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Abstract
Several biomarkers of healthy aging have been proposed in recent years, including 
the epigenetic clocks, based on DNA methylation (DNAm) measures, which are get-
ting increasingly accurate in predicting the individual biological age. The recently 
developed “next-generation clock” DNAmGrimAge outperforms “first-generation 
clocks” in predicting longevity and the onset of many age-related pathological condi-
tions and diseases. Additionally, the total number of stochastic epigenetic mutations 
(SEMs), also known as the epigenetic mutation load (EML), has been proposed as a 
complementary DNAm-based biomarker of healthy aging. A fundamental biological 
property of epigenetic, and in particular DNAm modifications, is the potential revers-
ibility of the effect, raising questions about the possible slowdown of epigenetic aging 
by modifying one's lifestyle. Here, we investigated whether improved dietary habits 
and increased physical activity have favorable effects on aging biomarkers in healthy 
postmenopausal women. The study sample consists of 219 women from the “Diet, 
Physical Activity, and Mammography” (DAMA) study: a 24-month randomized facto-
rial intervention trial with DNAm measured twice, at baseline and the end of the trial. 
Women who participated in the dietary intervention had a significant slowing of the 
DNAmGrimAge clock, whereas increasing physical activity led to a significant reduc-
tion of SEMs in crucial cancer-related pathways. Our study provides strong evidence 
of a causal association between lifestyle modification and slowing down of DNAm 
aging biomarkers. This randomized trial elucidates the causal relationship between 
lifestyle and healthy aging-related epigenetic mechanisms.
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1  |  INTRODUC TION

Population aging is emerging as one of the most critical health is-
sues, leading to medical, social, economic, and political problems. To 
quantify healthy aging in epidemiological and clinical studies is not 
straightforward. Among various biomarkers of healthy aging pro-
posed in recent years, the epigenetic clocks, based on DNA methyla-
tion (DNAm) data, are getting increasingly accurate in predicting the 
individual biological age (Horvath, 2013; Horvath & Raj, 2018). The 
concept of epigenetic age acceleration (AA) has been introduced as 
the difference between predicted DNAm age and the chronological 
age: positive values of AA indicate unhealthy aging and vice versa 
(Horvath, 2013). Recent literature suggests epigenetic AA as a reli-
able biomarker of healthy aging as it has been associated with lon-
gevity (Chen et al., 2016; Dugué et al., 2018), several pathological 
conditions (Horvath et al., 2016), and non-communicable disease 
risk factors like obesity (Horvath et al., 2014), poor physical activity 
(PA) (Quach et al., 2017), and low socioeconomic status (Fiorito et al., 
,2017, 2019).

To date, epigenetic clocks that have gained considerable pop-
ularity in the scientific community are Horvath (Horvath, 2013) 
and (Hannum et al., 2013) “first-generation clocks,” and Levine's 
DNAmPhenoAge (Levine et al., 2018) and Lu's DNAmGrimAge 
(Lu et al., 2019) “next-generation clocks.” It has been shown that 
the “next-generation clocks,” DNAmGrimAge particularly, outper-
form “first-generation clocks” in predicting longevity and the onset 
of age-related pathological conditions and diseases (Bergsma & 
Rogaeva, 2020; Lu et al., 2019). Specifically, the DNAmGrimAge is 
built as a linear combination of seven DNAm-based surrogate mark-
ers of plasma proteins: adrenomedullin (ADM), beta-2-microglobulin 
(B2  M), cystatin C (Cystatin C), growth differentiation factor 15 
(GDF-15), leptin (Leptin), plasminogen activator inhibitor-1  (PAI-1), 
and tissue inhibitor metalloproteinases 1 (TIMP-1) plus DNAm-
based biomarkers for smoking pack-years, using DNAm values of 
1,030 unique CpG sites.

Additionally, the total number of stochastic epigenetic mutations 
(SEMs) per individual has been proposed as an alternative biomarker 
of healthy aging based on whole-genome DNAm data (Gentilini 
et al., 2015). The total number of SEMs per individual, also known 
as epigenetic mutation load (EML) (Yan et al., 2020), is defined as 
the sum of extreme (outliers) DNAm values per sample. Recently, 
(Gentilini et al., 2015) provided evidence of the exponential relation-
ship between age and SEMs, which occurs naturally during aging 
as a consequence of the “epigenetic drift.” A higher EML has been 
associated with age-related pathological conditions like X chromo-
some activation skewing (Gentilini et al., 2015) and risk factors for 
non-communicable diseases like cigarette smoking, alcohol intake, 
exposure to toxicants, and low socioeconomic status (Curtis et al., 
2019; Fiorito et al., 2019), and it is associated with increased risk 
of different types of cancer in prospective studies (Gagliardi et al., 
2020; Wang et al., 2019). Interestingly, DNAm epigenetic clocks and 
EML are weakly correlated, suggesting they describe different as-
pects of epigenetic aging processes (Yan et al., 2020).

A fundamental property of epigenetic is the potential reversibil-
ity of the effect, raising questions about the possible slowdown of 
epigenetic aging by improving lifestyle. Recent observational stud-
ies provided evidence that smoking-related DNAm modifications 
tend to reverse after smoking cessation in a time-dependent man-
ner (Guida et al., 2015), and epigenetic AA due to early-life social 
adversities can be partially reversed improving lifestyle and social 
conditions in adulthood (Fiorito et al., 2017). A pilot clinical trial con-
ducted on nine volunteers suggests that the epigenetic clock could 
be reversed after one-year treatment with a cocktail of drugs based 
on recombinant human growth hormone (Fahy et al., 2019).

In this study, we aimed to investigate whether modifying dietary 
habits and increasing PA have favorable effects on biological aging, 
measured using both the DNAmGrimAge and the EML, in healthy 
postmenopausal women. This study sample consists of 219 adult 
post-menopausal women from the “Diet, Physical Activity, and 
Mammography” (DAMA) study: a single-center, 24-month random-
ized intervention trial whose primary aim was to investigate whether 
mammographic breast density (an established independent risk 
factor for breast cancer development) could be reduced in healthy 
postmenopausal women by modifying their dietary habits and phys-
ical activity levels (Masala et al., 2019).

2  |  RESULTS

After DNAm data quality controls and filtering, this study sample 
include 219 DAMA participants, distributed into four trial study 
arms (arm 1: dietary intervention, arm 2: PA intervention, arm 3: 
dietary +PA intervention, and arm 4: control group), with whole-
genome DNAm measured from blood collected at baseline and 
after two years of intervention. For each sample, we computed the 
total number of SEMs and DNAmGrimAge measures. For statistical 
comparisons, we used a logarithm transformation of the total num-
ber of SEMs (referred to as EML henceforth), and DNAmGrimAge 
Acceleration (referred to as DNAmGrimAA henceforth) was defined 
as the residuals of the regression of DNAmGrimAge on chronologi-
cal age as described by Lu and colleagues (Lu et al., 2019).

2.1  |  Association analyses at baseline

In Table S1, we reported the characteristics of the study sample by 
study arm at baseline. There were no statistically significant differ-
ences among the four groups considering anthropometric and life-
style characteristics, nor DNAmGrimAA, whereas the EML differed 
by groups at baseline (ANOVA test p-value =0.01).

In Table 1, we reported the results of two multivariate linear re-
gression models having either baseline DNAmGrimAA or EML used 
as the outcome, and baseline anthropometric and lifestyle charac-
teristics entered as the predictors. DNAmGrimAA was associated 
with obesity (β = 0.80 95% CI 0.11–1.49, p = 0.02 comparing over-
weight with normal-weight; β = 2.53 95% CI 1.28–3.78, p = 0.0001 
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comparing obese with normal-weight) and smoking (β = 0.88 95% CI 
0.23–1.52, p = 0.01 comparing former with never smokers) adjusting 
for the other risk factors in Table 1, whereas EML was not associated 
with any lifestyle variables at baseline.

Table 2 reports Pearson correlation coefficients (and corre-
sponding p-values) among the two epigenetic aging biomarkers and 
dietary variables at baseline. Higher consumption of fruit and vege-
tables was associated with decreased DNAmGrimAA (p = 0.05 and 
p = 0.002, respectively), whereas a higher consumption of processed 
meat was associated with increased EML (p = 0.01).

2.2  |  Association analyses after the intervention

We run a difference-in-difference model to estimate the differential 
changes of DNAmGrimAA and EML in the treated group compared 
with the control group during the two-year intervention. We applied 
a two-step approach: First, we defined the “delta DNAmGrimAA” 
and “delta EML” as the difference between the two epigenetic aging 
biomarkers measured after and before the intervention. In Figure 1, 
we reported the distribution of delta DNAmGrimAA (Figure 1a) and 
delta EML (Figure 1b) in controls and intervention groups (dietary 
intervention for DNAmGrimAA and PA intervention for EML). The 

TA B L E  1 Associations of biological aging measures with anthropometric and lifestyle variables at baseline: estimates, 95% confidence 
intervals, and p-values were derived from multivariate linear regression models. The effect of each baseline characteristic on DNAmGrimAA 
and EML is adjusted for all the other covariates in the table

DNAmGrimAA EML

Estimate (95% CI) p Estimate (95% CI) p

BMI (ref. <25) - - - -

25–30 0.80 (0.11; 1.49) 0.02 0.23 (−0.06; 0.52) 0.14

>30 2.53 (1.28; 3.78) 0.0001 −0.10 (−0.65; 0.45) 0.73

Smoking (ref. Never) - - - -

Former 0.88 (0.23; 1.52) 0.01 −0.17 (−0.44; 0.10) 0.10

Education (ref. Primary) - - - -

secondary 0.08 (−0.70; 0.86) 0.85 −0.05 (−0.38; 0.28) 0.78

University or above 0.47 (−0.37; 1.31) 0.27 −0.01 (−0.36; 0.34) 0.94

Physical Activity (ref. Inactive) - - - -

Mod. Inactive 0.00 (−0.84; 0.84) 0.99 −0.13 (−0.48; 0.22) 0.47

Mod. Active −0.79 (−1.69; 0.11) 0.09 −0.06 (−0.43; 0.31) 0.75

Active −0.14 (−1.20; 0.92) 0.80 0.10 (−0.35; 0.55) 0.66

Coffee (ref. <= 3 cups/day) - - - -

> 3 cups/day −0.26 (−0.91; 0.39) 0.43 0.08 (−0.19; 0.35) 0.57

Alcohol (ref. Never) - - - -

<= 1 drink/day 0.14 (−0.74; 1.02) 0.75 0.04 (−0.33; 0.41) 0.83

> 1 drink/day 0.85 (−0.23; 1.93) 0.12 0.30 (−0.15; 0.75) 0.20

Dietary style (ref. good) - - - -

bad 0.43 (−0.22; 1.08) 0.19 −0.07 (−0.34; 0.20) 0.64

Breastfeeding (ref. <= 3 months) - - - -

> 3 months 0.11 (−0.54; 0.76) 0.73 −0.17 (−0.44; 0.10) 0.23

Oral contraceptives (ref. Never) - - - -

Ever −0.11 (−0.76; 0.54) 0.74 0.22 (−0.05; 0.49) 0.11

Menopausal hormones (ref. Never) - - - -

Ever 0.02 (−0.69; 0.73) 0.95 −0.16 (−0.45; 0.13) 0.30

TA B L E  2 Pearson correlation test comparing biological aging 
measures with dietary variables at baseline.

Dietary variables 
(gr/die)

DNAmGrimAA EML

Pearson R p Pearson R p

Vegetables −0.14 0.05 0.14 0.06

Fruit −0.21 0.001 0.09 0.19

Red meat 0.08 0.26 0.07 0.29

Processed meat −0.05 0.48 0.18 0.01

Poultry 0.01 0.84 −0.02 0.72

Fish 0.07 0.30 0.13 0.06

Dairy products −0.08 0.26 0.02 0.78

Kcal −0.07 0.27 0.10 0.13
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average delta DNAmGrimAA were 0.25 (95% CI −0.07 to 0.57) and 
−0.41 (95% CI −0.79 to −0.03) in the control and dietary intervention 
groups, respectively. The average delta EML were 1.82 (95% CI 1.28 
to 2.37) and −0.23 (95% CI −0.82 to −0.35) in the control and PA 
intervention groups, respectively.

Then, we have estimated the differential changes of 
DNAmGrimAA and EML through linear regression models using 
the delta DNAmGrimAA and delta EML as the outcomes (control 
group as the reference). The dietary intervention led to a signifi-
cant reduction of delta DNAmGrimAA (β = −0.66, 95% CI −1.15 
to −0.17, p = 0.01, Table 3), whereas the PA intervention caused a 
significant reduction of the delta EML (β = −2.06, 95% CI −2.84 to 
−1.28, p < 0.0001, Table 3). There was no significant reduction of 
DNAmGrimAA associated with the PA intervention nor reduced 
EML associated with the dietary intervention (Table 3). For both 
DNAmGrimAA and EML, the estimated differences presented in 
Table 3 (i.e., the β coefficients) can be interpreted as the change 
in biological age (in years) compared with the reference group (see 
Methods for more details).

2.3  |  Additional investigation on the eight 
DNAmGrimAA components

We further investigate the effect of dietary intervention sepa-
rately on each component of the DNAmGrimAA in order to identify 
which contributed the most on the previously described associa-
tion. The results of the single-component analyses are summarized 

in Figure 2a. DNAmPAI1 biomarker was the only DNAmGrimAA 
component with a significant reduction after the two-year dietary 
intervention (β = −0.33 standard deviations, 95% CI −0.62 to −0.05, 
comparing women who participated in the dietary intervention vs. 
controls, Figure 2b) and contribute for more than 30% of the ex-
plained variability (Figure 2c). Also, reduction of DNAmLeptin and 
DNAmGDF15 provided a substantial contribution (20% and 15% re-
spectively, Figures 2d-e-f).

2.4  |  Enrichment analyses on epimutated CpG sites

We further investigated the biomolecular pathways involved in the 
reduction of EML caused by the PA intervention and the stability 
of SEMs over these two years. The majority of the identified CpG 
sites carrying a SEM at baseline (i.e., before the intervention) were 
still epimutated after the two-year trial (the average proportion of 
“stable” SEMs per individual was 69%, ranging from 54% to 89%). 
We performed additional investigation of what we named “physical 
activity-related reversible SEMs” (PArSEMs), that is, those CpG sites 
in which we found a SEM at baseline but not after the PA interven-
tion trial.

PArSEMs were enriched in non-CpG islands (p = 0.02, Table S3), 
genomic regions characterized by heterochromatin/low transcrip-
tional signal/copy number variants (p < 0.0001, Table S4), and tran-
scription factor binding sites (TFBS) of EZH2 and SUZ12 (p = 0.001 
and p=0.006, respectively, Table S5). Furthermore, the top 20 KEGG 
pathways from the gene ontology enrichment analysis are listed in 

F I G U R E  1 Violin Plots: (a) Distribution of the delta DNAmGrimAA (DNAmGrimAA after two-year trial minus DNAmGrimAA at 
baseline) in women participating in the dietary intervention vs. controls. Dietary intervention leads to a significant reduction of the delta 
DNAmGrimAA (0.66 years), computed via linear regression model adjusted for anthropometric and lifestyle characteristics at baseline. (b) 
Distribution of the delta age-adjusted EML (EML after two-year trial minus EML at baseline) in women participating in the PA intervention 
vs. controls. PA intervention leads to a significant reduction of the delta age-adjusted EML (2 years), computed via linear regression model 
adjusted for anthropometric and lifestyle characteristics at baseline
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Figure 3. After false discovery rate (FDR) correction for multiple 
testing, PArSEMs were enriched in the following seven KEGG path-
ways: hsa05205 (“Proteoglycans in cancer,” p = 0.0004), hsa05224 
(“Breast cancer,” p  =  0.0006), hsa04310 (“Wnt signaling pathway,” 
p  =  0.0007), hsa04713 (“Circadian entertainment,” p  =  0.0008), 
hsa04024 (“cAMP signaling pathway,” p = 0.0008), hsa04390 (“Hippo 
signaling pathway,” p = 0.0009), and hsa04020 (“Calcium signaling 
pathway,” p = 0.001) (Table S5).

2.5  |  Sensitivity analyses

For sensitivity analyses, we repeated the previously described lin-
ear regression models including additional adjustment for estimated 
white blood cells (WBC) proportions. The sensitivity analyses con-
firmed the reduction of the delta DNAmGrimAA in women partici-
pating in the dietary intervention (β = −0.42 95% CI −0.83 to −0.01, 
p = 0.05) and the reduction of delta EML in women participating in 
the PA intervention (β = −2.04 95% CI −2.82 to −1.26, p = 0.001).

3  |  DISCUSSION

Various cross-sectional studies provided evidence of a favorable 
effect of a healthy lifestyle on several biological aging indicators, 
including DNAm-based aging biomarkers (Koop et al., 2020; Quach 
et al., 2017). However, longitudinal and intervention studies are 
needed to clarify causality and accurately quantify the benefit of im-
proving lifestyle at a biomolecular level. A recent review by ElGendy 
and colleagues summarizes the effect of several intervention stud-
ies of folic acid and B vitamins supplementation on whole-genome 
DNAm profiles. They conclude that the effects on DNAm are gene 
and site-specific, depending on cell type and tissue, and the duration 
of the intervention, making the results difficult to interpret. However, 
they observed consensus on increased global DNAm consequence 

of folic acid and B vitamins supplementation (Elgendy et al., 2018). 
DNAm-based biological aging measures provide an easily interpret-
able summary measure of the state of health of an individual and can 
be used to investigate the beneficial effects of improving lifestyle on 
aging-related epigenetic mechanisms (Lu et al., 2019).

Few intervention studies have evaluated the effect of improv-
ing dietary habits on DNAm epigenetic clocks at the current stage, 
whereas no studies investigated changes in the EML. For example, 
Sae-Lee and colleagues investigated folic acid and vitamin B12 sup-
plementation in a randomized trial including 44 participants (+13 par-
ticipants from a non-randomized trial), concluding that the slowing 
down of the DNAm aging is gender- and MTHFR genotype-specific 
(Sae-Lee et al., 2018). More recently, Fitzgerald and colleagues pro-
vide evidence of reversal epigenetic clocks improving diet and life-
style in a randomized trial including 38 participants (Fitzgerald et al., 
2021). Although there is strong evidence that physical exercise has 
favorable effects on epigenetic mechanisms (Ferioli et al., 2019), 
there is a lack of intervention studies on increasing physical activ-
ity associated with longitudinal measures of epigenetic clocks and 
aging-related epigenetic drift.

In this study, we explored the effects of a two-year dietary and 
PA intervention trial on two DNAm-based biomarkers of biological 
aging: DNAmGrimAge, since it has been shown it outperforms other 
epigenetic clocks in predicting aging-related outcomes (McCrory 
et al., 2020), and the epigenetic mutation load (EML, as a biomarker 
of the aging-related epigenetic drift), in more than 200 healthy post-
menopausal women from the DAMA study.

Our results on the analyses performed at baseline (before the 
intervention trial) confirmed previously observed cross-sectional 
associations between the epigenetic clocks and risk factors for non-
communicable diseases, like obesity, consumption of processed meat 
(with unfavorable effects), and consumption of fruit and vegetables 
(with favorable impacts). Interestingly, the two epigenetic biomark-
ers of aging likely describe different aspects of the aging-related mo-
lecular mechanisms, as they are associated with different risk factors 

TA B L E  3 Average differences and 95% confidence intervals (CIs) of DNAmGrimAA and EML measured before the randomized trial minus 
DNAmGrimAA and EML measured after the randomized trial (first two columns); and differential changes in the delta DNAm-based aging 
measures (difference-in-difference model, third column). Comparison of the dietary intervention (arms 2 and 4) with the control group (arms 
1 and 3) on the top of the table; comparison of the PA intervention (arms 1 and 4) with the control group (arms 2 and 3) on the bottom of the 
table. Estimates, 95% Cis, and p-values come from a two-step difference-in-difference model

Mean (95% CI) difference (measure after 
intervention minus measure before 
the intervention) in control group 
(arms 2 and 4)

Mean (95% CI) difference (measure after 
the intervention minus measure before the 
intervention) in dietary intervention group 
(arms 1 and 3)

Differential effect of dietary 
intervention vs. control group

Estimate (95% CI) p

DNAmGrimAA 0.25 (−0.07, 0.57) −0.41 (−0.79, −0.03) −0.66 (−1.15, −0.17) 0.01*

EML 1.00 (0.41, 1.60) 0.63 (0.03, 1.23) −0.37 (−1.21, 0.48) 0.39

Mean (95% CI) difference (measure 
after the intervention minus measure 
before the intervention) in control group 
(arms 1 and 4)

Mean (95% CI) difference (measure after 
the intervention minus measure before 
the intervention) in PA intervention group 
(arms 2 and 3)

Differential effect of PA 
intervention vs. control group

Estimate (95% CI) p

DNAmGrimAA −0.12 (−0.43, 0.20) −0.03 (−0.43, 0.37) 0.09 (−0.42, 0.60) 0.73

EML 1.82 (1.28, 2.37) −0.23 (−0.82, 0.36) −2.06 (−2.84, −1.28) <0.001*
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F I G U R E  2 Analysis of the eight components of the DNAmGrimAge: a. Forest plot indicating the effect of the dietary intervention on 
each component of the DNAmGrimAge (expressed as standard deviations change to be comparable among them). b. Proportion of variability 
explained by each component of the DNAmGrimAge. c. Correlation matrix among DNAmGrimAge and its components. d-e-f. Violin plots. 
Distribution of the standardized delta DNAmPAI1, delta DNAmLeptin, and delta DNAmGDF15 (measure after two-year trial minus measure 
at baseline) in women participating in the dietary intervention vs. control group
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for non-communicable diseases. In fact, in our sample, obesity is 
associated with DNAmGrimAA but not with EML. Similarly, higher 
DNAmGrimAA is associated with lower consumption of fruit but not 
with higher consumption of red meat, whereas an inverse pattern of 
associations was observed for the EML.

3.1  |  Dietary improvement slows down the 
DNAmGrimAge biomarker

The main aim of the present study was to compare the DNAm-
based aging biomarkers before and after the intervention. Our re-
sults highlighted a significant slowing down of the epigenetic aging 
processes because of the improved dietary quality and increased 
PA. Specifically, the dietary intervention led to a significant slowing 
down of the DNAmGrimAA biomarker, whereas the PA intervention 
had a significant effect on the total number of SEMs.

We performed additional statistical analyses to identify which 
components of the DNAmGrimAA contributed most to the ob-
served association. The results highlighted a significant decrease of 
the DNAm surrogate measure of the plasma protein PAI-1 as well a 
substantial decrease of Leptin and GDF-15 proteins DNAm surro-
gates among women in the dietary intervention trial arm. Our re-
sults provide further support on the association of specific plasma 

proteins with healthy aging and longevity. High level of PAI-1 has 
been associated with a number of age-related conditions and lifes-
pan (Khan et al., 2017), and previous studies reported a benefi-
cial effect of PA on PAI-1  serum levels (Lira et al., 2010). Further, 
DNAm surrogate for PAI1 has a strong association with metabolic 
syndrome, obesity, and fatty liver (Lu et al., 2019). Leptin is mainly 
produced in the white adipose tissue and is one of the main catabolic 
regulators of food intake and energy expenditure. During aging, a 
significant increase in Leptin resistance leads to unfavorable health 
outcomes (Balaskó et al., 2014). Evidence indicates that caloric re-
striction reduces Leptin levels in a dose–response manner (Hong 
et al., 2018). Finally, the dietary intervention was associated with 
decreased levels of GDF-15 protein DNAm surrogate, that emerged 
recently as a biomarker of inflammation, regulation of apoptosis, cell 
repair, healthy aging, and a robust prognostic protein in patients with 
different diseases such as heart diseases and cancer (Baek & Eling, 
2019; Luan et al., 2019).

3.2  |  Increasing physical activity slows down the 
EML biomarker

Increasing evidence indicates that aging is associated with an accu-
mulation of SEMs, and in turn, the total number of SEMs is associated 

F I G U R E  3 PArSEMs CpGs gene 
ontology enrichment analysis. Top 
20 KEGG pathways and -log10 enrichment 
p-values. Red dotted line indicates the 
FDR threshold of significance. After FDR 
correction for multiple testing, PArSEMs 
were significantly enriched in seven KEGG 
biological pathways
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with an increased risk for several cancer types (Gentilini et al., 2015, 
2017; Wang et al., 2019). We observed a slowing down of the EML 
biomarker in women who participated in the PA intervention trial 
compared with the control sample. Such slowing down of the EML 
caused by increased PA may be explained with an adaptive increase 
in antioxidant capacity and reduction of reactive oxygen species 
(ROS), which in turn leads to a higher DNA repair capacity and 
therefore a lower number of dangerous SEMs (Grazioli et al., 2017; 
Kietzmann et al., 2017).

Although a large proportion of the identified SEMs was stable 
over time, many SEMs were no longer present after the PA inter-
vention. A more-in-depth investigation indicates that reversible 
SEMs are enriched in non-CpG islands and genomic regions char-
acterized by heterochromatin, low transcriptional signal, and copy 
number variants. These results are in line with previous observations 
of lower DNAm variability in CpG islands and CpG-rich genomic re-
gions (Palumbo et al., 2018). Functional characterization of PArSEMs 
CpGs highlights an enrichment of reversible epimutations in TFBS of 
two members of the Polycomb Repressive Complex 2 (PRC2) pro-
teins: EZH2 and SUZ12. Interestingly, previous studies indicate that 
a lower number of SEMs in genes targeted by these two proteins, 
mostly tumor suppressor genes, is associated with a lower risk of fu-
ture cancer development (Gagliardi et al., 2020). Additionally, KEGG 
pathway gene ontology enrichment analysis shows that PArSEMs 
are enriched in several cancer-related pathways such as hsa05205 
(“Proteoglycans in cancer”), hsa05224 (“Breast cancer”), hsa04310 
(“Wnt signaling pathway”), and hsa04024 (“cAMP signaling path-
way”). Thus, the established association between increasing PA and 
reduced cancer risk might be partly explained via a reduction of epi-
mutations in critical cancer-related pathways.

4  |  CONCLUSIONS

We provided strong evidence of a causal association of improving 
dietary habits and increasing physical activity on DNAm-based bi-
omarkers of healthy aging. It is worthy to note that DAMA study 
is intentionally based on non-extreme interventions, meaning that 
relatively easily achievable changes in one's lifestyle behaviors lead 
to a significant slowing down of biological aging biomarkers, which 
in turn are associated with higher longevity, lower risk of developing 
age-related diseases, and increased quality of life in the older age. 
Further, our results indicate that dietary quality and physical activity 
influence epigenetic aging through complementary molecular mech-
anisms, suggesting that their effect is potentially cumulative rather 
than interchangeable. In conclusion, our results provide further 
evidence about the importance of policy intervention programs to 
promote a healthy diet and physical activity, leading to a substantial 
reduction of the burden for many aging-related pathological condi-
tions and diseases. Additionally, our results provide a step forward 
in understanding the biological mechanism of aging and identifying 
health-related biomarkers.

4.1  |  Strength and limitations

Since this was a secondary analysis, the relatively modest sample 
size is a possible limitation of this study. The original factorial study 
design included four arms (arm 1: diet, arm 2: PA, arm 3: diet +PA, 
and arm 4: controls), but for statistical comparisons, we used the two 
main intervention groups (arms 1 and 3 for investigating the effect 
of dietary intervention, and arms 2 and 3 for investigating the effect 
of PA intervention). However, a post hoc power analysis of the study 
indicates that our analytical strategy makes this study well-powered 
(β > 0.80) considering the effect sizes observed in linear regressions. 
On the contrary, the factorial design of the DAMA study and our 
analytical choice make that, in estimating the effect of the dietary 
intervention, around 50% of the treated group and around 50% of 
the controls have completed the physical activity intervention also 
(and vice versa considering the effect of PA intervention), leading 
to possible confounding of the results. This study includes only 
women making impossible to investigate possible differential effect 
by gender. Finally, due to the limited sample size, we were not able 
to include extra stratified statistical analyses to test additional hy-
potheses (e.g., whether the effect of the trial is higher among obese 
women at baseline), underlining the need for further investigations 
in the field.

This study also has several strengths. To the best of our knowl-
edge, this is the first study investigating longitudinal changes in the 
DNAmGrimAge and epigenetic mutation load with a suitable life-
style intervention, allowing a robust causal interpretation of the 
results. Of note, our results are not biased by the presence of patho-
logical conditions or smoking (well known for having a strong influ-
ence on DNAm profiles and epigenetic aging) since the study sample 
is composed of healthy non-smokers women.

5  |  E XPERIMENTAL PROCEDURES

5.1  |  Study sample

The DAMA study was a single-center, 24-month randomized inter-
vention trial (Trial Registration ID: ISRCTN28492718) with a 2x2 
factorial design, whose primary aim was to investigate whether 
mammographic breast density (MBD) could be reduced in high-MBD 
(>50%) healthy post-menopausal women by modifying their dietary 
habits and/or PA levels (Masala et al., 2019). Study participants were 
selected in 2009–2010 among postmenopausal women aged 50–
69 years that attended the local breast cancer screening program in 
Florence, Italy (Masala et al., 2014). Women were eligible for inclu-
sion if they had a negative screening mammogram with MBD >50% 
(assessed using the BI-RADS classification (Liberman and Menell, 
2002)); those selected for a second-stage diagnostic procedure 
following the screening mammogram were excluded regardless of 
the final outcome of the diagnostic process. Other exclusion crite-
ria were as follows: recent (past 12 months) hormone replacement 
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therapy use; current smoking, or having quit smoking by <6 months; 
being previously diagnosed with cancer (except non-melanoma skin 
cancer) or suffering from any illness that could hamper an active par-
ticipation in the study activities.

At baseline, all participants provided information on dietary 
habits and lifestyle (including household, occupational and leisure-
time PA) by filling two questionnaires previously used within the 
EPIC (European Prospective Investigation into Cancer and Nutrition) 
study (Palli et al., 2003), and had their anthropometric measures 
taken using standardized procedures. A fasting venous blood sam-
ple was taken, divided into plasma, red cells, and buffy-coat aliquots, 
and stored together with urine samples in the project biobank. Each 
woman was then randomly assigned to one of the four study arms 
(diet, PA, diet+PA, and control) according to a permuted-block ran-
domization scheme stratified by age (50–59 vs. 60–69  years) and 
body mass index (BMI) category (<25 vs. ≥25 kg/m2), with a constant 
block size (n=4).

Study participants assigned to the dietary intervention (arm 1) 
were counseled to adopt a diet based on the consumption of plant 
foods, with a low glycemic load, low in saturated- and trans-fats and 
alcohol, and rich in antioxidants. The change in dietary habits was 
aimed to be achieved in an isocaloric context, as no advice was given 
about the quantity of food to be consumed. The intervention objec-
tives included: (a) replacement of refined grains with whole grains; 
(b) consumption of at least one portion of raw vegetables and one 
portion of cooked vegetables at each meal; (c) consumption of fish 
at least 2–3 times weekly; (d) reduction of the consumption of fresh 
and processed red meat to less than once weekly; (e) consumption of 
at least 3–4 portions of legumes and pulses per week; (f) daily con-
sumption of at least 2–3 portions of fruit; (g) cakes and desserts con-
sumed no more than once weekly; (h) no more than 1 portion/day 
of milk or yogurt and 2 portions/week of cheese; (i) exclusive use of 
extra-virgin olive oil as dressing and cooking fat; and (j) consumption 
of no more than one glass of wine daily at meals for those already 
used to drink alcohol. In addition, women allocated to the dietary in-
tervention study arm were also requested to attend six group meet-
ings and eight cooking classes over the course of the study.

Women randomized to the PA intervention (arm 2) were asked 
to increase their moderate-level recreational PA up to 1 hour/day 
(corresponding to about 3 MET-hours day [MET=metabolic equiv-
alent]), to be combined with a more strenuous activity accounting 
for 6–10 MET-hours weekly. Women were also requested to attend 
weekly a one-hour session led by trained PA experts in an appro-
priate fitness facility and were provided with some equipment for 
home exercises. Finally, the study protocol also included participa-
tion in six group sessions and six collective walks supervised by the 
study team.

Women assigned to the diet +PA intervention (arm 3) were re-
quested to change both their dietary habits and PA levels by combin-
ing the protocols of arms 1 and 2.

Study participants assigned to any intervention arm (1, 2, or 3) 
were requested to keep five written one-week diaries on diet and/
or PA levels (depending on study arm), which were then reviewed 

by the study personnel to monitor the achievement of the study ob-
jectives and provide further tailored counseling to the participants.

Women randomly assigned to the control group (arm 4) received 
general advice on healthy diet and PA levels according to the recom-
mendations from the World Cancer Research Fund (WCRF) report 
2007 (Wiseman, 2008), were invited to attend a group meeting tak-
ing place in the first six months of the study, and were distributed ad 
hoc printed material.

At the end of the study (24±3 months from enrollment, coincid-
ing with the time of the next mammographic screening), all study 
participants underwent a final visit, in which the same protocol as at 
the baseline visit was applied.

Compliance with the proposed interventions was good, with an 
increased consumption of vegetables and legumes, and a reduced 
consumption of meat and cakes, observed women assigned to the 
dietary intervention group, and an increase in all type of recreational 
physical activity for those allocated to the PA group (Masala, 2019).

In the main analysis, a decrease in MBD was observed among 
women in the dietary intervention and in the PA group compared 
to controls, while no significant effect on MBD was found among 
women in the double intervention group (Masala, 2019).

5.2  |  Genome-wide DNA methylation analyses

Buffy coats stored in liquid nitrogen were thawed, and genomic 
DNA was extracted using the ReliaPrep Blood gDNA Miniprep 
System Kit (Promega). The concentration of the genomic DNA 
was assessed by Qubit fluorimetric quantitation (Thermo Fisher 
Scientific). 500  ng of DNA was bisulfite-converted using the EZ-
96 DNA Methylation-Gold Kit (Zymo Research) and hybridized to 
Illumina Infinium HumanMethylation450 BeadChips (Illumina). 
Matched pairs (pre- and post-intervention) were arranged randomly 
on the same array. All the chips were subsequently scanned using 
the Illumina HiScanSQ system. Control probes included in the mi-
croarray were used to assess bisulfite conversion efficiency and to 
exclude lower-quality samples from further analyses.

5.3  |  Statistical analyses

5.3.1  |  Data pre-processing

Initial dataset has DNAm data for 482,421 CpG sites in 448 sam-
ples (224 matched pairs, pre-/post-intervention): 57 women in arm 
1 (diet); 56 women in arm 2 (PA); 53 women in arm 3 (diet +PA); and 
58 women in arm 4 (controls). Five samples were discarded for low 
bisulfite conversion total intensities according to the Illumina guide-
lines (Figure S1), leading to a final study sample of 219 matched pairs 
(pre-  and post-intervention). Potentially, cross-hybridizing probes 
and those containing SNPs with minor allele frequency lower than 
0.05 in European were excluded from the analysis (McCartney 
et al., 2016). Probes on Y chromosome and those with non-unimodal 
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distribution were also excluded, as well as those with low call rate 
(lower than 95%). The final dataset has 343,439 probes in 438 
(219 pairs) samples. Differences by batch for fluorescence intensi-
ties of methylated and non-methylated probes were removed using 
ComBat algorithm (Müller et al., 2016) (Figure S2). The proportion of 
WBC per sample was computed according to Houseman algorithm 
(Houseman et al., 2012).

5.3.2  |  Computation of DNAmGrimAge

We computed the epigenetic age acceleration (AA) measures ac-
cording to the algorithm described by Lu et al. (Lu et al., 2019). 
Briefly, DNAmGrimAge is computed in two steps: (1) computation of 
DNAm surrogate of seven plasma proteins and smoked pack-years, 
using a total of 1,030 CpGs; (2) computation of the DNAmGrimAge 
as a linear combination of the eight DNAm surrogates plus chrono-
logical age and sex. Weights were defined using a penalized regres-
sion model (Elastic-net regularization). DNAmGrimAge acceleration 
(DNAmGrimAA) is defined as the residuals of the regression of epi-
genetic on chronological age. Since DNAmGrimAge may be corre-
lated with WBC proportions, the DNAmGrimAA WBC-adjusted is 
defined as the residuals from the linear regression of DNAmGrimAA 
on WBC percentage. We used DNAmGrimAA for the analyses pre-
sented in the main text, and the measure adjusted for WBC for sen-
sitivity analyses.

5.3.3  |  Identification of stochastic epigenetic 
mutations (SEMs)

We identified SEMs based on the procedure described by Gentilini 
et al. (Gentilini et al., 2015). Specifically, for each CpG, considering 
the distribution of DNA methylation beta values across all samples, 
we computed the interquartile range (IQR)—the difference between 
the 3rd quartile (Q3) and the 1st quartile (Q1)—and we defined a 
SEM as a methylation value lower than Q1-(3×IQR) or higher than 
Q3+(3×IQR). Finally, for each individual, we computed the total 
number of SEMs across the assay. Since the number of SEMs in-
creased exponentially with age, we used a logarithmic transforma-
tion of the total number of SEMs (named EML) for all association 
analyses.

5.3.4  |  Regression models at baseline

We investigated the association of DNAmGrimAA and EML at base-
line with lifestyle and anthropometric characteristics at baseline via 
multivariate linear regression models. We used the epigenetic aging 
biomarkers as the outcomes; BMI, smoking habits (former/never), 
education, coffee and alcohol intake, PA, and dietary quality as the 
predictors. Dietary quality was defined using the Mediterranean 

diet score (bad diet =MDS <5; good diet =MDS ≥5) (Fasanelli et al., 
2019).

5.3.5  |  Difference-in-difference models

To investigate whether the two years dietary and PA intervention 
had positive effects on (meaning a reduction of) the two biologi-
cal aging biomarkers, we ran linear regression models. We used the 
delta DNAm-based biomarker (epigenetic measure after the two-
year trial minus those at baseline) as the outcomes and intervention 
group as the predictor (control group as the reference). In order to 
make the effect sizes of the EML biomarker comparable with those 
of DNAmGrimAA (i.e., expressed as years of increasing biological 
age), we re-scaled both the effect sizes and the standard deviation 
of the EML by a factor σ = σAA / σSEMs, where σAA is the deviation of 
DNAmGrimAA and σSEMs is the standard deviation of the EML vari-
able. After the linear transformation, the scaled effect size of EML 
can be interpreted as years of increasing biological age, as is the case 
of DNAmGrimAge.

To investigate which of the eight components of the DNAm​
GrimAA have the highest contribution in the observed associa-
tions, we repeated the analyses using each component as the out-
come, separately. To make the effect sizes comparable among them, 
estimates from the regression models were expressed as standard 
deviations increase.

In all the regression models, comparisons with p-value lower 
than 0.05 were considered statistically significant.

5.3.6  |  Enrichment analyses

The genomic locations of SEMs were annotated by merging the 
Illumina information on the chromosomal position of each probe 
with ENCODE/NIH Roadmap Chromatin ImmunoPrecipitation 
Sequencing (ChIP-Seq) data for chromatin states and transcription 
factor binding sites (TFBS) in untreated human embryonic stem 
cells (hESC) (ENCODE Project Consortium, 2012). We investigated 
whether SEMs were enriched in functional genomic regions using 
the procedure implemented in the R package regioneR (Gel et al., 
2016). Briefly, the algorithm is specifically designed to test whether 
a set of genomic loci significantly overlap with a set of genomic re-
gions, using a permutation procedure that controls the type I error 
rate and avoids spurious associations driven by the intrinsic struc-
ture of the DNA (i.e., relationship between CG content, gene pro-
moters, and copy number alterations) (Gel et al., 2016).

We investigated enrichment of SEMs according to (1) the “re-
lation to CpG islands” as defined in the Illumina annotation file, 
which has four mutually exclusive categories: CpG island, Shelf, 
Shore, non-CpG island (or “open sea” region) plus evidence for 
“Open chromatin state” and evidence for “DNase hypersensitiv-
ity” according to the Illumina annotation file (information from 
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the ENCODE project (Dunham, 2012)); (2) the chromatin state in 
human embryonic stem cells (hESC) according to the ENCODE 
ChIP-Seq experiments (Dunham, 2012), with 11 mutually exclusive 
categories: “active promoter,” “weak promoter,” “inactive/poised 
promoter,” “strong enhancer,” “weak/poised enhancer,” “insula-
tor,” “transcriptional transition/elongation,” “weak transcribed,” 
“Polycomb-repressed,” “heterochromatin/low signal/copy number 
variation (CNV),” and “non-regulatory regions”; (3) the TFBSs tar-
geted by 58 human proteins according to the ENCODE ChIP-Seq 
experiments (Dunham, 2012) in human embryonic stem cells (H1-
hESC); (4) Gene ontology enrichment using KEGG biological path-
ways (Kanehisa et al., 2004) as the reference dataset. The latter 
enrichment analysis was carried out using the MissMethyl R pack-
age, gometh function (Phipson et al., 2016).
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