
Vol.:(0123456789)

Journal of Optimization Theory and Applications
https://doi.org/10.1007/s10957-021-01867-2

1 3

Optimal Space Trajectories with Multiple Coast Arcs Using 
Modified Equinoctial Elements

Mauro Pontani1 

Received: 15 September 2020 / Accepted: 27 April 2021 
© The Author(s) 2021

Abstract
The detection of optimal trajectories with multiple coast arcs represents a signifi-
cant and challenging problem of practical relevance in space mission analysis. Two 
such types of optimal paths are analyzed in this study: (a) minimum-time low-thrust 
trajectories with eclipse intervals and (b) minimum-fuel finite-thrust paths. Modi-
fied equinoctial elements are used to describe the orbit dynamics. Problem (a) is 
formulated as a multiple-arc optimization problem, and additional, specific multi-
point necessary conditions for optimality are derived. These yield the jump con-
ditions for the costate variables at the transitions from light to shadow (and vice 
versa). A sequential solution methodology capable of enforcing all the multipoint 
conditions is proposed and successfully applied in an illustrative numerical exam-
ple. Unlike several preceding researches, no regularization or averaging is required 
to make tractable and solve the problem. Moreover, this work revisits problem (b), 
formulated as a single-arc optimization problem, while emphasizing the substantial 
analytical differences between minimum-fuel paths and problem (a). This study also 
proves the existence and provides the derivation of the closed-form expressions for 
the costate variables (associated with equinoctial elements) along optimal coast arcs.
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1 Introduction

Spacecraft trajectory optimization is concerned with the determination of the opti-
mal direction and magnitude of the propulsive thrust that drive a space vehicle 
toward some specified conditions, while minimizing either propellant consumption 
or time of flight. Optimal space trajectories have been extensively investigated from 
both the analytical and the numerical perspective, using a variety of approaches. 
The impulsive thrust assumption [45] represents an excellent approximation for 
spacecraft that employ chemical propulsion for short durations. In this context, 
orbit transfer optimization, aimed at minimizing propellant consumption, reduces to 
a nonlinear programming problem. However, in the presence of moderate or low 
thrust levels, the impulsive approximation loses accuracy, and the general properties 
of optimal finite-thrust trajectories can no longer be inferred from an impulsive solu-
tion [34, 49]. In these cases, the optimal path of interest must be found as the solu-
tion of a continuous-time optimal control problem.

As a valuable alternative to chemical propulsion, in recent years low-thrust elec-
tric propulsion [48] attracted an increasing interest by the scientific community, and 
already found application in a variety of mission scenarios, e.g. the NASA Deep 
Space 1 and the ESA Smart-1 missions [43, 44]. Thanks to high values of the spe-
cific impulse, low-thrust propulsion allows substantial propellant savings, at the 
price of increasing—even considerably—the time of flight. Pioneering studies on 
low-thrust trajectories are due to Edelbaum [13], who apparently was the first scien-
tist to point out the advantages of using low-thrust in space missions. Most recently, 
extensive research on the same subject was carried out by Petropoulos [35, 36], 
Betts [5–7], Ross [46], and Kechichian [23–27], to name a few. Low-thrust trajec-
tory optimization problems are solved through the use of direct, indirect, or heuris-
tic approaches sometimes combined in hybrid forms [37]. With this regard, Betts 
[8], Rao [42], and Conway [11] offer excellent overviews of the available methods 
in spacecraft trajectory optimization. A major drawback of low-thrust electric pro-
pulsion resides in the demanding requirement of electrical power to operate. As 
a result, in operational scenarios low-thrust propulsion is switched off when the 
satellite is eclipsed. It is quite obvious that this circumstance implies a complete 
reconsideration of the underlying optimization problem. In general, this is formu-
lated as a minimum-time problem, for which the available control depends on the 
state. A limited number of studies are devoted to low-thrust trajectory optimization 
with eclipsing. The cylindrical shadow model is assumed in several works as a very 
accurate approximation, due to the distance that separates the Sun from the Earth 
[15, 17]. Under some simplifying assumption, Kechichian [26, 27] derived analyti-
cal expressions for the variation of the orbit elements due to low thrust, with the 
inclusion of the eclipse effect on the availability of electrical power. Some research-
ers employed orbital averaging, in conjunction with either direct techniques [16, 
28], or the sequential gradient-restoration algorithm [2], or a shooting method [15]. 
Recently, Kluever [29] provided an algorithm, based on Edelbaum’s analytic solu-
tion, devoted to computing the transfer time for low-thrust maneuvers with eclipsing, 
while Betts [7] proposed a direct optimization method that includes a multiple-phase 
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formulation of the problem. A similar approach is due to Graham and Rao [19], who 
employed adaptive Gaussian quadrature orthogonal collocation, without any use of 
averaging. Their method finds an initial guess by identifying the optimal path while 
neglecting eclipsing. Then, a sequence of optimal control problems is defined and 
solved, by adding a single eclipse period at a time. Alternative (indirect) approaches 
are based on regularization, applied to the transitions from light to shadow (and vice 
versa). Ferrier and Epenoy [15] used a smoothing function when the spacecraft trav-
els the region between two cylinders that enclose the eclipse cylinder. They pro-
posed an effective methodology for circumventing the theoretical difficulties inher-
ent to the state-dependent control. Most recently, Mazzini [33] utilized a smooth 
eclipse function, to restore the regularity conditions, for the purpose of applying 
the Pontryagin minimum principle, whereas Taheri and Junkins [50] proposed the 
hyperbolic tangent as a smoothing function. Similarly, Aziz et al. [1] smoothed the 
eclipse transition with a logistic function and computed the optimal paths through 
differential dynamic programming, a second-order gradient-based method.

The challenges related to the inclusion of multiple coast arcs, associated with 
eclipse intervals, are thus apparent from the preceding considerations. However, 
another class of optimal space trajectories exists that may include multiple coast 
arcs. In fact, minimum-fuel paths using finite thrust are associated with a set of nec-
essary conditions that admit coast arcs and powered phases [40]. This consolidated 
property was proven in the 60 s [30] and since then a vast amount of literature was 
dedicated to investigating minimum-fuel space trajectories. A very interesting recent 
contribution is due to Taheri and Junkins [49], who analyzed the relations between 
impulsive transfers and finite-thrust paths using optimal control theory. They point 
out the existence of optimal trajectories with a variety of structures (i.e. different 
numbers and timing of powered phases and thrust arcs). In this context, the switch-
ing function, which depends on the state and the costate variables, plays a major 
role. In fact, the time evolution of this function determines the sequence of powered 
phases and coast arcs along the optimal path. For a space vehicle that orbits a sin-
gle celestial body, orbital motion along thrust intervals must be obtained through 
numerical integration, whereas its trajectory is Keplerian along coast arcs (under the 
assumption of neglecting orbit perturbations). This means that the dynamical state is 
integrable. In the 60 s, Lawden [30] derived the first two-dimensional closed-form 
also for the costate along optimal coast arcs. Alternative closed-form solutions in 
the plane of the Keplerian arc are due to Hempel [20], Eckenwiler [14], and Lion 
and Handlesman [31]. Later, Glandorf [18] derived the general three-dimensional 
closed-form costate using Cartesian coordinates. More recently, Pan et al. [34] pro-
vided the closed-form costate along optimal coast arcs employing spherical coordi-
nates and emphasized its utility for accurate determination of the switching times 
from coast to thrust.

The analytical study that follows is concerned with both types of trajectory opti-
mization problems that admit multiple coast arcs: (a) minimum-time low-thrust 
paths with eclipse intervals and (b) minimum-fuel trajectories that employ finite 
thrust. Modified equinoctial elements are selected as the variables that describe the 
orbital motion of the space vehicle of interest, subject to the gravitational attrac-
tion of a single celestial body. This choice is related to three remarkable properties. 
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First, virtually all types of trajectories can be described using modified equinoctial 
elements, unlike what occurs if the classical orbit elements are employed. Second, 
5 out of 6 equinoctial elements remain constant (while the sixth is integrable) along 
coast arcs, in the presence of a single attracting body. In more complex mission sce-
narios, the space vehicle may be subject to perturbing accelerations, other than the 
action of the dominating attracting body, and in this case these 5 elements exhibit 
slow time variations. Third, in the numerical solution of low-thrust path optimiza-
tion problems (with no eclipse intervals), the use of equinoctial elements was proven 
to mitigate the hypersensitivity issues encountered with spherical coordinates [38, 
47]. In fact, for multi-revolution orbit transfers, they exhibit superior convergence 
properties if compared to spherical coordinates, and are also amenable to homot-
opy methods [48]. With reference to problem (a), the present study has the primary 
objectives of (1) formulating the problem as a multiple-arc optimization problem, 
(2) deriving the complete set of necessary conditions for optimality, (3) proving that 
all the multipoint conditions referred to intermediate times can be solved sequen-
tially in the numerical integration process, and (4) employing the latter conditions 
in a numerical example, for illustrative purposes. No averaging or regularization is 
introduced to make the problem tractable. Then, this research revisits problem (b) 
using equinoctial elements, with the objective of deriving the necessary conditions 
associated with minimum-fuel paths, while emphasizing the substantial analytical 
differences from problem (a). As a further contribution, the optimal adjoint equa-
tions along coast arcs are analyzed, with the intent of ascertaining the existence of 
closed forms for the costate variables associated with modified equinoctial elements.

2  Orbit Dynamics

This research considers a space vehicle that orbits a single celestial body, in the 
dynamical framework of the restricted problem of two bodies. The spacecraft of 
interest is modeled as a point mass.

In general, orbital motion can be described using either Cartesian coordinates, 
spherical variables, or osculating orbit elements, i.e. semimajor axis a, eccentricity 
e, inclination i, right ascension of the ascending node (RAAN) Ω , argument of peri-
apse � , and true anomaly f [41]. However, the Gauss equations [41], which govern 
the time evolution of the orbit elements, become singular in the presence of a cir-
cular or equatorial orbit (and also when an elliptic orbit transitions to a hyperbola). 
For these reasons, the modified equinoctial elements [9] were introduced, and are 
selected in this work as the variables that identify the dynamical state of the space 
vehicle. These elements are defined as [3, 9]

It is straightforward to recognize that x1 represents the orbit semilatus rectum. Unlike 
the classical orbit elements, the modified equinoctial elements are never singular, 

(1)
x1 = a

(
1 − e2

)
x2 = e cos (Ω + �) x3 = e sin (Ω + �)

x4 = tan
i

2
cosΩ x5 = tan

i

2
sinΩ x6 = Ω + � + f
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with the only exception of i = � (condition that is unlikely to encounter, because 
equatorial retrograde orbits are rather impractical). If � ∶= 1 + x2 cos x6 + x3 sin x6 , 
the instantaneous radius is r = x1∕� . The classical orbit elements can be retrieved by 
inverting Eq. (1). The spacecraft position can be written in terms of a, e, i, Ω , � , and 
f [41] or can be computed directly from the equinoctial elements [19].

2.1  Equations of Motion

The dynamical evolution of the modified equinoctial elements is governed by the 
respective Gauss equations [3],

where � is the gravitational parameter of the attracting body. The terms 
{
ar, a� , ah

}
 

are the components of the non-Keplerian acceleration a in the local vertical local 
horizontal (LVLH) frame aligned with 

(
r̂, �̂�, ĥ

)
 , where unit vector r̂ is directed 

toward the instantaneous position vector r (taken from the center of the attracting 
body), whereas ĥ is aligned with the spacecraft angular momentum.

The modified equinoctial elements allow identifying the instantaneous position 
and velocity of the spacecraft. This is controlled using the thrust supplied by the 
propulsion system. Let Tmax and m0 represent the maximum available thrust magni-
tude and the initial mass of the space vehicle. If x7 denotes the mass ratio and T the 
thrust magnitude, for x7 the following equation can be obtained:

(2)ẋ1 =
2

𝜗

√
x3
1

𝜇
a𝜃

(3)ẋ2 =

√
x1

𝜇

[
arsin x6 + a𝜃

(𝜗 + 1)cos x6 + x2

𝜗
− ah

x4 sin x6 − x5 cos x6

𝜗
x3

]

(4)ẋ3 =

√
x1

𝜇

[
−arcos x6 + a𝜃

(𝜗 + 1)sin x6 + x3

𝜗
+ ah

x4 sin x6 − x5 cos x6

𝜗
x2

]

(5)ẋ4 = ah

√
x1

𝜇

1 + x3
4
+ x2

5

2𝜗
cos x6

(6)ẋ5 = ah

√
x1

𝜇

1 + x3
4
+ x2

5

2𝜗
sin x6

(7)ẋ6 =

√
𝜇

x3
1

𝜗2 + ah

√
x1

𝜇

x4 sin x6 − x5 cos x6

𝜗
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where c represents the (constant) effective exhaust velocity of the propulsion sys-
tem, whereas m is the instantaneous mass. The magnitude of the instantaneous 
thrust acceleration is aT = uTm0

/
m = uT∕x7 and is constrained to the interval 

0 ≤ aT ≤ a
(max)

T
 , where a(max)

T
= u

(max)

T

/
x7 . The thrust acceleration (�∕m) is assumed 

to be the only non-Keplerian contribution in Eqs. (2)-(7), thus 
� = �∕m = �

/(
m0x7

)
= �T∕x7 , where �T 

(
= �

/
m0

)
 has magnitude constrained to 

the interval 
[
0, u

(max)

T

]
 . The thrust direction is identified by means of the two thrust 

angles � (−𝜋 ≤ 𝛼 < 𝜋) and � (−�∕2 ≤ � ≤ �∕2),

In the end, the spacecraft dynamics is described using the state vector x and the con-
trol vector u defined as

In light of Eq. (10), the state Eqs. (2)–(8) can be written in compact form as

2.2  Spacecraft Eclipse Condition

Some types of low-thrust propulsion systems [48] require onboard electrical power 
in order to operate. In most cases, this can be provided only when the space vehicle 
is illuminated. This implies that propulsion must be considered unavailable when 
the spacecraft is eclipsed. This subsection focuses on the eclipse condition for space 
vehicles that orbit the Earth.

As a preliminary step, the spacecraft position in a proper inertial frame is derived. 
The Earth-centered inertial frame (ECI) has origin at the Earth center and axes 
aligned with the right-hand sequence of unit vectors 

(
ĉ1, ĉ2, ĉ3

)
 . Vector ĉ1 identifies 

the vernal axis, which corresponds to the intersection of the Earth equatorial plane 
with the ecliptic plane, whereas ĉ3 points toward the Earth rotation axis. In the ECI-
frame, the spacecraft Cartesian coordinates can be written in terms of the classical 
orbit elements as shown in Ref. 41. Then, relatively long trigonometric steps (omit-
ted for the sake of brevity), based on the definitions (1), lead to the following expres-
sions for the three coordinates X, Y, Z:

(8)ẋ7 ∶=
ṁ

m0

= −
uT

c
with 0 ≤ uT ≤ u

(max)

T

(
uT ∶=

T

m0

and u
(max)

T
∶=

Tmax

m0

)

(9)ar =
uT

x7
cos � sin � a� =

uT

x7
cos � cos � ah =

uT

x7
sin �

(10)� ∶=
[
x1 x2 x3 x4 x5 x6 x7

]T
and � ∶=

[
� � uT

]T

(11)�̇ = � (�, �, t)
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where c� ∶= cos � and s� ∶= sin � ( � denotes a generic angle).
Under the very reasonable (approximating) assumption that the Earth describes a 

circular orbit about the Sun, the position of the latter in the ECI-frame is identified 
by the three coordinates XS , YS , and ZS,

where rS equals 1 AU, � (= 23.4 deg) is the ecliptic obliquity, whereas �S identifies 
the instantaneous position of the Sun. If �S0 denotes the value of �S at the initial time 
t0 (set to 0) and �S

(
= 2�

/
TS; TS = 1 year

)
 is the (constant) angular rate of the Sun 

in its motion relative to Earth, then �S = �St + �S0.
Once the spacecraft and Sun positions are specified in the ECI-frame, the condi-

tion for eclipsing is [12]

where RE is the Earth radius. Because rS ≫ RE , �2 ≃ �∕2 , and the eclipse condition 
(14) becomes

Insertion of Eqs. (12) and (13) into (15) yields

Usefulness of the previous relation will be apparent in the next section.
It is worth remarking that some trajectory arcs can be traveled in penumbral or 

antumbral conditions, related to the relative positions of Earth, Moon, and Sun. 
However, in the great majority of the mission scenarios these arcs are so short that 
propulsion can remain ignited. For this reason, penumbral and antumbral conditions 
are neglected in this study.

(12)

X =
x1

�

(
x
2

4
− x

2

5
+ 1

)
c
x6
+ 2x4x5sx6

x
2

4
+ x

2

5
+ 1

,

Y =
x1

�

(
x
2

5
− x

2

4
+ 1

)
s
x6
+ 2x4x5cx6

x
2

4
+ x

2

5
+ 1

,

Z =
2x1

�

x4sx6
− x5cx6

x
2

4
+ x

2

5
+ 1

(13)

�S
→

∶=
[
XS YS ZS

][
ĉ1 ĉ2 ĉ3

]T
= rS

[
cos𝜃S sin 𝜃S cos 𝜀 sin 𝜃S sin 𝜀

][
ĉ1 ĉ2 ĉ3

]T

(14)

�1 + �2 ≤ �, with � = arccos

( �
→

⋅ �S
→

rSr

)
, �1 = arccos

(
RE∕r

)
, �2 = arccos

(
RE

/
rS
)

(15)cos � + sin�1 ≤ 0 ⇒

�
→

⋅ �S
→

rSr
+

√
1 −

R2
E

r2
≤ 0

(16)

x1

{[(
x
2

4
− x

2

5
+ 1

)
c
x6
+ 2x4x5sx6

]
c�

S

+
[(
x
2

5
− x

2

4
+ 1

)
s
x6
+ 2x4x5cx6

]
s�

S

c� + 2
(
x4sx6

− x5cx6

)
s�

S

s�

}

+
(
x
2

4
+ x

2

5
+ 1

)√
x
2

1
− R

2

E

(
1 + x2cx6

+ x3sx6

)2 ≤ 0
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3  Minimum‑Time Trajectories with Eclipse Intervals

Low-thrust propulsion systems usually require considerable electrical power to oper-
ate. For this reason, they are ignited only when the satellite is illuminated.

This section is devoted to investigating the minimum-time transfer paths from an 
initial to a final Earth orbit, assuming availability of the thrust only in the intervals 
when the space vehicle is illuminated.

3.1  Statement of the Problem

The spacecraft of interest is governed by the state equations (11) and is subject to 
some (problem-dependent) boundary conditions of the form

where � denotes a generic column vector, which depends on the final time tf  and on 
the initial and final state �0 and �f  . These conditions usually include the relations 
that define the initial and final orbits. As an example, the two terminal orbits can be 
defined by the respective values of the first five equinoctial elements, and in this 
case � includes 10 components of the form 

{
xj,0 − xj,0

}
j=1,…,5

 and 
{
xj,f − xj,f

}
j=1,…,5

 , 
where the symbols with bar denote specified values, whereas subscripts 0 and f 
respectively refer to the initial and final value of the corresponding variable. The 
initial time is assumed specified and is set to 0. The objective function J to minimize 
is the time of flight, therefore

For the orbit transfer problem at hand, the thrust is available only when the 
spacecraft is illuminated, i.e. when inequality (16) is violated. It is quite obvious 
that the entire trajectory is composed of an unspecified number N of eclipse arcs 
and light arcs. Therefore, this becomes a multiple-arc trajectory optimization 
problem. In each arc j, the state equations are

Thrust is switched off along the eclipse arcs ( u(j)
T
≡ 0 ), where inequality (16) 

is fulfilled. This means that the optimal control law must be determined only in 
the light arcs. Unlike the control vector u, the state x is continuous across two 
adjacent arcs, i.e.

For each variable the subscripts ini and fin denote the initial and final value in the 
arc with index reported in the superscript. Furthermore, the transition between two 
adjacent arcs (either an eclipse arc followed by a light arc or a light arc followed by 
an eclipse arc) corresponds to fulfillment of the equality associated with Eq. (16), 
rewritten in compact form as

(17)�
(
�0, �f , tf

)
= 0

(18)J = tf

(19)�̇(j) = � (j)
(
�(j), �(j), t

)

(20)�
(j+1)

ini
= �

(j)

fin
(j = 1,… ,N − 1)
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The symbol �(j)
fin

 collects all the state components that appear in the left-hand side of 
Eq. (16), evaluated at the end of arc j, which occurs at time tj . It is worth noticing 
that � (j) depends explicitly on tj through the variable �S , evaluated at tj (
i.e.�S,j = �Stj + �S0

)
.

In the end, the multiple-arc problem consists in finding the optimal control 
u that minimizes the objective function (18), while holding the state equations 
(19) and the multipoint conditions (17), (20), and (21). Multiple-arc optimal 
control problems were also investigated by the author in Ref. [39].

3.2  Necessary Conditions for Optimality

In order to derive the necessary conditions for optimality, the extended objective 
function J is defined,

where � , �j , and �j are time-independent adjoint variables conjugate to the multi-
point conditions (17), (20), and (21), whereas �(j) is the time-varying costate vec-
tor associated with the state equations (19) and tN ≡ tf  . N Hamiltonian functions 
H(j) (j = 1,… ,N) and a function Φ are introduced,

and the extended objective function J is rewritten as

The first differential dJ can be obtained by using the steps illustrated in Appen-
dix, and is

(21)� (j)
(
�
(j)

fin
, tj

)
= 0 (j = 1,… ,N − 1)

(22)

J = tf + �T�
(
�0, �f , tf

)
+

N−1∑
j=1

[
�T
j

(
�
(j+1)

ini
− �

(j)

fin

)

+𝜉j𝜓
(j)
(
�
(j)

fin
, tj

)]
+

N∑
j=1

tj

∫
tj−1

�(j)T
[
� (j)

(
�(j), �(j), t

)
− �̇(j)

]
dt

(23)H(j) = �(j)T � (j)
(
�(j), �(j), t

)

(24)Φ ∶= tf + �T�
(
�0, �f , tf

)
+

N−1∑
j=1

[
�T
j

(
�
(j+1)

ini
− �

(j)

fin

)
+ �j�

(j)
(
�
(j)

fin
, tj

)]

(25)

J =Φ
(
�0, �f , tf , �

(2)

ini
,… , �

(N)

ini
, �

(1)

fin
,… , �

(N−1)

fin
, t1,… , tN−1,�,�1,… ,�N−1, 𝜉1,… , 𝜉N−1

)

+

N∑
j=1

tj

∫
tj−1

[
H(j)

(
�(j), �(j), �(j), t

)
− �(j)T �̇(j)

]
dt
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where subscripts 0 and f refer to the initial and final time, respectively, whereas the 
symbol � denotes the variation, i.e. the time-fixed differential, using the notation of 
Ref. 22 (cf. also Appendix). The first differential must vanish at an extremal [22], for 
arbitrary values of 

{
d�

(j+1)

ini
, �

(j)

fin
, dtj

}
j=1,…,N−1

 , d�0 , d�f  , dtf  , 
{
��(j), ��(j)

}
j=1,…,N

 , and 

this implies that the following necessary conditions for optimality must hold:

The last condition, which implies stationarity of H(j) with respect to �(j) , can be 
replaced by the more general Pontryagin minimum principle [32],

(26)

dJ =

N−1�
j=1

⎡⎢⎢⎣

�
𝜕Φ

𝜕�
(j+1)

ini

+ �
(j+1)T

ini

�
d�

(j+1)

ini
+

⎛⎜⎜⎝
𝜕Φ

𝜕�
(j)

fin

− �
(j)T

fin

⎞⎟⎟⎠
d�

(j)

fin
+

�
𝜕Φ

𝜕tj
+ H

(j)

fin
− H

(j+1)

ini

�
dtj

⎤⎥⎥⎦

+

�
𝜕Φ

𝜕�0
+ �T

0

�
d�0 +

�
𝜕Φ

𝜕�f
− �T

f

�
d�f +

�
Hf +

𝜕Φ

𝜕tf

�
dtf+

N�
j=1

tj

∫
tj−1

��
�̇(j)T +

𝜕H(j)

𝜕�(j)

�
𝛿�(j) +

𝜕H(j)

𝜕�(j)
𝛿�(j)

�
dt

(27)�
(j+1)

ini
+

[
�Φ

��
(j+1)

ini

]T

= 0 ⇒ �
(j+1)

ini
= −�j (j = 1,… ,N − 1)

(28)�
(j)

fin
−

⎡⎢⎢⎣
�Φ

��
(j)

fin

⎤⎥⎥⎦

T

= 0 ⇒ �
(j)

fin
= −�j+�j

⎡⎢⎢⎣
�� (j)

��
(j)

fin

⎤⎥⎥⎦

T

(j = 1,… ,N − 1)

(29)
�Φ

�tj
+ H

(j)

fin
− H

(j+1)

ini
= 0 ⇒ H

(j+1)

ini
= H

(j)

fin
+ �j

�� (j)

�tj
(j = 1,… ,N − 1)

(30)�
0
+

[
�Φ

��0

]T
= 0 ⇒ �

0
= −

[
��

��0

]T
�

(31)�
f
−

[
�Φ

��f

]T
= 0 ⇒ �

f
=

[
��

��f

]T
�

(32)Hf +
�Φ

�tf
= 0 ⇒ Hf = −1 −

[
��

�tf

]T
�

(33)�̇(j) = −

[
𝜕H(j)

𝜕�(j)

]T

(34)
[
�H(j)

��(j)

]T
= 0
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where H(j) is defined in Eq. (23), whereas the subscript * denotes the optimal value 
of the corresponding variable. Equation (33) is the adjoint equation for the costate 
variables, accompanied by the related boundary conditions (30) and (31) and by 
the multipoint conditions (27) and (28). Because � appears in Eqs. (30) and (31), 
their explicit form is problem-dependent, unlike what occurs for the adjoint equa-
tions (33). Moreover, Eqs. (29) and (32) hold for the Hamiltonian functions, evalu-
ated at times 

{
t1,… , tN−1, tN ≡ tf

}
 . While Eqs. (30)–(35) are formally identical to 

the necessary conditions that hold for ordinary (single-arc) optimization problems, 
Eqs. (27)–(29) represent additional relations, termed multipoint necessary condi-
tions henceforth.

Using Eqs. (2)–(9) and (23), H can be rewritten as

where �r , �� , �h , and � (whose expressions are not reported for the sake of brevity) 
depend on �(j) ∶=

[
x
(j)

1
x
(j)

2
x
(j)

3
x
(j)

4
x
(j)

5
x
(j)

6

]T
 . The adjoint variable �(j)

7
 , which is the 

seventh component of �(j) , deserves special attention. Due to Eqs.  (33) and (36), the 
costate equation for �(j)

7
 is

Moreover, because � (j) is independent of x(j)
7

 (cf. Eq. (16)), combination of Eqs. (27) 
and (28) yields

Because the final mass is unspecified, the boundary conditions (17) are independent 
of x7,f  . As a result, Eq. (31) yields

While in the eclipse arc the spacecraft is subject to no control due to unavailability 
of low-thrust, in light arcs the minimum principle (35) allows expressing the optimal 
control in terms of the state and costate variables. With reference to Eq. (36), the 
first three terms in square parentheses can be regarded as a dot product. Thus, since 
uT∕x7 ≥ 0 , the thrust angles that minimize H(j) are given by

(35)�(j)
∗
= argmin

�(j)
H(j)

(36)

H(j) =
u
(j)

T

x
(j)

7

[
�T
r
�(j) cos �(j) cos �(j) + �T

�
�(j) cos �(j) sin �(j) + �T

h
�(j) sin �(j) − �

(j)

7

x
(j)

7

c

]
+ �T�(j)

(37)

�̇�
(j)

7
= −

𝜕H(j)

𝜕x
(j)

7

=
u
(j)

T

x2
7

[
�T
r
�(j) cos 𝛽(j) cos 𝛼(j) + �T

𝜃
�(j) cos 𝛽(j) sin 𝛼(j) + �T

h
�(j) sin 𝛽(j)

]

(38)�
(j+1)

7,ini
= �

(j)

7,fin
(j = 1,… ,N − 1)

(39)�7,f = 0

(40)sin �(j) = −�T
h
�(j)

{[
�T
r
�(j)

]2
+
[
�T
�
�(j)

]2
+
[
�T
h
�(j)

]2}−1∕2
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Using these expressions for �(j) and �(j) , Eqs. (36) and (37) become

The latter relation, in conjunction with the final condition (39) and the continu-
ity condition (38), implies that �(j)

7
 is nonnegative at all times. Moreover, because 

�
(j)

7
≥ 0 , applying the Pontryagin minimum principle to Eq. (42) allows obtaining 

the optimal value of uT,

It is worth remarking that Eqs. (40), (41), and (44) are meaningful only for light 
arcs, where the optimal thrust magnitude corresponds to the maximum value 
u
(max)

T

(
= Tmax

/
m0

)
 , as prescribed by Eq. (44).

In the end, the necessary conditions for optimality (27)-(33) and (35), in con-
junction with the state equations (19) and the multipoint conditions (20)-(21), allow 
converting the original optimal control problem into a two-point boundary value 
problem (TPBVP), where the unknowns are the state �(j) (j = 1,… ,N) , the control 
�(j) (j = 1,… ,N) , the intermediate and final times 

{
t1,… , tN−1, tN ≡ tf

}
 , and the 

adjoint variables �(j) (j = 1,… ,N) , � , �k , and �k (k = 1,… ,N − 1).

3.3  Sequential Solution of the Multipoint Necessary Conditions for Optimality

The formulation of the orbit transfer with eclipse intervals as a multiple-arc opti-
mization problem leads to establishing an extended set of necessary conditions for 
optimality. In particular, the multipoint necessary conditions for optimality (27)-
(29), together with the multipoint conditions (20) and (21), represent a considerable 
number of additional relations to satisfy in the numerical solution process. However, 
Eqs. (27)-(29) can be combined, for the purpose of developing an advantageous 
methodology to enforce them.

As a first step, insertion of Eq. (27) into (28) yields

(41)
sin �(j) = −�T

r
�(j)

{[
�T

r
�(j)

]2
+
[
�T

�
�(j)

]2}−1∕2

and cos �(j) = −�T

�
�(j)

{[
�T

r
�(j)

]2
+
[
�T

�
�(j)

]2}−1∕2

(42)H(j) = −
u
(j)

T

x
(j)

7

[√(
�T
r
�(j)

)2
+
(
�T
�
�(j)

)2
+
(
�T
h
�(j)

)2
+

x
(j)

7
�
(j)

7

c

]
+ �T�(j)

(43)�̇�
(j)

7
= −

𝜕H(j)

𝜕x
(j)

7

= −
u
(j)

T(
x
(j)

7

)2

√(
�T
r
�(j)

)2
+
(
�T
𝜃
�(j)

)2
+
(
�T
h
�(j)

)2 ≤ 0

(44)uT = u
(max)

T

(45)�
(j)

fin
= �

(j+1)

ini
+�j

⎡⎢⎢⎣
�� (j)

��
(j)

fin

⎤⎥⎥⎦

T

(j = 1,… ,N − 1)
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Moreover, Eq. (29) can be solved for �j , using also Eq. (42) to express the Hamilto-
nian functions H(j+1)

ini
and H

(j)

fin
,

where �
r
∶= �

(j+1)

r,ini
≡ �

(j)

r,fin
 , �

�
∶= �

(j+1)

�,ini
≡ �

(j)

�,fin
 , �

h
∶= �

(j+1)

h,ini
≡ �

(j)

h,fin
 , and 

� ∶= �
(j+1)

ini
≡ �

(j)

fin
 , because the state is continuous across adjacent arcs. Two cases 

can occur, with regard to Eq. (46): (a) transition from a light arc to an eclipse arc, 
which means that u(max)

T ,j
= u

(max)

T
 and u(max)

T ,j+1
= 0 , and (b) transition from an eclipse arc 

to a light arc, implying u(max)
T ,j

= 0 and u(max)
T ,j+1

= u
(max)

T
.

Case (a). Transition from a light arc to an eclipse arc. Insertion of Eq. (46) (with 
u
(max)

T ,j
= u

(max)

T
 and u(max)

T ,j+1
= 0 ) into Eq. (45) leads to obtaining the following relation:

where I denotes the identity matrix, with dimension appropriate to the context. 
Equation (47) can be regarded as a linear system with �(j+1)

ini
 as the unknown. There-

fore, �(j+1)
ini

 can be obtained using Eq. (47), if all the other quantities (including �(j)
fin

 ) 
are known.

Case (b). Transition from an eclipse arc to a light arc. Insertion of Eq. (46) (with 
u
(max)

T ,j
= 0 and u(max)

T ,j+1
= u

(max)

T
 ) into Eq. (45) leads to obtaining the following vector 

equation:

Squaring both sides of Eq. (48) leads to obtaining a system of quadratic equations 
with the components of �(j+1)

ini
 as the unknowns. The entire set of solutions of this 

(46)

�j = −

�
�� (j)

�tj

�−1
⎧⎪⎨⎪⎩
−
u
(max)

T ,j

x
(j)

7,fin

⎡
⎢⎢⎣

��
�T
r
�
(j)

fin

�2

+
�
�T
�
�
(j)

fin

�2

+
�
�T
h
�
(j)

fin

�2

+
x
(j)

7,fin
�
(j)

7,fin

c

⎤
⎥⎥⎦
+ �T�

(j)

fin

⎫⎪⎬⎪⎭

+

�
�� (j)

�tj

�−1
⎧⎪⎨⎪⎩
−
u
(max)

T ,j+1

x
(j+1)

7,ini

⎡⎢⎢⎣

��
�T
r
�
(j+1)

ini

�2

+
�
�T
�
�
(j+1)

ini

�2

+
�
�T
h
�
(j+1)

ini

�2

+
x
(j+1)

7,ini
�
(j+1)

7,ini

c

⎤
⎥⎥⎦
+ �T�

(j+1)

ini

⎫⎪⎬⎪⎭

(47)

⎧⎪⎨⎪⎩
I +

�
�� (j)

�tj

�−1⎡⎢⎢⎣
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��
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⎫
⎪⎬⎪⎭
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fin
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�� (j)

��
(j)
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⎪⎨⎪⎩
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7,fin
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system can be obtained numerically (e.g., in MATLAB using the embedded function 
vpasolve). Then, among the real solutions, only those that preserve the sign consist-
ency of Eq. (48) are acceptable. If more than a single acceptable solution for �(j+1)

ini
 

exists, then the one that minimizes |||�
(j+1)

ini
− �

(j)

fin

||| is selected. This choice is consistent 
with a straightforward property that regards 

{
�
(j+1)

ini
, �

(j)

fin

}
 . In fact, as the eclipse arc 

duration reduces or as u(max)
T

 tends to zero, �(j+1)
ini

 must tend to �(j)
fin

 , to retrieve continu-
ity of the adjoint variables, which holds for single-arc problems with no discontinu-
ity in the available thrust magnitude.

It is apparent that Eqs. (47)–(48) represent the matching conditions for the adjoint 
vector � at times tj (j = 1,… ,N − 1) . In the scientific literature, Cerf [10] provided 
the relations that identify the jump conditions for the adjoint variables associated 
with Cartesian coordinates, by employing the Weierstrass–Erdmann corner con-
ditions. Equations (47)–(48) represent the jump relations for the adjoint variables 
associated with equinoctial elements. They are derived making reference to a transi-
tion condition that has the general form reported in Eq. (21), and using the general 
principles of variational calculus (cf. also Sect. 3.2 and Appendix), in conjunction 
with the Pontryagin minimum principle. It is straightforward to recognize that Eq. 
(38) is the seventh scalar equation associated with either Eq. (47) or Eq. (48). Based 
on these relations and the remaining necessary conditions for optimality, the numer-
ical solution process can include the following steps:

Step 1. Identify the known initial values of the state and costate variables using 
Eqs. (17) and (30).
Step 2. Derive the (possible) relations between the initial values of the state and 
costate variables (i.e., the components of � ) by eliminating some components of 
� from Eq. (30); this leads to identifying the minimal set of unknown initial val-
ues for the components of �0 and �0.
Step 3. Select the unknown initial values for the state and costate components 
belonging to the minimal set identified at Step 2; calculate the remaining initial 
values of the state and costate components using the relations found at Step 2.
Step 4. Select the final time tf .
Step 5. Until the current time t ≤ tf  , iterate the following sub-steps:

identify the type of arc (either a light arc or an eclipse arc);
integrate numerically the state and costate equations (19) and (33), setting 
u
(j)

T
≡ 0 (in an eclipse arc) or using Eqs. (40), (41), and (44) to express the con-

trol in terms of state and costate components (along a light arc), until condition 
(21) is met or t = tf ;
if t = tf  , then stop the numerical integration, otherwise use the appropriate 
matching condition (either (47) or (48)) to find the initial value of the adjoint 
vector for the subsequent arc and repeat steps 5(a) and 5(b);

Step 6. Evaluate the violations of the boundary conditions (17) and the necessary 
conditions (31)-(32). If these violations do not exceed a prescribed threshold, 
then convergence is declared, otherwise Steps 3 through 6 are repeated.
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It is worth remarking that when an eclipse arc is entered, at Step 5(b) all the state 
and costate components are available in closed form, and numerical integration can 
be avoided. Details on the costate along coast arcs are provided in Sect. 5. Moreover, 
the transition time from an eclipse arc to a light arc can be detected in a straightfor-
ward and very accurate way. Omitting superscript (j), along coast arcs Eq. (21) can 
be rewritten as

In fact, only x6,fin and �S are time-varying along eclipse arcs. The numerical solu-
tion of the preceding equation, in conjunction with the definition of x6 , the Kepler’s 
equation, and the relation between true anomaly and eccentric anomaly, allows iden-
tifying the transition time tj from a light arc to an eclipse arc, without any need of 
detecting it during the numerical integration process.

The preceding algorithmic steps point out that the optimization process is reduced 
to identifying the values of some unknown quantities, which form the parameter set, 
such that all the necessary conditions are fulfilled. This general approach character-
izes most indirect optimization algorithms. Using the two relations (47) and (48) 
and the multipoint conditions (20) and (21), the multiple-arc trajectory optimiza-
tion problem of interest can be solved through sequential integration of the state 
and costate equations, while using Eqs. (40), (41), and (44) for the optimal control 
(in light arcs). Enforcement of Eqs. (27)–(29), (20), and (21) is guaranteed during 
the integration process. Although in general the parameter set is problem-dependent, 
for the multiple-arc problem at hand it includes at most the time of flight tf  and the 
initial values of some state components and some (or all the) components of �0 . No 
intermediate value of any variable belongs to the parameter set. The iterated selec-
tion mentioned at Steps 3 and 4 is a delicate operation, which strictly depends on 
the specific indirect algorithm and regards the parameter set. As an example, the 
indirect heuristic method [37] employs a heuristic technique (e.g. the particle swarm 
method) to select the unknown parameters, with the final aim of enforcing all the 
necessary conditions for optimality, while satisfying the boundary conditions of the 
problem of interest.

In conclusion, the sequential solution of the multipoint conditions (20) and (21) 
and the multipoint necessary conditions for optimality (27)–(29) allows identifying 
a reduced parameter set, which essentially includes the same quantities needed for 
the solution of a single-arc trajectory optimization problem.

3.4  Numerical Example

The methodology and the algorithmic steps described in the previous section are 
applied to an illustrative numerical example. A low-thrust Earth orbit transfer problem 
is considered. The initial and final orbits are equatorial and circular, with radii equal to 
6778 km and 20,000 km, respectively. Therefore, the boundary condition vector is (cf. 
Eq.(17))

(49)�
(
x6,fin, tj

)
= 0
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where p0 = 7000 km and pf = 20000 km . Because the two terminal orbits and the 
transfer path are coplanar, only the state components x1 , x2 , x3 , x6 , and x7 (together 
with the corresponding adjoint variables �1 , �2 , �3 , �6 , and �7 ) are needed in the 
numerical solution process. This means that the remaining state and costate compo-
nents are identically zero. The following parameters are assumed for the low-thrust 
propulsion system:

It is worth remarking that the value assumed for u(max)
T

 is beyond the current techno-
logical capabilities (although it might become feasible in one or two decades), and 
was chosen for illustrative purposes.

The boundary condition (30) yields

where 
{
�j
}
j=1,…,7

 represent the components of � . Therefore, the initial values of the 
adjoint variables are unknown, with the only exception of �6 . No relation can be 
identified among the initial values because each of them is expressed in terms of a 
different component of � . Hence, with reference to Step 2 of the numerical solution 
process described in Sect. 3.3, the minimal set of unknown initial values of the state 
and costate components is 

{
x6,0, �1,0, �2,0, �3,0, �7,0

}
.

In the numerical solution process, canonical units are used: the distance unit (DU) 
equals 100,000 km, whereas the time unit is such that � = 1DU3

/
TU2. The indi-

rect heuristic method (IHM) [37], used to solve the problem at hand, assumes the 

(50)�
(
�0, �f , tf

)
=
[
x1,0 − p0 x2,0 x3,0 x7,0 − 1 x1,f − pf x2,f x3,f

]T

(51)u
(max)

T
= 10−3g0 and c = 30 km sec−1

(
g0 = 9.8 m sec−2

)

(52)�1,0 = −�1 �2,0 = −�2 �3,0 = −�3 �6,0 = 0 �7,0 = −�4

(53)�1,f = �5 �2,f = �6 �3,f = �7 �6,f = 0 �7,f = 0

Fig. 1  Time history of the semilatus rectum (with zoom in the inset)
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Fig. 2  Time history of the eccentricity (with zoom in the inset)

Fig. 3  Time history of the adjoint variable �2  (with zoom in the inset)

Fig. 4  Time history of the adjoint variable �3 (with zoom in the inset)
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preceding unknown initial values and the time of flight as the parameter set. A thor-
ough description of IHM can be found in Ref. 37. Further details on the numerical 
solution process are omitted for the sake of brevity. The value of �S0 (cf. Sect. 2.2) 
is set to 10 deg. The minimum time of flight equals 5.1 days, whereas the boundary 
conditions do not exceed 10−3 . The magnitude of � (cf. Eq. (50)) is 7.4 ⋅ 10−4 . Fig-
ures 1 and 2 depict the time histories of the semilatus rectum (component x1 ) and the 
orbit eccentricity (retrieved from x2 and x3 ). The horizontal segments correspond to 
the eclipse arcs, where no thrust is employed and the orbit elements remain constant 
as a result. Figures 3 and 4 portray the time histories of the adjoint variables �2 and 
�3 . Inspection of these figures reveals that at the transition points �2 and �3 are sub-
ject to discontinuities, shown with greater detail in the insets. Similar time behaviors 
characterize the time histories of �1 and �6 (while �7 is continuous, cf. Eq. (38)). The 
numerical results found for this illustrative example definitely corroborate the effec-
tiveness of the solution methodology described in Sect. 3.3.

4  Minimum‑Fuel Trajectories

In most mission scenarios of practical interest, spacecraft are equipped with a finite-
thrust propulsion system. In these dynamical contexts, the crucial objective consists 
in minimizing propellant consumption. Previous (and rather extensive) researches 
proved that minimum-fuel trajectories include relatively short finite-thrust arcs and 
long-duration coast intervals [30, 40].

This section considers the problem of minimizing the propellant consumption for 
performing an orbit transfer between two specified (initial and final) orbits, while 
using the modified equinoctial elements to describe the spacecraft dynamics.

4.1  Statement of the Problem

The spacecraft of interest is governed by the state equations (11) and is subject to 
some (problem-dependent) boundary conditions of the form (17). These conditions 
usually include the relations that define the initial and final orbits. The initial time t0 
is assumed specified and is set to 0. The objective function J to minimize is the pro-
pellant mass, and this is equivalent to maximizing the final mass ratio x7,f  . Thus, for 
the problem at hand the objective is

Therefore, the problem consists in finding the optimal control u that minimizes 
the objective function (54), while holding the state equations (11) and the boundary 
conditions (17).

4.2  Necessary Conditions for Optimality

In order to derive the necessary conditions for optimality, a Hamiltonian function H 
and a function Φ are defined as

(54)J = −x7,f
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and the extended objective function J is introduced,

Then, the first differential dJ can be obtained by using the analytical steps 
described in Ref. 22 (similar to those illustrated in Appendix for the more compli-
cated problem of Sect. 3), and is

The first differential must vanish at an extremal [22], for arbitrary values of d�0 , d�f  , 
dtf  , ��, and �� , and this implies that the following necessary conditions must hold 
at an optimal solution:

The last condition, which implies stationarity of H with respect to � , can be replaced 
again by the more general Pontryagin minimum principle [32],

(55)H ∶= �T � (�, �, t) and Φ ∶= −x7,f + �T�
(
�0, �f , tf

)

(56)

J̄ = −x7,f + 𝛔T𝛇
(
𝐱0, 𝐱f , tf

)
+

tf

∫
t0

𝛌T
[
𝐟 (𝐱, 𝐮, t) − �̇�

]
dt

= Φ
(
𝐱0, 𝐱f , tf ,𝛔

)
+

tf

∫
t0

[
H(𝐱, 𝐮, 𝛌, t) − 𝛌T �̇�

]
dt

(57)

dJ̄ =

(
𝜕Φ

𝜕𝐱0
+ 𝛌T

0

)
d𝐱0 +

(
𝜕Φ

𝜕𝐱f
− 𝛌T

f

)
d𝐱f +

(
Hf +

𝜕Φ

𝜕tf

)
dtf

+

tf

∫
t0

[(
�̇�T +

𝜕H

𝜕𝐱

)
𝛿𝐱 +

𝜕H

𝜕𝐮
𝛿𝐮

]
dt

(58)�
0
+

[
�Φ

��0

]T
= 0 ⇒ �

0
= −

[
��

��0

]T
�

(59)�
f
−

[
�Φ

��f

]T
= 0

(60)Hf +
�Φ

�tf
= 0 ⇒ Hf = −

[
��

�tf

]T
�

(61)�̇ = −
[
𝜕H

𝜕�

]T

(62)
[
�H

��

]T
= 0
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where the subscript * denotes the optimal value of the corresponding variable. Equa-
tion (61) is the adjoint equation for the costate vector, accompanied by the related 
boundary conditions (58) and (59). Because � appears in Eqs. (58) and (59), their 
explicit form is problem-dependent, unlike what occurs for the adjoint equations 
(61). Furthermore, Eq. (60) holds for the final value of the Hamiltonian function.

Using Eqs. (2)–(9) and (63), H can be rewritten as

where z collects components x1 through x6 of the state, i.e. 
� ∶=

[
x1 x2 x3 x4 x5 x6

]T ; the terms Hr , H� , Hh , and H0 , whose expressions are 
not reported for the sake of brevity, depend on both z and � . Due to Eq. (64), the 
adjoint equation for �7 is

Moreover, because the final mass is unspecified (and in fact is to be minimized), the 
boundary conditions (17) are independent of x7,f  . As a result, Eq. (59) yields

The minimum principle (63) allows expressing the optimal control in terms of the 
state and costate variables. With reference to Eq. (64), the first three terms in square 
parentheses can be regarded as a dot product. Thus, since uT∕x7 ≥ 0 , the thrust 
angles that minimize H are given by

Using these expressions for � and � , Eqs. (64) and (65) become

(63)�∗ = argmin
�

H

(64)

H =
uT

x7

[
Hr(�, �) cos � cos � + H�(�, �) cos � sin � + Hh(�, �) sin � − �7

x7

c

]
+ H0(�, �)

(65)�̇�7 = −
𝜕H

𝜕x7
=

Hr(�, �) cos 𝛽 cos 𝛼 + H𝜃(�, �) cos 𝛽 sin 𝛼 + Hh(�, �) sin 𝛽

x2
7

(66)�7,f = −1

(67)sin � = −Hh

(
H2

r
+ H2

�
+ H2

h

)−1∕2

(68)sin � = −Hr

(
H2

r
+ H2

�

)−1∕2
and cos � = −H�

(
H2

r
+ H2

�

)−1∕2

(69)H = −uT

⎡⎢⎢⎢⎣

�
H2

r
+ H2

�
+ H2

h

x7
+

�7

c

⎤⎥⎥⎥⎦
+ H0

(70)�̇�7 = −
𝜕H

𝜕x7
= −

uT

x2
7

√
H2

r
+ H2

𝜃
+ H2

h
≤ 0
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The latter relation, in conjunction with the final condition (66), implies that �7 can-
not be positive at all times. Moreover, using the Pontryagin minimum principle and 
Eq. (69), the optimal value of uT is

This means that a minimum-fuel path includes powered phases (where the maxi-
mum available thrust is used) and coast arcs. In the previous relation, S is referred to 
as the switching function, because it determines the switching times between the two 
types of arcs that compose the optimal trajectory. Equation (71) is deduced under 
the assumption of neglecting singular arcs, associated with the condition S ≡ 0 over 
a time interval of finite duration. The existence of similar arcs can be investigated 
using singular optimal control theory [4]. Unlike the preceding problem, where min-
imum-time paths including eclipse arcs were sought, minimum-fuel space trajec-
tories do not require formulating a multiple-arc optimization problem. The adjoint 
vector � is continuous for the entire time of flight, and in fact no matching condition 
for � is derived from the necessary conditions for optimality. It is worth stressing 
that the existence of coast arcs and powered phases along minimum-fuel space tra-
jectories was already proven using different representations for the dynamical state 
(e.g., Cartesian or spherical coordinates [14, 18, 20, 30, 32, 34, 40]). Therefore, the 
previous analytical developments represent an alternative derivation leading to an 
expected result.

In the end, the necessary conditions for optimality (58)–(61) and (63), in 
conjunction with the state equations (11) and the boundary conditions (17), 
allow converting the original optimal control problem into a TPBVP, where the 
unknowns are the state � , the control � , the final time tf  , and the adjoint variables 
� and �.

An indirect algorithm applied to the problem at hand can proceed using Steps 
1–4 and 6 of Sect. 3.2 (with the necessary conditions of the present problem in 
place of the respective ones found for problem (a)). Instead, Step 5 simplifies in 
the following fashion:

Step 5. Until the current time t ≤ tf  , integrate numerically the state and costate 
equations (11) and (61), while using Eqs.(67), (68), and (71) to express the con-
trol in terms of state and costate components.

5  Closed Form of the Costate Along Optimal Coast Arcs

The preceding two sections address two different trajectory optimization problems 
that involve multiple coast arcs, where no propulsion is used. Under the assump-
tion of neglecting orbit perturbations, along a coast arc the space vehicle travels 
a Keplerian trajectory, either an elliptic or a parabolic or a hyperbolic arc. This is 
apparent also from inspection of Eqs. (2)–(6). In fact, if ar = a� = ah = 0 , then 

(71)uT =

{
u
(max)

T
if S > 0

0 if S < 0
with S ∶=

√
H2

r
+ H2

𝜃
+ H2

h

x7
+

𝜆7

c
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ẋ1 = ẋ2 = ẋ3 = ẋ4 = ẋ5 = 0 . Only x6 varies along a Keplerian arc (cf. Eq. (7)), due 
to the true anomaly f (whereas Ω and � remain constant). For all the three types of 
Keplerian paths, f can be found in terms of the current time by solving a transcen-
dental equation (e.g., the Kepler’s equation for ellipses and the Barker’s equation for 
parabolas) [12, 41]. The time variation of x6 can be obtained as a result.

This section is concerned with the derivation of the closed-form expressions 
for the adjoint variables �j (j = 1,… , 7) along coast arcs. Availability of analytical 
relations allows precise evaluation of the time histories for all the costate compo-
nents, and leads to writing the switching function S (cf. Eq. (71)) along coast arcs 
of minimum-fuel paths as a closed-form expression. As a favorable consequence, 
the accurate detection of the switching times from coast to thrust arcs, which was 
recognized as a challenging task in the scientific literature [34], can be facilitated 
(e.g., using Newton or even higher-order root-finding methods [21], applied to the 
switching function S).

The Hamiltonian H and the adjoint (or costate) equations (33) and (61) are identi-
cal for the two problems addressed in Sects. 3 and 4. The only difference resides in 
the introduction of multiple arcs for minimum-time problems that include eclipse 
arcs. However, this has no effect on H and the form of the costate equations. There-
fore, for both problems, along coast arcs the Hamiltonian function is

Equations (61) and (72) yield the following scalar adjoint equations:

As a first result, Eq. (76) proves that the adjoint variables �4 , �5 , and �7 are constant 
along coast arcs. Therefore, only the remaining components must be integrated. The 
use of equinoctial elements has thus the remarkable advantage of reducing to 5 the 

(72)H = �6

√
�

x3
1

(
1 + x2 cos x6 + x3 sin x6

)2

(73)�̇�1 =
3

2
𝜆6

√
𝜇

x5
1

(
1 + x2 cos x6 + x3 sin x6

)2

(74)�̇�2 = −2𝜆6

√
𝜇

x3
1

cos x6
(
1 + x2 cos x6 + x3 sin x6

)

(75)�̇�3 = −2𝜆6

√
𝜇

x3
1

sin x6
(
1 + x2 cos x6 + x3 sin x6

)

(76)�̇�4 = �̇�5 = �̇�7 = 0

(77)�̇�6 = −2𝜆6

√
𝜇

x3
1

(
x3 cos x6 − x2 sin x6

)(
1 + x2 cos x6 + x3 sin x6

)
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number of state and costate variables that are time-varying along coast arcs, i.e. 
x6, �1, �2, �3, and �6 . This desirable circumstance is not encountered when alterna-
tive representations for the state are employed [18, 34].

For the purpose of obtaining a closed-form solution to the equation system 
(73)–(75) and (77), these relations are rewritten with the use of x6 as the inde-
pendent variable, in place of the time t. This is possible because x6 is a strictly 
monotonic variable for coast arcs of elliptic, parabolic, or hyperbolic type, with 
positive time derivative ẋ6 (cf. Eq. (7) with ah = 0 ). Hence, using Eq. (7) (with 
ah = 0 ), one obtains

where the symbol ′ denotes the derivative with respect to x6 . Equation (81) can be 
solved by separation of variables. In fact, Eq. (81) can be rewritten as

Because x2 and x3 are constant along coast arcs, both sides of Eq. (82) are integrable. 
After a few straightforward steps, the following closed-form solution is obtained:

where subscript in denotes the value of the respective variable when the coast 
arc begins. Insertion of Eq. (83) into Eqs. (78) through (80) yields the following 
relations:

(78)𝜆�
1
=

�̇�1

ẋ6
=

3𝜆6

2x1

(79)𝜆�
2
=

�̇�2

ẋ6

=
−2𝜆6 cos x6

1 + x2 cos x6 + x3 sin x6

(80)𝜆�
3
=

�̇�3

ẋ6
=

−2𝜆6 sin x6

1 + x2 cos x6 + x3 sin x6

(81)𝜆�
6
=

�̇�6

ẋ6
=

−2𝜆6
(
x3 cos x6 − x2 sin x6

)
1 + x2 cos x6 + x3 sin x6

(82)
d�6

�6
=

−2
(
x3 cos x6 − x2 sin x6

)
1 + x2 cos x6 + x3 sin x6

dx6

(83)�6 = �6,in

(
1 + x2 cos x6,in + x3 sin x6,in

1 + x2 cos x6 + x3 sin x6

)2

(84)��
1
=

3�6,in

2x1

(
1 + x2 cos x6,in + x3 sin x6,in

1 + x2 cos x6 + x3 sin x6

)2
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It is worth remarking that Eqs. (83)–(86) hold for Keplerian (coast) arcs of elliptic, 
parabolic, and hyperbolic type. In the subsections that follow these three types of con-
ics are distinguished, with the intent of obtaining closed-form solutions for �1 , �2 , and 
�3.

5.1  Elliptic Arcs

In most orbit transfer problems of practical interest, intermediate coast arcs are of 
elliptic type. This means that x2

2
+ x2

3
< 1 (cf. the definitions (1)). In this case, letting 

c0 ∶= �6,in
(
1 + x2 cos x6,in + x3 sin x6,in

)2 and using the definition of � (cf. Section 2), 
Eqs. (84)-(86) admit the following closed-form solutions, obtained with the use of the 
software Mathematica:

The symbols c1 c2 , and c3 denote the three integration constants. Their values can be 
obtained by evaluating Eqs. (87)–(89) at the initial time of the coast arc.

(85)��
2
= −2�6,in cos x6

(
1 + x2 cos x6,in + x3 sin x6,in

)2
(
1 + x2 cos x6 + x3 sin x6

)3

(86)��
3
= −2�6,in sin x6

(
1 + x2 cos x6,in + x3 sin x6,in

)2
(
1 + x2 cos x6 + x3 sin x6

)3

(87)

�1 = c1 +
3c0

2x1

⎧⎪⎨⎪⎩
2�

1 − x2
2
− x2

3

�3∕2 arctan
⎡⎢⎢⎣
x3 +

�
1 − x2

�
tan

�
x6
�
2
�

�
1 − x2

2
− x2

3

�1∕2
⎤
⎥⎥⎦
−

x3 +
�
x2
2
+ x2

3

�
sin x6

x2
�
1 − x2

2
− x2

3

�
�

⎫⎪⎬⎪⎭

(88)

�2 =c2 +
6c0x2�

1 − x2
2
− x2

3
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⎡
⎢⎢⎣
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�
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�
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�
x6
�
2
�

�
1 − x2

2
− x2

3

�1∕2
⎤
⎥⎥⎦
− c0

x3 + sin x6�
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2
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3

�
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− c0

3x3 +
�
1 + 2x2

2
+ 2x2
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2
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3

�2
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2
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+ x3 sin x6

x2
�
1 − x2

2
− x2

3

�
�2

− c0

x3
�
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�
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5.2  Parabolic Arcs

Parabolic arcs are rather infrequent to encounter in space trajectory optimiza-
tion. However, for the sake of completeness, this subsection addresses the deriva-
tion of the closed-form solution of Eqs. (84)–(86) along parabolic arcs, for which 
x2
2
+ x2

3
= 1.

As a preliminary step, because x2
2
+ x2

3
= 1 , the terms 

(
1 + x2 cos x6 + x3 sin x6

)
 in 

Eqs. (84)–(86) are rewritten as

The preceding definitions of c0 and � are used again. After insertion of Eq. (90) into 
Eqs. (84)–(86), the following closed-form solutions are obtained with the use of the 
software Mathematica:

Again, the symbols c1 c2 , and c3 denote the three integration constants. Their values 
can be obtained by evaluating Eqs. (91)–(93) at the initial time of the coast arc.

5.3  Hyperbolic Arcs

Closed-form expressions for the adjoint variables �1 , �2 , and �3 can be obtained also 
when the space vehicle travels an optimal hyperbolic coast arc, in which x2

2
+ x2

3
> 1 . 

In fact, using the identity arctan (i�) = iarctanh� (where � is a generic variable and 
i denotes the imaginary unit), Eqs. (87)–(89) can be rewritten for hyperbolic coast 
arcs as

(90)1 + x2 cos x6 + x3 sin x6 = 1 + sin
(
x6 + �

)
, with sin� = x2 and cos� = x3
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Once more, the symbols c1 c2 , and c3 denote the three integration constants. Their 
values can be obtained by evaluating Eqs. (94)–(96) at the initial time of the coast 
arc.

6  Concluding Remarks

This paper presents the analytical study of two types of optimal space trajectories 
that include multiple coast arcs: (a) minimum-time low-thrust paths with eclipse 
intervals and (b) minimum-fuel trajectories that employ finite thrust. Modified equi-
noctial elements are used to describe the orbit dynamics.

Problem (a) is formulated as a multiple-arc optimization problem, and all the 
related necessary conditions for optimality are derived. These form an extended set 
of conditions, which includes the Pontryagin minimum principle (in the light arcs), 
the adjoint equations for the costate variables, the related boundary conditions, the 
transversality relation on the final value of the Hamiltonian, and the multipoint nec-
essary conditions, at the junction times between two arcs. The latter relations are 
combined, to yield the matching (jump) conditions for the costate variables between 
two consecutive arcs. This research demonstrates that all the multipoint conditions 
can be solved sequentially in the numerical solution process. As a result, the param-
eter set for an indirect algorithm retains the size of the typical set associated with a 
single-arc optimization problem. No regularization or averaging is required to make 
tractable and solve the problem. In fact, based on this new multiple-arc formulation 
and the related analysis, indirect algorithms can easily incorporate the discontinui-
ties of the costate variables, located at the times when the spacecraft transitions from 
light to shadow (and vice versa). Moreover, the use of equinoctial elements can miti-
gate the hypersensitivity of the solution on the initial values of the adjoints, which is 
a common issue when indirect approaches are used. As a result, an indirect method 
is capable of yielding very accurate numerical results, while avoiding several dif-
ficulties of a theoretical or numerical nature, inherent to alternative formulations. 
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An illustrative numerical example demonstrates the effectiveness of the approach 
proposed in this work.

This research also revisits problem (b) with the use of equinoctial elements, and 
derives the necessary conditions associated with minimum-fuel trajectories. Unlike 
minimum-time paths with eclipse intervals, problem (b) is formulated as a single-
arc optimization problem. The switching function is introduced, and plays the role 
of determining the optimal sequence of powered phases and thrust arcs, whose num-
ber and timing is unknown a priori. The well-consolidated properties of minimum-
fuel trajectories are retrieved in terms of equinoctial elements and related adjoint 
variables, and the substantial analytical differences between problems (a) and (b) are 
emphasized.

As a further contribution, this study focuses on the costate along optimal coast 
arcs. Closed-form expressions, written in terms of elementary functions, are derived 
for the adjoint variables associated with modified equinoctial elements, along the 
three major types of Keplerian trajectories. Overall, 9 out of 14 components of the 
state and the costate turn out to be constant along optimal coast arcs, whereas for the 
remaining 5 variables closed-form expressions exist. This allows fast and accurate 
evaluation of the state and costate time histories along coast arcs, and leads to writ-
ing the switching function for problem (b) in closed form. This finding can be bene-
ficial for the accurate determination of the switching times from coast to thrust arcs.

These circumstances definitely represent further, unequivocal advantages of using 
modified equinoctial elements in spacecraft trajectory optimization.

Appendix

First Differential of the Extended Objective Function for Multiple‑Arc 
Problems

This Appendix is concerned with the derivation of the first differential of the 
extended objective function (25), in the context of the multiple-arc optimization 
problem addressed in Sect.  3. The dynamical system of interest is governed by 
state equations of the form (19) and is subject to the boundary conditions (17).

As a first step, the first differential of the scalar term dΦ is obtained, using the 
chain rule,

However, all the terms in the second row of Eq. (97) vanish. In fact, due to Eq. (24),
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As a second step, the differential of the remaining terms of (25) is derived, 
using the general relation for the differential of an integral [22],

where the symbol � denotes the variation, i.e. the time-fixed differential [22]. How-
ever, the last term in the second row of Eq. (99) vanishes, because, due to Eq. (19)

In Eq. (99) the following term is integrated by parts:

The relation d𝜂 = 𝛿𝜂 + �̇�dt (where � represents a generic variable) [22] is used in 
Eq. (101), then the resulting expression is inserted into Eq. (99), to yield

Finally, summation of the two right-hand sides of Eqs. (97) and (102) (while holding 
Eqs. (98) and (100)) leads to obtaining the final expression of the first differential 
dJ , i.e. Eq. (26).
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