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1 Introduction

Yukawa interactions are, together with gauge and scalar self-interactions, the building
blocks of renormalizable theories. In the Standard Model (SM) they are a crucial ingredient
as they describe the interactions between quarks and leptons and the Higgs boson, with the
latter being ultimately responsible for the generation of fermion masses after electroweak
symmetry breaking (EWSB).

They are also ubiquitous in new physics (NP) theories that try to address the short-
comings of the SM. For example, they appear in theories that generate neutrino masses
both at tree-level, as for the case of the well know seesaw mechanism [1–9], as well as
at higher orders [10–13] and in models where a fermion Dark Matter (DM) candidate is
connected to the SM through a scalar portal, see e.g. [14] for a review. Interestingly,
the existence of new scalar bosons or some beyond the SM (BSM) fermions that possess
Yukawa interactions with the SM could solve some anomalies reported in the recent years
in low energy data. This is, for example, the case of the measurement of the anoma-
lous magnetic moment of the muon (g − 2)µ, for which the recent measurement by the
E989 experiment at Fermilab [15], which is in agreement with the previous BNL E821
result [16], implies a ∼ 4.2σ discrepancy with respect to the SM prediction [17], although
a recent lattice calculation seems in agreement with it [18]. It is also the case of other
long-standing anomalies in semileptonic decays of B mesons both in charged- [19–27] and
neutral-current [28–30] decays, usually dubbed RD(∗) and RK(∗) , that can be accounted for
by various models involving additional Yukawa sectors. Some or all of these anomalies can
be solved by postulating the existence of leptoquarks (LQ) [31–78], i.e. new colored states
which connect quark and leptons, or by extending the SM with new heavier scalars and
vector-like fermions [79–92]. Obviously, new Yukawa interactions are constrained by a large
variety of experimental searches, ranging from direct production of new on-shell degrees
of freedom at high energy colliders to low energy precision measurements. The results of
these analyses are generally expressed as limits on combinations of couplings and masses,
and the resulting bounds strongly depend on the specific structure of the NP realization
and on the experimental settings.

There exists, however, and old tool of theoretical physics, namely perturbative uni-
tarity (PU), that can be used to set an upper limit on the magnitude of the couplings,
above which the perturbative expansion is expected to break down. Most famously this
tool, that we review in section 2.1, has been applied to set an upper bound on the Higgs
boson mass [93–96] and on the masses of quarks and leptons participating in weak inter-
actions [97, 98]1 if weak interactions were to remain weak at all energies. It has then been
widely used in the literature to assess the range of validity of both renormalizable and
effective operators [101–114]. In this work we consider the problem in more generality and
we answer the following question:

1See also [99, 100] for related works.
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Given a Yukawa interaction between a scalar and two fermions with generic
quantum number under a group G = ∏

i SU(Ni) ⊗ U(1), what is the maximum
allowed value for the coupling with the requirement of PU?

To answer this question we consider the most general form of Yukawa-type interactions
and all possible 2 → 2 tree-level scatterings in the high-energy limit. We obtain compact
expressions for the upper limit on the value of the Yukawa coupling up to which perturba-
tion theory could be trusted, and highlight their dependence on the various fields’ quantum
numbers under G.

More specifically, we start by computing all the necessary ingredients for building the
partial wave scattering matrix, namely the Lorentz parts of the scattering amplitudes and
the group structure factors entering the amplitudes themselves, in a set of phenomenolog-
ically relevant toy models where the various fields are only charged under a single SU(N)
factor. We firstly show how the SU(N) group structure of the interaction can lead to en
enhancement of the scattering amplitudes and thus to a tightening of the partial wave
unitarity bounds, while the role of the U(1) charge is to enforce a selection rule that makes
some amplitudes vanish. We then use these toy models as building blocks for more compli-
cated theories, where the various fields are charged under multiple SU(Ni) factors, giving as
a working example the case of the SM quark Yukawa sector. We then apply our results to
different NP models which solve, by introducing a new Yukawa sector, the aforementioned
anomalies in (g−2)µ and/or in the semileptonic decay of B meson, showing that while the
proposed theories can generally still provide an explanation to these measurements, their
model parameters are stretched close to the limit of our-tree level unitarity bound criteria.

Altogether the results presented in this work are of practical use and can be used
to analyze scenarios beyond the examples presented in the text. While we restrict only
to a limited number of irreducible SU(N) representations under which the various fields
can transform (singlet, fundamental and adjoint), we believe that our computations fur-
nish the necessary ingredients to study a large set of NP theories with additional Yukawa
interactions.

The paper in organized as follows. In section 2.1 we review the tool of PU and clarify
the physical interpretation of the inferred bounds, while in section 2.2 we discuss the general
properties of Yukawa interactions relevant for the study of PU. In section 3 we introduce
the toy models and discuss how they can be used to construct the most general partial wave
scattering matrix. Then in section 4 we study the partial wave unitarity bounds for the
first type of toy models which have a Dirac type structure for the Yukawa interaction. In
section 5 we apply our formalism to the case of the SM quark Yukawa sector, also highlight-
ing the role that multiplicity due to a flavor structure can have in the determination of the
bound. In section 6 we then discuss a second class of toy models, which present Majorana
type Yukawa interactions. Then in section 7 we show some phenomenological applications,
finally concluding in section 8. We also add few relevant appendices. In appendix A we
list our conventions for the calculation of the partial wave matrix, while in appendix B we
report the results for other Dirac type theories not included for brevity in the main text.
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2 General aspects

2.1 The tool of perturbative unitarity

Perturbation theory is a powerful tool to provide approximate solutions to physical prob-
lems. Within this approach the relevant result is expressed in terms of a power series of
some small parameter ε. In general, however, it is not easy to determine if some specific
numerical value of ε allows for a good approximate solution of the problem under consid-
eration. The aspect we want to face in this section is to identify a reasonable criterium to
state whether a parameter is too large to be treated in perturbation theory.

A level zero criterium for considering a parameter as perturbative is to ask the expan-
sion parameter entering the β functions ε = g2

(4π)2 , to be small. The requirement ε < 1
implies g < 4π, which is the maximum value frequently adopted in the literature. This
condition can however be improved by analyzing the problem in more detail. Consider an
abelian gauge theory with coupling g and Nf copies of matter fields charged under the
local symmetry. The scaling of the contribution to the one-loop two point function for the
gauge field is

∼ g2

.

The requirement of small expansion parameter then suggest a more refined version of the
naive criterium, since a small value of g is in fact not enough if Nf becomes very large.
One can then require g < 4π√

Nf
, where it is clear that the multiplicity of the matter fields

has to be taken into account for a more refined version of the perturbative criterium.
One can however do even better than the former proposal. It is possible to use results
that hold beyond perturbation theory to motivate a more stringent criterium based on
partial wave PU.

The key point of our analysis are the so-called partial waves, i.e. the scattering am-
plitudes with fixed total angular momentum J . In the case of 2 → 2 scatterings in the
high-energy massless limit they are defined as [115]

aJfi = 1
32π

∫ 1

−1
d cos θdJµiµf (θ)Tfi(

√
s, cos θ) . (2.1)

Here θ is the polar scattering angle in the center of mass frame and
√
s the center of mass

energy, dµiµf (θ) are the small Wigner d−functions where µi = λi1 −λi2 and µf = λf1 −λf2

are defined in terms of the helicities of the initial and final states, and (2π)4δ(4)(Pi −
Pf )iTfi(

√
s, cos θ) = 〈f |S−1|i〉, with S the S-matrix, that defines the scattering amplitude.

We report in appendix A.1 the definition and the explicit expressions of the small Wigner
d−functions used throughout our analysis. The unitarity condition on the S−matrix,
S†S = 1, implies

1
2i(a

J
fi − aJ∗if ) =

∑
h

aJ∗hfa
J
hi , (2.2)
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where the sum runs over all the intermediate states h. By focusing on elastic channels
i = f and restricting the sum over h only to 2-particle states one obtains the condition

Im[aJii] ≥ |aJii|2 . (2.3)

This last equation defines a circle in the complex plane, the Argand circle, inside which
the amplitude must lie at all orders in perturbation theory

Re2[aJii] +
(

Im[aJii]−
1
2

)2
≤ 1

4 . (2.4)

Since for 2 → 2 high-energy scatterings the tree-level elastic amplitudes are real,2 this
suggests the following unitarity bound

|aJ,tree
ii | ≤ 1

2 . (2.5)

While the factor 1/2 is somewhat arbitrary, it gives a reasonable indication of the range
of validity of the perturbative expansion, since a tree-level value which saturates eq. (2.5)
needs at least a higher-order correction of ∼ 40% in order to re-enter the Argand circle,
thus signalling the breakdown of the perturbative expansion itself. In order to extract the
best PU bound, one then needs to identify the optimal elastic channel and this corresponds
to diagonalizing the partial wave scattering matrix aJfi. The most stringent limit will be
then set by the largest, in absolute value, eigenvalue.

2.2 The structure of the Yukawa interaction

In this section we specify the class of models we are interested in and the assumptions we
make in our analysis.

First of all we assume that mass terms are negligible and all the computation are
performed in the high energy regime. In this limit we can consider massless fields as the
most natural degrees of freedom. Regardless of the symmetry structure of the interactions,
we can always (re-)write a generic Yukawa interaction between a set of Nφ real scalar fields
φα and of Nψ Weyl fermion fields ψiL in the following way:

− L = 1
2Yαijφαψ̄

i
Lψ

c,j
L + h.c. , (2.6)

where ψcL,i = Cψ̄TL,i, C = iγ2γ0 is the charge conjugation matrix, Yαij = Yαji and the
index α runs from 1 to Nφ, while i, j = 1, . . . Nψ. Notice that this form is the most general
one. For example, a complex scalar field can be always expressed in terms of two real fields
with specific restrictions on the phases of the coupling Yαij , in a similar way symmetry
properties of the Yukawa interactions are manifest through the presence of null elements
or by specific relations among them. We are going to clarify these aspects in what follows
with explicit toy models.

2This is a consequence of the optical theorem: intermediate states cannot go on-shell at the tree level if
the scattering energy is much larger than their masses.
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Our task is now to compute the partial wave matrices aJfi of eq. (2.1) and extract
their eigenvalues. We start discussing the helicity and Lorentz structure of the scattering
amplitudes. To this end we firstly need to compute the Tfi(

√
s, cos θ) amplitudes between

the initial and final states. It is useful to write the scattering matrix T in the following form

Tfi =



µi = 0 µi = 0 µi = +1 µi = +1/2 µi = −1/2
++ −− 00 +− +0 −0

µf = 0
++ T ++++ T ++−−

−− T −−++ T −−−−

µf = 0 00 T 00+−

µf = +1 +− T +−00 T +−+−

µf = +1/2 +0 T +0+0

µf = −1/2 +0 T −0−0



, (2.7)

where we have indicated the total helicities of the initial and final states, µi,f , as well as the

helicities of the single particles involved in the scattering. Each of the amplitudes entering
the various blocks of the Tfi matrix are themselves matrices, whose dimensionalities depend
on the number of fermions and scalars of a given theory. Notice that the matrix of eq. (2.7)
has many zero entries, which correspond to the empty blocks. In particular the T ±0±±,
T ±0+− and T ±000 amplitudes vanish because of total angular momentum conservation,
while T 0000 is present if one adds also a potential for the scalar fields. Finally, the other
null amplitudes are strictly zero only in the massless limit we are considering. Since we
are working in the high-energy massless limit it is useful to compute the non vanishing
amplitudes by working with helicity eigenstates, following the conventions of Jacob and
Wick [115]. We refer the reader to appendix A.2 for the details on the choice of the
spinor helicity basis. The remaining non vanishing amplitudes can be computed explicitly
starting from the interaction in eq. (2.6). All the non vanishing amplitudes are reported
in eq. (A.10)

The usefulness of eq. (2.7) is that, when projecting the amplitudes onto the J−th
partial wave via eq. (2.1), only a subset of the non-zero blocks survives. In particular the
channels with µi = µf = 0 have a non-zero projection only on J = 0, since the relevant
amplitudes do not depend on θ, see eq. (A.10). Again because of total angular momentum
conservation channels with µi,f = ±1

2 project only on half-integers values of J . Hence,
for integer J > 0 only the channels T +−+− and T 00+− contribute and the scattering
matrix is effectively separated in three different blocks, allowing us to consider each of
them independently when studying partial waves with different values of J . Interestingly,
we will show that the stronger bound might arise from a partial wave different from J = 0.
In particular in section 4 we will see that the tighter limit can come from the analysis of
J = 1

2 or J = 1, while higher partial waves give a weaker bound.

– 6 –
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3 Toy models and scattering amplitudes

The Lagrangian of eq. (2.6) describes the Yukawa interaction between any set of scalar and
fermion fields, where the entries of the Yukawa matrix Yαij are at this level completely
generic. By assigning definite quantum numbers under a group G = ∏

i SU(Ni)⊗U(1) to the
scalar and fermion fields involved in the interaction, the Yukawa matrix, and consequently
the scattering matrix, acquires a well definite structure. In this section we consider two
types of toy models which we use as building blocks for the study of more general Yukawa
theories. More specifically we consider two theories, described by the following Lagrangians:

− LDirac = ySχ̄η + h.c. , (3.1)

and
− LMajorana = 1

2ySχ̄χ
c + h.c. , (3.2)

where χ and η are left-handed and right-handed fermion fields respectively, and S a scalar
field that can be either complex or real. We dub these theories as Dirac type and Majorana
type respectively. To begin our study, we start by assuming that all fields are charged under
a single SU(N) factor and show later in section 5 how the case of multiple SU(Ni) charges
can be dealt with. For both theories the parameter y can be chosen to be real without loss
of generality by a proper field redefinition. For concreteness we restrict our study to the
case where all the fields transform in the trivial, fundamental or adjoint representation of
SU(N) and we allow them to have arbitrary U(1) charges. For simplicity we also consider
theories where at most one field transforms in the adjoint SU(N) representation. Under
these assumptions the various models that can be written are reported in table 1. Note
that in the Dirac type class, model number 5 can only be written in the case of SU(3) while
in the Majorana type class, model number 2 can only be written in the case of SU(2). A
comment regarding other possible models in the Majorana type class is in order:

• For the case of SU(2) one can write a gauge invariant interaction with χ ∼ q and
S ∼ 12q which however identically vanishes since χ̄εχc = 0, where ε is the SU(2)
totally antisymmetric tensor. One can restore this interaction by charging the field
χ under a second SU(N) factor, or by considering different flavors for χ, since in this
case one can antisymmetrize in the additional gauge and/or flavor index.

• For the same reason, in the case of SU(3) also the model where χ ∼ q and S ∼ 2q
vanishes if the states are not charged under another SU(N) group or flavor multiplicity
is not added.

We will comment on these possibilities when considering in more detail the Majorana type
class of models, presenting in section 6.3 a phenomenologically relevant example in which
the involved fields are charged under more than one SU(Ni) factor.

For any given toy model, the task is to build the aJfi partial wave matrices and compute
their largest eigenvalues. This can be done mechanically by brute force by building the

– 7 –
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Dirac type
Model χL ηR S

1 q q′ 1q−q′
2 q 1q′ q−q′

3 q q′ Adjq−q′
4 q Adjq′ q−q′

5? q q′ q−q′

Majorana type
Model χL S

1 1q 12q

2? q Adj2q

Table 1. Dirac type and Majorana type theories described by the Lagrangians of eq. (3.1) and
eq. (3.2), respectively. If S is either a singlet or transforms in the adjoint representation of SU(N)
and also has a vanishing U(1) charge, then it is a real scalar field. Model 5 of the first class is only
present in the case of SU(3), while model 2 of the second class only in the case of SU(2).

Yukawa matrix Yαij entering eq. (2.6), computing all the amplitudes3 and building the aJfi
matrices explicitly through eq. (2.7). Although straightforward, this process turns out to
be highly inefficient, due to the rapid increase in the aJfi matrix dimension when considering
SU(N) factors with large N . As an example for the third theory of the Dirac type with
a complex scalar field, the transition matrix has dimension 406 for N = 3 and 2346 for
N = 5. When considering the possibility of fields charged under more than one SU(Ni)
factor the dimensionality of the transition matrix dramatically increases, making also the
numerical calculation inefficient.

The situation drastically simplifies if one realizes that when considering any 2→ 2 scat-
tering, each amplitude can be decomposed into a Lorentz part which depends only on the
spin and helicity of the involved fields, and a group-theoretical part that depends on their
SU(N) quantum numbers, while the role of the U(1) charge is to enforce a selection rule
that will make some amplitudes vanish. More concretely any 2 → 2 scattering amplitude
among particles i1,2 and f1,2 with helicities λi1,2 and λf1,2 can be written schematically as

T λf1λf2λi1λi2
f1f2i1i2

(
√
s, θ) =

⊕
r

∑
m=s,t,u

T λf1λf2λi1λi2
m (

√
s, θ)Fm,rf1f2i1i2

(N)1dr , (3.3)

where T λf1λf2λi1λi2
m (

√
s, θ) is the Lorentz part of the scattering amplitude and Fm,rf1f2i1i2

(N)
is a function that contains the group part coefficient for the scattering through the Man-
delstam m−channel in the SU(N) r irreducible representation that can be built from the
initial and final state particles, while dr stands for the dimensionality of r. The direct sum
runs over all the irreducible representation through which a scattering can proceed. One
of the necessary ingredients are thus the T λf1λf2λi1λi2

m (
√
s, θ) functions for the two theories

of eq. (3.1) and eq. (3.2), which can be computed from the Lagrangian of eq. (2.6). We
report them, normalized by the common y2 factor, in table 2 and table 3 for both the real
and complex scalar S case.4 Here we clearly see the role played by the U(1) factor. As

3Here one has to consider the relevant factors of 1/
√

2 for identical particles, which can occur only for
two-fermion states when µi and/or µf = 0 and for two-scalar states.

4As mentioned in section 2.2 we find now convenient, in the case of a complex scalar field, to directly
work with its complex components instead of the real ones, since as we will see the presence of the U(1)
symmetry allows us to simplify the scattering structure.

– 8 –



J
H
E
P
1
0
(
2
0
2
1
)
1
2
9

Dirac type models −L = yχ̄ηS + h.c.

Real S Complex S
λf1 λf2 λi1 λi2 States Ts Tt Tu Ts Tt Tu

+ + ++ χ̄η → χ̄η −1 −1
−−−− χη̄ → χη̄ −1 −1

−−++
χ̄η → χη̄ +1 +1
χ̄χ̄→ η̄η̄ +1 +1
ηη → χχ +1 +1

+ +−−
χη̄ → χ̄η +1 +1
χχ→ ηη +1 +1
η̄η̄ → χ̄χ̄ +1 +1

+0 + 0
χ̄S → χ̄S − cos θ2 − 1

cos θ2
− cos θ2

ηS → ηS − cos θ2 − 1
cos θ2

− cos θ2

−0− 0
χS → χS − cos θ2 − 1

cos θ2
− 1

cos θ2
η̄S → η̄S − cos θ2 − 1

cos θ2
− 1

cos θ2

+0∗ + 0∗
χ̄S∗ → χ̄S∗ − 1

cos θ2
ηS∗ → ηS∗ − 1

cos θ2

−0∗ − 0∗
χS∗ → χS∗ − cos θ2
η̄S∗ → η̄S∗ − cos θ2

+−+−
χ̄χ→ ηη̄ −1 −1
χ̄η̄ → χ̄η̄ −1 −1
ηχ→ ηχ −1 −1

00 +−
χ̄χ→ SS 1

tan θ
2
− tan θ

2

ηη̄ → SS 1
tan θ

2
− tan θ

2

00∗ +−
χ̄χ→ SS∗ − tan θ

2
ηη̄ → SS∗ − tan θ

2

Table 2. Lorentz part of the amplitudes for the models of the first class divided by y2. In the
complex scalar case also the 0∗0∗ +− amplitudes are zero. In the helicity amplitudes the notation
0∗ indicates the scattering involving the conjugate of the scalar S.

an example, when S is a complex scalar field the amplitude χη̄ → χ̄η in T ++−− is zero,
because this process violates the conservation of the U(1) charge. Analogous selection rules
appear in other scattering channels.

In order to fix the idea let us make an explicit example and consider the first theory of
the Dirac type class, where both χ and η transform under the fundamental representation
of SU(N) and S is a scalar singlet. The scattering χ̄η → χ̄η which proceeds through the
+ + ++ helicity channel has only an s−channel contribution, with an amplitude which is
proportional to −y2, see table 2. Since ⊗ = 1 + Adj, this scattering can only proceed
through the singlet and the adjoint channels. Thus the scattering amplitude, by applying

– 9 –
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Majorana type models −L = y
2 χ̄χ

cS + h.c.

Real S Complex S
λf1 λf2 λi1 λi2 States Ts Tt Tu Ts Tt Tu

+ + ++ χ̄χ̄→ χ̄χ̄ −1 −1
−−−− χχ→ χχ −1 −1
−−++ χ̄χ̄→ χχ +1 +1 +1
+ +−− χχ→ χ̄χ̄ +1 +1 +1

+0 + 0 χ̄S → χ̄S − cos θ2 − 1
cos θ2

− cos θ2

−0− 0 χS → χS − cos θ2 − 1
cos θ2

− 1
cos θ2

+0∗ + 0∗ χ̄S∗ → χ̄S∗ − 1
cos θ2

−0∗ − 0∗ χS∗ → χS∗ − cos θ2
+−+− χ̄χ→ χ̄χ −1 −1

00 +− χ̄χ→ SS 1
tan θ

2
− tan θ

2

00∗ +− χ̄χ→ SS∗ − tan θ
2

Table 3. Lorentz part of the amplitudes for the models of the second class divided by y2. In the
complex scalar case also the 0∗0∗ +− amplitudes are zero. In the helicity amplitudes the notation
0∗ indicates the scattering involving the conjugate of the scalar S.

eq. (3.3), reads5

T ++++
χ̄ηχ̄η (

√
s, θ) = −y2

(
Fs,1χ̄ηχ̄η(N)

Fs,Adj
χ̄ηχ̄η (N)1N2−1

)
. (3.4)

With the same procedure one can build the amplitudes among irreducible representations
for all the possible scatterings of the theory. In each of the separated subsectors that we
have identified (J = 0, half-integer J and integer J > 0, see eq. (2.7)), the matrix can be
decomposed into scattering blocks among the various irreducible SU(N) representations.
Barring the convolution with the Wigner d−functions and the integration over the angular
variable θ, finding the eigenvalues of the partial wave matrix, and thus extracting the partial
wave unitarity bound, is then a trivial task. One only needs to compute the Fm,rf1f2i1i2

(N)
factors. The advantage of this procedure with respect to the mechanical brute force one
previously described is clear: being the group factor proportional to the identity in group
space, one needs in practice to consider for each representation only one scattering among
the dr ones, since all of them will give the same result.6

5In this particular case the amplitude in the adjoint channel vanishes since the amplitude has only an
s−channel contribution and S is a SU(N) singlet.

6The Mathematica package SARAH [125] performs in automatic way a similar decomposition for pure
scalar theories with an SU(N) group symmetry.
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4 Dirac type theories

In the previous section we have described the general strategy for computing the aJfi partial
wave matrices and presented the Lorentz part of the amplitudes that are needed to compute
them. In this section we compute, for the various models of the Dirac type class presented
in table 1, the Fm,rf1f2i1i2

(N) group factors. For brevity of presentation we report in the main
text only the results for the first two type of models, while we defer to appendix B for the
remaining ones.

4.1 First model: χ ∼ q, η ∼ q′ S ∼ 1q−q′

In this model S is an SU(N) singlet, real if q = q′, while η and χ transform under the
fundamental representation of the SU(N) group. By choosing as basis7

ψL = (χa, ηc,a)T , φ =

S Real scalar
(S, S∗)T Complex scalar

, (4.1)

where a runs from 1 to N . The Yukawa matrix of eq. (2.6) thus reads

Yα = y

(
1N

1N

)
, (4.2)

where α = 1 in the real scalar case and α = 1, 2 in the complex scalar one. As previously
stressed we can separately consider the sectors with J = 0, half-integer and integer J >

0, since no amplitude has a non zero projection on more than one sector. Let us start
by considering J = 0 with a real scalar S. The two particle states with ++ helicities
decompose as

+ +


χ̄η ∼ 1 + Adj
ηη ∼ S + AS
χ̄χ̄ ∼ S + AS,

(4.3)

while the states with −− helicities are their conjugates. Here above we indicate with S
and AS the totally symmetric and antisymmetric irreducible representations that arise
from the tensor decomposition ⊗ = S ⊕AS. Note, however, that the antisymmetric
combination of two identical fermions identically vanishes for even J , see e.g. [115]. In
order to compute the scattering amplitudes we need to explicitly write the two-particle
states. We define them as

|ψψ̄〉1 = 1√
N
δba|ψaψ̄b〉

|ψψ̄〉AAdj =
√

2(TA)· ba |ψaψ̄b〉
|ψψ〉AS = (TAS )ab|ψaψb〉 , (4.4)

where ψ = χ and/or η, TA are the SU(N) generators, and TAS are N(N + 1)/2 symmetric
matrices that we choose to be the symmetric SU(N) generators, with the addition of 1N√

2N ,
7We adopt SU(N) tensor notation where lower (upper) indices transform in the fundamental (conjugate)

SU(N) representation.
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which is normalized to preserve the canonical trace normalization Tr[TAS TBS ] = δAB

2 . Note
that in this case the symmetric combination is always built through two identical states:
this is the reason of the extra factor 1/

√
2 in the symmetric two particle state with respect

to the adjoint one. By direct computation one obtains the following non zero group factor
amplitudes relevant for the scattering in J = 0, see again eq. (2.7),

+ + + +
{
Fs,1χ̄ηχ̄η = N + +−−



Fs,1χ̄ηχη̄ = N

F t,1χ̄ηχη̄ = 1
F t,Adj
χ̄ηχη̄ = 1
F t,Sηηχχ = Fu,Sηηχχ = 1

2

, (4.5)

where the − − −− and − − ++ amplitudes are equivalent since they are obtained by
conjugation. Note that among the vanishing + + ++ group factors we have that, for
example, the one in the adjoint channel is zero because S is a scalar singlet and the
amplitude thus turns out to be proportional to the trace of the SU(N) generators, while
the one in the symmetric channel is zero since the theory does not mediate processes such
as ηη → ηη. From the explicit form of the group factors it is clear that it’s the singlet
channel that manifests an enhancement of the scattering amplitude due to the SU(N)
group structure. By using the general expression of eq. (3.3), the J = 0 partial wave in the
singlet channel written in the (χ̄η, χη̄) basis reads

aJ=0
1 = y2

32π

∫ +1

−1
d cos θ d0

00(θ)
(

NT ++++
s NT ++−−

s + T ++−−
t

NT −−++
s + T −−++

t NT −−−−s

)
=

= y2

16π

(
−N N + 1
N + 1 −N

)
, (4.6)

whose largest eigenvalue in absolute value is y2

16π (2N + 1). The eigenvalues relative to the
scatterings in the other SU(N) irreducible representations are all smaller and thus the PU
condition of eq. (2.5) leads to the bound

y2 <
8π

2N + 1 . (4.7)

If the scalar is complex the conservation of the U(1) charge forbids scattering in the ±±∓∓
channel. The matrix of eq. (4.6) becomes thus diagonal with eigenvalues y2

16πN and the
bound now reads

y2 <
8π
N
, (4.8)

which is weaker than in the real scalar case.
For half-integer J the two-particle states with +0 helicities decompose for real scalar

S as

+0

χ̄S ∼ηS ∼
,

while the states with −0 helicities are their conjugates. The group factors read

+0 + 0
{
Fs,χ̄Sχ̄S = Fu,χ̄Sχ̄S = Fs,ηSηS = Fu,ηSηS = 1 , (4.9)
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which are equivalent to their conjugates. Since there is no scattering between the +0 and
−0 states in the massless limit, we can consider only the +0+0 scattering channel, while the
−0− 0 will be its conjugate. For example for the former the scattering in the fundamental
channel for J = 1/2 reads

a
J= 1

2 = − y2

32π

∫ +1

−1
d cos θ (T +0+0

s + T +0+0
u )d

1
2
1
2

1
2
(θ) 1N = − 3

32λ
2 1N , (4.10)

thus leading to the bound
y2 <

16π
3 . (4.11)

One can understand that there is no multiplicity factor due to the SU(N) group structure
since for all the diagrams, both in the s− and u−channel, the SU(N) index is never
contracted between initial or final states, but is instead conserved between them.

If S is a complex scalar the U(1) charge conservation enforces to treat separately the
scattering of two distinct Mandelstam channels. As an example both the ηS → ηS and the
ηS∗ → ηS∗ scattering proceed through the fundamental representation, but the former via
an s−channel diagram, while the latter via u−channel one. The different angular function
of the two amplitudes makes the one in the u−channel dominate. For the scattering
ηS∗ → ηS∗ one obtains

a
J= 1

2 = − y2

32π

∫ +1

−1
d cos θ T +0+0

u d
1
2
1
2

1
2
(θ) 1N = − y2

16π 1N , (4.12)

which leads to the bound
y2 < 8π . (4.13)

For both the real and complex scalar the bounds in the J = 1/2 sector are weaker than in
the J = 0 one.

Finally we can consider the relevant scatterings for integer J > 0, starting again with
the case of a real scalar field. Here the two particle states among fermions decompose as

+−



χ̄χ ∼ 1 + Adj
χ̄η̄ ∼ S + AS
ηχ ∼ S + AS
ηη̄ ∼ 1 + Adj

,

while, the scalar field being an SU(N) singlet, only the trivial representation exists for 00.
Bose symmetry however forbids the scattering in the 00 +− channel for odd J [115], while
the relevant group factors in the +−+− channel are8

+−+−



Fu,1χ̄χηη̄ = Fu,1ηη̄χ̄χ = 1
Fu,Adj
χ̄χηη̄ = Fu,1ηη̄χ̄χ = 1
Fu,Sχ̄χηη̄ = Fu,1ηη̄χ̄χ = 1
Fu,AS
χ̄χηη̄ = Fu,1ηη̄χ̄χ = −1

. (4.14)

8Note that the antisymmetric combination no longer vanishes here, since it’s built with two non identical
fermions.
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For the lowest partial wave J = 1 all the eigenvalues of the partial wave matrix are ± y2

32π ,
therefore the bound is simply

y2 < 16π . (4.15)

In the case of a complex scalar field instead one has additional non vanishing processes as
SS∗ → χ̄χ and SS∗ → ηη̄ that can however proceed only via the singlet channel, since the
scalar belongs to the trivial SU(N) representation. The scattering among singlet is thus
modified with respect to the real scalar case. The group structure for these scatterings is

00∗ +−
{
Fu,1SS∗χ̄χ = Fu,1SS∗ηη̄ =

√
N , (4.16)

and explicitly one has in the (χ̄χ, ηη̄, SS∗) basis

aJ=1
1 = y2

32π

∫ +1

−1
d cos θ

 0 d1
11(θ)T +−+−

u −d1
01(θ)T 00∗+−

u

d1
11(θ)T +−+−

u 0 −d1
01(θ)T 00∗+−

u

d1
10(θ)T 00∗+−

u d1
10(θ)T 00∗+−

u 0

◦
 0 1

√
N

1 0
√
N√

N
√
N 0

=

= − y2

32π

 0 1
√

2N
1 0

√
2N√

2N
√

2N 0

 , (4.17)

where ◦ represents the Hadamard product.9 Here we have split the Lorentz and group part
of the amplitudes to highlight that the different helicity channels are associated to different
group coefficients. The largest eigenvalue in absolute value is y2

64π (1 +
√

1 + 16N) and the
bound thus reads

y2 <
32π

1 +
√

1 + 16N
. (4.18)

We then report in figure 1 the bounds on y obtained in the J = 0, 1/2 and 1 partial waves.
In particular we see that in the case of a real scalar field the strongest bound is obtained
in the J = 0 channel. On the other hand for a complex scalar field the strongest bound is
obtained through the analysis of the scattering in the J = 1 channel, while the one in the
J = 0 channel dominates only in the case of an abelian theory. This is a non trivial result,
highlighting the role that higher partial waves can have in deriving a PU bound.

4.2 Second model: χ ∼ q, η ∼ 1q′, S ∼ q−q′

In this model the scalar transforms in the fundamental representation of SU(N), and is
thus always a complex field. By fixing the basis

ψL = (χa, ηc)T , φ = (Sa, S∗a)T , (4.19)

where a runs from 1 to N , one has for the Yukawa matrix of eq. (2.6)

Yαij = y

δi,αδj,N+1 + (i↔ j) α ≤ N
δi,α−Nδj,N+1 + (i↔ j) α > N

, (4.20)

9The Hadamard productH of nmatrices of the same dimensionH = A1◦. . .◦An is defined in components
as Hij = A1

ij . . . A
n
ij .
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Figure 1. PU bounds on the Yukawa couplings y for the model 1 of the Dirac type class for J = 0
(black), J = 1/2 (blue) and J = 1 (red). The solid (dashed) lines correspond to the case of a real
(complex) scalar field.

with i, j = 1, . . . , N + 1. We start again by considering the J = 0 partial wave. Here the
two particle states decompose as

+ +


χ̄η ∼
χ̄χ̄ ∼ S + AS
ηη ∼ 1

and the −− states are the conjugates. Again, the antisymmetric combination identically
vanishes for even J . The two-particle states can be written in analogy with eq. (4.4), where
clearly the singlet combination is now the trivial state |ηη〉, to which we add the state in
the antifundamental as

|χ̄η〉a = |χ̄aη〉 . (4.21)
In this theory all the scatterings in the ±±∓∓ channels vanish together with the ones that
proceed through the singlet and symmetric channels in ± ± ±±. The only non vanishing
amplitudes are the ones in the (anti)fundamental channel with a group factor that reads

+ + + +
{
Fs,χ̄ηχ̄η = Fs,χη̄χη̄ = 1 . (4.22)

In this case the partial wave matrix is already diagonal and after the trivial integration
over the angular variable one obtains the bound

y2 < 8π . (4.23)
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Moving onto the J = 1/2 channel we can consider the +0 + 0 scattering. Here we have

+0



ηS ∼
ηS∗ ∼
χ̄S ∼ 1 + Adj
χ̄S∗ ∼ S + AS

and the group factors for the non zero amplitudes are

+0 + 0


Fs,1χ̄Sχ̄S = N

Fs,ηSηS = Fu,ηSηS = 1
Fu,Sχ̄S∗χ̄S∗ = −Fu,AS

χ̄S∗χ̄S∗ = 1

, (4.24)

with again the −0 − 0 being the conjugates. We can consider the singlet channel, which
exhibits a N multiplicity factor. In the +0 + 0 sector one has

a
J= 1

2
1 = y2

32π

∫ +1

−1
d cos θ T +0+0

s d
1
2
1
2

1
2
(θ)N = − y2

32πN . (4.25)

This is the largest eigenvalue for N > 1 while for N = 1 it’s the scattering in the
(anti)symmetric channels that dominates due to the u−channel amplitude which scales
as T +0+0

u ∼ 1
cos θ2

and has eigenvalue ±2y2. Altogether we obtain

y2 <

8π N = 1
16π
N N ≥ 2

. (4.26)

Finally for J = 1 the relevant two-particle states decompose as

+−



χ̄χ ∼ 1 + Adj
η̄η ∼ 1
ηχ ∼
χ̄η̄ ∼

00


SS ∼ S + AS
SS∗ ∼ 1 + Adj
S∗S∗ ∼ S + AS

,

where however now it’s the symmetric combinations of the two identical scalars that van-
ishes identically for J = 1 [115]. The group factors for the non-zero amplitudes are

+−+−

F
u,1
χ̄χηη̄ = Fu,1ηη̄χ̄χ =

√
N

Fu,ηχηχ = Fu,χ̄η̄χ̄η̄ = 1
00∗ +−


Fu,1SS∗χ̄χ = 1
Fu,1SS∗ηη̄ =

√
N

Fu,Adj
SS∗χ̄χ = 1

. (4.27)

Note that the 00∗+− scattering in the singlet channel has two contributions, coming from
the two possible ways of making an SU(N) singlet from the two fermions. The strongest
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Figure 2. PU bounds on the Yukawa couplings y for the model 2 of the Dirac type class for J = 0
(black), J = 1/2 (blue) and J = 1 (red). In this case the scalar is always a complex field.

bound turns out again to be the one arising from the scattering among singlets. Explicitly
one has in the (χ̄χ, ηη̄, SS∗) basis

aJ=1
1 = y2

32π

∫ +1

−1
d cos θ


0 d1

11(θ)T +−+−
u −d1

01(θ)T 00∗+−
u

d1
11(θ)T +−+−

u 0 −d1
01(θ)T 00∗+−

u

d1
10(θ)T 00∗+−

u d1
10(θ)T 00∗+−

u 0

◦


0
√
N 1

√
N 0

√
N

1
√
N 0



= − y2

32π


0
√
N
√

2
√
N 0

√
2N

√
2
√

2N 0

 , (4.28)

where we again have split for convenience the Lorentz and group structure of the amplitude.
The eigenvalues of this matrix have a complicated form for generic N and we thus show
the numerical results in figure 2. There we see that for N < 4 it’s the J = 1 partial wave
that enforces the strongest bound while for N ≥ 5 is the J = 1

2 one. As for the case of
the previous toy model we see that the stronger limit can arise from partial waves different
from J = 0. We also note that when N = 1 we recover, with no ambiguity, the same
bounds obtained for the first toy model in the case of a complex scalar field.
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5 The case of the Standard Model Yukawa sector

The two toy models discussed in the previous section can be used as building blocks through
which it is possible to study more involved theories where, e.g., the fields are charged under
multiple SU(Ni) factors and/or where more than one generation of fields with the same
quantum numbers is present. We highlight this by discussing in detail the case of the
SM Yukawa couplings, focusing on the down type quark sector, for which the Yukawa
Lagrangian is

− L = yijd q̄
iHdj + h.c. , (5.1)

where qi and dj are left-handed and right-handed fermions field respectively and where the
flavor indices i and j run from 1 to 3. From the point of view of the gauge symmetries, this
theory belongs to the first Dirac type model described in section 4.1 with respect to SU(3)c
and to the second Dirac type model described in section 4.2 with respect to SU(2)L, with
H being a complex scalar field.

5.1 Multiple SU(Ni) factors

We start by discussing the role played by multiple SU(Ni) factors under which the various
fields can be charged. To this end we consider a single generation of SM fermions, y11

d = yd.
The rule of eq. (3.3) is readily generalized, by considering that now each group factor
coefficient F is the product of the various group coefficient factors for the different SU(N)
groups and the dimension of the identity matrix is the product of the dimensions of the
considered irreducible representations for each SU(N) factor. It is again instructive to
work out the most important scattering amplitudes for the case of J = 0, half-integer J
and integer J > 0. We start with J = 0. Since the scalar is complex the only non-zero
amplitudes are in the ±±±± scattering channel. Working in the (q̄d, qd̄) basis one has that
the scattering proceeds through the (anti)fundamental channel for what concerns SU(2)L
with a group factor proportional to the identity, see eq. (4.22). As regarding SU(3)c one
can again consider the scattering in the singlet channel, which exhibits a group factor
enhancement, see eq. (4.5). The J = 0 partial wave explicitly reads

aJ=0
SU(3)=1,SU(2)= = y2

d

32π

∫ +1

−1
d cos θd0

00(θ)
(
N3T ++++

s 0
0 N3T −−−−s

)
× 1N2 , (5.2)

where N3 = 3, N2 = 2. Here the presence of two SU(N) groups simply increases the
eigenvalue multiplicity, given that SU(2)L group factor is proportional to the identity and
the scattering matrix is already diagonal. The bound in this case is simply the one of
eq. (4.8)

yd <

√
8π
N3

=
√

8π
3 ∼ 2.9 . (5.3)

For J = 1/2 we can consider the +0+0 sector and it’s convenient to consider the q̄H ↔ q̄H

in the antifundamental channel for SU(3) and singlet channel for SU(2). The group factors
can be read from eq. (4.9) and eq. (4.24) and are the identity for SU(3) and N2 = 2 for
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SU(2). Also in this case the presence of two SU(N) factors simply increases the eigenvalue
multiplicity. The partial wave reads

a
J=1/2
SU(3)= ,SU(2)=1

= y2
d

32π

∫ +1

−1
d cos θd

1
2
1
2

1
2
(θ)T +0+0

s 1N3N2 = − y2

32π1N3N2 , (5.4)

leading to the same bound of eq. (4.26)

yd <

√
16π
N2

=
√

8π ∼ 5 . (5.5)

The situation is more involved for J = 1. Focusing on the singlet channel scattering for
both the SU(3)c and SU(2)L groups one has the group coefficients of eq. (4.14), eq. (4.16)
and eq. (4.27). Explicitly then in the (q̄LqL, dRd̄R, HH∗) basis one obtains

aJ=1
1 = y2

d

32π

∫ +1

−1
d cos θ

 0 d1
11(θ)T +−+−

u −d1
01(θ)T 00∗+−

u

d1
11(θ)T +−+−

u 0 −d1
01(θ)T 00∗+−

u

d1
10(θ)T 00∗+−

u d1
10(θ)T 00∗+−

u 0

 ◦
 0 1

√
N3

1 0
√
N3√

N3
√
N3 0

 ◦
 0

√
N2

√
2√

N2 0
√

2N2√
2
√

2N2 0



= − y2

32π

 0
√
N2
√

2N2N3√
N2 0

√
2N3√

2N2N3
√

2N3 0

 , (5.6)

which leads to the bound
yd . 3.2 . (5.7)

Here we see the non trivial interplay between the two SU(N) factors, which for this partial
wave gives a bound which is stronger than the one obtained considering only one of the
two SU(N) factors, see eq. (4.18) and eq. (4.28). Overall in the case of the SM Yukawa
sector the most stringent bound turns out then to arise from J = 0 partial wave. The limit
of eq. (5.3) implies that if there were additional quarks acquiring mass from EWSB, their
mass should have been . 500GeV in order to preserve PU. Analogously, additional leptons
should have a mass . 700GeV.

5.2 Multiple generations

We want now to highlight what is the role played by the presence of mutiple states with the
same quantum numbers, as in the case of multiple generations of SM fermions. We then
go back the general case of eq. (5.1) and, for simplicity, work with only two generations
of fermions. Through a biunitary rotation acting on the fermion fields qL → ULqL and
dR = URdR it is possible to go to a basis where the Yukawa matrix becomes diagonal with
real and non negative entries, namely

ỹd = ULydU
†
R . (5.8)
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It’s interesting then to ask what happens to the largest eigenvalues obtained in the single
family case of section 5.1. In the J = 0 sector the Higgs boson can mediate s−channel scat-
terings among different generations. Choosing as basis (q̄1d1, q̄2d2, q1d̄1, q2d̄2) the partial
wave matrix in the singlet channel becomes, after the angular integration,

aJ=0
SU(3)=1,SU(2)= = N3

16π


ỹ2
d,1 ỹd,1ỹd,2

ỹd,1ỹd,2 ỹ2
d,2

ỹ2
d,1 ỹd,1ỹd,2

ỹd,1ỹd,2 ỹ2
d,1

× 1N2 , (5.9)

whose largest eigenvalue is N3
16π (ỹ2

d,1 + ỹ2
d,2) and the bound is thus on the geometric mean

of the two Yukawa couplings

√
ỹ2
d,1 + ỹ2

d,2 <

√
8π
N3

=
√

8π
3 ∼ 2.9 . (5.10)

This is not the case for the scattering in J = 1/2, where different generations do not
communicate since the scatterings proceed through the exchange of an s− or u−channel
fermion. In this case the eigenvalues give independent bounds on the two couplings sepa-
rately, which read

ỹd,1, ỹd,2 <

√
16π
N2

=
√

8π ∼ 5 , (5.11)

in total analogy with the single family case. In J = 1 the situation is again more involved
due to the presence of the 00 two particle state which is common between all genera-
tions. The eigenvalues of the scattering matrix have a complicated analytical form, but
numerically one can see that the strongest bound is always given by the J = 0 partial wave.

6 Majorana type theories

In this section we study the Majorana type theories, described by eq. (3.2). As discussed
in section 3 and indicated in table 1, when only one SU(N) factor is present, or flavor
multiplicity is not added, only one model, other than the one where all fields are SU(N)
singlets, can be written. We firstly study these two theories in turn and then in section 6.3
we present an explicit, phenomenologically relevant, example in which the involved fields
are charged under multiple SU(N) factors and the above caveat can thus be evaded. Given
that the two models of table 1 cannot be written for arbitrary SU(N), in this section we
directly illustrate our findings without explicitly presenting the group factors F , as opposed
to the thorough derivation of section 4 for the Dirac type theories. We also do the same
for the explicit example of section 6.3. In this case the various amplitudes can be derived
analogously to the examples of section 4.

6.1 First model: χ ∼ 1q, S ∼ 12q

In this model both the fermion and the scalar are SU(N) singlets, where the latter is real
if q = 0. Clearly, no group factor is present in this theory and the partial waves can be
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easily built directly from the Lorentz amplitudes of table 3. In the complex scalar basis
the Yukawa matrix of eq. (2.6) is simply Yα = y, where α = 1 in the real scalar case and
α = 1, 2 in the complex scalar one. Let’s start again by discussing J = 0 with real S. In
this case both the ± ± ±± and ± ± ∓∓ helicity channels contribute. The partial wave
matrix is readily computed and, after integration in the (χ̄, χ) basis, reads

aJ=0 = y2

32π

(
−1 3
3 −1

)
, (6.1)

which gives the bound
y2 < 4π . (6.2)

Again, if the scalar is complex there is no scattering in the ±±∓∓ helicity channels. The
partial wave matrix of eq. (6.1) becomes diagonal and the bound relaxes to

y2 < 16π . (6.3)

Moving to the J = 1/2 partial wave, here we have a situation completely analogous to the
one of section 4.1 and the inferred bound are thus

y2 <


16π
3 Real S

8π Complex S
. (6.4)

For J = 1 in the real scalar case we have again only contributions from the +−+− helicity
channel and again we are in a configuration analogous to the one of section 4.1. The bound
can be directly read from the Lorentz part of the scattering amplitude and reads

y2 < 16π . (6.5)

If S is a complex scalar there is now a contribution to the partial wave matrix from the
00∗ + − scatterings. In the basis (SS∗, χ̄χ) and after the angular integration the partial
wave matrix is

aJ=1 = y2

32π

(
0 −

√
2

−
√

2 −1

)
, (6.6)

which gives the bound
y2 < 8π . (6.7)

6.2 Second model: χ ∼ q, S ∼ Adj2q, N = 2

In this model the fermion transforms in the fundamental of SU(2) while S in the Adjoint
representation, and is then a real scalar if q = 0 and complex otherwise. In the first case
we choose as basis

ψL = (χL)T , φ = (SA)T , A = 1, 2, 3 , (6.8)

and the Yukawa matrix is then
Yαij = y(Tαε)·ji , (6.9)
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where α = 1, 2, 3 and i, j = 1, 2. When q 6= 0 then S is a complex field. In this case we can
choose

φ = (SA, SA∗)T , A = 1, 2, 3 , (6.10)

and the Yukawa is now

Yαij = y

(Tαε)·ji , α ≤ 3
(Tα−3ε)·ji , α > 3

, (6.11)

where now α = 1, . . . , 6. Proceeding in a similar manner as for the Dirac type models,
we find that in J = 0 the bound is the same for both real and complex scalar, due to a
cancellation between the s-, t- and u-channels in the ±±∓∓ amplitudes. Moreover, since
for the ±±±± transition there is only the s-channel exchange of S, the only non-vanishing
scattering has the fermions in the SU(2) triplet configuration, giving

y2 < 32π . (6.12)

Moving to the J = 1/2 partial wave, again the strongest bound is the same for real and
complex scalars, coming from the scattering in the 4 of SU(2):

y2 < 16π . (6.13)

Finally, in J = 1, the best bound for real S is obtained in the adjoint channel, where the
partial wave matrix reads

aJ=1
Adj = y2

32π

(
−1

4 −i
i 0

)
× 13 , (6.14)

with eigenvalues − y2

256π (1±
√

65), thus giving the bound

y2 <
128π

1 +
√

65
. (6.15)

For complex S, instead, the singlet channel gives the strongest constraint. The partial
wave matrix is

aJ=1
1 = y2

32π

(
−3

4 −
√

3
2

−
√

3
2 0

)
, (6.16)

and it has eigenvalues − y2

256π (3±
√

57). The bound therefore is

y2 <
128π

3 +
√

57
. (6.17)

6.3 The case of the S1 leptoquark

As already mentioned above, there are more possibilities for the Majorana type models once
one allows for the fields to be charged under more than one SU(N) group. Of particular
phenomenological interest is the case of the leptoquark S1, that will be discussed in more
detail also in section 7. This field transforms under the SM gauge group as S1 ∼ (3̄,1, 1

3).
One can thus write the following interaction term with the SM quark doublet

− L = 1
2yS1q̄Lq

c
L + h.c. , (6.18)
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where the colour indices are contracted with the totally antisymmetric tensor εabc of SU(3),
compensating the SU(2) contraction q̄εqc. The bounds on the coupling y in this case can
be obtained along the same lines as the ones in the previous sections, and we therefore
quote only the results for the three considered partial waves

y2 <


4π J = 0
4π J = 1

2
16π

1+
√

17 J = 1
. (6.19)

7 Phenomenological applications

In this section we apply our results to some illustrative models which present additional
Yukawa interactions formulated to solve several anomalies reported in low energy measure-
ments, such as the muon anomalous magnetic moment (g − 2)µ and the anomalies in the
charged- and neutral-current decays of B−mesons, commonly dubbed as RD(∗) and RK(∗)

anomalies respectively. The former is an anomaly in the B(B → D(∗)τν)/B(B → D(∗)`ν)
observable in b → cτν charged-current transitions, with ` = e, µ, while the latter is an
anomaly in the B(B → K(∗)µ+µ−)/B(B → K(∗)e+e−) observable in b → sµ+µ− neutral-
current transitions. In order to explain the RD(∗) anomaly, a ∼ 15% modification with
respect to the theory prediction is required. However in the SM the partonic process
b → cτν occurs at tree-level, hence when one tries to explain the experimental measured
value through some additional NP contribution one might encounter several problems.
Since the NP contribution to this observable scales, in case of a tree-level effect, as

δRD(∗) ∼
g2

NP
m2

NP
, (7.1)

where gNP and mNP are the coupling and the mass of the relevant NP state, a large effect
can be obtained either with a small NP mass or with a large NP coupling. However given
that the suppression scale for the SM effective operator 1

Λ2 (q̄2γ
µσAq3)(`3γµσa`3) that can

address this anomaly is Λ ' 3 TeV, in the former case one has to face stringent limits from
direct searches from, e.g., the LHC, while in the latter case the coupling might be pushed at
the edge of perturbativity. On the other hand the partonic process b→ sµ+µ− entering the
RK(∗) anomaly occurs in the SM at one-loop level, with a VtbVts CKM suppression. When
considering NP models that try to explain this measurement also at one-loop level, again
one can obtain couplings which might be in conflict with the requirement of perturbative
unitarity. The purpose of this section is to apply our results to phenomenologically relevant
models and show that the requirement of PU can enforce significant bounds that might
deserve further investigation. Since typically in the models that we will consider more than
two couplings at the same time can enter the expression of the PU limit, our strategy will
be to trade some of them for other measurements and/or constraints and then to depict
the PU bound in the region of the two remaining independent couplings.
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7.1 Scalars and fermions for RK(∗) and (g − 2)µ anomalies

The first model that we study extends the SM by adding new scalars and fermions in order
to generate contributions to b → sµ+µ− and (g − 2)µ, both at loop-level and it is based
on [79, 80]. We first consider the simplest extension which contains only left-handed (LH)
couplings and then we evaluate the consequences of adding right-handed (RH) couplings.

7.1.1 Left-handed scenario

In the LH scenario, the NP states couple only to LH SM quarks and leptons. We can
consider two models with the following schematic interactions10

• Model a) with one additional scalar Φ and two additional fermions Ψq and Ψ`

−La = λqi Ψ̄qq
i
LΦ + λ`iΨ̄``

i
LΦ + h.c. . (7.2)

• Model b) with two additional scalars Φq and Φ` and one additional fermion Ψ

−Lb = λqi Ψ̄qiLΦq + λ`iΨ̄`iLΦ` + h.c. , (7.3)

where q and ` are the SM quark and lepton doublet respectively and where the NP fields
quantum numbers under the SM gauge group are at this level unspecified. Here however
we wish to assess how constraining the PU requirement could be and since, as shown in
section 4, bounds are generally stringent when the theory features a real scalar field, we
wish to consider models that feature a real scalar. In model a), however, by making Φ a real
scalar one obtains an exact cancellation of the various contributions to b → sµ+µ− [88],
an option disfavored if one is willing to explain the RK(∗) anomaly. This is not the case for
model b), where one can choose Φ` to be a real scalar.

Altogether we consider the following quantum number assignments under the SM gauge
group for the two models

model a) Φ ∼ (1,1, X) Ψ` ∼
(
1,1,−1

2 +X
)

Ψq ∼
(
3,1, 1

6 +X
)
,

model b) Ψ ∼ (1,2, X) Φ` ∼
(
1,1,−1

2 +X
)

Φq ∼
(
3,1, 1

6 +X
)
,

(7.4)

where by fixing X = 1
2 one has that Φ` is a real scalar in model b). Regarding the flavor

structure of the theory, since the goal is to generate a contribution to b→ sµ+µ−, we only
need couplings to the second and third quark families,11 λq3 ≡ λb, λ

q
2 ≡ λs and to the second

generation of leptons λ`2 ≡ λµ. The loop-level diagrams responsible for generating the NP
contribution to b→ sµ+µ− are shown in figure 3.

By fixing for simplicity all the masses of the NP states at a common value mNP ∼
O(TeV), the most stringent bound for the couplings to quarks comes from Bs − B̄s oscil-
lations, where using the result in [116] we get

|λ∗sλb| ≤ 0.15 mNP
1 TeV . (7.5)

10Note that one can also construct a model where Φ and Ψ couple to SM quarks while the conjugate
fields Φc and Ψc couple to leptons. This however leads to very similar phenomenological results.

11We work in down-quark aligned basis.
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a) b)

bL µL

sL µLΨ

Ψ

Φq Φℓ

sL µL

bL µL

ΨℓΨq

Φ

Φ

Figure 3. Loop-level diagrams responsible for generating the NP contribution to b→ sµ+µ− for
the models of eq. (7.2) and eq. (7.3).

This relation can be inserted in the expression for the ∆Cµ9 = −∆Cµ10 coefficients12 for
reproducing the neutral-current anomaly RK(∗) from where one has

|∆Cµ9 | = 0.34 |λ∗sλb| |λµ|2
(1 TeV
mNP

)2
, (7.6)

for both model a) and model b). By plugging eq. (7.5) into eq. (7.6) one can set a lower
bound on the |λµ| coupling [80]

|λµ|2 ≥ 20 |∆Cµ9 |
mNP
1 TeV , (7.7)

where we use the updated 1-dimensional fit ∆Cµ9 = −∆Cµ10 = −0.41±0.07 in [117]. Hence,
by saturating the bound in eq. (7.5), i.e., by imposing |λsλb| ∼ 0.15 mNP

1 TeV , we can compute
the bound set by PU to see if one can explain at the same time the observed value for
∆Cµ9 relevant for the RK(∗) anomaly. In order to do so we fix mNP = 1TeV, which for
SU(3)c charged NP states is at the edge of exclusion from direct searches at the LHC, and
plot the allowed regions from PU in the (λµ, λb) parameter space, accounting for the ∆Cµ9
value from [117]. We illustrate this for model a) in figure 4 where, as explained before, the
scalar is a complex field. There in green (yellow) we illustrate the regions compatible with
the measured value of ∆Cµ9 at 1σ and 2σ while in gray we show the one compatible with
PU. We see that, in this case, there is an overlap between the two regions and the RK(∗)

anomaly can be explained with couplings whose magnitude is compatible with perturbative
unitarity. For the case of model b) we show the results in figure 5 for both the real and
complex Φ` case. In the latter case the results are very similar to the one of 4. On the
other side in the case of real Φ` the PU bounds become more stringent and there is no
longer an overlap region where ∆Cµ9 can be explained with perturbative couplings. By
setting λb = 0 for these 3 models, the PU limits for the λµ coupling are

Model a) Complex Φ |λµ| < 4.0 Model b)

Complex Φ` |λµ| < 3.5
Real Φ` |λµ| < 2.2

(7.8)

12∆Cµ9 is defined as the Wilson coefficient encoding all the NP contributions to the operator Oµ9 =
e2

16π2 (s̄γνPLb)(µ̄γνµ), whereas ∆Cµ10 as the Wilson coefficient encoding all the NP contributions to the
operator Oµ10 = e2

16π2 (s̄γνPLb)(µ̄γνγ5µ).

– 25 –



J
H
E
P
1
0
(
2
0
2
1
)
1
2
9

Figure 4. In gray we show the regions of the parameter space compatible with PU. In green and
yellow we show the regions compatible with the RK(∗) anomaly at 1σ and 2σ respectively, by fitting
∆Cµ9 = −∆Cµ10 and assuming a common NP mass mNP = 1TeV.

Figure 5. In gray we show the regions of the parameter space compatible with PU. In green and
yellow we show the regions compatible with the RK(∗) anomaly at 1σ and 2σ respectively, by fitting
∆Cµ9 = −∆Cµ10 and assuming a common NP mass mNP = 1TeV.

where for model a) the bound is obtained from the model in section 4.2, while for model
b) the bounds correspond to the one in section 4.1.

Since in order to solve the neutral current anomaly we need a coupling to the muons,
it is natural to ask if one can reproduce the (g − 2)µ anomaly and how large the relevant
coupling has to be to achieve the correct NP contribution. For the observable aµ ≡ (g −
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2)µ/2 we consider the recent value of the Fermilab Muon g − 2 experiment [15] for which
one has a ∼ 4.2σ discrepancy with respect to the SM prediction [17]

∆aµ = aexp
µ − aSM

µ = (251± 59)× 10−11 . (7.9)

We want to see if this anomaly can be explained with the λµ coupling in a perturbative
regime. To illustrate this we consider the case of model a), since it’s the one for which one
has a less stringent PU bound. Using the results in [80], it turns out that to explain the
muon anomaly at the 1σ level by saturating λµ = 4.0 as per eq. (7.8) one needs to have

X

(1 TeV
mNP

)2
≥ 10.6 . (7.10)

For a common NP mass of 1 TeV one needs a quite exotic and large value for the hyper-
charge X = 10.6. In this case one has to assess the validity of the perturbative regime
studying scattering processes that involve gauge bosons. Even more extreme hypercharge
values are needed for smaller values of λµ.13 The need for a large muon coupling in order to
explain the (g− 2)µ anomaly arises because the process needs a chirality flip, which can be
obtained in this LH model only via the muon mass term with a contribution proportional
to mµ, which forces the couplings to be too large to account for the anomaly. This fact
could be solved by introducing NP that couples to RH SM muons together with a mixing
term among the NP states, since in this case one can generate a chirality flip proportional
to mNP � mµ, that allows for a smaller NP coupling. We present some models which
include RH couplings in the next section.

7.1.2 The inclusion of right-handed couplings

The possibility of adding RH couplings to scalar-fermion models has been largely discussed
before in the literature, also in the context of DM physics, since for some choices of the
field representations one can have suitable DM candidates [88, 92, 118–120]. Introducing
a coupling to RH leptons requires at least one new scalar or fermion field. A mixing term
among the NP fermion fields can be generated through the interaction with the Higgs boson,
while dangerous mixing terms between the Higgs, a SM and a NP field can be forbidden
by introducing an extra symmetry like a Z2 symmetry or a U(1) charge. As explained
before, the motivation for introducing RH couplings in these kind of models is to be able
to account for the (g − 2)µ anomaly, while keeping the NP couplings in a perturbative
regime. This can be achieved provided that we have a chirality flip contribution bigger to
the one proportional to the muon mass. In a recent work [92], the Authors investigate two
models containing a good DM candidate while explaining at the same time the b→ sµ+µ−

and the (g−2)µ anomalies. In particular one of the two scenarios is the extension of model
b) of section 7.1.1 with a real scalar Φ`, whose Lagrangian reads

− L = λqi q̄
i
LΨRΦq + λ`i

¯̀i
LΨRΦ` + λei ē

i
RΨ′LΦ` + λH(Ψ̄LΨ′RH + Ψ̄RΨ′LH) + h.c. , (7.11)

13In [80] other representations for the fields are discussed, where for a value of hypercharge |X| = 1 the
muon anomaly can be accounted for with |λµ| ≥ 3.7, although in that case the PU limit also tightens to
|λµ| ≤ 2.5.
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where we labeled explicitly the chirality indices L,R in the new fermions Ψ,Ψ′. The field
quantum numbers that we consider in this case are

Ψ ∼ (1,2,−1
2) Ψ′ ∼ (1,1,−1) Φ` ∼ (1,1, 0) Φq ∼

(
3,1, 2

3

)
. (7.12)

Again, we restrict our analysis to the case where the flavor structure enforces only couplings
to b and s quarks and to muons. Hence we are left with 5 parameters that will allow us
to explain the muon anomalous magnetic moment: λb, λs, λ`µ, λeµ and λH . By fixing, e.g.,
λH = 0.1 it turns out that one can explain the (g−2)µ anomaly with perturbative couplings.
In order to assess whether the neutral-current anomaly can be explained in this scenario
while remaining in the perturbative regime we proceed similarly to the case of the LH
scenario and start by saturating the Bs − B̄s bound in eq. (7.5), which fixes the quark
coupling combination |λbλs|. For what concerns the b → sµ+µ− observable, we now have
no longer the ∆Cµ9 = −∆Cµ10 pattern, so that we take the 2D fit result from [117]

∆Cµ9 = −0.68± 0.16 ∆Cµ10 = 0.24± 0.13 , (7.13)

and the ∆Cµ9 and ∆Cµ10 expressions from [92].
We then focus on two benchmark points presented in [92], that can account for both

the (g − 2)µ and the RK(∗) anomalies and the DM relic density, while being compatible
with the bounds from direct searches, namely

• Benchmark 1

λH = 0.1, mΦq = 2TeV, mΨ′ = 1TeV, mΦ` = 0.5TeV, mΨ = 0.7TeV , (7.14)

• Benchmark 2

λH = 0.1, mΦq = 1.4TeV, mΨ′ = 0.8TeV, mΦ` = 0.5TeV, mΨ = 0.7TeV , (7.15)

which uniquely fix the values of (λ`µ, λeµ). We then show in gray in figure 6 the region
compatible with the requirement of PU in the (λ`µ, λeµ) plane, as well as the allowed region
for reproducing (g − 2)µ at 1σ and b → sµµ at 2σ, which are depicted in brown and
yellow respectively. In the figures we also show the (λ`µ, λeµ) for both benchmark points.
Since this model features a real scalar field and the λeµ needs to be small to satisfy flavor
observables, (g − 2)µ and RK(∗) , the PU bound is again dominated by the results of the
model of section 4.1, which enforces the |λµ| ≤ 2.25 bound. From the figures we see that
for the first benchmark point there is a tiny region where the (g − 2)µ anomaly and the
RK(∗) anomaly can be simultaneously satisfied while being compatible with PU, while for
the second benchmark point there is no overlap between the predictions for the various
observables while remaining in a perturbative regime.

7.2 Scalar leptoquarks

Scalar LQs are a natural candidate to explain the charged- and neutral-current RD(∗)

and RK(∗) anomalies since they couple quarks to leptons, and are thus an ideal sce-
nario to be tested with the tool of perturbative unitarity. Among all the scalar LQs
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Figure 6. For benchmark point 1 (left) and benchmark point 2 (right)in gray we show the regions
of the parameter space compatible with PU. In brown we show the regions compatible with the
RK(∗) anomaly at 2σ while in yellow the region compatible with (g− 2)µ data at 1σ. For both plot
we show in blue the benchmark points derived from [92].

the SU(2)L triplet S3 and singlet S1 are the most robust candidates to explain the anoma-
lies [43, 46, 53, 64, 67, 69–73, 76, 77]. Under the SM gauge group they transform respec-
tively as S3 ∼

(
3̄,3, 1

3
)
and S1 ∼

(
3̄,1, 1

3
)
. When both LQs are combined so as to explain

both the B−meson anomalies and the (g− 2)µ, and their mass is set to O(1) TeV, the SM
discrepancies can be explained without suffering from PU constraints. However, for higher
masses, the couplings are required to be tuned to higher values and perturbativity might
be lost. In a recent work [76] the Authors have considered the following SM extension

− L = 1
2λ

`
αβ

¯̀c,α
L ε`βLφ

+ + λuiαū
c,i
R e

α
RS1 + λqiαq̄

c,i
L ε`

α
LS1 + h.c. , (7.16)

where φ+ is an SU(3)c and SU(2)L singlet scalar with Y = 1. This model aims at explaining
the B−anomalies, the anomalous magnetic moment of the muon and the so called Cabibbo
Angle Anomaly [121, 122, 126] with the following flavor structure:

λq =

 0 0 0
0 0 λqsτ
0 λqbµ λ

q
bτ

 , λu =

 0 0 0
0 λucµ λucτ
0 0 λutτ

 , λ =

 0 λeµ 0
−λeµ 0 λµτ

0 −λµτ 0

 . (7.17)

Setting mNP ≡ mS1 = mφ+ = 5.5TeV, the best fit point of this model appears in eq. (12)
of [76]. Taking the best fit values, each coupling turns out to be in the perturbative regime
when considering one of them at the time. However, when considering the contribution
from all the couplings simultaneously, perturbative unitarity is lost. This is mainly due to
the fact that λucτ has to be very large in order to account for the RD(∗) anomaly. Explicitly
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one has [59, 123]

∆RD ≈ −0.235λucτλ
q
bτ

(1 TeV
mNP

)2
= 0.041± 0.029 ,

∆RD∗ ≈ −0.088λucτλ
q
bτ

(1 TeV
mNP

)2
= 0.037± 0.013 , (7.18)

where ∆RD(∗)=Rexp
D(∗) −RSM

D(∗) .
We then try to see whether it is possible to explain all the anomalies considered in [76]

while remaining in a perturbative regime, without changing the values of mNP = 5.5 TeV
chosen by the Authors. In the left panel of figure 7 we show in the (λqbτ , λucτ ) plane the region
compatible with PU, depicted in gray, and the 2σ region where RD(∗) can be reproduced,
depicted in purple, where the other couplings are set to their best fit value so that the other
relevant anomalies, (g−2)µ and the Cabibbo Angle, can be reproduced. We see that there
is a small region where RD(∗) can be satisfied while being compatible with PU, provided
that we lower the value of |λucτ | from the best fit value to |λucτ | = 2.5 and keep the best fit
value for λqbτ . Thus, by fixing λucτ = −2.5 and keeping the other couplings at the best fit as
indicated in [76], we show in the right panel of figure 7 in the (λucµ, λµτ ) plane the region
where the RK(∗) anomaly can be reproduced at 1σ (green) and 1σ (yellow). There we see
that there is compatibility between this requirement and the one of PU, although with a
slightly different benchmark point than the one of [76]. It is important to mention that
the coupling λucµ is introduced in the model in order to cancel undesired effects in τ → µγ

due to the large value of λucτ . For this region in the right panel of figure 7 we include the
region allowed by τ → µγ [124], to show the compatibility with this latter measurement.

7.3 Yukawa sector in vector leptoquark models

Other than scalar LQ, a compelling possibility to simultaneously solve the RD(∗) and RK(∗)

anomalies is through a vector LQ. The most remarkable candidate is the Uµ1 vector with
SM quantum numbers Uµ1 ∼ (3̄,1, 2/3) which has triggered a large theoretical activity
aiming at providing an UV completion [34, 35, 37, 46, 48–52, 56, 59, 60, 68, 78]. Generally,
in order to address the flavor anomalies, the models including Uµ1 also require the presence
of new vector-like fermions and new scalars that couple to the SM via Yukawa couplings
which can be constrained by PU considerations. Here we focus as an example on the model
presented in [60], usually dubbed in the literature as 4321 model, since it possesses a gauge
symmetry G = SU(4) × SU(3) × SU(2) × U(1). The Yukawa part of the theory can be
divided in a SM-like part and a part which includes the NP fields L = LSM−like + Lmix.
Explicitly

−LSM−like = q̄′LYdHd
′
R + q̄′LYuH̃u

′
R + ¯̀′

LYeHe
′
R + h.c. ,

−Lmix = q̄′LλqΩT
3 ΨR + ¯̀′

Lλ`ΩT
1 ΨR + Ψ̄L(M + λ15Ω15)ΨR + h.c. , (7.19)

where we refer to [60] for the field definitions and their quantum numbers under G. Here
we focus on the last term of Lmix which contains the mixing between the new vector-like
fermions Ψ and the scalar Ω15, whose quantum numbers under G are

Ω15 ∼ (15,1,1, 0) ΨL ∼ (4,1,2, 0) ΨR ∼ (4,1,2, 0) . (7.20)
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Figure 7. Left: in gray we show the allowed region from PU and in purple the region compatible
with RD(∗) at 2σ. The best fit point in [76] is shown in blue. Right: in gray we show the allowed
region from PU while in green and yellow the regions compatible with RK(∗) at 1σ and 2σ respec-
tively. Between the dashed red lines constraints from τ → µγ are satisfied. The best fit point in [76]
is shown in blue.

By computing the PU unitarity bound one obtains that the strongest limit is obtained
from the J = 1 channel and reads

λ15 . 2.1 . (7.21)

This is a case where combining different SU(N) factors does not drastically strengthen the
bound. Here we have the combination of the model in section 4.1 for SU(2) and the model
in section B.1 for SU(4), and the possible enhancement in the singlet channel of J = 0
due to SU(2) structure is cancelled by the SU(4) group factors since the contraction in the
s−channel of the singlet vanishes. This is the opposite effect of the SM case in section 5.1
when we considered multiple generations.

Regarding the viability of perturbative couplings of the 4321 model, while in the orig-
inal work [60] the Authors set λ15 ' 2.5 in order to introduce a mass-spliting between
new heavy vector-like quarks and leptons, which would then be in contrast with the per-
turbative unitarity limit that we have derived, with the new experimental world averages
for the RD(∗) and RK(∗) anomalies, one can easily lower the Yukawa coupling to, e.g.,
λ15 ∼ 2, while remaining compatible with ∆F = 2 observables. Thus the model is still
viable, although the parameters are stretched to the edge of perturbativity according to
our criteria.

7.4 Right-handed neutrinos for B anomalies

There are also models that can account for the anomalies with the addition of a RH neu-
trino, thus connecting the flavor tensions with the one of the neutrino mass generation.
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In [59] the authors have proposed a model that can address the RD(∗) anomaly by adding
a new decay channel B → D(∗)τNR into a right-handed sterile neutrino NR while simul-
taneously solving the RK(∗) anomaly at one-loop level, through the exchange of a scalar
leptoquark S1. The Lagrangian of the theory is

− L = S1(λuiαū
c,i
R e

α
R + λdi d̄

ci
RNR + λqiαq̄

c,i
L ε`

α
L) + h.c. , (7.22)

with the following flavor structure

λq =

 0 0 0
0 λqsµ 0
0 λqbµ 0

 , λu =

 0 0 0
0 0 λucτ
0 0 0

 , λd =
(
0, 0, λdbN

)T
. (7.23)

For what concerns the charged-current anomaly one has [59, 123]

RD
RSM
D

≈ 1 + 0.14|λucτλdbN |2
(1 TeV
mS1

)4
+ 0.19|λucτλ

q
bµ|

2
(1 TeV
mS1

)4
= 1.137± 0.101 ,

RD∗

RSM
D∗
≈ 1 + 0.14|λucτλdbN |2

(1 TeV
mS1

)4
+ 0.032|λucτλ

q
bµ|

2
(1 TeV
mS1

)4
= 1.143± 0.057 . (7.24)

In order to reproduce the neutral current anomaly one has to tune

λqsµ ∼ −
Vcb
Vcs

λqbµ (7.25)

in order to avoid violation of lepton flavor universality in b→ c`ν processes, see again [59],
where V is the CKM matrix. With this tuning one has that the neutral-current anomaly
is reproduced for

|λqbµ|
2 ' 0.87 + 3.15

(
mS1

1 TeV

)( ∆Cµ9
−0.41

)
, (7.26)

where we have normalized the expression to the latest best fit for the ∆Cµ9 coefficient [117].
Barring the mass of the RH neutrino, there are four couplings and one mass in this model.
One parameter is eliminated by the tuning of eq. (7.25), while we can eliminate, e.g., the
value of λucτ by asking to reproduce the RD∗ anomaly, which is the one with the smaller
experimental error. This leaves two independent couplings, λdbN and λqbµ, on which we can
check the constraints imposed by PU. We show the results in figure 8 for two representative
values of the LQ mass. In those figures the region compatible with the PU of the Yukawa
couplings is shown in gray, while the brazilian band plot illustrates the region of parameter
space that can explain the RK(∗) anomaly at 1σ and 2σ. Finally in purple we show the
2σ region compatibility for RD , having fixed λucτ so as to reproduce RD(∗) . Altogether we
see that for a LQ mass of 1 TeV (left panel) we can simultaneously explain both anomalies
while remaining in the perturbative regime. However for this value of the LQ mass, the
solutions to the RK(∗) anomaly is excluded by the experimental bounds on Bs mixing, see
again [59]. We can restore the compatibility with this measurement by raising the LQ mass
up to 2TeV (right panel), where however now the λdbN and λqbµ couplings are pushed at the
edge of the perturbativity.
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Figure 8. In black we show the region compatible with PU of the Yukawa couplings λdbN and
λqbµ for a LQ mass of 1 TeV (left) and 2 TeV (right). The brazilian band represents the region
compatible with the RK(∗) anomaly at 1σ and 2σ, while in the purple region the measured value
RD is reproduced, having fixed λucτ so as to reproduce RD(∗) . A LQ mass of 1 TeV is excluded by
experimental bounds on Bs mixing.

8 Conclusions

Yukawa interactions are ubiquitous in NP theories that try to address the shortcomings
of the SM and are largely employed in models that try to solve experimental anomalies
reported in the recent years in low energy data, as for the case of the muon (g − 2)µ and
semileptonic decays of B−mesons. In this paper we have studied the constraints imposed
by PU on generic Yukawa interactions where the fields involved have arbitrary quantum
numbers under an ∏i SU(Ni)⊗U(1) group.

By considering all 2 → 2 tree-level scatterings in the high-energy limit we have con-
structed the general form of the partial-wave matrices aJfi and derived compact expressions
for the upper limit on the value of the Yukawa interaction up to which perturbation theory
can be trusted. This has been achieved by computing all the necessary ingredients for
building the partial-wave matrix, namely the Lorentz parts of the scattering amplitudes
and the group structure factors entering the amplitude themselves. We have started by
considering a set of phenomenologically relevant toy models with Dirac type and Majorana
type interactions, where the various fields are only charged under a single SU(N) factor,
working for concreteness in the case where all the fields transform in the trivial, fundamen-
tal or adjoint representation of SU(N) and allowing them to have arbitrary U(1) charges.
We have shown how the SU(N) group structure of the interaction can lead to an enhance-
ment of the scattering amplitudes and thus to a tightening of the partial wave unitarity
bound, while on the other hand the presence of the U(1) symmetry enforces a selection rule
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that makes some amplitudes vanish. Interestingly, we obtained that the stronger bound
might arise from a partial wave different from J = 0.

The results obtained for these toy models can then be used as building blocks for more
complicated theories, where the various fields are charged under multiple SU(Ni) factors.
To highlight the strategy we have provided a guided working example, by focusing on the
case of the SM quark Yukawa sector. For this case we have also stressed the role that a
non trivial flavor structure has in determining the PU bound. We have then applied our
results to various more complicated NP models which solve the aforementioned anomalies
in (g − 2)µ and/or semileptonic B−meson decays by postulating the existence of new
Yukawa interactions. We have highlighted that, while the proposed theories can generally
still provide an explanation to these measurements, their models parameters are stretched
close to the limit where perturbation theory cannot be trusted and care must be taken in
deriving any conclusion.

Finally, the results presented in this paper and illustrated in figures 1, 2, 9 and 10, are of
practical use, and their applicability lies beyond the simple examples presented in the text.
While we have restricted only to a limited number of irreducible SU(N) representations
under which the various field can transform, the expressions that we have derived furnish
the necessary ingredients to study the limits imposed by the requirement of PU in a large set
of phenomenologically relevant NP theories that present additional Yukawa interactions.
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A Notation and conventions

A.1 Wigner d-functions

The small Wigner d−functions are defined in the angular momentum basis as

djmm′(θ) = 〈jm′|e−iθĴy |jm〉 , (A.1)

where Ĵy is the generator of the rotations around the y−axis. The explicit expression of
these functions used throughout our analysis are

d0
00 = 1

d
1
2
1
2

1
2

= cos θ2 d
1
2
1
2−

1
2

= − sin θ2

d1
11 = cos2 θ

2 d1
10 = sin θ√

2
, (A.2)

with the properties
djm′m = (−1)m−m′djmm′ = dj−m−m′ . (A.3)
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A.2 Helicity spinor formalism

The fields entering eq. (2.6) can explicitly be expanded in terms of creation and annihilation
operators as

φ(x) =
∫

d3k

(2π)3
√

2E

[
a(k)e−ikx + a(k)†eikx

]
,

ψL(x) =
∫

d3k

(2π)3
√

2E

[
b−(k)u−(k)e−ikx + d†+(k)v+(k)eikx

]
,

ψcL(x) =
∫

d3k

(2π)3
√

2E

[
b†−(k)v−(k)eikx + d+(k)u+(k)e−ikx

]
. (A.4)

where we choose the spinor basis to be

ur(p) =
(√

p · σξr√
p · σ̄ξr

)
, vs(p) =

( √
p · σηs

−
√
p · σ̄ηs

)
, (A.5)

where σµ = (12, σ
i), σ̄µ = (12,−σi) and σi are the Pauli matrices. We can choose ξ to be

an eigenstate of σ3, i.e. ξ+ = (1, 0) and ξ− = (0, 1) corresponding to spin up and down
along the z-direction and we fix η+ = (0, 1) and η− = (−1, 0) with the same convention.
By building the helicity operator

λ̂p = p̂ · S = p̂

2

(
σi 0
0 σi

)
, (A.6)

one has
λ̂pu

r(p) = rus(p) , λ̂pv
s(p) = −svs(p) , (A.7)

where s, r = ±1 indicate helicity ±1
2 for both particle and antiparticle and where for the

antiparticle the helicity is defined with the opposite sign according to standard definitions
of helicity spinors, see e.g [97]. Then the field ψL of eq. (A.4) annihilates negative helicity
states ψ− and creates positive helicity states ψ+ while the conjugate field annihilates pos-
itive helicity states ψ+ and creates negative helicity states ψ−. To compute the relevant
amplitudes we also need rotated spinors that can be built as

ur(p′) =
(
Rθ 0
0 Rθ

)
ur(p) =


Rθ
√
p · σR−1

θ︸ ︷︷ ︸√
p′·σ

0

0 −Rθ
√
p · σ̄R−1

θ︸ ︷︷ ︸
p′·σ̄


(
Rθξr
Rθξr

)
, (A.8)

where

Rθ =
(

cos θ2 − sin θ
2

sin θ
2 cos θ2

)
. (A.9)

is the rotation matrix in the x − z plane by an angle θ with respect to the y−axes. An
analogous expression holds for vs(p′).
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A.3 Scattering amplitudes in the real scalar basis

By making the choice of basis where all the fields in eq. (2.6) are expressed in terms of
their real components, the Lorenz parts of the scattering amplitudes read

T s,++++
ijkl = (T s,−−−−ijkl )∗ = −yαijy∗αkl ,

T stu,−−++
ijkl = (T stu,++−−

ijkl )∗ = yαikyαjl + yαilyαjk + yαijyαkl ,

T su,+0+0
iαjβ = (T su,−0−0

iαjβ )∗ = −yαiky∗βjk cos θ2 − yβiky
∗
αjk

1
cos θ2

,

T u,+−+−
ijkl = −yαily∗αjk ,

T tu,00+−
ijαβ = −(T tu,+−00)∗ = (T tu,00−+)∗ = −T tu,−+00 = yαiky

∗
βjk

1
tan θ

2
− yβiky∗αjk tan θ2 ,

(A.10)

where the s, t and u supscripts indicate the Mandelstam channel through which the relative
amplitude proceeds.

B Other Dirac type theories

Here we present the results for model 3,4 and 5 in the Dirac type class.

B.1 Third model: χ ∼ q, η ∼ q′ S ∼Adjq−q′

In this model S transforms under the adjoint SU(N) representation and is thus a real field
if q = q′, complex otherwise. We choose as basis

ψL = (χa, ηc,a)T , φ =

SA Real scalar
(SA, SA∗)T Complex scalar

, (B.1)

where the index a and A run from 1 to N and N2 − 1 respectively. With this choice the
Yukawa matrix in the real scalar case reads

Yαij = y

(
0N (Tα)· j−Ni

(Tα)j−N· i 0N

)
, (B.2)

with i, j = 1, . . . , 2N and α = 1, . . . , N2 − 1 while in the complex scalar case it is instead

Yα = y



 0N (Tα)· j−Ni

(Tα)j−N· i 0N

 , α ≤ N2 − 1

i

 0N (Tα−N2−1)· j−Ni

(Tα−N2−1)j−N· i 0N

 , α > N2 − 1

, (B.3)

where now α = 1, . . . , 2(N2 − 1). In the case of J = 0 the relevant two particle states
decompose again as in eq. (4.3). The relevant group factors for the non zero amplitudes in
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the real scalar case are

+ + + +
{
Fs,Adj
χ̄ηχ̄η = 1

2 + +−−



F t,1χ̄ηχη̄ = N2−1
2N

Fs,Adj
χ̄ηχη̄ = 1

2

F t,Adj
χ̄ηχη̄ = − 1

2N

F t,Sηηχχ = Fu,Sηηχχ = N−1
4N

. (B.4)

The partial wave matrix for J = 0 in the (χ̄η, χη̄) basis14 after integration on the angular
variable is

aJ=0 = y2

16π



 0 N2−1
2N

N2−1
2N 0

 Singlet −1
2

N−1
2N

N−1
2N −1

2

× 1N2−1 Adjoint 0 N−1
2N

N−1
2N 0

× 1N(N+1)
2

Symmetric

, (B.5)

where × denotes the Kronecker product. For N > 1 the largest eigenvalue of this matrix
comes from the singlet channel and is equal to y2

32π
N2−1
N , which thus gives the bound

y2 < 16π N

N2 − 1 . (B.6)

If S is a complex scalar again the amplitudes in the ±±∓∓ channels are zero. The only
non vanishing scatterings when the matrices in eq. (B.5) are diagonal are the ones in the
adjoint channel. The largest eigenvalue is y2

32π and the perturbative bound becomes

y2 < 16π . (B.7)

Moving now to the scattering in the J = 1/2 partial wave the two particle states now
decompose as

+0

χ̄S ∼ + r1 + r2

ηS ∼ + r1 + r2
,

where r1 and r2 are the two irreducible representations arising from the tensor decompo-
sition ×Adj = + r1 + r2. In tensor component this reads

AiB·jk = 1
N2 − 1

[
NAlB·jl δ

i
k −AlB·il δ

j
k

]
+

+ 1
2

[
AiB·jk −A

jB·ik −
1

N − 1A
lB·jl δ

i
k + 1

N − 1A
lB·il δ

j
k

]
+ 1

2

[
AiB·jk +AjB·ik −

1
N + 1A

lB·jl δ
i
k −

1
N + 1A

lB·il δ
j
k

]
, (B.8)

14We use here a compact notation to indicate the basis, where however when considering scattering in
representations with dimension greater than one the corresponding two particle states are vectors in that
group space.
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having indicated with Ai and B·jk two tensors transforming in the antifundamental and ad-
joint SU(N) representation. The first line of eq. (B.8) indicates the fundamental represen-
tation, while the second and third are symmetric and antisymmetric tensors in i, j with null
traces with respect to k. As an example, in the case of SU(3) this reads 3⊗ 8 = 3⊕ 6⊕ 15,
and in SU(4) it is 4⊗ 15 = 4⊕ 20⊕ 36. The two-particle state in the fundamental repre-
sentation is easily built as

|Sψ〉 ,a =
√

2N
N2 − 1(TA)· ia |SAψi〉 . (B.9)

For the other two irreducible representations r1,2 one needs to build by hand the basis for
the vector space. Let’s start with the representation with the higher dimension r2. Here
one can split the vector space of the last line of eq. (B.8) in three categories. Tensors where
i 6= j 6= k, which are trivially traceless, tensors with i = j, i 6= k, which again are trivially
traceless, and tensors which are traceless but where the null trace arise because of the sum
of non zero elements.15 One can count the dimensionality of these three categories to be
N(N−1)(N−2)

2 , N(N − 1) and N(N − 1) respectively, whose sum is (N+2)N(N−1)
2 , matching

the dimensionality of r2. For r1, instead, one has that only the tensor with i 6= j are non
vanishing due to the antisymmetry in those indices. One can build then two categories for
the tensor basis with dimensions N(N−1)(N−2)

2 and N(N −2), whose sum is N
2 (N2−N −2)

which matches the dimension of r1. Note that this representation vanishes for the case of
SU(2). In order to compute the group factor entering the scattering amplitude it’s enough
to explicitly build only one of this states, since all of them will give the same result. For
example we construct the state with unit norm belonging to the first category for r2 as

|Sψ〉IJKr2 = (δIiδJj + δIjδJi)(TA)·jk δ
kK |ψiSA〉 with I 6= J , I 6= K ,J 6= K , (B.11)

where I, J,K label the irreducible representation and range from 1 to dr2 , i, j, k range from
1 to N and A from 1 to N2 − 1. Analogously one can build the state in r1 of the same
category as

|Sψ〉IJKr1 = (δIiδJj − δIjδJi)(TA)·jk δ
kK |ψiSA〉 I 6= J , I 6= K ,J 6= K . (B.12)

The group factors entering the amplitudes for J = 1/2 turn out to be

+0 + 0



Fs,χ̄Sχ̄S = Fs,ηSηS = N2−1
2N

Fu,χ̄Sχ̄S = Fu,ηSηS = − 1
2N

Fu,r1
χ̄Sχ̄S = Fu,r1

ηSηS = −1
2

Fu,r2
χ̄Sχ̄S = Fu,r2

ηSηS = 1
2

. (B.13)

15This works for N ≥ 3, since for SU(2) it is not possible to have i 6= j 6= k. In order to be able to
compute the scattering in the representation r2 also for N = 2 (r2 = 4), one can construct e.g. the states
with i = j 6= k as

|Sψ〉IKr2 =
√

2δIiδIj(TA) jk δ
kK |ψiSA〉 . (B.10)

This is relevant for instance when computing the bounds for the second model of the Majorana type class.
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In the case of a real scalar S and considering the scattering in the fundamental channel
and for the +0 + 0 helicity amplitude, which is then ηS → ηS, one has explicitly

a
J= 1

2 = y2

32π

∫ +1

−1
d cos θ d

1
2
1
2

1
2
(θ)
[
T +0+0
s

N2 − 1
2N − T +0+0

u

1
2N

]
1N , (B.14)

whose largest eigenvalue is y2

64π
N2−3
N . For what concerns the scattering in the r1,2 channels,

they all have ± y2

32π eigenvalues. The bound is thus

y2 < 16πMin
[ 2N
N2 − 3 , 1

]
. (B.15)

If the scalar is complex one has that in the +0 + 0 helicity channel the ηS → ηS and
χ̄S → χ̄S scatterings proceed through s−channel, while the ηS∗ → ηS∗ and χ̄S∗ → χ̄S∗

through u−channel. Considering the s−channel diagrams in the fundamental channel the
eigenvalue is y2

64π
N2−1
N while the u−channel diagrams in the r1,2 channel have eigenvalue

± y2

32π . The bound is thus

y2 < 16π

1 N ≤ 2
2N
N2−1 N > 2

. (B.16)

Finally in the J = 1 channel, while the +− two-particle states decompose again as
in eq. (4.3), the same is not true for 00, since the scalar field now belongs to the adjoint
representation. Here one has the decomposition Adj⊗Adj= 1⊕Adj⊕Adj+ . . . . Given the
irreducible representations that can be built out from two fermions, only the singlet and
adjoints channels are relevant. For real scalar fields the two particle states can be built as

|φφ〉1 = 1√
N2 − 1

δAB|φAφB〉

|φφ〉AAdj = 1√
2
fABC√
N
|φBφC〉

|φφ〉AAdj = 1√
2

√
N

(N2 − 4)d
ABC |φBφC〉 , (B.17)

where fABC and dABC are the antisymmetric and symmetric SU(N) structure constant
respectively.16 However, both the singlet and the symmetric adjoint state do not contribute
in J = 1 [115]. The relevant group factors read

+−+−



Fu,1χ̄χηη̄ = Fu,1ηη̄χ̄χ = N2−1
2N

Fu,Adj
χ̄χηη̄ = Fu,Adj

ηη̄χ̄χ = − 1
2N

Fu,Sηχηχ = Fu,Sχ̄η̄χ̄η̄ = N−1
2N

Fu,AS
ηχηχ = Fu,AS

χ̄η̄χ̄η̄ = N+1
2N

00 +−

F
t,Adj
SSηη̄ = −F t,Adj

SSχ̄χ = −i
√
N
4

FuAdj
SSηη̄ = −Fu,Adj

SSχ̄χ = i
√
N
4

. (B.18)

16Note that dABC identically vanishes in SU(2).
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The channels with the highest eigenvalues are the singlet and adjoint ones, for which the
partial wave matrix explicitly reads, in the (χ̄χ, ηη̄, SS) basis,

aJ=1 = y2

32π

∫ +1

−1
d cos θ

 0 −d1
11(θ) +2 csc θd1

01(θ)
−d1

11(θ) 0 +2 csc θd1
01(θ)

−2 csc θd1
10(θ) −2 csc θd1

10(θ) 0

 ◦

◦




N2−1

2N
N2−1

2N

 Singlet


− 1

2N +i
√
N
4

− 1
2N −i

√
N
4

−i
√
N
4 +i

√
N
4 0

× 1N2−1 Adjoint

, (B.19)

where for convenience we have written explicitly the expressions of the T amplitudes and
where 2 csc θ = 1

tan θ
2

+ tan θ
2 is the angular part arising from the sum of the t− and u−

channel contributions which have a different sign because of the antisymmetry of fABC
entering the amplitude computation. We further note that, as expected, the matrix in the
adjoint channel is complex but hermitian, yielding thus real eigenvalues. The strongest
bound comes from the adjoint channel for N < 5 and from the singlet channel for N > 5
and reads

y2 <

64π N
1+
√

1+16N3 N < 5
32π N

N2−1 N ≥ 5
. (B.20)

When the scalar is a complex field one has a non zero contribution also in the singlet
channel of the 00∗ + − scattering, since one can build a non symmetric state, and the
scatterings proceed now via the u−channel. Also in the adjoint channel the contribution
from the symmetric state built with the dABC structure constant, see eq. (B.17), no longer
vanishes. The correct normalization for the state is now

|SS∗〉AAdj = fABC√
N
|SBS∗C〉 ,

|SS∗〉AAdj =
√

N

N2 − 4d
ABC |SBS∗C〉 , (B.21)

and the group factors become

00∗ +−


Fu,1SS∗ηη̄ = Fu,1SS∗χ̄χ = 1

2

√
N2−1
N

Fu,Adj−f
SS∗ηη̄ = −Fu,Adj−f

SS∗χ̄χ = i
2

√
N
2

FuAdj−d
SS∗ηη̄ = Fu,Adj−d

SS∗χ̄χ = 1
2

√
N2−4

2N

, (B.22)

where we have indicated with Adj−f and Adj−d the two contributions from the 00 two-
particle states built with the antisymmetric and symmetric SU(N) structure constants
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Figure 9. PU bounds on the Yukawa couplings y for the model 3 of the Dirac type class for J = 0
(black), J = 1/2 (blue) and J = 1 (red). The solid (dashed) lines correspond to the case of a real
(complex) scalar field. The dashed blue is slightly moved for presentation since it overlays exactly
with the solid black.

respectively. For simplicity we only write the amplitude in the singlet channel, which is
the one yielding the stronger limits:

aJ=1 = y2

32π

∫ +1

−1
d cos θ

 0 d1
11(θ)T +−+−

u −d1
01(θ)T 00∗+−

u

d1
11(θ)T +−+−

u 0 −d1
01(θ)T 00∗+−

u

d1
10(θ)T 00∗+−

u d1
10(θ)T 00∗+−

u 0

 ◦

◦


N2−1

2N
1
2

√
N2−1
N

N2−1
2N

1
2

√
N2−1
N

1
2

√
N2−1
N

1
2

√
N2−1
N

 Singlet . (B.23)

From the largest eigenvalue of this matrix one obtains the bound

y2 < 64π N

N2 − 1 +
√
N4 + 16N3 − 2N2 − 16N + 1

. (B.24)

Altogether the limits arising from the various partial waves are reported in figure 9.

B.2 Fourth model: χ ∼ q, η ∼ Adjq′, S ∼ q−q′

In this model S is always a complex scalar field and by fixing the basis

ψL = (χa, ηc,A)T , φ = (Sa, S∗a)T , a = 1, . . . , N, , A = 1, . . . , N2 − 1 , (B.25)
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where a and A are indices running from 1 to N and N2 − 1 respectively, the Yukawa
matrix reads

Yαij = y

(
0N (T j−N )·αi

(T j−N )α· i 0N2−1

)
. (B.26)

As in the previous cases, in the J = 0 partial wave there is no scattering in the
+ + −− sector because the scalar is complex, so we focus on the + + ++ channel where
only the χ̄η → χ̄η process is non vanishing. We then use the tensor decomposition for
×Adj = +r1 +r2 of eq. (B.8) and built the two particle states analogously to eq. (B.9),

eq. (B.11) and eq. (B.12). One obtains non vanishing amplitudes only in the fundamental
channels

+ + + +
{
Fs,χ̄ηχ̄η = N2−1

2N , (B.27)

from which one can immediately extract the bound

y2 < 16π N

N2 − 1 . (B.28)

In J = 1/2 we can again focus only on the +0+0 helicity amplitude. Here one decomposes
the two particle states as

+0



ηS ∼ + r1 + r2

χ̄S ∼ 1 + Adj
ηS∗ ∼ + r1 + r2

χ̄S∗ ∼ S + AS

,

and the group factors for the non vanishing scatterings are

+0 + 0



Fs,ηSηS = N2−1
2N

Fs,Adj
χ̄Sχ̄S = 1

2

Fu,ηS∗ηS∗ = − 1
2N

Fu,r1
ηS∗ηS∗ = −Fu,r2

ηS∗ηS∗ = −1
2

Fu,Sχ̄S∗χ̄S∗ = N−1
2N

Fu,AS
χ̄S∗χ̄S∗ = N+1

2N

. (B.29)

Also in this case the channel yielding the stronger limits depends on the value of N . One
obtains

y2 < 16π


N
N+1 N ≤ 3

2N
N2−1 N ≥ 3

(B.30)

where the first comes from the scattering in the antisymmetric channel while the second
from the one in the fundamental.

Finally, for J = 1 we can decompose the two-particle states as

+−



χ̄χ ∼ 1 + Adj
η̄η ∼ 1 + Adj + Adj + . . .

ηχ ∼ + r1 + r2

χ̄η̄ ∼ + r1 + r2

00


SS ∼ S + AS
SS∗ ∼ 1 + Adj
S∗S∗ ∼ S̄ + AS

,
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Figure 10. PU bounds on the Yukawa couplings y for the model 4 of the Dirac type class for
J = 0 (black), J = 1/2 (blue) and J = 1 (red). In this case the scalar is always a complex field.

and the group factors for the non vanishing amplitudes are

+−+−



Fu,1χ̄χηη̄ = Fu,1ηη̄χ̄χ = 1
2

√
N2−1
N

Fu,Adj−f
ηη̄χ̄χ = −Fu,Adj−f

χ̄χηη̄ = − i
2

√
N
2

Fu,Adj−d
ηη̄χ̄χ = Fu,Adj−d

χ̄χηη̄ = 1
2
√

2

√
N2−4
N

Fu,ηχηχ = − 1
2N

Fu,r1
ηχηχ = −Fu,r2

ηχηχ = −1
2

00∗ +−



Fu,1SS∗χ̄χ = N2−1
2N

Fu,1SS∗χ̄χ = 1
2

√
N2−1
N

Fu,Adj
SS∗χ̄χ = − 1

2N

Fu,Adj−f
SS∗ηη̄ = i

2

√
N
2

Fu,Adj−d
SS∗ηη̄ = 1

2
√

2

√
N2−4
N

.

(B.31)

For brevity we report only the partial wave in the singlet channel, which is the one giving
the most stringent bound, which reads, in the basis (χ̄χ, ηη̄, SS∗),

aJ=1 = y2

32π

∫ +1

−1
d cos θ

 0 d1
11(θ)T +−+−

u −d1
01T 00∗+−

u

d1
11(θ)T +−+−

u 0 −d1
01T 00∗+−

u

d1
10(θ)T 00∗+−

u d1
10T 00∗+−

u 0



◦


1
2

√
N2−1
N

N2−1
2N

1
2

√
N2−1
N

1
2

√
N2−1
N

N2−1
2N

1
2

√
N2−1
N

 . (B.32)

The eigenvalues of this matrix have a complicated form and we report the numerical results
in figure 10, together with the limits from the other partial waves.
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B.3 Fifth model: χ ∼ q, η ∼ q′, S ∼ q−q′

This last model is only present in the case of SU(3) since it’s possible to build a singlet
from three fundamentals by using the three-dimensional Levi-Civita tensor.17 With the
choice of basis

ψL = (χa, ηc,a)T , φ = (Sa, Sa∗)T , (B.33)
where a runs from 1 to N the Yukawa matrix reads

Yαij = y

(
0N εα,i,j−N

−εα,i−N,j 0N

)
. (B.34)

In the J = 0 partial wave only the±±±± scatterings proceeding through the antisymmetric
channel are non zero, due to the antisymmetry of ε. The group factor is simply 2 and the
bound turns out to be

y2 < 4π . (B.35)
For J = 1/2 the two particle states decompose as

+0



ηS ∼ S + AS
ηS∗ ∼ 1 + Adj
χ̄S ∼ S + AS
χ̄S∗ ∼ 1 + Adj

,

and the group factors are

+0 + 0


Fu,1ηS∗ηS∗ = Fu,1χ̄S∗χ̄S∗ = (N − 1)
Fu,Adj
ηS∗ηS∗ = Fu,Adj

χ̄S∗χ̄S∗ = −1
Fs,AS
ηSηS = Fs,AS

χ̄Sχ̄S = 2
, (B.36)

where now N = 3. The highest eigenvalues clearly arise from the singlet and antisymmetric
channels which lead again to the bound

y2 < 4π . (B.37)

Finally for J = 1 all the two-fermion states decompose as ∼ 1 + Adj and the same is true
for the SS∗ scalar state, which is the only one which leads to non zero amplitudes. The
group factors for + − +− are all ±(N − 1) for scatterings in the singlet channel and ±1
for scatterings in the adjoint one. On the other side in the 00 +− helicity channel for the
group factors one obtains ±2 in the singlet channel and ±1 for the adjoint one. The most
stringent bound is then obtained from the scattering among singlets where one has, in the
(ηη̄, ηχ, χ̄η̄, χ̄χ, SS∗) basis and after the angular integration,

aJ=0
1 = y2

16π


−1 −

√
2

1
1

−1 −
√

2
−
√

2 −
√

2

 , (B.38)

17We fix ε123 = 1.
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which gives the bound
y2 <

16
1 +
√

17
π , (B.39)

which is the most stringent among the various partial waves.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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