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Abstract: In clinical trials, futility rules are widely used to monitor the study while it is in progress,
with the aim of ensuring early termination if the experimental treatment is unlikely to provide the
desired level of efficacy. In this paper, we focus on Bayesian strategies to perform interim analyses
in single-arm trials based on a binary response variable. Designs that exploit both posterior and
predictive probabilities are described and a slight modification of the futility rules is introduced
when a fixed historical response rate is used, in order to add uncertainty in the efficacy probability
of the standard treatment through the use of prior distributions. The stopping boundaries of the
designs are compared under the same trial settings and simulation studies are performed to evaluate
the operating characteristics when analogous procedures are used to calibrate the probability cut-offs
of the different decision rules.

Keywords: Bayesian monitoring; futility rules; interim analysis; posterior and predictive probabili-
ties; stopping boundaries

1. Introduction

In clinical trials, the implementation of data monitoring for early termination repre-
sents a frequently used strategy. In many trials, participants are followed for a relatively
long period and, therefore, it may be desirable to conduct interim analyses during the
course of the trial with the aim of early stopping the study if there is convincing evidence
of benefit or harm. The Bayesian approach is particularly suited to this experimental
context, since it naturally entails sequential updating of the interim decision rules as
data accumulate.

Let us focus on single-arm designs that are typically used in phase II trials, whose
primary goal is not to provide definitive evidence of drug efficacy, but to avoid further in-
vestigations for unpromising drugs. In this early phase, ethical concerns make it especially
important to establish convincing futility stopping rules to reduce the number of patients
who receive ineffective treatments. A binary efficacy variable is typically considered and
the response rate of the experimental treatment is usually compared with a constant target
value that should ideally represent the response rate for the standard of care therapy.
Generally, this target value is fixed by exploiting historical information about the efficacy
of the standard treatment that is typically available.

Under a Bayesian framework, monitoring strategies of single-arm phase II trials are
typically based on either posterior probabilities or predictive probabilities [1]. Thall and
Simon [2] proposed a Bayesian procedure that continually evaluates, as data accumulate,
the posterior probability that the experimental treatment is superior to the standard one,
until reaching a maximum planned sample size N. At any interim stage, given the current
data, the futility rule determines the termination of the trial if the posterior probability
of interest is lower than a fixed threshold. An important feature of the design is that it
avoids the specification of a fixed target to evaluate the efficacy of the experimental drug,
while accounting for the uncertainty in the response rate of the standard agent by the
use of prior distributions. This makes it possible to incorporate in a more realistic way
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pre-experimental knowledge about the standard treatment [3]. The design proposed by
Thall and Simon [2] has been extended to accommodate the monitoring of both efficacy and
safety endpoints [4–6]. Zhou et al. [7] presented a unified approach to construct a Bayesian
optimal design for phase II trials (BOP2) based on posterior probabilities, that can handle
binary and more complicated endpoints through the use of a Dirichlet-multinomial model.
Differently from the proposal of Thall and Simon [2], the BOP2 design does not exploit
prior distributions to introduce uncertainty in the historical response rate. However, a merit
of the design is that its futility rule compares the posterior probability that the response
rate of the experimental treatment exceeds the target level with a threshold that varies as a
function of n/N, where n is the current sample size. This allows to have a more relaxed
stopping rule at the initial stages of the trial, when the accumulated information is limited,
in order to avoid early stopping of the study on the basis of fortuitously negative results.
More recently, simulation tools have been exploited to compare the use of alternative
probability boundaries with different shapes as functions of the interim sample size [8].

For interim monitoring, Bayesian methods based on predictive probabilities are also
widely used in practice [9]. The idea is to evaluate the chance of having a desired outcome
at the scheduled end of the trial conditional on the observed interim data [10]. Lee and
Liu [11] described how to implement predictive decision rules in single-arm phase II trials
based on a binary endpoint. The condition to establish if the experimental treatment can
be declared successful at the conclusion of the trial is based on the posterior probability
that its response rate exceeds a fixed target level. At any interim stage, it is possible
to obtain the predictive probability that this condition is attained by enumerating all
possible future outcomes. According to the futility rule, the trial is stopped for lack
of efficacy if this predictive probability is below a threshold of interest. The predictive
probability monitoring is considered conceptually appealing because it takes into account
the uncertainty in future data [12]: it mimics the decision-making process of claiming
the drug promising or non-promising by projecting the result to the end of the trial [13].
This very flexible approach has been also applied to more complex trial settings, such as
randomized phase II trials [14], platform studies [15], trials that simultaneously monitor
efficacy and safety [16], and studies based on time-to-event endpoints [17] or longitudinal
outcomes [18].

In this paper, we focus on Bayesian single-arm designs based on both posterior and
predictive probabilities. More specifically, we aim at comparing the phase II design of Thall
and Simon [2] with slightly modified versions of the designs due to Zhou et al. [7] and Lee
and Liu [11] that account for the uncertainty in the response rate of the standard treatment.
All three designs allow to enumerate the stopping boundaries of the futility rules before the
trial starts. For each current sample size of interest, these boundaries are provided in terms
of the maximum number of responses that, if observed, leads to the termination of the
study for lack of efficacy. This common characteristic makes the designs particularly easy
to implement in practice, because it avoids the need to implement Bayesian computation at
interim analyses during the trial. We compare the stopping boundaries of the three designs
under the same trial settings and using analogous procedures to calibrate the probability
cut-offs of the different decision rules. The frequentist performance of the designs have
been also evaluated through simulations.

The outline of the paper is as follows. Section 2 provides some preliminaries on the
Bayesian problem setting when the focus is on of a single-arm trial based on a binary
endpoint. In Sections 3 and 4, we review the futility monitoring rules based on posterior
and predictive probabilities, respectively. We also introduce modified versions of the
designs due to Zhou et al. [7] and Lee and Liu [11], that exploit prior distributions of the
probability efficacy of the standard treatment. The calibration of the probability thresholds
is also discussed. In Section 5 we present the results of simulation studies that evaluate and
compare the operating characteristics of the Bayesian designs. Finally, Section 6 contains a
conclusive discussion.
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2. Bayesian Problem Settings

Let us consider a single-arm phase II trial based on a binary endpoint that represents
the efficacy of an experimental treatment, E, and assume that a standard treatment, S,
exists for the disease under study. The parameter of interest of the trial is the response
rate of E, denoted by pE. Due to the non-comparative nature of the study, pE is typically
compared with a fixed target value p∗S, usually obtained by exploiting historical data on the
efficacy probability of S. In practice, p∗S is typically set equal to the historical estimate of the
response rate of the standard therapy or equal to the estimate plus a minimum clinically
meaningful improvement. Then, the new treatment is considered sufficiently promising if
pE exceeds p∗S.

Let N be the maximum sample size planned for the entire study. We assume that
the number of responses in the current n (n ≤ N) patients at a certain interim time, X,
follows a binomial distribution with parameters n and pE. We denote by beta(·; α, β), and
Beta(·; α, β) the probability density function and the cumulative distribution function of
a beta distribution with parameters α and β, respectively. By introducing a beta prior
distribution for pE, π(pE) = beta(pE; αE, βE), from standard Bayesian conjugate analysis it
follows that the corresponding posterior distribution is still a beta density,

π(pE|x, n) = beta(pE; αE + x, βE + n− x). (1)

Therefore, the posterior probability that pE exceeds the target p∗S can be easily com-
puted as

1− Beta(p∗S; αE + x, βE + n− x). (2)

Aside from computational convenience, the beta prior distribution is typically em-
ployed because of its capability of assuming a wide variety of shapes reflecting various
degrees of prior belief. In general terms, in order to elicit different kinds of available infor-
mation or to represent reasonable skeptical or enthusiastic opinions regarding a success
probability p, the hyperparameters α and β of a beta prior are often expressed in terms
of (i) a measure of central location and (ii) a parameter representing the prior sample size.
For instance, by setting

α = nprior pprior + 1 and β = nprior(1− pprior) + 1,

we obtain a prior density with mode at pprior and prior sample size nprior, that reflects the
dispersion of the distribution around its mode. The larger the value of nprior, the more
concentrated is the beta prior [19]. A similar and alternative way of proceeding is to
choose the prior mean as the measure of centrality of interest, pprior. In this latter case,
the hyperparameters are fixed as α = nprior pprior and β = nprior(1− pprior).

3. Futility Rules Based on Posterior Probabilities
3.1. The Design of Thall and Simon

Thall and Simon [2] proposed a Bayesian single arm design for phase II trials, where at
each interim look the futility rule is based on the posterior probability that the experimental
treatment is more effective than the standard one. In the original proposal, data are
monitored continuously until the maximum planned sample size is reached, but actually
the design can be implemented by using cohorts of different sizes.

Let us denote by pS the unknown response rate of the standard treatment. Instead
of using a pre-specified target value p∗S in order to establish if the treatment E can be
considered sufficiently promising, the authors fully exploit the Bayesian approach and
treat both pE and pS as random variables. Thus, we consider two independent prior
distributions,

π(pE) = beta(pE; αE, βE) and π(pS) = beta(pS; αS, βS).
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The prior π(pS) is constructed as an informative distribution based on historical data about
S, whose weight can be discounted by using suitable procedures that allow to enlarge the
prior variance [20,21]. Alternative strategies to build informative prior distributions for
a response rate in phase II trials are provided in the literature [22–24]. For pE, instead, it
could be reasonable to elicit a non-informative or a very diffuse prior density, since little
pre-experimental information is generally available about the novel therapy. Many authors
suggest to center this prior density at a value pprior

E considered the most likely, while fixing
the prior sample size equal to one [8,19,25,26]. As stated by Tan and Machin [26] “such
a prior distribution is sufficiently vague to allow for the possibility that pE may take any
value in the range (0, 1), although its most likely value is pprior

E ”.
Then, given x responses observed out of n current patients treated with the experi-

mental agent, the joint posterior distribution of (pE, pS) is

π(pE, pS|x, n) ∝ beta(pE; αE + x, βE + n− x)beta(pS; αS, βS). (3)

The experimental drug is considered sufficiently promising if pE > pS + δ, where δ
denotes the minimally acceptable increment in the efficacy rate for E compared with S.
Therefore, the posterior probability that the experimental treatment is worthy of further
evaluation can be computed as

ΠE,S(pE > pS + δ|x, n) =∫ 1−δ

0

[
1− Beta(pS + δ; αE + x, βE + n− x)

]
beta(pS; αS, βS)dpS, (4)

where ΠE,S indicates the probability measure corresponding to the posterior distribution
in (3). The integral in (4) can be evaluated numerically. The use of a prior distribution for
pS allows to incorporate uncertainty in the historical response rate of the standard agent
and, if no uncertainty is introduced by setting π(pS) equal to a degenerate density at the
target p∗S, the posterior quantity in (4) is simply reduced to (2) for δ = 0.

The futility stopping rule consists in terminating the trial and declaring the experi-
mental drug not sufficiently promising if

ΠE,S(pE > pS + δ|x, n) ≤ C, (5)

where C is a pre-specified probability threshold. Thall and Simon [2] suggest to set C as a
small value, so that the criterion in (5) allows to terminate the study if, given the current
data, it is very unlikely that the experimental treatment has superior efficacy over the
standard one. However, regulators currently require the attainment of targeted frequentist
operating characteristics to approve Bayesian designs, and simulations are commonly
used to adjust tuning parameters to satisfy pre-specified constraints on the type I error
probability [27].

In our setting, and under the hypothesis testing framework, an appropriate null
hypothesis H0 specifies values of the parameters under which the novel treatment is
considered not worthy of further evaluation, while the alternative H1 specifies values of
the parameters under which the treatment is considered sufficiently promising. Therefore,
we have that H0 : pE ≤ pS + δ and H1 : pE > pS + δ. Of course, the rejection of H0
corresponds to the continuation of the trial. As C increases, it becomes harder to reject the
null hypothesis and the type I error rate decreases. Therefore, assuming a suitable scenario
under H0, C is typically calibrated through simulation techniques as the smallest value
that controls the type I error probability at a desired level. For instance, let us consider
a trial with N = 40, δ = 0.1 and interim analyses conducted continuously after the first
Nmin = 10 patients have been treated. Suppose that historical data indicate 0.4 as the
estimate of the response rate of the standard treatment and suggest that is highly feasible
that pS lies in the range [0.3, 0.5]. To take into account this prior knowledge when eliciting
the beta prior distribution for pS, we express the hyperparameters in terms of the prior
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mode and a suitable value for the prior sample size, as described in Section 2. Specifically,
we set the mode equal to 0.4 and fix the prior sample size so that it is approximatively equal
to 0.99 the prior probability assigned to the interval [0.3, 0.5]. This way of proceeding leads
to the prior π(pS) = beta(pS; 63, 94), based on a prior sample size equal to 155. The beta
prior density for pE is assumed to be π(pE) = beta(pE; 1.4, 1.6), which also has its mode at
0.4, but is much more diffuse being based on a prior sample size equal to 1. Then, for each
element in a set of possible thresholds C, we simulate 100000 clinical trials assuming that
the true pE is equal to 0.4 (scenario under H0) and compute the type I error rate as the
frequency of simulated trials that reach the maximum sample size and conclude rejecting
the null hypothesis. The calibrated value of the threshold is the smallest element in the set
that controls the error probability at the level 0.1. In the specific case considered we obtain
the value 0.278.

Furthermore, since ΠE,S(pE > pS + δ|x, n) is a monotonic function of the number of
current responses, it is possible to obtain the rejection regions of the design prior to the
onset of the trial. Under the setup described above, the stopping boundaries are provided
in Table 1.

Table 1. Stopping boundaries of the design by Thall and Simon [2], when N = 40, Nmin = 10, δ = 0.1,
π(pS) = beta(pS; 63, 94), π(pE) = beta(pE; 1.4, 1.6) and the nominal level for the type I error rate
is 0.1.

n 10 13 15 17 19 21 23 26 28 30 32 34 36 38 40

rn 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

In practice, the trial terminates for low efficacy if the number of responses after treating
n patients is less than or equal to the corresponding boundary rn.

3.2. The BOP2 Design

Zhou et al. [7] proposed a Bayesian optimal phase II (BOP2) design that is based on
posterior probabilities and accommodates various types of endpoints. In the case of a
binary efficacy endpoint, two essential differences from the design of Thall and Simon [2]
are:

1. the experimental treatment is considered sufficiently promising if pE exceeds a con-
stant target p∗S;

2. the posterior probability of interest is compared with a threshold that varies with the
interim sample size.

In other words, in line with the majority of phase II Bayesian designs, the BOP2 design
does not introduce uncertainty on the efficacy rate of the standard therapy. Moreover,
the design takes into account the weight of the current information in relation to the amount
of future data. Let us recall that the decision rule in (5) depends on the constant cut-off C:
the larger the cut-off is chosen, the more stringent is the criterion for going on with the trial.
Instead of considering a fixed probability threshold, Zhou et al. [7] allow it to monotonically
increase with the fraction of accumulated information, n/N. The idea is that, when n is
small, a more relaxed stopping rule, based on smaller values of the probability threshold,
is preferred to avoid terminating the trial for fortuitously negative results. As the trial
proceeds and more data are accumulated, it is desirable to have a more stringent condition,
based on larger values of the cut-off, in order to correctly identify ineffective treatments.

At a certain stage of the trial, when x responses have been observed out of n current
patients, the futility rule of the BOP2 design consists in stopping the trial if

ΠE(pE > p∗S|x, n) ≤ C(n),
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where ΠE indicates the probability measure corresponding to the posterior distribution
in (1) and

C(n) = λ
( n

N

)γ
. (6)

The strictly positive tuning parameters, λ and γ, are selected by maximizing the power
of the design while controlling the type I error rate at a certain level under suitable scenarios.
As an alternative strategy, Zhou et al. [7] suggest to choose λ, γ and the maximum sample
size N that yield the minimum expected sample size under H0, while ensuring desirable
levels for the type I and type II error rates. In this latter case, N is not fixed, but represents
a design parameter to be optimized.

3.2.1. Accounting for Uncertainty on pS in the BOP2 Design

In line with Thall and Simon [2], we modify the decision rule of the BOP2 design by
introducing a prior distribution on pS that accounts for the uncertainty in the response rate
of the standard treatment. The trial, therefore, terminates at the interim look if

ΠE,S(pE > pS + δ|x, n) ≤ C(n), (7)

where C(n) is the threshold in (6) whose tuning parameters can be calibrated by using the
strategies described above. From now on, we will refer to the design based on the modified
futility rule in (7) by using the acronym BOP2m, while the design of Thall and Simon [2]
will be indicated as the TS design.

Let us consider again the trial continuously monitored with N = 40, Nmin = 10,
δ = 0.1, π(pS) = beta(pS; 63, 94), and π(pE) = beta(pE; 1.4, 1.6). We calibrate the tuning
parameters λ and γ through simulations by maximizing the statistical power when pE
is equal to 0.6 (scenario under H1), while ensuring that the type I error rate is smaller
than or equal to the nominal level 0.1 when the true pE is 0.4 (scenario under H0). More
details about the grid search algorithm used to adjust the parameters will be provided in
Section 5. The resulting calibrated values are λ = 0.38 and γ = 0.95 and we provide the
corresponding stopping boundaries in Table 2.

Table 2. Stopping boundaries of the modified version of the design by Zhou et al. [7], when N = 40,
Nmin = 10, δ = 0.1, π(pS) = beta(pS; 63, 94), π(pE) = beta(pE; 1.4, 1.6) and the nominal level for the
type I error rate is 0.1.

n 10 11 13 15 17 19 21 22 24 26 28 30 32 33 35 37 39 40

rn 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

In the left panel of Figure 1 we show the behavior of the calibrated thresholds C and
C(n) as a function of the current sample size n. Differently from the threshold used in
the TS design, that remains constant, the threshold of the BOP2m design increases as data
accumulate: it is smaller than C for very low values of n and exceeds C when n approaches
the maximum planned sample size. As a consequence, the BOP2m design makes it harder
to terminate the trial at early stages of the study, while it is easier to stop at later stages,
as it is evident looking at the right panel of Figure 1 where the stopping boundaries of both
the designs are represented.
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Figure 1. Behavior of the calibrated thresholds C and C(n) as a function of n (left panel) and stopping boundaries of the
TS and BOP2m designs (right panel), when λ = 0.38, γ = 0.95, N = 40, Nmin = 10, δ = 0.1, π(pS) = beta(pS; 63, 94),
π(pE) = beta(pE; 1.4, 1.6) and the nominal level for the type I error rate is 0.1.

4. Futility Rules Based on Predictive Probabilities
4.1. The Design of Lee and Liu

In the Bayesian phase II design proposed by Lee and Liu [11], at any interim analysis,
the futility rule is based on the evaluation of the predictive probability that the trial will
show a conclusive result at the planned end of the study, given the observed data.

Given x responses observed in the current n patients, let Y be the random variable
representing the number of responses out of the potential future N − n patients. It is well
known that the posterior predictive distribution of Y is

mN(y|x, n) = beta-binom(y; N − n, αE + x, βE + n− x), (8)

for y = 0, 1, · · · , N − n. At the conclusion of the study, when the result Y = y will
be available, the experimental treatment will be declared sufficiently promising if the
following condition will be satisfied

ΠE(pE > p∗S|x + y, N) > θT ,

where θT is a pre-specified probability cut-off. However, at the interim look Y has not
yet been observed and it is possible to exploit the posterior predictive distribution in (8)
to calculate the probability of a positive conclusion should the trial be conducted to the
maximum planned sample size, that is

PP =
N−n

∑
y=0

mN(y|x, n)I
{

ΠE(pE > p∗S|x + y, N) > θT

}
, (9)

where I{·} denotes the indicator function. In practice, PP is obtained by summing the
predictive probabilities of all the possible future outcomes that, given the accumulated
information, will allow to declare that the experimental treatment is sufficiently promising
at the end of the trial. The futility rule of the design is, therefore, to stop the trial and
consider the experimental treatment not sufficiently good if PP is below a suitable fixed
threshold θL. A low value of PP in fact indicates that the new drug is likely to be declared
ineffective by the end of the study. The thresholds θT and θL can be specified in order to
optimize frequentist operating characteristics of the design.
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Let us notice that this predictive design has two similarities with the BOP2: it does
not account for uncertainty in the response rate of the standard treatment and it makes a
compromise between the current information and the amount of future data. In fact, no
prior distribution on pS is considered. Moreover, the decision rule based on predictive
probability in (9) focuses on the expected results at the scheduled end of the trial and is
affected by the number of remaining patients. More specifically, while in the BOP2 design
the posterior quantity of interest is compared with a threshold that varies as a function
of n, in the design of Lee and Liu the probability threshold θL is fixed, but the predictive
probability PP varies as a function of the number of future patients and the futility rule
generally results to be less stringent at the initial stages of the trial, when there is still a
large number of patients to enrol.

4.1.1. Accounting for Uncertainty on pS in the Design of Lee and Liu

Similarly to the BOP2 design, the predictive design of Lee and Liu [11] can also be
modified to account for the uncertainty in the response rate of the standard therapy by
introducing a beta prior distribution on pS. Then, the decision rule stops accrual for
futility if

PPm =
N−n

∑
y=0

mN(y|x, n)I
{

ΠE,S(pE > pS + δ|x + y, N) > θT

}
< θL. (10)

Let us notice that PPm is reduced to PP if pS has a point mass distribution at p∗S and
δ = 0. From now on, the abbreviation LLm will be used to indicate the design based on the
futility rule in (10).

It can be interesting to investigate how the predictive probability PPm is affected by
the ratio between the amount of current information and the weight of future data, with the
aim of better understand the behavior of the stopping boundaries of the LLm design as n
increases. Let us refer again to the trial settings considered in the previous section: N = 40,
Nmin = 10, δ = 0.1, π(pS) = beta(pS; 63, 94) and π(pE) = beta(pE; 1.4, 1.6). In practice,
the experimental treatment is considered sufficiently promising if pE exceeds pS + 0.1,
under the prior assumption that pS is centred on 0.4 and varies in the interval [0.3, 0.5]
with high probability. Moreover, we assume that the study is monitored continuously end
set the probability threshold θT equal to 0.8. We consider fixed values for the observed
response rate obtained at the interim stage and, for each value of n between Nmin and
N − 1, we compute the corresponding predictive probability of interest. In the left panel
of Figure 2, we show the behavior of PPm as a function of n for low values of the fixed
response rate observed ad interim, while in the right panel higher values of the current
response rate are considered. First of all, let us notice that the saw-toothed behavior of PPm
in both the graphs is a consequence of the discrete nature of the predictive distribution
of future data [28]. Moreover, as expected, the larger the response rate supposed to be
observed out of n patients, the higher the predictive probability of a positive conclusion
at the planned end of the trial. More importantly, we can note that in the left panel of
Figure 2, even if there are some small fluctuations, the shape of PPm is basically decreasing.
The fixed observed response rate can be obtained for different couples of the observed
number of successes xobs and the current sample size n. For instance, when it is equal to
0.4, we have that PPm is equal to 0.0763, 0.0069, and 0.0000 for xobs/n equal to 4/10, 8/20
and 12/30, respectively. In practice, if n is small, there is still a high number of patients
to be enrolled and, even if the observed response rate is low with respect to the design
expectations, there is a non-negligible predictive probability that the study will conclude in
favor of the experimental therapy. Instead, when n increases and the same response rate is
obtained, the number of potential future patients decreases and it becomes very unlikely
that the experimental treatment will be claimed sufficiently promising at the conclusion of
the trial. The current information, in fact, has a stronger impact on the value of PPm as the
future sample size decreases. The basically increasing behavior of PPm shown in the right
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panel of Figure 2 can be explained with an analogous reasoning. If the fixed response rate
registered at the interim stage is high, as the number of future patients decreases, we have
a stronger confidence that the superiority of the experimental treatment will be claimed at
the scheduled end of the trial. This explain the behavior of PPm.
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Figure 2. Behavior of PPm as a function of n for different values of the response rate assumed to be observed at the interim
stage, when N = 40, Nmin = 10, δ = 0.1, π(pS) = beta(pS; 63, 94), π(pE) = beta(pE; 1.4, 1.6) and θT = 0.8.

Furthermore, since PPm is a monotonic function of the number of current responses,
it is possible to obtain the stopping boundaries of the LLm design before the beginning
of the study. The smaller n, the lower the number of responses needed to let PPm reach
the desired level θL to go on with the trial. Therefore, similarly to the BOP2m design,
the predictive design typically makes it harder to stop the trial when the accumulated
information at the interim stage is limited because based on a few patients. In order to have
a fair comparison between the designs, under the trial settings previously considered, we
use simulations to adjust the probability thresholds θL and θT , so that the statistical power
is maximized when pE is equal to 0.6 and the type I error rate is controlled at the level 0.1
when the true pE is 0.4. The resulting calibrated values are θL = 0.011 and θT = 0.59, and
we provide the corresponding stopping boundaries in Table 3.

Table 3. Stopping boundaries of the modified version of the design by Lee and Liu [11], when N = 40,
Nmin = 10, δ = 0.1, π(pS) = beta(pS; 63, 94), π(pE) = beta(pE; 1.4, 1.6) and the nominal level for the
type I error rate is 0.1.

n 10 11 13 15 17 19 21 23 25 27 28 30 32 33 35 36 37 38 39 40

rn 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

In Figure 3, these stopping boundaries are compared with those of the TS and BOP2m
designs provided in the previous sections and based on probability thresholds similarly
calibrated. With respect to both the Bayesian designs based on posterior probabilities,
the futility rules of the predictive design are less stringent at the initial stages of the trial.
For small values of n, the LLm design requires lower values for the minimum number
of responses necessary to let the trial proceed. On the contrary, when n is close to the
maximum planned sample size, more responses are needed to avoid the termination of the
study under the LLm design.
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Figure 3. Comparison of stopping boundaries (TS vs. LLm (left panel) and BOP2m vs LLm (right panel)), when N = 40,
Nmin = 10, δ = 0.1, π(pS) = beta(pS; 63, 94), π(pE) = beta(pE; 1.4, 1.6) and the nominal level for the type I error rate is 0.1.

To compare the performance of the three Bayesian designs, we consider a dense set
of values for pE in the interval [0.3, 0.8] and, for each value, we simulate 100,000 clinical
trials to empirically evaluate the probability of rejecting H0. Its behavior as a function of
the true pE is shown in Figure 4 for each design. As expected, when pE is equal to 0.4,
the probability of rejecting H0 is below the level 0.1 for all the Bayesian designs. This is
in fact a consequence of the calibration procedure of the probability cut-offs that ensures
a type I error rate controlled at 0.1 under the null scenario where the response rate of
the experimental drug is 0.4. When pE is higher than 0.4, the probability of rejecting H0
corresponds to the statistical power, i.e., the probability of correctly concluding in favor of
the experimental treatment. As pE varies, the BOP2m design and LLm design yield very
similar power levels, which are substantially higher compared with those of the TS design.
Thus, more power is gained by using futility rules that gradually become stringent as more
patients are enrolled.

True pE
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0.4 0.5 0.6 0.7 0.8
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0.2
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0.4

0.5

0.6

0.7

0.8
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1.0 TS design
BOP2m design
LLm design

Figure 4. Behavior of the empirical probability of rejecting H0 for different values of the true pE, when
N = 40, Nmin = 10, δ = 0.1, π(pS) = beta(pS; 63, 94), and π(pE) = beta(pE; 1.4, 1.6). The stopping
boundaries used are provided in Sections 3.1, 3.2.1 and 4.1.1 for the TS, the BOP2m and the LLm
designs, respectively.
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5. Comparison of the Operating Characteristics

In this section, we present the results of simulation studies aimed at evaluating and
comparing the performance of the Bayesian futility rules previously described. More
specifically, we consider the TS design and the modified versions of the BOP2 design and
the predictive design due to Lee and Liu [11], presented in Sections 3.2.1 and 4.1.1.

We assume that the first interim analysis is conducted after observing Nmin = 10
patients and, subsequently, data are monitored using cohorts of size m (with m equal
to 1 or 5) until the maximum sample size N is reached (with N equal to 40 or 80). To
calibrate the probability thresholds of the Bayesian designs, we specify different scenarios
by identifying two values for pE: one under the null hypothesis (pH0

E ) and the other one
under the alternative (pH1

E ). In particular, we consider four possible values for pH0
E and

fix the corresponding pH1
E equal to pH0

E + 0.2. For each scenario, we elicit specific prior
distributions for pE and pS obtained by expressing the hyperparameters in terms of the
desired prior mode and a suitable prior sample size, as described in Section 2. The modes
of both the beta prior densities are set equal to pH0

E , but their variability is quite different.
In fact, the prior sample size of π(pS) is selected to ensure that a large prior probability
is assigned to a short interval centred at the prior mode. Specifically, we assign a prior
probability about equal to 0.99 to the interval (pH0

E − 0.1, pH0
E − 0.1). Instead, the prior

sample size of π(pE) is set equal to 1, in order of to obtain a flat density based on very
weak information. We show the resulting prior distributions in Figure 5 for each of the four
scenarios taken into account.

Let us recall that, when we simulate a high number of clinical trials under the as-
sumption that the true pE is pH0

E , the proportion of trials that conclude in favor of the
experimental treatment (i.e., that lead to the rejection of the null hypothesis) represents
an empirical evaluation of the type I error rate, while it represents an evaluation of the
statistical power if the true value of pE used to simulate is pH1

E . Given N, m and a specified
scenario (pH0

E , pH1
E ), we calibrate the probability cut-off of the TS design by considering

a dense set of possible values of C. For each value in the set, we simulate 100,000 trials
assuming that the true pE is pH0

E , compute the empirical type I error probability and select
the smallest value of C that controls the type I error rate at the nominal level 0.1. For the
BOP2m design, a grid search is used to calibrate the tuning parameters λ and γ. For both
of them, we consider a dense set of values in the interval (0, 1] and exhaustively enumerate
all possible combinations. For each combination, we simulate 100,000 trials assuming that
the true pE is pH0

E and find the set of values of (λ, γ) that jointly yield a type I error rate
lower than or equal to 0.1. Among the elements of this set of couples, we identify the
one that maximizes the empirical statistical power obtained by simulating 100,000 trials
under the assumption that the true pE is pH1

E . An analogous procedure is used to calibrate
the probability thresholds of the LLm design. In this latter case, the grid search is per-
formed by considering a dense set of values for θT and θL in the intervals (0.3, 0.99) and
(0.01, 0.5), respectively.

Once the probability boundaries of the Bayesian design have been calibrated to have
good frequentist operating characteristics, for each scenario we simulate 100,000 trials using
different true values of pE, that are pH0

E , pH0
E +0.1, pH0

E +0.2, and pH0
E +0.3. The performance

of the Bayesian designs are evaluated by computing (i) the proportion of simulated trials
where the null hypothesis is rejected (PRH0), (ii) the probability of early termination (PET),
empirically obtained through the proportion of simulated trials that terminate before
reaching the maximum sample size, and (iii) the average of the actually achieved sample
size (ASS). The obtained results are provided in Tables 4 and 5 for different values of N
and m, when δ = 0.1. For each scenario used to calibrate the probability thresholds, we
have highlighted in gray the operating characteristics under the null hypothesis. Thus,
the values of PRH0 in gray represent the empirical type I error rate, that in all cases is no
higher of 0.1 for construction. Generally, the BOP2m and the LLm designs show similar
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operating characteristics. When the true pE is larger than pH0
E , these two designs yield

higher power levels and smaller risks of incorrectly terminating the trial early than the TS
design. For instance, let us consider the scenario where pH0

E = 0.3 and pH1
E = 0.5. When

N = 40 and m = 5, if the true response rate of E is 0.5, the empirical power is equal to
0.783, 0.886, and 0.875 for the TS, the BOP2m and the LLm designs, respectively. Moreover,
the percentage of trials incorrectly terminated early is 21.2%, 8.8%, and 9.5% under the
three designs, respectively. On the other hand, the TS design shows a higher probability
of early termination under the null hypothesis. Furthermore, the TS design has a higher
tendency to terminate the trial at the early stages and, as a consequence, it is characterized
by lower expected values of the actually achieved sample size, which are especially desired
under the null hypothesis. We can note that the LLm design generally yields the highest
value of average sample size when pE is equal to pH0

E . This is because, when n is close to the
maximum sample size, the predictive design typically requires higher observed response
rates to let the trial proceed with respect to the other designs.

pE, pS
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Figure 5. Beta prior distributions of pE and pS for each of the scenarios used in the simulation studies.
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Table 4. Operating characteristics of the TS, BOP2m and LLm designs, when Nmin = 10, δ = 0.1, N = 40 and the type I
error rate is controlled at the level 0.1. The lines in gray represent the operating characteristics under the null hypothesis.

Scenarios Operating Characteristics When N = 40 and m = 1

Used to Calibrate TS BOP2m LLm

pH0
E pH1

E True pE PRH0 PET ASS PRH0 PET ASS PRH0 PET ASS

0.2 0.4 0.2 0.098 0.902 16.56 0.099 0.901 20.88 0.084 0.868 28.11

0.3 0.475 0.525 27.04 0.540 0.460 31.79 0.548 0.364 36.68

0.4 0.819 0.181 35.33 0.894 0.106 38.01 0.923 0.053 39.55

0.5 0.957 0.043 38.81 0.987 0.013 39.7 0.996 0.003 39.97

0.3 0.5 0.3 0.091 0.898 16.52 0.099 0.901 20.44 0.097 0.872 22.43

0.4 0.428 0.561 26.04 0.483 0.517 30.53 0.502 0.447 32.48

0.5 0.786 0.212 34.54 0.860 0.140 37.42 0.882 0.103 38.16

0.6 0.952 0.048 38.70 0.984 0.016 39.64 0.988 0.011 39.73

0.4 0.6 0.4 0.093 0.900 15.97 0.094 0.888 20.57 0.072 0.903 25.56

0.5 0.401 0.591 24.76 0.462 0.512 30.35 0.428 0.514 34.38

0.6 0.762 0.236 33.64 0.860 0.132 37.51 0.864 0.110 39.01

0.7 0.943 0.057 38.37 0.987 0.013 39.72 0.992 0.006 39.94

0.5 0.7 0.5 0.093 0.899 15.80 0.094 0.893 20.14 0.074 0.904 24.90

0.6 0.405 0.587 24.69 0.463 0.516 30.09 0.433 0.519 34.06

0.7 0.777 0.222 33.95 0.872 0.123 37.62 0.879 0.102 39.07

0.8 0.958 0.042 38.80 0.992 0.008 39.80 0.996 0.003 39.97

Scenarios Operating Characteristics When N = 40 and m = 5

Used to Calibrate TS BOP2m LLm

pH0
E pH1

E True pE PRH0 PET ASS PRH0 PET ASS PRH0 PET ASS

0.2 0.4 0.2 0.093 0.869 18.41 0.070 0.881 22.28 0.086 0.626 30.99

0.3 0.499 0.467 29.10 0.487 0.436 32.53 0.553 0.157 37.99

0.4 0.852 0.142 36.60 0.883 0.098 38.31 0.926 0.016 39.77

0.5 0.973 0.027 39.31 0.989 0.010 39.80 0.996 0.001 39.99

0.3 0.5 0.3 0.098 0.878 16.92 0.096 0.826 23.89 0.097 0.815 22.70

0.4 0.442 0.534 26.28 0.501 0.397 33.23 0.497 0.388 32.42

0.5 0.783 0.212 34.19 0.886 0.088 38.51 0.875 0.095 37.90

0.6 0.941 0.058 38.30 0.991 0.008 39.85 0.984 0.015 39.60

0.4 0.6 0.4 0.097 0.890 16.69 0.097 0.856 21.93 0.073 0.727 28.22

0.5 0.415 0.572 25.58 0.469 0.470 31.22 0.432 0.286 36.04

0.6 0.776 0.222 34.09 0.865 0.119 37.80 0.868 0.041 39.42

0.7 0.947 0.053 38.46 0.989 0.011 39.78 0.993 0.002 39.97

0.5 0.7 0.5 0.097 0.885 16.10 0.096 0.873 21.59 0.075 0.766 28.10

0.6 0.408 0.575 24.85 0.469 0.489 31.06 0.439 0.319 35.98

0.7 0.775 0.222 33.96 0.877 0.114 37.93 0.883 0.042 39.51

0.8 0.958 0.042 38.80 0.993 0.007 39.84 0.997 0.001 39.99
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Table 5. Operating characteristics of the TS, BOP2m and LLm designs, when Nmin = 10, δ = 0.1, N = 80 and the type I
error rate is controlled at the level 0.1. The lines in gray represent the operating characteristics under the null hypothesis.

Scenarios Operating Characteristics When N = 80 and m = 1

Used to Calibrate TS BOP2m LLm

pH0
E pH1

E True pE PRH0 PET ASS PRH0 PET ASS PRH0 PET ASS

0.2 0.4 0.2 0.099 0.901 29.02 0.095 0.905 38.91 0.065 0.910 50.73

0.3 0.643 0.357 59.85 0.723 0.277 69.21 0.709 0.241 75.26

0.4 0.926 0.074 75.22 0.979 0.021 78.93 0.989 0.008 79.75

0.5 0.987 0.013 79.09 0.999 0.001 79.92 1.000 0.000 79.99

0.3 0.5 0.3 0.100 0.900 27.64 0.099 0.901 37.47 0.087 0.888 51.87

0.4 0.579 0.421 55.80 0.664 0.336 66.29 0.696 0.262 74.73

0.5 0.900 0.100 73.52 0.967 0.033 78.35 0.987 0.011 79.68

0.6 0.983 0.017 78.81 0.998 0.002 79.89 1.000 0.000 79.98

0.4 0.6 0.4 0.099 0.901 26.68 0.096 0.898 37.57 0.100 0.878 51.55

0.5 0.548 0.452 53.46 0.639 0.355 65.59 0.693 0.273 74.20

0.6 0.887 0.113 72.66 0.967 0.033 78.33 0.987 0.011 79.64

0.7 0.982 0.018 78.81 0.999 0.001 79.91 1.000 0.000 79.98

0.5 0.7 0.5 0.098 0.902 26.26 0.100 0.893 36.87 0.098 0.884 46.84

0.6 0.547 0.453 53.23 0.649 0.344 65.51 0.688 0.286 72.22

0.7 0.896 0.104 73.17 0.973 0.027 78.58 0.987 0.012 79.48

0.8 0.988 0.012 79.20 0.999 0.001 79.95 1.000 0.000 79.98

Scenarios Operating Characteristics When N = 80 and m = 5

Used to Calibrate TS BOP2m LLm

pH0
E pH1

E True pE PRH0 PET ASS PRH0 PET ASS PRH0 PET ASS

0.2 0.4 0.2 0.098 0.895 29.59 0.082 0.887 40.49 0.066 0.794 55.39

0.3 0.645 0.352 60.38 0.713 0.255 70.04 0.717 0.129 76.89

0.4 0.929 0.071 75.44 0.979 0.020 78.96 0.991 0.003 79.89

0.5 0.987 0.013 79.11 0.999 0.001 79.91 1.000 0.000 80.00

0.3 0.5 0.3 0.093 0.894 28.38 0.098 0.882 42.09 0.088 0.796 55.70

0.4 0.577 0.415 56.26 0.687 0.293 69.43 0.703 0.168 76.08

0.5 0.900 0.100 73.54 0.977 0.022 78.99 0.988 0.006 79.80

0.6 0.982 0.018 78.78 0.999 0.001 79.95 1.000 0.000 79.99

0.4 0.6 0.4 0.099 0.885 29.00 0.097 0.893 39.49 0.099 0.815 51.69

0.5 0.571 0.420 56.22 0.644 0.346 66.67 0.690 0.212 74.20

0.6 0.907 0.093 74.10 0.970 0.029 78.60 0.986 0.009 79.62

0.7 0.987 0.013 79.12 0.999 0.001 79.94 1.000 0.000 79.98

0.5 0.7 0.5 0.093 0.896 27.21 0.082 0.880 39.39 0.099 0.800 48.58

0.6 0.549 0.444 54.19 0.631 0.326 67.09 0.691 0.205 72.98

0.7 0.904 0.096 73.82 0.977 0.022 78.98 0.988 0.009 79.54

0.8 0.990 0.010 79.33 1.000 0.000 79.98 1.000 0.000 79.99
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6. Discussion

The aim of this paper is to describe and compare Bayesian procedures used for futility
monitoring of single-arm trials based on binary data. In this context, the Bayesian TS
design [2] is very popular and has inspired several extensions and variations. We compare
this design with the BOP2 design proposed by Zhou et al. [7] and the predictive design
of Lee and Liu [11]. To have a fair comparison and to add flexibility to the decision rules,
in line with Thall and Simon [2] we introduce a little change in these two latter designs to
take into account the uncertainty in the response rate of the standard therapy.

The stopping boundaries of the Bayesian designs reflect the intent expressed by their
futility rules. For instance, compared with the design of Thall and Simon, the BOP2 aims
at introducing more relaxed rules at the early stages of the trial and, as a consequence,
the minimum observed response rate required at the interim stage to avoid the termination
of the trial increases as a function of the current sample size. Analogous considerations
applies for the predictive design. The simulation results show that the statistical power is
higher for the designs that define early stopping boundaries that take into account the ratio
between the number of patients enrolled and the amount of future data. These designs also
ensure lower probabilities of incorrectly terminating the trial early. However, they yield
higher expected values of the actually achieved sample size under the assumption that the
null hypothesis is true. We summarize below the main features of the three designs along
with their advantageous characteristics shown in the simulation studies.

TS • Simpler and easier to implement
• Lower values of the ASS under H0

BOP2m • Takes into account the ratio between n and N
• Higher power and lower PET under H1 if compared with TS

LLm • Takes into account the number of remaining patients
• Resembles more closely the clinical decision-making process
• Higher power and lower PET under H1 if compared with TS

Clearly, the decision rules compared are affected by the procedures used to calibrate
the probability cut-offs of the designs. These adjustments are usually required by regula-
tory authorities to control the false positive rate of Bayesian procedures in a frequentist
sense. Different calibration methods could be used, in order for instance to minimize the
expected sample size under the null hypothesis, while controlling the type I error rate at a
desired level.

Finally, let us notice that Thall and Simon [2] and Lee and Liu [11] also consider
stopping rules for superiority of the experimental treatment. The same criteria could be
implemented in the BOP2 design. However, in phase II single-arm trials investigators
generally prefer to allow early stopping due to futility but not due to efficacy, because it is
not considered unethical to continue the trial if the new treatment shows to be extremely
effective [29]. This way of proceeding is consistent with the “ethical imperative for early
termination” that characterizes the well-known two-stage scheme for single-arm phase II
studies proposed by Simon [30] and that occurs when the treatment has unacceptably low
efficacy. Instead, if the drug has substantial activity, there is interest in studying additional
patients to better assess its safety and response. Many Bayesian two-stage designs exploit
the Simon’s scheme to conduct a phase II study (see [19,26,31], among others).
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List of Abbreviations

TS Design due to Thall and Simon [2]
BOP2m Modified version of the BOP2 design due to Zhou et al. [7] to account for uncertainty in pS
LLm Modified version of the design of Lee and Liu [11] to account for uncertainty in pS
PRH0 Proportion of simulated trials where the null hypothesis is rejected
PET Probability of early termination
ASS Average of the actually achieved sample size
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