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Abstract: Disease gene prediction is to date one of the main computational challenges of precision
medicine. It is still uncertain if disease genes have unique functional properties that distinguish
them from other non-disease genes or, from a network perspective, if they are located randomly in
the interactome or show specific patterns in the network topology. In this study, we propose a new
method for disease gene prediction based on the use of biological knowledge-bases (gene-disease
associations, genes functional annotations, etc.) and interactome network topology. The proposed
algorithm called MOSES is based on the definition of two somewhat opposing sets of genes both
disease-specific from different perspectives: warm seeds (i.e., disease genes obtained from databases)
and cold seeds (genes far from the disease genes on the interactome and not involved in their
biological functions). The application of MOSES to a set of 40 diseases showed that the suggested
putative disease genes are significantly enriched in their reference disease. Reassuringly, known
and predicted disease genes together, tend to form a connected network module on the human
interactome, mitigating the scattered distribution of disease genes which is probably due to both the
paucity of disease-gene associations and the incompleteness of the interactome.

Keywords: disease gene prediction; data integration; precision medicine; computational biology

1. Introduction

Precision medicine has been defined as “an emerging approach for disease treat-
ment and prevention that takes into account individual variability in genes, environment,
and lifestyle for each person.” [1]. This definition is mainly related to the experimental,
methodological, and technological developments of the last decades (e.g., next generation
sequencing) that gave birth to new possibilities in the practice of healthcare based on
individually tailored therapies. Disease genes identification is an important goal of biomed-
ical research, and one of the main challenges aimed at the development of personalized
treatments. In fact, a disease is rarely a consequence of an abnormality on a single gene,
but it is usually the result of perturbations involving sets of genes and their relationships
(e.g., alteration in molecular interactions, pathways). Disease genes (or seed genes) are
those genes whose mutations are involved in diseases, and it is still uncertain whether
such genes have unique properties that distinguish them from non-disease genes. In the
last decades, numerous databases for gene annotations have been proposed providing
information about genes and related diseases. Online Mendelian Inheritance in Man
(OMIM) [2], curated by the NCBI and Johns Hopkins University, is one of the most widely
used source of information for disease-gene associations, other examples are: PheGenI [3],
DisGeNET [4], eDGAR [5]. Despite the several available resources offer different levels
of information about the genetic basis of human diseases, knowledge about associations
between disease-causing genes and diseases is still incomplete. Moreover, the identification
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of specific disease genes is often impaired by gene pleiotropy, by the polygenic nature of
many diseases, by the influence of a plethora of environmental factors, and by genome
variability [6]. Various experimental techniques such as genome-wide association studies
(GWAS) and linkage analysis are used to identify new seed genes, but the disadvantage
of these high-throughput techniques is that often, they provide long lists of candidate
genes and thus require validation procedures that make these methods time-consuming
and expensive.

The described open problems combined with the importance of exploiting disease-
gene associations to determine personalized treatments paved the way for the development
of computational methods. In this context, algorithms for disease gene prediction have been
proposed to use and/or integrate the large amount of available omics data and knowledge-
based resources (gene annotations, disease-gene associations, etc.). Typical inputs of these
algorithms are a set of seed genes (gathered from knowledgebases such as OMIM) and at
least a second source of information (protein-protein interactions, functional ontologies,
gene expression data, etc.). Instead, the output of these gene prioritization methods are
typically subsets of candidate seed genes or genes rankings where top positions are related
to high likelihood of involvement in generating a disease phenotype. Several reviews
provide a description and a classification of the available algorithms for disease gene
prioritization [7–9]. Here we briefly describe the three main categories: filtering-based
techniques, similarity-based techniques, and network-based techniques. Filtering methods
require the definition of filters based on the available knowledge of the molecular basis of
the disease under investigation. Similarity-based techniques provide a gene prioritization
based on a similarity measure between candidate genes and seed genes: the calculation
of the similarity can exploit text-mining approaches [10] and can be based on functional
profiles of genes [11]. Finally, network-based methods represent biological data as networks
and apply graph mining techniques to rank genes. This last class of algorithms is also
the last one developed in time in the wake of the introduction and success of network
science in biomedical research [12–17]. Several methods have been proposed based on
different strategies (network propagation [18,19], module-based [20,21]). Alongside these
approaches, recently new network-based methods have been developed that use other
genes besides the seed genes to help in the prediction of new disease genes [22–24]: in
detail, these algorithms exploit genes associated with related diseases.

In this work, we introduce a new method for disease gene prediction based on the use
of knowledge-bases, network topological features, and on the k-means algorithm applied
to binary data. The proposed algorithm called MOSES (warM and cOld Seeds for disEase
geneS) is based on the definition of two different and opposing sets of genes. In fact, for
a specific disease, we define the known disease genes as warm seeds, and we identify
as cold seeds the genes far from the warm seeds in the interactome (high path length
between warm seeds and cold seeds) and not involved in the functions characterizing the
disease genes (e.g., molecular pathways). In detail, given the two sets of genes, the key
point of the proposed procedure is to distinguish between warm seeds and cold seeds
exploiting the topology of the human interactome and the set of functionalities disrupted
in the diseases. Regarding the second key point, it is not a priori known how to recognize
similarities in functional profile, so that, in practice, we cannot use these similarities to
decide if a generic gene is a disease gene or not. To overcome this issue, MOSES is based
on the well-known data mining technique k-means clustering [25] and exploits an adaptive
strategy to guide the clustering procedure to group the majority of known disease genes
in a specific cluster. The hypothesis is that this specific cluster contains unknown disease
genes (putative disease genes), besides containing known ones. The new approach can
exploit and integrate different sources of information and here, we propose a first use based
on known disease-gene associations, protein-protein human interactome and two types of
functional gene annotations (Gene Ontology terms and KEGG pathways).

In the present study, we applied MOSES to a set of 40 diseases. To test the predictive
power of MOSES, we performed a computational validation (10-fold cross-validation).
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Furthermore, we used the enrichment analysis tool Enrichr [26] for checking if the putative
genes are enriched in the disease to which the disease genes belong, and we studied the
topological features of the predicted disease module (network module composed of known
and putative disease genes).

2. Methods

The algorithm MOSES (warM and cOld Seeds for disEase geneS) is based on the
definition and the characterization of two different and opposing sets of genes: warm seeds
(WSs) and cold seeds (CSs). A warm seed is a disease gene, while a cold seed is a gene
satisfying two constraints: (i) network-based distance and (ii) functional distance from
the warm seeds. The first constraint imposes high path length between WSs and CSs in
the interactome (see Figure 1), while the second distance requires that WSs and CSs are
involved in totally different biological functions.

Figure 1. Example of network-based distance between warm seeds (red diamonds) and cold seeds
(blue diamonds). The color of background ovals codes for the path length (PL) between WSs and CSs.

Its functioning requires three sequential phases described in detail in the following sections.

2.1. Functional Characterization of the Warm Seeds

The first step of the algorithm is to functionally characterize the WSs (i.e., the known
disease genes of the disease under investigation) by means of the enrichment analysis
(hypergeometric distribution with FDR correction). Different databases can be exploited,
and thus integrated, such as Gene Ontology database, KEGG pathways, miRTarBase,
TRRUST, etc. Fixed a significance threshold, for each of the considered databases, MOSES
identifies M significant annotations: only databases for which M ≥ 2 are considered for the
next steps.

2.2. Identification and Enrichment Analysis of the Cold Seeds

To identify the cold seeds, the algorithm first applies the constraint of network-based
distance in the selection of a set of genes in the interactome far from the disease genes.
Given a specific disease characterized by P disease genes (or warm seeds, set S0) and the
interactome I composed of N genes, the iterative procedure to identify these peripheral
genes is described below:
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1. identification of the non-seeds set NSi. At the first iteration, NS1 is the difference set
between the interactome and the disease genes: NS1 = I − S0, #(NS1) = N − P

2. identification of the first neighbors of genes in Si (set FNi)
3. update of the sets Si and NSi:

Si = Si−1 ∪ FNi−1

NSi = NSi−1 − FNi−1

The procedure stops when the ratio between the cardinalities of sets S0 and NSi is equal
to or greater than 10−1. Once the set of peripheral genes has been identified, the MOSES
algorithm extracts from this set, the cold seeds selecting only genes not involved in the
WSs significant annotations (GO terms, KEGG pathways, MicroRNA-Target interactions,
transcription factor-target regulatory relationships, etc.).

To be consistent with the WSs characterization, the algorithm selects also for the CSs
the first M annotations of the considered databases with smaller p-values according to the
hypergeometric distribution with FDR correction. Now, for each type of annotation, a set
denoted by J, made of 2M annotations, can be built: the first M terms functionally describe
the WSs, while the second half is related to the CSs characterization.

2.3. Optimized Clustering Phase and Selection of Putative Disease Genes

The set J is the input of the clustering phase: it is used to identify the subset of GJ
genes, namely the genes in the interactome involved in the selected annotations, and allows
to build the GJ-by-2M matrix to be subjected to the clustering procedure. This step is based
on the use of the popular k-means clustering algorithm [25]: let k be a fixed integer number,
the k-means separates the input set of genes into k clusters. MOSES algorithm proceeds as
follows. Starting from k = 2, it iteratively applies the k-means clustering algorithm to the
GJ-by-2M matrix, until it identifies a reasonable value for k. Note that, in the first iteration
of the algorithm, namely when k = 2, it is likely that the known disease genes belonging
to GJ are grouped within the same cluster, due to the specific choice of the set J. Then, the
process goes on increasing the number k of clusters incrementally by one. The algorithm
ends up at the first iteration for which the number of clusters kmax is the maximum number
of clusters so that a given percentage q% of disease genes within GJ is in the same cluster
C*. This percentage belongs to the range (60%, 90%): the threshold of 60% is set to obtain
more than half of the disease genes in one out of k clusters. In the case, at the first iteration
(k = 2), the disease genes within GJ are divided into two clusters containing each less than
90% of them, MOSES sets q% equal to the higher percentage only if q% ≥ 60%. Note that
WSs e CSs do not share any annotations by construction, hence the optimal cluster cannot
contain both the type of seeds.

The procedure outlined above is repeated considering each database (Gene Ontology
database, KEGG pathways, miRTarBase) and allows to obtain the sets of genes Ci

* (i = GO;
KEGG; miRTarBase). The new algorithm performs the intersection among the sets Ci

*

returning a batch of known and putative disease genes.
The above-described procedure is synthesized in Figure 2.
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Figure 2. Flowchart of MOSES algorithm. The background rectangles identify the three sequential
phases: red, blue and orange respectively for: (1) WSs functional characterization, (2) CSs iden-
tification and characterization, and (3) optimized clustering phase. The enrichment analysis can
be performed considering different types of gene annotations (Gene Ontology database, KEGG
pathways, miRTarBase) and obtaining for each of them Mi annotations, with i = GO; KEGG; miRTar-
Base, etc.

3. Data and Preprocessing

In the present work, to avoid selection bias, we applied the MOSES algorithm to
40 diseases selected from those provided in [21]. The selection criterion is related to the
number of disease genes (warm seeds set, S0): #(S0) = P, P∈(25,150). As described in
detail in [21], the disease-gene associations were retrieved from OMIM (Online Mendelian
Inheritance in Man; http://www.ncbi.nlm.nih.gov/omim [2], accessed on 26 April 2019)
and from the PheGenI database (Phenotype-Genotype Integrator; http://www.ncbi.nlm.
nih.gov/gap/PheGenI [3], accessed on 26 April 2019). We used the human protein–protein
interactome provided in [27] (243,603 protein-protein interactions connecting 16,677 unique
proteins) and we considered two kinds of annotations: GO terms (Gene Ontology database,
biological process, downloaded 26 April 2019) and pathways (KEGG gene set from the
Molecular Signatures Database, version 6.2). The available GO terms (biological process)
were not propagated upwards on the GO tree and were prefiltered as follows [20]:

i. annotations labeled with evidence code IPI (Inferred from Physical Interaction)
were excluded to avoid circularity;

ii. annotations not associated with the gene products (evidence code “NOT”) were excluded.

4. Results and Discussion

MOSES algorithm is based on the definition of two different and opposing sets of
genes (warm seeds and cold seeds) and its functioning required the above described
sequential phases. The putative disease genes returned by the algorithm are characterized
by two important properties: the network-based proximity and the functional similarity
with the original disease genes (here defined warm seeds). This is possible thanks to the
new definition of the cold seeds: genes far from the disease genes in the interactome and

http://www.ncbi.nlm.nih.gov/omim
http://www.ncbi.nlm.nih.gov/gap/PheGenI
http://www.ncbi.nlm.nih.gov/gap/PheGenI
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not involved in their functions. Furthermore, it is worth noting that MOSES can exploit,
and thus integrate, different sources of information.

As described in the previous section, we applied MOSES to 40 diseases and for
the first step of the algorithm (functional characterization of the WSs by means of the
enrichment analysis), we set the significant threshold equal to 5 × 10−2: for 27 out of the
40 diseases, MOSES selected M ≥ 2 significant annotations in both cases (GO-BP terms,
KEGG pathways). As MOSES has been thought to exploit data integration in the prediction
of new disease genes, we considered only the subset of 27 diseases and in Table 1, we show
for all of them: the number of WSs, the number of genes identified by MOSES applying the
first constraint of network-based distance (peripheral genes) and the number of CSs (i.e.,
peripheral genes functionally distant from the WSs). It is worth noting that the application
of the functional distance constraint further filters the set of peripheral genes proving
that the integration between protein-protein interactome topology and gene functional
annotations databases allows to appropriately identify the two opposing sets of gens.

Table 1. Cardinalities of the 3 genes sets: WSs, peripheral genes (application of network-based
distance constraint) and CSs (application of both network-based and functional distance constraints).

Disease Warm Seeds Peripheral Genes Cold Seeds

Amino acid metabolism inborn errors 52 119 113

Anemia, hemolytic 29 155 143

Arrhythmias, cardiac 30 171 163

Arthritis, rheumatoid 42 87 77

Asthma 37 91 85

Bile duct diseases 31 109 103

Blood coagulation disorders 40 142 129

Blood platelet disorders 26 193 170

Carbohydrate metabolism inborn errors 77 81 79

Cardiomyopathies 50 70 63

Celiac disease 36 137 120

Colitis, ulcerative 56 90 72

Colorectal neoplasms 42 79 68

Crohn disease 72 65 56

Diabetes mellitus, type 2 73 77 75

Head and neck neoplasms 35 87 80

Leukemia, myeloid 43 97 93

Lipid metabolism disorders 50 93 83

Lung diseases, obstructive 40 88 82

Lupus erythematosus 75 51 48

Lysosomal storage diseases 45 152 150

Multiple sclerosis 69 71 62

Muscular dystrophies 36 113 107

Psoriasis 54 86 76

Renal tubular transport inborn errors 34 229 211

Spinocerebellar ataxias 28 147 132

Spinocerebellar degenerations 30 147 137
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For the optimized clustering phase, we used the k-means algorithm implementation
in Matlab (k-means++ algorithm), setting as input parameters hamming distance and
50 replicates (number of times the k-means algorithm is run with different centroids).

In Figure 3 we show the clustering phase application to amino acid metabolism inborn
errors, characterized by 52 WSs and 113 CSs. For the warm seeds, MOSES selected M = 25
significant GO-BP terms (p-value < 5× 10−2 according to the hypergeometric test with FDR
correction) leading to the set J composed of 2M = 50 annotations (the second half of them is
related to the cold seeds functional characterization). 1594 genes (32 of which are disease
genes) of the interactome are involved in the 50 selected annotations. At the first iteration,
the k-means algorithm produces two clusters with 1345 and 249 genes, respectively. One of
the clusters contains 100% of disease genes, thus the process goes on increasing the number
of clusters k and stops with kmax = 3, as one cluster contains the largest percentage of seeds
equal to 0.84% (27 out of 32 disease genes, see Figure 3).

Figure 3. Clustering process applied to the disease amino acid metabolism inborn errors using
GO-BP annotations (top panel) and KEGG pathways (bottom panel). On the right, the procedure of
data integration and the identification of putative disease genes are shown.

Considering KEGG database, for the warm seeds, the algorithm selected M = 10
significant pathways (p-value < 5 × 10−2 according to the hypergeometric test with FDR
correction) leading to the set J composed of 2M = 20 terms. The genes involved in the
20 selected pathways are 978, 29 of them are disease genes. In this case, the process goes on
increasing the number of clusters k until the selection of kmax = 5, as it is the first iteration
for which we obtain a cluster containing the 86.2% of the disease genes (see Figure 3).

Thus, for this disease, we obtain the cluster C∗GO made of 1184 genes (27 out of them
being disease genes) and the cluster C∗KEGG made of 387 genes (25 out of them being disease
genes) The intersection C∗GO ∩ C∗KEGG, returns 138 genes: 16 disease genes and 112 putative
disease genes (set PG).

In 5 diseases among the 27 studied, the clustering phase failed in the identification of
the cluster C* using at least one type of annotations (GO-BP terms, KEGG pathways). For
example, in the case of asthma, at the first iteration (k = 2) the k-means algorithm applied
to GO-BP data, returns 2 clusters containing 57% and 43% of disease genes: the warm
seeds are therefore divided into two halves. In these cases, the use of a third (or more)
database(s) could help to overcome the limitation encountered with a specific type of gene
annotations. For the other 22 diseases, the MOSES algorithm identified the set of putative
disease genes (PG).
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4.1. Computational Cross-Validation and Comparison with Random Walk with Restart

To test the predictive power of MOSES, we performed the 10-fold cross-validation.
For each disease, we randomly split the disease genes set S0 into 10 subsets. Each time, we
selected one subset as probe set SP and the rest nine subsets as training warm seeds set ST.
Then we measured MOSES ability to recover genes in SP. Furthermore, to evaluate the rela-
tive performance of MOSES, we considered as a reference another algorithm for candidate
gene prioritization. We selected the random walk with restart algorithm (RWR) [18]: it is
a ranking algorithm exploiting global network topology and it was shown to outperform
other methods [19].

For each disease, we applied RWR (restart probability r = 0.7) to the same training sets
used with MOSES, and to make comparable the outputs of the two algorithms (a finite set
of PG putative disease genes for MOSES and a genes ranking for RWR), we considered
the top PG positions in the case of RWR. As a measure of performance, we considered
the percentage of recovered warm seeds in the test set SP. In Figure 4, we show in detail
the difference between the two algorithms: we can appreciate the tendency of MOSES to
outperform RWR in most cases, however, in few cases, RWR works better than MOSES.
As expected indeed, there is not a universal best algorithm, but in general, the selection of
the algorithm should be taken considering different factors of the available data. However,
results of the statistical comparison (paired t-test) between the two algorithms show that
overall MOSES performances are significantly higher than overall RWR performances
(p-value = 9.6 × 10−03).

Figure 4. 10-fold cross-validation. Difference between MOSES and RWR performances. The per-
formances are computed as the percentage of recovered warm seeds in the test set SP. Rows and
columns represent respectively the diseases and the cross-validation iterations. In the case of positive
values (orange pixels), MOSES outperforms RWR, while negative values (green pixels) refer to the
opposite situation.



Genes 2021, 12, 1713 9 of 16

4.2. Enrichment Analysis of Putative Disease Genes

We used the enrichment analysis tool Enrichr [23] to check if the putative genes are
enriched in the disease to which the disease genes belong (category: Diseases/Drugs,
section: DisGeNET). To find the corresponding disease in Enrichr, we referred to the
International Statistical Classification of Diseases (ICD-11 for Mortality and Morbidity
Statistics, version: 09/2020). Results are shown in Table 2. For 19 out of 22 diseases, the
adjusted p-value is below the threshold of 0.05. Only in one case (hemolytic anemia), the p-
value is above the significance threshold, while for two diseases (carbohydrate metabolism
inborn errors, lipid metabolism disorders) we did not find the corresponding disease
in Enrichr.

Table 2. Enrichment analysis of putative disease genes performed with Enrichr (Diseases/Drugs
category, DisGeNET section). For each disease, we show the number of putative disease genes (PG),
the corresponding DisGeNET disease name, the number of validated PG and the adjusted p-value
retrieved from Enrichr; p-values below the significance threshold are highlighted in red.

Disease #PG DisGeNET Disease #Validated Adjusted
p-Value

Amino acid metabolism,
inborn errors 122 Amino Acid Metabolism,

Inborn Errors 2 1.68 × 10−02

Anemia, hemolytic 50 Anemia, Hemolytic 2 7.52 × 10−02

Arrhythmias, cardiac 59 Cardiac Arrhythmia 5 7.08 × 10−04

Arthritis, rheumatoid 447 Rheumatoid Arthritis 156 7.92 × 10−49

Bile duct diseases 55 Bile Duct Diseases 1 3.71 × 10−02

Blood coagulation
disorders 104 Blood Coagulation

Disorders 13 9.73 × 10−10

Carbohydrate metabolism
inborn errors 256 - - -

Cardiomyopathies 32 Cardiomyopathies 22 1.04 × 10−04

Celiac disease 112 Celiac Disease 16 4.16 × 10−10

Colitis, ulcerative 165 Ulcerative Colitis 68 7.88 × 10−45

Colorectal neoplasms 1160 Colorectal Carcinoma 433 2.13 × 10−84

Crohn disease 162 Crohn Disease 58 3.50 × 10−34

Diabetes mellitus, type 2 52 Diabetes Mellitus,
Non-Insulin-Dependent 29 4.68 × 10−15

Head and neck neoplasms 412 Malignant Head and
Neck Neoplasm 52 1.21 × 10−21

Leukemia, myeloid 184 Myeloid Leukemia 22 3.32 × 10−08

Lipid metabolism
disorders 43 - - -

Lupus erythematosus 248 Lupus Erythematosus,
Systemic 103 1.19 × 10−59

Lysosomal storage
diseases 112 Lysosomal Storage

Diseases 5 3.18 × 10−03

Multiple sclerosis 396 Multiple Sclerosis 101 1.31 × 10−37

Muscular dystrophies 122 Muscular Dystrophy,
Duchenne 6 6.63 × 10−03

Psoriasis 421 Psoriasis 77 3.51 × 10−27

Spinocerebellar
degenerations 38 Ataxia, Spinocerebellar 2 3.52 × 10−02
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4.3. Study of the Predicted Disease Module

Putative disease genes are identified by MOSES exploiting the protein-protein interac-
tome topology and the set of functionalities disrupted in the diseases. The integration of
these different types of information agrees with the hypothesis of overlap among disease
module, topological module (locally dense network neighborhood) and functional module
(aggregation of nodes with similar or related functions in the same network neighbor-
hood) [13]. While the topological and functional modules are concepts widely applied in
different fields and suitable also in the case of biological networks, the network disease
module is a recent key concept of network medicine [13,28,29]. This concept was raised
from some broadly accepted hypotheses and organizational principles of disease genes [30].
In particular, genes (or gene products) involved in the same disease tend to interact (local
hypothesis) and to cluster in connected subnetworks (disease module hypothesis). Moreover,
genes in a disease module are often involved in the same biological functions (functional
coherence hypothesis).

In the light of these considerations, for each disease, we studied the topology of the
network module composed of the known disease genes (the warm seeds, set S0) and
the candidate genes (set PG) suggested by MOSES. We focused on the largest connected
component (LCC) of the disease module investigating the size of the LCC consisting of
warm seeds only (|LCCWS|), the size of the LCC considering the set S0 ∪ PG (|LCCWS+PG|)
and the number of warm seeds in LCCWS+PG. In Table 3, we show the above describe
measures for each disease.

Table 3. Study of the largest connected component (LCC) of the disease module. For each disease,
we show the number of warm seeds (WSs), the number of putative disease genes (PG), the size of
the LCC consisting of warm seeds only (|LCCWS|), the size of the LCC considering the set S0 ∪ PG
(|LCCWS+PG|) , the number of warm seeds in LCCWS+PG, the 95th percentile threshold of the
distribution of the 1000 LCCs of the random disease module (known disease genes and random
genes). In the column |LCCWS+PG|, bold text highlights values above |LCCWS+RG| threshold.

Disease #WSs #PGs |LCCWS| |LCCWS+PG| #WSs in
LCCWE+PG

|LCCWS+RG|
Threshold

Amino acid metabolism
inborn errors 52 122 11 42 14 27

Anemia, hemolytic 29 50 11 55 12 16

Arrhythmias, cardiac 30 59 2 36 6 16

Arthritis, rheumatoid 42 447 6 306 31 201

Bile duct diseases 31 55 3 35 7 12

Blood coagulation
disorders 40 104 22 98 34 37

Carbohydrate metabolism
inborn errors 77 256 9 168 39 96

Cardiomyopathies 50 32 27 42 32 33

Celiac disease 36 112 2 57 7 15

Colitis, ulcerative 56 165 5 140 22 44

Colorectal neoplasms 42 1160 18 992 35 771

crohn disease 72 162 10 150 27 57

Diabetes mellitus type 2 73 52 7 19 9 16

Head and neck neoplasms 35 412 6 320 25 172

Leukemia myeloid 43 184 16 136 32 69
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Table 3. Cont.

Disease #WSs #PGs |LCCWS| |LCCWS+PG| #WSs in
LCCWE+PG

|LCCWS+RG|
Threshold

Lipid metabolism
disorders 50 43 11 37 19 17

Lupus erythematosus 75 248 5 180 39 92

Lysosomal storage
diseases 45 112 8 13 5 20

Multiple sclerosis 69 396 11 287 40 185

Muscular dystrophies 36 122 12 84 24 31

Psoriasis 54 421 6 309 36 194

Spinocerebellar
degenerations 30 38 2 37 9 12

In all the cases except for lysosomal storage diseases, the largest connected component
of the predicted disease module (known and putative disease genes) contains a higher
number of WSs with respect to the size of the LCC composed of warm seeds only. This
result suggests that the extension of the disease module with the identified candidate genes,
mitigates the WSs scattered distribution in the human interactome. The obtained disease
modules are thus in accordance with the strategy of the recent Seed Connector Algorithm
(SCA) [31]. Indeed, SCA proposes to add few additional linking genes (seed connectors) to
the disease genes set, on the basis of the hypothesis that such seed connectors are hidden
disease module elements that are critical for interpreting the functional context of disease
genes [31]. However, the main and substantial difference between the two algorithms is
that SCA builds the network module forcing the presence of the disease genes connected
component, while with the application of MOSES, this topological property of the disease
module is the result of the algorithm procedure. Furthermore, MOSES does not impose the
presence of a single connected component.

Figure 5 shows the case of ulcerative colitis (see supplementary material for the other
diseases). For this disease, the largest connected component of warm seeds only is composed
of 5 nodes: thus only 5 out of 56 known disease genes are directly connected in the human
interactome. Adding the 165 putative genes suggested by the MOSES algorithm to the
disease module, we obtain the largest connected component composed of 140 nodes, 22 of
which are WSs.

To verify that the obtained size of the LCCWS+PG has not been obtained by chance, for
each disease, we generated 1000 times a random disease module composed of the known
disease genes and genes randomly selected from the interactome (WSs were excluded
during random picks). In particular, the number of random genes (RG) is equal to the
number of putative disease genes. For all the diseases except for lysosomal storage diseases,
the size of the LCCWS+PG is above the threshold of 95th percentile of the distribution of
the largest connected components composed of the known disease genes and the random
genes (|LCCWS+RG|, see Table 3).
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Figure 5. Largest connected component (LCC) of the predicted disease module (warm seeds and
putative disease genes) for ulcerative colitis. Node shape codes for the type of genes: red diamonds
represent the warm seeds (22 nodes), while orange dots represent the putative disease genes (118 nodes).
On the right, distribution of the size of the 1000 LCCs of the random disease modules (|LCCWS+RG|)
obtained adding to the warm seeds, a set of randomly selected genes with cardinality equal to the set of
putative genes; the orange arrow indicates the size of the LCCWS+PG shown in the left panel.

4.4. Case Studies on Colorectal Neoplasms and Rheumatoid Arthritis

Among the studied diseases, we present in this section the results obtained for rheuma-
toid arthritis and colorectal neoplasms.

4.4.1. Rheumatoid Arthritis

Rheumatoid arthritis (RA) is an autoimmune and inflammatory disease, which means
that the immune system attacks healthy cells by mistake, causing inflammation (painful
swelling) in the affected parts of the body.

The disease genes for RA used in this work (Supplementary Table S1), are enriched
in 18 KEGG pathways (hypergeometric test, FDR less than 0.05): among them, it is worth
noting the presence of notch signaling pathway [32,33], cell adhesion molecules CAMs [34]
and Jak-STAT pathway [35].

Starting from the 42 original disease genes, the MOSES algorithm identified 447 puta-
tive genes (Supplementary Table S1). The functional enrichment analysis showed they are
enriched in 41 KEGG pathways (hypergeometric test, FDR less than 0.05), including 16 of
the 18 characterizing the disease genes. However, none of them are in the top 3 (FDR ascend-
ing order). Indeed, the putative genes resulted mainly associated with neuroactive ligand
receptor interaction (FDR = 1.44 × 10−43), olfactory transduction (FDR = 7.82 × 10−20) and
metabolism of xenobiotics by cytochrome P450 (FDR = 4.28 × 10−19). Interestingly, in rela-
tion to the olfactory transduction pathway, disturbances in the olfactory function have been
investigated mainly in neurological/neurodegenerative disorders and only recently in
autoimmune diseases [36–38]. In particular, in [39], Li and colleagues carried out a whole-
exome sequencing study in a Han (Chinese ethnic group) patient cohort and identified
genes enriched in the olfactory transduction pathway, suggesting the potential involvement
of this pathway in RA disease progression.

Furthermore, performing the enrichment analysis with Enrichr (category: transcrip-
tion, section: TRRUST Transcription Factors 2019) and focusing on the top 3 positions (as-
cending order based on adjusted p-value), we found that the putative genes are significantly
enriched in RelA (adjusted p-value = 1.104× 10−14), NF-κB1 (adjusted p-value = 4.502× 10−14)
and CIITA (adjusted p-value = 4.734 × 10−12). NF-κB is a collective name for dimeric tran-
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scription factors comprised of the Rel family of proteins that include RelA (p65), c-Rel, RelB,
NF-κB1 (p50), and NF-κB2 (p52): NF-κB has been well recognized as a pivotal regulator of
inflammation in rheumatoid arthritis [40].

4.4.2. Colorectal Neoplasms

Colorectal cancer is one of the most common cancers in the world and also one of the
leading causes of cancer-related death worldwide [41].

The disease genes here used (Supplementary Table S2), are enriched in 19 KEGG
pathways (hypergeometric test, FDR less than 0.05): among them, as expected, there are
colorectal cancer pathway, pathways in cancer, and mismatch repair. For this disease,
starting from the 42 original disease genes, MOSES suggested 1160 putative genes (Sup-
plementary Table S2). The functional enrichment analysis showed they are enriched in
65 KEGG pathways (hypergeometric test, FDR less than 0.05), including almost all those
characterizing the disease genes (16 out of 19 terms). It is worth noting that only for the
putative genes and at the first position in their pathways ranking based on FDR ascending
order, we found cytokine-cytokine receptor interaction (FDR = 4.18 × 10−63). Indeed,
cytokine and cytokine receptor interaction networks are crucial aspects of inflammation
and tumor immunology particularly for colorectal cancer [42,43]. Moreover, using the En-
richr platform (category: transcription, section: miRTarBase 2017), we found that putative
disease genes are enriched in mir-145-5p (adjusted p-value = 4.97 × 10−9; top position in
the ascending order). miR-145 has frequently been investigated in colorectal cancer [44]:
this miRNA acts as a tumor suppressor [45,46] and has been reported to be down-regulated
in colon carcinomas [47].

5. Conclusions

In this work, we introduce the algorithm MOSES based on the new definition of
warm seeds and cold seeds. In particular, the identification of the cold seeds requires the
application of two constraints of distance from the known disease genes (here defined
warm seeds): network-based distance and functional distance. MOSES exploits thus the
advantages of network-based approaches and the use of disease genes functional features:
indeed, it suggests a finite set of putative disease genes characterized by the two important
properties of network-based proximity and functional similarity with the original disease
genes. The use of these two seeds sets is innovative in the fact that we consider genes far
away from each other to identify putative genes, whereas most disease gene prediction
algorithms are based on the idea that putative genes are “near” in some sense to the known
disease genes. Future analysis will be aimed at the integration of more types of gene
annotations, to overcome the limitation encountered in the present study.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/genes12111713/s1, Figure S1: Largest connected component (LCC) of the predicted disease
module (warm seeds and putative disease genes) for amino acid metabolism inborn errors, Figure S2:
largest connected component (LCC) of the predicted disease module (warm seeds and putative
disease genes) for anemia, hemolytic, Figure S3: Largest connected component (LCC) of the predicted
disease module (warm seeds and putative disease genes) for arrhythmias, cardiac, Figure S4: Largest
connected component (LCC) of the predicted disease module (warm seeds and putative disease genes)
for arthritis, rheumatoid, Figure S5: Largest connected component (LCC) of the predicted disease
module (warm seeds and putative disease genes) for bile duct diseases, Figure S6: Largest connected
component (LCC) of the predicted disease module (warm seeds and putative disease genes) for blood
coagulation disorders, Figure S7: Largest connected component (LCC) of the predicted disease module
(warm seeds and putative disease genes) for carbohydrate metabolism inborn errors, Figure S8: Largest
connected component (LCC) of the predicted disease module (warm seeds and putative disease
genes) for cardiomyopathies, Figure S9: Largest connected component (LCC) of the predicted disease
module (warm seeds and putative disease genes) for celiac disease, Figure S10: Largest connected
component (LCC) of the predicted disease module (warm seeds and putative disease genes) for
colorectal neoplasms, Figure S11: Largest connected component (LCC) of the predicted disease module
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(warm seeds and putative disease genes) for crohn disease, Figure S12: Largest connected component
(LCC) of the predicted disease module (warm seeds and putative disease genes) for diabetes mellitus
type 2, Figure S13: Largest connected component (LCC) of the predicted disease module (warm seeds
and putative disease genes) for head and neck neoplasms, Figure S14: Largest connected component
(LCC) of the predicted disease module (warm seeds and putative disease genes) for leukemia, myeloid,
Figure S15: Largest connected component (LCC) of the predicted disease module (warm seeds and
putative disease genes) for lipid metabolism disorders, Figure S16: Largest connected component (LCC)
of the predicted disease module (warm seeds and putative disease genes) for lupus erythematosus,
Figure S17: Largest connected component (LCC) of the predicted disease module (warm seeds and
putative disease genes) for lysosomal storage diseases, Figure S18: Largest connected component
(LCC) of the predicted disease module (warm seeds and putative disease genes) for multiple sclerosis,
Figure S19: Largest connected component (LCC) of the predicted disease module (warm seeds and
putative disease genes) for muscular dystrophies, Figure S20: Largest connected component (LCC) of
the predicted disease module (warm seeds and putative disease genes) for psoriasis, Figure S21: Largest
connected component (LCC) of the predicted disease module (warm seeds and putative disease genes)
for spinocerebellar degenerations, Table S1: disease genes and putative genes for rheumatoid arthritis,
Table S2: disease genes and putative genes for colorectal cancer.
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