, since m > N2 , we have that

(γ − 1)m� <
N(γ − 1)
N − 2 =

2∗(γ − 1)
2 <

2∗(γ + 1)
2 .

Therefore, by the Hölder inequality and the Sobolev embedding,

(∫
Ω

Tk(φ)(γ−1)m
�
)

1
m�
≤ C(∫

Ω

Tk(φ)
2∗(γ+1)

2 )
2
2∗ γ−1

γ+1
≤ C(∫

Ω

|∇[Tk(φ)]
γ+1
2 |2)

γ−1
γ+1
.

Using this inequality in (2.21), we obtain

4
(γ + 1)2

∫
Ω

|∇[Tk(φ)]
γ+1
2 |2 ≤ C(f, A, γ) + C(f, γ)(∫

Ω

|∇[Tk(φ)]
γ+1
2 |2)

γ−1
γ+1
,

which then yields, by the Young inequality (which can be applied since γ−1
γ+1 < 1), that

∫
Ω

|∇[Tk(φ)]
γ+1
2 |2 ≤ C(f, A, γ) + 12 ∫

Ω

|∇[Tk(φ)]
γ+1
2 |2.

Therefore,
(γ + 1)2

4 ∫
Ω

|∇Tk(vp)|2Tk(φ)γ−1 = ∫
Ω

|∇[Tk(φ)]
γ+1
2 |2 ≤ C(f, A, γ).

Letting k tend to infinity in the above identity and setting ρ = γ+12 , we then obtain that

∫
Ω

|∇[φρ]|2 ≤ C(f, A, ρ),

which implies that φρ belongs to W1,2
0 (Ω) for every ρ ≥ 3

2 (recall that γ ≥ 2). If ρ = 1, the result follows
from (2.17), while if 1 < ρ < 3

2 , we have

∫
Ω

|∇[φ]ρ|2 = ρ2 ∫
{φ<1}

|∇φ|2φ2(ρ−1) + ρ2 ∫
{φ≥1}

|∇φ|2φ2(ρ−1)

≤ C∫
Ω

|∇T1(φ)|2 + C∫
Ω

|∇φ|2φ ≤ C + C∫
Ω

|∇[φ]
3
2 |2 ≤ C.

We now prove (2.15); to do that, we choose v = uσ+Tk(φ)ρ, with k > 0 in (2.5), to obtain that

σ∫
Ω

(A + φ)|∇u|2uσ−1+ Tk(φ)ρ + ρ∫
Ω

(A + Tk(φ))∇u∇Tk(φ)uσ+Tk(φ)ρ−1 = ∫
Ω

fuσ+Tk(φ)ρ .

Recalling that u+ belongs to L∞(Ω) and that both φρ and φρ+1 belong toW1,2
0 (Ω), we have that

lim
k→+∞

ρ∫
Ω

(A + Tk(φ))∇u∇Tk(φ)uσ+Tk(φ)ρ−1 = ρ∫
Ω

(A + φ)∇u∇φuσ+φρ−1,

Brought to you by | University of Toronto-Ocul
Authenticated

Download Date | 12/12/16 12:03 AM



10 | L. Boccardo and L. Orsina, Saddle points of integral functionals

while, since φρ belongs to Lm� (Ω) (by the Sobolev embedding, φρ is in Lη(Ω) for every η ≥ 1), we have

lim
k→+∞
∫
Ω

fuσ+Tk(φ)ρ = ∫
Ω

fuσ+φρ .

As for the first term, we remark that it is positive and increasing with respect to k. Therefore, using the Levi
monotone convergence theorem, we have

lim
k→+∞

σ∫
Ω

(A + φ)|∇u|2uσ−1+ Tk(φ)ρ = σ∫
Ω

(A + φ)|∇u|2uσ−1+ φρ .

Summing up, we have that

∫
Ω

(A + φ)∇u∇(uσ+φρ) = ∫
Ω

fuσ+φρ .

Repeating the same calculations with v = uσ−Tk(φ)ρ and then subtracting the results, we obtain (2.15).
In order to prove (2.16), we choose w = uσ+Tk(φ)ρ, with k > 0 in (2.6), to obtain

ρ∫
Ω

M(x)∇φ∇Tk(φ)uσ+Tk(φ)ρ−1 + σ∫
Ω

M(x)∇φ∇uuσ−1+ Tk(φ)ρ =
1
2 ∫
Ω

|∇u|2uσ+Tk(φ)ρ .

Once again, the properties of φ and the fact that u+ belongs to L∞(Ω), allow to prove that

lim
k→+∞

ρ∫
Ω

M(x)∇φ∇Tk(φ)uσ+Tk(φ)ρ−1 = ρ∫
Ω

M(x)∇φ∇φuσ+φρ−1

and that
lim
k→+∞

σ∫
Ω

M(x)∇φ∇uuσ−1+ Tk(φ)ρ = σ∫
Ω

M(x)∇φ∇uuσ−1+ φρ ,

while the Levi monotone convergence theorem implies that

lim
k→+∞

1
2 ∫
Ω

|∇u|2uσ+Tk(φ)ρ =
1
2 ∫
Ω

|∇u|2uσ+φρ .

Therefore, we have

∫
Ω

M(x)∇φ∇(uσ+φρ) =
1
2 ∫
Ω

|∇u|2uσ+φρ ,

which then yields that (2.16) holds once combined with the same formula for u−.

Wearenow ready toproveTheorem1.1, that is, the existence result, underminimal summability assumptions
on the datum f .

Proof of Theorem 1.1. Let n inℕ and let fn be a sequence of functions in L∞(Ω) strongly convergent to f in
L2∗ (Ω) and such that

‖fn‖L2∗ (Ω) ≤ ‖f‖L2∗ (Ω); (2.22)

take, for example, fn = Tn(f). Let un and φn be the solutions given by Lemma 2.2 with datum fn.
Choosing un as test function in (2.15), we have

A∫
Ω

|∇un|2 + ∫
Ω

|∇un|2φn = ∫
Ω

(A + φn)|∇un|2 = ∫
Ω

fnun ≤ ‖f‖L2∗ (Ω)‖un‖L2∗ (Ω),
where we have used (2.22) in the last passage. Thus, thanks to the Sobolev embedding, we have that

∫
Ω

|∇un|2 + ∫
Ω

|∇un|2φn ≤ C‖f‖2L2∗ (Ω). (2.23)
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Choosing φn as test function in (2.16) and using (1.1), we have

α∫
Ω

|∇φn|2 ≤ ∫
Ω

M(x)∇φn∇φn =
1
2 ∫
Ω

|∇un|2φn ,

which, together with (2.23) implies that

∫
Ω

|∇φn|2 ≤ C‖f‖2L2∗ (Ω). (2.24)

We now use Lemma 2.4, by choosing u4n as test function in (2.16). We obtain
1
2 ∫
Ω

|∇un|2u4n = 4∫
Ω

M(x)∇φn∇unu3n ≤
1
4 ∫
Ω

|∇un|2u4n + C∫
Ω

|∇φn|2u2n .

Therefore,
∫
Ω

|∇un|2u4n ≤ C∫
Ω

|∇φn|2u2n . (2.25)

We now choose φnu2n as test function in (2.16) to have that

α∫
Ω

|∇φn|2u2n ≤
1
2 ∫
Ω

|∇un|2φnu2n + 2β∫
Ω

|∇φn||∇un|φn|un|.

≤ ∫
Ω

|∇un|2φnu2n + C∫
Ω

|∇φn|2φn . (2.26)

We now choose u3n as test function in (2.15) to obtain

3A∫
Ω

|∇un|2u2n + 3∫
Ω

|∇un|2φnu2n = ∫
Ω

fnu3n ,

which implies
∫
Ω

|∇un|2u2n + ∫
Ω

|∇un|2φnu2n ≤ C∫
Ω

|fn||un|3. (2.27)

Choosing φ2
n as test function in (2.16), we obtain

2α∫
Ω

|∇φn|2φn ≤ 2∫
Ω

M(x)∇φn∇φnφn =
1
2 ∫
Ω

|∇un|2φ2
n ,

which implies
∫
Ω

|∇φn|2φn ≤
1
4α ∫

Ω

|∇un|2φ2
n . (2.28)

We now choose unφn as test function in (2.15) to obtain

∫
Ω

(A + φn)|∇un|2φn ≤ ∫
Ω

|fn||un|φn + ∫
Ω

(A + φn)|∇un||∇φn||un|,

which implies (by dropping a positive term and using (2.24) and (2.27))

∫
Ω

|∇un|2φ2
n ≤ C∫

Ω

|fn||un|φn + C∫
Ω

|∇un||∇φn||un| + C∫
Ω

|∇un||∇φn||un|φn .

≤ C∫
Ω

|fn||un|φn + C∫
Ω

|∇un|2u2n + C∫
Ω

|∇φn|2 + C∫
Ω

|∇un||∇φn||un|φn

≤ C∫
Ω

|fn||un|φn + C∫
Ω

|fn||un|3 + C‖f‖2L2∗ (Ω) + C∫
Ω

|∇un|2φnu2n + 2α∫
Ω

|∇φn|2φn

≤ C∫
Ω

|fn||un|φn + C∫
Ω

|fn||un|3 + C‖f‖2L2∗ (Ω) + 2α∫
Ω

|∇φn|2φn . (2.29)
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12 | L. Boccardo and L. Orsina, Saddle points of integral functionals

Inserting (2.29) in (2.28), we thus get

∫
Ω

|∇φn|2φn ≤ C∫
Ω

|fn||un|φn + C∫
Ω

|fn||un|3 + C‖f‖2L2∗ (Ω) + 12 ∫
Ω

|∇φn|2φn ,

which implies that
∫
Ω

|∇φn|2φn ≤ C∫
Ω

|fn||un|φn + C∫
Ω

|fn||un|3 + C‖f‖2L2∗ (Ω). (2.30)

Using (2.27) and (2.30) in (2.26), we thus obtain

∫
Ω

|∇φn|u2n ≤ C∫
Ω

|fn||un|φn + C∫
Ω

|fn||un|3 + C‖f‖2L2∗ (Ω),
which, once used in (2.25), yields

∫
Ω

|∇un|2u4n ≤ C∫
Ω

|fn||un|φn + C∫
Ω

|fn||un|3 + C‖f‖2L2∗ (Ω). (2.31)

We now define vn = u3n and ψn = φ
3/2
n . With these definitions (2.31) and (2.30) become, after adding them,

∫
Ω

|∇vn|2 + ∫
Ω

|∇ψn|2 ≤ C∫
Ω

|fn||vn|
1
3ψ

2
3
n + C∫

Ω

|fn||vn| + C‖f‖2L2∗ (Ω). (2.32)

We now remark that since 1
2∗
+
1
3
1
2∗ +

2
3
1
2∗ =

1
2∗
+

1
2∗ = 1,

we have, by the Hölder inequality, the Sobolev embedding, and by (2.22),

C∫
Ω

|fn||vn|
1
3ψ

2
3
n + C∫

Ω

|fn||vn| ≤ C‖fn‖L2∗ (Ω)‖vn‖ 1
3

W1,2
0 (Ω)

‖ψn‖
2
3

W1,2
0 (Ω)
+ C‖fn‖L2∗ (Ω)‖vn‖W1,2

0 (Ω)

≤ C‖f‖L2∗ (Ω)‖vn‖ 1
3

W1,2
0 (Ω)

‖ψn‖
2
3

W1,2
0 (Ω)
+ C‖f‖L2∗ (Ω)‖vn‖W1,2

0 (Ω).

Therefore, if we define Xn = ‖vn‖W1,2
0 (Ω) and Yn = ‖ψn‖W1,2

0 (Ω), inequality (2.32) can be rewritten as

X2n + Y2n ≤ C‖f‖L2∗ (Ω)X 1
3
n Y

2
3
n + C‖f‖L2∗ (Ω)Xn + C‖f‖2L2∗ (Ω).

We now remark that, since 1
2 +

1
6 +

1
3 = 1, by the Young inequality we have that

C‖f‖L2∗ (Ω)X 1
3
n Y

2
3
n ≤ C‖f‖2L2∗ (Ω) + 14X2n + 12Y2n ,

while
C‖f‖L2∗ (Ω)Xn ≤ C‖f‖2L2∗ (Ω) + 14X2n ,

so that
X2n + Y2n ≤ C‖f‖2L2∗ (Ω).

Therefore, recalling the definition of Xn and Yn, and of vn and ψn, we have that

∫
Ω

|∇[un]3|2 ≤ C‖f‖L2∗ (Ω), ∫
Ω

|∇[φn]3/2|2 ≤ C‖f‖L2∗ (Ω). (2.33)

Furthermore, recalling (2.29), we have that

∫
Ω

|∇un|2φ2
n ≤ C‖f‖2L2∗ (Ω). (2.34)
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Thus, thanks to the previous estimates (see (2.23), (2.24) and (2.33)), we have that {un}, {φn}, {u3n} and
{φ3/2

n } are bounded inW1,2
0 (Ω), and (by recalling (2.34)) the sequence {|∇un|φn} is bounded in L2(Ω). Reason-

ing as in the proof of Lemma 2.6, we easily see that, if u and φ are the weak limits of un and φn, respectively,
we have that

φn∇un weakly converges to φ∇u in (L2(Ω))N .

This convergence allows us to pass to the limit in the identities

∫
Ω

(A + φn)∇un∇v = ∫
Ω

fnv, (2.35)

which hold for every v inW1,2
0 (Ω), to obtain that

∫
Ω

(A + φ)∇u∇v = ∫
Ω

fv for all v ∈ W1,2
0 (Ω). (2.36)

Choosing v = u in the above identity and v = un in (2.35), we have that

lim
n→+∞
∫
Ω

(A + φn)|∇un|2
(2.35)
= lim

n→+∞
∫
Ω

fnun = ∫
Ω

fu (2.36)
= ∫

Ω

(A + φ)|∇u|2,

which implies (since the functions are positive) that

(A + φn)|∇un|2 strongly converges to (A + φ)|∇u|2 in L1(Ω).

In particular, un strongly converges to u inW1,2
0 (Ω). This allows us to pass to the limit in the identities

∫
Ω

M(x)∇φn∇w =
1
2 ∫
Ω

|∇un|2w,

which hold (in particular) for every w inW1,2
0 (Ω) ∩ L∞(Ω), to have that

∫
Ω

M(x)∇φ∇w = 12 ∫
Ω

|∇u|2w for all w ∈ W1,2
0 (Ω) ∩ L∞(Ω).

Reasoning as in the proof of Lemma 2.2 and using that φ belongs toW1,2
0 (Ω), we finally have that

∫
Ω

M(x)∇φ∇w = 12 ∫
Ω

|∇u|2w for all w ∈ W1,2
0 (Ω).

3 Saddle points
In this section, we prove Theorem 1.5. In order to do that, we will strongly use the existence result of Theo-
rem 1.1, in particular the summability results on u and φ, and the fact thatW1,2

0 (Ω) functions are allowed as
test functions in both the equations of the system.

Proof of Theorem 1.5. Choosing w = ψ − φ in (1.5), we have that

∫
Ω

M(x)∇φ∇(ψ − φ) = 12 ∫
Ω

|∇u|2(ψ − φ),

which implies

1
2 ∫
Ω

|∇u|2(ψ − φ) = 12 ∫
Ω

M(x)∇ψ∇ψ − 12 ∫
Ω

M(x)∇(ψ − φ)∇(ψ − φ) − 12 ∫
Ω

M(x)∇φ∇φ.
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14 | L. Boccardo and L. Orsina, Saddle points of integral functionals

Therefore, rearranging terms and dropping a negative term, we have (recall that |∇u|2ψ belongs to L1(Ω))

1
2 ∫
Ω

|∇u|2ψ − 12 ∫
Ω

M(x)∇ψ∇ψ ≤ 12 ∫
Ω

|∇u|2φ − 12 ∫
Ω

M(x)∇φ∇φ,

that is,

J(u, ψ) = 12 ∫
Ω

(A + ψ)|∇u|2 − 12 ∫
Ω

M(x)∇ψ∇ψ − ∫
Ω

fu

≤
1
2 ∫
Ω

(A + φ)|∇u|2 − 12 ∫
Ω

M(x)∇φ∇φ − ∫
Ω

fu = J(u, φ)

for every ψ inW1,2
0 (Ω), which is one half of (1.7).

Choosing v = u − z in (1.4), we have

∫
Ω

(A + φ)∇u∇(u − z) = ∫
Ω

f(u − z),

which implies

1
2 ∫
Ω

(A + φ)|∇u|2 + [12 ∫
Ω

(A + φ)|∇u|2 − ∫
Ω

(A + φ)∇u∇z] = ∫
Ω

f(u − z).

This latter identity implies, if z is such that φ|∇z|2 belongs to L1(Ω), that

1
2 ∫
Ω

(A + φ)|∇u|2 + 12 ∫
Ω

(A + φ)∇(u − z)∇(u − z) + 12 ∫
Ω

(A + φ)|∇z|2 = ∫
Ω

f(u − z),

which then yields, by dropping a positive term, that

1
2 ∫
Ω

(A + φ)|∇u|2 − ∫
Ω

fu ≤ 12 ∫
Ω

(A + φ)|∇z|2 − ∫
Ω

fz

for every z inW1,2
0 (Ω) such that φ|∇z|2 belongs to L1(Ω). From this inequality, it easily follows that

J(u, φ) ≤ J(z, φ)

for every z inW1,2
0 (Ω) such that φ|∇z|2 belongs to L1(Ω), i.e., the other half of (1.7).

4 Increased summability results
In Theorem1.1,wehaveproved that if f belongs to L2∗ (Ω), then there exists a solution (u, φ)with u in L3⋅2∗ (Ω)
and φ in L3⋅2∗/2(Ω); on the other hand, in Lemma 2.4 we have proved that if f belongs to Lm(Ω), withm > N2 ,
then u belongs to L∞(Ω), while φ belongs to Ls(Ω) for every s ≥ 1.

If one looks at the regularities of both u and φ and at Remark 1.6, it looks like the role of φ is to be
approximately equal to u2, so that one wonders whether this is a fact, or a coincidence. To see that this latter
may not be the case, let us go back to the functional J, in the caseM(x) = I, and let us calculate J(v, kv2)with k
being a real number. We have

J(v, kv2) = 12 ∫
Ω

(A + kv2)|∇v|2 − 2k2 ∫
Ω

|∇v|2v2 − ∫
Ω

fv

=
A
2 ∫
Ω

|∇v|2 + 12 (k − 4k
2)∫
Ω

|∇v|2v2 − ∫
Ω

fv.
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Choosing k in (0, 14 ), we thus have

J(v, kv2) = 12 ∫
Ω

(A + Bv2)|∇v|2 − ∫
Ω

fv

for some positive real number B. This functional is both coercive and weakly lower semicontinuous on
W1,2

0 (Ω), and its minimum w can be proved to be a solution of

−div((A + Bw2)∇w) + Bw|∇w|2 = f.

We recall (see [1, 7]) that, if f belongs to Lm(Ω), with 2∗ ≤ m < N2 , then w belongs to L3⋅m∗∗ (Ω). Indeed, sup-
posing that f ≥ 0 so that w ≥ 0, and choosing Tk(w)2γ−1 as test function (with k > 0 and γ > 1

2 ), we obtain

(2γ − 1)∫
Ω

(A + BTk(w)2)|∇Tk(w)|2Tk(w)2γ−2 + B∫
Ω

|∇w|2Tk(w)2γ = ∫
Ω

fTk(w)2γ−1

≤ ‖f‖Lm(Ω)(∫
Ω

Tk(w)(2γ−1)m
�
)

1
m�
.

Dropping the first term, which is positive, we then have, since |∇w|2 ≥ |∇Tk(w)|2, the following:

B
(γ + 1)2

∫
Ω

|∇Tk(w)γ+1|2 = ∫
Ω

|∇Tk(w)|2Tk(w)2γ ≤ ‖f‖Lm(Ω)(∫
Ω

Tk(w)(2γ−1)m
�
)

1
m�
.

This implies, by the Sobolev embedding,

C(∫
Ω

Tk(w)(γ+1)2
∗
)

2
2∗
≤ ‖f‖Lm(Ω)(∫

Ω

Tk(w)(2γ−1)m
�
)

1
m�
.

We now choose γ such that

(γ + 1)2∗ = (2γ − 1)m� ⇐⇒ γ = 2∗ + m�

2m� − 2∗ . (4.1)

It is easy to see that γ > 1
2 and that

(γ + 1)2∗ = 3 Nm
N − 2m = 3 ⋅ m∗∗.

Hence, after simplifying equal terms, we have

(∫
Ω

Tk(w)3⋅m
∗∗
)

1
m∗∗
≤ ‖f‖Lm(Ω).

Letting k tend to infinity and using the Levi monotone convergence theorem, we thus have

(∫
Ω

w3⋅m∗∗
)

1
m∗∗
≤ ‖f‖Lm(Ω),

as desired.
Thus, since the role of the second variable φ in the functional is played here by kv2, one can see why it is

that φ behaves like u2. Furthermore, we have on u (which here is w) an increased summability result, since
it belongs to L3⋅m∗∗ (Ω), instead of the linear case summability Lm∗∗ (Ω) which corresponds to B = 0.

Let us now turn to the actual system,where φ is not comparablewith u2. We already know, in the limiting
case m = 2∗, that u belongs to L3⋅2

∗ (Ω) = L3⋅m∗∗ (Ω), so that we wonder whether this result holds for every
2∗ < m < N2 . As we will see, this is true for some (infinitely many) values of m, for which u and φ are more
summable: u belongs to L3⋅m∗∗ (Ω) and φ belongs to L3⋅m∗∗/2(Ω).
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16 | L. Boccardo and L. Orsina, Saddle points of integral functionals

Theorem 4.1. Let γ ≥ 2 be an integer and let m be such that (2γ − 1)m� = (γ + 1)2∗. If (u, φ) is the solution of
system (1.3) given by Theorem 1.1, then

u belongs to L3⋅m∗∗
(Ω), φ belongs to L3⋅m∗∗/2(Ω).

Remark 4.2. The result of the previous theorem only holds for a discrete set S of values of the summability
exponent m; more precisely, since m� = (γ+1)2∗

2γ−1 , then

S = {m = 2N(γ + 1)
3N − 2 + 4γ , γ ∈ ℕ, γ ≥ 2}.

Note that every m in S satisfies 2∗ ≤ m < N2 . Clearly, if m is strictly between 2∗ and N
2 , but is not in S, then

a function in Lm(Ω) belongs to Lmk (Ω), where mk is the largest element of S smaller than m. Therefore, by
Theorem 4.1, u belongs to L3⋅m∗∗

k (Ω) and φ belongs to L3⋅m∗∗
k /2(Ω). As stated before, we conjecture that the

result of Theorem 4.1 holds for every m in the interval [2∗, N2 ), with 3 ⋅ m∗∗ and 3 ⋅ m∗∗/2 as summability
exponents for u and φ, but our technique is confined to the choice of integer values for the parameter γ. Also
observe that the function which links m to γ in the statement of the theorem is the same given by (4.1) in the
estimates for w.

The proof of Theorem 4.1 follows from the following result.

Lemma 4.3. Let γ ≥ 2 be an integer and let m be such that (2γ − 1)m� = (γ + 1)2∗. If (u, φ) is the solution of
system (1.3) given by Theorem 1.1, then for every 1 ≤ η ≤ γ we have

∫
Ω

|∇u|2u2η ≤ C(‖f‖Lm(Ω)), ∫
Ω

|∇φ|2φη−1 ≤ C(‖f‖Lm(Ω)), (4.2)

and
∫
Ω

|∇u||∇φ|φk|u|2η−2k−1 ≤ C(‖f‖Lm(Ω)) (4.3)

for every 0 ≤ k ≤ η − 1.

Remark 4.4. Observe that in (4.3) the sum of twice the exponent of φ and the exponent of u is constant, and
equal to 2η − 1. This is consistent with the fact that, in principle, φ behaves like u2, so that increasing the
exponent of φ by 1 decreases the exponent of u by 2.

Remark 4.5. Observe that a consequence of (4.2), written for η = γ, is that both |u|γ+1 and φ(γ+1)/2 belong to
W1,2

0 (Ω), a result which has already been proved in Theorem 1.1 if γ = 2.

Proof of Lemma 4.3. We begin by observing that since m� = (γ+1)2∗
2γ−1 , the assumption γ ≥ 2 implies that

m� ≤ 2∗, so that m ≥ 2∗. In what follows, to shorten notation we will denote by C(f) any constant depending
on the norm of f in Lm(Ω). We remark that since Ω is bounded, the norm of f in Ls(Ω) can be controlled by
(a constant times) the norm of f in Lm(Ω) if 1 ≤ s < m.

The proof is by induction on η. If η = 1, inequalities (4.2) and (4.3) are equivalent to

∫
Ω

|∇u|2u2 + ∫
Ω

|∇φ|2 + ∫
Ω

|∇u||∇φ||u| ≤ C(f),

which is what we are going to prove. Recalling that, by Theorem 1.1, the norm of φ inW1,2
0 (Ω) is controlled

by the norm of f in L2∗ (Ω) (hence in Lm(Ω)), we can control the second term above. On the other hand, by
the Hölder inequality we have, if ε > 0, that

∫
Ω

|∇u||∇φ||u| ≤ Cε∫
Ω

|∇u|2u2 + C
ε ∫
Ω

|∇φ|2, (4.4)

and, using u2 as test function in (2.16) (i.e., choosing ρ = 0 and σ = 2), we have
1
2 ∫
Ω

|∇u|2u2 = 2∫
Ω

M(x)∇φ∇uu ≤ 2β∫
Ω

|∇u||∇φ||u|.
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L. Boccardo and L. Orsina, Saddle points of integral functionals | 17

Hence, from (4.4) it follows that

∫
Ω

|∇u||∇φ||u| ≤ Cε∫
Ω

|∇u||∇φ||u| + C
ε ∫
Ω

|∇φ|2,

which implies (by choosing ε small enough) that

∫
Ω

|∇u||∇φ||u| ≤ C∫
Ω

|∇φ|2 ≤ C(f).

Finally,
∫
Ω

|∇u|2u2 ≤ 4β∫
Ω

|∇u||∇φ||u| ≤ C(f),

and the case η = 1 is complete.
The case η = 2 has been dealt with in the proof of Theorem 1.1, so that we now can tackle the general

case. Suppose that (4.2) and (4.3) hold for η − 1; this in particular implies that

∫
Ω

|∇u||∇φ|φh|u|2η−2h−3 ≤ C(f) (4.5)

for every 0 ≤ h ≤ η − 2. Let now 0 ≤ k ≤ η − 1; define Q0 = 0, Qη = 0 and

Qk = ∫
Ω

|∇u||∇φ|φk|u|2η−2k−1, k = 1, . . . , η − 1.

Define also
Fk = ∫

Ω

|f|φk|u|2η−2k−1

for 0 ≤ k ≤ η − 1. We are going to prove that, for every 1 ≤ k ≤ η − 1 and if ε is small enough (depending on
the data of the problem),

Qk ≤
C
ε
Fk−1 + CεFk +

C
ε
Qk−1 + CεQk+1 +

1
ε
C(f). (4.6)

We begin with the case 1 < k < η − 1; by the Young inequality, we have

Qk ≤
C
ε ∫
Ω

|∇u|2φku2η−2k + Cε∫
Ω

|∇φ|2φku2η−2k−2. (4.7)

Thanks to (2.15), with ρ = k and σ = 2η − 2k + 1, we have, by dropping a positive term,

(2η − 2k + 1)∫
Ω

|∇u|2φku2η−2k ≤ ∫
Ω

|f|φk−1|u|2η−2k+1 + (k − 1)∫
Ω

|∇u||∇φ|(A + φ)φk−2|u|2η−2k+1,

which implies
∫
Ω

|∇u|2φku2η−2k ≤ CFk−1 + CQk−1 + C∫
Ω

|∇u||∇φ|φk−2|u|2η−2k+1.

Observe now that 0 ≤ k − 2 < η − 2; therefore, from (4.5) with h = k − 2 we have that

∫
Ω

|∇u||∇φ|φk−2|u|2η−2k+1 ≤ C(f),

from which it follows that

∫
Ω

|∇u|2φku2η−2k ≤ CFk−1 + CQk−1 + C(f). (4.8)
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18 | L. Boccardo and L. Orsina, Saddle points of integral functionals

On the other hand, thanks to (2.16) with ρ = k + 1 and σ = 2η − 2k − 2, we have

α(k + 1)∫
Ω

|∇φ|2φku2η−2k−2 ≤ 12 ∫
Ω

|∇u|2φk+1u2η−2k−2 + β(2η − 2k − 2)∫
Ω

|∇u||∇φ|φk+1|u|2η−2k−3,

which implies
∫
Ω

|∇φ|2φku2η−2k−2 ≤ C∫
Ω

|∇u|2φk+1u2η−2k−2 + CQk+1. (4.9)

Using (2.16) with ρ = k and σ = 2η − 2k − 1, we have (by dropping a positive term)

(2η − 2k − 1)∫
Ω

|∇u|2φk+1u2η−2k−2 ≤ ∫
Ω

|f|φk|u|2η−2k−1 + k∫
Ω

|∇u||∇φ|(A + φ)φk−1|u|2η−2k−1,

from which it follows that

∫
Ω

|∇u|2φk+1u2η−2k−2 ≤ CFk + CQk + C∫
Ω

|∇u||∇φ|φk−1|u|2η−2k−1. (4.10)

Since 0 < k − 1 < η − 2, we can apply (4.5) with h = k − 1 to have that

∫
Ω

|∇u||∇φ|φk−1|u|2η−2k−1 ≤ C(f).

Using this estimate in (4.10), we thus obtain that

∫
Ω

|∇u|2φk+1u2η−2k−2 ≤ CFk+1 + CQk + C(f). (4.11)

Inserting (4.11) in (4.9), we thus have

∫
Ω

|∇φ|2φku2η−2k−2 ≤ CFk+1 + CQk + CQk+1 + C(f). (4.12)

Using (4.8) and (4.12), inequality (4.7) becomes

Qk ≤
C
ε
Fk−1 +

C
ε
Qk−1 +

1
ε
C(f) + CεFk+1 + CεQk + CεQk+1 + εC(f).

Choosing ε small enough so that the term CεQk on the right-hand side can be absorbed by the one on the
left-hand side, we have that (4.6) holds true.

We now turn to the case k = 1; since the techniques are similar to the case 1 < k < η − 1, we will not
repeat every passage in detail. Thus, again by (2.15), (2.16), the Young inequality, and (4.5), we have

Q1 = ∫
Ω

|∇u||∇φ|φ|u|2η−3

≤
C
ε ∫
Ω

|∇u|2φu2η−2 + Cε∫
Ω

|∇φ|2φu2η−4

≤
C
ε ∫
Ω

|f||u|2η−1 + Cε∫
Ω

|∇u|2φ2u2η−4 + Cε∫
Ω

|∇u||∇φ|φ2|u|2η−5

≤
C
ε
F0 + Cε∫

Ω

|f|φ|u|2γ−3 + Cε∫
Ω

|∇u||∇φ|(A + φ)|u|2η−3 + CεQ2

≤
C
ε
F0 + CεF1 + CεQ1 + Cε∫

Ω

|∇u||∇φ||u|2η−3 + CεQ2

≤
C
ε
F0 + CεF1 + CεQ1 + CεQ2 + CεC(f),
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which then yields (4.6) for k = 1 choosing ε small enough so that the term CεQ1 on the right-hand side can be
absorbed by the one on the left-hand side. If k = η − 1, we have, still by (2.15), (2.16), the Young inequality,
and (4.5),

Qη−1 ≤
C
ε ∫
Ω

|∇u|2φη−1u2 + Cε|∇φ|2φη−1

≤
C
ε ∫
Ω

|f|φη−2|u|3 + C
ε ∫
Ω

|∇u||∇φ|(A + φ)φη−3|u|3 + Cε|∇u|2φη

≤
C
ε
Fη−2 +

C
ε
Qη−2 +

C
ε ∫
Ω

|∇u||∇φ|φη−3|u|3 + Cε∫
Ω

|f|φη−1|u| + Cε∫
Ω

|∇u||∇φ|(A + φ)φη−2|u|

≤
C
ε
Fη−2 +

C
ε
Qη−2 +

1
ε
C(f) + CεFη−1 + CεQη−1 + Cε∫

Ω

|∇u||∇φ|φη−3|u|3

≤
C
ε
Fη−2 + CεFη−1 +

C
ε
Qη−2 + CεQη−1 +

1
ε
C(f),

which as before yields (4.6) by choosing ε small enough in order to absorb the term CεQη−1 on the right on
the left-hand side.

We now iteratively use (4.6), starting from the one which holds for k = η − 1. To simplify notations, we
will denote by F any linear combination of the Fj’s. Also, let δ > 0 and write (4.6) for ε = δ (recall that Qη = 0
by definition) as

Qη−1 ≤ F +
C
δ
Qη−2 + C(f).

On the other hand, again from (4.6) written for k = η − 2 and ε = δ2, we have

Qη−2 ≤ F +
C
δ2
Qη−3 + Cδ2Qη−1 + C(f).

Inserting the first in the second, we obtain

Qη−2 ≤ F +
C
δ2
Qη−3 + CδQη−2 + C(f),

which then implies, if δ is small enough, that

Qη−2 ≤ F +
C
δ2
Qη−3 + C(f).

On the other hand (we are supposing here that there is “enough space” to have η − 4 ≥ 1), again from (4.6)
written with ε = δ3, we have

Qη−3 ≤ F +
C
δ3
Qη−4 + Cδ3Qη−2 + C(f),

so that
Qη−3 ≤ F +

C
δ3
Qη−4 + CδQη−3 + C(f).

Hence, choosing again δ small enough,

Qη−3 ≤ F +
C
δ3
Qη−4 + C(f).

Going on, we obtain
Q2 ≤ F +

C
δη−2

Q1 + C(f).

Since Q0 = 0, from (4.6) written for k = η − 1 and ε = δη−1, we have

Q1 ≤ F + Cδη−1Q2 + C(f),

so that
Q1 ≤ F + CδQ1 + C(f),
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which (finally) yields, by choosing δ small enough,

Q1 ≤ F + C(f).

Inserting this inequality in the one for Q2, we thus get that

Q2 ≤ F + C(f),

and, retracing our steps, we thus have that

Qk ≤ F + C(f) for all k = 1, . . . , η − 1.

In other words, we have proved that

∫
Ω

|∇u||∇φ|φk|u|2η−2k−1 ≤ F + C(f) for all k = 1, . . . , η − 1. (4.13)

Now we are almost finished. Taking u2η as test function in (2.16), we obtain, thanks to the Young inequality,

1
2 ∫
Ω

|∇u|2u2η = 2η∫
Ω

∇φ∇uu2η−1 ≤ 14 ∫
Ω

|∇u|2u2η + C∫
Ω

|∇φ|2u2η−2,

so that
∫
Ω

|∇u|2u2η ≤ C∫
Ω

|∇φ|2u2η−2.

But, again from (2.16) and (2.15), and from (4.13),

∫
Ω

|∇φ|2u2η−2 ≤ C∫
Ω

|∇u|2φu2η−2 + C∫
Ω

|∇u||∇φ|φ|u|2η−3

≤ C∫
Ω

|f||u|2η−1 + C∫
Ω

|∇u||∇φ|φ|u|2η−3

≤ CF0 + F + C(f) = F + C(f),

so that
∫
Ω

|∇u|2u2η ≤ F + C(f). (4.14)

Furthermore, again by (2.16), (2.15), (4.13), and (4.5),

∫
Ω

|∇φ|2φη−1 ≤ C∫
Ω

|∇u|2φη ≤ C∫
Ω

|f|φη−1|u| + C∫
Ω

|∇u||∇φ|(A + φ)φη−2|u|

≤ CFη−1 + F + C(f) = F + C(f). (4.15)

Putting together (4.14) and (4.15), we have proved that there exist α0, . . . , αη−1 inℝ such that

∫
Ω

|∇u|2u2η + ∫
Ω

|∇φ|2φη−1 ≤
η−1
∑
k=0

αk ∫
Ω

|f|φk|u|2η−2k−1 + C(f).

We now define v = uη+1 and ψ = φ
η+1
2 ; the above inequality thus becomes

∫
Ω

|∇v|2 + ∫
Ω

|∇ψ|2 ≤ C
η−1
∑
k=0

αk ∫
Ω

|f|ψ
2k
η+1 |v| 2η−2k−1γ+1 + C(f).

Now observe that, by the assumption (2γ − 1)m� = (γ + 1)2∗, we have

m� =
(γ + 1)2∗
2γ − 1 .
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Since the function
s Ü→ (s + 1)2∗

2s − 1
is decreasing, and since 1 ≤ η ≤ γ, we thus have that

m� ≤
(η + 1)2∗
2η − 1 ⇐⇒

2η − 1
(η + 1)2∗ ≤

1
m� .

Therefore,
1
m
+

2k
2∗(η + 1) +

2η − 2k − 1
2∗(η + 1) =

1
m
+

2η − 1
2∗(η + 1) ≤

1
m
+

1
m� = 1,

so that the Hölder inequality implies that

∫
Ω

|∇v|2 + ∫
Ω

|∇ψ|2 ≤ C‖f‖Lm(Ω)
η−1
∑
k=0

αk‖ψ‖
2k
η+1
L2∗ (Ω)‖v‖ 2η−2k−1

η+1
L2∗ (Ω) + C(f).

Hence, by the Sobolev inequality, we have

‖v‖2
W1,2

0 (Ω) + ‖ψ‖
2
W1,2

0 (Ω) ≤ C‖f‖Lm(Ω)
η−1
∑
k=0

αk‖ψ‖
2k
η+1
W1,2

0 (Ω)
‖v‖

2η−2k−1
η+1

W1,2
0 (Ω)
+ C(f).

Lemma 4.6 then implies that
‖v‖2

W1,2
0 (Ω) + ‖ψ‖

2
W1,2

0 (Ω) ≤ C(f).

Recalling the definition of v and ψ, we thus have

∫
Ω

|∇u|2|u|2η + ∫
Ω

|∇φ|2φη−1 ≤ C(f),

which is (4.2) for η. Once we have proved (4.2), we have that

Fk ≤ C(f) for every k = 0, . . . , η − 1,

since we can use the Hölder and Sobolev inequalities. Therefore, from (4.13), it follows that

∫
Ω

|∇u||∇φ|φk|u|2η−2k−1 ≤ C(f) for every k = 0, . . . , η − 1,

which is (4.3) for η, and the result is proved.

Theorem 4.1 is a straightforward consequence of Lemma 4.3.

Proof of Theorem 4.1. Starting from (4.2) written for ρ = γ, and by using the Sobolev embedding, we have
that

∫
Ω

|u|(γ+1)2∗ + ∫
Ω

φ
(γ+1)2∗

2 ≤ C(f).

Using the relation between γ and m, we have

(γ + 1)2∗ = 3 ⋅ m∗∗,

and the result is proved.

Lemma 4.6. Let X and Y be positive real numbers such that

X2 + Y2 ≤
η−1
∑
k=0

βkX
2k
η+1 Y 2η−2k−1

η+1 + C
for some positive real numbers β0, . . . , βη−1. Then there exists a constant M, which depends on C and on the
βk’s, such that

0 ≤ X ≤ M, 0 ≤ Y ≤ M.
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Proof. We begin by recalling that if s > 0 and t > 0 are such that s + t < 2, then for every ε > 0 there exists
Cε > 0 such that

XsY t ≤ εX2 + εY2 + Cε .

Indeed, by a first Young inequality, we have

XsY t ≤ εX2 + CεY
2t
2−s ,

so that a second Young inequality yields the result, with 2t
2−s < 2 by assumption. Thus, since

2k
η + 1 +

2η − 2k − 1
γ + 1 =

2η − 1
η + 1 < 2,

we have (by choosing ε = εk = 1
2ηβk ), that

X
2k
η+1 Y 2η−2k−1

η+1 ≤ 1
2ηβk

X2 + 1
2ηβk

Y2 + Ck ,

which implies

X2 + Y2 ≤ 12X
2 +

1
2Y

2 +
η−1
∑
k=0

βkCk + C,

and the proof is complete.
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