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Abstract The outbreak of COVID-19 in Italy took
place in Lombardia, a densely populated and highly
industrialized northern region, and spread across the
northern and central part of Italy according to quite
different temporal and spatial patterns. In this work,
a multi-scale territorial analysis of the pandemic is
carried out using various models and data-driven
approaches. Specifically, a logistic regression is
employed to capture the evolution of the total posi-
tive cases in each region and throughout Italy, and an
enhanced version of a SIR-typemodel is tuned to fit the
different territorial epidemicdynamics via a differential
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evolution algorithm. Hierarchical clustering and mul-
tidimensional analysis are further exploited to reveal
the similarities/dissimilarities of the remarkably dif-
ferent geographical epidemic developments. The com-
bination of parametric identifications and multi-scale
data-driven analyses paves the way toward a closer
understanding of the nonlinear, spatially nonuniform
epidemic spreading in Italy.
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Logistic regression · Nonlinear infection dynamics ·
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1 Introduction

The coronavirus disease 2019 (COVID-19) is a highly
infectious disease associated with SARS-CoV-2 virus
leading to a SevereAcute Respiratory Syndromewhich
has affected 22,683,769 confirmed patients and caused
793,773 deaths worldwide as of August 21, 2020 [1].

After the officially reported outbreak in China in
December 2019, COVID-19 has spread across the
globe, at a faster rate than expected, to the level of
a global pandemic causing health emergencies, huge
economic losses, and social instabilities worldwide.
Governments have been faced with new challenges
such as quick enforcement of severe control measures
(case isolation, social distancing, travel restrictions,
and quarantine of local or national magnitude) to slow
down the virus spreading and prevent a collapse of their
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healthcare systems, which would have caused a signif-
icantly larger number of deaths. These governmental
decisions were generally supported by data-driven esti-
mates put together by groups of expert virologists, epi-
demiologists, and health managers. At the heart of the
matter, modeling approaches with predictive capability
for infectious diseases such as COVID-19 are critical
to makewell-informed decisions which can have large-
scale future effects.

There is a huge literature on mathematical model-
ing in epidemiology starting from the early work of [2],
going through the compartmental models of [3–5] lay-
ing down the foundations of modern epidemiology, up
to the current data-driven approaches (see, e.g., [6]
addressing COVID-19).

Modeling approaches should be as accurate as pos-
sible in describing the disease spreading, over time and
across different spatial scales, to meaningfully simu-
late the large-scale spreading and to design more effec-
tive and less costly control measures (e.g., local lock-
downs of towns or counties or states instead of nation-
wide lockdowns with severe economic losses). Most
of the initial studies on COVID-19 [7–10] addressed
aggregate data from Wuhan, China, where the virus
apparently originated. According to [11], the very early
infections were identified in Wuhan at the beginning
of December 2019 and were controlled by the end
of February 2020 following strong government lock-
downs and restrictions. The fatality rate was estimated
to be 3.8%, although the actual number is likely to
be lower since the number of infected individuals was
heavily underestimated, and no account was taken of
the large number of asymptomatic cases. In these stud-
ies, among the essential epidemiological parameters
estimated from data in Wuhan, R0 (the basic reproduc-
tion number that indicates how contagious an infec-
tion disease is [12]) was found to be in the range of
2 to 3. Liu et al. [13] estimated R0 = 2.7, larger
than the earlier SARS epidemic reproduction num-
bers. On the other hand, Kucharski et al. [14] esti-
mated that the lockdown and travel restrictions resulted
in a decrease of R0 from 2.35 to 1.05. Several works
addressed the COVID-19 spreading in other areas of
China and the world. A key study in the UK [15], based
on the assumption R0 = 2.4, suggested mitigation
strategies for various countries, mainly USA and UK,
with the objective of “flattening the curve” of cumula-
tive infections. Notwithstanding the importance played
by R0 in policy making about measures designed to

counteract epidemic spreading, the estimates of this
parameter can be controversial given the large scatter-
ing exhibited by this parameter depending on how the
estimates are performed and the setting of the initial
assumptions. Impactful decisions depend on the esti-
mates of R0, in particular, relying on whether this is
above or below the threshold value equal to 1, which
discriminates between epidemic spreading and infec-
tion extinction. In Italy, some key studies [16] showed
that the presence of a large class of asymptomatic infec-
tives severely modifies the estimates of R0 by as much
as 5/2. According to [16], this underestimation could
explain why most of the health systems were surprised
by the rapid initial growth of the COVID-19 infections.
Only later large-scale epidemiological studies recently
conducted in Italy [17] showed the crucial role played
by the substantial set of asymptomatic infectives.

In the context of compartmental models employed
to describe the COVID-19 spreading, in [10] the popu-
lation was divided into: susceptible subjects (S), had
close contacts (C , those exposed to infected sub-
jects/pathogen but not necessarily infected), latent (E ,
infected and infectious but asymptomatic), infected
and symptomatic (I ), recovered (R), and dead (D).
The transmissibility of SARS-CoV-2 was modeled by
two separate parameters, the social transmissibility fac-
tor β, which measures the probability of having close
contact with infectious subjects, and the pathologic
transmissibility, which measures the probability of an
individual developing COVID-19 upon contact with
the pathogen. The model was established based on
demographic and COVID-19 epidemiological data in
Wuhan. Data from Italy, the UK, and the USA were
shown to fit well the model. A wealth of different com-
partmental models were recently proposed to under-
stand the influence of asymptomatic individuals and
the effects of control measures on the evolution of
the disease [18], SEIR models combined with parti-
cle swarm optimization algorithm for parameter opti-
mization [19,20], a SAIR model in the context of
social networks [21], a SEIRD model with classical
and fractional-order derivatives based on data in Italy
to show that the fractional-order model has less RMS
error than the classical one [22].

In several studies on COVID-19, logistic regression
(LR)methodswerewidely adopted for predictions, fol-
lowing a well-established stream of medical research
for modeling the relationship between multiple inde-
pendent variables and a categorical dependent variable
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(see, e.g., [23]). LR approaches have been tailored to
identify several risk factors for COVID-19 pandemic
diseases. To cite a few, Song et al. [24] performed
multivariate LR analyses aiming to construct a diag-
nostic model that allows for the quick screening of
highly suspected patients using easy-to-get variables.
By employing backward stepwise selection and boot-
strap resampling, Xie et al. [25] developed and vali-
dated a multivariable LR model that, on the basis of
nine variables commonly measured in acute settings,
predicts inpatient mortality in positive patients using
data collected retrospectively from Tongji Hospital in
Wuhan. With the aim of alleviating the limitations of
medical resources, Bai et al. [26] combined traditional
LR with deep learning-based methods, so as to devise
a prediction model suitable for finding out the mild
patients prone to become severe/critical cases and thus
get timely treatments. On the same research line, Gong
et al. [27]mergedLR into a least absolute shrinkage and
selection operator algorithm to construct a nomogram
for risk prediction in the train cohort.

In other fully data-driven studies, Machado and
Lopes [28] carried out statistical comparison and visu-
alization of country-based COVID-19 data using data
on the number of infected people over time. A compar-
ison of the pandemic evolutions in different countries
was performed using hierarchical clustering and mul-
tidimensional scaling which uncovered the emergence
of patterns highlighting the main characteristics of the
underlying complex dynamics.

In studies closely related to ourwork (see [29]), anal-
ysis of data from Italy showed that considering solely
the confirmed case counts would be misleading since
the trends are very much affected by the number of
daily tests which, in turn, change from region to region.
Moreover, the authors of this paper stated “reporting
statistics on the national level does not say much about
the dynamics of the disease, which are taking place
at the regional level.” This statement describes well
the motivation of our work. Indeed, differently from
most of previous studies on COVID-19 addressing
large-scale, aggregate data on the disease spreading,
the focus of the present paper is on the investigation
of the multi-scale spreading across Italy, taking into
account regional and national data from the database
of the Italian Ministry of Health. The 21 regions of
Italy are the first-level constituent entities with well-
defined powers in key sectors such as health, urban
planning, etc. With the exception of Valle d’Aosta, a

mountainous autonomous region in the northwestern
part of Italy, each region is divided into a number of
provinces (i.e., counties) embodying a number of towns
and villages. Thus, in our study, the macroscale is the
whole country, the mesoscales are represented by ter-
ritories covered by regions and provinces, while the
microscale is represented by towns. Due to difficulties
with the collection of data from provinces and towns,
we employ aggregate data for Italy and its severely
affected regions, here treated as the smaller scale. We
aim todescribe the different dynamical properties of the
pandemic across these regions and propose a method
to quantify the different contributions of the regional
epidemic spreading to the national epidemic dynam-
ics. Our objective is motivated by the simple evidence
that the COVID-19 spreading affects, in very different
ways, different geographical regions, as well as people
with different sex, age, health conditions with specific
pathologies, and other characteristics. The multi-scale
quantification is based on consideration of the differ-
ent evolutions of the epidemiological variables rescaled
with respect to the regional population or the national
population. Again, in our approach, the global scale
corresponds to the national scale, while the considered
local dynamic scales represent the regional scales.

To provide a quick overview, the milestones of the
COVID-19 pandemic in Italy are listed in Table 1 (data
processed up to May 13, 2020) in terms of outbreak
and policy enforcements.

A detailed study of the spreading across the main
affected regions of Italy is carried out via parameter
identification, using real data and their fitting with a
SIR-type epidemiological model.

We selected one of the recently proposed SIR-type
compartmental models to identify the epidemiological
parameters of the multi-scale virus spreading in Italy.
As known, the state variables represent the popula-
tion numbers in various stages of the infectious disease
progression. The classical SIR model (see, e.g., [3,30,
31]) concerns averaged equations for a population of
“equivalent” individuals in three states, namely suscep-
tible (of infection), infected and infective, and removed
(from the infective dynamics). Recently, Gaeta [32]
proposed an enriched SIR-type model, referred to as
A-SIR, which accounts also for the time evolution
of the asymptomatic infectives, registered or unregis-
tered recovered. Such a model was further revised by
Paggi [33] to account for the evolution of deceased indi-
viduals connected to the number of current infected.
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Table 1 Milestones of the COVID-19 pandemic in Italy

Date Event Notes

Jan 30, 2020 First confirmed positive cases Two Chinese tourists in Rome

Jan 30, 2020 International flights restriction Flights to and from China closed

Jan 31, 2020 National emergency statement

Feb 18, 2020 First secondary transmission case Codogno (Lodi, Lombardia)

Feb 23, 2020 Municipal lockdown measures Municipalities with outbreaks closed

March 8, 2020 Regional lockdown Lombardia and 14 provinces closed

March 9, 2020 National lockdown First national lockdown enforced

March 22, 2020 National lockdown Stricter national lockdown enforced

May 4, 2020 Lockdown removal Regional mobility allowed

This A-SIRD model proved to be quite accurate in
describing the epidemic data in Italy.

We corroborate our findings, provided by the above-
described method, with hierarchical clustering and
multidimensional analysis unfolding the similarities/
dissimilarities between the different regional scales in
comparison with the national pandemic scale. This
data-driven strategy involves various processes, start-
ing with a first phase dealing with data validation, sort-
ing, summarization and aggregation, and moving to a
more insightful phase involving the dynamical analy-
sis, report, and classification.

Clustering adopts a set of computational algorithms
for grouping a set of items (also called objects) so
that items in the same group (cluster) are more sim-
ilar, according to a defined point of view, to each other,
in contrast with items belonging to other groups. Here,
hierarchical clustering (see, e.g., [34–36]) and multi-
dimensional scaling techniques (see, e.g., [37–40]) are
employed. The first seeks to construct a hierarchy of
clusters. The second is a computational tool for visu-
alizing the similarity between items and translating the
information into a configuration of points mapped into
an abstract Cartesian space. The core of the adopted
schemes is the choice of the distance measure (see,
e.g., [41]) and the implementation of some optimiza-
tion indices for constructing graphical representations
in terms of dendrograms and trees and multidimen-
sional scaling (MDS) plots.

2 Analysis of COVID-19 pandemic dynamics in
Italy

2.1 Data collection

Geographical maps employed in the present study
(including administrative boundaries at provincial and
regional level) are retrieved from the official Web site
of the National Institute of Statistics. The maps (WGS
84, UTM zone 32N, 2020 edition) are public and avail-
able in shapefile format (last access on May 13, 2020).
Figure 1 shows themapof Italy and its regions. The ana-
lyzed regions (Lombardia, Piemonte, Veneto, Liguria,
Emilia-Romagna, Toscana, Lazio) are highlighted by
different colors which will be used consistently across
all subsequent graphical representations.

Demographic data are also retrieved from the same
Web site (last access on May 13, 2020). Most updated
information at regional levels dates back to 2019. At
provincial levels, updated data about the population are
not available directly for all statistics, since the most
recent sets date back to the 2011 national census.

Italian epidemic data adopted in the present study
are provided by the Italian Department of Civil Pro-
tection through a public repository hosted on GitHub
(last access on May 13, 2020). Besides information
at the national level, epidemic data at both regional
and provincial levels are also available. Specifically, at
national and regional levels, the following sets of epi-
demic data have been updated daily since February 24,
2020: hospitalized patients with symptoms; intensive
care patients; total hospitalized patients; home con-
finements; daily positive cases (i.e., sum of hospital-
ized patients and home confinements) denoted by I ;
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Fig. 1 Map of Italy
highlighting in different
colors the analyzed regions
and their provincial
boundaries

new daily positive cases (i.e., difference between cur-
rent total positive cases and the corresponding value of
the previous day); recovered cases (sometimes referred
to as cumulative cases) denoted by R; deceased cases
indicated by D; total confirmed positive cases (some-
times referred to as cumulative cases) denoted by N ;
tests carried out; and tested people.

At the provincial level, only the total positive cases
N have been daily updated since February 24, 2020.
However, some data about the total positive cases pro-
vided by the Italian Department of Civil Protection are
not assigned to a specific province. While the assign-
ment of a positive case to a precise region is usually not
affected by appreciable uncertainty, this turns out to be
a more complicated or, in some cases, impossible task
at the provincial level. In the present study, unassigned
provincial data are not taken into account for data pro-
cessing. This, in turn, is reflected into some differences
that can be observed when elaborating the number of
total positive cases at the regional and provincial lev-
els. It is also to be noted that, at the regional level, data
provided by the Italian Department of Civil Protection
about the tested people are available since April 19,
2020.

2.2 Data analysis

Before starting the COVID-19 pandemic analysis in
Italy, meaningful demographic data are collected to
help guide the interpretation of the multi-scale virus
spreading. In this context, the number of residents at the
regional and provincial levels, according to 2019 offi-
cial data, is provided in Fig. 2.Moreover, Table 2 shows
the number of residents for those regions deserving spe-
cial consideration in the present study. The number of
residents thatmove daily normalizedwith respect to the
regional population is also provided in Fig. 2. The daily
mobility is very important since it is clearly associated
with a number of key parameters affecting the disease
spreading such as the contact rate or social transmissi-
bility factor. Moreover, the role played by air pollution
in facilitating pandemic spreading and increasing the
fatality rate has been largely investigated. Although the
majority of existing studies agrees on the importance
of this correlation, this is still a debated topic undergo-
ing further investigations [42]. Although most updated
mobility data at the regional level date back to 2019,
data at the provincial level are not directly available for
the same year. Therefore, themaps about the number of
residents that move daily in Fig. 2 are elaborated using
2011 data, the most recent year in which this informa-
tion is available at both the regional and provincial lev-
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Fig. 2 Italian regional and provincial maps of the population (residents PR) and number of residents that move daily normalized with
respect to the population

Table 2 Number of residents for some Italian regions and the
whole country (2019 data)

Region Number of residents PR

Piemonte 4,356,406

Lombardia 10,060,574

Veneto 4,905,854

Emilia-Romagna 4,459,477

Toscana 3,729,641

Marche 1,525,271

Lazio 5,879,082

Italy 60,359,546

els. According to 2019 data, the number of residents in
Italy was 60,359,546. The region with the largest num-
ber of residents is Lombardia, where about 16.7% of
the national population resides.Mobility data highlight
the presence of two different areas in the country, i.e.
near 60% of the residents move daily in the northern
and central part of Italy, whereas this rate goes down
below 40% in southern regions of Italy. There are other
important factors which may help explain the different
multi-scale spreading such as the pollution severity in
different regions.

The processed data span the most critical phase of
COVID-19 pandemic in Italy, i.e., the time interval
March–April 2020. Particularly, for an improved visu-

alization, the following maps refer to the time window
between March 7, 2020 (i.e., a few days before the first
lockdown started), and April 28, 2020 (i.e., a few days
before lockdown measures started to be relaxed).

Italian regional maps of the total positive cases are
shown in Figs. 3 and 4. The total positive cases at the
provincial level are presented in Figs. 5 and 6. Data
about the total positive cases for some regions and the
whole country are also listed in Table 3.

In the vicinity of the lockdown suppression of April
28, 2020, the maximum number of total positive cases
at the regional level was achieved in Lombardia, but
a high number of positive cases were also recorded in
Piemonte,Veneto, andEmilia-Romagna, as can be seen
in Table 3. In terms of total positive cases, these regions
in northern Italy were the most severely affected by
COVID-19, whereas some regions of the central part
of Italy, such as Toscana, Marche, and Lazio, were
marginally affected. Compared to these northern and
central regions, COVID-19 spreading in southern Italy
turned out to be far less significant.

Analysis of the total positive cases at the regional
level, normalized with respect to the number of resi-
dents, provides another point of viewabout theCOVID-
19 pandemic dynamics. In fact, on the same date (April
28, 2020), themaximumvalue of the total positive cases
per number of residents was achieved in Valle d’Aosta.
Herein, it turns out that the number of total cases com-
paredwith the number of residentswas equal to 8.900/00,
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Fig. 3 Italian regional map with the total positive cases NR

thus slightly larger than the value recorded in Lom-
bardia, and significantly higher than the correspond-
ing values recorded in some other Italian regions that
were identified as themost critical. In some regions, the
number of total positive cases, normalized with respect
to the number of residents, suggests a diffusion of the
infection larger than what the raw number indicates,
as it can be observed by comparing Figs. 3 and 4. For
instance, the total number of positive cases recorded in
Liguria, Trentino-Alto Adige, andMarche is rather low
as compared to the regions that were identified as the
most critical in the country (equal to 7,772, 6,523 and
6,175 total positive cases on April 28, 2020, respec-
tively), but the corresponding value normalized with
respect to the residential population can be similar or

higher (equal to 5.010/00, 6.080/00 and 4.050/00 on April
28, 2020, respectively).

Three provinces in Lombardia experienced the high-
est number of total positive cases, namely Milano,
Brescia, and Bergamo. Herein, the number of total pos-
itive cases recorded in the vicinity of the lockdown
removal (April 28, 2020) was found to be equal to
18,837, 12,691, and 11,196, respectively. The province
of Torino also experienced a large number of total posi-
tive cases on the same date, namely 12,564. Hence, the
percent numbers of total positive cases (with respect to
the residential population) in the provinces of Milano,
Brescia, Bergamo, and Torino are 5.790/00, 10.020/00,
10.040/00 and 5.560/00 respectively (April 28, 2020).
Although these provinces have been a concern for a
long time due to the large number of total positive
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Fig. 4 Italian regional map with the total positive cases normalized with respect to the number of residents NR/PR

cases, the number of total positive cases, normalized
with respect to the number of residents, once again
provides a different point of view about the geograph-
ical areas which suffered the infection dynamics more
severely, as it can be observed by comparing Figs. 5 and
6. In fact, the available data indicate that the province
of Cremona in Lombardia experienced the largest num-
ber of total positive cases with respect to the size of the
residential population, since 5993 total positive cases
corresponding to 16.690/00 of the number of residents
were recorded a few days before the lockdown removal
(April 28, 2020). The total positive cases normalized
with respect to the number of residents are also very
high for the province of Piacenza in Emilia Romagna
(3918 positive cases on April 28, 2020, corresponding
to 13.640/00 of the number of residents) and the province

of Lodi in Lombardia (2947 positive cases on April 28,
2020, corresponding to 12.800/00 of the number of resi-
dents). Generally, it can be noted that the total positive
cases at provincial level, normalizedwith the number of
residents, can exceed twice the value at the correspond-
ing regional level. Moreover, the value at the regional
level can turn out to be about 2.5 times larger than the
national value.

The analysis of the daily new positive cases also pro-
vides further insights into the infection transmission in
time and space. To this end, regional information about
the daily new positive cases is given in Fig. 7. At the
provincial level, information about the daily new posi-
tive cases is shown in Fig. 8, herein computed for each
province as the difference between current total posi-
tive cases and the corresponding value of the previous
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Fig. 5 Italian provincial map with the total positive cases

day, in agreement with the definition employed at the
regional level. Note that the number of daily new posi-
tive cases at the provincial level is not directly commu-
nicated by the Italian Department of Civil Protection.
Finally, time histories of the relevant indices for the
selected regions and the whole country (starting from
the first available recorded data until April 30, 2020)
are also illustrated in Figs. 9 and 10.

Figures 7 and 8 show that almost all regions and
provinces attained their peakof daily newpositive cases
within a few days after the most severe national lock-
down measures were adopted, with the exception of a
few regions, namely Marche and Piemonte. In partic-
ular, daily new positive cases close to the peak value
started to be recorded in Marche a few days before the
other regions in Italy. Conversely, daily new positive

cases close to the peak valuewere recorded in Piemonte
for quite some time beyond what was observed in the
rest of the country. These outcomes are in general good
agreement with the time histories of the daily new pos-
itive cases in Fig. 9.

Besides the trend of the epidemic data, Fig. 10 pro-
vides an interesting and useful overview about the
implemented testing policy. Although the available
time histories of tested people in Fig. 10 span a rather
short period, they suggest that, with the sole exception
of Veneto, by and large the considered regions have
adopted a similar testing policy. That is, most regions
carried out tests for a comparable percentage of resi-
dents, and such ratio has grown almost linearly in time
at a constant rate. This, in turn, implies that significant
differences in the number of positive cases amongmost
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Fig. 6 Italian provincial map with the total positive cases normalized with respect to the number of residents

Table 3 Total positive cases for each region (NR ) and for Italy (N ), and their percentages with respect to both regional residents (PR),
and total cases N

Region March 7, 2020 April 28, 2020

NR NR/PR
0/00 NR/N% NR NR/PR

0/00 NR/N%

Piemonte 207 0.05 3.52 25,450 5.84 12.63

Lombardia 3420 0.34 58.13 74,348 7.39 36.90

Veneto 543 0.11 9.23 17,708 3.61 8.79

Emilia-Romagna 1010 0.25 17.17 24,914 5.59 12.36

Toscana 113 0.03 1.92 9231 2.47 4.58

Marche 207 0.14 3.52 6175 4.05 3.06

Lazio 76 0.01 1.29 6467 1.10 3.21

Italy 5883 0.10 100.00 201,505 3.34 100.00
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Fig. 7 Italian regional map with the daily new positive cases normalized with respect to the corresponding peak value (limited to the
selected set of dates)

regions are not significantly affected by the number of
tested people, but they are an inherent feature of the
pandemic dynamics at territorial level.

3 Simulation of COVID-19 pandemic dynamics in
Italy

We start delving into the epidemic data analysis
employing a popular logistic regression model. This
is done to see whether the different regional epidemic
evolutions follow the usual pattern, whereby the initial
stage of exponential growth is followed by a saturation
stage.

3.1 Logistic regression

Examples of logistic models employed in medicine are
typically targeted to predict the presence or absence
of a disease in relation to a variety of factors [43], a
potential improvement that can be achieved after an
intervention [44], whether newly explored variables
can improve the predictive validity of already estab-
lished models (e.g., [45]), but also to develop novel r
statistical methods on the basis of ranked data [46].

Here, by recalling that N denotes the number of total
positive cases, its time evolution obeys the following
equation:
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Fig. 8 Italian provincial map with the daily new positive cases normalized with respect to the corresponding peak value (limited to the
selected set of dates)

N (t) = K N0 ert

K + N0(ert − 1)
, (1)

where t stands for time, N0 is the initial value, K is the
carrying capacity, and r represents the rate of increase
in N .

Recall that the problem of employing confirmed
cases to fit models is highly uncertain and is further-
more complicated by the fact that the fraction of cases
that are confirmed is spatially heterogeneous and non-
linearly time-varying [47,48].

The results for the targeted regions are reported
in Fig. 11. The plots in the first column portray the
comparison between real positive cases and its logis-
tic curve N (t), while the plots in the second column

compare real daily new positive cases with the analytic
daily rate of N (t), i.e., Ṅ (t); finally, an error measure
is introduced in the third column, aiming at measur-
ing the accuracy of logistic curves for predicting the
epidemic phenomena beyond the observed data.

In particular, the indicated error is the nondimen-
sional mean squared error (MSE), varying in time as a
discrete function, and obtained in the following way:
starting from an initial day k0, we measure the MSE
error of a fitted curve with data available at the kth
day, with k = k0 + 1, . . . , L , and L the end day of
analysis; such a daily error is then divided by the MSE
value of the fitted logistic curve obtained over the com-
plete sample of data. More specifically, denoting with
θk = {N0, K , r}k the set of logistic-model parameter
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Fig. 9 Time histories (single value and centering moving mean) of daily new positive cases scaled by the resident population for the
selected Italian regions and Italy, between March 1, 2020 (day 1), and April 30, 2020 (day 61)

Fig. 10 Time histories about epidemic and testing policy scaled by the resident population for the selected Italian regions and Italy,
between March 1, 2020 (day 1), and April 30, 2020 (day 61)
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Fig. 11 Logistic regression
curves for Piemonte,
Lombardia, Veneto,
Emilia-Romagna, Toscana,
Marche, Lazio: total
positive cases, daily positive
cases, and error evolution e
(positive cases are
normalized with respect to
the number of residents)
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Fig. 12 Logistic regression
curves for Italy: total
positive cases, daily positive
cases, and error evolution
(positive cases are
normalized with respect to
the number of residents)

estimated from the data available at the kth day,with Nk

the corresponding fitted logistic function with θk , the
MSE error at the kth day, denoted by mk , is computed
as

mk =
⎛
⎝ 1

L

L∑
j=1

(
Nk(t j ) − O( j)

)2
⎞
⎠

1/2

, (2)

with O( j) denoting the value of observed data, i.e., the
real number of confirmed cases for j = 1, . . . , L . Its
nondimensional value e(k), then reported in the third
column of Fig. 11, is expressed as

e(k) = mk/mL . (3)

Note that e(k) tends to 1 as k → L , i.e., at the end day
L of the sample.

In all considered regions, such an error tends slowly
to one, demonstrating a low capability of the logistic
model to predict the actual epidemic evolution. Particu-
larly in Lombardia (Fig. 11, second row, third column)
and Emilia-Romagna (Fig. 11, fourth row, third col-
umn), and less markedly in Veneto (Fig. 11, third row,
third column) andLazio (Fig. 11, seventh row, third col-
umn), its evolution is noticeably not smooth, even far
from the initial days. Moreover, all error curves exhibit
changing trends around the lockdown days, as seen in
the error oscillations approximately between the 15th
and the 20th days.

On the other hand, the plots in the second column
reporting the comparison between daily cases with the
time derivative of N , Ṅ (t), allow to draw some con-
clusions about the dynamics represented by the logistic
model. In fact, as shown in Fig. 11, while the logistic
regression N (t) computed over the total positive cases
definitely describes well their evolution, it poorly pre-

dicts the daily rate of the same data and then implicitly
suggests the need of a dynamic model to better repre-
sent the infectious disease evolution.

Finally, the same computations carried out for each
region are evaluated for the Italian national data and
reported in Fig. 12.

3.2 Nonlinear dynamic infection modeling

3.2.1 Compartmental model

The multi-scale COVID-19 pandemic in Italy is inves-
tigated employing a compartmental model chosen
among the huge number of available formulations.
Models with a high level of complexity are discarded,
as they usually rely on a large number of parameters,
which may hinder the real capability of such mathe-
matical representations of describing the actual infec-
tion nonlinear dynamics. Moreover, all data required
for the identification of a large set of model parame-
ters might not be available, or their reliability may be
largely questionable. On the other hand, the adopted
nonlinear model should be able to reflect the princi-
pal aspects governing the overall infection dynamics.
In this light, a wealth of studies have highlighted that
asymptomatic infectives have a large influence on the
COVID-19 pandemic dynamics.

This is why the nonlinear compartmental model
describing a set of asymptomatic infectives proposed
byGaeta [32], and slightly revised byPaggi [33], is here
adopted to simulate the infection nonlinear dynamics.
The resulting compartmental model is a susceptible–
infected–recovered–deceased model with a large set
of asymptomatic infectives (A-SIRD), in which sus-
ceptible individuals S(t) can evolve in one of the two
classes of infected and infective people, namely symp-
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Fig. 13 Compartmental model with a large set of asymptomatic
infectives [32,33]

tomatic I (t) or asymptomatic A(t) individuals. People
can thus move from the compartment of symptomatic
individuals into two other compartments, that of regis-
tered recovered R(t) or that of deceased D(t). People
in the compartment of asymptomatic individuals can
be removed and pass to the compartment of unregis-
tered recovered U (t), which collects individuals pass-
ing unnoticed through the infection. The overall model
is illustrated in Fig. 13.

By omitting the dependence from the time variable
t , the numerical model here employed to simulate the
infection dynamics is based on the following set of
nonlinear ordinary differential equations:

dS

dt
= −β(I + A)S,

dI

dt
= ξβ(I + A)S − γ I − μI,

dA

dt
= (1 − ξ)β(I + A)S − ηA,

dR

dt
= γ I,

dD

dt
= μI,

dU

dt
= ηA.

(4)

Note that the subset of variables x = (S, I, A) acts
as master variables, while the subset y = (R, D,U )

represents the slave variables. The state vector z =
(S, I, A, R, D,U ) is thus partitioned as z = [x|y].
The master and slave state equations can be expressed,
respectively, as

ẋ = f(x; θ), (5)

ẏ = g(x; θ), (6)

where f1 = −βx1(x2 + x3), f2 = ξβx1(x2 + x3) −
(γ +μ)x2, f3 = −ηx3+(1−ξ)βx1(x2+x3) and g1 =
γ x2, g2 = μx2, g3 = ηx3 and θ = (β, γ, μ, η, ξ) is
the vector collecting the model parameters regulating
the infection dynamics. In particular, β represents the
contact rate, ξ denotes the probability that an individual
who gets infected passes to the class of symptomatic
infected people, γ regulates the rate of growth of the
recovered,μ dictates the rate of change of the deceased,
and η the rate of change of the unregistered. Once
Eq. (5) is solved for x, the master solution is substituted
into Eq. (6) and solved to yield y. An asymptotic treat-
ment of these equations can yield closed-form approx-
imate solutions for parametric investigations. This is
part of ongoing research.

Note that the above equations satisfy the following
conservation relationship:

6∑
i=1

żi = 0 (7)

which stems from the fact that the compartmented pop-
ulation is given by P = ∑6

i=1 xi = S + I + A + D +
R + U , and a conservation law is assumed, namely
Ṗ = 0.

The linear solution for the master state variables,
upon assuming constant parameters (γ, μ, η), is given
by (S, I, A) = (S0, I0e−(γ+μ)t , A0e−ηt ). Hence, the
eigensolutions can be expressed as

u(t) = (c1, c2e
−(γ+μ)t , c3e

−ηt ), (8)

where the coefficients c1, c2, c3 can be determined from
the initial conditions.

It is important to highlight that this compartmental
model proposed by Gaeta [32] is based on the assump-
tion that both symptomatic and asymptomatic infected
people are infective in the same way. From this stand-
point, an interesting feature of themodel is related to the
physically grounded parameter ξ ∈ [0, 1] represent-
ing the probability that an infected individual becomes
symptomatic infected. Hence, 1 − ξ is the probability
that an individual who gets infected passes to the class
of asymptomatic infected people.

In order to take into account the effects of the
national lockdown on epidemic dynamics, a piecewise
constantβ is herein introduced following [32]. In detail,
it is here assumed that β varies according to:
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β =
⎧⎨
⎩

β0 if t < T1 + τ1
β0ρ1 if T1 + τ1 ≤ t ≤ T2 + τ2
(β0ρ1) ρ2 if t > T2 + τ2

, (9)

where β0 is the initial value of β (i.e., the value of β

not affected by lockdown measures), which reduces to
β0ρ1 and further to (β0ρ1) ρ2 = β0ρ (i.e., ρ = ρ1ρ2)
when increasingly stricter national lockdownmeasures
are enforced at T1 and T2, respectively. Here, T1 and T2
indicate March 8, 2020, and March 22, 2020, respec-
tively (see Table 1). The time delays τ1 and τ2 reflect
the delay between the lockdown enforcement at time T1
and T2, respectively, and the appearance of its effects
on the epidemic dynamics. Differently from [32,33], γ
andμ are not considered as constant values, but they are
assumed as linearly time-varying parameters according
to:

γ = max{aγ + bγ t, 0}, (10)

μ = max{aμ + bμt, 0}. (11)

Conversely, the parameters η and ξ are assumed to be
time-invariant.

3.2.2 Parametric identification of the compartmental
model

The parametric identification of the model given by
Eq. (4) is pursued to provide further insights about
the COVID-19 pandemic time- and space-wise evo-
lution, at both regional and national levels, rather than
assessing the predictive capability of the model itself.
To this end, the parametric identification of the infec-
tion nonlinear dynamic model is performed according
toQuaranta et al. [49]. Specifically, a differential evolu-
tion algorithm is implemented in order to minimize the
sum of the normalized mean squared errors between
available epidemic data and corresponding numerical
results. Therefore, the following objective function is
sought to be minimized:

f (θ) = wI
1

Lσ 2
Ī

L∑
k=1

( Īk − Ik(θ))2

+ wD
1

Lσ 2
D̄

L∑
k=1

(D̄k − Dk(θ))2

+ wR
1

Lσ 2
R̄

L∑
k=1

(R̄k − Rk(θ))2,

(12)

where Īk , D̄k and R̄k are the epidemic data avail-
able at the kth day, whereas Ik , Dk , and Rk are the
corresponding numerical results obtained for a given
set of model parameter vector θ . Moreover, L is the
time window employed for the parametric identifica-
tion (i.e., number of days considered for the analysis),
while σ 2

Ī
, σ 2

D̄
and σ 2

R̄
are the variances of the sam-

ples
{
Ī1 . . . ĪL

}
,
{
D̄1 . . . D̄L

}
and

{
R̄1 . . . R̄L

}
, respec-

tively. Finally, wI , wD and wR are suitable weighting
factors for the different error measures.

3.2.3 Results of the compartmental model for the
regional and national scales

From a computational standpoint, the master state
equations given by Eq. (4) are solved for S, I , and
A. To this end, the classical Dormand–Prince method
belonging to the Runge–Kutta family of solvers is used
by imposing suitable initial conditions. On the other
hand, the slave equations given by Eqs. (4)4 and (4)5
are taken into account, through the corresponding inte-
gral form, to calculate R and D once I is estimated, and
the involved constants are determined employing the
initial conditions. For such a task, the classical trape-
zoidal numerical integration is employed. Initial con-
ditions are established by assuming S1 = P (where P
is the population, the number of regional or national
residents) and A1 = (1 − ξ)I1/ξ according to [32],
whereas I1, R1, and D1 are defined on the basis of the
available data. It is noted that the solution of Eq. (4)6
forU is not necessary for the present study, and thus it
is omitted.

The differential evolution algorithm employed for
minimizing f (θ) in Eq. (12) implements a cur-to-
best/1 mutation scheme with scale factors equal to
0.50, and a binomial crossover according to a crossover
rate equal to 0.50. The parameter population size is
equal to 30, whereas the procedure stops once 50 iter-
ations are completed. The parametric identification is
performed for a timewindow running from the first day
in which at least ten positive cases are recorded, up to
the last day in the available database at the time when
the presented analyses were carried out, i.e., May 12,
2020. Although this implies considering 8 days beyond
the relaxation of lockdown measures, it is assumed
that the overall compartmental model described by
Eqs. (4)–(11) still holds true during this short time over-
hang.
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The search space has been carefully defined accord-
ing to available information and medical evidences.
Based on the preliminary estimate by Gaeta [32], the
optimal value of β0 at the national level is searched
between the values 1.0 · 10−9 and 1.0 · 10−8, whereas
a quite large interval spanning from 1.0 · 10−8 to
3.0 ·10−7 is considered to look for the optimal value of
β0 at the regional level. Daily samples

{
γ̄1 . . . γ̄L

}
and{

μ̄1 . . . μ̄L
}
have been calculated as the ratio between

the daily rate of recovered or deceased individuals by
the daily number of symptomatic infected according to
Eq. (4)4 and Eq. (4)5, respectively. Hence, the search
space for (aγ , bγ ) and (aμ, bμ) is defined as ±20%
of the estimates carried out by performing the linear
regression of the samples

{
γ̄1 . . . γ̄L

}
and

{
μ̄1 . . . μ̄L

}
,

respectively.
On the other hand, it is presumed that the optimal

(time-invariant) value of η should be related, to some
extent, to that of γ . Hence, the optimal value of η is
assumed to be comprised between 10−1 and ten times
the average value of the samples

{
γ̄1 . . . γ̄L

}
. Based

on the available medical information, the incubation
time for COVID-19 conservatively varies between 2
days and 14 days, which is therefore assumed as the
time interval for searching the optimal value of τ1
and τ2. Moreover, ρ1 and ρ2 are both constrained to
vary between 10−2 and 1. The search of the optimal
value of ξ is performed between 0.05 and 0.20, tak-
ing into account the preliminary estimate provided by
Gaeta [32]. Under the assumption that R and D are
estimated directly from I , the differential evolution
algorithm is forced to prioritize the minimization of
the normalized mean squared error in terms of symp-
tomatic infected people, and thus it is assumedwI = 1,
whereas wD = wR = 1/3.

The full set of results for the regional and national
epidemic evolutions is provided in Figs. 14, 15, 16, 17,
and 18.

Overall, these outcomes provide a further insight
into the dynamic evolution of the COVID-19 pandemic
in Italy and highlight once again how it evolved at dif-
ferent territorial scales. After the parametric identifica-
tion, it can be observed that the compartmental model
provides a reasonable approximation of the number of
daily positive cases, deceased, and recovered people
over time, especially within one month after the occur-
rence of ten positive cases. The number of daily pos-
itive cases in the vicinity of the peak and beyond, as
well as the day of peak attainment, is reasonably well

approximated for those regions inwhich enough data in
the descending branch are available within the consid-
ered time window (as is the case with Veneto, Emilia-
Romagna, Toscana, andMarche). Otherwise, the accu-
racy level reduces, or the peak itself is not achieved
yet (as is the case with Piemonte, Lombardia, Lazio,
and Italy). In general, it can also be noted that the esti-
mated number of deceased and recovered people at the
end of the considered time window is slightly underes-
timated. From the obtained results at the regional level,
it is estimated that the number of people being infected
without showing symptoms has attained a daily peak
between 0.28 and 2.08% of the number of residents,
whereas the correspondingnational value is 1.29%.The
daily peak of asymptomatic people at national level
is very similar to that recorded in some of the most
severely affected (and most populated) regions in Italy,
namely Piemonte, Lombardia, and Emilia-Romagna. It
is interesting to note that these three regions in north-
ern Italy exhibit a comparable daily peak of asymp-
tomatic people, around 1% of the number of residents,
as well as a similar value of the ratio between the
peaks of daily asymptomatic people and daily posi-
tive cases, which turns out to be larger than 3. In this
context, the situation in Veneto seems rather different
from that experienced by the other northern regions.
Herein, the number of people that gets infected without
showing symptoms has attained a daily peak equal to
0.44%, thereby becomingmuch lower than that reached
in Piemonte, Lombardia, and Emilia-Romagna. Fur-
thermore, the ratio between the peaks of daily asymp-
tomatic people and daily positive cases in Veneto is
close to 2, once again fairly lower than the value esti-
mated for Piemonte, Lombardia, and Emilia-Romagna.

The possibility arises whether such differences
between Piemonte, Lombardia, and Emilia-Romagna,
on the one hand, and Veneto, on the other hand, might
be explained by the fact that a more intensive tracing
policy has been implemented in the latter as compared
to the others, as already pointed out in Fig. 10. Among
the seven considered regions, themaximumvalue of the
ratio between the peaks of daily asymptomatic people
and daily positive cases is attained in Marche, where it
is close to 10. Since it has been recognized that undoc-
umented infection facilitates the rapid dissemination
of COVID-19, this high value might explain the fact
that a large number of daily new positive cases have
been recorded in Marche some days before this hap-
pened in other areas of Italy, as already noted in Fig. 7.
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Fig. 14 Comparison between data and model simulations (nor-
malized with the number of residents) for Piemonte, Lombardia,
Veneto, and Emilia-Romagna considering a time window run-

ning from the first day in which at least ten positive cases are
recorded (day 1) up to May 12, 2020
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Fig. 15 Comparison between data and model simulations (nor-
malized with the number of residents) for Toscana, Marche,
Lazio, and Italy considering a time window running from the

first day in which at least ten positive cases are recorded (day 1)
until May 12, 2020
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Fig. 16 Identified model parameters for the selected regions and for Italy

At the national level, the ratio between the peaks of
daily asymptomatic people and daily positive cases
is estimated to be around 7. Altogether, these results
seem to corroborate the possibility that the undocu-
mented infected people can be 5-10 times the number
of detected infected people.

Concerning the identified model parameters, an
unbiased comparison of β0 estimates requires a proper
scaling with respect to the population size. Hence, once
β0 estimates at regional level are projected onto the
whole Italian population, numerical values between
4.59 · 10−9 and 7.23 · 10−9 are obtained. The mean
value among the considered regional estimates of β0

is 5.51 · 10−9 (the coefficient of variation is 16.61%),
and it is close to the estimate obtained for the whole
country, which is 5.14 · 10−9. These values for β0 are
somewhat close to the previous national estimate of
3.77·10−9 adopted in [32]. Additionally, it is found that
the regional values of ξ vary between 9.50 and 19.50%.
The mean value among the considered regional esti-
mates of ξ is 13.81% (the coefficient of variation is
26.18%), and it is about twice as large as the corre-
sponding estimate obtained at the national level, which
is 6.97%. The significant scattering is basically due to
the uncertainty inherent in the assessment of ξ , whose
value yet is in fairly good agreement with the estimate
of 10% adopted in [32].

Significant variations are also observed in terms of ρ
among the considered regions. In fact, regional values
of ρ between 4.77 and 33.08% are estimated. Themean

value among the considered regional estimates of ρ is
17.99% (the coefficient of variation is 50.00%), and it
is rather close to the corresponding estimate obtained
at the national scale, which is 25.55%. These final esti-
mates are slightly larger than the reductive coefficient
for β0 in [32], in which ρ is taken equal to 15%. Both
data and model suggest that γ , i.e., the ratio between
daily rate of recovered individuals by the daily num-
ber of symptomatic infected, grows in time in most
regions, a circumstance that can be ascribed to the fact
that COVID-19 diagnoses became faster over time than
the early-stage detection.While this ratio can be almost
constant in some cases, an opposite trend is observed
in Lombardia. This might be due to the fact that the
maximumcapacity of intensive and semi-intensive care
units was nearly attained in this region during the emer-
gency phase. Both data and model also suggest that μ,
i.e., the ratio between daily rate of deceased individuals
by the daily number of symptomatic infected, reduces
in time, everywhere. This is attributable to diagnoses
that have become more and more timely as well as to
medical treatments that become more and more effec-
tive, as time goes by. Finally, the average regional delay
for the lockdown measure to be effective has been esti-
mated to be about 8.95 days (the coefficient of variation
is 31.33%).

The virtue of the employed A-SIRD model is that it
allows to predict an important epidemiological vari-
able, namely the asymptomatic cases scaled by the
number of susceptibles within the considered region
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Fig. 17 Comparison between data and identified linearly time-varying parameter γ for the selected regions and the whole country
considering a time window running from the first day in which at least ten positive cases are recorded (day 1) until May 12, 2020

Fig. 18 Comparison between data and identified linearly time-varying parameter μ for the selected regions and the whole country
considering a time window running from the first day in which at least ten positive cases are recorded (day 1) until May 12, 2020
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Fig. 19 Trend of predicted
asymptomatic cases
(rescaled by the number of
susceptibles) for the seven
selected Italian regions and
for Italy considering a time
window running from the
first day in which at least ten
positive cases are recorded
until May 12, 2020

or the country (see Fig. 19). Indeed, the number of
asymptomatic cases plays a crucial role in the epi-
demic dynamics. The results show that Lombardia had
the fastest growth of asymptomatic cases and most of
the regions reached the peak around the second lock-
down except for Marche (increasing trend past the sec-
ond lockdown) and Piemonte (a verymildly decreasing
trend past the second lockdown). Therefore, the second
(strict) lockdown had a large impact on the main driv-
ing variable I and, in turn, on the other meaningful
variable A, thus explaining the large slowdown of the
epidemic spreading.

Moreover, neglecting the presence of the large set
of asymptomatic infectives can also lead to poor esti-
mates of the basic reproduction number [12] at later
stages of the epidemic development as shown in [16].
The comparison carried out in [16] between the apri-
ori predictions and the aposteriori estimates based on
field data which arise from the A-SIRmodel with those
obtained using the standard SIR theory was shown to
lead to erroneous estimates of the reproduction num-
ber. This uncertainty about the estimates of the basic
reproduction number, in cascade, can lead to wrong
decision-making policies to control the epidemic.

4 How does the local spatial scale contribute to the
global epidemic dynamics?

Theanalysis carriedout in termsof thevarious epidemi-
ological variables over time together with the identifi-

cations obtained using the logistic or the A-SIRDmod-
els shows clearly a picture of epidemic spreadingwhich
is rather nonuniform across the local provincial and
regional scales (see Figs. 3, 4, 5, 6). This is further por-
trayed in Fig. 20, which shows the total positive cases,
daily new cases, deceased, and recovered (normalized
with respect to the residents) for the seven considered
regions together with the logistic and A-SIRD model
identifications. To quantify the differences in a con-
cise way, the averages of daily new cases, deceased,
and recovered are computed over the three meaning-
ful time windows, namely [t0, T1 − 1], [T1, T2 − 1],
and [T2, t f ], where t0 indicates the time when at least
ten positive cases are recorded, T1 and T2 correspond
to the days elapsed from t0 up to the first and second
lockdowns, respectively, and t f is the 79th day after t0.
These three averages for each variable are shown in the
bar charts of Fig. 21 together with the average values
for Italy.

The obtained results show that Lombardia is char-
acterized by the fastest growing epidemic spreading
and the most significant density of total positive cases
with respect to its own population. Emilia-Romagna,
Piemonte, and Veneto are well spaced from Lom-
bardia. Even more spaced are the central regions of
Toscana, Marche, and Lazio. Different similarities
between regional epidemic spreading dynamics can be
observed when we account for the daily positive cases,
deceased, and recovered. The curves for the daily posi-
tive cases and the averages highlight the presence of at
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Fig. 20 Comparison between data and model simulations (normalized with the number of residents) for the seven selected Italian
regions considering a time window running from the first day in which at least ten positive cases are recorded until May 12, 2020

Fig. 21 Average values of daily positive cases, deaths, and
recovered for the relevant time windows: (i) from the first day in
which at least ten positive cases are recorded up toMarch 7, 2020
(light color: regional values, dashed line: national value); (ii)

fromMarch 8, 2020, to March 21, 2020 (medium color: regional
values, dash-dot line: national value); and (iii) from March 22,
2020, to May 12, 2020 (dark color: regional values, solid line:
national value). (Color figure online)

least three different areas (here and henceforth referred
to as clusters) characterized by similar densities of
cases: cluster A comprises Lombardia and Emilia-
Romagna since they are both above the national aver-
ages across the three time windows, cluster B includes
Piemonte and Marche, cluster C includes Toscana,
which exhibits average values below the national aver-
ages at all times, and Lazio which turns out to be the
less affected region, finally, cluster D comprises Veneto

and Italy and is meant to describe the average dynam-
ics. A different standpoint can be adopted to carry out
the above regional-scale dynamic analysis by taking
into account the daily cases normalized with respect
to the overall number of positive cases in Italy lead-
ing to the assessment of some sort of regional weight
factor in the national pandemic. This outcome can be
appreciated in Fig. 22, which shows that the regions
contribute differently to the national epidemic dynam-
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Fig. 22 Comparison between data andmodel simulations for the
examined regions (normalized with respect to the corresponding
data and model simulations at national level) within a time win-

dow running from February 24, 2020 (day 1), up toMay 12, 2020
(day 79)

ics since Lombardia stands out as the primary regional
scale (cluster A∗), followed by Emilia-Romagna, and
Piemonte (cluster B∗), Marche and Toscana (cluster
C∗), Lazio (cluster D∗), and finally, Veneto and Italy
(cluster E∗). This assessment ensues from considering
the first two time windows.

5 Hierarchical clustering and multidimensional
scaling of regional versus national epidemic
dynamics

We employ a data-driven approach making use of sev-
eral computational tools and visualization techniques
to further identify, recognize, and quantify the very
different epidemic evolutions at different geographical
scales. The procedure comprises three main phases:
(i) data items are compared in the perspective of
employing suitable similarity (or dissimilarity) indices,
(ii) a computational scheme is employed to process
the obtained results toward visualization, and (iii) the
obtained results are interpreted.

The first phase requires the definition of one or more
criteria for comparing all items in the dataset. The con-
cept of distance [41] is often adopted to quantify the dis-
similarity between items expressed, e.g., as time series.

A function d of two arguments/items, xi and x j , can
describe a distance if d(xi , x j ) ≥ 0 and satisfies three
axioms [50]:

identity : d(xi , x j ) = 0 if xi = x j

symmetry : d(xi , x j ) = d(x j , xi )

triangle inequality : d(xi , x j ) ≤ d(xi , xh) + d(xh, x j ).

(13)

Our daily experience is mostly permeated with the
notion of the Euclidean distance, which is a particular
case of theMinkowski norm. However, a variety of dif-
ferent expressions have been proposed to compute dis-
tances, each one having pros and cons, and being more
or less adapted to the characteristics of the processed
data. The definition of distance can be generalized to
encompass also nonsymmetric distances [51–56].

For the dataset under study, we employed the Can-
berra, Jaccard, Minkowski, Lorentzian, Arc-Cosine,
and Divergence distances [57]. The Minkowski dis-
tance depends on one parameter and gives rise to the
Manhattan, Euclidean, and Chebyshev distances as
special cases. For the sake of parsimony, in the follow-
ing we report only the results concerning the Canberra,
Manhattan, and Jaccard distances between the i th and
j th items xi and x j and expressed as

dC
(
xi , x j

) =
3∑

k=1

T∑
t=1

∣∣xi,k(t) − x j,k(t)
∣∣

xi,k(t) + x j,k(t)
, (14)
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Fig. 23 Dendrogram (top left), hierarchical tree (top right), and
3D multidimensional scaling plots (bottom) of Piemonte, Lom-
bardia, Veneto, Emilia-Romagna, Toscana, Marche, Lazio, and

Italy, using the Neighbor linkage criterion, for a single time
window (nw = 1) of T = 70 days using the Canberra distance

dM
(
xi , x j

) =
3∑

k=1

T∑
t=1

∣∣xi,k(t) − x j,k(t)
∣∣, (15)

dJ
(
xi , x j

) =
3∑

k=1

∑T

t=1

[
xi,k(t) − x j,k(t)

]2
∑T

t=1

[
x2i,k(t) + x2j,k(t) − xi,k(t)x j,k(t)

] ,

(16)

where the first subscripts i and j indicate the data series
for variable x related to region i and region j , respec-
tively, and the second subscript k is the component of
the state vector while the argument t denotes time. In
our case, we consider three components, namely the
daily positive cases I , recovered R, and deceased indi-
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Fig. 24 Dendrogram (top left), hierarchical tree (top right), and
3D multidimensional scaling plots (bottom) of Piemonte, Lom-
bardia, Veneto, Emilia-Romagna, Toscana, Marche, Lazio, and

Italy, using the Neighbor linkage criterion, for a single time
window (nw = 1) of T = 70 days using the Manhattan distance

viduals D in each region. Furthermore, to avoid a bias
toward regions with higher population, we normalize
the values by dividing them by the total number of res-
idents in each region.

The Canberra distance can be interpreted as a
weighted version of theManhattan distance and is often
used for data scattered around the origin. This metric
enhances differences close to 0, where it is more sen-

sitive to proportional than to absolute differences. On
the other hand, it is less influenced than the Manhattan
distance by variables with high values. The Jaccard dis-
tance is the ratio of the size of the symmetric difference
(or disjunctive union) to the union of two sets of ele-
ments. The idea looks similar to that of Venn diagrams
with dJ = |A∪B|−|A∩B|

|A∪B| , with A and B denoting the
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Fig. 25 Dendrogram (top left), hierarchical tree (top right), and
3D multidimensional scaling plots (bottom) of Piemonte, Lom-
bardia, Veneto, Emilia-Romagna, Toscana, Marche, Lazio, and

Italy, using the Neighbor linkage criterion, for a single time
window (nw = 1) of T = 70 days using the Jaccard distance

two sets. The Jaccard distance is useful for comparing
observations with categorical variables.

We consider the time window from March 1 to
May 9, 2020, for two scenarios: (i) a single time
window (i.e., nw = 1) of T = 70 days, and (ii)
nw = 10 time windows of T = 7 days each (i.e.,

10 weeks). Besides the regions Piemonte, Lombardia,
Veneto, Emilia-Romagna, Toscana,Marche, andLazio,
the eighth component represents Italy.

In the case ofnw = 1 the indices i and j refer to eight
items and, therefore, i, j = 1, . . . , 8. Alternatively, if
nw = 10, then the number of items is proportional to
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Fig. 26 Dendrogram (top left), hierarchical tree (top right), and 3D multidimensional scaling plots (bottom) of Piemonte, Lombardia,
Veneto, Emilia-Romagna, Toscana, Marche, Lazio, Italy for nw = 10 time windows of T = 7 days using the Canberra distance

both the number of regions and time windows giving
i, j = 1, . . . , 80.

In summary, we compare all vectors xi,k(t) and con-
struct symmetricmatrices with zeros in themain diago-
nal of item-to-item distances,ΔC = [dC ],ΔM = [dM ]
and ΔJ = [dJ ], that will be the source of informa-
tion for further processing. Therefore, these matrices

have size 8 × 8 and 80 × 80, respectively, for the time
windows of T = 70 and T = 7 days, respectively.

The second phase consists of processing the infor-
mation included in the matrices ΔC = [dC ], ΔM =
[dM ], and ΔJ = [dJ ]. For visualization, within the
large array of available techniques, we make use of
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Fig. 27 Dendrogram (top left), hierarchical tree (top right), and 3D multidimensional scaling plots (bottom) of Piemonte, Lombardia,
Veneto, Emilia-Romagna, Toscana, Marche, Lazio, Italy for nw = 10 time windows of T = 7 days using the Manhattan distance

dendrograms, hierarchical trees, and multidimensional
scaling.

For the dendrograms and hierarchical trees, we
adopt hierarchical clustering [28,34–36,58]. This com-
putational technique arranges the items as elements of
the matrices according to a graphical structure reflect-
ing the distances between them in the perspective of
the adopted clustering metric [59]. There are two algo-
rithms, one called agglomerative clustering and the

other divisive clustering. For both schemes, the numer-
ical iterations follow a linkage criterion, based on the
distances between pairs of items [60]. The clustering
“quality” can be measured by the cophenetic corre-
lation [61]. In the following, we adopt the Phylip
set of programs (http://evolution.genetics.washington.
edu/phylip.html), with the Neighbor linkage crite-
rion and theDrawgram and Drawtree for construct-
ing the dendrograms and hierarchical trees, respec-
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Fig. 28 Dendrogram (top left), hierarchical tree (top right),
and three-dimensional multidimensional scaling (bottom) repre-
sentations of {Piemonte, Lombardia, Veneto, Emilia-Romagna,

Toscana, Marche, Lazio, Italy} for nw = 10 time windows of
T = 7 days and the Jaccard distance

tively. For further details, interested readers can refer
to [62,63]. The interpretation of the “leafs” of the den-
drograms or trees is the third phase and is based on their
relative position with respect to the nodes and root.

The third visualization method consists of the mul-
tidimensional scaling. This is a technique for cluster-
ing and visualizing multidimensional data, using the
same input matrix [64] for which, in this case, the items
are represented by points. The computational iterations

assign the points in a low-dimensional space, trying to
reproduce the original distances from the higher dimen-
sional space to which the items belong. We have also
several possible criteria for the numerical optimization
such as the Shepard and Stress diagrams.

The interpretation of the plots is the third phase and
is based on the emerging clusters of points [65,66]. The
absolute coordinates of the points, the format of the
clusters, and the axes do not have a physical meaning.
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Fig. 29 Dendrograms (left) and hierarchical trees (right)
of Piemonte, Lombardia, Veneto, Emilia-Romagna, Toscana,
Marche, Lazio, and Italy for a single time window (nw = 1)

of T = 70 days using the Canberra distance, and the Kitsch
and Fitch linkage criteria (top and bottom, respectively)

We employ MATLAB (https://www.mathworks.com/
products/matlab.html) for the computations, in partic-
ular the commands cmdscale and Sammon. For fur-
ther details, see [37–40,67].

Figures 23, 24, and 25 depict the dendrograms, hier-
archical trees, and 3D multidimensional scaling, for a
single time window of T = 70 days, and the Canberra,
Manhattan, and Jaccard distances, respectively. On the
other hand, Figs. 26, 27, and 28 show the corresponding
representations when considering nw = 10 time win-
dows of T = 7 days each. The labels (Pi, Lo, Ve, Em,
To, Ma, La, It) stand for the regions (Piemonte, Lom-
bardia, Veneto, Toscana, Marche, Lazio, and Italy),

respectively, while the indices {1, . . . , 10} indicate the
progressive time windows.

In general, dendrograms are apparently easier to
read, while the trees are easier to interpret besides
exhibiting also an aesthetic appeal. The dendrograms
require a reading from the root to the leafs (from left
to right in the plots), and this may be misleading. The
trees take a better advantage of the 2D space than the
dendrograms, but lead often to confusing areas with
overlapping labels. Moreover, both cases allow only a
discrete representation of time in terms of time win-
dows since it is rare to experience large jumps. The 3D
MDS charts are harder to handle since they require the
user to rotate the plot to find the best perspective. In the
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Fig. 30 Dendrograms (left) and hierarchical trees (right)
of Piemonte, Lombardia, Veneto, Emilia-Romagna, Toscana,
Marche, Lazio, and Italy for a single time window (nw = 1)

of T = 70 days using the Manhattan distance, and the Kitsch
and Fitch linkage criteria (top and bottom, respectively)

MDSplots of Figs. 26, 27, and 28, the spline connecting
the items for a given region shows the time evolution.
Contrary to the dendrograms and trees, the MDS plots
allow the visualization of the time evolution.

In all cases, Italy is somewhere in the “middle” of
the seven regions as one should expect, since it is a
kind of weighted average of the 21 regions into which
the country is divided. Also, when adopting a single
time window, we observe in all plots the emergence
of the same patterns although with a distinct graphi-
cal arrangement: a cluster formed by Lombardia and
Emilia-Romagna denoted by A, a cluster made by
Marche and Piemonte (denoted by B), a cluster encom-
passingToscana andLazio (marked asC), and an “aver-
age” cluster (denoted by D) which includes Veneto and
Italy. As seen, none of the considered regions, except

for Veneto, is quite close to the average epidemic evo-
lution for Italy.

As mentioned before, the Canberra distance pro-
vides a distance in a relative perspective in contrast to
the Manhattan distance that works in absolute terms.
The Jaccard distance is a measure of how dissimilar
two sets are. Therefore, depending on the metric, we
can highlight distinct aspects of the data. The same type
of dilemmaoccurs alsowith the construction of the den-
drograms and hierarchical trees when adopting hierar-
chical clustering. Figures 29, 30, and 31 depict the den-
drograms and hierarchical trees obtained by means of
the Kitsch and Fitch linkage criteria. The ensuing
representations show the same clustering when using
the Canberra distance, while they do not exhibit a clear
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Fig. 31 Dendrograms (left) and hierarchical trees (right)
of Piemonte, Lombardia, Veneto, Emilia-Romagna, Toscana,
Marche, Lazio, and Italy for a single time window (nw = 1)

of T = 70 days using the Jaccard distance, and the Kitsch and
Fitch linkage criteria (top and bottom, respectively)

pattern when adopting the Kitsch linkage criterium
with the Manhattan and Jaccard distances.

When adopting nw = 10 time windows spanning
one week each, we verify large/small variations for
the initial/final periods of analysis, showing very dif-
ferent initial transients, but some approaching a com-
mon dynamic pattern toward the end of the observation
period.

As previously mentioned, the Canberra, Manhattan,
and Jaccard distances have focused on distinct aspects
of the dataset. In the case of dendrograms and trees, the
Canberra distance yields slightly more discernible rep-
resentations. For the 3D multiscaling representations,
the Canberra and Jaccard distances give rise to plots of

the same type, while theManhattan distance highlights
the dynamics of Piemonte, Lombardia, and Emilia-
Romagna at the expenses of providing less distinction
between the other four regions and Italy. Therefore, the
best analysis strategy is confirmed to be based on the
adoption of a number of distances so as to establish a
trade-off between the pros and cons of each metric.

6 Conclusions

This work tackled a multi-scale epidemic dynamic
analysis of COVID-19 in Italy recognizing remarkably
different evolutions at different geographical scales.
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Weadopted a variety ofmodels and data-driven tools
to support the analysis. In particular, the regional terri-
torial scale (and partly the provincial/county scale) was
selected as the local scale (the spatial domain occupied
by Italy is divided into 21 regional subdomains of dif-
ferent sizes) with respect to the macronational scale,
although the regional scale is closer to a mesoscale,
whereas the truly local scale is represented by the order-
of-magnitude smaller provinces (one-fifth of an aver-
age region) and towns (one-hundredth of an average
region). This choice was dictated by the full availabil-
ity of data.

The logistic model was employed to identify the
so-called epidemic curves in terms of cumulative pos-
itive cases, across the seven selected regions where
more than 80% of the cases were recorded. Notwith-
standing the capability of the logistic regression in
describing well the regional as well as national epi-
demic curves, this approach is clearly not suitable to
show a true epidemic evolution which comprises dif-
ferent groups/compartments such as the susceptibles,
infected, asymptomatic infectives, etc. To this end, we
employed a modified A-SIRD model which accounts
for the time evolution of the susceptibles, symptomatic,
and asymptomatic infectives, registered or unregistered
recovered, deceased individuals [33].While this model
proved to be reasonably accurate in describing the epi-
demic data in Italy in previous studies, we found out,
via extensive parameter identification, that two of the
governing parameters, namely γ andμ, cannot be con-
sidered time invariant across the whole epidemic evo-
lution, but as time-wise linearly varying parameters.

Indeed, γ regulates the rate of growth of the recov-
ered and has an ascending trend for all regions, while
μ dictates the rate of change of the deceased which
shows, conversely, a descending trend. Moreover, this
model exhibits a piecewise constant trend for the con-
tact rate β, in three distinct time windows. Notwith-
standing the complexity of the parameter identification
of this model, reasonable fittings were found for the
daily positive cases, deceased, and recovered and defi-
nitely plausible predictions for the asymptomatic cases.
Themulti-scale regional epidemic analysis showed that
Lombardia was characterized by the fastest growing
epidemic spreading, and the most significant density
of total positive cases with respect to its own popu-
lation, followed by Emilia-Romagna, Piemonte, and
Veneto, all neighboring and well-connected regions.
Well spaced from these northern regions of Italy, we

found the central regions of Marche, Toscana, and
Lazio.

We corroborated our observations by making use
of hierarchical clustering and multidimensional anal-
yses which uncovered the similarities/dissimilarities
between the different regional scales in comparison
with the macropandemic scale. The different speeds of
spreading between the more densely populated north-
ern regions and the central regions, or even more evi-
dently, the southern regions of Italy together with the
strict national lockdown and closure of regional and
transnational borders, were the key to slow down sub-
stantially or even prevent the spreading in the initially
less affected regions of the country. We believe that
a deeper and more sophisticated multi-scale analysis
is possible, using the eigensolutions of the A-SIRD
model for each region, to achieve the quantification
of local regional-scale epidemic participation factors
which suitably combine the meaningful set of epidemi-
ological variables.
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