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Abstract: We present an analysis of risk levels on multi-lane roads. The aim is to use the crash
metrics to understand which direction of the flow mainly influences the safety in traffic flow.
In fact, on multi-lane highways interactions among vehicles occur also with lane changing and
we show that they strongly affect the level of potential conflicts. In particular, in this study we
consider the Time-To-Collision as risk metric and we use the experimental data collected on the
A3 German highway.
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1. INTRODUCTION

The analysis, the prediction and the control of critical traf-
fic situations are important aspects of the modern world.
In fact, with the increase of the number of circulating
vehicles the risk of accidents is considerably increased.
See the recent report World Health Organization (2015).
Therefore, the necessity of forecasting e.g. the evolution of
the flow as well as of the potential risks has arisen. These
problems motivated research both in the mathematical
and in the engineering literature.

From the mathematical point of view, the analysis of traffic
critical situations is carried out by means of mathematical
models at different scales. Microscopic, macroscopic and
kinetic simulations provide useful tools to study e.g. the
links among traffic volumes and safety issues as well as the
creation of shock or stop-and-go waves, which represent
typical effects of instabilities and thus of potential risks in
the flow. See e.g. Moutari et al. (2013); Moutari and Herty
(2014); Freguglia and Tosin (2017)

In contrast, engineering studies on the risk levels in traf-
fic flow are mainly based on a-posteriori descriptions of
collected real data on roads. In this field experimental
measurements are used to study the evolution of the safety
indicators related to traffic. See e.g. Minderhoud and Bovy
(2001); Kuang et al. (2015b, 2017); Wang et al. (2017)
Among these we recall the Headway Distribution, the
Time-To-Collision or the Aggregated Crash Index.

In this paper we are aimed to take into account an intrinsic
characteristic of traffic flow which is however usually
neglected in the study of risk levels: the lane changing. We
will focus in particular on the Time-To-Collision metric
and we generalize the definition also for the direction
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orthogonal to the flow of vehicles. The Time-To-Collision
indicator is defined as the remaining time until a collision
between two vehicles would have occurred. For each pair of
interacting vehicle, the complete formulation of the Time-
To-Collision (see e.g. Minderhoud and Bovy (2001)) is
given by

TTC =
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(1)

where ∆x, ∆v and ∆a are the relative distance, speed
and acceleration of the two vehicles. Here, we will study
also the lateral safety by comparing it with the classical
notion of the Time-To-Collision indicator concerning only
the longitudinal driving tasks. The aim is to understand
which direction of traffic flow influences mainly the safety
level of a multi-lane road. This will be therefore an a-
posteriori analysis based on experimental data collected
on a German highway. At the same time we will give
a macroscopic approximation of the Time-To-Collision
indicator in order to show a link among the risk metric
and the evolution in time of traffic volumes, giving also a
hint on how macroscopic equations can be used for real-
time predictions of safety measures.

In detail the paper is organized as follows. In Section 2 we
describe the German data-set recovering the fundamental
diagrams of traffic. In Section 3 we define the meaning of a
car-following scenario on a multi-lane road and we define
the Time-To-Collision risk indicators for the two directions
of the flow. We further give a macroscopic approximation
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of the risk metric. In Section 4 we show the analysis of
the risk levels on the German highway comparing the
result obtained by considering separately the flow along
the road and across the lanes. Finally, we end in Section 5
summarizing the result of the paper and giving an outlook
for future research.

2. EXPERIMENTAL DATA COLLECTION

In this paper we consider a set of experimental data
recorded on a German highway. We have two-dimensional
trajectory data collected on a 80 meters stretch of the
westbound direction of the A3 highway near Aschaffen-
burg. Laser scanners detect the two-dimensional positions
Pi(t) = (xi(t), yi(t)) of each vehicle i at time t on the road
segment with a temporal resolution of 0.2 seconds for a
total time of approximately 20 minutes. Here the position
x is in driving direction, the position y is across lanes.
During the time observation, the laser scanners record the
trajectories of 1290 vehicles.

The road section consists of three lanes and an outgoing
ramp. However, we only consider the stretch as if there
is no ramp. In fact, the data show that the flow on the
ramp does not influence the traffic conditions, namely the
amount of traffic on the ramp is not significant. Taking
into account only the three main lanes, the road width is
12 meters.

The microscopic velocities of vehicles are recovered by
the knowledge of their positions Pi(t) = (xi(t), yi(t)) at
each time. Since the road section is relatively short, we
compute the velocity, both in x- and y-direction, of each
vehicle by using a linear approximation in the least squares
sense of xi(t) and yi(t), respectively. In other words we
assume that the vehicle velocity is constant during the
crossing of the road section. The maximum detected speed
in x-direction is about 120 kilometer per hour which
means about 2.7 seconds to travel the 80 meters of the
road section. Instead, the maximum detected speed in y-
direction is about 2 kilometer per hour which means about
21.6 seconds to travel the road section from a side to the
other side.

The time-dependent microscopic positions and the micro-
scopic velocities of vehicles can be used to compute the
macroscopic quantities, namely the density (number of
vehicles per kilometer), the flux (number of vehicles per
hour) and the mean speed (kilometer per hour) of the flow.
We refer to Herty et al. (2017a) for a detailed description,
where we derived the macroscopic data for each direction
of the flow, separately.

The diagrams showing the relations between the vehicle
density ρ and the fluxes or the mean speeds in the two
possible directions are called fundamental diagrams and
speed-density diagrams, respectively. They represent the
basic tools for the analysis of traffic problems operating in
a homogeneous steady state or equilibrium conditions.

In Figure 1 we show the fundamental diagrams and the
speed-density diagrams resulting from the German data-
set. The diagrams are obtained by computing the macro-
scopic quantities each 1 second and then aggregating the
data over a time period of 60 seconds. The data-set pro-
vides several levels of congestion but we never observe
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Fig. 1. Experimental diagrams from the A3 German high-
way. Top: flux-density (left) and speed-density (right)
diagrams in x-direction. Bottom: flux-density (left)
and speed-density (right) diagrams in y-direction.

Fig. 2. Two-dimensional trajectories extrapolated from the
German data-set. In red we show the trajectories of
vehicles crossing a lane while traveling.

bumper-to-bumper conditions. In fact, the maximum den-
sity is about 70 vehicles per kilometer which is however
above the critical value of the density 50 vehicles per kilo-
meter in which we observe a decrease of the flux and of the
speed values. The red solid lines in each panel of Figure 1
show the best data-fit obtained by solving a constrained
minimization problem. See Herty et al. (2017a) for further
details.

Notice that the flux and the speed in y-direction have
positive and negative values since across the lanes vehicles
are free to travel in the two directions, towards right and
left. Precisely, we assume that positive speeds represent
the motion towards the leftmost lane, instead negative
speeds represent the motion towards the rightmost lane.
The values of the flux and of the mean speed in y-direction
are about 103 smaller than the values in x-direction. This
is obvious since the velocity of vehicles along the road is
higher then the lateral velocity and thus this latter is not
dominant with respect the other speed. In other words, we
are looking at two behaviors occurring at different scales.
But this does not mean that the behavior in y-direction
can be neglected and that the flow across the lanes does not
influence the safety. In fact, an analysis of the trajectories
shows that about the 15% of the total vehicles crosses a
lane while traveling the road section. See Figure 2.
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Fig. 3. Choice of the interacting car in the case vi > 0. The
interacting vehicle will be car 2, namely the nearest
vehicle in the driving direction of vehicle i.

3. RISK ANALYSIS ON A MULTI-LANE ROAD

Several metrics were introduced in order to study risk
levels in traffic flow. Among them, here we will consider the
so-called Time-To-Collision (TTC) metric. The TTC can
be defined as the remaining time until a collision between
two vehicles would have occurred, see Hayward (1972).
The notion of TTC represents the most used indicator in
the analysis of safety measures for traffic.

In the literature, the TTC metric is usually used by
considering one-dimensional car-following scenarios and
thus it is computed by looking at only the positions along
the road, as well as the velocities in x-direction, of the
two interacting vehicles. Here, instead, we are aimed at
studying the risk levels on a multi-lane highway, thus using
two-dimensional microscopic data. Therefore, we firstly
need to define the concept of a car-following interaction
in two-space dimensions and we use the same approach
introduced in Herty et al. (2017b).

We assume that there is no particular order among vehicles
on the road. We just label them. From now on, let ui and vi
be the speeds in x-direction and y-direction, respectively,
of car i. For each vehicle i, the interacting car j(i) is
determined by the following map

i �→ j(i) = argmin
h=1,...,N
vi sin θh>0

θh∈[−π
2 ,π2 ]

‖Ph − Pi‖2 . (2)

This choice is motivated as follows, see also Figure 3.
Assume that each test vehicle i defines a coordinate system
in which the origin is its right rear corner if vi ≥ 0 and
its left rear corner if vi < 0. We are indeed dividing the
road in four areas. Let θh be the angle between the x-axis
(in the car coordinate system) and the position vector Qh

of vehicle h. Then the request θh ∈
[
−π

2 ,
π
2

]
allows to

consider only cars being in front of vehicle i. Instead, the
request vi sin θh > 0 allows to consider only cars in the
driving direction of vehicle i. Among all these vehicles
we choose the nearest one. Therefore, map (2) can be
rewritten as

i �→ j(i) = argmin
h=1,...,N

vi(yh−yi)>0
xh>xi

‖Ph − Pi‖2 . (3)

3.1 Time-To-Collision and Individual Risk

Map (3) allows us to define the car-following scenarios on
a two-dimensional road section for each observation time.
Here, we are interested in generalizing the TTC metric (1)
for car i in each direction of the flow by looking at the
same interacting vehicle j(i). However, since in Section 2
we have described the trajectory of all vehicles with a
linear function approximating the time positions in the
least-square sense, the acceleration is supposed to be zero.
Therefore, we consider a simplified version for the TTC
and along with the classical definition of the TTC in x-
direction

TTCx
i (t) =



−
xj(i) − xi

uj(i) − ui
, if ui > uj(i)

+∞, otherwise,

(4)

in this paper we introduce also the TTC in y-direction as

TTCy
i (t) =



−
yj(i) − yi

vj(i) − vi
, if |vi| >

∣∣vj(i)
∣∣ or vj(i) vi < 0

+∞, otherwise.
(5)

The TTCy
i defines thus the remaining time to a collision

with car j(i) moving across the lanes. The analysis of this
metric was never considered previously in the literature
but we think it is useful to study which direction of the
flow mainly influences the safety. Clearly, using map (3),
a car i could have no leading vehicles, namely when there
are no obstacles in its driving direction. Then we set the
two TTC metrics to +∞ also in this case.

The TTC metric has been widely used in order to evaluate
the risk level in traffic flow phenomena. However, as sug-
gested by several authors, Kuang et al. (2017), the TTC
does not give direct information on the safety conditions of
vehicle. Moreover, the fact that the TTC is +∞ when an
interaction does not occur makes this metric not suitable
for computations from microscopic data. Therefore, in this
paper, following the methodology introduced in Kuang
et al. (2017), we represent the Individual Risk (IR) de-
scribed by the TTC by comparing, for each car, this value
with thresholds:

IRx,y
i (t) =



T̂TC

x,y
− TTCx,y

i , if T̂TC
x,y

> TTCx,y
i

0, otherwise.
(6)

The fixed values T̂TC
x,y

are the TTC thresholds in the
two direction of the flow and they are supposed to be
the safety values below which an interaction is considered
unsafe. Using definition (6) then a car-following scenario
is considered to be safe if the IR is low. Several value of
the TTC threshold are proposed, see e.g. Minderhoud and
Bovy (2001); Kuang et al. (2015a,b). Here, we consider
safety values the times to travel the road section in x and
y at the maximum speeds detected in the two directions.
Thus, using the German data-set introduced in Section 2
we have

T̂TC
x
= 2.7 seconds, T̂TC

y
= 21.6 seconds.

With this choice we say that a vehicle is in safe conditions
if it can freely travel along and across the road at the
maximum speed.
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3. RISK ANALYSIS ON A MULTI-LANE ROAD

Several metrics were introduced in order to study risk
levels in traffic flow. Among them, here we will consider the
so-called Time-To-Collision (TTC) metric. The TTC can
be defined as the remaining time until a collision between
two vehicles would have occurred, see Hayward (1972).
The notion of TTC represents the most used indicator in
the analysis of safety measures for traffic.

In the literature, the TTC metric is usually used by
considering one-dimensional car-following scenarios and
thus it is computed by looking at only the positions along
the road, as well as the velocities in x-direction, of the
two interacting vehicles. Here, instead, we are aimed at
studying the risk levels on a multi-lane highway, thus using
two-dimensional microscopic data. Therefore, we firstly
need to define the concept of a car-following interaction
in two-space dimensions and we use the same approach
introduced in Herty et al. (2017b).

We assume that there is no particular order among vehicles
on the road. We just label them. From now on, let ui and vi
be the speeds in x-direction and y-direction, respectively,
of car i. For each vehicle i, the interacting car j(i) is
determined by the following map

i �→ j(i) = argmin
h=1,...,N
vi sin θh>0

θh∈[−π
2 ,π2 ]

‖Ph − Pi‖2 . (2)

This choice is motivated as follows, see also Figure 3.
Assume that each test vehicle i defines a coordinate system
in which the origin is its right rear corner if vi ≥ 0 and
its left rear corner if vi < 0. We are indeed dividing the
road in four areas. Let θh be the angle between the x-axis
(in the car coordinate system) and the position vector Qh

of vehicle h. Then the request θh ∈
[
−π

2 ,
π
2

]
allows to

consider only cars being in front of vehicle i. Instead, the
request vi sin θh > 0 allows to consider only cars in the
driving direction of vehicle i. Among all these vehicles
we choose the nearest one. Therefore, map (2) can be
rewritten as

i �→ j(i) = argmin
h=1,...,N

vi(yh−yi)>0
xh>xi

‖Ph − Pi‖2 . (3)

3.1 Time-To-Collision and Individual Risk

Map (3) allows us to define the car-following scenarios on
a two-dimensional road section for each observation time.
Here, we are interested in generalizing the TTC metric (1)
for car i in each direction of the flow by looking at the
same interacting vehicle j(i). However, since in Section 2
we have described the trajectory of all vehicles with a
linear function approximating the time positions in the
least-square sense, the acceleration is supposed to be zero.
Therefore, we consider a simplified version for the TTC
and along with the classical definition of the TTC in x-
direction

TTCx
i (t) =



−
xj(i) − xi

uj(i) − ui
, if ui > uj(i)

+∞, otherwise,

(4)

in this paper we introduce also the TTC in y-direction as

TTCy
i (t) =



−
yj(i) − yi

vj(i) − vi
, if |vi| >

∣∣vj(i)
∣∣ or vj(i) vi < 0

+∞, otherwise.
(5)

The TTCy
i defines thus the remaining time to a collision

with car j(i) moving across the lanes. The analysis of this
metric was never considered previously in the literature
but we think it is useful to study which direction of the
flow mainly influences the safety. Clearly, using map (3),
a car i could have no leading vehicles, namely when there
are no obstacles in its driving direction. Then we set the
two TTC metrics to +∞ also in this case.

The TTC metric has been widely used in order to evaluate
the risk level in traffic flow phenomena. However, as sug-
gested by several authors, Kuang et al. (2017), the TTC
does not give direct information on the safety conditions of
vehicle. Moreover, the fact that the TTC is +∞ when an
interaction does not occur makes this metric not suitable
for computations from microscopic data. Therefore, in this
paper, following the methodology introduced in Kuang
et al. (2017), we represent the Individual Risk (IR) de-
scribed by the TTC by comparing, for each car, this value
with thresholds:

IRx,y
i (t) =



T̂TC

x,y
− TTCx,y

i , if T̂TC
x,y

> TTCx,y
i

0, otherwise.
(6)

The fixed values T̂TC
x,y

are the TTC thresholds in the
two direction of the flow and they are supposed to be
the safety values below which an interaction is considered
unsafe. Using definition (6) then a car-following scenario
is considered to be safe if the IR is low. Several value of
the TTC threshold are proposed, see e.g. Minderhoud and
Bovy (2001); Kuang et al. (2015a,b). Here, we consider
safety values the times to travel the road section in x and
y at the maximum speeds detected in the two directions.
Thus, using the German data-set introduced in Section 2
we have

T̂TC
x
= 2.7 seconds, T̂TC

y
= 21.6 seconds.

With this choice we say that a vehicle is in safe conditions
if it can freely travel along and across the road at the
maximum speed.
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In order to aggregate the individual risk of single car-
following scenarios we proceed as follows. First we fix a
sequence of M + 1 equally spaced discrete times {tk}Mk=0
such that tk+1 − tk = dt, t0 = 0 and tM = tmax, where
tmax is the final observation time in the data-set (here
20 minutes). Then, for each discrete time tk, we count
the number of vehicles N(tk) and for each one we find
the interacting vehicle using (3). We define the mean (or
average) individual risk at time tk as

ĨR
x,y

(tk) =
1

N(tk)

N(tk)∑
i=1

IRx,y
i (tk), k = 0, . . . ,M

where IRx,y
i is given by (6). Finally, we consider a moving

mean by aggregating with respect a certain time period T ,
with T � tmax and including m consecutive observations.
This temporal average leads to

⌈
M+1
m

⌉
+ 1 values of the

individual risk

IRx,y
k0

=
1

T

k0+m−1∑
k=k0

ĨR
x,y

(tk), k0 = 0, . . . ,

⌈
M + 1

m

⌉
.

(7)
In particular, in this paper we take dt = 1 second and
then we aggregate the data over the time period T = 30
or T = 60 seconds.

3.2 Macroscopic formulation of TTC

Here we show, from a mathematical point-of-view, that the
TTC is indeed able to describe the safety levels of a road
since it is linked to the variation of the traffic volume. For
the sake of simplicity, let us to focus on the simple one-
dimensional case and thus we assume to have TTCy

i = 0,
∀i. We define the density and the specific volume around
each vehicle at time t as

ρi(t) =
∆X

xj(i)(t)− xi(t)
, τi(t) =

1

ρi(t)
,

where ∆X is the characteristic length of a vehicle. Dif-
ferentiating τi in time, we have that the variation of the
specific volume is given by

τ̇i(t) =
uj(i)(t)− ui(t)

∆X
.

Let us again to consider the simplified version of the
TTC (4), namely we assume that the velocity of each
car on the road is constant while traveling the road
section. Using the same considerations introduced in Herty
et al. (2017b) in order to derive macroscopic models from
particle models, we can identify the microscopic velocities
ui with a function u out of the discrete dynamics in such a
way ui(t) = u(xi, t), ∀i. Moreover, at the same time we can
identify τi with a function τ out of the discrete dynamics
in such a way τi = τ(xi, t). With these considerations we
can write

d

dt
τ(xi, t) =

u(xj(i), t)− u(xi, t)

∆X

TTCi(t) = −
xj(i) − xi

u(xj(i), t)− u(xi, t)
.

Since we are interested in the macroscopic formulation,
i.e. when the number of vehicles becomes larger, it is quite
natural to assume that ∆X ≈ xj(i)−xi. In the macroscopic
limit we consider the limit for ∆X going to zero and thus
we obtain
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Fig. 4. Left: variation in time of the density (dotted blue

line) and of the normalized individual risks IR
x
(solid

red line) and IR
y
(dashed red line). Right: variation

in time of the density (dotted blue line) and of the

difference IR
x−IR

y
of the normalized individual risks

(solid red line).

∂tτ(x, t) = ∂xu(x, t) and TTC ≈ − 1

∂xu(x, t)
.

In other words, the inverse of the TTC is able to describe
the time evolution of the specific volume and therefore this
in turn means that there is a strict link between the safety
and the congestion level of the road. This result can be
easily extended also to the two-dimensional case, using the
considerations introduced in Herty et al. (2017b) leading
to

∂tτ(x, y, t) = ∂xu(x, y, t) + ∂yv(x, y, t)

TTCx ≈ − 1

∂xu(x, y, t)
, TTCy ≈ − 1

∂yv(x, y, t)
.

In addition, the above result paves the way to a possible
real-time analysis of the potential conflicts on a road by
means of macroscopic models.

4. POTENTIAL RISK ON THE GERMAN HIGHWAY

In this section we show that, at least using the German
data-set, the safety on a multi-lane highway seems to be
highly influenced by the movements in the orthogonal
direction of the flow, i.e. by the lane changing.

In Figure 4 we consider the time behavior of the aggregated
individual risk (7) for both directions. However, in order to
compare the two quantities we show the normalized values
with respect to the safety thresholds, namely

IR
x,y

k0
=

IRx,y
k0

T̂TC
x,y ∈ [0, 1]. (8)

In this way the individual risk is directly comparable and
quantities (8) give, in probability, the risk level on the
road. In the left plot of Figure 4 we show the time variation
of the normalized individual risks IR

x
(solid red line) and

IR
y
(dashed red line). The values of the individual risk

are given on the right y-axes. The blue solid line, instead,
shows the time variation of the density and the values are
given on the left y-axes. It is clear that both individual
risk increase for higher values of the density. In the right
plot of Figure 4, along with the density, we show the
difference IR

x − IR
y
of the normalized individual risks.

Thus, values below zero (see the dashed red line) mean
that the individual risk in y-direction is higher than the
individual risk in x-direction. Using this plot we can easily
observe that the normalized individual risk IR

y
is higher

in connection to the peaks of the density. This behavior
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can be explained by the fact that more lane changing occur
when the density increases.

The above consideration can be also quantitatively ana-
lyzed by using a methodology used e.g. recently in Kuang
et al. (2017) and which consists in dividing the aggregated
values of the individual risk into many traffic states, sorted
by the density, with uniform span. With this approach it is
possible to analyze easily the relationship between traffic
risk and traffic states. The following procedure allows us to
divide the aggregated macroscopic data into many traffic
states, sorted by the density.

Step 1 Rank all the
⌈
M+1
m

⌉
+ 1 observations of the indi-

vidual risks according to the related value of the density,
from the lowest to the highest.

Step 2 Count the total number ñ of intervals for those
density observations with a constant span δ. Thus,

ñ = round

(
ρmax − ρmin

δ

)

where ρmax and ρmin are the maximum and the mini-
mum value of the density computed from the data-set.

Step 3 Find the range of the intervals as

[ρmin + (n− 1)δ, ρmin + nδ], n = 1, . . . , ñ

and then count the number Nn, n = 1, . . . , ñ, of density
data belonging to each interval.

Step 4 Using the aggregated individual risk defined
in (7), compute the Cumulative Risk (CR) for each
interval as

CRx,y
n =

Kn−1+Nn∑
i=Kn−1

IRx,y
i , Kn−1 =

n−1∑
k=1

Nk, n = 1, . . . , ñ

(9)
where, obviously, we have

ñ∑
k=1

Nk =

⌈
M + 1

m

⌉
+ 1.

Step 5 Finally, compute the Average Risk (AR) value for
each interval as

ARx,y
n =

CRx,y
n

Nn
, n = 1, . . . , ñ. (10)

The same procedure described above can be used to sort
the traffic states with respect to the other macroscopic
fundamental quantities, as the speeds and the fluxes. In the
following simulations, in place of the average risk ARx,y

we will consider the normalized average risk defined as

AR
x,y

n =
ARx,y

n

T̂TC
x,y , n = 1, . . . , ñ (11)

in order to make comparable the quantities in the two
directions of the flow.

In Figure 5 we show the normalized average risk AR
x
and

AR
y
computed on the traffic states sorted by the density

as described by the previous procedure. In particular, the
traffic states are obtained by using δ = 2.5 vehicles per
kilometer, which represents the minimum value of span to
get at least one observation for each interval defined in
Step 3. The left and the right panels of Figure 5 differ for
the time aggregation, which is taken as T = 60 seconds
and T = 30 seconds, respectively. We observe that the
result does not change by varying T . In fact, in both
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Fig. 5. The normalized average risk in the x-direction
(blue *-symbols) and in the y-direction (red circles)
of the flow computed on the traffic states sorted by
the density.
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Fig. 6. The normalized average risk in the x-direction (blue
*-symbols) and in the y-direction (red circles) of the
flow computed on the traffic states sorted by the speed
u along the road.
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Fig. 7. The normalized average risk in the x-direction (blue
*-symbols) and in the y-direction (red circles) of the
flow computed on the traffic states sorted by the speed
v across the lanes.
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Fig. 8. The normalized average risk in the x-direction (left)
and in the y-direction (right) computed on the traffic
states sorted by the density and mapped onto the best
fitting of the speed-density diagram in x-direction.

panels we observe that the average risk increases as the
traffic density increases. This means that a higher density
influences the safety and leads to more conflicts. Moreover,
the two average risks are comparable when the density is
still low, while for higher values AR

y
becomes larger than

AR
x
proving that the traffic conflicts are mainly due to the

interactions in y-direction, thus regarding lane changing.
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can be explained by the fact that more lane changing occur
when the density increases.

The above consideration can be also quantitatively ana-
lyzed by using a methodology used e.g. recently in Kuang
et al. (2017) and which consists in dividing the aggregated
values of the individual risk into many traffic states, sorted
by the density, with uniform span. With this approach it is
possible to analyze easily the relationship between traffic
risk and traffic states. The following procedure allows us to
divide the aggregated macroscopic data into many traffic
states, sorted by the density.

Step 1 Rank all the
⌈
M+1
m

⌉
+ 1 observations of the indi-

vidual risks according to the related value of the density,
from the lowest to the highest.

Step 2 Count the total number ñ of intervals for those
density observations with a constant span δ. Thus,

ñ = round

(
ρmax − ρmin

δ

)

where ρmax and ρmin are the maximum and the mini-
mum value of the density computed from the data-set.

Step 3 Find the range of the intervals as

[ρmin + (n− 1)δ, ρmin + nδ], n = 1, . . . , ñ

and then count the number Nn, n = 1, . . . , ñ, of density
data belonging to each interval.

Step 4 Using the aggregated individual risk defined
in (7), compute the Cumulative Risk (CR) for each
interval as

CRx,y
n =

Kn−1+Nn∑
i=Kn−1

IRx,y
i , Kn−1 =

n−1∑
k=1

Nk, n = 1, . . . , ñ

(9)
where, obviously, we have

ñ∑
k=1

Nk =

⌈
M + 1

m

⌉
+ 1.

Step 5 Finally, compute the Average Risk (AR) value for
each interval as

ARx,y
n =

CRx,y
n

Nn
, n = 1, . . . , ñ. (10)

The same procedure described above can be used to sort
the traffic states with respect to the other macroscopic
fundamental quantities, as the speeds and the fluxes. In the
following simulations, in place of the average risk ARx,y

we will consider the normalized average risk defined as

AR
x,y

n =
ARx,y

n

T̂TC
x,y , n = 1, . . . , ñ (11)

in order to make comparable the quantities in the two
directions of the flow.

In Figure 5 we show the normalized average risk AR
x
and

AR
y
computed on the traffic states sorted by the density

as described by the previous procedure. In particular, the
traffic states are obtained by using δ = 2.5 vehicles per
kilometer, which represents the minimum value of span to
get at least one observation for each interval defined in
Step 3. The left and the right panels of Figure 5 differ for
the time aggregation, which is taken as T = 60 seconds
and T = 30 seconds, respectively. We observe that the
result does not change by varying T . In fact, in both
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Fig. 5. The normalized average risk in the x-direction
(blue *-symbols) and in the y-direction (red circles)
of the flow computed on the traffic states sorted by
the density.
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Fig. 6. The normalized average risk in the x-direction (blue
*-symbols) and in the y-direction (red circles) of the
flow computed on the traffic states sorted by the speed
u along the road.
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Fig. 7. The normalized average risk in the x-direction (blue
*-symbols) and in the y-direction (red circles) of the
flow computed on the traffic states sorted by the speed
v across the lanes.
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Fig. 8. The normalized average risk in the x-direction (left)
and in the y-direction (right) computed on the traffic
states sorted by the density and mapped onto the best
fitting of the speed-density diagram in x-direction.

panels we observe that the average risk increases as the
traffic density increases. This means that a higher density
influences the safety and leads to more conflicts. Moreover,
the two average risks are comparable when the density is
still low, while for higher values AR

y
becomes larger than

AR
x
proving that the traffic conflicts are mainly due to the

interactions in y-direction, thus regarding lane changing.
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The above consideration is explained also by Figure 6 and
Figure 7 in which we show the normalized average risk
AR

x
and AR

y
computed on the traffic states sorted by

the two speed in the two directions of the flow. We take
here δ as 7.5 and 0.05 kilometer per hour, respectively. We
observe that the risks decreases as the speed along the road
increases, i.e. when the density is low and thus vehicles
are free to travel with higher speeds. More significant
is Figure 7. In fact, we notice that the risk in x- and y-
direction is low for negative values of the lateral speed.
This happens when the density is low and vehicles tend
to reach the slowest lane. In contrast, the risk in AR

x

increases and is higher than AR
y
around the zero values

of the lateral speed, i.e. when the lane changing are rare
and the conflicts mainly happen with cars ahead. On the
opposite side, when the lateral speed becomes positive,
i.e. when the higher values of the density induce vehicles
to overtake and to move from the slowest lane, then the
average risk in y-direction increases substantially. This
behavior again proves that the flow in y-direction affects
the traffic safety more than the interactions occurring
along the road.

Finally, in Figure 8 we again show the average risk com-
puted on the traffic states sorted by the density but for
each state we map the AR value to the corresponding
position on the speed-density curve in x-direction obtained
by fitting the experimental data. In the left panel of Fig-
ure 8 we show AR

x
, while in the right one we consider

AR
y
. We use the AR value to determine the size and color

of each point. The bigger size and darker color indicate
the higher average risk of a traffic state. Obviously, as
observed in Figure 5 and Figure 6, the traffic conflict risk
increases with an increase in density and a decrease in
speed. Moreover, we notice that the average risk tends to
increase substantially when the so-called critical density,
namely the density value in which we have a sharp decrease
in the speed, is reached.

5. OUTLOOK

In this work we propose an analysis of the risk on a multi-
lane highway by means of a suitable indicator and studying
separately the potential conflicts that could arise from the
two direction of the flow. To this end, we use the Time-
To-Collision indicator, which represent the remaining time
to avoid a collision between two vehicles. The aim of this
paper is to investigate the influence of the lane changing
on the traffic safety since only the behavior of the flow
along the road was previously considered in the literature.
The analysis is carried out using a data-set collected in
Germany on the A3 highway. The microscopic trajectories
shows that the lane changing is an important behavior in
traffic flow and thus the safety can be highly influenced by
the movement in the orthogonal direction of the motion
of vehicles. This conjecture has been indeed proved by
comparing the Time-To-Collision indicators in the two
flow directions, showing that the potential conflicts arising
by the lane changing are much higher.

In future works, more data can be collected or a different
data-set can be considered. Moreover, the analysis con-
ducted here shows the necessity of establishing suitable
safety measures having a real impact on the potential risk

on multi-lane highways where the flow across the lanes is
high. To this end the macroscopic formulation of the Time-
To-Collision indicator proposed in this paper could help
to develop real-time models to manage safety measures in
traffic flow. Ideally, one would measure online traffic data,
predict the next minutes of traffic flow and indicate with
the macroscopic formulation of risk metrics the likelihood
of an accident. Then, by variable speed control or other
measures one would try to regulate the traffic flow such
that the the Time-To-Collision metric is reduced under
the same simulation. Another possibility is the planning
process in which we would simulate (e.g. by means of
a simulator) a real traffic road and then show the risk
indicators. Hopefully, by clever designs of the road the
potential conflicts can be reduced. This perspective could
be used to plan e.g. construction sites more efficiently.
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