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Circuito Escolar s/n, Ciudad Universitaria, 04510, Cd. de México, Mexico
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Abstract. This paper concerns with the motion of the interface for a damped

hyperbolic Allen–Cahn equation, in a bounded domain of Rn, for n = 2 or

n = 3. In particular, we focus the attention on radially symmetric solutions
and extend to the hyperbolic framework some well-known results of the classic

parabolic case: it is shown that, under appropriate assumptions on the initial

data and on the boundary conditions, the interface moves by mean curvature
as the diffusion coefficient goes to 0.

1. Introduction. The aim of this paper is to analyze the behavior of the solutions
to the nonlinear damped hyperbolic Allen–Cahn equation

τutt + g(u)ut = ε2∆u− F ′(u), x ∈ Ω, t > 0, (1.1)

in a bounded domain Ω ⊂ Rn, n = 2 or 3, which has a C1 boundary, with appropri-
ate boundary conditions and initial data u(·, 0) = u0 and ut(·, 0) = u1 in Ω. We will
specify later the precise assumptions on the functions F, g; from now, we say that g
is a (smooth) strictly positive function and F is a double well potential with wells
of equal depth. The main example we have in mind is F (u) = 1

4 (u2 − 1)2 and so

the reaction term in the equation (1.1) is equal to u−u3. The relaxation parameter
τ and the diffusion coefficient ε are strictly positive and we consider the case when
ε is small. Indeed, our interest is in the limiting behavior of the solutions to (1.1)
as ε→ 0+.

Equation (1.1) is a hyperbolic variant of the classic Allen–Cahn equation

ut = ε2∆u− F ′(u), (1.2)
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which is obtained from (1.1) in the (formal) limit τ → 0 when g ≡ 1. The latter
equation is a classic reaction-diffusion equation with a balanced bistable reaction
term, and it has been proposed in [2] to describe the motion of antiphase bound-
aries in iron alloys. The reaction function F has two global minimal points, that
correspond to two stable stationary solutions of the equation (1.2). In this paper,
we assume that the only global minimal points of F are −1 and +1.

In general, reaction-diffusion equations are widely used to describe a variety of
phenomena such as pattern formation and front propagation in biological, chemical
and physical systems. However, such equations undergo the same criticisms of
the linear diffusion equation, mainly concerning the infinite propagation speed of
disturbances and lack of inertia. There are many ways to overcome these unphysical
properties; one of them is to consider hyperbolic reaction-diffusion equations like
(1.1). In particular, substituting the classic Fick’s law with a relaxation relation
of Maxwell–Cattaneo type, one obtains the hyperbolic reaction-diffusion equation
(1.1) with g = 1 + τF ′′. For a complete discussion on the derivation of the model
(1.1) and on the physical or biological details see [6, 18, 20, 21, 22, 23, 25]. We
also mention that the rigorous analysis on the existence and nonlinear stability of
propagating fronts in one space dimension can be found in [24].

As it was previously mentioned, we are interested in the limiting behavior of the
solutions as the diffusion coefficient ε→ 0+. In the one dimensional case, it is well
known that equation (1.2) exhibits the phenomenon of metastability. If we consider
equation (1.2) in a bounded domain with appropriate boundary conditions, then
we have persistence of unsteady structure for a very long time. Indeed, the only
stable states are the constant solutions −1 or +1 (the global minimal points of the
potential F ), but it has been proved that if the initial profile has a N -transition
layer structure, i.e. it is approximately constant to −1 or +1 except close to N
transition points, then the solution maintains that structure for an exponentially
long time, namely a time proportional to exp (Al/ε), where A is a positive constant
depending only on F and l is the minimum distance between the transition points.
There are many papers devoted to the study of the metastability for the Allen–Cahn
equation; here we recall the fundamental contributions [3, 5, 8, 16]. In particular, in
[5] the authors studied in details the exponentially slow motion of the N transition
points and derived a system of ODEs describing their dynamics.

Similar results are also valid for the one dimensional version of (1.1), and then we
have the phenomenon of the metastability also in the hyperbolic framework (1.1).
The study of the metastable properties of the solutions and the differences with
the classic parabolic case (1.2) are performed in [13, 14, 15]. In particular, in [15]
using a similar approach of [5] it has been derived a system of ODE describing the
motion of the transition points and a comparison with the classic case is performed.
In conclusion, both equation (1.1) and equation (1.2) exhibit the phenomenon of
metastability in the one dimensional case: in both cases we have persistence of a
transition layer structure for an exponentially long time and the dynamics of such
solutions is described by a finite dynamical system.

This paper concerns with the multidimensional case, where the situation is rather
different. Indeed, in this case we have to study the motion of “transition surfaces”
instead of transition points. There is vast literature of works about motion of
interfaces in several space dimensions for the Allen–Cahn equation (1.2), where the
effect of the curvature of the interfaces turns out to be relevant for the dynamics,
and it has been shown that steep interfaces are generated in a short time with
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subsequent motion governed by mean curvature flow. It is impossible to quote all the
contributions; without claiming to be complete, we recall the papers [4, 7, 10, 11].
The behavior of the solutions to equation (1.2) for ε small can be described as
follows: for a short time the solution uε behaves as if there were no diffusion, i.e.
ε = 0, and so, uε ≈ ±1 according to the sign of the initial datum. Therefore,
we can divide the domain where we are considering the equation in three different
regions: two regions Ω+, Ω− where uε ≈ +1 and uε ≈ −1, respectively, and a
“thin” region Ω0 which connects Ω+ and Ω−. The region Ω0 is usually referred as
interface and the process described above is called generation of interface. After
this phase of the dynamics, if x is away of the interface, the diffusion term ε2∆u
can still be neglected, and uε takes the values ±1 in Ω±. On the other hand, close
to the interface, when the gradient of uε is large enough, the diffusion term plays a
crucial role: it balances the reaction term −F ′ and we have the propagation of the
interface. In this phase, the mean curvature K of the interface plays a fundamental
role, indeed the interface propagates with normal velocity proportional to the mean
curvature K, namely

V = ε2K, (1.3)

where V is the normal velocity of the interface, and the mean curvature K is the
sum of its principal curvatures. The link between the equation (1.2) and the motion
by mean curvature was firstly observed by Allen and Cahn in [2] on the basis of
a formal analysis. Another formal asymptotic expansion is performed in [26]. In
[4, 7, 10, 11] the authors studied in details the process described above and proved
rigorously that the formal analysis is correct. In particular, in [4] the authors
consider a rescaled version of (1.2) with F (u) = 1

4 (u2 − 1)2, namely

ut = ∆u+ ε−2(u− u3), (1.4)

with appropriate boundary conditions and initial data, and they present two rig-
orous results. First, they prove a compactness theorem: as ε → 0, the solution uε

is in a certain sense compact as function of space-time and the limit is a function
assuming only the values ±1. Second, they focused the attention on radially sym-
metric solutions, and proved that if Ω is a ball, the initial datum is radial with one
transition sphere between −1 and +1 at r = ρ0, and the boundary conditions are
of Dirichlet type, then the transition at time t is r = ρ(t), where ρ satisfies

ρ′ = −n− 1

ρ
, ρ(0) = ρ0. (1.5)

Therefore, they show that the motion of the interface is governed by mean curvature
flow in the case of radial solutions. Indeed, it is well known that the evolution by
mean curvature for general spheres in Rn is governed by the law (1.5) and the sphere
shrinks into a point in finite time. The scaling of the equation (1.2) has been chosen
so that the associated motion by mean curvature takes place on a time scale of order
one, and so the sphere shrinks into a point in a finite time which does not depend
on ε. This implies that the solution of (1.2) has one transition between −1 and
+1 for a time proportional to ε−2, and then we have a fundamental difference with
respect to the one dimensional case, where the solution maintains the transition
layer structure for an exponentially long time. We remark that, in the case of the
rescaled version (1.4), the law for the normal velocity (1.3) becomes

V = K, (1.6)
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where K is again the mean curvature of the interface. From now on, faster time scale
is referred to the rescaled version (1.4), and slower time scale to (1.2). Therefore,
in the faster time scale the interface propagates with normal velocity equal to (1.6),
whereas in the slower time scale with normal velocity equal to (1.3).

The contributions [7, 10, 11] deal with the equation (1.2) in the whole space,
without the assumption of radial symmetry. Chen [7] studies generation and prop-
agation of the interface, showing that in the faster time scale, the interface develops
in a short time O(ε2| ln ε|) and disappears in a finite time. De Mottoni and Schatz-
man [10] obtain similar results by means of completely different techniques; they
consider the slower time scale with an initial data which has an interface, and study
the motion of the interface giving an asymptotic expansion of arbitrarily high order
and error estimates valid up to time O(ε−2). At lowest order, the interface evolves
normally, with a velocity proportional to the mean curvature. All the previous
papers treat the dynamics of the solutions before the appearance of geometric sin-
gularities; the main accomplishment of [11] is the verification of the fact that the
interface evolves according to mean curvature motion for all positive time, and so
even beyond the time of appearance of singularities. In the latter paper, the motion
is interpreted in the generalized sense of Evans–Spruck [12] and Chen–Giga–Goto [9]
after the onset of geometric singularities. Let us stress that the proofs of [7, 10, 11]
rely heavily on the maximum principle for parabolic equation.

The aforementioned bibliography is confined to the parabolic case (1.2). To the
best of our knowledge, the only paper devoted to the study to the same problem
for hyperbolic variations of (1.2) is [19], where the authors study the singular limit
of (1.1) when g is constant, in the whole space Rn for n = 2 or n = 3. The
authors derive estimates for the generation and the propagation of interfaces and
prove that the motion is governed by mean curvature flow in the limit ε→ 0 under
the assumption that the damping coefficient is sufficiently strong. Their proofs use
a comparison principle for a damped wave equation and a construction of suitable
subsolutions and supersolutions. The comparison principle is obtained by expressing
the solutions by Kirchhoff’s formula and estimating them.

In this paper, we study the propagation of the interface of (1.1) in a bounded
domain, by following the approach introduced in [4]. Therefore, after rescaling the
equation to study the motion of the interface on a time scale of order one, we first
prove a compactness theorem, Theorem 2.3, valid for any sufficiently regular domain
Ω, any positive function g and for appropriate boundary conditions of Dirichlet or
Neumann type. Next, we focus the attention on the radial case with g ≡ 1 and
Dirichlet boundary conditions as in [4]. As an intermediate result, we will prove
that for some radially symmetric solutions with one transition sphere at time t = 0,
the motion of the transition sphere can be described by the ODE

ε2τρ′′ + ρ′ = −n− 1

ρ
. (1.7)

As we will see in Section 3, ODE (1.7) allows us to prove that the interface moves
by mean curvature as ε→ 0. Inspired by [4], we want to use a moving coordinates
system, and write the equation for the resulting unknown v in weighted divergence
form, by introducing a new integrating factor φ, depending in our case on ε and τ .
To this end, due to the extra terms appearing in our hyperbolic framework (1.1),
we need to replace (1.5) with our proposed equation (1.7), which takes into account
the inertial term ε2τρ′′, involving also the small parameter ε.
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It is worth observing here that the effect of inertial terms in our hyperbolic
equation will imply in particular that, in contrast to the parabolic model, the energy
functional we shall consider in Section 3, namely

Eφ[v, vt](t) :=

∫ 1−ρ(t)

−ρ(t)

[
ε3τ

2
(vt)

2 + ε
(
1− ε2τ(ρ′)2

) v2
R

2
+ ε−1F (v)

]
φdR,

is not a Lyapunov functional in the present case; see Proposition 3.8, (3.41), and
Remark 3.10. Nevertheless, we can obtain a worse estimate of the time evolution
of Eφ, yet sufficient for our analysis, by adding appropriate assumptions. More
precisely, to this end, we may ask for a (very reasonable) a priori control of the
velocity ut; see (3.43) at the end of Proposition 3.9. However, in this paper, we prefer
to consider the framework of (uniformly in ε) bounded solutions, together with the
smallness assumption (3.2) for the relaxation parameter τ , and an extra requirement
for the initial data (2.30), needed solely to rigorously obtain the aforementioned
control of ut in Proposition 2.7.

Let us now show some numerical solutions of the equation (1.1) where F (u) =
1
4 (u2−1)2 and Ω =

{
x ∈ R2 : |x| ≤ 1

}
, with Dirichlet boundary conditions u(x, t) =

1 for all t ≥ 0 on ∂Ω. We choose the parameter τ = 1, the initial velocity u1 ≡ 0,
the diffusion coefficient ε = 0.02 and show the solution for different values of t in
Figure 1. The initial datum is smooth and has the transition at ρ0 = 0.6. Precisely,
the initial datum u0(r) is equal to +1 when r > 0.6 (red region), and it is equal to
−1 in the blue region. In Figure 1 we see that the solution is radial and maintains
the transition sphere until the time t = 450.

Figure 1. Solution for τ = 1, ε = 0.02 and different values of t.
Top left: t = 0, top right: t = 250, bottom left: t = 400, bottom
right: t = 450.

The goal of this paper is to rigorously describe the behavior of the solution shown
in Figure 1; we consider the faster time scale, and so a rescaled version of (1.1) as in
[4], to study the motion of the interface on a time scale of order one. The interface
will disappear in a finite time (independent on ε) and we study the motion of the
interface before it disappears. To this aim, we consider well-prepared initial data:
an initial datum u0 which makes the transition from −1 to +1 in an “energetically
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efficient” way, and an initial velocity u1 sufficiently small in an appropriate sense;
for details, see assumptions in Section 3 and Remark 3.1.

Our results confirm that the motion of the interface is governed by mean curva-
ture flow as ε → 0 in the radial case and for g ≡ 1, see Theorem 3.3. In general,
a formal computation shows that the interfaces move by mean curvature for any
strictly positive function g without the assumption of radially symmetric solutions.
In particular, we will (formally) show that the normal velocity satisfies

g V = K, (1.8)

in the limit ε→ 0, where K is the mean curvature of the interface and

g :=
1

‖
√
F‖

L1

∫ 1

−1

√
F (s) g(s) ds.

Thus, in the case g ≡ 1, the asymptotic limit (1.8) is equal to (1.6) in the faster
time scale.

The rest of the paper is organized as follows. In Section 2 we consider the
IBVP for equation (1.1) with a generic strictly positive function g, in a generic
domain Ω and with boundary conditions of Dirichlet or Neumann type. The main
result of the section is Theorem 2.3, that is the compactness theorem we discussed
above. Moreover, in Section 2 we deduce the estimate on the H1–norm of the time
derivative ut of the solution, that we will use in the study of the radial case (see
Proposition 2.7). Finally, Section 2 contains the formal computation suggesting
that the motion of the interface is governed by mean curvature flow as ε→ 0, and
that the normal velocity satisfies (1.8) in the asymptotic limit ε→ 0.

In Section 3, we focus the attention on the radially symmetric solutions in the
case of damping coefficient g ≡ 1 with boundary conditions of Dirichlet type, and
prove that the interface moves by mean curvature flow in the singular limit ε→ 0,
see Theorems 3.2 and 3.3.

2. Limiting behavior as ε → 0 in the general case. Rescale equation (1.1)
and consider the hyperbolic reaction-diffusion equation

ε2τutt + g(u)ut = ∆u+ ε−2f(u), x ∈ Ω, t > 0, (2.1)

in a bounded domain Ω ⊂ Rn, n = 2 or 3, with a C1 boundary, where f, g : R→ R
are regular functions satisfying appropriate assumptions, that will be specified later.
Equation (2.1) is complemented with initial data

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω, (2.2)

and appropriate boundary conditions. Precisely, we consider either Neumann

∂u

∂n
(x, t) = 0, x ∈ ∂Ω, t > 0, (2.3)

or Dirichlet type boundary conditions

u(x, t) = ±1, x ∈ ∂Ω, t > 0. (2.4)

In the latter case, we assume that at the boundary u takes values in {−1,+1} in
a way such that the solution is sufficiently regular. In this section, we collect some
results on the behavior of the solutions to (2.1) as ε → 0+, valid for any regular
bounded domain Ω and any strictly positive function g.
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Let us introduce the energy functional

Eε[u, ut](t) :=

∫
Ω

[
ε3τ

2
u2
t (x, t) +

ε

2
|∇u(x, t)|2 + ε−1F (u(x, t))

]
dx, (2.5)

where F ′ = −f and denote by Eε[u0, u1] := Eε[u, ut](0). Thanks to the boundary
conditions (2.3) or (2.4), we can state that the energy functional (2.5) is a non-
increasing function of time along (sufficiently regular) solutions to (2.1). Precisely,
we have the following result.

Lemma 2.1. Let (u, ut) ∈ C
(
[0, T ], H2(Ω)×H1(Ω)

)
be a solution to (2.1) with

f, g : R→ R, f = −F ′ for some F : R→ R and either Neumann (2.3) or Dirichlet
(2.4) boundary conditions. Then, for any 0 ≤ t1 < t2 ≤ T

ε

∫ t2

t1

∫
Ω

g(u)u2
tdxdt = Eε[u, ut](t1)− Eε[u, ut](t2). (2.6)

Proof. Multiplying (2.1) by ut and integrate on Ω× [t1, t2], we infer∫ t2

t1

∫
Ω

(
ε2τututt + g(u)u2

t

)
dxdt =

∫ t2

t1

∫
Ω

(
ut∆u− ε−2F ′(u)ut

)
dxdt.

Integrating by parts and using the boundary conditions (2.3) or (2.4) we deduce∫
Ω

ut∆u dx =

∫
∂Ω

ut
∂u

∂n
dσ −

∫
Ω

∇u · ∇ut dx = − d

dt

∫
Ω

1

2
|∇u|2 dx.

Since ututt = ∂tu
2
t/2 and F ′(u)ut = ∂tF (u), we have∫ t2

t1

∫
Ω

g(u)u2
tdxdt =

∫
Ω

[
ε2τ

2
u2
t (x, t1)− ε2τ

2
u2
t (x, t2)

]
dx

+

∫
Ω

[
1

2
|∇u(x, t1)|2 − 1

2
|∇u(x, t2)|2

]
dx

+

∫
Ω

[
ε−2F (u(x, t1))− ε−2F (u(x, t2))

]
dx.

Multiplying by ε and using the definition (2.5), we obtain (2.6).

In the rest of the paper, we shall consider a framework where the equality
(2.6) is satisfied, and we assume that (u, ut) ∈ C

(
[0,∞), H2(Ω)×H1(Ω)

)
is the

solution to (2.1)-(2.2) with Neumann boundary conditions (2.3), and (u, ut) ∈
C
(
[0,∞), H2(Ω)×H1

0 (Ω)
)

is the one with Dirichlet boundary conditions (2.4).

2.1. The compactness theorem. Now, consider the equation (2.1), and assume
that f = −F ′, where F ∈ C3(R) satisfies

F (±1) = F ′(±1) = 0, F (s) > 0 for s 6= ±1, (2.7)

and there exist positive constants c1, C1, K ≥ 1 and γ ≥ 2 such that

c1|s|γ/2+1 ≤ F (s) ≤ C1|s|γ , for |s| ≥ K. (2.8)

Moreover, g ∈ C1(R) is required to be strictly positive, namely

g(s) ≥ κ > 0, for any s ∈ R. (2.9)

The aim of this subsection is to prove a compactness theorem for the solutions to
(2.1) as ε→ 0, when the potential F satisfies the assumptions discussed above and
g is strictly positive. To do this, we use the approach introduced by Bronsard and
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Kohn [4] in the case of the classic Allen–Cahn equation (1.4). Regarding the initial
data, let us assume that u0, u1 depend on ε and

lim
ε→0
‖uε0 − v0‖L1(Ω) = 0, (2.10)

where v0 is a fixed function taking only the values ±1, and that there exists a
positive constant M such that

Eε[u
ε
0, u

ε
1] ≤M, (2.11)

where the energy Eε is defined in (2.5). Since g is strictly positive, from (2.6) and
(2.11) it follows that (uε, uεt ) satisfies

sup
t≥0

Eε[u
ε, uεt ](t) ≤M, (2.12)

sup
t≥0

∫
Ω

F (uε(x, t)) dx ≤ εM. (2.13)

Moreover, for (2.9) we deduce

εκ

∫ t2

t1

∫
Ω

uεt (x, t)
2 dxdt ≤ Eε[u, ut](t1)− Eε[u, ut](t2) ≤M, (2.14)

for any 0 ≤ t1 < t2. Introducing the function

Ψ(x) :=

∫ x

−1

√
2F (s) ds, (2.15)

we can also prove the following result.

Proposition 2.2. Let (uε, uεt ) ∈ C
(
[0,∞), H2(Ω)×H1(Ω)

)
be the solution to

(2.1), where f = −F ′ with F satisfying (2.7) and g satisfying (2.9), with either
Neumann (2.3) or Dirichlet (2.4) boundary conditions. In addition, assume that
the initial data (2.2) satisfy (2.11). Then,

sup
t≥0

∫
Ω

|∇Ψ(uε(x, t))| dx ≤M, (2.16)

and, for 0 ≤ t1 < t2,∫ t2

t1

∫
Ω

|∂tΨ(uε(x, t))| dxdt ≤
√

2

κ
M(t2 − t1)1/2. (2.17)

Proof. Let us start with (2.16). Since ∇Ψ(uε) =
√

2F (uε)∇uε a.e. in Ω, using
Young inequality we get∫

Ω

|∇Ψ(uε(x, t))| dx =

∫
Ω

√
2F (uε(x, t))|∇uε(x, t)| dx

≤
∫

Ω

[ε
2
|∇uε(x, t)|2 + ε−1F (uε(x, t))

]
dx ≤ Eε[uε, uεt ](t),

for any t ≥ 0. Hence, using (2.12) we obtain (2.16). The proof of (2.17) is very
similar. From the Cauchy–Schwarz inequality, it follows that∫ t2

t1

∫
Ω

|∂tΨ(uε(x, t))| dxdt =

∫ t2

t1

∫
Ω

√
2F (uε(x, t))|uεt (x, t)| dxdt

≤
(∫ t2

t1

∫
Ω

2F (uε(x, t))dxdt

)1/2(∫ t2

t1

∫
Ω

uεt (x, t)
2dxdt

)1/2

,
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for any 0 ≤ t1 < t2. Using (2.13) and (2.14), we obtain∫ t2

t1

∫
Ω

|∂tΨ(uε(x, t))| dxdt ≤
√

2

κ
M(t2 − t1)1/2,

and the proof is complete.

The previous properties of the solution (uε, uεt ) allow us to prove the following
compactness theorem, that is the main result of this section.

Theorem 2.3. Let (uε, uεt ) ∈ C
(
[0,∞), H2(Ω)×H1(Ω)

)
be the solution to (2.1)-

(2.2) with either Neumann (2.3) or Dirichlet (2.4) boundary conditions and f =
−F ′, with F, g satisfying (2.7), (2.8), (2.9). Assume that the initial data uε0, uε1
satisfy (2.10) and (2.11). Then, for any sequence of ε’s approaching to zero, there
exists a subsequence εj such that

lim
εj→0

uεj (x, t) = v(x, t) for a.e. (x, t) ∈ Ω× (0,∞), (2.18)

where the function v takes only the values ±1 and satisfies∫
Ω

|v(x, t2)− v(x, t1)| dx ≤ C|t2 − t1|1/2, (2.19)

sup
t≥0
‖v(·, t)‖BV (Ω) ≤ C, (2.20)

for some C > 0, and

lim
t→0
‖v(·, t)− v0‖L1(Ω) = 0. (2.21)

Proof. First, let us fix T > 0 and prove the existence of a subsequence which
converges a.e. on ΩT := Ω × (0, T ). To this aim, we use that the Banach space
BV (ΩT ) is compactly embedded in L1(ΩT ) (among others, see [17, Theorem 1.19]).
We recall that, given an open set A ⊂ Rn and a function f ∈ L1(A),∫

A

|Df | := sup

{∫
A

fdivφdx : φ =(φ1, . . . , φn) ∈ C1
0 (A;Rn)

and |φ(x)| ≤ 1, x ∈ A
}
.

The space BV (A) of all the functions f ∈ L1(A) such that
∫
A
|Df | <∞ is a Banach

space with the norm

‖f‖BV (A) := ‖f‖L1(A) +

∫
A

|Df |.

Now, we have that the functions Ψ(uε) are uniformly bounded in BV (ΩT ). Indeed,
from (2.16) and (2.17), it follows that∫

ΩT

|DΨ(uε)|=
∫ T

0

∫
Ω

|∇Ψ(uε(x, t))| dxdt+
∫ T

0

∫
Ω

|∂tΨ(uε(x, t))| dxdt≤C, (2.22)

for some constant C > 0. Moreover, we claim that∫ T

0

∫
Ω

|Ψ(uε(x, t))| dxdt ≤ C, (2.23)
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for some constant C > 0 (independent on ε). In order to prove (2.23) let us use
the assumption on F (2.8). If |uε| ≤ K a.e on ΩT , then (2.23) trivially holds.
Otherwise, we split the integral∫ T

0

∫
Ω

|Ψ(uε)| dxdt =

∫
{|uε|≤K}

|Ψ(uε)| dxdt+

∫
{|uε|≥K}

|Ψ(uε)| dxdt.

The first integral is uniformly bounded, whereas for the second one we use (2.8)
and

|Ψ(uε)| ≤
∫ K

−K

√
2F (s) ds+

∫ −K
−|uε|

√
2F (s) ds+

∫ |uε|
K

√
2F (s) ds

≤ C + 2
√

2C1

∫ |uε|
K

|s|γ/2 ds ≤ C
(

1 + |uε|γ/2+1
)
≤ C (1 + F (uε)) .

Therefore, ∫
{|uε|≥K}

|Ψ(uε(x, t))| dxdt ≤ C + C

∫ T

0

∫
Ω

F (uε(x, t)) dxdt,

and using (2.13) we obtain the claim (2.23).
Thanks to (2.22)-(2.23) and a standard compactness result (among others, see

[17, Theorem 1.19]), we can state that there exists a subsequence Ψ(uεj ) which
converges in L1(ΩT ) to a function Ψ∗, namely

lim
εj→0

‖Ψ(uεj )−Ψ∗‖L1(ΩT ) = 0. (2.24)

Passing to a further subsequence if necessary, we obtain

lim
εj→0

Ψ(uεj (x, t)) = Ψ∗(x, t), a.e. on Ω× (0, T ).

Since Ψ′ =
√

2F is strictly positive except at ±1, the function Ψ is monotone and
there is a unique function v such that Ψ(v(x, t)) = Ψ∗(x, t), and so

lim
εj→0

uεj (x, t) = v(x, t) a.e. on Ω× (0, T ).

Using the Fatou’s Lemma and (2.13), we get∫ T

0

∫
Ω

F (v(x, t)) dxdt ≤ lim inf
εj→0

∫ T

0

∫
Ω

F (uεj (x, t)) dxdt = 0,

and so, v takes only the values ±1. Now, let us prove (2.19). For any fixed x ∈ Ω
one has

|Ψ(uε(x, t2))−Ψ(uε(x, t1))| ≤
∫ t2

t1

|∂tΨ(uε(x, t))| dt,

for any 0 ≤ t1 < t2. Integrating and using (2.17) we end up with∫
Ω

|Ψ(uε(x, t2))−Ψ(uε(x, t1))| dx ≤
√

2

κ
M(t2 − t1)1/2. (2.25)

Since Ψ(uεj (·, t))→ Ψ∗(·, t) in L1(Ω) for almost every t ∈ (0, T ) by (2.24) and∫
Ω

|Ψ(uε0(x))−Ψ(v0(x))| dx = 0, (2.26)
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because of (2.10) and (2.16), passing to the limit as εj → 0 in (2.25) we conclude
that ∫

Ω

|Ψ∗(x, t2)−Ψ∗(x, t1)| dx ≤
√

2

κ
M(t2 − t1)1/2, (2.27)

for almost every 0 ≤ t1 < t2 < T . However, Ψ∗(x, t) = Ψ(v(x, t)) with v taking
only the values ±1 and as a consequence

|Ψ∗(x, t2)−Ψ∗(x, t1)|= |Ψ(v(x, t2))−Ψ(v(x, t1))|= Ψ(1)

2
|v(x, t2)−v(x, t1)|, (2.28)

where we used that Ψ(−1) = 0. Therefore, substituting (2.28) in (2.27), we obtain
(2.19) for almost every t1, t2 ∈ (0, T ). It is possible to redefine v at the exceptional
times to make it continuous as a map from [0, T ] to L1(Ω), and then (2.19) holds
for every t1, t2 ∈ (0, T ).

By reasoning in the same way, we obtain (2.21). Taking t1 = 0 in (2.25) and
passing to the limit as εj → 0 making use of (2.26), we deduce∫

Ω

|Ψ(v(x, t2))−Ψ(v0(x))| dx ≤
√

2

κ
M(t2)1/2,

and using (2.28), we get (2.21). In conclusion, we proved the properties (2.18)-
(2.20) on arbitrary finite time intervals (0, T ). It is possible to extend the results
on the infinite interval (0,∞) by taking a sequence of times Tj →∞ and a diagonal
subsequence of {uε} in the usual manner.

Remark 2.4. Consider the slower time scale of order ε−2, i.e. the new variable
s = ε−2t. Then the function ũε(x, s) = uε(x, ε2s) satisfies the equation

τ ũεss + g(ũε)ũεs = ε2∆ũε + f(ũε), x ∈ Ω, t > 0. (2.29)

Using (2.25) with t2 = ε2s and t1 = 0, we obtain∫
Ω

|Ψ(ũε(x, s))−Ψ(ũε(x, 0))| dx ≤
√

2

κ
Mεs1/2,

for any s > 0. This shows that the evolution of the solutions to (2.29) is very slow
(for ε small) until s ∼ ε−2.

Remark 2.5. In all this section, we used the assumption (2.8) only to prove (2.23).
Indeed, assumption (2.8) implies the uniformly boundedness of the term if the initial
data satisfy (2.11). Observe that, if we assume that the solution uε is uniformly
(with respect to ε) bounded for any t, then (2.23) trivially holds and we can remove
the assumption (2.8) from Theorem 2.3.

2.2. Higher order estimates. By using the energy functional (2.5), it is possible
to obtain a control for the H1×L2–norm of the solutions (uε, uεt ). The goal of this
subsection is to obtain higher order estimates, in particular to control the behavior
of the H1–norm of uεt as ε→ 0.

Remark 2.6. Since Ω is a bounded domain of Rn, n = 2 or 3, with a C1 boundary,
thanks to the general Sobolev inequalities, we can say that H2(Ω) is continuously
embedded in C0,γ(Ω), with γ any positive number strictly less than 1 if n = 2
and γ = 1/2 if n = 3. Furthermore, H1(Ω) is continuously embedded in Lp(Ω)
for any p ∈ [1,∞) if n = 2 and p ∈ [1, 6] if n = 3. Therefore, we can say that
(uε, uεt ) ∈ C

(
[0,∞), C0,γ(Ω)× Lp(Ω)

)
and the functions

s1(t) := sup
x∈Ω
|uε(x, t)|, s2(t) := ‖uεt (·, t)‖Lp(Ω)
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are continuous function on [0,∞). In the following we assume that the function s1

defined above is uniformly bounded in ε.

Consider the case g ≡ 1, that is the case we will study in the next section, where
we will use the following result.

Proposition 2.7. Let

(uε, uεt ) ∈ C
(
[0, T ], H2(Ω)×H1(Ω)

)
∩ C1

(
[0, T ], H1(Ω)× L2(Ω)

)
be the solution to (2.1), where f = −F ′ with F satisfying (2.7) and g ≡ 1, with
either Neumann (2.3) or Dirichlet (2.4) boundary conditions. Regarding the initial
data (2.2), we assume that they satisfy (2.11), that uε is uniformly bounded, namely

sup
x∈Ω
|uε(x, t)| ≤ C, ∀ t ∈ [0, T ],

and that there exists a positive constant C (independent on ε and τ) such that

R[uε0,u
ε
1] :=ε−2τ−1

∫
Ω

(
∆uε0−ε−2F ′(uε0)−uε1

)2
dx+

∫
Ω

|∇uε1|2 dx≤Cε−5τ−1. (2.30)

Then, there exists C > 0 (independent on ε and τ) such that∫ T

0

‖uεt (·, t)‖2H1(Ω) ≤ Cε
−5
(
1 + τ−1

)
. (2.31)

Proof. Denote by wε = uεt . From the assumptions on the regularity of the solution,
wε ∈ C([0, T ], H1(Ω)) ∩ C1([0, T ], L2(Ω)) and by differentiating the equation (2.1)
with respect to t, we end up with

ε2τwεtt + wεt = ∆wε − ε−2F ′′(uε)wε, x ∈ Ω, t > 0.

The initial data for wε are

wε(·, 0) = u1, ε2τwεt (·, 0) = ∆uε0 − ε−2F ′(uε0)− uε1, x ∈ Ω,

and the boundary conditions are

∂wε

∂n
(x, t) = 0, x ∈ ∂Ω, t > 0,

in the case of homogeneous Neumann boundary conditions (2.3) and

wε(x, t) = 0, x ∈ ∂Ω, t > 0.

in the case of Dirichlet boundary conditions (2.4). Multiplying the equation by wεt
and integrating in Ω, we obtain

d

dt

∫
Ω

ε2τ

2
(wεt )

2
dx+

∫
Ω

(wεt )
2
dx

=

∫
Ω

div(∇wεwεt ) dx−
∫

Ω

∇wε∇wεt dx−ε−2

∫
Ω

F ′′(uε)wεwεt dx.

Using the divergence theorem and the boundary conditions, we deduce

1

2

d

dt

[∫
Ω

ε2τ (wεt )
2
dx+

∫
Ω

|∇wε|2 dx
]

+

∫
Ω

(wεt )
2
dx=−ε−2

∫
Ω

F ′′(uε)wεwεt dx.

Since |F ′′(uε)| ≤ C for (x, t) ∈ Ω× (0, T ) (with C independent on ε for the assump-
tion on the boundedness of the solution and the regularity of F ), we infer

1

2

d

dt

[∫
Ω

ε2τ (wεt )
2
dx+

∫
Ω

|∇wε|2 dx
]

+
1

2

∫
Ω

(wεt )
2
dx ≤ C2

2
ε−4

∫
Ω

(wε)
2
dx.
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By integrating on (0, T ), we end up with

‖wεt (·, t)‖2L2(Ω) + ‖∇wε(·, t)‖2L2(Ω) +

∫ T

0

∫
Ω

(wεt )
2
dxdt

≤ C2ε−4

∫ T

0

∫
Ω

(wε)
2
dxdt+R[uε0, u

ε
1],

for any t ∈ (0, T ). In particular, we proved that

‖∇uεt (·, t)‖2L2(Ω) ≤ Cε
−4

∫ T

0

∫
Ω

(uεt )
2
dxdt+R[uε0, u

ε
1],

for any t∈ (0,T ). Recalling that from the assumptions (2.11) (see (2.14)) it follows
that ∫ T

0

∫
Ω

(uεt )
2
dxdt ≤ Cε−1,

and using the assumption on R[uε0, u
ε
1] ≤ Cε−5τ−1, we obtain (2.31).

Remark 2.8. As it was already mentioned in Section 1, the bound (2.31) plays a
crucial role in our analysis on the dynamics of radial solutions, and in particular, it
allows us to prove that the term h(ε) in the energy estimates (3.41) goes to zero as
ε → 0. The assumption (2.30) is instrumental in the proof of Proposition 2.7, but
not needed elsewhere, and it is not difficult to construct initial data uε0, u

ε
1 satisfying

it. For instance, (2.30) can be verified firstly via a “smallness” assumption on uε1,
and, for simplicity, we can take uε1 ≡ 0. Then, concerning uε0, one can construct
functions satisfying R[uε0, 0] ≤ Cε−5τ−1 with a transition along any smooth, closed,
orientable hypersurface in Ω, by proceeding as in [27]. Precisely, one can define
uε0(x) = Uε(d(x)), where d is the signed distance function, and Uε is a standing wave
solution (a particular 1D stationary solution) in |d(x)| ≤

√
ε, linearly interpolated

(in
√
ε ≤ |d(x)| ≤ 2

√
ε) with the stable equilibria ±1; for details, see [27, Section

1]. By using the properties of the standing wave solution and the local regularity
of the signed distance function, it is easy to check that the function uε0 constructed
above satisfies our requirement (2.30).

2.3. Formal derivation of the interface motion equation. Theorem 2.3 as-
serts that some solutions uε to the IBVP for the nonlinear damped hyperbolic
Allen–Cahn equation (2.1) take only the values ±1 as ε → 0. As we already men-
tioned, the main aim of the paper is to study the motion of the interface where
the solution uε makes its transitions from −1 to +1. The interface motion equa-
tion can be formally derived by means of asymptotic expansions and coincides with
the mean curvature flow equation (see [1] or [19]). In this subsection, we present
this formal computation in the case of the nonlinear damped hyperbolic Allen–Cahn
equation (2.1), showing that the motion is governed by mean curvature flow for gen-
eral damping coefficients g. We shall assume that the steep interfaces are already
developed.

Let uε be a solution to (2.1) where f = −F ′, with F satisfying (2.7). Define

Γε(t) := {x ∈ Ω : uε(x, t) = 0} , Ωε±(t) := {x ∈ Ω : ±uε(x, t) > 0} ,
and the signed distance function

dε(x, t) :=


dist(x,Γε(t)), x ∈ Ωε+(t),

0, x ∈ Γε(t),

−dist(x,Γε(t)), x ∈ Ωε−(t).
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We assume that the function dε has the following expansion

dε(x, t) =

∞∑
k=0

εkdk(x, t) = d0(x, t) + εd1(x, t) + ε2d2(x, t) + · · · .

Observe that |∇dε| = 1 in a neighborhood of Γε(t). Here and in what follows | · |
and · are the standard norm and inner product in Rn. Then, by considering the
terms of order O(1) and the ones of O(ε) in |∇dε|2 = 1, we obtain

|∇d0|2 = 1, ∇d0 · ∇d1 = 0. (2.32)

Formally, we study the motion of the interface in the limit ε→ 0. To this end, let
us define

Γ0(t) := {x ∈ Ω : d0(x, t) = 0} , Ω0
±(t) := {x ∈ Ω : ±d0(x, t) > 0} .

We want to show (formally) that the motion of Γ0 is governed by mean curvature
flow. Hence, let us formally derive the equation for the function d0 describing the
motion of Γ0(t). Following [1, 19], consider the following expansion for the solution
of (2.1)

uε(x, t) =

∞∑
k=0

εkUk(x, t, z) = U0(x, t, z) + εU1(x, t, z) + ε2U2(x, t, z) + · · ·

near the interface Γε(t), where z := dε(x, t)/ε. Since we are looking for an approx-
imate solution uε such that uε ≈ ±1 on Ωε±(t), we assume

uε(x, t) = ±1 + εφ±1 (x, t) + ε2φ±2 (x, t) + · · · , on Ωε±(t).

To make the expansions near and away the interface consistent, we require the
following matching conditions

U0(x, t,±∞) = ±1, Uk(x, t,±∞) = φ±k (x, t,±∞), k ≥ 1.

We normalize U0 in such a way that U0(x, t, 0) = 0. By direct computations, near
the interface Γε(t) we have

uεt =U0,t + U0,z
d0,t

ε
+ U0,zd1,t + εU0,zd2,t + εU1,t + U1,td0,t + εU1,td1,t + · · · ,

uεtt =U0,tt + U0,tz
d0,t

ε
+ U0,zt

d0,t

ε
+ U0,zz

d2
0,t

ε2
+ U0,z

d0,tt

ε
+ · · · ,

∆uε =∆U0+
2

ε
∇d0 · ∇U0,z+U0,z

∆d0

ε
+U0,zz

|∇d0|2

ε2
+

2

ε
U0,zz∇d0 · ∇d1

+ε∆U1+2∇d0 · ∇U1,z+U1,z∆d0+U1,zz
|∇d0|2

ε
+2U0,zz∇d0 · ∇d1+· · · ,

f(uε) =f(U0) + εf ′(U0)U1 +O(ε2),

g(uε) =g(U0) + εg′(U0)U1 +O(ε2).

We substitute these expansions in (2.1) and collect the ε−2 and ε−1 terms. Since
we have the terms ε2τuεtt and ε−2f(uε), the only terms with ε−2 are f(U0) and
U0,zz|∇d0|2. Then, from (2.32) it follows that U0,zz + f(U0) = 0. Combining this
equation with the matching and normalization conditions, we obtain that U0 is the
unique solution to the problem

U0,zz + f(U0) = 0, U0(x, t, 0) = 0, U0(x, t,±∞) = ±1. (2.33)
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Therefore, U0(x, t, z) = Φ(z) where Φ is the standing wave profile. For example, in

the case f(u) = u(1−u2) we have U0(z) = tanh(z/
√

2). The first approximation of
the profile of a transition layer around the interface is the solution U0. Note that
the first approximation is the same of the parabolic case and does not depend on
the damping coefficient g.

Next, by collecting the ε−1 terms, we deduce

g(U0)U0,z d0,t=2∇d0 · ∇U0,z+U0,z∆d0+2U0,zz∇d0 · ∇d1+U1,zz|∇d0|2+f ′(U0)U1.

Using (2.32) and ∇U0,z = 0, we get

U1,zz + f ′(U0)U1 = U0,z {g(U0)d0,t −∆d0} . (2.34)

The solvability condition for the linear equation of U1 (2.34) plays the key role in
determining the equation of interface motion. In order to obtain the solvability
condition for (2.34), we use the following lemma (see [1, Lemma 2.2]).

Lemma 2.9 ([1]). Let A(z) be a bounded function on R. Then the problem{
ψzz + f ′(U0)ψ = A, z ∈ R,
ψ(0) = 0, ψ ∈ L∞(R),

has a solution if and only if ∫
R
A(z)U ′0(z) dz = 0. (2.35)

Moreover, if the solution exists, it is unique and satisfies |ψ(z)| ≤ C‖A‖∞, for any
z ∈ R, for some constant C > 0.

For the proof of this lemma see [1]. By applying the solvability condition (2.35)
in equation (2.34), we have∫

R
U ′0(z) {g(U0(z))d0,t(x, t)−∆d0(x, t)}U ′0(z) dz = 0. (2.36)

Since U0 solves the problem (2.33), it follows that U ′0(z) =
√

2F (z). Substituting
this equality in (2.36) and using the change of variable U0(z) = s, we obtain

√
2

∫ +1

−1

√
F (s) {g(s)d0,t(x, t)−∆d0(x, t)} ds = 0,

and as a consequence(∫ +1

−1

√
F (s) g(s) ds

)
d0,t(x, t) =

(∫ +1

−1

√
F (s) ds

)
∆d0(x, t).

Introducing the (weighted) average g of the continuous function g:

g :=
1

‖
√
F‖

L1

∫ 1

−1

√
F (s) g(s) ds,

we conclude that the function d0 satisfies the heat equation

g d0,t = ∆d0. (2.37)

This generalizes the formal computation of [19], where the case g ≡ γ ∈ R is
considered. In the latter case, equation (2.37) becomes γ d0,t = ∆d0. We can do
the same remarks of [19]: since |∇d0| = 1 near Γ0(t), the terms −d0,t and ∆d0

are equivalent to the outward normal velocity and the mean curvature of Γ0(t),
respectively. Hence, (2.37) means that the motion of Γ0(t) is governed by mean
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curvature. In conclusion, we have formally shown that in the limit ε → 0+ the
interface Γε(t) moves by mean curvature also when we consider a generic (positive)
damping coefficient g.

3. Motion of the interface in the radial case. In this section we study the evo-
lution of radial solutions to (2.1) with damping coefficient g ≡ 1 and with boundary
conditions of Dirichlet type. In particular, the aim of this section is to state and
prove the main result of the paper, Theorem 3.3. To do this, consider the damped
wave equation with bistable nonlinearity

ε2τuεtt + uεt = ∆uε − ε−2F ′(uε), x ∈ B(0, 1), t > 0, (3.1)

where B(0, 1) = {x ∈ Rn : |x| ≤ 1}, n = 2 or n = 3. We assume that the parameter
τ depends on ε and that there exists a positive number µ� 1 such that

τ(ε) = o(εµ). (3.2)

This assumption is instrumental in the proof of our main result, nevertheless, for
the numerical solutions in Figure 1 the result is valid without restrictions on τ > 0;
for further discussions, see Remark 3.10.

The function F is required to be a double well potential with wells of equal depth;
precisely, we assume that F ∈ C2(R) satisfies (2.7) plus a nondegenerate condition
on F ′′(±1), namely

F (±1) = F ′(±1) = 0, F ′′(±1) > 0, F (s) > 0 for s 6= ±1. (3.3)

We restrict our attention on radially symmetric solutions and so on the equation

ε2τuεtt + uεt = uεrr +
n− 1

r
uεr − ε−2F ′(uε), r ∈ (0, 1), t > 0, (3.4)

which is equation (3.1) in radial coordinates. We consider the case of Dirichlet
boundary condition

uε(1, t) = 1, ∀ t ≥ 0; (3.5)

moreover, at r = 0 u must satisfy uεr(0, t) = 0 for any t ≥ 0. We consider the
boundary value problem (3.4), (3.5) subject to initial data

uε(r, 0) = uε0(r), uεt (r, 0) = uε1(r), r ∈ (0, 1). (3.6)

Fix ρ0 ∈ (0, 1), and assume that uε0 has a 1-transition layer structure with transition
from −1 to +1 in r = ρ0. Precisely, we assume that uε0 converges in L1 as ε→ 0+

to the function

ū(r) :=

{
−1, r < ρ0,

+1, r > ρ0,

that is

lim
ε→0

∫ 1

0

|uε0(r)− ū(r)| rn−1 dr = 0, (3.7)

and that uε0 makes the transition in a way such that∫ 1

0

[
ε3τ

2
(uε1)2 +

ε

2
(uε0)2

r + ε−1F (uε0)

]
θ(r) dr ≤ c0 + z(ε), (3.8)

where z : R+ → R+ is a positive function with z = o(1) as ε→ 0+ and

c0 :=

∫ 1

−1

√
2F (s) ds, θ(r) := exp

{
−(n− 1)

(
r

ρ0
− 1

)}(
r

ρ0

)n−1

. (3.9)
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Observe that (3.8)-(3.9) imply that the energy (2.5) remains bounded, namely

Eε[u
ε
0, u

ε
1] :=

∫ 1

0

[
ε3τ

2
(uε1)

2
+
ε

2
(uε0)

2
r + ε−1F (uε0)

]
rn−1dr ≤M,

and so, the condition (2.11) is satisfied.
Moreover, in order to apply Proposition 2.7, we assume that the initial data are

such that (2.30) holds. Finally, as in Section 2.2, in the following we shall consider
uniformly bounded in ε solutions and so we shall assume that there exists C > 0
(independently on ε) such that

sup
r∈(0,1)

|uε(r, t)| ≤ C, ∀ t ≥ 0. (3.10)

Remark 3.1. The construction of the initial data in Remark 2.8 is compatible
with the extra conditions (3.7) and (3.8). Indeed, for u1 we further require that
ε3τ‖uε1‖2L2 goes to 0 as ε → 0+. Moreover, in the present radial case, uε0 becomes
Uε(r − ρ0), and, being θ(r) ≤ 1, by direct inspection it verifies (3.7) and (3.8) for
τ = 0, because these conditions reduce to the ones for the single transition case
of the one dimensional Allen–Cahn equation; see for instance [13, 14]. In other
words, the initial datum uε0 pointed out in [4], together with an initial velocity uε1
sufficiently small, verify all our requirements (2.30), (3.7) and (3.8).

Now, we can state the main results of this paper.

Theorem 3.2. Fix ρ0 ∈ (0, 1). Let τ be as in (3.2), F satisfying (3.3) and let uε be
the solution to (3.4) with Dirichlet boundary condition (3.5) and initial data (3.6).
Assume that uε0, uε1 satisfy (2.30), (3.7), (3.8) and that (3.10) holds. Then, for any
T ∈ (0, Tmax)

lim
ε→0

∫ T

0

∫ 1

0

|uε(r, t)− ωε(r, t)| rn−1 dr dt = 0, (3.11)

where Tmax := ρ2
0/2(n− 1), and

ωε(r, t) =

{
−1, r < ρε(t),
+1, r > ρε(t),

with ρε = ρε(t) satisfying

ε2τ(ρε)′′+(ρε)′+
n− 1

ρε
=0, ρε(0)=ρ0∈(0, 1), (ρε)′(0)=ν0∈

[
−n−1

ρ0
, 0

]
. (3.12)

Theorem 3.3. Under the same assumptions of Theorem 3.2, we have

lim
ε→0

∫ T

0

∫ 1

0

∣∣uε(r, t)− ω0(r, t)
∣∣ rn−1 dr dt = 0, (3.13)

where

ω0(r, t) =

{
−1, r < ρo(t),
+1, r > ρo(t),

with ρo(t) =
√
ρ2

0 − 2(n− 1)t.

Theorem 3.3 shows that the formal computation given in Section 2.3 is asymp-
totically correct in the radial case, for certain boundary conditions and initial data.
Indeed, as ε goes to 0, the motion of the “transition sphere” is governed by the
mean curvature equation. However, in order to prove the result in the hyperbolic
setting, we need to use the equation (3.12) which takes into account also the inertial
term ε2τρ′′ as shown in Theorem 3.2.
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The rest of the paper is devoted to prove the previous theorems; we briefly
describe here below the main steps in the proofs. First, we will prove some properties
of the solutions to the ODE (3.12). Second, inspired by [4], we introduce a moving
coordinate system and a new integrating factor φ, depending in our case on the
parameters ε, τ , see (3.20) and (3.22). After proving some crucial properties of φ,
we introduce the energy functional for our hyperbolic equation and we obtain the
energy estimates needed to prove our main results.

3.1. Study of the ODE. First of all, let us study the behavior of the solutions to
(3.12). From now on, to simplify notation we write ρ instead of ρε. Formally, for
ετ = 0 we obtain

(ρo)′ +
n− 1

ρo
= 0, ρo(0) = ρ0.

and then we have ρo(t) =
√
ρ2

0 − 2(n− 1)t, which is defined for t ∈ [0, Tmax], where

Tmax :=
ρ2

0

2(n− 1)
. (3.14)

In particular, we can say that there exists a finite time Tmax such that ρo(Tmax) = 0
and

lim
t→Tmax

ρo(t)′ = −∞.

The following result collects some properties of the solutions to (3.12) that we will
use later.

Lemma 3.4. Let (ρ, ρ′) the solution to (3.12) and let Tmax be the constant defined
in (3.14). Then, there exists T εm ∈ [Tmax, ρ0/|ν0|] such that ρ(T εm) = 0. Moreover,
we have

ρ′(t) ≤ 0, ρ(t)ρ′(t) + n− 1 ≥ 0, ∀ t ∈ [0, T εm), (3.15)

and for any (fixed) T ∈ (0, Tmax),

ρ′(t)2 ≤ (n− 1)2

ρ2
0 − 2(n− 1)T

=: MT , (3.16)

for any t ∈ [0, T ].

Proof. Rewrite equation (3.12) as the first order system{
ρ′ = ν

ε2τν′ = −ν − n−1
ρ

, ρ(0) = ρ0, ν(0) = ν0. (3.17)

Denote by [0, T εm) the maximal interval where the solution (ρ, ν) exists. The region

Γ := {(ρ, ν) : ρ > 0, − (n− 1)

ρ
≤ ν ≤ 0}

is invariant for (3.12), and in particular

(ρ0, ν0) ∈ Γ =⇒ − (n− 1)

ρ(t)
≤ ν(t) ≤ ν0, ∀ t ∈ [0, T εm).

It follows that if ρ0 ∈ (0, 1) and −(n − 1)/ρ0 < ν0 < 0, then ρ′(t) ≤ ν0 for any
t ∈ [0, T εm). Therefore,

ρ(t) ≤ ρ0 + ν0t.
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Hence, since ν0 < 0, we have T εm ≤ −ρ0/ν0. On the other hand, in Γ we have
ν ≥ −(n− 1)/ρ and so, ρ′(t) ≥ −(n− 1)/ρ(t) for any t ∈ [0, T εm). This implies

1

2
ρ(t)2 − 1

2
ρ2

0 ≥ −(n− 1)t,

and, as a consequence

ρ(t) ≥
√
ρ2

0 − 2(n− 1)t.

Combining the two estimates for ρ(t), we end up that there exists T εm ∈ [Tmax, ρ0/|ν0|]
such that ρ(T εm) = 0.

The properties (3.15) and (3.16) follow from the invariance of the region Γ. In
particular, for any (fixed) T ∈ (0, T εm), we deduce

ρ′(t)2 ≤ (n− 1)2

ρ(t)2
≤ (n− 1)2

ρ2
0 − 2(n− 1)t

≤ (n− 1)2

ρ2
0 − 2(n− 1)T

=: MT ,

for any t ∈ [0, T ].

Lemma 3.4 ensures that the radius ρ vanishes in a finite time T εm and we will
make use of properties (3.15), (3.16) that hold for any t ∈ [0, T ] with T < T εm.

Let us underline that the behavior of the solutions to (3.12) is described by the
ones to ρ′ = −(n − 1)/ρ as η := ε2τ → 0 and then, T εm tends to Tmax as η → 0.
Precisely, we have the following result.

Lemma 3.5. Fix T ∈ (0,Tmax). Let (ρ,ν) be the solution to (3.12) for η :=ε2τ on

(0,T ) and ρo(t)=
√
ρ0−2(n−1)t, that is the solution to (3.12) when η=0. Then

lim
η→0

sup
t∈[0,T ]

|ρ(t)− ρo(t)| = 0, (3.18)

lim
η→0

sup
t∈[t1,T ]

∣∣∣∣ν(t) +
n− 1

ρo(t)

∣∣∣∣ = 0, (3.19)

for any t1 ∈ (0, T ).

Proof. For t ∈ [0, T ], define

χ(t) := χ1(t) + ηχ2(t) := ρ(t)− ρo(t) + η

(
ν(t) +

n− 1

ρo(t)

)
.

Recall that, from the assumptions on the initial data, we have χ1(t) ≥ 0, χ2(t) ≥ 0
and ρ(t) ≥ ρo(t) ≥ ρo(T ) for any t ∈ [0, T ]. By differentiating, we get

χ′1 = χ2, ηχ′2 = −χ2 +
n− 1

ρo
− n− 1

χ1 + ρo
+ η

(n− 1)2

(ρo)3
.

Using that

ηχ′2 = −χ2 +
(n− 1)χ1

ρ ρo
+ η

(n− 1)2

(ρo)3
≤ −χ2 +

n− 1

ρo(T )
χ1 + η

(n− 1)2

ρo(T )3
,

for any t ∈ (0, T ), we deduce that there exists C > 0 (depending on T but not on ε
and τ) such that

χ′1 ≤ χ2, ηχ′2 ≤ −χ2 + Cχ1 + ηC,

for any t ∈ (0, T ). Summing, one has

χ′1 + ηχ′2 ≤ Cχ1 + ηC,

and so
χ′(t) ≤ Cχ(t) + ηC, ∀ t ∈ [0, T ].
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Integrating and applying Grönwall’s Lemma, we obtain that there exists C > 0
such that

χ(t) ≤ C(χ(0) + η), ∀ t ∈ [0, T ].

In particular, it follows that

|ρ(t)− ρo(t)| ≤ C(χ(0) + η), ∀ t ∈ [0, T ],

and by using that χ(0) = η|ν0 + (n − 1)/ρ0| we end up with (3.18). Furthermore,
we also have that

ηχ′2 ≤ −χ2 + C(χ(0) + η).

Hence,

η
(
et/ηχ2(t)

)′
≤ C(χ(0) + η)et/η,

and so

χ2(t) ≤ C(χ(0) + η)
(
1− e−t/η

)
+ χ2(0)e−t/η ≤ C(χ(0) + η) + χ(0)

e−t/η

η
,

for t ∈ [0, T ]. Therefore, for any fixed t1 ∈ (0, T ), we obtain (3.19).

The previous result ensures that the behavior of the solutions to (3.12) is de-
scribed by the equation ρ′ = −(n − 1)/ρ as ε (or τ) is small. Recall that the
latter equation describes the classic motion by mean curvature for radial solu-
tions in the classic case. Observe also that in Lemma 3.5 we consider initial
data as in (3.12), and so the properties (3.18)-(3.19) hold for any initial data
(ρ0, ν0) ∈ (0, 1) × [0,−(n − 1)/ρ0]. Let us stress that the scope of this section
is to study the evolution of the solutions to (3.4)-(3.5), when the initial datum has
a transition from +1 to −1, then in Lemmas 3.4-3.5 we use particular assumptions
on the initial data ρ0, ν0. However, in the case (ρ0, ν0) /∈ Γ, where Γ is the invariant
region, the solution enters to Γ in a very short time and we have the same behavior
described in Lemma 3.4.

3.2. Change of variables. Following [4], we shall work in a moving coordinate
system with respect to which uε should be asymptotically stationary. Then, we
introduce the new variable R = r − ρ(t) and define

vε(R, t) = uε(R+ρ(t), t), or, equivalently uε(r, t) = vε(r−ρ(t), t). (3.20)

The function vε is defined for R ∈ [−ρ(t), 1− ρ(t)], with t ∈ (0, T εm) and T εm, given
in Lemma 3.4, is the time when ρ vanishes. By differentiating (3.20), we infer

uεt (r, t) = −ρ′(t)vεR(R, t) + vεt (R, t), ur(r, t) = vR(R, t),

uεtt(r, t) = −ρ′′(t)vεR(R, t) + ρ′(t)2vεRR(R, t)− 2ρ′(t)vεtR(R, t) + vεtt(R, t).

Fix T ∈ (0, Tmax), where Tmax is the constant defined in (3.14), it follows that if uε

satisfies (3.4), then

ε2τvεtt − 2ε2τρ′vεtR + vt =
(
1− ε2τ(ρ′)2

)
vεRR

+

(
ε2τρ′′ + ρ′ +

n− 1

R+ ρ

)
vεR − ε−2F ′(vε),

with (R, t) ∈ (−ρ(t), 1− ρ(t))× (0, T ). Since ρ satisfies (3.12), we obtain

ε2τρ′′ + ρ′ +
n− 1

R+ ρ
= −n− 1

ρ
+
n− 1

R+ ρ
= − (n− 1)R

ρ(R+ ρ)
,
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and as a consequence,

ε2τvεtt − 2ε2τρ′vεtR + vεt =
(
1− ε2τ(ρ′)2

)
vεRR −

(n− 1)R

ρ(R+ ρ)
vεR − ε−2F ′(vε).

We want the coefficient of vεRR to be strictly positive; using (3.16), we have

1− ε2τρ′(t)2 ≥ 1− ε2τ
(n− 1)2

ρ2
0 − 2(n− 1)T

=: 1− ε2τMT , ∀ t ∈ (0, T ).

Therefore we choose ε0 = ε0(T ) sufficiently small so that ε2
0τMT ≤ 1 − α, where

α ∈ (0, 1). Hence, we can state that for any ε ∈ (0, ε0)

1− ε2τρ′(t)2 ≥ α, ∀ t ∈ [0, T ]. (3.21)

Now, let us rewrite the equation for v as

ε2τvεtt − 2ε2τρ′vεtR + vεt =
(
1− ε2τ(ρ′)2

) (φεvεR)R
φε

− ε−2F ′(vε), (3.22)

where the integrating factor φε satisfies

φεR = − (n− 1)R

ρ(R+ ρ) (1− ε2τ(ρ′)2)
φε. (3.23)

Equation (3.22) is complemented with the boundary conditions

vε(1− ρ(t), t) = 1, vεR(−ρ(t), t) = 0, ∀ t ∈ (0, T ). (3.24)

The next step is to study the problem (3.22)-(3.24) in the domain [−ρ(t), 1−ρ(t)]×
[0, T ], where T is a fixed constant strictly less than Tmax and for ε sufficiently small
so that (3.21) holds. To start with, in the next subsection we collect some properties
of the integrating factor φε. From now on, we drop the superscript ε and we use
the notation φ = φε.

3.3. Properties of φ. Let us explicitly compute the solution of (3.23) satisfying
φ(0) = 1. Integrating (3.23), we get

ln(φ(R, t)) = −
∫ R

0

(n− 1)s

ρ(t)(s+ ρ(t)) (1− ε2τρ′(t)2)
ds

= − (n− 1)R

ρ(t) (1− ε2τρ′(t)2)
+

n− 1

1− ε2τρ′(t)2
ln

(
R+ ρ(t)

ρ(t)

)
.

Hence, we choose the integrating factor

φ(R, t) = exp

(
− (n− 1)R

ρ(t) (1− ε2τρ′(t)2)

)(
1 +

R

ρ(t)

) n−1

1−ε2τρ′(t)2

. (3.25)

From the smallness of ε and (3.21), it follows that φ is well defined and positive in
the domain [−ρ(t), 1− ρ(t)]× [0, T ]. Precisely, φ is zero if and only if R = −ρ and
we have

0 ≤ φ(R, t) ≤ 1, φ(−ρ(t), t) = 0, φ(0, t) = 1. (3.26)

Furthermore, we will make use later of the following properties of φ.

Lemma 3.6. Let φ be the function defined in (3.25) in the domain [−ρ(t), 1−ρ(t)]×
[0, T ] where T < Tmax, ρ satisfies (3.12) and ε is sufficiently small that (3.21) holds.
Then,

φ(−R, t) ≤ φ(R, t), ∀ (R, t) ∈ (0, ρ(t))× (0, T ), (3.27)
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and, there exist positive constants c,KT such that

φ(R, t) ≥ 1−KTR
2, ∀ (R, t) ∈ (−c, c)× (0, T ). (3.28)

Proof. In order to prove (3.27), we use the inequality

ex(1− x) ≤ e−x(1 + x), for any x ∈ (0, 1).

Let us introduce k := (n− 1)/(1− ε2τ(ρ′)2) and observe that k ∈ [n− 1, (n− 1)/α]
for (3.21). By elevating the above inequality to the power k and for x = R/ρ we
obtain (3.27).

Similarly, the property (3.28) follows from the inequality

exp(−kx)(1 + x)k ≥ 1− k2x2,

which holds for x in a neighborhood of 0 and for all k ≥ 1, because x = 0 is a
minimal point of the function exp(−kx)(1 + x)k − 1 + k2x2. Therefore, we deduce
that there exists a constant c > 0 such that for all (R, t) ∈ (−c, c)× (0, T ), one has

φ(R, t) ≥ 1− (n− 1)2

ρ(t)2(1− ε2τρ′(t)2)2
R2.

Using Lemma 3.4 and (3.21), we conclude that for |R| sufficiently small and t ∈
(0, T )

φ(R, t) ≥ 1− (n− 1)2

ρ(T )2α2
R2,

that is (3.28) with KT := (n−1)2

α2(ρ20−2(n−1)T )
.

Now, let us consider the derivatives of φ. Regarding the derivative φR, from
the equation (3.23) and (3.25) it follows that φR is bounded and satisfies for any
t ∈ (0, T )

φR(R, t) > 0 in (−ρ(t), 0), φR(R, t) < 0 in (0, 1− ρ(t)],

φR(−ρ(t), t) = φR(0, t) = 0.
(3.29)

For the time derivative φt we have the following result.

Lemma 3.7. Let φ be the function defined in (3.25) with ρ satisfying (3.12) and ε
sufficiently small that (3.21) holds. Then, for (R, t) ∈ [−ρ(t), 1 − ρ(t)] × [0, T ] we
have

φt(R, t) ≤ −
ρ′(t)

ρ(t)
RφR(R, t) ≤ 0. (3.30)

Proof. Let us compute the time derivative of φ (we use the notation ρ = ρ(t)):

φt(R, t) = φ(R, t)

{
(n− 1)Rρ′

[(
1− ε2τ(ρ′)2

)
− 2ε2τρρ′′

]
ρ2 (1− ε2τ(ρ′)2)

2

+
2ε2τρ′ρ′′(n− 1)

(1− ε2τ(ρ′)2)
2 ln

(
1 +

R

ρ

)
− R(n− 1)ρρ′

(1− ε2τ(ρ′)2) (R+ ρ)ρ2

}
.

Simplifying we get

φt(R, t)=
φ(R, t)(n−1)ρ′

ρ2(R+ρ) (1−ε2τ(ρ′)2)
2

{
R2
(
1−ε2τ(ρ′)2

)
− 2ε2τρ′′ρ(R+ ρ)I(R, t)

}
,

where I(R, t) := R − ρ ln(1 + R
ρ ). In order to determine the sign of φt, we observe

that, since ρ satisfies (3.12), ε2τρ′′ρ = −ρ′ρ − (n − 1) and as a consequence, if
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I(R, t) ≥ 0 then (3.15) and (3.21) imply φt(R, t) ≤ 0 in the domain [−ρ(t), 1 −
ρ(t)]× [0, T ]. However,

I(R, t) = R

(
1− ρ

R
ln

(
1 +

R

ρ

))
≥ 0,

because the function 1 − ln(1 + x)/x is positive for x ≥ 0 and negative for x < 0.
Then, φt si negative in the domain. Precisely, in [−ρ(t), 1− ρ(t)]× [0, T ] we have

φt(R, t) ≤
φ(R, t)(n− 1)ρ′

ρ2(R+ ρ) (1− ε2τ(ρ′)2)
2

{
R2
(
1− ε2τ(ρ′)2

)}
,

and using (3.23) we get (3.30).

3.4. The energy functional. Now, we introduce the functional

Eφ[v, vt](t) :=

∫ 1−ρ(t)

−ρ(t)

[
ε3τ

2
(vt)

2 + ε
(
1− ε2τ(ρ′)2

) v2
R

2
+ ε−1F (v)

]
φdR, (3.31)

for t ∈ [0, T ] and T < Tmax, where ρ satisfies (3.12), ε is so small that (3.21) holds,
F satisfies (3.3) and φ is defined in (3.25). In particular, the smallness of ε (see
(3.21)) and the positivity of the integrating factor φ guarantee that Eφ[v, vt](t) ≥ 0,
for all t ∈ [0, T ]. The goal of this subsection is to study the evolution of Eφ along
the solutions (vε, vεt ) to the problem (3.22)-(3.24). To simplify notation, we write
(v, vt) instead of (vε, vεt ).

As we will see, the main problem is the presence of the term∫ 1−ρ(t)

ρ(t)

vt(R, t)
2φR(R, t) dR,

in the time derivative of Eφ[v, vt](t), because φR ∼ φ/(R+ρ) ∼ (R+ρ)
n−1

1−ε2τρ′(t)2
−1

for R close to −ρ. For any (fixed) t > 0, since we are studying the behavior of the
solutions when ε→ 0, we need a control on∫ 1−ρ(t)

ρ(t)

vt(R, t)
2(R+ ρ)n−2 dR,

which has a problem at R = −ρ. As we will see, a possible way to overcome such
problem is to use the higher order estimates introduced in Section 2.2 and impose
that the parameter τ depends on ε in a way such that (3.2) holds.

Proposition 3.8. Fix T ∈ (0, Tmax), where Tmax is defined in (3.14) and let (v, vt)
be a sufficiently regular solution to the BVP (3.22)-(3.24) where τ satisfies (3.2), ε
is so small that (3.21) holds, ρ satisfies (3.12), and φ is defined in (3.25). Then,
the functional (3.31) satisfies for any t ∈ [0, T ] and for any ε sufficiently small,

d

dt
Eφ[v, vt](t) ≤ −βε

∫ 1−ρ(t)

−ρ(t)
vt(R, t)

2φ(R, t) dR+ Jε(t), (3.32)

for some β > 0 (independent on ε, τ, T ), where for µ as in (3.2)

Jε(t) :=− ε3τρ′(t)

∫ −ρ(t)+ε2+µ
−ρ(t)

vt(R, t)
2φR(R, t) dR

− ρ′(t)

ρ(t)

∫ 1−ρ(t)

−ρ(t)

[
ε3τ

2
(vt)

2 + εα
v2
R

2

]
RφR dR. (3.33)
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Proof. Let us differentiate the functional Eφ defined in (3.31) with respect to t:

d

dt
Eφ[v, vt] = I1(t) + I2(t) + I3(t) + I4(t),

where

I1(t) :=

∫ 1−ρ(t)

−ρ(t)

[
ε3τvtvtt + ε

(
1− ε2τ(ρ′)2

)
vRvRt + ε−1F ′(v)vt

]
φdR,

I2(t) := −
∫ 1−ρ(t)

−ρ(t)
ε3τρ′ρ′′v2

RφdR,

I3(t) :=

∫ 1−ρ(t)

−ρ(t)

[
ε3τ

2
(vt)

2 + ε
(
1− ε2τ(ρ′)2

) v2
R

2
+ ε−1F (v)

]
φt dR,

I4(t) :=

[(
ε3τ

2
(vt)

2 + ε
(
1− ε2τ(ρ′)2

) v2
R

2
+ ε−1F (v)

)
φ

]1−ρ(t)

−ρ(t)

(−ρ′(t)).

Integrating by parts, we get∫ 1−ρ(t)

−ρ(t)
vRvRtφdR =

[
vRvtφ

]1−ρ(t)

−ρ(t)
−
∫ 1−ρ(t)

−ρ(t)
vt(φvR)R dR,

By substituting, we infer

I1 = ε

∫ 1−ρ

−ρ

[
ε2τvttφ−

(
1− ε2τ(ρ′)2

)
(φvR)R + ε−2F ′(v)φ

]
vt dR+ I5,

where

I5(t) := ε
(
1− ε2τ(ρ′)2

) [
vRvtφ

]1−ρ(t)

−ρ(t)
.

From the equation for v (3.22), it follows that

ε2τvttφ−
(
1− ε2τ(ρ′)2

)
(φvR)R + ε−2F ′(v)φ = −φvt + 2ε2τρ′vtRφ,

and so

I1(t) = −ε
∫ 1−ρ(t)

−ρ(t)
φv2

t dR+ 2ε3τρ′
∫ 1−ρ(t)

−ρ(t)
vtRvtφdR+ I5(t). (3.34)

Regarding I2, since ρ satisfies equation (3.12), ε2τρ′ρ′′ = −ρ
′

ρ (ρρ′+n−1), and from

(3.15) and the positivity of φ it follows that

I2(t) ≤ 0, ∀ t ∈ [0, T ]. (3.35)

Moreover, using (3.21), (3.30) and the positivity of F we get

I3(t) ≤ −ρ
′(t)

ρ(t)

∫ 1−ρ(t)

−ρ(t)

[
ε3τ

2
(vt)

2 + εα
v2
R

2

]
RφR dR, (3.36)

for all t ∈ [0, T ]. It remains to study I4; first of all, notice that differentiating the
first boundary condition of (3.24) we infer

vt(1− ρ(t), t) = vR(1− ρ(t), t)ρ′(t), ∀ t ∈ [0, T ]. (3.37)

Thus, using (3.24), (3.37) and the fact the φ(−ρ(t), t) = 0 (see (3.26)), we obtain

I4(t) = −ε
2
ρ′(t)vR(1− ρ(t), t)2φ(1− ρ(t), t). (3.38)
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At the same way, we deduce that

I5(t) = ε
(
1− ε2τρ′(t)2

)
ρ′(t)vR(1− ρ(t), t)2φ(1− ρ(t), t). (3.39)

Combining (3.34), (3.35), (3.36), (3.38) and (3.39) we end up with

d

dt
Eφ[v, vt] ≤− ε

∫ 1−ρ(t)

−ρ(t)
v2
t φdR+ 2ε3τρ′(t)

∫ 1−ρ(t)

−ρ(t)
vtRvtφdR

− ρ′(t)

ρ(t)

∫ 1−ρ(t)

−ρ(t)

[
ε3τ

2
(vt)

2 + εα
v2
R

2

]
RφR dR

+ ε

(
1

2
− ε2τρ′(t)2

)
ρ′(t)vR(1− ρ(t), t)2φ(1− ρ(t), t).

Using that 2vt(R, t)vtR(R, t) = d
dRvt(R, t)

2 and integrating by parts we obtain

d

dt
Eφ[v, vt] ≤− ε

∫ 1−ρ(t)

−ρ(t)
vt(R, t)

2φ(R, t) dR

+ ε3τρ′(t)vt(1− ρ(t), t)2φ(1− ρ(t), t)

− ε3τρ′(t)

∫ 1−ρ(t)

−ρ(t)
vt(R, t)

2φR(R, t) dR

− ρ′(t)

ρ(t)

∫ 1−ρ(t)

−ρ(t)

[
ε3τ

2
(vt)

2 + εα
v2
R

2

]
RφR dR

+ ε

(
1

2
− ε2τρ′(t)2

)
ρ′(t)vR(1− ρ(t), t)2φ(1− ρ(t), t).

Using (3.37), we conclude that

d

dt
Eφ[v, vt] ≤− ε

∫ 1−ρ(t)

−ρ(t)
vt(R, t)

2φ(R, t) dR+ I6(t)

+
ε

2
ρ′(t)vR(1− ρ(t), t)2φ(1− ρ(t), t),

where

I6(t) :=− ε3τρ′(t)

∫ 1−ρ(t)

−ρ(t)
vt(R, t)

2φR(R, t) dR

− ρ′(t)

ρ(t)

∫ 1−ρ(t)

−ρ(t)

[
ε3τ

2
(vt)

2 + εα
v2
R

2

]
RφR dR.

Since ρ′ is negative and φ is positive, we infer

d

dt
Eφ[v, vt](t) ≤ −ε

∫ 1−ρ(t)

−ρ(t)
vt(R, t)

2φ(R, t) dR+ I6(t), (3.40)

for all t ∈ [0, T ]. The second integral in I6(t) is indeed non positive, but we keep it
for later use. Concerning the first one, for which we are not able to determine its
sign, we split it as follows:∫ 1−ρ(t)

−ρ(t)
vt(R, t)

2φR(R, t) dR =

∫ −ρ(t)+ε2+µ
−ρ(t)

vt(R, t)
2φR(R, t) dR

+

∫ 1−ρ(t)

−ρ(t)+ε2+µ
vt(R, t)

2φR(R, t) dR.
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where µ is the same of (3.2). From (3.23) there exists a constant C = C(α, T ) > 0
(independent of ε) such that

|φR(R, t)| < Cε−(2+µ)φ(R, t),

for any (R, t) ∈ [−ρ(t) + ε2+µ, 1− ρ(t)]× [0, T ] and therefore (3.40) becomes

d

dt
Eφ[v, vt](t) ≤− ε

∫ −ρ(t)+ε2+µ
−ρ(t)

vt(R, t)
2φ(R, t) dR

− (1 + Cτε−µρ′(t))ε

∫ 1−ρ(t)

−ρ(t)+ε2+µ
vt(R, t)

2φ(R, t) dR+ Jε(t),

for all t ∈ [0, T ], where Jε is defined in (3.33). Therefore, we obtain inequality
(3.32) choosing ε so small that 1 + Cτε−µρ′(t) ≥ β for some β ∈ [0, 1] and for any
t ∈ [0, T ]. Indeed, using that ρ′(t) ≥ −(n− 1)/ρ(t) for any t ∈ [0, T ], we deduce

1 + Cτε−µρ′(t) ≥ 1− C(n− 1)

ρ(t)
τε−µ ≥ 1− C(n− 1)

ρ(T )
τε−µ,

for any t ∈ [0, T ] and the proof is complete thanks to (3.2).

By integrating (3.32) we obtain

Eφ[v, vt](0)− Eφ[v, vt](T̄ ) ≥ βε
∫ T̄

0

∫ 1−ρ(t)

−ρ(t)
vt(R, t)

2φ(R, t) dtdR− h(ε), (3.41)

for all T̄ ∈ [0, T ], where

h(ε) :=

∫ T

0

Jε(t) dt.

If h is negative, in view of (3.41), we have that Eφ[v, vt](0) ≥ Eφ[v, vt](T̄ ) for any
T̄ ∈ [0, T ]. In order to use (3.41) in the case of h strictly positive we need the
following result.

Proposition 3.9. Assume that T < Tmax, Jε is defined in (3.33), ρ satisfies (3.12)
and v is given by the change of variables (3.20), where u is a solution to (3.4)
satisfying the same assumptions of Proposition 2.7. Then,

lim
ε→0

h(ε) = 0. (3.42)

Proof. We have that

Jε(t) ≤ Jε1 (t) + Jε2 (t)

:= −ε
3τρ′(t)

2ρ(t)

∫ −ρ(t)+ε2+µ
−ρ(t)

(R+ 2ρ(t))vt(R, t)
2φR(R, t) dR

− εαρ′(t)

2ρ(t)

∫ 1−ρ(t)

−ρ(t)
vR(R, t)2RφR(R, t) dR.

Observe that Jε2 (t)≤0 for all t ∈ [0, T ] because RφR(R, t)<0 for (R, t)∈(−ρ(t), 1−
ρ(t))× [0, T ], whereas φR(R, t)> 0 for (R, t)∈ (−ρ(t), 0)× [0, T ] and then Jε1 (t)≥ 0
for all t∈ [0, T ]. Let us estimate the term Jε1 . To do this, we recall that

vt(R, t)
2 = (ut(R+ ρ(t), t) + ρ′(t)vR(R, t))

2

≤ 2
(
ut(R+ ρ(t), t)2 + ρ′(t)2vR(R, t)2

)
,
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for all (R, t) ∈ (−ρ(t), 1− ρ(t))× (0, T )). Hence,

Jε1 (t) ≤ −ε
3τρ′(t)

ρ(t)

∫ −ρ(t)+ε2+µ
−ρ(t)

vt(R, t)
2φR(R, t) dR

≤ −2ε3τρ′(t)

ρ(t)

∫ −ρ(t)+ε2+µ
−ρ(t)

ut(R+ ρ(t), t)2φR(R, t) dR

− 2ε3τρ′(t)3

ρ(t)

∫ −ρ(t)+ε2+µ
−ρ(t)

vR(R, t)2φR(R, t) dR,

and, as a trivial consequence

Jε(t) ≤ −2ε3τρ′(t)

ρ(t)

∫ −ρ(t)+ε2+µ
−ρ(t)

ut(R+ ρ(t), t)2φR(R, t) dR

+
ερ′(t)

2ρ(t)

∫ −ρ(t)+ε2+µ
−ρ(t)

(
−4ε2τρ′(t)2 − αR

)
vR(R, t)2φR(R, t) dR

− εαρ′(t)

2ρ(t)

∫ 1−ρ(t)

−ρ(t)+ε2+µ
vR(R, t)2RφR(R, t) dR.

Choosing ε so small that

α(ρ(T )− ε2) ≥ 4ε2τρ′(T )2,

we end up with

Jε(t) ≤ −2ε3τρ′(t)

ρ(t)

∫ −ρ(t)+ε2+µ
−ρ(t)

ut(R+ ρ(t), t)2φR(R, t) dR =: Jε3 (t).

Now, let us estimate the integral Jε3 . Using that

|φR(R, t)| ≤ (n− 1)|R|
ρ(T )α(R+ ρ)

|φ(R, t)| ≤ C

R+ ρ
(R+ ρ)

n−1

1−ε2τρ′(t)2 ≤ C(R+ ρ)n−2,

where C > 0 depends on T , we deduce that there exists C > 0 (depending on T )
such that

Jε3 (t) ≤ Cε3τ

∫ −ρ(t)+ε2+µ
−ρ(t)

ut(R+ ρ(t), t)2(R+ ρ)n−2 dR

= Cε3τ

∫ ε2+µ

0

ut(r, t)
2rn−2 dr.

Coming back to cartesian coordinates, we obtain

Jε3 (t) ≤ Cε3τ

∫
B(0,ε2+µ)

ut(x, t)
2

|x|
dx,

where B(0, ε2+µ) is the ball of center 0 and of radius ε2+µ. From Hölder’s inequality,
it follows that∫

B(0,ε2+µ)

ut(x, t)
2

|x|
dx ≤

(∫
B(0,ε2+µ)

ut(x, t)
2q dx

) 1
q
(∫

B(0,ε2+µ)

1

|x|q′
dx

) 1
q′

,
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where 1
q + 1

q′ = 1 and q′ = q
q−1 < n. For such q′, the second integral is bounded as

follows: (∫
B(0,ε2+µ)

1

|x|q′
dx

) 1
q′

≤ Cε(2+µ)
(
n
q′−1

)
,

and therefore it is convenient to choose q big such that q′ is as close as possible to
1. In particular, in view of Sobolev inequalities, we choose q = 2∗

2 = 3 for n = 3,

namely, q′ = 3
2 , and q large so that q′ = 1 + µ/5 for n = 2. With these choices, we

can say that there exists a constant C > 0 (depending on T ) such that

Jε3 (t) ≤ Cεστ‖ut(·, t)‖2L2q(B(0,ε2+µ)) ≤ Cε
στ‖ut(·, t)‖2H1(Ω), (3.43)

for all t ∈ (0, T ), where

σ =

{
5 + µ

(
1−µ
5+µ

)
, if n = 2,

5 + µ, if n = 3.

Using Proposition 2.7 and (2.31), we conclude that

h(ε) =

∫ T

0

Jε(t) dt ≤ Cε−5+σ,

where σ is defined above, and then the proof is complete.

Remark 3.10. In the classical parabolic case, the corresponding weighted energy
is a Lyapunov functional, see [4, Proposition 3.2]. Here, the analysis carried out
in Proposition 3.8 does not guarantee such property. However, by looking at its
proof, we can conclude that if the term I6 of inequality (3.40) is negative, then
the functional Eφ still decreases in time along the solutions (vε, vεt ) to the problem
(3.22)-(3.24). Hence, in that case we could proceed as in the parabolic one, and we
need no assumptions on the parameter τ > 0. Also, if I6 is positive with I6 = o(1)
as ε→ 0, we must not impose a smallness condition on the parameter τ . Since we
are not able to establish a priori the sign of I6 and we do not have an estimate of
ut near x = 0, we introduce the function Jε and use the estimate (2.31). In this
way, we need to impose the condition (3.2) on the parameter τ to obtain (3.42).
However, we believe that such condition on the smallness of τ is indeed technical,
as confirmed by numerical evidence; for instance in the numerical solution of Figure
1, we choose τ = 1.

3.5. Dynamics of vε. Denote by vε the solution of (3.22) with boundary condi-
tions (3.24) and initial data

vε(R, 0) = vε0(R), vεt (R, 0) = vε1(R), R ∈ [−ρ0, 1− ρ0]. (3.44)

Similarly to (3.7), we assume that vε0 converges in L1 to v̄ as ε→ 0, where

v̄(R) :=

{
−1, R < 0,

+1, R > 0,
(3.45)

and that the energy Eφ at the time t = 0 satisfies

Eφ[vε0, v
ε
1] :=

∫ 1−ρ(0)

−ρ(0)

[
ε3τ

2
(vε1)2 + ε

(
1− ε2τρ′(0)2

) (vε0)
2
r

2
+ ε−1F (vε0)

]
φdR

≤ c0 + z(ε), (3.46)
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where c0, z are the same of (3.8). Using (3.41), assumption (3.46) and the positivity
of φ, we obtain the following estimate for the energy

Eφ[vε, vεt ](T̄ ) ≤ c0 + y(ε), (3.47)

for all T̄ ∈ [0, T ], where y = max{z, h}. In particular, since z = o(1) as ε→ 0+, in
view of (3.42), we deduce that the energy is uniformly bounded for any T̄ ∈ [0, T ].

The function vε is defined in the region [−ρ(t), 1 − ρ(t)] × [0, T εm); however, in
the following we shall work in a region

[−a, a]× (0, T ) ⊂ (−ρ(t), 1− ρ(t))× (0, T εm). (3.48)

Since ρ is a decreasing function of t and ρ(t) ≥ ρo(t) for any t ∈ [0, Tmax] ⊂ [0, T εm),
for any T ∈ (0, Tmax) it is possible to choice a > 0 (depending on T ) such that
(3.48) is satisfied; i.e. a < min{ρo(T ), 1 − ρ0}. The function φ vanishes only at
R = −ρ and so, with this choice of a and T , we can say that

φ(R, t) ≥ φm > 0 for (R, t) ∈ (−a, a)× (0, T ), (3.49)

where φm is a constant depending only on T (to be explicitly obtained). For 0 ≤
t1 < t2 ≤ T , define

dε(t1, t2) :=

∫ a

−a

∣∣Ψ(vε(R, t1))−Ψ(vε(R, t2))
∣∣ dR, (3.50)

where the function Ψ is defined in (2.15).

Proposition 3.11. Let (vε, vεt ) be a sufficiently regular solution to the IBVP (3.22)-
(3.24)-(3.44), where τ satisfies (3.2), ε is so small that (3.21) holds, ρ satisfies
(3.12), φ is defined in (3.25), and the initial data satisfy (3.46). Moreover, fix
T ∈ (0, Tmax) and a > 0 such that (3.48) holds. Then, there exists a constant
C > 0 (depending on T , but not on ε) such that

dε(t1, t2) ≤ C(t2 − t1)1/2
(
Eφ[vε, vεt ](t1)− Eφ[vε, vεt ](t2) + h(ε)

)1/2
, (3.51)

whenever 0 ≤ t1 < t2 ≤ T .

Proof. Fix t1, t2 satisfying 0 ≤ t1 < t2 ≤ T . Thanks to Cauchy–Schwarz inequality
we obtain∫ t2

t1

∫ 1−ρ(t)

−ρ(t)

∣∣∣∣ ddtΨ(vε)

∣∣∣∣φdtdR =

∫ t2

t1

∫ 1−ρ(t)

−ρ(t)
|Ψ′(vε)vεt |φdtdR

≤

(∫ t2

t1

∫ 1−ρ(t)

−ρ(t)
Ψ′(vε)2φdtdR

)1/2(∫ t2

t1

∫ 1−ρ(t)

−ρ(t)
(vεt )

2φdtdR

)1/2

.

Using that Ψ′(vε)2φ = 2F (vε)φ ≤ 2εEφ[vε, vεt ] and (3.47), we deduce that the
energy is uniformly bounded in time and therefore∫ t2

t1

∫ 1−ρ(t)

−ρ(t)
Ψ′(vε)2φdtdR ≤ 2ε

∫ t2

t1

Eφ[vε, vεt ](t) dt ≤ Cε(t2 − t1),

where C is a positive constant depending on T . Moreover, integrating (3.32) we
infer∫ t2

t1

∫ 1−ρ(t)

−ρ(t)
(vεt )

2φdtdR ≤ (βε)−1 (Eφ[vε, vεt ](t1)− Eφ[vε, vεt ](t2) + h(ε)) .
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Then, we get ∫ t2

t1

∫ 1−ρ(t)

−ρ(t)

∣∣∣∣ ddtΨ(vε)

∣∣∣∣φdtdR
≤C(t2 − t1)1/2

(
Eφ[vε, vεt ](t1)− Eφ[vε, vεt ](t2) + h(ε)

)1/2

, (3.52)

for some C > 0 depending on T . On the other hand, we have

dε(t1, t2) ≤
∫ a

−a

∫ t2

t1

∣∣∣∣ ddtΨ(vε)

∣∣∣∣ dtdR,
and so, using (3.49) we infer

dε(t1, t2) ≤ (φm)−1

∫ a

−a

∫ t2

t1

∣∣∣∣ ddtΨ(vε)

∣∣∣∣φdtdR
≤ (φm)−1

∫ t2

t1

∫ 1−ρ(t)

−ρ(t)

∣∣∣∣ ddtΨ(vε)

∣∣∣∣φdtdR. (3.53)

Combining (3.52) and (3.53), we end up with (3.51) and the proof is complete.

Remark 3.12. Denoting by dε(t) the function dε(0, t) for t ∈ [0, T ], then

|dε(t1)− dε(t2)| ≤ dε(t1, t2).

Thus, estimate (3.51) implies dε is an Hölder continuous function in t, uniformly in
ε for (3.47).

The next step is to establish a lower bound for Eφ[vε, vεt ]. From Young inequality
it follows that

ε
v2
R

2
+ ε−1F (v) ≥

√
2F (v)|vR| =

∣∣∣∣ ddRΨ(v)

∣∣∣∣ . (3.54)

The lower bound (3.54) is fundamental in the proof of the following result. We use
the notation

Pφ[vε](t) :=

∫ 1−ρ(t)

−ρ(t)

[
ε
vεR(R, t)2

2
+ ε−1F (vε(R, t))

]
φ(R, t) dR.

Proposition 3.13. Let Pφ[vε] defined above with ρ satisfying (3.12), F satisfying
(3.3) and φ defined in (3.25). Fix T ∈ (0, Tmax) and a > 0 such that (3.48) holds.
Then, there exist positive constants ε0, C1, C2 (independent on ε) such that

Pφ[vε](t) ≥ φ(−C1d
ε(t)− ε1/2, t) · (c0 − C2ε

1/2), (3.55)

for any ε ∈ (0, ε0) and t ∈ [0, T ] such that

C1d
ε(t) + ε1/2 ≤ a. (3.56)

Here, the positive constant c0 is the same of (3.46), ε0 and C2 depend on T , whereas
the constant C1 can be chosen independent on ε and T .

Proof. The first step of the proof is to prove the existence of two points R1, R2 in
a neighborhood of 0 such that vε is close to −1 in R1 and vε is close to 1 in R2.
To do this, let us define

A := (−C1d
ε(t)− ε1/2, C1d

ε(t) + ε1/2),
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and fix t ∈ [0, T ] such that assumption (3.56) is satisfied, namely such that A ⊂
(−a, a). We claim that there exist R1, R2 ∈ A such that

vε(R1, t) ≤ −1 + Cε1/4, vε(R2, t) ≥ 1− Cε1/4, (3.57)

for some constant C > 0. To start with, we prove the existence of R1 such that the
first inequality of (3.57) holds. Let us introduce

I− := (−C1d
ε(t)− ε1/2, 0) ∩

{
R : vε(R, t) < 1

4

}
,

I+ := (−C1d
ε(t)− ε1/2, 0) ∩

{
R : vε(R, t) ≥ 1

4

}
.

From the assumption (3.56) and recalling the definition of dε(t) := dε(0, t) where
dε(t1, t2) is defined in (3.50), we deduce

dε(t) =

∫ a

−a

∣∣Ψ(vε0(R))−Ψ(vε(R, t))
∣∣ dR ≥ ∫

I+

∣∣Ψ(vε0(R))−Ψ(vε(R, t))
∣∣ dR

≥ {Ψ(1/4)−Ψ(0)}m(I+),

where we used that vε(R, t) ≥ 1
4 in I+ and vε0(R) < 0 if ε is sufficiently small and

R ∈ I+ for (3.45). Since m(I+) = C1d
ε(t) + ε1/2 −m(I−), we get(

{Ψ(1/4)−Ψ(0)}−1 − C1

)
dε(t) ≥ ε1/2 −m(I−).

Taking C1 ≥ {Ψ(1/4)−Ψ(0)}−1, we obtain

m(I−) ≥ ε1/2. (3.58)

Moreover, we have

min
I−

φ

∫
I−
ε−1F (vε) dR ≤

∫
A

ε−1F (vε)φdR ≤ Pφ[vε] ≤ C3, (3.59)

where in the last estimate we assumed without loss of generality that Pφ[vε] ≤ C3

for some C3 > 0. Since I− ⊂ A ⊂ (−a, a), we can use (3.49) and the estimates
(3.58), (3.59) imply the existence of R1 ∈ I− such that

F (vε(R1, t)) ≤ C3(φm)−1ε1/2. (3.60)

Using the assumptions on F (3.3), we infer that there exists β0 > 0 such that

F ′′(−1)

4
(vε + 1)2 ≤ F (vε) ≤ F ′′(−1)(vε + 1)2, (3.61)

for any vε ∈ [−1− β0,−1 + β0]. Assume ε sufficiently small so that (3.60) and the
fact that vε(R1, t) <

1
4 in I− imply vε ∈ [−1− β0,−1 + β0]. Thus, from (3.60) and

(3.61), it follows that vε(R1, t) ≤ −1 + Cε1/4, that is the first inequality of (3.57).
The second one can be proved similarly. Now, we shall use (3.57) and (3.54) to
complete the proof of (3.55). Precisely, we have

Pφ[vε](t) ≥
∫ R2

R1

[
ε
vεR(R, t)2

2
+ ε−1F (vε(R, t))

]
φ(R, t) dR

≥
∫ R2

R1

∣∣∣∣ ddRΨ(vε(R, t))

∣∣∣∣φ(R, t) dR

≥ min
A
φ
∣∣Ψ(vε(R2, t))−Ψ(vε(R1, t))

∣∣, (3.62)

using (3.54) in the second step. For the last term, using (3.57) we infer∣∣Ψ(vε(R2, t))−Ψ(vε(R1, t))
∣∣
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≥
∫ 1−Cε1/4

−1+Cε1/4

√
2F (s) ds

= c0 −
∫ −1+Cε1/4

−1

√
2F (s) ds−

∫ 1

1−Cε1/4

√
2F (s) ds.

Using again the assumptions on F (3.3) and the upper bound for F in (3.61), we
deduce that there exists C > 0 depending on T such that for any ε sufficiently small∫ −1+Cε1/4

−1

√
2F (s) ds ≤

√
2F ′′(−1)

∫ −1+Cε1/4

−1

|s+ 1| ds ≤ Cε1/2.

A similar result holds true for the last integral, and therefore we obtain that there
exists C > 0 depending on T such that∣∣Ψ(vε(R2, t))−Ψ(vε(R1, t))

∣∣ ≥ c0 − Cε1/2. (3.63)

It remains to study the term min
A
φ in (3.62). Since φ satisfies (3.27) and (3.29), we

conclude that

min
A
φ = φ(−C1d

ε(t)− ε1/2, t). (3.64)

Substitute (3.63) and (3.64) in (3.62) and the proof is complete.

Remark 3.14. From (3.55) and (3.28), it follows that if C1d
ε(t)+ε1/2 is sufficiently

small then

Pφ[vε](t) ≥
(

1−KT (C1d
ε(t) + ε1/2)2

)
· (c0 − C2ε

1/2).

Using the definition of the energy (3.31), we deduce that there exists C > 0 (de-
pending on T but not on ε and τ) such that

Eφ[vε, vεt ](t) ≥ Pφ[vε](t)− 1

2
ε3τρ′(t)2

∫ 1−ρ(t)

−ρ(t)
vεR(R, t)2φ(R, t) dR

≥ Pφ[vε](t)− Cα−1ε2τ,

where in the last passage we used (3.16), (3.21) and (3.47). Hence, we end up with
the following lower bound

Eφ[vε, vεt ](t) ≥ c0 − Cε1/2 − Cdε(t)2, (3.65)

which holds for any sufficiently small ε. Actually, we have proved a property stronger
than (3.65); we have proved the following “local” bound∫

A

[
ε
vεR(R, t)2

2
+ ε−1F (vε(R, t))

]
φ(R, t) dR ≥ c0 − Cε1/2 − Cdε(t)2, (3.66)

which we will use later.

The next step is to prove the following fundamental result.

Proposition 3.15. Let (vε, vεt ) be a sufficiently regular solution to the IBVP (3.22)-
(3.24)-(3.44), where τ satisfies (3.2), ρ satisfies (3.12), φ is defined in (3.25), and
the initial data satisfy (3.46). Moreover, fix T ∈ (0, Tmax) and a > 0 such that
(3.48) holds. Then, there exists a constant C > 0 (depending on T , but not on ε)
such that

dε(t) ≤ C max
{
ε1/4,

√
y(ε)

}
, for t ∈ [0, T ], (3.67)
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provided ε ∈ (0, ε0), where ε0 is a small constant depending on T such that in
particular (3.21) holds.

Proof. We shall prove inductively that if ε ∈ (0, ε0) then

dε(t) ≤ 2N max
{
ε1/4,

√
y(ε)

}
, for t ∈ [0,min(Nt0, T )], (3.68)

where N is a positive integer, for a suitable choice of the constant t0 > 0. The
constant ε0 will depend on N , but the value of t0 will be independent on N and ε.
The estimate (3.67) clearly follows from (3.68), by taking N = [T/t0] + 1.

Let us start with the first step of the induction, namely let us show (3.68) for
N = 1. From (3.51), it follows that

dε(t) ≤ Ct1/2
(
Eφ[vε0, v

ε
1]− Eφ[vε, vεt ](t) + h(ε)

)1/2
.

In order to estimate the latter quantity, we use assumption (3.46) and Proposition
3.13. As observed in Remark 3.12, the function dε is Hölder continuous in t, uni-
formly in ε; hence, we can choose t0 > 0 sufficiently small such that assumption
(3.56) is satisfied on [0, t0] for small values of ε. Combining (3.46) and (3.65), we
obtain for all t ∈ [0, t0]

dε(t)2 ≤ Ct
(
c0 + z(ε)− c0 + Cε1/2 + Cdε(t)2 + h(ε)

)
,

where the positive constant C depends on T , but not on ε. Hence, we have

dε(t)2 ≤ Ct
(
dε(t)2 + ε1/2 + y(ε)

)
,

and as a consequence

(1− Ct0)dε(t)2 ≤ Ct0
(
ε1/2 + y(ε)

)
,

for all t ∈ [0, t0]. Choosing t0 small enough so that 0 < Ct0/(1− Ct0) ≤ 2, we end
up with (3.68) in the case N = 1.

Now, let us proceed with the inductive step. Assume that (3.68) holds for N =
1, 2, . . . , k and that kt0 ≤ T (otherwise (3.68) is trivial). As in the initial step we
use (3.46) and Proposition 3.13. The condition (3.56) is satisfied because

dε(t) ≤ |dε(t)− dε(kt0)|+ dε(kt0), ∀ t ∈ [kt0,min((k + 1)t0, T )],

and we can use the Hölder continuity of dε and the inductive hypothesis, by choosing
t0 and ε sufficiently small. Moreover, we have

dε(t) ≤ dε(kt0, t) + dε(kt0), ∀ t ∈ [kt0,min((k + 1)t0, T )],

and so

dε(t)2 ≤ 2dε(kt0, t)
2 + 2dε(kt0)2 ≤ 2dε(kt0, t)

2 + 22k+1 max
{
ε1/2, y(ε)

}
,

for all t ∈ [kt0,min((k+ 1)t0, T )], where in the last inequality we used the inductive
hypothesis. Let us estimate the remaining term. From (3.51), it follows that

dε(kt0, t)
2 ≤ C(t− kt0)

(
Eφ[vε, vεt ](kt0)− Eφ[vε, vεt ](t) + h(ε)

)
,

for all t ∈ [kt0,min((k + 1)t0, T )]. Using (3.47) and (3.65), we obtain

dε(kt0, t)
2 ≤ Ct0

(
dε(t)2 + ε1/2 + y(ε)

)
, ∀ t ∈ [kt0,min((k + 1)t0, T )],

where the positive constant C depends on T but not on ε and t0. Hence, we get

dε(t)2 ≤ Ct0
(
dε(t)2 + ε1/2 + y(ε)

)
+ 22k+1 max

{
ε1/2, y(ε)

}
,
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for all t ∈ [kt0,min((k + 1)t0, T )], and, as an easy consequence

(1− Ct0)dε(t)2 ≤ 2(Ct0 + 22k) max
{
ε1/2, y(ε)

}
,

for all t ∈ [kt0,min((k+1)t0, T )]. By choosing t0 sufficiently small so that Ct0 ≤ 1/4,
we conclude that

dε(t)2 ≤
(

2

3
+

4

3
22k+1

)
max

{
ε1/2, y(ε)

}
≤ 22k+2 max

{
ε1/2, y(ε)

}
,

for all t ∈ [kt0,min((k + 1)t0, T )], that is (3.68) with N = k + 1, and the proof is
complete.

3.6. Proof of the main results. In this subsection, we conclude the proof of The-
orems 3.2 and 3.3. Before proceeding with the proof, let us make some comments.
First, we remark that the condition (3.8) on the initial data allows us to make use
of Proposition 3.15. Indeed, using the change of variables (3.20)

vε0(R) = uε0(R+ ρ0), vε1(R) = uε1(R+ ρ0) + ν0∂ru
ε
0(R+ ρ0),

we obtain that (3.7) and (3.8) are equivalent to (3.45) and (3.46), in the case ν0 = 0.
Second, as we have already observed, the assumption (3.8) ensures that the condi-

tion (2.11) holds. Moreover, the condition (3.10) permits to remove the assumption
(2.8) on F as pointed out in Remark 2.5 and then we can apply Theorem 2.3 to the
solution of the problem (3.3)-(3.10) introduced in Section 3.

Observe also that since the function h satisfies (3.42), we have that y = o(1) as
ε→ 0. Substituting in (3.67) we obtain

lim
ε→0

dε(t) = 0, for any t ∈ [0, T ]. (3.69)

Finally, let us recall the definition

ω0(r, t) =

{
−1, r < ρo(t),
+1, r > ρo(t),

with ρo(t) =
√
ρ2

0 − 2(n− 1)t. We have

|ωε(r, t)− ω0(r, t)| =
{

2, ρo(t) ≤ r ≤ ρ(t),
0, otherwise.

(3.70)

Therefore, from Lemma 3.5 it follows that ωε → ω0 as ε→ 0. Now, we have all the
tools to prove Theorem 3.2.

Proof of Thereom 3.2. Fix T ∈ (0, Tmax). We will prove the property (3.11) by
contradiction. If (3.11) is not true, then there exists a sequence εj and a constant
δ > 0 such that ∫ T

0

∫ 1

0

|uε(r, t)− ωε(r, t)| rn−1 dr dt ≥ δ. (3.71)

The assumptions of Theorem 2.3 are satisfied, then we can apply it to the solution
uεj and we can state that there exists a subsequence (still denoted uεj ) such that

lim
εj→0

uεj (r, t) = u∗(r, t) for a.e. (r, t) ∈ (0, 1)× (0, T ), (3.72)

where u∗ takes only the values ±1. Regarding ωε, from (3.18) and (3.70) it follows
that

lim
εj→0

ωεj (r, t) = ω0(r, t) for any (r, t) ∈ (0, 1)× (0, T ). (3.73)
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Using the assumption (3.10) and (3.72)-(3.73), we may pass to the limit as εj → 0
in (3.71) and conclude that∫ T

0

∫ 1

0

∣∣u∗(r, t)− ω0(r, t)
∣∣ rn−1 dr dt ≥ δ. (3.74)

We will show that u∗ ≡ ω0 and so that (3.74) can not be true. Consider the
functions vεj and v∗ corresponding to uεj and u∗ through the change of variables
(3.20):

vε(R, t) = uε(R+ ρ(t), t), (R, t) ∈ (−ρ(t), 1− ρ(t))× (0, T );

v∗(R, t) = u∗(R+ ρo(t), t), (R, t) ∈ (−ρo(t), 1− ρo(t))× (0, T ).

From the assumptions on the initial data, it follows that the function v
εj
0 = v

εj
0 (R) =

vεj (R, 0) satisfies

lim
εj→0

v
εj
0 (R) =

{
−1, R < 0,

+1, R > 0.

On the other hand, thanks to Proposition 3.15 (see (3.69)) we can state that

lim
εj→0

∫ a

−a

∣∣Ψ(v
εj
0 (R))−Ψ(vεj (R, t))

∣∣ dR = 0.

Applying the dominated convergence theorem, we conclude that

v∗(R, t) =

{
−1, R < 0,

+1. R > 0,
∀ (R, t) ∈ (−a, a)× (0, T ). (3.75)

This implies that u∗ = ω0 in (r, t) ∈ (ρo(t) − a, ρo(t) + a) × (0, T ). In order to
handle values of R outside of (−a, a) we use (3.47) and the “local” lower bound
(3.66); setting A = (−dε(t)− ε1/2, dε(t) + ε1/2), we have∫

(−ρ(t),1−ρ(t))\A

[
ε
vεR(R, t)2

2
+ε−1F (vε(R, t))

]
φ(R, t) dR≤C

(
y(ε)+ε1/2+(dε)2

)
.

(3.76)
In particular, we deduce∫ −dε(t)−ε1/2
−ρ(t)

[
ε
vεR(R, t)2

2
+ ε−1F (vε(R, t))

]
φ(R, t) dR ≤ C

(
y(ε) + ε1/2 + (dε)2

)
.

Using (3.54) and (3.67), we infer∫ −dε(t)−ε1/2
−ρ(t)

∣∣∣∣ ddRΨ(vε(R, t))

∣∣∣∣φ(R, t) dR ≤ C
(
y(ε) + ε1/2

)
. (3.77)

Observe that the function φ defined in (3.25) is strictly positive and vanishes only
at −ρ; then, for any η ∈ (0, ρ(T )) we have

φ(R, t) ≥ φm > 0 ∀ (R, t) ∈ [−ρ(t) + η, 0]× [0, T ],

where the constant φm can be chosen only depending on η. For example, in view
of (3.21), for ε sufficiently small we can choose

φm = η
n−1
α .
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Therefore, using (3.69) and (3.77), we can say that for any fixed t ∈ [0, T ] and for
any two points R1, R2 ∈ (−ρo(t), 0), one has

φm |Ψ(vε(R2, t))−Ψ(vε(R1, t))| ≤ C
(
y(ε) + ε1/2

)
,

whenever ε is sufficiently small. Since φm is strictly positive, by passing to the limit
εj → 0, we obtain that Ψ(v∗) is constant on (−ρo(t), 0). From the definition of Ψ
(2.15) and (3.75), we conclude that v∗(R, t) = −1 for (R, t) ∈ (−ρo(t), 0) × (0, T ).
Similarly, we can prove that v∗(R, t) = +1 for (R, t) ∈ (0, 1−ρo(t))×(0, T ). Indeed,
using (3.76) we can also say that∫ 1−ρ(t)

dε(t)+ε1/2

∣∣∣∣ ddRΨ(vε(R, t))

∣∣∣∣φ(R, t) dR ≤ C
(
y(ε) + ε1/2

)
.

Since φ is strictly positive in [0, 1 − ρ(t)], ρ satisfies (3.18) and dε satisfies (3.69),
for any fixed t ∈ [0, T ] and for any two points R1, R2 ∈ (0, 1− ρo(t)), we get

|Ψ(vε(R2, t))−Ψ(vε(R1, t))| ≤ C
(
y(ε) + ε1/2

)
,

whenever ε is sufficiently small. Therefore, Ψ(v∗) is constant on (0, 1 − ρo(t)) and
from (3.75), we have that v∗(R, t) = +1 for (R, t) ∈ (0, 1 − ρo(t)) × (0, T ). In
conclusion, returning to the original variables, we have shown that u∗ = ω0 in
(0, 1)× (0, T ). This contradicts (3.74) and the proof is complete.

Now, we proceed with the proof of Theorem 3.3.

Proof of Theorem 3.3. Fix T ∈ (0, Tmax). From triangle inequality, it follows that∫ T

0

∫ 1

0

∣∣uε(r, t)− ω0(r, t)
∣∣ rn−1 dr dt

≤
∫ T

0

∫ 1

0

|uε(r, t)− ωε(r, t)| rn−1 dr dt+

∫ T

0

∫ 1

0

∣∣ωε(r, t)− ω0(r, t)
∣∣ rn−1 dr dt.

The first term of the right hand side of the previous inequality tends to 0 as ε→ 0
for (3.11). For the other one, we use (3.70):∫ T

0

∫ 1

0

∣∣ωε(r, t)− ω0(r, t)
∣∣ rn−1 dr dt

=
2

n

∫ T

0

[ρ(t)n − ρo(t)n] dt ≤ 2T sup
t∈[0,T ]

|ρ(t)− ρo(t)| .

Therefore, using (3.11) and (3.18), we obtain (3.13).
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