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Abstract. We prove the split property for any finite helicity free quantum
fields. Finite helicity Poincaré representations extend to the conformal
group C (cf. Mack in Commun Math Phys 55:1–28, 1977) and the confor-
mal covariance plays an essential role in the argument: The split property
is ensured by the trace class condition Tr (e−βL0) < ∞ for the conformal
Hamiltonian L0 of the Möbius covariant restriction of the net on the time
axis. We extend the argument for the scalar case presented in Buchholz et
al. (Commun Math Phys 270:267–293, 2007). We provide the direct sum
decomposition into irreducible representations of the conformal extension
of any helicity-h representation to the subgroup of transformations fixing
the time axis. Our analysis provides new relations among finite helicity
representations and suggests a new construction for representations and
free quantum fields with nonzero helicity.

1. Introduction

The split property in quantum field theory can be viewed as a strong version
of locality. Locality (= Einstein causality) requires the bounded observables
localized in two space-like separated regions O1 and O2 to generate two com-
muting von Neumann algebras A(O1) and A(O2). The split property demands
that the algebra generated by A(O1) and A(O2) is naturally isomorphic to the
tensor product A(O1) ⊗ A(O2), and this can hold only if there is some finite
positive distance between the regions O1 and O2, due to UV singularities that
arise when the regions touch.
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Physically, the split property is motivated as a “statistical independence”
in the sense that states can be independently prepared in O1 and O2: for every
pair of normal states on A(Oi), there is a normal state of the full QFT that on
A(Oi) coincides with the given states [7]. The relative tensor product position
is also an indispensible prerequisite without which a notion of entanglement
of states between the two subsystems cannot be defined [19].

The terminology “split” for a pair of commuting algebras actually refers
to the inclusion of one algebra in the commutant of the other, asserting that
there exists a type I factor1 B such that

A1 ⊂ B ⊂ A′
2,

cf. Definition 5.1. Because local algebras in QFT are in general type III (a
characteristic feature of QFT as compared to quantum mechanical systems),
the split property is not ensured by basic assumptions.

Whether the split property holds for two local algebras at a finite distance
is a feature of the QFT model under consideration. It has been verified in vari-
ous models in quantum field theory, see, e.g., [9,10,29]. The split property may
fail for topologically non-trivial spacetimes [16]. Several sufficient conditions
are known in terms of the trace class property of certain operators related to
phase space [8–10], indicating that typically, “too many degrees of freedom”
may cause it to fail. A deep mathematical understanding of the split property
was given in [11].

For the massless scalar free field in four spacetime dimensions, the split
and nuclearity properties for an inclusion of non-touching double cone regions
has been established in [9]. The argument is essentially group theoretic: the
one-particle space of the massless free field carries an irreducible representation
U of the Poincaré group that extends to the conformal group C in four dimen-
sions. C is the 15-dimensional Lie group generated by the Poincaré group and
the “conformal inversion” I, cf. (2.1). It contains the dilations and the special
conformal transformations I ◦ t ◦ I, where t is a translation.

The three-dimensional subgroup generated by time translations and the
conformal inversion is isomorphic to the Möbius group Möb = SL(2, R)/Z2

and acts geometrically on the time axis �x = 0 exactly like the conformal
symmetry group of a chiral conformal QFT. This means that a conformal
quantum field theory in four dimensions, when restricted to the time axis,
becomes a chiral conformal QFT. In the scalar case, the chiral currents of this
theory are the free scalar field restricted to the time axis, along with all its
spatial derivatives ∇a1 . . . ∇ak

ϕ(t, 0). Their scaling dimensions increase with
the number of spatial derivatives.

The number of quasi-primary (i.e., Möb -covariant) currents as a function
of their scaling dimension is controlled by representation theory. In this way,
the authors of [9] could establish that the operator e−βL0 has a finite trace,
where L0 is the conformal Hamiltonian of this chiral conformal QFT.

1I.e., isomorphic to B(H) of some Hilbert space H.
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This suffices to establish the split property for the algebra inclusions
A(O) ⊂ A( ˜O) when O � ˜O are two double cones with apices on the time
axis. This implies the statistical independence of A(O1) and A(O2) whenever
O1 = O and O2 is contained in the causal complement of ˜O, and then, by
covariance, whenever O1 and O2 are spacelike separated double cones with a
finite distance.

We adapt this argument to all massless free field theories of finite helicity,
including the free Maxwell field. Because Möb commutes with the subgroup
SO(3) of spatial rotations, the proof reduces to the computation of the restric-
tion of the unitary representation of the conformal group on the one-particle
space to the subgroup Möb × SO(3), where the representations of SO(3) just
provide multiplicities for the irreducible representations of Möb . The traces
of e−βL0 in irreducible representations of Möb are well known, and the trace
class property on the one-particle space is obtained by an explicit computation.
This also implies the L2-nuclearity property.

The split property ensures the existence of local unitaries U ∈ A(O1)
that implement inner symmetries on the observables a ∈ A(O) if A(O) ⊂
A(O1) is split [12]. Such operators are usually thought of as (abstract versions
of) U = eiJ0(f) where Jμ is an associated conserved local current and f a
suitable test function supported in O1. Indeed such objects can be rigorously
constructed and satisfy the local current algebra relations [12]. They thus serve
as substitutes for the covariant massless higher-helicity fields that do not exist
by the Weinberg–Witten theorem [35].

Our computation leads to a remarkable observation: as a representa-
tion of Möb × SO(3), the one-particle space for helicity h + 1 is just a sub-
representation of that for helicity h (provided h > 0). This suggests some new
kind of “deformation argument” to construct helicity h + 1 from helicity h, cf.
Sect. 6.

2. Preliminaries

2.1. Minkowski Spacetime and the Poincaré Group

Let R
1+3 be Minkowski space, i.e., R

4 endowed with the metric

(x, y) = x0y0 −
3

∑

i=1

xiyi.

In a 4-vector x = (x0, x1, x2, x3), x0 = t and �x = {xi}i=1,2,3 are the time
and space coordinates, respectively. The metric induces a causal structure, in
particular the future x + V+ of a point x, where V+ = {y ∈ R

4 : (y, y) >
0, y0 > 0}. The causal complement of a region O is given by O′ = {x ∈ R

1+3 :
(x − y, x − y) < 0,∀y ∈ O}. A causally closed region is such that O = O′′.
Particularly nice causally closed regions are the open double cones of the form
O = x− + V+ ∩ x+ − V+, where x+ is a point in the future of x−.

The Poincaré group P is the inhomogeneous symmetry group of R
1+3. It

is the semidirect product of the Lorentz group L, the homogeneous Minkowski
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symmetry group, and the translation group R
4, i.e., P = L � R

4. We shall
indicate with P↑

+ = L↑
+ � R

4 the connected component of the identity, with
˜P↑
+ and ˜L↑

+ the universal coverings resp. of P↑
+ and L↑

+, and with Λ the covering
map.

The conformal group C in four spacetime dimensions is the extension of
the Poincaré group by the “conformal inversion”

I : (t, �x) 	→ (−t, �x)
t2 − �x2

. (2.1)

Notice that I is singular on R
1+3, but one can extend Minkowski space to

the “Dirac manifold” on which C acts without singularities, and of which
Minkowski space is a dense chart. C is a 15-dimensional Lie group isomor-
phic to SO(2, 4)0. The time reversal in the numerator of (2.1) ensures that I
belongs to the connected component.

2.2. Massless Representations of the Poincaré Group

The characters of the translation group are x 	→ χq(x) = ei(x,q) where q ∈ R
4

is a momentum. According to Wigner [36], irreducible positive energy repre-
sentations of ˜P↑

+ are induced by what is now called Mackey induction, from
irreducible representations of the stabilizer subgroup (also known as the “little
group”) of some q appearing in the representation. The characters appearing
in massless positive energy representations of ˜P↑

+ are given by q �= 0 contained
in ∂V+ = {x ∈ R

1+3 : (x, x) = 0, x0 ≥ 0}. We fix

q ≡ (1, 0, 0, 1) ∈ ∂V+

(∂V+ � {0} is a L↑
+-orbit). We shall call Stabq and Stabq the stabilizers of the

point q through the ˜L↑
+ and ˜P↑

+ actions, respectively. The latter is the semidi-
rect product of R

3+1 and the little group Stabq, i.e., Stabq = Stabq �R
4. Any

massless ˜P↑
+ unitary positive energy representation is obtained inducing by

a unitary representation of the Stabq group. Note that a Stabq representa-
tion is of the form Stabq �R

4 � (x, σ) 	→ V (σ)χq(x) where V is the unitary
representation of Stabq.

The little group Stabq is isomorphic to ˜E(2), the double cover of the
Euclidean group of the two-dimensional Euclidean space, namely E(2) = T �

R
2. Let U = IndStabq↑ ˜P↑

+
V q be a unitary representation of ˜P↑

+ induced from

the representation V q of Stabq. In case V is trivial on the translation subgroup
of ˜E(2), U has finite helicity (or finite spin); in the other cases, it has infinite
spin.

An irreducible finite helicity representation is of the form

Uh = IndStabq↑ ˜P↑
+

Vh χq, h ∈ 1
2

Z

where Vh(g, x) = h(g) where h is the one-dimensional representation of the
double covering of T of character 2h ∈ Z (Vh has to be trivial on the translation
subgroup of ˜E(2)). h is called helicity parameter.
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Massless representations of ˜P↑
+ of finite helicity extend to unitary repre-

sentations ˜U of the conformal group C. The main argument in our paper per-
tains to the restriction of this extension to the Möbius subgroup of C (Sect. 2.3).
We denote by Pμ the generators of the translations, and Kμ := ˜U(I)Pμ

˜U(I)2

the generator of the special conformal transformations. Then i[Pμ,Kν ] =
−2ημνD + 2Mμν where D and Mμν are the generators of the dilations and
Lorentz transformations. The conformal Hamiltonian L0 = 1

2 (P0 + K0) gener-
ates the rotations in SO(2) ⊕ 14 ⊂ SO(2, 4)0 � C, and ˜U(I) = eiπL0 .

2.3. The Möbius Group and Its Representations

The Möbius group The Möbius group Möb is the three-dimensional Lie group
PSU(1, 1) = SU(1, 1)/Z2 acting on S1 ⊂ C by fractional linear transforma-
tions

S1 � z 	→ αz + β

βz + α
,

(

α β

β α

)

∈ SU(1, 1).

Via the Cayley transform and its inverse, the stereographic projection:

C : R = R ∪ {∞} � x 	→ −x − i

x + i
∈ S1, C−1 : S1 � z 	→ −i

z − 1
z + 1

∈ R

it is isomorphic to PSL(2, R) = SL(2, R)/Z2 acting on the compactified real
line R via

R � x 	→ ax + b

cx + d
∈ R,

(

a b
c d

)

∈ SL(2, R).

We shall freely switch between the “circle picture” and the “line picture”.
Möb arises as the subgroup of the conformal group C in four spacetime

dimension, generated by time translations and the conformal inversion (2.1).
It preserves the time axis and commutes with SO(3), the spatial rotations.
Its more familiar appearance in quantum field theory is in the (unbroken)
conformal group in two spacetime dimension, that is isomorphic to Möb ×Möb
acting on the two-dimensional Dirac manifold S1 × S1 where each S1 is the
compactification of one lightlike axis.

Möb can be generated by various one-parameter subgroups. Firstly, con-
sider the following subgroups:

• Rotations r : [0, 2π] � θ 	→ eiθz ∈ S1, in the circle picture;
• Dilations δ : R � s 	→ esx ∈ R, in the line picture.
• Translations t : R � s 	→ x + s ∈ R, in the line picture.

They are respectively denoted with K, A and N. Any element g ∈ Möb can be
uniquely decomposed following the KAN decomposition (Iwasawa decomposi-
tion), i.e., let g ∈ Möb then g = kan, k ∈ K, a ∈ A, n ∈ N. The subgroup A
preserves the upper semicircle, or the right half-line on the line picture, while
N maps it into itself for s > 0. By the adjoint action of Möb , one can define
translation and dilation groups relative to any other interval I, resp. τI and
δI .

2Sic! The Lorentz indices are correct due to the presence of the time reversal in I, cf. (2.1).
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Another convenient choice replaces the rotations by the special conformal
transformations I ◦ t ◦ I, where the conformal inversion I : t 	→ −1/t in the
line picture is the rotation by π in the circle picture.

Unitary positive energy representations of M̃öb Let U be a unitary represen-
tation of M̃öb on a Hilbert space H. The self-adjoint infinitesimal generator of
the rotation subgroup in U is denoted by L0, i.e., U(r(θ)) = eiθL0 . L0 is called
the conformal Hamiltonian. Let P , D, K be the generators of the translations,
dilations and special transformations, resp., and (by abuse of notation) I the
unitary representative of the conformal inversion, then one has

IPI = K, IDI = −D, L0 =
1
2
(P + K), I = eiπL0 . (2.2)

U is said to be a positive energy representation of M̃öb if the spectrum of
the conformal Hamiltonian L0 is contained in [0,+∞).

Irreducible, unitary, positive energy representations of M̃öb on a Hilbert
space H are labeled by positive real numbers k. They correspond to the low-
est eigenvalue of the conformal Hamiltonian L0, called “lowest weight”. An
irreducible positive unitary representation of M̃öb factors on Möb , iff k is an
integer.

Let P be the translation-dilation subgroup of Möb associated to R
+. A

unitary representation of P is said to have positive energy if the spectrum of
the translation subgroup is contained in the positive half-line [0,+∞). There
exists a unique, up to unitary equivalence, irreducible unitary positive energy
representation U of P. The positivity of the energy of a M̃öb representation
U is equivalent to the positivity of the translation generator, thus a positive
energy representation U of Möb restricts to the unique positive energy rep-
resentation of P [15]. Furthermore, if U is irreducible then U |P is irreducible
[21].

2.4. (Anti-)Unitary Extensions

The Poincaré group Let θ be the space and time reflection (t, �x) 	→ (−t,−�x)
and α be the action of θ on P↑

+ by conjugation, we define

P+ = Z2 �α P↑
+

to be the extension of P↑
+ through α. An (anti-)unitary representation of P+

is unitary, resp. anti-unitary, on P↑
+ resp. on θ P↑

+.

Proposition 2.1 [33]. A unitary irreducible positive energy representation U of
P↑

+ extends (anti-)unitarily to P+ iff it is induced by a self-conjugate repre-
sentation of the little group.

This is true for all irreducible positive energy representations except for
those of nonzero finite helicity. On the other hand, Uh ⊕ U−h extends to P+.

The Möb 2group Let r be the complex conjugation z 	→ z on S1 (x 	→ −x in
R), and α be the action of r on Möb by conjugation, we define

Möb 2 = Z2 �α Möb
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to be the extension of Möb through α. Note that r reverses the orientation.
An (anti-)unitary representation of Möb 2 is unitary, resp. anti-unitary, on
Möb (the orientation preserving transformations of Möb 2) resp. on rMöb (the
orientation reversing transformations of Möb 2).

Proposition 2.2 [21]. Every unitary positive energy representation U of Möb
extends (anti-)unitarily to Möb 2.

Now we are going to show that there exists a unique, up to unitary equiv-
alence, way to represent (anti-)unitarily such extensions (see also [30, Thm.
2.11]). Let K be a locally compact group, α be an involutive automorphism of
K and G be the semidirect product Z2 �α K. Let U and ̂U=̇U ◦ α be unitary
representations of K on a Hilbert space H and J be an anti-unitary operator
on H, we shall call J ̂UJ∗ the conjugate representation of U . The unitary equiv-
alence class of the conjugate representation does not depend on the choice of
J . If α = 1, then our definition of conjugate representation coincides with the
classical one. An (anti-)unitary representation of G is unitary on K and anti-
unitary on rK, where r is the Z2-generator. U is said to be self-conjugate if U

is unitarily equivalent to J ̂UJ∗, and real if the anti-unitary J can be chosen
s.th. J2 = 1 and

U = J ̂UJ∗. (2.3)
Note that such an anti-unitary involution extends the representation U
(anti-)unitarily from K to G (the converse is also true). In case J can be
chosen s.th. J2 = −1 and (2.3) holds, then U is said to be pseudo-real.

Proposition 2.3. Assume that K is a locally compact type I group, and let U
be a unitary representation of K. Then

1. If U is real, then it extends to an (anti-)unitary representation of G on
H. The extension is unique modulo unitary equivalence.

2. In general, let J be an anti-unitary involution on H, then U ⊕J ̂UJ is real
and it extends uniquely (up to unitary equivalence) to an (anti-)unitary
representation of G on H ⊕ H as a consequence of point 1.

Proof. Firstly, we consider the factorial case, namely U = U0⊗1 on the Hilbert
space H = H0 ⊗ K, where U0 is an irreducible unitary representation of K.
We consider the following cases:
(1.a) Assume that U and U0 are real representations. In this case, U0 extends

to an (anti-)unitary representation of G through an anti-unitary oper-
ator J0 satisfying (2.3). Let J be any anti-linear involution on K, one
can define the anti-unitary3 involution J = J0 ⊗ J, which extends U
(anti-)unitarily to G and satisfies (2.3).
Now we have to show the uniqueness up to unitary equivalence of the
extension. Consider another anti-unitary involution J ′ on H extending

3The tensor product of two operators is defined by (A ⊗ B)(v ⊗ w) := Av ⊗ Bw. This is
ill-defined if A is unitary and B is anti-unitary, because it conflicts with λu ⊗ w = u ⊗ λw;
it is (anti-)unitary if both A and B are (anti-)unitary. We thank the referee for asking the
question.
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U from K to G. The composition JJ ′ ∈ U(K)′ = C ⊗ B(K) and since
JJ ′ is a unitary,

J ′ = (1 ⊗ Z)(J0 ⊗ J) = J0 ⊗ ZJ

where Z is a unitary operator on the Hilbert space K. By uniqueness,
up to unitary equivalence, of the complex structure of an Hilbert space,
then there exists a unitary V ∈ U(K) s.th. V JV ∗ = ZJ, thus

(1 ⊗ V )J(1 ⊗ V ∗) = J ′.

The two extensions through J and J ′ are unitarily intertwined by 1⊗V .
(1.b) Assume that U is real and U0 is pseudo-real, w.r.t. an anti-unitary opera-

tor J0. Let J be an anti-unitary operator s.th. J2 = −1 then J = J0⊗J is
an involution implementing the Z2-generator on U and satisfying (2.3).
The argument of unitary equivalence of the (anti-)unitary extensions is
a slight modification of the previous case.

(1.c) Assume that U0 is disjoint from the conjugate representation. Let J0 be
an anti-linear involution on H0, we define representation

˜U =
(

U0 ⊕ J0
̂U0J0

)

⊗ 1K

acting on ˜H = (H0 ⊕ H0) ⊗ K. ˜U is real w.r.t. the following anti-unitary
involution ˜J . Let σ be the flip operator on H0 ⊕H0, i.e., σ(ξ⊕η) = η⊕ξ,
J be an anti-linear involution on K, then we define

˜J = ((J0 ⊕ J0) · σ) ⊗ J

on ˜H. It extends (anti-)unitarily ˜U from K to G. Let ˜J ′ be another anti-
unitary involution extending ˜U to G, then ˜J ˜J ′ ∈ U(K)′ = (C⊕C)⊗B(K).
Since ˜J2 = 1, it is easy to see that there exists a unitary V ∈ U(K) such
that

(1C2 ⊗ V ) ˜J (1C2 ⊗ V ∗) = ˜J ′

by uniqueness of the complex structure of the Hilbert space K, and we
conclude this case.

We sketch the proof for the general case. Since K is a type I group the above
result generalizes to direct integrals and direct sums of factorial representa-
tions. Indeed, for U =

∫

X
Uxdμ(x) where {Ux}x∈X is a family of factorial

representations and (X,μ) is a standard measure space, the product of any
two anti-unitary involutions J and J ′ extending U to G belongs to U(K)′.
Then one can conclude the proof by applying the factorial case on integral
fibers. �

Positive energy unitary representations of P↑
+ and Möb satisfy the as-

sumptions of Proposition 2.3. In particular, positive energy factorial represen-
tations of Möb belong to case (1.a); massive, scalar massless and infinite spin
P↑

+-representations also belong to (1.a) and massless nonzero helicity repre-
sentations to (1.c).
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3. One-Particle Nets and Brunetti–Guido–Longo Construction

In QFT, localization is formulated in terms of local nets, i.e., inclusion preserv-
ing maps that associate with open spacetime regions the corresponding quan-
tum structures (algebras or Hilbert spaces, see below), and Einstein causality
is encoded as a feature of these maps. We introduce the various nets pertaining
to our purpose.

The general idea of the connection between nets of algebras on a complex
Hilbert space containing the vacuum vector Ω and nets of real Hilbert sub-
spaces is to define, for every spacetime region O, H(O) := A(O)saΩ.4 One may
also take the intersection with the one-particle space H1(O) = H(O) ∩ H1. In
the free case, one can recover H(O) and also A(O) from the real Hilbert spaces
H1(O) by second quantization, and this can be used as a construction, once
H1(O) are given. Finally, modular theory allows to define H1(O) intrinsically
in terms of a positive energy representation of P↑

+. Local fields are not used
for the specification of the local standard subspaces, and they can actually be
constructed from the latter by second quantization.

3.1. Standard Subspaces

A linear, real, closed subspace H of a complex Hilbert space H is called cyclic
if H + iH is dense in H, separating if H ∩ iH = {0} and standard if it is cyclic
and separating.

Given a standard subspace H, the associated Tomita operator SH is
defined to be the closed anti-linear involution with domain H + iH, given by:

SH : H + iH � ξ + iη 	→ ξ − iη ∈ H + iH, ξ, η ∈ H,

on the dense domain H + iH ⊂ H. The polar decomposition

SH = JHΔ1/2
H

defines the positive self-adjoint modular operator ΔH and the anti-unitary
modular conjugation JH . In particular, ΔH is invertible and

JHΔHJH = Δ−1
H .

If H is a real linear subspace of H, the symplectic complement of H is
defined by

H ′ ≡ {ξ ∈ H ; �(ξ, η) = 0,∀η ∈ H} = (iH)⊥R ,

where ⊥R denotes the orthogonal in H viewed as a real Hilbert space with
respect to the real part of the inner product on H. H ′ is a closed, real linear
subspace of H. If H is standard, then H = H ′′. It is a fact that H is cyclic
(resp. separating) iff H ′ is separating (resp. cyclic), thus H is standard iff H ′

is standard, and we have

SH′ = S∗
H .

Fundamental properties of the modular operator and conjugation are

Δit
HH = H, JHH = H ′, t ∈ R.

4Msa are the self-adjoint elements of a von Neumann algebra M .
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The one-parameter, strongly continuous group t 	→ Δit
H is the modular group

of H (cf. [32]).
There is a 1–1 correspondence between Tomita operators and standard

subspaces, namely between:
• Standard subspaces H ⊂ H,
• Closed, densely defined anti-linear involutions S on H,
• Pairs (J,Δ) of an anti-unitary involution J and a positive self-adjoint

operator Δ on H s.th.
JΔJ = Δ−1. (3.1)

Namely, given (J,Δ) one can recover S := JΔ
1
2 and H as the real eigenspace

of S with eigenvalue 1.
We shall need the following results on standard subspaces.

Lemma 3.1 [21,22]. Let H ⊂ H be a standard subspace, and K ⊂ H a closed,
real linear subspace of H.

If Δit
HK = K, ∀t ∈ R, then K is a standard subspace of K ≡ K + iK and

ΔH |K is the modular operator of K on K. If moreover K is a cyclic subspace
of H, then H = K.

Lemma 3.2 [21,22]. Let H ⊂ H be a standard subspace, and U a unitary on
H such that UH = H. Then U commutes with ΔH and JH .

The following is the one-particle analogue of Borchers’ theorem [4].

Theorem 3.3 [21,22]. Let H ⊂ H be a standard subspace, and U a one-
parameter unitary group on H with positive generator, such that U(t)H ⊂ H,
t ≥ 0. Then Δis

HU(t)Δ−is
H = U(e−2πst).

3.2. Nets on Minkowski Spacetime

Let U be a unitary positive energy representation of the Poincaré group on a
Hilbert space H.

A U -covariant net of standard subspaces H on the set W of wedge regions
of the Minkowski spacetime is a map

H : W � W 	−→ H(W ) ⊂ H
that associates a closed real linear subspace H(W ) with each W ∈ W, satis-
fying:

1. Isotony: If W1 ⊂ W2 then H(W1) ⊂ H(W2);
2. Poincaré covariance: U(g)H(W ) = H(gW ) (W ∈ W, g ∈ P↑

+);
3. Reeh–Schlieder property: H(W ) is cyclic ∀ W ∈ W;
4. Locality: For every wedge W ∈ W, we have

H(W ′) ⊂ H(W )′.

The net is said to have the Bisognano–Wichmann property if
5. Bisognano–Wichmann property: Δit

H(W ) = U
(

ΛW (−2πt)
)

for all W ∈ W
and t ∈ R, where ΛW is the boost subgroup fixing the wedge W in the
standard parametrization.
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Given a U -covariant net H on W, one gets a net of closed, real linear subspaces
on double cones O defined by

H(O) ≡
⋂

W�W⊃O

H(W ). (3.2)

Note that H(O) is not necessarily cyclic. If H(O) is cyclic and H has the BW
property, then

H(W ) =
∑

O⊂W

H(O)

by Lemma 3.1.

3.3. Nets on the Circle

Let I be the set of nonempty, nondense, open connected intervals of the unit
circle S1 = {z ∈ C : |z| = 1}. Let U be a positive energy representation of
Möb on a Hilbert space H.

A Möbius covariant net is a map H which assigns to every interval I ∈ I
a von Neumann algebra H(I) ⊂ H satisfying the following properties:

1. Isotony: If I1, I2 ∈ I and I1 ⊂ I2, then H(I1) ⊂ H(I2);
2. Möbius covariance: U(g)H(I) = H(gI) (I ∈ I, g ∈ Möb );
3. Reeh–Schlieder property: H(I) is cyclic for every I ∈ I;
4. Locality: If I1, I2 ∈ I and I1 ∩ I2 = ∅,

H(I1) ⊂ H(I2)′.

With these properties, H(I) are standard subspaces, and the net automatically
satisfies the Bisognano–Wichmann property

5. Bisognano–Wichmann property: Δit
H(I) = U

(

δI(−2πt)
)

for all I ∈ I and
t ∈ R.

Here, for I+ the upper semicircle, δI+(t) are the dilations x 	→ etx in the line
picture, and for every other interval I = g(I+) (g ∈ Möb ), δI(t) = g ◦ δI+(t) ◦
g−1.

A translation-dilation covariant net of standard subspaces on the intervals
of the real line R can be defined in complete analogy. It is said to satisfy
the Bisognano–Wichmann property if U(δR+(2πt)) = Δ−it

R+
. In this case, it is

possible to obtain a net on the circle; also the converse is true:

Lemma 3.4 [21]. Let H be a translation-dilation net on the line. It extends to
a Möbius covariant net on the circle if and only if the Bisognano–Wichmann
property holds. The extension is unique.

3.4. Brunetti–Guido–Longo Construction

The Brunetti–Guido–Longo construction relies on the 1–1 correspondence be-
tween standard subspaces and Tomita–Takesaki modular data.

On Minkowski space [5] Let U be an (anti-)unitary representation of P+,
and JW and KW the anti-unitary reflection and the self-adjoint generator
of the one-parameter group of boosts associated with the wedge W (i.e.,
U(ΛW (t)) = eitKW ), respectively. The pair (JW ,ΔW ≡ e−2πKW ), satisfies
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(3.1), thus one can associate to any wedge W ∈ W a standard subspace H(W )
in a covariant way. By positivity of the energy and the Borchers Theorem
3.3, the net W 	→ H(W ) satisfies Isotony. Covariance, Locality and the Reeh–
Schlieder and Bisognano–Wichmann properties hold by construction.

On the circle [21]. Let U be an (anti-)unitary representation of Möb and JI and
KI the anti-unitary reflection and the generator of the one-parameter group
of dilations associated with the interval I, respectively, and ΔI = e−2πKI . In
analogy with the previous, we can define a net I 	→ H(I). By positivity of the
energy and the Borchers theorem, the net I 	→ H(I) satisfies Isotony. Covari-
ance, Locality and the Reeh–Schlieder and Bisognano–Wichmann properties
hold by construction.

Proposition 3.5. There is a unique, up to unitary equivalence, net of standard
subspaces on the considered spacetimes (circle or Minkowski) satisfying 1.–5.
of Sect. 3.2 resp. 3.3.

Proof. On Minkowski space. Let W 	→ H(W ) be a Poincaré covariant net of
standard subspaces on wedges satisfying the Bisognano–Wichmann property
w.r.t. a positive energy unitary Poincaré representation U . Then the modular
conjugations of wedge subspaces extend U to an (anti-)unitary representation
of P+, cf. [14]. We conclude by the unitary equivalence of (anti-)unitary exten-
sions in Proposition 2.3 and the 1–1 correspondence between Tomita operator
and standard subspaces.

On the circle. Let I 	→ H(I) be a Möbius covariant net of standard subspaces
on intervals satisfying 1.–5. Then U extends to an (anti-)unitary representation
of Möb 2 through interval modular conjugations [21]. The conclusion again fol-
lows by Proposition 2.3 and the 1–1 correspondence between Tomita operators
and standard subspaces. �

3.5. Chiral Current Models [15]

For n ∈ N consider the Hilbert space Hn defined by the closure of the space
of square-integrable functions on R w.r.t. the inner product

(f, g)n =
∫ ∞

0

p2n−1dp ̂f(p)ĝ(p).

(Via the Cayley transform, it can be identified with a space of square-integrable
functions on S1.) Its null space contains the polynomials of degree 2(n − 1).
The associated symplectic form on the real-valued functions is

ωn(f, g) ≡ �(f, g)n =
(−1)n−1

2

∫

f(x)g(y)δ(2n−1)(x − y) dx dy.

Hn carries a unitary positive energy representation U (n) of Möb by

(U (n)(g)f)(x) =
(

dg(x)
dx

)−2(n−1)

f(g(x)) = (cx − a)2(n−1) f(g(x)), (3.3)

in particular
(If)(x) = x2(n−1) · f(I(x)). (3.4)
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The self-adjoint generators act by

(Pf)(x) = i∂xf(x), (Df)(x) = i(x∂x − (n − 1))f(x), (3.5)
(Kf)(x) = i(x2∂x − 2(n − 1)x)f(x). (3.6)

U (n) is the positive energy representation of lowest weight n.
Applying the BGL construction (Sect. 3.4) to the representation U (n),

one obtains the net of real subspaces

I 	→ Hn(I) = {f ∈ C∞(R, R) : supp f ⊂ I}‖·‖n ⊂ Hn,

on which Möb acts covariantly. (“Modular localization” is the fact that the
support property arises as a consequence of the definition of Hn(I) via modular
theory. Locality is then seen directly from the symplectic form ωn.) The sec-
ond quantization of Hn (cf. Sect. 3.6) gives the net of von Neumann algebras
generated by the quasi-primary chiral current5 jn of dimension n.

Note that

(f, g)n = (∂xf, ∂xg)n−1,

i.e., the derivative ∂x is a unitary operator Hn → Hn−1. This operator inter-
twines the actions of the generators P and D, but not of K. Thus, ∂x : Hn →
Hn−1 implements the unitary equivalence of the restrictions of U (n) to the
translation-dilation subgroup, cf. Sect. 2.3. In the language of quantum field
theory, this is the statement that a quasi-primary current of dimension n and
the derivative of a quasi-primary current of dimension n − 1 transform in the
same way under translations and dilations.

The distinction is only seen by the action of K, or I. This motivates the
following

Lemma 3.6. Let U be a representation U of Möb whose restriction to the
translation-dilation subgroup P is given by (3.5). Suppose that I acts geomet-
rically, i.e.,

(If)(x) = g(x)f(I(x)) (3.7)
with some function g. Then g(x) = x2(n−1), and U = U (n).

Proof. By direct computations, using (2.2): Insertion of (3.7) into ID+DI = 0
implies that g is homogeneous of degree 2(n − 1), hence g(x) = g0x

2(n−1).
I2 = id implies g0 = ±1. Then K = IPI implies (3.6), which together with
(3.5) integrates to (3.3). Then (3.4) implies g0 = 1. �

The following is a reformulation of Lemma 3.6.

Proposition 3.7. For n ∈ N let H with inner product (f, f) =
∫ ∞
0

dp | ̂f(p)|2
p2n−1 be the anti-Fourier transform of the Hilbert space L2(R+, p2n−1dp). Let

I 	→ H(I) = {f ∈ C∞
0 (R, R), supp f ⊂ I} ⊂ H

be a Möb -covariant net of standard subspaces with the natural action of trans-
lations and dilations on H. Then H(I) = {jn(f)Ω ∈ H : supp f ⊂ I} where jn

5A quasi-primary chiral current of dimension n is a field on S1 transforming under Möbius
transformations like U(g)j(z)U(g)∗ = (dg(z)/dz)n · j(g(z)).
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is the quasi-primary field of dimension n. In particular, H is the one-particle
net Hn associated with U (n) (up to multiplicity).

Proof. By the Bisognano–Wichmann property, we know that H is the canon-
ical BGL net associated with the covariant Möb -representation. Thus there
exists a current j generating H, and it remains to identify j with the quasi-
primary current jn of dimension n.

Suppose that the inner product (f, f) = ||j(f)Ω||2 were misidentified,
say, for simplicity, as (f, f) = ||j′

n−1(f)Ω||2. This is possible since jn and
j′
n−1 = ∂jn−1 share the same scaling dimension, and the same translation-

dilation covariant representation (but inequivalent Möb covariant representa-
tions). Then the conformal inversion would act geometrically on derivatives as
f ′ because j′

n−1(f) = −jn−1(f ′), but not on its primitive f . This is a contra-
diction. As a consequence j = jn and H = Hn. �

3.6. Second Quantization and Nets of von Neumann Algebras

With H a Hilbert space and H ⊂ H a real linear subspace, R+(H) is the von
Neumann algebra on the symmetric Fock space F+(H) generated by the CCR
operators:

R+(H) ≡ {w(f) : f ∈ H}′′, (3.8)

with w(f) the Weyl unitaries on F+(H) defined on the coherent states eg ∈
F+(H) (f ∈ H) by their action w(f)eg = e− 1

2 (f,f)−(f,g) · ef+g. If ϕ(f) is the
self-adjoint generator of the unitary one-parameter group w(f), this standard
construction ensures the identification of the “one-particle vector” ϕ(f)Ω ∈
F+(H) with f ∈ H ⊂ F+(H). By continuity we have that

R+(H) = R+(H).

Moreover the Fock vacuum vector Ω is cyclic (resp. separating) for R+(H) iff
H is cyclic (resp. separating).

Second quantization respects the lattice structure [1] and the modular
structure [20,23]. We recall these basic properties. For a standard subspace
H ⊂ H, we denote by S+

H , J+
H , Δ+

H the Tomita operators associated with
(R+(H),Ω), and by Γ+(T ) the Bose second quantization of a one-particle
operator T on H, Γ+(T )ef = eTf .

Proposition 3.8 [1,20,23]. Let H and Ha be closed, real linear subspaces of H.
We have

(a) R+(H)′ = R+(H ′);
(b) R+(

∑

a Ha) =
∨

a R+(Ha);
(c) R+(

⋂

a Ha) =
⋂

a R+(Ha).
(d) If H is standard, then S+

H = Γ+(SH), J+
H = Γ+(JH), Δ+

H = Γ+(ΔH).

Given the canonical BGL-net HU associated with a unitary positive en-
ergy representation U of P↑

+ or of Möb , respectively, its second quantization
net

A(W ) ≡ R+

(

HU (W )
)

, W ∈ W, resp. An(I) ≡ R+

(

HU(n)(I)
)

, I ∈ I,
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is the free field net, i.e., A(W ) is generated by Weyl operators w(f) = eiϕ(f)

of free Wightman fields smeared with real test functions supported in W , and
An(I) is generated by Weyl operators w(f) = eijn(f) of the quasi-primary
current of dimension n, smeared in I. The case n = 1 is the canonical U(1)
current.

These nets satisfy the usual assumptions on nets of von Neumann algebras
of local observables.

On Minkowski space.

• Isotony: A(W1) ⊂ A(W2) if W1 ⊂ W2;
• Poincaré covariance: U is a positive energy representation of P↑

+, and
U(g)A(W )U(g)∗ = A(gW ), g ∈ P↑

+;
• Vacuum with Reeh–Schlieder property: there exists a unique (up to a

phase) U -invariant vector Ω ∈ H, and Ω is cyclic and separating for
A(W ) for all W ∈ W;

• Locality: A(W ′) ⊂ A(W )′.
In addition, for the canonical free field nets the Bisognano–Wichmann property
holds:

Δit
A(W ),Ω = U

(

ΛW (−2πt)
)

, W ∈ W, t ∈ R,

where ΔA(W ),Ω is the modular operator of (A(W ),Ω).

On the circle.

• Isotony: A(I1) ⊂ A(I2) if I1 ⊂ I2;
• Möbius covariance: U is a positive energy representation of Möb , and

U(g)A(I)U(g)∗ = A(gI), g ∈ Möb ;
• Vacuum: There exists a unique (up to a phase) U -invariant vector Ω ∈ H;
• Locality: A(I ′) ⊂ A(I)′, I ∈ I;

The following are consequences of these axioms
• Reeh–Schlieder property: Ω is a cyclic and separating vector for each A(I),

I ∈ I;
• Haag duality: A(I ′)′ = A(I), I ∈ I;
• Bisognano–Wichmann property: U(δI(−2πt)) = Δit

A(I),Ω, for all I ∈ I
and t ∈ R.

4. Time-Axis Theory of Finite Helicity Representations

Consider the representation U = Uh⊕U−h of the Poincaré group. The Brunetti–
Guido–Longo construction associates with U a net of standard subspaces H
on wedge shaped regions satisfying the Bisognano–Wichmann property. The
second quantization procedure provides the free field net A associated with U .

Finite helicity von Neumann algebra nets have an associated Wightman
field φh satisfying the Bisognano–Wichmann property [2]. Thus the BGL and
the Wightman field constructions coincide as

H(O) = {φh(f)Ω : f ∈ C∞
0 (R1+3), Suppf ⊂ O} and H(W ) =

⋃

O⊂W

H(O),
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gives a one-particle U -covariant net (with two polarizations h and −h) and its
second quantization

Ah(O)=̇R+(H(O)) = {eiφh(f) : f ∈ C∞
0 (R1+3), Suppf ⊂ O}}′′

gives the free field. Note that Haag duality holds by [17,18], namely H(O′) =
H(O)′ and R+(H(O′)) = R+(H(O)′) = R+(H(O))′. Furthermore, due to the
conformal covariance, the modular operator of any double cone subspace (resp.
second quantization algebra) implement a one-parameter group of conformal
transformation that is conjugated to the dilation and the boost one parameter
groups [17].

Firstly, note that it is not possible to unitarily rewrite the net H as a
direct sum according to Uh ⊕ U−h, as Uh does not extend (anti-)unitarily to
P+ [27,33]. On the other hand U±h (thus U) extends to a representation ˜U±h

(resp. ˜U) of the conformal group which acts covariantly on the net H, see, e.g.,
[17,18,24].

We recall that a local net of standard subspaces on double cones under-
going the action of a massless Poincaré representation is time-like local.

Lemma 4.1 [23]. Assume that U is a massless, unitary representation of ˜P↑
+

acting covariantly on a local net of closed, real linear subspaces on double cones.
Let O1, O2 be double cones with O2 in the time-like complement of O1, then

H(O2) ⊂ H(O1)′,

where H(O) =
⋂

W⊃O H(W ).

Now, we can define a local net of standard subspaces on the time axis.
Let I = (a, b) ⊂ R be an interval and OI = (V− + b) ∩ (V+ + a) the double
cone with vertices on the time axis. Then we get a net on the line

I 	→ H(I) = H(OI)

which undergoes the Möbius covariant action of ˜U |Möb .
Since any unitary positive energy Möbius representation extends (anti-

)unitarily to Möb 2, then ˜U±h|Möb extends to Möb 2 and acts covariantly on its
BGL net H0 of standard subspaces. By Proposition 3.5 and the Bisognano–
Wichmann property for the dilation group, we have that the net I 	→ H(I) is
unitarily equivalent to the direct sum of the two local Möb -covariant nets H±.

Now we need the structure coming from Wightman fields in order to
construct the theories on the time axis.

4.1. One-Particle Space and Free Field Equations

Free field theories are completely determined by their one-particle structure.
This structure is conveniently described by the two-point functions of Wight-
man fields, that define the one-particle space by endowing the space of test
functions with an inner product. The null space of this inner product is com-
pletely characterized by the free field equations (that are closer to the physi-
cists’ mind). Our strategy is to use the latter in order to control the one-particle
space and the pertinent decomposition of the one-particle representations.
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As compared to the scalar field, there are two complications with helicity
> 1: the (higher) Maxwell fields transform non-trivially under SO(3), and
the one-particle space of a local field carries necessarily the direct sum of
the irreducible representations of helicity +h and −h. (Nevertheless, we shall
loosely refer to the local fields as “helicity-h fields.”)

The electromagnetic field, h = 1. The Maxwell equations for the magnetic and
electric fields in absence of charges are

curlB =
∂

∂t
E, curlE = − ∂

∂t
B, divE = 0 = divB.

The field strength Fμν of the electromagnetic field is defined to be the anti-
symmetric tensor given by

E = (F01, F02, F03) and B = (F32, F13, F21),

and the Maxwell equations become

∂μFμν = 0 and ∂μFνρ + ∂νFρμ + ∂ρFμν = 0.

These imply the Klein–Gordon equation �F = 0.
In the quantized theory, the one-particle Hilbert space is the space of

test functions fμν equipped with the inner product given by the two-point
function

(f, f) := (F (f)Ω, F (f)Ω) = (Ω, F (f)F (f)Ω).

The latter is dictated by covariance (i.e., by Weinberg’s quantization [34] based
on Wigner’s intrinsic construction [36] avoiding the use of a potential) to be

‖F (f)Ω‖2 =
∫

R3

dp

|p| pμ pτ ηνσ
̂fμν(p) ̂fστ (p).

Higher correlations are obtained by Wick’s theorem, so that the full Hilbert
space is the Fock space, and multi-particle states can be created by the usual
creation and annilation operators. The field strength transforms covariantly
under the Poincaré group:

U(a,Λ)Fμν(x)U(a,Λ)∗ = Λρ
μ Λσ

νFρσ(Λx + a).

It is well known that U(a,Λ) acts on the one-particle space as the direct sum
of Poincaré representations of helicities 1 and −1 [34].

In order to prove the split property for the resulting net, we want to
restrict the Maxwell net to the time axis. This gives a chiral conformal QFT.
By computing Tr e−βL0 for this chiral QFT and showing that it is finite for all
β > 0, we shall establish that the chiral net satisfies the split property. From
this, we can conclude that the original net has the split property.

Before we present the purely representation-theoretical argument for ar-
bitrary helicities |h| ≥ 1, we want to give its field-theoretic version in the
Maxwell case.

The Poincaré transformations of the Maxwell tensor extend to the con-
formal group by

U(g)Fμν(x)U(g)∗ = Jg(x)ρ
μJg(x)σ

νFρσ(g(x)),
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where Jg(x)ρ
μ = ∂g(x)ρ/∂xμ is the Jacobi matrix. For infinitesimal transfor-

mations with generators P0 (time translations), D (dilations) and K0 = IP0I
(special conformal transformations), one finds

i[P0, Fμν(x)] = ∂0Fμν(x), i[D,Fμν(x)] = (xκ∂κ + 2)Fμν(x),

i[K0, Fμν(x)] =
(

2x0(x∂) − x2∂0 + 4x0

)

Fμν(x)
+ 2(η0μxκFκν − xμF0ν − (μ ↔ ν)).

From this, the commutators with the restricted fields ∇aFμν(t) = ∇a1 . . . ∇ak

Fμν(t, �x)|
x=0 can be explicitly worked out.
Now, P0 = P , D and K0 = K are the generators of Möb , and quasi-

primary chiral currents of dimension h transform as

i[P, j(t)] = ∂tj(t), i[D, j(t)] = (t∂t + h)j(t), i[K, j(t)] = (t2∂t + 2ht)j(t).

It is obvious that the first two equations are satisfied by ∇aFμν(t) with h =
2+ |a| = 2+k; but the last one is in general not fulfilled. In an SO(3)-covariant
formulation, and using the Maxwell equations, we can bring the commutator
with K into the form

i[K,Ja,b(t)] − (t2∂t + 2(2 + k)t)Ja,b(t) = 2
∑

1≤i<j≤k

∂tδaiaj
Jä,b(t)

+2i
∑

1≤i≤k

εaibcJȧ,c(t),

where Ja,b are the complex fields ∇a1 . . . ∇ak
(Eb(t, �x) + iBb(t, �x))|
x=0, and ȧ

is the multi-index with ai deleted, and similarly ä is the multi-index with ai

and aj deleted.
The quasi-primary currents are those for which the right-hand side van-

ishes. It is easy to see that this is precisely the case for the completely sym-
metric and traceless part of the rank k +1 tensor Ja1...ak,b. This tensor carries
the spin s = k + 1-representation of SO(3), and because J is complex, there
are two 2s+1 multiplets of real quasi-primary currents of dimension (= lowest
weight of L0) 2 + k. All other components of Ja1...ak,b can be seen to be time
derivatives of lower currents by virtue of the Maxwell equations ∂aJa = 0,
∂aJb − ∂bJa = iεabc∂tJc and the wave equation that follows from them.

Now, it is well known that on the subspace generated from the vacuum
by a quasi-primary field of dimension h, one has Trh e−βL0 = e−βh

1−e−β , hence on
the one-particle space of the Maxwell field,

Tr e−βL0 = 2
∑

k≥0

(2k + 3) · e−β(2+k)

1 − e−β
,

which can be easily summed as a geometric series in z = e−β with radius of
convergence 1.

Higher helicity fields, h > 1. The field strength is a tensor

F[μ1ν1]...[μhνh],
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anti-symmetric in each index pair [μν]. It transforms covariantly under the
Poincaré group:

U(a,Λ)F[μ1ν1]...[μhνh](x)U(a,Λ)∗

= Λρ1
μ1

. . . Λρh
μh

Λσ1
ν1

. . . Λσh
νh

F[ρ1σ1]...[ρhσh](Λx + a)

and is subject to the linear dependencies (symmetries)

F...[μjνj ]...[μkνk]... = F...[μkνk]...[μjνj ]..., ημjμkF[μ1ν1]...[μhνh] = 0,

F[αβ][γν2]...[μhνh] + F[βγ][αν2]...[μhνh] + F[γα][βν2]...[μhνh] = 0. (4.1)

Its equations of motion (“higher Maxwell equations”) are

∂αF[αν1]...[μhνh] = 0, ∂αF[βγ]...[μhνh] + ∂βF[γα]...[μhνh] + ∂γF[αβ]...[μhνh] = 0.
(4.2)

One can solve the linear dependencies in an SO(3)-covariant way by introduc-
ing the “electric” and “magnetic” components

Eb1...bh
:= F[0b1]...[0bh], Bb1...bh

:= εb1j1k1F[j1k1][0b2]...[0bh],

so that both E and B are symmetric traceless tensors; hence, they carry the
representation Ds of SO(3); furthermore, the identities

εb1j1k1εb2j2k2F[j1k1][j2k2][μ3ν3]...[μhνh] = −F[0b1][0b2][μ3ν3]...[μhνh]

shows that two “magnetic” indices amount to two “electric” indices up to a
sign, so that the SO(3) tensors E and B contain all independent components
of the higher Maxwell tensor.

Thus, a general field operator is of the form F (f) = E(fE) + B(fB),
where the test function is a pair

f(x) = (fE
b1...bh

(x), fB
b1...bh

(x))

of completely symmetric traceless tensors.
Also the higher Maxwell equations look the same as for h = 1, namely E

and B are divergence-free and

εabc∇aEbb2...bh
= −∂tBcb2...bh

, εabc∇aBbb2...bh
= ∂tEcb2...bh

(4.3)

(which of course holds in every index).
Test functions that arise by smearing the Maxwell equations belong to

the kernel of the two-point function and hence are zero as elements of the
one-particle Hilbert space. Thus, in the one-particle space, there hold linear
relations among test functions, of the form

(∇bgḃ, 0) .= 0, (0,∇bgḃ)
.= 0,

(εabc∇agcḃ, 0) .= (0,−∂tgb), (0, εabc∇agcḃ)
.= (∂tgb, 0). (4.4)

Because the higher Maxwell equations imply the wave equation, also

((�∇2 − ∂2
t )gE , (�∇2 − ∂2

t )gB) .= 0

are zero in the one-particle space.
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4.2. Counting Currents

The space of “test functions” for the fields restricted to the time axis is spanned
by f = (fE

b , fB
b ) where6

fX
b (x) = fX

b;a(t)∇aδ(x) ≡ fX
b1...bh;a1...ak

(t) · ∇a1 . . . ∇ak
δ(�x) (X = E,B)

(summation over a = ai . . . ak understood), k = 0, 1, 2, . . .. We call Tk the
subspace of such functions with a fixed number k of spatial derivatives and T
the union of all the Tk.

The space of the test functions fX
b , modulo the kernel of the inner prod-

uct, defines the one-particle Hilbert space H of the field strength F , and by
Haag duality K(OI) = {F (f)Ω : f ∈ T, Supp f ⊂ I} ⊂ H(OI) cf. [3]. Further-
more, by conformal covariance, the modular group of the double cone subspace
H(OI) implements a one-parameter group of conformal transformations fixing
the time axis (see [17]) and any Tk (the whole representation ˜U |Möb fixes Tk, cf.
(4.6)). Now one can see that T +iT is cyclic in H since the inner product in the
Hilbert space H can be decomposed as (f, g) =

∫

p0dp0

∫

p0·S2
(f, g)pdσ where

p0 · S2 is the sphere of radius p0, dσ is the SO(3)-invariant measure on p0 · S2

and
(·, ·)

p
is a quadratic form involving 2h factors of pμ = (p0, �p) = p0(1, �nσ).7

Then, by Lemma 3.1 we have that K(OI) = H(OI).
Because of the symmetry of the tensors E and B, it suffices to take fX

b;a

to be symmetric and traceless in the b-indices; because of the wave equation,
it suffices to take it also symmetric and traceless in the a-indices. Thus, the
test functions carry (twice) the representation Ds ⊗ Dk.

The one-particle Hilbert space is defined by taking the quotient by the
null space, which is the kernel of the two-point function. Thus, we may identify
test functions according to (4.4). In particular, every test function in Tk with
coefficients fX

b;a involving a factor δbiaj
is zero in the one-particle space; and

every test function in Tk with coefficients anti-symmetric in a pair bi, aj is
identified with (the time derivative of) a test function in Tk−1. Therefore, the
one-particle Hilbert space for the restricted fields is spanned by the spaces ˜Tk

(k = 0, 1, 2 . . .) with elements

(fE
c1...ch+k

, fB
c1...ch+k

) ∈ ˜Tk

where fX
c (X = E,B) are completely symmetric and traceless, hence carrying

(twice) the representation Dh+k of SO(3). All other sub-representations of
Dh ⊗ Dk belong to the null space. In particular ˜Tk are mutually orthogonal.

We write the two-point function for f = (fE
c , fB

c ) ∈ ˜Tk as

(

f, f
)

k
=

∫

p2
0 dp0

p0

∫

dσ
(

̂f(p0, �p), ̂f(p0, �p)
)

p
(4.5)

6That Wightman fields can be restricted to �x = 0 is a result due to Borchers [3]. It ensures
that the inner product is well-defined on test functions involving δ(�x).
7By the Stone theorem polynomials are dense in the continuous functions on the sphere.
Then (vector) continuous functions are dense in the L2-space w.r.t. the inner product
∫

p0·S2
(f, g)pdσ.
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where ̂f(p0, �p) = (̂fE
c1...ch+k

(p0)pch+1 . . . pch+k
, ̂fB

c1...ch+k
(p0)pch+1 . . . pch+k

)
are homogeneous polynomials of degree k in �p. Extracting powers of |�p| = p0,
this becomes

(

f, f
)

k
=

∫

p1+2h+2k
0 dp0

∫

dσ
(

̂f(p0, �nσ), ̂f(p0, �nσ)
)

(1,
nσ)
.

The integration dσ yields the inner product for Dh+k⊕Dh+k, while the Möbius
transformations are characterized by the dependence on p0.

The concluding argument is the same as in [9]: The time translations and
dilations trivially restrict to the time axis by

Pf(t) = i∂tf(t), Df(t) = i(t∂t − (h + k))f(t).

The conformal inversion I acts geometrically on test functions by (t, �x) 	→
(−t, �x)/(t2 − �x2), hence also its restricted action on the time axis is geometric
by t 	→ −1/t. Because it commutes with SO(3), it preserves the spaces ˜Tk and
must act on it as

(If)(t) = G(t)f(I(t)) (4.6)
where G(t) is a 2×2-matrix in the commutant of Dh+k⊕Dh+k, possibly mixing
the electric and magnetic components. Now the argument of the Lemma 3.6
applies, and we conclude that G(t) = t2(h+k)12, and the subgroup Möb×SO(3)
of C acts on ˜Tk as U (h+k+1) ⊗ (Dh+k ⊕ Dh+k).

We have proved the following theorem.

Theorem 4.2. Let Uh be the irreducible helicity-h representation of the Poincaré
group. Let U = Uh ⊕ U−h, and ˜U its extension to the conformal group C, then

˜U |Möb×SO(3) =
⊕∞

k=0
U (h+k+1) ⊗ (Dh+k ⊕ Dh+k). (4.7)

Corollary 4.3. Let Uh be the irreducible helicity-h representation of the
Poincaré group and ˜Uh its extension to the conformal group C, then

˜Uh|Möb×SO(3) =
⊕∞

k=0
U (h+k+1) ⊗ Dh+k. (4.8)

Proof. The PCT symmetry respects the Möb ×SO(3) decomposition. Its anti-
unitary implementation J intertwines Uh, U−h and their restrictions to Möb ×
SO(3). Irreducible unitary sub-representations in ˜U |Möb×SO(3) of Möb ×SO(3)
are tensor products of the form U j+1⊗Dj that anti-unitarily extend to Möb 2×
SO(3). In particular, ˜Uh|Möb×SO(3) and ˜U−h|Möb×SO(3) are unitarily equivalent,
and by the decomposition in Theorem 4.2 we get the claim. �

5. Trace Class and Split Property for Finite Helicity Fields

Definition 5.1. (Split Property) [11]. Let (N ⊂ M,Ω) be a standard inclusion
of von Neumann algebras, i.e., Ω is a cyclic and separating vector for N , M
and N ′ ∩ M.

A standard inclusion (N ⊂ M,Ω) is split if there exists a type I factor
B such that N ⊂ B ⊂ M.
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A Poincaré covariant net (A, U,Ω) satisfies the split property if the von
Neumann algebra inclusion (A(O1) ⊂ A(O2),Ω) is split, for every compact
inclusion of bounded causally closed regions O1 � O2.

The following result relates the trace class property of the partition func-
tion in the first and second quantization nets.

Lemma 5.2 [9,21]. Let A ∈ B(H) be a self-adjoint operator s.th. 0 ≤ A < 1,
then Tr Γ(A) < ∞ iff Tr A < ∞, where Γ is the second quantization functor.

The next proposition relates the trace class and the split properties of
conformal nets on the circle.

Proposition 5.3 [9]. Let A be a von Neumann algebra net on the circle satis-
fying the trace class condition

Tr e−βL0 < ∞ for every β > 0,

then every inclusion A(I) ⊂ A(˜I), with I � ˜I, is a split inclusion.

The results of the previous section allow us to conclude

Proposition 5.4. Let Uh be a finite helicity representation of P↑
+ and ˜Uh its

extension to the conformal group C. Consider the restriction ˜Uh|Möb and let
L0 be the conformal Hamiltonian, i.e., the generator of the rotation subgroup
of Möb . Then e−βL0 is a trace class operator.

Proof. By Corollary 4.3 any representation of highest weight n + 1 in the de-
composition of Uh|Möb×SO(3) appears with multiplicity equal to the dimension
of Dn when n ≥ s:

˜Uh|Möb×SO(3) �
∞

⊕

k=0

U (h+k+1) ⊗ Dh+k.

Furthermore, the trace of L0 in U (h+k+1) is equal to e−(h+k+1)β

1−e−β . We conclude
that

Tr (e−βL0) =
∞
∑

n=h

(2n + 1)
e−(n+1)β

1 − e−β
,

which converges for all β > 0 as before. �

Proposition 5.5. Let Ah be the helicity-h free net of von Neumann algebras
(whose one-particle space carries the representation Uh ⊕ U−h if h > 0) and
I 	→ Ah(I) .= Ah(OI) be its restriction to the time axis. Then Ah(I) ⊂ Ah(˜I)
is a split inclusion when I � ˜I.

Proof. The net Ah is the second quantization of the BGL net Hh of standard
subspaces associated with U = Uh ⊕U−h. By Lemma 5.2 and Proposition 5.4,
we have that Tr Γ(e−βL0) < ∞, thus the net

I 	→ Ah(OI)

satisfies the split property, by Proposition 5.3. �
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Theorem 5.6. The free finite helicity fields satisfy the split property.

Proof. For inclusion of algebras related to double cones on the time axis, we
conclude by Proposition 5.5.

For a general inclusion of double cones O � ˜O, choose a Poincaré trans-
formation g such that g( ˜O) = O

˜I is a double cone on the time axis. Then
there is an inclusion OI � O

˜I of another double cone on the time axis such
that g(O) ⊂ OI . Then Ah(g(O)) ⊂ Ah(O

˜I) = Ah(g( ˜O)) is split because
Ah(g(O)) ⊂ Ah(OI), and hence Ah(O) ⊂ Ah( ˜O) is split by covariance. �

As a corollary of Proposition 5.4, we also have the L2-nuclearity property,
which is stronger than the split property.

Corollary 5.7. (L2-nuclearity) Let Ah be the helicity-h free net of von Neu-
mann algebras and I 	→ Ah(I) .= Ah(OI) be its restriction to the time axis.
Then for I � ˜I the operator Δ1/4

A(˜I),Ω
Δ−1/4

A(I),Ω is trace class.

The proof of the corollary is analogous to the one given in [9].

6. Outlook: Toward a New Construction of Finite Helicity
Fields

Disjoint unitary representations of a given locally compact group G can have
unitary equivalent restrictions to subgroups. This fact can be used to recon-
struct inequivalent representations of G, by perturbing generators in the com-
plement of a subgroup H ⊂ G. In [15], the authors proved that inequivalent
highest weight representations of the Möb group have unitary equivalent re-
strictions to the translation-dilation subgroup, cf. Sect. 2.3. In particular, one
can recover the full Möb representation U (n) of lowest weight n by perturbing
the conformal inversion operator of the representation U (1) of lowest weight
1. On the other hand, the covariance of associated nets is not preserved in
this perturbation procedure. For instance, one can see that U (n) acts covari-
antly only on a subnet of the U(1)-current (which anyway coincides with the
U(1)-current on half-lines) [15].

In this paper, we established the split property for free finite helicity
fields. The fundamental step is the factor decomposition of the restriction
of ˜Uh, the extension of the representation Uh of helicity h to the conformal
group C, to the subgroup Möb × SO(3). The rotation group SO(3) is a type
I group; hence, irreducible representations of Möb × SO(3) have to be tensor
products U (n) ⊗ Ds, where U (n) is the lowest weight-n representation of Möb
and Ds is the spin-s representation of SO(3). By inspection of the decompo-
sition of ˜Uh|Möb×SO(3) in Corollary 4.3, we observe that ˜Uh1 |Möb×SO(3) is a
sub-representation of ˜Uh2 |Möb×SO(3) when h1 − h2 ∈ Z and h1 ≥ h2.

One can think of a perturbation argument. Consider the projection Ph on
the subspace supporting

⊕h−1
k=0(U (k+1) ⊗ Dk) and cut ˜U0|Möb×SO(3) along the

complementary space 1−Ph. By Corollary 4.3, the representation U0|Möb×SO(3)
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(1 − Ph) extends to a representation of helicity h by redefining the spatial
translations, suitably perturbing the translation generators in the scalar rep-
resentation on (1 − Ph)H0. Namely, the spatial translations together with the
time translations and the conformal inversion, contained in Möb , generate the
conformal group. This can be further seen by looking at the proof of Proposi-
tion A.4, where we disintegrate the spectrum in rotation-translation invariant
fibers, and (A.2) shows that Wh,p0 |SO(3) ≤ Wk,p0 |SO(3), for k ≤ h. Thus one
can address the perturbation argument already at the level of the Euclidean
subgroup, cf. Appendix A.

Let us comment on inclusions of nets of standard subspace on the time
axis. Firstly, the BGL-net associated with the P↑

+-representation U0 extends
to a conformal net, and the Bisognano–Wichmann property for boosts and
dilations is a consequence of conformal covariance, cf. [6]. Then, we note that
the projection Ph+1 − Ph commutes with U0|Möb (and with U0|Möb×SO(3)). In
particular, the net on the time axis I 	→ H0(OI) decomposes as the direct sum
of Möb -covariant nets of subspaces

I 	→ H0(OI) =
∞

⊕

h=0

(Ph+1 − Ph) H0(OI)

according to (4.8). Indeed, by the Bisognano–Wichmann property the modu-
lar groups of the interval subspaces implement interval dilations, the interval
modular conjugations implement the PCT symmetry, and it is easy to see that
the Tomita operators of the interval subspaces commute with Ph+1 − Ph.

Once we identify the representations

(˜Uh ⊕ ˜U−h)|Möb×SO(3) = ((1 − Ph) ⊕ (1 − Ph)) (˜U0 ⊕ ˜U0)|Möb×SO(3),

by Proposition 3.5, we can also identify Hh(I) as a subnet of H0(I) ⊕ H0(I):
take two copies of the massless scalar one-particle net (U0 ⊕ U0,H0 ⊕ H0) and
consider the net on the time axis I 	→ H0(OI) ⊕ H0(OI); then consider the
Möb ×SO(3) invariant projections (1−Ph)⊕ (1−Ph) and the new net on the
time axis

I 	→ Hh(I)=̇ ((1 − Ph) ⊕ (1 − Ph)) (H0(OI) ⊕ H0(OI)) ,

undergoing the Möb (and Möb ×SO(3))-action through (˜Uh⊕ ˜U−h)|Möb×SO(3).
The projection 1 − Ph does not commute with the U0-translations since U0 is
irreducible, and on the subspace ((1 − Ph) ⊕ (1 − Ph)) (H0 ⊕ H0) one has to
define new translations to obtain the Uh ⊕ U−h representation of the Poincaré
group (the group generated by Möb × SO(3) and space translations contains
the Poincaré group). Afterward, one can define by covariance double cone
subspaces and the helicity-h free net of standard subspaces, namely

Hh(O)=̇ (Uh(g) ⊕ U−h(g)) Hh(OI)

for a general double cone O = gOI . It remains an interesting open problem
to explicitly provide or characterize the necessary perturbation of the U0-
translations in order to obtain the Uh-translations on the proper subspace.
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This further suggests another way of constructing finite helicity free nets.
One can start with the representation of Möb × SO(3) in the right-hand side
of (4.8). It extends to the representation of the Poincaré group of helicity h
or −h. Consider two copies of such a Möb × SO(3)-representation, and the
associated one-particle net on the line can be identified with the time axis
theory of the helicity-h free net. Then there is a proper choice of the translation
generators and the PCT operator which allows to construct the free net on
the full Minkowski space by covariance.
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A. Appendix: Restriction of Finite Helicity Representations to
the Euclidean Subgroup

We comment on the restriction of finite helicity representations to the Eu-
clidean group.

Definition A.1. [25] Let G be a separable locally compact group. Closed sub-
groups G1 and G2 of G are said to be regularly related if there exists a sequence
E0, E1, E2, . . . of measurable subsets of G each of which is a union of G1 : G2

double cosets such that E0 has Haar measure zero and each double coset not
in E0 is the intersection of the Ej which contain it.

Because of the correspondence between orbits of G/G1 under G2 and
G1 : G2 double cosets, G1 and G2 are regularly related if and only if the
orbits outside of a certain set of measure zero form the equivalence classes of
a measurable equivalence relation.

Consider the map s : G → G1\G/G2 carrying each element of G into
its double coset. Then equip G1\G/G2 with the quotient topology given by
s and consider a finite measure μ on G which is in the same measure class
of the Haar measure. It is possible to define μ on the Borel sets of G1\G/G2

by μ(E) = μ(s−1(E)). We shall call μ an admissible measure in G1\G/G2.
The definition is well posed since any two of such measures have the same null
measure sets.

We recall two well-known theorems.
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Theorem A.2. (Mackey’s subgroup Theorem) [26]. Let G1, G2 regularly related
in G. Let π ∈ Rep(G1). For each x ∈ G consider Gx = G2 ∩ (x−1G1x) and
set

Vx = IndGx↑G2(π ◦ ad x).

Then Vx is determined to within equivalence by the double coset x to which x
belongs. If ν is an admissible measure on G1\G/G2, then

(IndG1↑G π) |G2 �
∫

G1\G/G2

Vx dν(x).

If G is a compact group, let π and ρ be two unitary representations of
G, we shall denote with C(π, ρ) the space of intertwining operators of the
representations π and ρ and with mult(π, ρ) the multiplicity (of the unitary
class) of π in ρ.

Theorem A.3. (Frobenius Reciprocity theorem) [13]. Let G a compact group,
H a closed subgroup, π a unitary representation of the group G, and σ an
irreducible unitary representation of H. Then,

C(π, IndH↑G(σ)) � C(π|H , σ) and mult (π, IndH↑G(σ)) = mult (π|H , σ).

In this section, we shall indicate with χ a one-dimensional representa-
tion (a character) of an abelian group. Let E(n) = SO(n) � R

n be the inho-
mogeneous symmetry group of n-dimensional Euclidean space. The universal
covering is the semidirect product ˜E(n) = ˜SO(n) � R

n. Representations are
obtained by induction. Consider a character χq in the dual of the translation
group and its orbit σq through the dual action of ˜E(n). We shall call Stabq

and Stabq = Stabq �R
n the stabilizers of χq through the ˜SO(n) and ˜E(n)

actions, respectively. Note that the dual action of the translations is trivial on
χq. When there is no ambiguity we will write q instead of χq.

There are two main families of irreducible representations (cf. e.g., [13,
33]):

• U = IndStab0↑ ˜E(n)χ0V = V is induced from a product of the trivial

character χ0 of R
n and an irreducible representation V of Stab0 = ˜SO(n).

Thus U is the irreducible representation V of ˜SO(n) lifted to ˜E(n), trivial
on translations;

• U = IndStabq↑ ˜E(n)χqV
′ is induced from a product of a non-trivial char-

acter χq of R
n and an irreducible representation V ′ of Stabq . In such a

case, orbits are spheres of radius r = |q| and up to unitary equivalence it
is possible to choose q = (0, r) where 0 is the null vector in R

n−1.
In the three-dimensional Euclidean case, if q = (0, 0, r) with r > 0 then Stabq =
U(1), double covering of SO(2). Induced representations are of the form

Wh,r = IndStabq↑ ˜E(3) χqχh, h ∈ 1
2

Z,

where χh is the 2h-character U(1)-representation and q defines a charac-
ter of R

3 of length r. The induced representation acts on the Hilbert space



Vol. 20 (2019) Split Property for Free Massless Finite Helicity Fields 2581

L2(Sr, dp δ(p2 − r2)) where Sr is the sphere with center in the origin and
radius r.

Proposition A.4. Let Uh be a massless helicity-h representation. Consider the
restriction of Uh to T × E(3), where T is the time-translation group, then

Uh|T×E(3) =
∫

R+
dp0 (χp0 ⊗ Wh,p0) . (A.1)

Furthermore,

Wh,p0 |SO(3) =
∞

⊕

l=|h|
Dl (A.2)

and

Uh|T×SO(3) =
∞

⊕

l=|h|

∫

R+
dp0

(

χp0 ⊗ Dl
)

(A.3)

Proof. We prove the proposition in the bosonic case, namely h ∈ Z. The proof
is analogous in the Fermionic case.

Let q = (1, 0, 0, 1), with the definitions in Sect. 2.2, the helicity-h repre-
sentation is

Uh = IndStabq↑P↑
+
χqVh

where Stabq = E(2) � R
4 ⊂ P↑

+. When we restrict Uh to T × E(3), we get

Uh|T×E(3) =
∫

R+
dμ(p0)χp0 Up0 (A.4)

where Up0 are representations of E(3) of radius p0, and μ is a Borel measure
on R

+. This follows since

(Uh(a,A)φ)(p) = eia·pVh(B−1
p ABA−1p)φ(A−1p), (a,A) ∈ P↑

+, φ ∈ L2

(∂V+, θ(p0)δ(p2)d4p),

and we can choose B−1
p = Λ3(− ln p0)Rp, where p 	→ Rp is a Borel map from

the R
3-sphere Sp0 of radius p0 (we are considering the set (p0, Sp0) ⊂ R

1+3)
to SO(3) such that, for any p, Rp p = qp0=̇(p0, 0, 0, p0) and Λ3 is the x0-
x3 boost s.th. Λ3(− ln p0)qp0 = q = (1, 0, 0, 1) (cf. [33]). Thus, with Up0 =
eia·pVh(R−1

p ARA−1p)ψ(A−1p) where (a,A) ∈ E(3) and ψ ∈ L2((p0, Sp0),
δ(p2)δ(p0)d4p), the direct integral representation of T ×E(3) in the right-hand
side of (A.4) extends to the representation of the Poincaré group Uh.

Now, with δt : p 	→ eλp the dilation group, by dilation covariance of Uh

U |T×E(3) =
∫

R+
dμ(p0)Up0χp0 �

∫

R+
dμ(p0)Uδ−tp0χδ−tp0 =

∫

R+
dμt(p0)Up0χp0 ,

thus Up0χp0�Uδ−tp′
0
χδ−tp′

0
for δ−tp0

′ = p0 with λ ∈ R and μ is equivalent to
μt(p0) = μ(etp0), hence μ is equivalent to the Lebesgue measure. In particular,
Up0 is irreducible for almost every p0 ∈ R

+ because the Uh-translation algebra
is multiplicity free.
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Since the stabilizer of qp0 under the (T × E(3))-action is contained in
E(2) � R

4 ⊂ P↑
+ (the stabilizer of qp0 under the Poincaré action) and Vh is

trivial on E(2)-translations, then one can see that for almost every p0 ∈ R
+,

Up0 = IndSO(2)�R3↑E(3) χhχqp0
and we get

Uh|E(3) =
∫

R+
dμ(p0)Wh,p0χp0 .

Now, we apply Theorem A.2 to Wh,p0 with G = E(3), G1 = SO(2) � R
3,

G2 = SO(3) (note that G1\G/G2 = 1). By Theorem A.3, we get the second
statement, i.e.,

Wh,p0 |SO(3) =
∞

⊕

l=|h|
Dl.

(A.2) does not depend on the radius p0, thus we conclude (A.3). �
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