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Abstract. This work investigates the performance of the enhanced beam Finite Element (FE)
formulations proposed in [20] for the dynamic response of frame structures subjected to shear
and torsional actions. These formulations introduce enriched kinematic descriptions to describe
the out-of-plane deformations of beam cross-sections, in addition to the standard in-plane rigid
modes. First model is based on the Vlasov’s theory, enriched to include shear induced warp-
ing, and is developed according to a displacement-based approach. To this end, additional
degrees of freedom (DOFs) are introduced at the two element end nodes and are used to inter-
polate warping along the element axis, so that the influence of warping restraints at the element
boundaries are properly accounted for. Second model is based on the Benscoter’s warping the-
ory, also enriched to include shear warping, and is developed according to a mixed formulation
free from shear-locking. Third model is the extension of second formulation and considers a
general and accurate warping description. Indeed, a variable number of additional DOFs is
introduced over the element cross-section and the warping displacement field is interpolated at
two levels, along the beam axis and over the cross-section plane.

Numerical analyses are presented to assess the performances of the three models in de-
scribing the seismic response of frame structures, when shear/torsional actions dominate the
structural behavior. Results are compared with the solutions obtained from standard beam and
more involving shell and brick FE models.
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1 INTRODUCTION

Simulation of the mechanical behavior of large scale structures is a challenging task, al-
though significant advances in computer technology were made during the last decades and in-
creasingly accurate computational models were proposed. In particular, civil engineering struc-
tures subjected to seismic actions deserve special efforts, as the dynamic response to ground
motions is strongly influenced by the material complex nonlinear behavior and multi-axial stress
interaction. Many works have focused on the effects of in-plane and out-of plane cross-section
deformation modes due to shear and torsional actions and, by employing enhanced beam mod-
els, they have proved that these phenomena can significantly reduce the element stiffness, influ-
encing the natural frequencies of the structure [1] and producing local and global buckling under
both static [2, 3, 4] and dynamic loading conditions [5]. Despite their considerable accuracy,
full generalization of these models and their introduction in numerical codes for the analysis
of large scale structures is hard to accomplish. Hence, more demanding two-dimensional (2D)
plate/shell or three-dimensional (3D) Finite Element (FE) approaches are often used, although
their lower efficiency and high computational cost. The adoption of beam FEs is to now the
most convenient choice for the analysis of large scale framed structures. However, standard
models are often based on classical rigid cross-section assumption and fail in correctly repro-
ducing the structural response, even more when thin-walled members subjected to shear and
torsion are considered.

Starting from the first proposals by Vlasov [6] and Benscoter [7], several enhanced beam
theories and numerical models were presented [8, 9, 10, 11]. An extensive review of the first
proposals is reported in [12], while more sophisticated formulations were recently developed,
to include also effects due to shear forces, e.g. [13, 14, 15, 16, 17, 18]. However, only in
few cases these models were focused on the analysis of large structures under dynamic loading
conditions, e.g [19].

This work explores the application to dynamic field of the 3D beam FE formulations pre-
sented in [20] and originally developed for the static analysis of frame structures subjected to
shear and torsional actions. Enriched kinematic descriptions are considered to include out-of-
plane deformations of beam cross-sections, in addition to the classical in-plane rigid modes.
Hence, warping effects related to both torsion and shear are accounted for.

First model is based on an extended Vlasov’s theory that includes both torsional and shear
warping and relies on an enriched displacement-based approach that prevents shear-locking
[21]. The out-of-plane cross-section displacement field is assumed as the linear combination
of three warping functions, a priori defined over the element cross-section, and the generalized
cross-section torsional curvature and shear strains. By introducing additional degrees of free-
dom (DOFs) at the element end nodes, these generalized strains are interpolated along the axis
as parabolic and linear functions, respectively. The model is referred to as Enhanced Vlasov
Displacement-based Element (EVDE).

Second model is based on Benscoter’s warping theory, also enriched to include both torsional
and shear warping. As opposed to the first model, warping variables defined along the axis
are assumed as independent kinematic quantities from cross-section strains. Hence, a mixed
approach is followed, where the warping displacement field is interpolated along the element,
together with the generalized cross-section stresses. The model is referred to as Simplified
Warping Mixed Element (SWME).

Third model is the general extension of the above latter formulation. Indeed, in addition to
the warping displacement interpolation along the element axis, this considers a 2D interpolation
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over the cross-section plane, thus allowing for higher order descriptions of the out-of-plane
deformations and full coupling of all stress components. The model is referred to as Enhanced
Warping Mixed Element (EWME).

Main details of the adopted beam FE models are reviewed, discussing their extension to
dynamic field. For EVDE and EWME, detailed derivation of the element governing equations
under dynamic effects is reported in [22] and [23], respectively, and is briefly recalled here.
More focus is dedicated to the dynamic extension of SWME, which is presented as a simplified
case of that proposed for the EWME.

Numerical analyses on a steel L frame and a reinforced concrete (RC) shear wall are pre-
sented to assess the performances of the three models in describing the seismic response of
the structures, when shear/torsional actions dominate the structural behavior. Elasto-plastic
and plastic-damage nonlinear material behavior is considered. Results are compared with the
solutions obtained from standard beam and more involving shell and brick FE models.

2 BEAM FINITE ELEMENT FORMULATIONS

The adopted model formulations are described referring to a straight beam with the local
intrinsic reference system (x, y, z) , being x the axis parallel to the section centroid locus and y
and z two general orthogonal axes lying on the cross-section plane. The element length and the
2D domain of the cross-section are indicated as L and A(x), respectively.

Under the assumption of small displacements and strains, all models introduce the descrip-
tion of the out-of-plane deformations partially removing the classical hypothesis of rigid cross-
sections. Hence, displacements um(x, y, z) of the generic point m are defined as the sum of
cross-section rigid body motions, ur(x, y, z), and warping displacements, uw(x, y, z), i.e.:

um(x, y, z) = ur(x, y, z) + uw(x, y, z) =


ur(x, y, z)
vr(x, y, z)
wr(x, y, z)

+


uw(x, y, z)

0
0

 (1)

Accordingly, three non-zero strain components are introduced, that is the axial elongation
εxx(x, y, z) and the two transverse shear strains, γxy(x, y, z) and γxz(x, y, z). These are col-
lected in vector εm(x, y, z) and are work-conjugate to the axial, σxx(x, y, z), and shear stresses
in the cross-section plane, τxy(x, y, z) and τxz(x, y, z), collected in vector σm(x, y, z).

Based on the above assumptions, three enriched beam FE formulations are derived. These
are presented in detail in [20] and are summarized in the following, focusing the attention on the
warping description hypotheses and the derivation of the element governing equations including
inertia effects.

2.1 Enhanced Vlasov Displacement-based Element (EVDE)

The EVDE formulation considers nine DOFs at each of the two end nodes, i and j, of
the element, being these the six standard translations and rotations, collected in vectors ui/j
and θi/j , respectively, and three additional DOFs used to describe cross-section warping, i.e.
the end cross-section torsional curvature, χxi/j , and shear strains, γyi/j and γzi/j , collected in
vectors ηi =

{
χx i γy i γz i

}T and ηj =
{
χx j γy j γz j

}T (Figure 1). Hence, the nodal
displacement vector is written as:

û =
{
uT ηT

}T
=
{
uTi θ

T
i uTj θ

T
j ηTi ηTj

}T
(2)

vectors uT and ηT collecting the standard and warping DOFs, respectively.
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Figure 1: Standard (black) and warping (blue) nodal DOFs for the EVDE

A reference basic configuration is introduced to remove the element rigid body motions and
only twelve basic displacements are used to define the element behavior. These are listed in
vector v̂, that results as:

v̂ =
{
uj θzi θzj θxj θyi θyj χxi γyi γzi χxj γyj γzj

}T
= âv û (3)

being âv the kinematic operator that removes the rigid body motions [20].
To avoid shear locking issues, generalized cross-section displacement interpolation is per-

formed by assuming the two cross-section shear strain fields, γy(x) and γz(x), as independent
quantities, instead of the bending rotations, θy(x) and θz(x) [21]. Thus, cross-section kinematic
vector results as:

ûs(x) =
{
u(x) v(x) θx(x) w(x) γy(x) γz(x)

}T (4)

being u(x), v(x) and w(x) the rigid traslations and θx(x) the rigid torsional rotation. The nodal
DOFs introduced permit to express the displacement fields u(x), γy(x) and γz(x) as linear
functions along the element axis, and v(x), w(x) and θx(x) as cubic polynomials. The relations
between ûs(x) and v̂ is written in compact form as:

ûs(x) = N̂(x) v̂ (5)

where N̂(x) is the element shape function matrix containing the polynomial interpolations for
the displacement and shear strain fields [20].

By enforcing the cross-section compatibility conditions, the generalized cross-section strain
vector, ê(x) = D(x) ûs(x), is introduced, being D(x) the compatibility differential operator.
Vector ê(x) collects the axial strain, εG(x), flexural curvatures, χz(x) and χy(x), torsional
curvature, χx(x), shear strains, γy(x) and γz(x), and additional warping strains, ζx(x) = χ′x(x),
ζy(x) = γ′y(x), ζz(x) = γ′z(x), related to warping, i.e.:

ê(x) =
{
εG(x) χz(x) γy(x) χx(x) χy(x) γz(x) ζx(x) ζy(x) ζz(x)

}T (6)

where the apex denotes the derivative with respect to x. Hence, the following relationship holds
between the generalized cross-section strains and the nodal basic displacement vector:

ê(x) = D̂(x) N̂(x) v̂ = â(x) v̂ (7)

where â(x) = D̂(x) N̂(x) is the cross-section strain compatibility matrix.
According to Vlasov’s warping description [6], strain fields γy(x), γz(x) and χx(x) are used

to describe cross-section out-of-plane displacements. Indeed, displacement field uw(x, y, z) is
defined as the linear combination of assigned 2D warping functions, defined over the cross-
section area and collected in vector Mη(y, z) =

{
Mη x(y, z) Mη y(y, z) Mη z(y, z)

}
. These

4



Daniela Addessi, Paolo Di Re and Cristina Gatta

are associated to torsion and shear along y- and z-directions, respectively, and, thus, are com-
bined by means of the corresponding strain fields, assumed as warping parameters, ηs(x) ={
χx(x) γy(x) γz(x)

}T , i.e.:

uw(x, y, z) = Mη(y, z) ηs(x) (8)

The warping functions Mη x(y, z), Mη y(y, z) and Mη z(y, z) are determined according to the
numerical procedure described in [20], which ensures the orthogonality conditions between
rigid and warping displacements, as required by Equation (1). Examples of warping functions
are depicted in Figure 2 for a S-shaped cross-section.

(a) (b) (c)

Figure 2: Warping functions for a S-shaped cross-section related to (a) torsion, Mη x(y, z), (b) shear along y-axis,
Mη y(y, z), and (c) shear along z-axis, Mη z(y, z)

Accounting for the warping description in Equation (8), material strains are determined as:

εm(x, y, z) = α̂(y, z) ê(x) (9)

where α̂(y, z) is the cross-section compatibility operator. By enforcing the virtual work princi-
ple, the generalized section stresses, ŝ(x), are defined as:

ŝ(x) =

∫
A(x)

α̂
T

(y, z) σm(x, y, z) dA (10)

with:

ŝ(x) =
{
N(x) Mz(x) T py (x) Mp

x(x) My(x) T pz (x) Bx(x) By(x) Bz(x)
}T (11)

being N(x) the axial stress, Mz(x) and My(x) the bending moments and Bx(x), By(x) and
Bz(x) the bi-moments, work-conjugate to ζx(x), ζy(x), ζz(x) [6, 13], i.e.:

Bk(x) =

∫
A(x)

Mη k(y, z)σxx(x, y, z) dA , with k = x, y, z (12)

Quantities Mp
x(x), T py (x) and T pz (x) are the primary torsional moment and shear stresses, each

resulting as the sum of the corresponding standard stress, Mx(x), Ty(x) or Tz(x), and bi-shear,
M s

x(x), T sy (x) or T sz (x).
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2.1.1 Derivation of the element governing equations

According to the displacement-based formulations [24], element equilibrium equations are
derived from the stationarity of a Lagrangian functional, L [um(x, y, z), u̇m(x, y, z)], function
of the displacements, um(x, y, z), and velocities, u̇m(x, y, z), and expressed as the difference
of the element kinetic, T [u̇m(x, y, z)], and potential energy, Π [um(x, y, z)], that is:

L [um(x, y, z), u̇m(x, y, z)] = T [u̇m(x, y, z)]− Π [um(x, y, z)] (13)

Kinetic energy is expressed first in terms of cross-section velocities, ˙̂us(x), and then in terms
of nodal velocities, ˙̂u, as reported in details in [22]. Hence, it finally results as:

T
(

˙̂u
)

=
1

2
˙̂uT (mr + mw) ˙̂u =

1

2
˙̂uT m ˙̂u (14)

where mr and mw are the element rigid and warping mass matrices related to the inertia effects
due to ur(x, y, z) and uw(x, y, z), respectively, while m = mr + mw is the total element
consistent mass matrix.

Similarly, potential energy is expressed first in terms of cross-section quantities, ê(x) and
ŝ(x), and then in terms of nodal quantities, û and p̂, this latter collecting in vector p the standard
forces and couples, pi/j and mi/j , work-conjugate to ui/j and θi/j , and in vector β the additional
generalized forces, βi and βj , work-conjugate to the warping DOFs, ηi and ηj , that is:

p̂ =
{
pT β

T
}T

=
{
pTi mT

i pTj mT
j β

T
i β

T
j

}T
(15)

Hence, it results:

Π (û) = ûT
{
âTv

[∫
L

âT (x) ŝ(x) dx−
∫
L

N̂T (x) q̂s(x) dx

]
− p̂ + p̂rq

}
(16)

where p̂rq is the vector collecting the basic reaction forces due to distributed loads, q̂s(x).
Under static loading conditions, the element equilibrium equations state that the term in brackets
must equal the basic nodal force vector, q̂, work-conjugate to v̂ [20]. Hence, by considering
Equations (14) and (16), expression of L in terms of nodal quantities is obtained as:

L
(

˙̂u, û
)

=
1

2
˙̂uT m ˙̂u− ûT

(
âTv q̂− p̂ + p̂rq

)
(17)

and the element governing equations are derived by enforcing its stationarity as:

d

dt

∂L
(

˙̂u, û
)

∂ ˙̂u
−
∂L
(

˙̂u, û
)

∂û
=

d

dt

∂T
(

˙̂u
)

∂ ˙̂u
+
∂Π (û)

∂û
= 0 (18)

which gives the element equilibrium equations in the form:

m ¨̂u + âTv q̂ + p̂rq = p̂ (19)

Linearization of Equation (19) results as:

m∆¨̂u + âTv ∆q̂ = m∆¨̂u + âTv k̂v ∆v̂ = m∆¨̂u + âTv k̂v âv︸ ︷︷ ︸
k̂

∆û = ∆p̂ (20)

where ∆ indicates the quantity increment and k̂ is the element tangent stiffness matrix, being:

k̂v =
∂q̂

∂v̂
=

∫
L

âT (x)
∂ŝ(x)

∂ê(x)

∂ê(x)

∂v̂
dx =

∫
L

âT (x)
∂ŝ(x)

∂ê(x)
â(x) dx (21)
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2.2 Simplified Warping Mixed Element

The SWME formulation considers an arbitrary number of nodes, nw, located along the ele-
ment axis (Figure 3), always including end nodes, i and j. At each node, three DOFs are added

Internal nodes

nwη3η2η1η

x

y

z
i j

ui

θi

uj

θj

L

Figure 3: Standard (black) and warping (blue) nodal DOFs for the SWME model

and used to interpolate cross-section warping due to torsion and shear. These are collected in
vector ηn =

{
ηxn ηy n ηz n

}T , where subscript n = 1, . . . , nw indicates the node number.
Hence, the nodal displacement vector is written as:

û =
{
uT ηT

}T
=
{
uTi θ

T
i uTj θ

T
j ηT1 ηT2 . . . ηTnw

}T
(22)

The element rigid body motions are removed from the standard DOFs, u, and vector v,
collecting the standard basic nodal displacements, is obtained as follows:

v =
{
uj θzi θzj θxj θyi θyj

}T
= av u (23)

being av the standard element compatibility matrix [18]. The total basic deformation displace-
ment vector v̂ reads:

v̂ =
{
vT ηx 1 ηy 1 ηz 1 . . . ηxnw ηy nw ηz nw

}T
=
{
vT ηT

}T (24)

The SWME model follows a mixed beam formulation [25] where standard generalized cross-
section stresses, s(x) =

{
N(x) Mz(x) Ty(x) Mx(x) My(x) Tz(x)

}T , are interpolated
along the element axis, by enforcing the equilibrium conditions in strong form, i.e.:

s(x) = b(x)q + sq(x) (25)

being q =
{
px j mz i mz j mx j my i my j

}T the vector collecting the basic nodal forces
work-conjugate to v, b(x) the equilibrium matrix [23] and sq(x) the generalized section stress
vector due to distributed loads.

In addition, the warping displacement field uw(x, y, z) is interpolated. To this end, Ben-
scoter’s warping description is adopted [7], where, similarly to Equation (8), uw(x, y, z) is de-
fined as the linear combination of warping functions, Mη(y, z). However, independent warping
parameters, ηs(x) =

{
ηx(x) ηy(x) ηz(x)

}T , are considered to describe warping variation
along x. Hence, by exploiting the additional warping DOFs, ηxn, ηy n and ηz n at the element
nodes, polynomial interpolation of fields ηx(x), ηy(x) and ηz(x), respectively, is introduced and
Equation (8) is written as:

uw(x, y, z) =
nw∑
n=1

Nn(x)Mη(y, z) ηn (26)

being Nn(x) the Lagrange polynomial shape function associated to node n.
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The material strains εm(x, y, z) are, thus, determined as:

εm(x, y, z) = α(y, z) e(x) + αζ(y, z) ζs(x) + αη(y, z) ηs(x) =

= α(y, z) e(x) +
nw∑
n=1

[
∂Nn(x)

∂x
αζ(y, z) +Nn(x) αη(y, z)

]
ηn (27)

where three contributions are distinguished, the first related to rigid cross-section displacements
and the others to warping. Vector e(x) collects the standard generalized cross-section strains
work-conjugate to s(x) and matrix α(y, z) is the compatibility operator, while vector ζs(x) ={
ζx(x) ζy(x) ζz(x)

}T contains the strain quantities assumed as equal to the derivatives of the
warping parameters with respect to x (see also Equation (6)). Matrices αζ(y, z) and αη(y, z)
are compatibility operators related to the warping field with size 3× 3 [20].

The virtual work equivalence, enforced by alternatively assigning a virtual variation to the
three fields composing εm(x, y, z) [20], leads to the definition of standard, s(x), and warping,
bw(x) and tw(x), generalized cross-section stresses, that is:

s(x) =

∫
A(x)

α
T (y, z) σm(x, y, z) dA (28)

bw(x) =

∫
A(x)

αζ(y, z)
T

σm(x, y, z) dA, tw(x) =

∫
A(x)

αη(y, z)
T

σm(x, y, z) dA (29)

The latter are work-conjugate to ζs(x) and ηs(x), respectively, and are equivalent to the bi-
moments and bi-shears introduced in the EVDE model.

2.2.1 Derivation of the element governing equations

The element governing equations are derived from the stationarity of an extended Lagrangian
functional, expressed as function of four independent fields, being these the material rigid dis-
placements, ur(x, y, z), total strains, εm(x, y, z), and stresses, σm(x, y, z), and warping dis-
placement, uw(x, y, z), i.e.:

L(ur, εm,σm, uw, u̇r, u̇w) = T (u̇r, u̇w)− Π(ur, εm,σm, uw) (30)

where dependency of the quantities from spatial coordinates x, y and z is omitted for brevity.
The kinetic energy is expressed first in terms of rigid cross-section velocities, u̇s(x), being
us(x) =

{
u(x) v(x) θx(x) w(x) θy(x) θz(x)

}T , and then in terms of all nodal veloci-
ties, u̇ and η̇, following [23]. This is accomplished by accounting for Equation (26) and by
expressing the rigid cross-section displacements and velocities in terms of nodal DOFs as fol-
lows:

us(x) = Ns(x)u + Nw(x) η and u̇s(x) = Ns(x) u̇ + Nw(x) η̇ (31)

where Ns(x) and Nw(x) are the shape function matrices relating us(x) to the standard and
warping nodal DOFs, u and η, respectively. These are derived by using the unit load method,
described in more detail in [23] for the EWME. Hence, the kinetic energy results as:

T (u̇, η̇) =
1

2
u̇T mrr u̇ + u̇T mrw η̇ + η̇

T mwr u̇ +
1

2
η̇
T (mr

ww + mww) η̇ (32)
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where mrr, mrw, mwr and mr
ww are the element mass matrices associated to the generalized

rigid cross-section velocity u̇s(x) and are defined as:

mrr =

∫
L

NT
s (x)ms(x)Ns(x) dx , mrw =

∫
L

NT
s (x)ms(x)Nw(x) dx = mT

wr

mr
ww =

∫
L

NT
w(x)ms(x)Nw(x) dx (33)

being ms(x) the standard rigid cross-section mass matrix [23], while mww is the element mass
matrix associated to the warping velocity u̇w(x, y, z) and is defined as:

mww =

∫
L

 N1(x)msw(x)N1(x) . . . N1(x)msw(x)Nnw(x)
... . . . ...

Nnw(x)msw(x)N1(x) . . . Nnw(x)msw(x)Nnw(x)

 dx (34)

being msw(x) the cross-section mass matrix associated to u̇w(x, y, z), that results as:

msw(x) =

∫
A(x)

ρ(x, y, z)MT
η (y, z)Mη(y, z) dA (35)

where ρ(x, y, z) indicates the material density.
Similarly, the potential energy is expressed first in terms of the standard cross-section quanti-

ties, us(x), e(x) and s(x), and warping displacements, uw(x, y, z), and then in terms of standard
cross-section strains and stresses, e(x) and s(x), and nodal DOFs, u and η. Hence, it results:

Π(u, e, s,η) =

∫
V

ε
T
m[e, uw(η)] σm(εm) dV +

∫
L

sT {e[us(u,η)]− e} dx+

+ Πext[u,η,us(u,η)] (36)

where Πext[u,η,us(u,η)] is the external load potential.
By considering Equations (32) and (36), expression of L results as:

L (u, e, s,uw, u̇, η̇) =
1

2
u̇T mrr u̇ + u̇T mrw η̇ + η̇

T mwr u̇ +
1

2
η̇
T (mr

ww + mww) η̇ +

+

∫
V

ε
T
m[e, uw(η)] σm(εm) dV +

∫
L

sT {e[us(u,η)]− e} dx+ Πext[u,η,us(u,η)] (37)

and four element governing equations are derived, by assuming u, e(x), s(x) and uw as inde-
pendent variables, that is by imposing the following four stationarity conditions:

d

dt

∂L (u, e, s,uw, u̇, η̇)

∂q̇h
− ∂L (u, e, s,uw, u̇, η̇)

∂qh
=

d

dt

∂T (u̇, η̇)

∂q̇h
+
∂Π(u, e, s,η)

∂qh
= 0 (38)

with qh ≡ u, e, s, η.
For qh ≡ e, s, the term related to the kinetic energy vanishes and the resulting equations are

those holding for static loading conditions, that is the nonlinear material constitutive law and
element compatibility enforced in weak form as:

σm(x, y, z) = σ̂m[εm(x, y, z)] (39)

v =

∫
L

bT (x)e(x) dx (40)
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By contrast, for qh ≡ u, η the dynamic equilibrium equations result, related to rigid and
warping motions, respectively, and written as:

mrr ü + mrw üw + aTv q− prq = p (41)

mwr ü + (mr
ww + mww) üw +

∫
L

 ∂N1(x)
∂x

. . .
∂Nnw (x)

∂x

bw(x) dx+

∫
L

 N1(x)
. . .

Nnw(x)

 tw(x) dx = β (42)

where prq is the vector collecting the basic reaction forces due to distributed loads, written
considering only the twelve standard nodal components, while vectors p and β contain the
element nodal forces work-conjugate to u and η, respectively. These are arranged in the total
nodal force vector p̂, resulting as:

p̂ =
{
pT β

T
}T

=
{
pTi mT

i pTj mT
j β

T
1 β

T
2 . . . β

T
nw

}T
(43)

Linearization of Equations (41) and (42) is written in compact form as [23]:[
mrr mrw

mwr mr
ww + mww

]
︸ ︷︷ ︸

m

{
∆ü
∆η̈

}
︸ ︷︷ ︸

∆¨̂u

+

[
krr krw
kwr krww + kww

]
︸ ︷︷ ︸

k

{
∆u
∆η

}
︸ ︷︷ ︸

∆û

=

{
∆p
∆β

}
︸ ︷︷ ︸

∆p̂

(44)

and gives the definition of the total consistent element mass, m, and stiffness matrix, k. Simi-
larly to m, matrix k is composed by five contributions. First four, krr, krw, kwr and krww are the
element stiffness matrices associated to the generalized rigid cross-section displacement us(x)
and are defined as:

krr = aTv f
−1 av, krw = aTv f

−1 bsw, kwr = bws f
−1 av, krww = bws f

−1 bsw (45)

where f is the standard consistent element flexibility matrix [25] and bsw and bws are the ele-
ment warping compatibility and equilibrium matrices, respectively [18, 23]. While, kww is the
element stiffness matrix associated to warping.

2.3 Enhanced Warping Mixed Element

The EWME formulation is the enhanced version of the SWME model. Indeed, a richer
warping interpolation is performed in this case, by introducing an arbitrary number, mw, of
DOFs at each of the nw element nodes. These are located at uniformly distributed points over
the cross-section, as depicted in the examples of Figure 4. Hence, vector ηn collecting all DOFs,
uwnm, with m = 1, . . . ,mw, for node n, now reads as:

ηn =
{
uwn1 uwn2 . . . uwnmw

}T (46)

while nodal displacement vector û is arranged as in Equation (22).
As opposed to the SWME, where warping profiles, Mη(y, z), over the cross-section are

assigned, for the EWME, warping interpolation involves all three spatial dimensions. Hence,
instead of Equation (26), this assumes:

uw(x, y, z) =
nw∑
n=1

Nn(x)

[
mw∑
m=1

Mm(y, z)uwnm

]
=

nw∑
n=1

Nn(x)Mη(y, z) ηn (47)
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Warping

DOFs

Rectangular L-shaped S-shaped

y

z

y

z

y

z

Figure 4: Examples of EWME warping DOFs for typical cross-sections at element node n

where Mη(y, z) is now a row vector containing 2D Lagrange polynomials Mm(y, z) used to
interpolate uw(x, y, z) over the cross-section plane.

The material strains, εm(x, y, z), are expressed in a similar fashion to Equation (27), i.e.:

εm(x, y, z) = α(y, z) e(x) +
nw∑
n=1

[
∂Nn(x)

∂x
αζ(y, z) +Nn(x) αη(y, z)

]
ηn (48)

although matrices αζ(y, z) and αη(y, z) have, now, size 3 × mw and contain polynomials
Mm(y, z) and their derivatives with respects to y and z [20].

Generalized cross-section stresses playing the role of bi-moments and bi-shears, bw(x) and
tw(x), are derived as in Equation (29) and all other fundamental relationships and governing
equations are obtained through similar derivations performed for the SWME, that lead to formal
identical expressions. Complete details of the element formulation are described in [23].

3 NUMERICAL APPLICATIONS

To validate and compare the performances of the adopted beam formulations, two numerical
applications are considered. First application simulates the behavior of a steel L frame with
beam and column having symmetric cross-sections and subjected to a base earthquake excita-
tion. Second application reproduces the response of a RC U-shaped shear wall under similar
loading conditions.

3.1 Steel L frame with flange continuity

The behavior of the steel frame depicted in Figure 5 is analyzed. The specimen is composed
by a 4 m long column and 3 m long beam having same I-shaped cross-section geometry. Cross-
section orientation is such that flange continuity is obtained at the beam-column connection
joint (point C in the figure) and rigid and warping displacements are prevented at the ends
of the frame (points A and E). Transverse displacement along y direction of point C is also
restrained. Similar specimen was studied in [26, 27] under static loading conditions, while,
here, dynamic response to ground acceleration is investigated. To this end, in addition to the
mass of the frame, a lumped mass M = 7645 kg is considered, applied at mid-span of the beam
(point D) and representing the mass of a typical slab supported by the frame. A small vertical
eccentricity e is assumed between mass and centroidal axis of the beam, being equal to 0.05 m,
that is half of the cross-section width.

Elasto-plastic material response is assumed. Thus, J2 plasticity model with linear kinematic
hardening is adopted, with Young’s modulus Es = 205000 MPa, Poisson ratio νs = 0.3, yield-
ing stress σsy = 150 MPa and hardening modulus Hs

k = 0.01Es. Material density is assumed as
equal to ρ = 7850 kg/m3.
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Figure 5: Geometry of the steel L frame with flange continuity.

A uniform mesh made of 10 and 14 FEs for beam and column, respectively, is used to model
the frame. For the SWME and EWME, parabolic warping interpolation is assumed along the
element axis, i.e. nw = 3. Same order of interpolation is considered for torsional warping
in the EVDE, while shear warping is assumed as linear (Equations (5) and (8)). Over the
cross-section plane, EWME considers parabolic and cubic warping interpolation along web and
flanges, respectively, and linear interpolation across the membrature thickness, i.e. mw = 28,
on the basis of the findings reported in [10, 18, 23, 20]. Same interpolation order is used to
compute warping profile functions Mη(y, z), adopted in the EVDE and SWME.

(a) (b) (c)

(d) (e) (f)

Figure 6: Steel L frame: deformed shape for mode (a) 1, (b) 2, (c) 3, (d) 4, (e) 5, (f) 6
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Fiber discretization is used to compute nonlinear cross-section response, that is to evaluate
cross-section resultant forces and stiffness. In this case, fibers are distributed according to the
Gauss-Legendre rule, as exact integration of the element torsional stiffness is required to obtain
the correct response of the frame. Fiber grid is arranged to have 6 fibers placed along web and
flanges and 3 across the membrature thickness.

Table 1: Elastic circular frequency ωi [rad/s] obtained for the L portal frame

Mode
FE type 1st Flex. 1st Tors. 2nd Flex. 3rd Flex. 2nd Tors. 4th Flex.

Shell 10.55 20.03 123.01 140.28 176.37 356.54
EWME 10.49 19.80 123.67 143.36 176.70 358.47
SWME 10.48 19.80 123.66 143.35 176.61 358.41
EVDE 10.49 19.87 123.68 143.37 176.28 358.54

Rigid section beam 10.48 9.07 123.64 143.33 84.70 358.27
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Figure 7: Steel L frame: circular frequency errors obtained with beam models with respect to the shell solution

For all models, damping ratio is set equal to 2% and introduced through Rayleigh method
on the basis of the first two elastic frequencies of the frame [28]. These correspond to the first
in plane flexural and torsional natural modes, respectively, as depicted in Figures 6(a) and 6(b).
Indeed, Figure 6 shows the deformed shapes for the first 6 elastic modes obtained with a refer-
ence model made of 2268 4-node Discrete Kirchhoff Quadrilateral shell elements. The blue and
colored configurations indicate the undeformed and deformed shapes, respectively. The circu-
lar frequencies ωi are reported in Table 1 and are compared with the values obtained from the
adopted enhanced beam models and with a standard beam model assuming rigid cross-section.
For this latter, cross-section torsional inertia is computed according to the thin-walled beam the-
ory and results equal to J = κt Iρ, being Iρ the cross-section polar inertia and κt = 0.001153 the
correction coefficient. Figure 7 shows the solution differences in terms of percentage error for
ωi with respect to the reference results. As shown, all enhanced beam formulations give similar
results that perfectly agree with the shell solution. By contrast, the standard beam model pro-
vides incorrect frequency values for the torsional modes. Indeed, this model neglects warping
and, thus, warping restraints at the boundaries. Moreover, due to the particular orientation, the
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end cross-sections of beam and column that meet at the joint C undergo equal warping profile.
As a result, when beam twists, warping of the end cross-section at C produces warping in the
column, which twists as well (see, for instance, Figure 6(e)). As opposed to the standard model,
in the enhanced beam formulations, the additional nodal warping DOFs placed at the nodes per-
mit to correctly account for boundary restraints. Moreover, mesh connectivity ensures warping
continuity between column and beam and, thus, the correct warping transmission at the joint C.

The frame dynamic response is also investigated by applying to the frame the ground ac-
celeration history depicted in Figure 8(a), and considering both linear elastic and elasto-plastic
constitutive behavior. Peak ground acceleration results equal to 0.4167 g, where g indicates
the gravity acceleration. Figure 8(b) shows the resulting Fourier transform and, thus, indicates
the frequency content of the acceleration signal. In the same figure, the green dotted vertical
line indicates the value of the first torsional natural frequency of the frame. Ground accelera-
tion is assumed to act in the direction Y transverse to the frame plane. Newmark method [28]
is adopted for time integration of the structure global equilibrium equations, with coefficients
β = 0.25 and γ = 0.5 and time step set equal to 0.001 s.
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Figure 8: Base excitation signal: ground acceleration (a) history and (b) Fourier transform

Although mass eccentricity, e, is small, the applied ground acceleration mainly induces tor-
sional deformation of the beam and, due to warping continuity, torsion is transmitted to the
column. By contrast, transverse flexural deformation are mainly limited to the beam, as ex-
pected, given the assumed boundary restraints. Figure 9 plots the time-evolution of (a) the
torsional rotation, θBx , of the column mid-height cross-section, (b) the torsional rotation, θDx ,
and (c) transverse displacement, vD, of the beam mid-span cross-section, respectively, under
the assumption of linear elastic material. Solid black curves represent the reference solutions
obtained with the shell FEs. Red, yellow and blue curves refer to those obtained with the
EWME, SWME and EVDE models, respectively. Finally, dotted dark gray curves indicate the
response obtained with the standard beam formulations. As observed in the modal decomposi-
tion analysis, standard beam model, not considering the boundary warping restraints, provides
a significantly more flexible response, as opposed to all enhanced models that perfectly agree
with the reference response. In addition, standard model does not account for warping trans-
mission at the joint and, thus, gives null rotations for the column (horizontal line at zero in
Figures 9(a), as opposed to the enhanced beam models that correctly capture the column tor-
sional deformation.
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Figure 9: Linear elastic response of the steel L frame: time history of (a) the torsional rotation of the column at
mid-height (point B), (b) torsional rotation and (c) transverse displacement of the beam at mid-span (point D)
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Figure 10: Nonlinear response of the steel L frame: time history of (a) the torsional rotation of the column at
mid-height (point B), (b) torsional rotation and (c) transverse displacement of the beam at mid-span (point D)
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Similar results are plotted in Figure 10 for elasto-plastic material response, showing that
all enhanced beam formulations correctly simulate the evolution of the plastic effects in the
material. Indeed, due to warping constraints, torsion of the members induces significant shear-
lag effects and, thus, when ground acceleration reaches the peak value, at almost 1.3 s, axial
stress exceeds material yield stress, at both ends and mid-height of the beam. Consequently,
plastic strains affect the remaining part of the time-history response. As opposed to the beam
model formulations accounting for warping, the standard beam model does not capture shear-
lag and shows yielding of the material caused by severe torsional shear stresses acting in the
cross-section plane.

Fourier transforms of the beam and column rotation histories, θBx and θDx , are plotted in
Figure 11, for (a-b) linear elastic and (c-d) nonlinear material response, respectively. These
confirm that main frequency content of the response is associated to torsional deformation mode
of the frame. First torsional frequency of the frame is indicated by the green dotted vertical lines.
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Figure 11: Steel L frame: Fourier transform of the torsional rotation of (a-c) the column mid-height (point B) and
(b-d) beam mid-span cross-section (point D), for (a-b) linear elastic and (c-d) nonlinear material response

3.2 RC U-shaped shear wall

To investigate the performances of the presented enhanced beam models describing the in-
teraction between warping and damaging mechanisms, the response of the RC U-shaped shear
wall in Figure 12 is analyzed under dynamic loadings. Same specimen was experimental tested
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Figure 12: RC U-shaped shear wall: (a) specimen and (b) cross-section geometry (dimensions in cm)

by Pegon et al. [29] under cyclic transverse loads applied at the top slab, while ground ac-
celeration is considered, here, as base excitation, i.e. the same signal reported in Figure 8 but
scaled so that peak ground acceleration results equal to 0.8334 g. This is assumed to act in the
x direction, parallel to the wall web.

In addition to the weight of the top slab, the wall is vertically loaded by a constant compres-
sion force equal to 2000 kN. As a result, a lumped mass M = 203969 kg is applied at the top
of the wall (at z = 3.90 m), representing the mass of the slab and that of the additional vertical
load. Concrete density is assumed as equal to ρ = 2548.42 kg/m3.

The wall is modeled as a vertical cantilever, where square slabs are assumed to fully prevent
warping deformations of the bottom and top cross-sections. A uniform mesh made of 4 FEs is
used. For the SWME and EWME, parabolic warping interpolation is assumed along the element
axis, i.e. nw = 3. Over the cross-section plane, EWME considers cubic warping interpolation
along web and flanges and linear interpolation across the membrature thickness, i.e. mw = 24.
Same interpolation order is used to compute warping profile functions Mη(y, z), adopted in the
EVDE and SWME.

A cross-section fiber discretization is defined so that 9 fibers are placed along web and flanges
and 3 across the membrature thickness, while concrete response is reproduced by adopting the
damage-plastic model proposed in [18]. Table 2 lists the material parameters, being σt and
σc the uniaxial plastic limit stress in tension and compression, respectively, Hk and Hi the
kinematic and isotropic hardening moduli, respectively, Y0t and Y0c the damage thresholds in
tension and compression, respectively, kt, at, kc, ac and β parameters governing the damage
evolution. Young’s modulus and Poisson ratio are assumed as equal to E = 28000 MPa and
ν = 0.25, respectively. The Giuffrè-Menegotto-Pinto model [30] describes the behavior of the
steel reinforcing bars, with Es = 200 000 MPa, σsy = 540 MPa and b = 1.0% being the Young’s
modulus, plastic yield strength and ratio between hardening and elastic stiffness, respectively.
The transition coefficient R from the elastic to the plastic state required in the model results
from the following parameters: R0 = 20, a1 = 18.5 and a2 = 0.15 and no isotropic hardening
is assumed.
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Figure 13: Linear elastic response of the RC U-shaped shear wall: time history of the transverse displacement
u, along x, of the top slab obtained with (a) EWME (red dotted curve), (b) SWME (green dotted curve) and (c)
EVDE (blue dotted curve), compared with the reference brick FE solution (black curves)
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Table 2: Material parameters for concrete model in RC U-shaped wall.

σt σc Hk Hi Y0t kt at Y0c kc ac β

3.3 MPa 30 MPa 0.8E 0.001E 6.7 10-5 2.0 10-5 0.8 4.0 10-4 2.8 10-3 0.8 0.5

Damping ratio is set equal to 2% and introduced through Rayleigh method [28] on the basis
of the first two elastic frequencies of the frame and Newmark method [28] is adopted for time
integration of the structure global equilibrium equations, with coefficients β = 0.25 and γ = 0.5
and time step set equal to 0.001 s.

Figure 13 shows the evolution of the transverse displacement u, along x, of the top slab, un-
der linear elastic material behavior, for (a) EWME model (red dotted curve), (b) SWME model
(green dotted curve) and (c) EVDE model (blue dotted curve). Each response is compared with
a reference solution (black curve) obtained with a FE model made by 24480 8-node bricks.

As opposed to the steel portal frame analyzed in Section 3.1, in this test, the asymmetric ge-
ometry of the wall cross-section induces significant coupling between shear/bending in the x-z
plane and torsional behavior. As a consequence, only the most sophisticated EWME model is
able to correctly capture the shear/torsional warping interaction and provide the same solution
as that obtained by the brick 3D model. The SWME provides a correct response only for the
first 2 s of the history, while it slightly overestimates the wall horizontal displacement for the
remaining part. Worse results are obtained with the EVDE, whose response also shows a signif-
icant overestimation of the maximum displacements occurring during oscillations. However, if
compared with the solution provided by a standard beam model assuming rigid cross-sections,
that obtained with the SWME results significantly more accurate, proving that this model can
be considered as a good compromise between more sophisticated, but onerous, formulations
and simpler, but less demanding, approaches. The standard beam solution is plotted in Fig-
ure 14 as gray dotted curve. For this model, shear areas in the x and y directions are set equal
to Axt = 0.4286A and Ayt = 0.7142A, being A the cross-section area, while torsional inertia is
assumed as J = 0.05495 Iρ, being Iρ the cross-section polar inertia.
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Figure 14: Linear elastic response of the RC U-shaped shear wall: time history of the transverse displacement
u, along x, of the top slab obtained with reference brick FE (black curve) and standard beam (gray dotted curve)
solutions
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Different trend is observed for nonlinear material behavior. Figure 15 shows the displace-
ment time histories along x of the top slab, obtained by considering the nonlinear response of
concrete and steel. Figure 15(a) compares the solution obtained with the EWME (red curve)
with the linear elastic response provided by the brick FE model (gray curve). When ground
acceleration reaches the peak value, at almost 1.3 s, the wall significantly damages at the base,
without collapsing. As a result, structural response with lower frequency content is observed
compared to the linear elastic behavior. As expected, higher peak displacements occur in the
first part of the history, around the peak acceleration, while lower amplitude oscillations are
shown in the remaining part.
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Figure 15: Nonlinear response of the RC U-shaped shear wall: time history of the transverse displacement u, along
x, of the top slab obtained with (a) EWME (red curve) and (b) SWME (yellow dotted curve), EVDE (blue dashed
curve) and standard beam (gray dotted curve)

In this case, all beam formulations, including the standard model, are able to correctly reproduce
the wall response, as shown in Figure 15(b). This compares solutions obtained with the other
beam models (SWME as yellow dotted curve, EVDE as blue dashed curve and standard beam as
gray dotted curve) with the EWME results (red curve). Indeed, after damaging, wall behavior is

21



Daniela Addessi, Paolo Di Re and Cristina Gatta

mainly governed by the nonlinear hinge that forms at the base and, although shear contribution
is not negligible, warping effects become less important.

Fourier transforms of the displacement histories are plotted in Figures 16, using same curve
styles of Figure 15. Green dotted vertical line indicates the value of the first elastic natural
frequency of the wall involving shear/bending in the x direction, coupled with torsion.
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Figure 16: RC U-shaped shear wall: Fourier transform of the transverse displacement histories of the top slab

This plot confirms that, for the nonlinear behavior, natural modes of the wall that are excited by
the seismic action are associated to lower frequencies, compared to the linear elastic response,
as damage reduces the stiffness of the structure.

The values of the first four elastic circular frequencies ωi obtained from all models are re-
ported in Table 3.

Table 3: Elastic circular frequency ωi [rad/s] obtained for the RC U-shaped shear wall

Mode
FE type 1st Flex.(y-z) 1st Flex.(x-z)/Tors. 1st Axial. 2nd Flex.(x-z)/Tors.

Brick 28.24 30.39 181.91 465.05
EWME 29.03 31.02 185.08 490.81
SWME 29.01 31.60 185.08 510.73
EVDE 29.18 32.61 185.08 542.53

Rigid section beam 28.86 35.32 185.08 205.75

4 CONCLUSIONS

• This paper presented three beam FE formulations for the analysis of frame structures
subjected to dynamic shear and torsional actions. These are derived by extending to
the dynamic analysis previously proposed enriched models, where kinematic descrip-
tion includes shear and torsional cross-section warping and, thus, coupling between ax-
ial/bending and shear/torsional stress components.

• More sophisticated EWME model considers a detailed two-level warping displacement
field interpolation. By contrast, SWME model considers pre-defined profile functions
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to describe warping variation over the cross-section and interpolates warping along the
element axis only, by means of independent quantities, according to Benscoter’s theory.
Similar assumptions are made in the EVDE model, but warping axis variation is directly
linked to torsional curvature and shear strains, according to Vlasov’s theory.

• Numerical analyses performed on the steel L frame showed that, when torsional effects
dominate the response, standard beam formulations based on rigid cross-section assump-
tion fail in reproducing the correct structural behavior. By contrast, all three enhanced
FEs result highly accurate and are preferable to higher order shell/brick FE models for
the analysis of large scale structures, due to the lower computational cost these require.
This is particularly true for the simplest model of the three, EVDE, which, however, gives
satisfactory results only for open symmetric cross-section geometries, as proven in [20].
For closed and/or un-symmetric profiles, SWME model is the best alternative of the set,
as this involves a lower number of additional nodal DOFs than EWME.

• Numerical analyses performed on the RC U-shaped shear wall confirm the findings ob-
served for the steel L frame. Linear elastic response predicted with EWME model per-
fectly matches that evaluated with the 3D brick FE model. Good approximation is also ob-
tained with the SWME model. Instead, major discrepancies are detected with the EDVE
formulation, as a consequence of the non-symmetric cross-section geometry. However,
tests also showed that nonlinear phenomena due to onset of damage can significantly
modify the structural response, making the warping effects less important. As a result,
correct structural response may be obtained also with simpler models and even standard
formulations.
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